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1 Introduction

This work is the second of a series of papers revisiting the properties of Heterotic string
compactifications on ALE spaces. The main motivation for these studies is that by combining
recent progress about six-dimensional theories [1–9] with our improved understanding of
their continuous 2-group symmetries [10–12],1 we find new insights on several open questions
on the subject.

1We stress that there have been lots of recent developments about the geometric origin of generalised
symmetries [13] for 5d theories with a geometric engineering in M-theory (see e.g. [14–20]), and in particular
their 2-group structures mixing a continuous 0-form symmetry with a finite 1-form symmetry, found in [21]
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In our previous work [30] we have revisited the Heterotic ALE instanton little strings
and the corresponding T-dualities [31–36]. While the little string theories (LSTs) of heterotic
Spin(32)/Z2 ALE instantons are well-known,2 the LSTs governing Heterotic E8 × E8 ALE
instantons were still relatively mysterious. We have completely determined the latter thanks
to 6d conformal matter methods, extending and generalising previous beautiful results in the
literature about them [32, 39, 40] — the gap which we have filled in [30] is the dependence
of the 6d LST instantons on choices of monodromies at infinity for the Heterotic E8 × E8
gauge group, parameterised by pairs of group morphisms (µ1, µ2), µa ∈ Hom(Γg, E8). The
various possible (µ1, µ2) are part of the data defining an instanton on the ALE space of
type C2/Γg, where Γg is a finite subgroup of SU(2). Hence one expects to obtain different
6d LSTs corresponding to each pair, which we have determined thanks to recent progress in
understanding 6d orbi-instanton theories [4, 6, 9, 41] (see also [42]). As a consistency check of
our results, in [30] we have exploited T-duality with the known Spin(32)/Z2 ALE instanton
LSTs: since T-dual pairs of theories must have matching flavor symmetry ranks, 5d Coulomb
branch dimensions, and continuum 2-group structure constants [11, 12], we confirmed our
prediction on the structure of the E8×E8 ALE instanton LSTs by finding a matching T-dual
Spin(32)/Z2 for each example. Moreover, the above data seemed sufficiently powerful to
predict T-duality between pairs of LSTs and, as a consequence, we ended up with several
new families of conjectural equivalences among these models [30].

For ALE spaces of type Ak and Dk these conjectures can be tested by exploiting dual
brane realisations in Type I′ (which we did in [30], building on [33–36]). However, for ALE
spaces of types E6, E7 and E8, a perturbative superstring description is lacking (which
goes hand in hand with the lack of an ADHM construction for instanton moduli spaces of
exceptional gauge groups [43]). Therefore, in order to check our conjectures for the ALE
spaces of exceptional type, we must resort to a different method which was pioneered by
Aspinwall and Morrison [31, 32], as well as developed in later works [5, 39, 40]. Namely,
one realises the corresponding 6d (1,0) LSTs via geometric engineering them in F-theory
and then exploits the M/F-theory duality to probe the 5d moduli spaces of the relevant 6d
LSTs reduced on a circle. It is thanks to this geometrization of T-duality that we can probe
some of the conjectures of [30] and explicitly demonstrate their validity, thus confirming our
predictions. This is the main aim of this paper.

Here we recap some features of the geometric origin of the T-dualities from F-theory,
which are relevant for our paper. Recall that the data of an elliptic fibration3 is needed
to define a 6d (1,0) F-theory background:

T 2 → X

↓ π

B2

(1.1)

and then further explored by [22–27]. We expect all these results have interesting applications to further
constrain 6d LST T-dualities via the M-theory moduli space — in combination with the dimensional reduction
of the corresponding 6d defect groups [28]. We plan to explore these aspects in future work [29].

2Those models have been obtained from orbifolds of the theory of N Spin(32)/Z2 NS5 branes [33, 34, 37, 38].
3More generally, a genus one fibration is sufficient, but in this paper we will not study these more general

cases that should correspond to twisted T-dualities.
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where the complex structure parameter of the torus fiber T 2 is interpreted as an axio-dilaton
coupling in IIB [44–46], X is a Calabi-Yau (CY) threefold and B2 is a two-dimensional Kähler
complex surface. The resulting 6d theory strictly depends on the property of π, hence we
denote it TF/(X,π) in this introduction. By the M/F-theory duality, one has that the KK
theory corresponding to the circle reduction of TF/(X,π) is given by M-theory on X, namely

DS1TF/(X,π) = TM/X . (1.2)

In particular, on the r.h.s. one can probe the whole M-theory moduli space of X, which is
much larger than the F-theory moduli space, as it does not depend on π. In particular, if
X admits an inequivalent elliptic fibration

T 2 → X

↓ π̃

B̃2

(1.3)

then the resulting 5d KK theory will have an inequivalent 6d uplift to the theory TF/(X,π̃),
which is often very different from TF/(X,π). This is a geometrically realised T-duality between
these two 6d theories.4 In order to probe our conjectures, we need to find explicit CY threefolds
corresponding to the F-theory construction of the Heterotic ALE E8 × E8 instantons with
nontrivial choices of monodromies at infinity that explicitly break E8 to F (µa), the commutant
subgroup of µa(Γg) in E8. For trivial choices of monodromies preserving the whole E8, this
was done by Aspinwall and Morrison [32], and some examples of threefolds corresponding
to non-trivial monodromies triggering small breakings were also studied in [39, 40]. Here,
we formulate a general picture based on the Heterotic/F-theory duality. On top of being
elliptically fibered, the Calabi-Yau in our constrcution are also K3 fibered, which is the
hallmark of the fact that these are F-theory duals of Heterotic compactifications. Thanks
to this other fibration of the form

K3→ X

↓ ξ

C

(1.4)

where C is a non-compact complex curve, we can explicitly realise the global symmetry
algebra of the 6d LST, corresponding to the Lie algebra of F (µ1) × F (µ2), as the Picard
lattice of the K3 fiber of ξ. In the T-dual, we see how the same Picard lattice is compatible
with an inequivalent decomposition, which is induced by the other elliptic structure of X

and realises the flavor symmetry of the expected T-dual model. This description gives a
4We stress that the constructions of geometrically realised T-dualities in F-theory presented in [5] and

in [12, 47] are slightly more general than the one we review here: in the former, flops of X are included in the
M-theory moduli (indeed each X corresponds just to a chamber of the extended Kähler cone which is the
actual 5d extended Coulomb branch for the KK theory, hence flop transitions are indeed allowed physically),
while in the latter pair of references both flops and genus one fibrations as opposed to elliptic fibrations are
included (which lead to the so-called twisted T-dualities). These refinements of the geometrization of T-duality
are not needed to probe our conjectures in paper [30], hence we refrain from mentioning them in this work.
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finer more physically sound generalisation of the Kulikov description of K3 degenerations.
A perspective is already implicit in the works of [48]. Viewing the curve C as the family
parameter, we see that the LST is localised at a point over C, where all the 6d degrees of
freedom are coalesced in a generalised singularity. Resolving these geometries gives access to
the generalised 6d quivers for the resulting 6d LSTs, which we use to confirm our analysis and
probe, with F-theory techniques, our conjectures in [30]. Interestingly, the F-theory geometry
and the corresponding Mordell-Weil groups are powerful enough to constrain the global form
of the resulting flavor symmetry too. We stress here that each LST class corresponds to a
different geometry and in this paper we are constructing these geometries as explicitly as
possible exploiting techniques of toric geometry, we are not going to demonstrate all the
field theoretical results discussed in [30]. The purpose of this paper is to test the predictions
of [30] with F-theory geometry with a special emphasis on those which are dual to Heterotic
instantons along exceptional ALE spaces and exhibit exceptional flavor symmetries.

The approach based on K3 fibrations has applications beyond proving our conjectures: we
show explicitly that it can give predictions on T-dualities for non-geometric phases of the Het-
erotic string, which is a further result that we include in this work. In particular we find a close
relation between K3 fibrations admitting multiple elliptic fibrations and T-dual little strings
with a Heterotic origin that we plan to explore further. From that perspective, the T-duality
of 6d LSTs is clearly not a phenomenon of order two, involving just pairs of theories, instead it
allows for rather large families of dual systems. This extends well-known features of 6d LSTs
arising from M5 brane probes of C2/Zk spaces [49], as well as various recent results in [30, 47].5

This work is structured as follows: in section 2 we introduce the basic ingredients to con-
struct LSTs using F-theory emphasizing in particular the appearance of elliptic K3 fibrations.
In section 3 we construct smooth elliptic threefolds systematically to derive pairs of T-dual
LSTs. We probe the conjectures of [30] with chosen examples dual to Heterotic instantons
along all kinds of ALE spaces. These include singularities of all ADE types, with special
emphasis on the case of exceptional singularities. In those cases, we focus on the examples
that are the hardest to realise exploiting brane webs, namely those with global symmetries
that are products of exceptional group factors, E6, E7 and E8, which we study systematically.
In section 4 we start exploring more exotic families of LSTs to emphasise the power of the
technique we have been employing: these include ‘discrete holonomy theories’ following [51], as
well as Multi-T-Dual LSTs with exotic fiber/base exchanges and, probably most interestingly,
non-geometric Heterotic theories with maximal flavor ranks. In this last family of examples,
we exhibit in particular a “hexality” system, which is completely determined thanks to the
properties of the elliptic fibration structures of a special K3 with maximal Picard rank.

2 Review: heterotic little strings & geometry

This section serves as a review of the geometric construction of LSTs using F-theory. As
such we want to introduce the basic ingredients and set up the standard notation of the
literature (see e.g [52, 53] for a recent review on the geometry of F-theory). In the following

5It would be interesting to probe this effect further and see whether there are unbounded families of T-duals,
adapting to the LST setup the arguments of [50].
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section we first give a rough outline of the geometric engineering setup that give rise to
LSTs, then review the M/F-theory duality in order to explain the T-duality in geometric
terms. In practise, we employ the toric technique, which will be reviewed at a later stage
in section 3.1, to obtain smooth geometries.

Finally we give a short summary of K3 fibrations and the associated Kulikov degenerations
of elliptic K3s, which are explained in more details in appendix A.

2.1 Review: little strings from F-theory

We turn to F-theory to go beyond the limitation of the perturbative string constructions.
This allows us to construct the most complete collection of SCFTs [4] (for a review, see [53]
and references therein) and LSTs [5] to date. This section will review some basic facts
about the engineering of LSTs in F-theory; experts can safely skip it [5, 53]. An F-theory
compactification to 6D is defined by the geometry of a CY threefold X, which is an elliptic
fibration over a two-dimensional Kähler surface B2 given as

T 2 → X

↓ π

B2

. (2.1)

This geometry can be viewed as a non-perturbative generalization of Type IIB strings by
identifying the axio-dilaton τ with the complex structure of the torus fiber T 2 over any point
of the physical compactified space B2. This construction enables to consistently engineer
configuration with non-local (p,q) 7-branes, which allow τ to attain values at strong couplings,
such as exceptional symmetries. This approach is very powerful due to the ability to describe
this fibration algebraically as a Weierstrass model of the form

p = Y 2 + X3 + fXZ4 + gZ6 , (2.2)

where X, Y, Z are the projective coordinates of a P2
2,3,1 ambient space and s0 : {X, Y, Z} =

{1,−1, 0} being the zero-section. Furthermore, f and g are sections given by powers of line
bundles of the base anticannonical class, namely {f, g} ∈ {O(K−4

B2
),O(K−6

B2
)}. D7 brane

stacks are located at codimension one components of the discriminant ∆ = 4f3 + 27g2,
where the elliptic fibre becomes singular. Since LSTs are decoupled from gravity, the base
B2 is non-compact. Therefore also the discriminant ∆ admits compact and non-compact
components that D7 branes can wrap. The world volume degrees of freedom residing on
branes that wrap compact components yield gauge degrees of freedom, while those that wrap
non-compact ones produce flavor symmetries.

This description exploits an elegant relationship between algebraic geometry and physics:
Kodaira [54] and Tate (see [55, 56] for a direct connection to F-theory) have classified the
types of singularities in terms of vanishing orders of (f, g,∆) and additional monodromy data.
This leads to an ABCDEFG type of classification that coincides with all possible compact lie
algebras, which can appear as flavor factors gF or gauge factors g on the respective D7 branes.

The geometric classification is realized through a de-singularization procedure of the fibre.
In this process singular points on the elliptic curve are substituted by chains of compact fibral
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curves fi that are topologically P1s, whose intersection form fi · fj = −Gi,j coincides with the
Cartan-matrix Gi,j of the respective algebra. We perform many of such resolutions in depth
in the sections that follow. Beyond the non-Abelian part of flavor and gauge algebras in
F-theory, there is also finer data encoded in the Mordell-Weil group (MW) of the fibration X.
This structure arises when the respective fibration admits extra sections si with i = 1 . . . r

in addition to the zero-section s0. These sections admit an addition law, that generates
an Abelian group that is isomorphic to

MW (X) = Zr ×MW (X)T or . (2.3)

Hence, the free part of the group has rank r and generates an Abelian U(1)r group in F-theory
(see [57, 58] and [59] for a recent review). In compact scenarios those Abelian symmetries
are always gauged but in non-compact ones they become global flavor symmetries [60, 61] at
best. Many of the cases we discuss in the following sections do have additional Abelian flavor
factors. For these symmetries to be present, they are required to be free of ABJ anomalies.

In the following we will leave a check for an ABJ anomaly free charge assignments of
the hypermultiplets for future work but insist on their consistency by arguing via geometry
and flavor rank preservation under T-duality.

Secondly, the Mordell-Weil torsion (sub-)group MW (X)T or ∼ Zn × Zm gives rise to
non-simply connected symmetries [51, 62] by acting as a diagonal quotient on the (sub-
)centers Z(GF ) and Z(G) of flavor and gauge group respectively [7, 63]. This yields the
total symmetry group

GT = GF ×G

MWT or
. (2.4)

The above quotient highlights in particular the presence of a gauged center one-form symme-
try [13] and consequently a restricted set of matter and Wilson line operators6 in 6D QFTs,
regardless of whether they flow to SCFTs or LSTs, as demonstrated in recent literature,
e.g. [7, 18, 63, 65].

The non-critical strings and in particular the little strings in 6D arise from D3 branes
that wrap compact curves Σ in B2 with a string tension determined by Vol(Σ). The integral
homology lattice Λ = H2(B2,Z) is further identified with the (negative) string charge lattice
and possesses a natural pairing

(·, ·) : H2(B2,Z)×H2(B2,Z)→ Z . (2.5)

For a certain choice of basis wI ∈ H2(B2,Z), we denote this intersection form as

ηIJ = −wI · wJ . (2.6)

The rank r of this pairing, determines the number of independent dynamical tensor multiplets
in the 6D theory.

Due to a theorem by Arten, Grauert and Mumford (see reference in [53]), the intersection
pairing ηIJ must be positive definite for all compact curves to be contractable to a point.

6A finite MW group also results in the restriction of SL(2,Z) monodromies to a congruence subgroup as
e.g. argued in [64].
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This implies that we can shrink the base to a point and eliminate all scales from the theory.
The result is thus scale-free as required for an SCFT and the degrees of freedom are supported
by the now tensionless BPS strings [66].

Alternatively, if the intersection pairing is only positive semi-definite, the intersection
pairing ηIJ does not have full rank r but includes a zero eigenvalue with an eigencurve

Σ0 =
r+1∑
I=1

lLS,I · wI . (2.7)

Σ0 can not be contracted to a point and thus all scales of the theory cannot be eliminated.
The D3 brane wrapping Σ0 therefore leads to a non-critical string with a finite string

tension everywhere in the moduli space, the little string (LS). The volume of the respective
curve Vol(Σ0) then sets the LS tension. Moreover, by reducing the IIB four-form C4 along Σ0

we obtain a non-dynamical tensor multiplet that couples to the little string. This tensor field
should be regarded as a background field that admits a continuous u(1)-one-form symmetry.
As Σ0 is a linear combination of other curves wI , this induces a non-trivial LS charge of
all tensor multiplets under the LS u(1) symmetry.

As of writing of this paper, there exist only two types of N = (1, 0) 6D LSTs, distinguished
by their birational base topologies [5]. These are obtained upon collapsing all one curves
to smooth points and yield the two classes

B̂LST,1 : P1 × C , B̂LST,2 : (T2 × C)/Γ Γ ∈ SU(2) . (2.8)

In this work we focus on theories of the class BLST,1 as those are dual to heterotic LSTs.
The relevant data of LSTs are packed into the following type of quivers

[GF1 ]
g1
n1

g2
n2

[NR=j]
. . .

gI
nI

[GFI
]

gN
nN [GFNf

] , (2.9)

where the gauge algebra gI resides on the D7 brane that wraps a genus zero curve of self-
intersection wI · wI = −ηII = −nI . Neighboring curves intersect each other once, leading to
bifundamental matter. A box in the picture highlights a non-compact flavor brane algebra
gFi that intersects the adjacent curve. We additionally depict extra NR hypermultiplets in
representations R of the respective gauge algebra, which are not originated from obvious
brane intersections with some neighbouring curves. The matter of gI that couples to a tensor
with charge ηII is highly constrained by 6D gauge anomalies. In this work we will not discuss
the details of this anomaly cancellation mechanism and its constrains explicitly but refer
to excellent reviews in the literature [52, 67, 68].

This quiver makes it straightforward to extract the intersection matrix ηIJ that determines
its rank, LS curve Σ0 and the corresponding LS charges l⃗LS from its nullspace.

A characteristic feature of all LSTs is the continuous 2-group symmetry sourced from
the mixing of the u

(1)
1 -one-form symmetry and the 6D Poincare-, SU(2)R- and Flavor- zero-

form symmetries [11]. This mixing gives rise to the three structure constants, that can
be geometrically computed as

κ̂P = −
r+1∑
I=1

lLS,I(ηII − 2) , κ̂R =
r+1∑
I=1

lLS,Ihv
gI

, κFA
= −

r+1∑
I=1

lLS,IηIA , (2.10)
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with hv
gI

the dual Coxeter number of gauge algebra gI on the curve wI . The κFA
receives

contributions when a compact curve wI is intersected by a non-compact one, wA
nc carrying the

respective flavor group [GFA
]. The κ̂P structure constant depends only on the base topology

and is a birational equivalent. It can only take two values that are

κ̂P(B̂LST,1) = 2 , κ̂P(B̂LST,2) = 0 . (2.11)

These values have the proposed physical interpretation [12]: it counts the number of M9
branes in the theory.

2.2 Geometrization of T-duality

LSTs can be related by T-duality similar to SUGRA theories: i.e. upon circle compactification
and at a specific locus of the Coulomb branch (CB) and Wilson line (WL) background,
two (or more) LSTs become identical.

For this duality to exist, a couple of key features must be shared among the two theories.
First, two T-dual LSTs must have the same Coulomb branch dimension and amounts of
Wilson line parameters i.e.

Dim(CB) = T + rk(G) , Dim(WL) = rk(GF ) . (2.12)

The aforementioned matching is evident from field theory, e.g. the tensor multiplets become
vector multiplets in 5D with an additional scalar, that is the associated CB parameter.
Second, the continuous 2-group symmetries provide an additional set of global symmetries
necessary for the matching across T-duality [12]. Each of the relevant 2-group structure
constant must match individually which places tight bounds on possible T-dual LSTs. The
matching of κ̂P for example implies that T-duality can not alter the birational base class,
i.e. heterotic LSTs have to be mapped to heterotic LSTs.

This heterotic-heterotic LST match may not be very surprising. However matching the
various κ̂R values is highly sensitive to tensor and gauge algebra structure and can therefore
be used as a non-trivial check of two little string theories7 being T-dual.

T-duality is naturally geometrized in terms of F/M-theory, where the LSTs are captured
by the singular geometry of certain non-compact elliptic threefolds Xi. Compactifying those
theories on a circle yields by definition a 5D theory that coincides with M-theory on the very
same geometries Xi. In M-theory, also the F-theory elliptic fibre is physical and resolving
the (non-)compact singularities corresponds to switching on non-trivial CB(WL) parameters,
which breaks the theories to their maximal Cartan sub-algebras. If two theories are T-dual,
they must become entirely identical for some values of those parameters. The M-theory
duality therefore implies the Xi to be birational equivalent [31].

Put differently, we could equally well start from M-theory on a smooth non-compact
threefold X and explore its inequivalent torus fibrations, which by the virtue of M/F-theory
lift to inequivalent 6D little string theories. Such explorations have systematically been
performed for compact threefolds that are CICYs [50] and hypersurfaces in toric varieties [69].
This work focuses on toric hypersurfaces and the classification of toric hypersurface fibrations
in [70] for non-compact threefolds.

7Note that for pure su/sp gauge groups with LS charge lLS,I = 1, κ̂R coincides with the CB dimension.
Hence in such cases it does not yield new constrains.
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2.3 Degenerate K3 fibrations and heterotic LSTs

In this part, we provide a brief outline of the structure of the geometries utilized in our
heterotic LST constructions from the perspective of a degenerate K3.

An elliptic K3 surface. In 8D, the F-theory dual of the Heterotic string is obtained from
an elliptic K3 surface with the stable degeneration limit [71, 72]

T2
f

// K3

f
��

P1

→

T2
f

// dP9 ∨T2
H

dP9

f
��

P1

(2.13)

The eight-dimensional reduction of the E8 × E8 Heterotic string on T 2
H is equivalent

to F-theory on such a K3, where the possible E8 × E8 bundles correspond to the possible
Picard sublattices that can be realized within the homology lattice [71] (see e.g. [73] for
a recent review)

ΛK3 = U⊕3 ⊕ E⊕2
8
∼= Π3,19, (2.14)

with U being the hyperbolic plane lattice, ΛK3 is isometric to the intersection form of the
second cohomology group for the K3 surface in concern.

Let S denote our K3 surface; the most crucial sublattice in this context is the Neron-
Severi lattice NS(S)

NS(S) := H1,1(S) ∩H2(K3,Z) . (2.15)

The orthogonal complement to NS(S) in ΛK3 is denoted by the transcendental lattice TS .
While the transcendental lattice can be thought of as the complex structure deformations of
a K3, the NS(S) lattice is spanned by the divisors modulo rational equivalence. We are not
interested in K3s with any NS lattice structure but those, that allow for an elliptic fibration.

In lattice theoretic terms, this fibration structure is displayed by the embedding of the
hyperbolic lattice U into NS(S). The K3 provides us with a manifest option of NS(S), namely
one can incorporate a hyperbolic factor U directly by the orthogonal decomposition [74]

NS(S) ∼= U ⊕Wframe . (2.16)

The class of the zero-section and the base are contained in U , while all other divisors not
intersecting the zero-section are shrinkable and part of Wframe. Those divisors produce the
F/M-theory flavor group containing potential non-Abelian and Abelian algebra factors given
by the Mordell-Weil group [45, 57, 58]. According to the Tate classification [55, 56], we might
potentially incorporate extra monodromies over the base C1, resulting in the possibility of
non-simply laced flavor groups. The associated intersection form of divisors spanning NS(S) is
embedded in the aforementioned frame lattice Wframe. Thus it allows us to read off the ADE
type root lattice and the Mordell-Weil group directly. Therefore the most straightforward
choice for a heterotic dual theory is to include two E8 components as

NS(S) = U ⊕ (−E8)⊕2 . (2.17)
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Note that when the NS(S) lattice is relatively large, there may be more elliptic fibrations
i.e., U embeddings into the NS lattice. It is known [75] that the above choice of NS lattice
admits another elliptic fibration, with an so32 fibre and an order two MW group, which unifies
E2

8/(Spin(32)/Z2) duality. In general, finding all torus fibrations for a given K3 requires
classifying all U embeddings into a single NS(S) lattice, which is not an easy mathematical
problem (see e.g. [74]). An important takeaway from [74] is that certain K3s with large Picard
numbers (ρ ≥ 17) can have more than two elliptic fibrations; in one case the number even
reaches 63. Therefore, we should anticipate multi-T-dual heterotic LSTs found in section 4
once we approach the 6D theory. Note however that in 8D the heterotic/F-theory moduli
spaces match perfectly. This moduli space is given by a point in the even and self-dual
lattice II2,18. This is exactly the λK3 modulo an elliptic fibration on the F-theory side, and
the heterotic string on a 2D Narain torus.

Note that the stable degeneration limit above allows to identify a heterotic torus at
large volume in addition to some E2

8 Wilson line configurations. However, there are also
non-geometric loci where the heterotic torus is not at large volume, that lead to gauge
enhancements as we point out in section 4.3.

K3 fibrations. For the remainder of this study, we intend to explore the 6D LSTs over
BLST,1, i.e. bases that are birational to P1 × C. Consequently, we are fibering the elliptic
K3s over a non-compact direction. Hence the non-compact threefold admits the following
nested fibration structure

K3→ X

↓
C

with
T 2 → K3

↓
P1

, (2.18)

which allows us to rephrase many features of an LST as properties of an elliptic K3 fibration
and its degeneration. Furthermore, the entire NS(S) lattice of the K3 becomes the overlattice
of the polarization lattice ΛS of the fibration. ΛS connects our K3 surface and the CY
threefold X as it is obtained from the intersection form of the non-compact divisors Di ∈ X

restricted to the K3 surface.
On the other hand, a 7D gauge theory arises from a singularity C2/Γg along the M9

brane in the M-theory description. The latter being a gauge symmetry lifted to F-theory
as a Kodaira fibre g at the origin. This however introduces additional compact curves Di

at the origin of the K3 fibration and hence yields a degeneration of the K3 fibre. The
choice of the two embeddings

µa : Γg → E8 (2.19)

corresponds to tilting the transcendental lattice in the K3 fibre, thus impacting only the
non-compact Kodaira fibers that encode the global symmetry of the associated theory. The
Aspinwall-Morrison geometries correspond to the choices µ1 = µ2 = idE8 , leaving the flavor
group unbroken. All other possible options of µ1 and µ2 in figure 1 can be achieved by suitably
tilting the transcendental lattice, as we shall do for various choices in the next sections.
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Figure 1. Top: stable degeneration limit of a K3 with E⊕2
8 Picard lattice in two copies of dP9:

heterotic instantons are realized as a C2/ZN singularity where the two 1 curves intersect. Bottom:
engineering of ALE Heterotic instantons in F-theory. The choice of µa dictates the structure of
the transcendental lattice of the K3 fibre, this gives rise to the two non-compact curves of Kodaira
singularities Eµa

. In addition, the presence of the ALE background singularity in the Hořava-Witten
setup is dualized by the presence of Kodaira type g fiber whose locus is the C2/ZN giving rise to the
N instantons as well as the two 1 curves in the base.

K3 degeneration. In order to obtain a theory with non-trivial dynamics, we must add a
couple of non-trivial compact curves to the fibration. We are therefore compelled to investigate
degenerate K3s at this locus. In the mathematics literature, there exists a general theory of
degenerate K3s in terms of Kulikov models. A short review of the Kulikov model is provided
in appendix A. Roughly speaking, Kulikov degenerations concern smooth degenerated K3s
around a neighborhood of the origin of the base C. We denote the K3 fiber by Su with u ∈ C
and split the discussion into two pieces. Those at a generic point S1 = Su ̸=0 and the origin
Su=0, where the K3 fibration is allowed to degenerate. Note that the K3 fibre could become
reducible at finite points over the base, the intersecting property of the splitting components
classifies Kulikov models into three types. For instance, a type II model corresponds to the
K3 fibre that decomposes into N + 1 irreducible components intersecting in a chain with the
ending components being rational elliptic surfaces. This is precisely the heterotic instanton
illustration shown at the top of figure 1 upon shrinking them to a C2/ZN singularity.

The Kulikov classification, however, is very coarse. i.e., surface components with a higher
multiplicity are allowed to be removed by birational base changes, which is forbidden in
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...
...

K3
[gF2 ][gF1 ]

“Kulikov-like”-Degeneration

←
Cu

u = 0

g
gF2

gF1

Figure 2. A little string theory as a “Kulikov-like” degeneration: over a generic point in the base
Cu there is an elliptic K3 whose frame lattice yields the flavor group. At the origin of C, the K3
degenerates into compact surfaces with g fibers that exhibits a fusion of T (g, gFi

) conformal matter.

our construction as this would change the associated LST physics. Second, it is impossible
to have non-trivial fibres over some ruled surfaces when intersecting with an g type fibral
singularity. Those are the degenerations obtained from the removal of non-minimal torus fibre
singularities that characterize the LST. Nonetheless, many of our K3 fibrations degenerate
in a “Kulikov-like” way but with a substantially more intricate fibre structure. It would
be highly interesting to extend the Kulikov model with e.g. the geometric properties of an
elliptic threefold similar to [76, 77] to mathematically classify heterotic LSTs as generalized
Kulikov degenerations.

Before proceeding to the constructions of such heterotic LSTs via toric geometry, we
summarize the lessons gained from viewing them as degenerate K3 fibrations:

1. The heterotic LSTs are described as elliptic K3 fibrations over C, which degenerate in a
Kulikov-like way at the origin.

2. For a given K3 with a chosen torus-fibration, the flavor group is given by the frame
lattice Wframe. The flavor group is contained in the even self-dual lattice II2,18

3. The maximal rank of the flavor group is 18. When the flavor group is purely non-Abelian,
those are classified by extremal K3 surfaces.

4. As the K3 is compact, there can only be a finite set of heterotic LST flavor symmetries.8
This is expected from the deep interplay with these degenerations and breaking patterns
of E8 × E8 or Spin(32)/Z2, but captures also some slight generalisation arising from
non-geometric heterotic backgrounds (see e.g. [74, 78]).

5. A chosen NS(S) lattice of the K3 must include an elliptic fibration. T-dual LSTs are
identified by other elliptic fibration structures of the same NS(S) choice.

Hence for a fixed geometry, classifying T-dual LSTs is simply transferred to find inequivalent
elliptic fibrations in the flavor K3 fibre. Such a classification is non-trivial but can be done

8As argued in [29] upon removing all NS5 branes, we expect the theory to uplift to an 8D N = 1 SUGRA
theory, given via F-theory on the same elliptic K3.
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via lattice theoretic techniques [74]. For large NS(S) lattices, we should expect dozens of
fibrations/LSTs. In the bulk of this work, we construct resolved threefolds with up to three
of such fibrations. In section 4.3 we discuss fibrations with extremal K3 surfaces that do not
exhibit a toric resolution and propose six different LSTs that are all T-dual to each other.

3 Geometrizing heterotic ALE instantons

In the Hořava-Witten setup [79, 80], the Heterotic instantons are realized by N M5 branes
parallel to the two M9s, each is dual to a copy of E8 within the K3 NS lattice, in the stable
degeneration limit, each E8 is mapped in the E8 sublattice of dP9 [45, 46, 72]. In IIB N

M5 branes emerge as a C2/ZN singularity; hence to geometrically engineer the LST of N

Heterotic E8 × E8 instantons within F-theory we start with the setup in the upper part of
figure 1. Namely, we realize a C2/ZN at the locus where the two -1 curves corresponding
to the base P1’s of the dP9 intersect in the stable degeneration limit.

The T-duality for LSTs with κ̂P = 2 is often realized as a form of fiber/base duality.
Note that κ̂P = 2 signals the presence of the M9 branes, it is anticipated that models
corresponding to the theories K̃N (λ; g) would be realized by flipping the role of C2/ZN and
the singular Kodaira fiber Eg. This remark is motivated by the examples we have discussed
in Type I’ in [30]. There are, nevertheless, several (crucial) subtleties: first, the singularity
C2/ZN is part of a broader collection of curves with the structure of a I2N+1/Z2, where the
Z2 acts by identifying the corresponding nodes along the diagonal

•1 · · · •N

•0 •N+1

•2N+1 · · · •N+2

(3.1)

therefore we expect the emergence of an spN algebra, which is accurate under the appearance
of Spin(32)/Z2 instantons. Furthermore, this fiber will decorate a base containing a collection
of intersecting curves, whose topology is dictated by the structure of the Eg fiber. Obviously,
the intersection numbers of the associated curves must jump throughout the folding process
(otherwise we would get κ̂P = 0 which cannot be the case for a T-dual pair).

Fusing SCFTs to LSTs. Before constructing the various LSTs geometrically we quickly
recall the algorithm of how an KN (µ1, µ2, g) heterotic LST is obtained [30]. This algorithm
exploits the fact we can split up an KN (µ1, µ2; g) into three parts that are comprised of
SCFTs, fused together, schematically given as

KN (µ1, µ2; g) = T (µ1, g) g TN−2(g, g) g T (µ2, g) . (3.2)

Here T (µa, g) denotes minimal orbi-instanton theories attached to either of the two M9 brane
sides classified by [41] via fusion [81] (see also [2, 82]). The theories are specified by the
singularity g and the morphisms µa acting as

µa : π1(S3/Γg) ≃ Γg → E8 , (3.3)
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and breaking the e8 into a commuting subgroup

F (0)
a ≡ {g ∈ E8 | gh = hg, ∀h ∈ µa(Γg)} a = 1, 2 . (3.4)

Finally the TN−2(g, g) part is a minimal conformal matter theory associated to N − 2 M5
branes probing an C2/Γg-type singularity. The fusion process can be viewed as gauging a
common flavor group g of two SCFTs that sits over an additional tensor multiplet with string
charge n. Graphically this can be denoted by the quiver action:

· · · gi ni
gi+1
ni+1 [g] g [g]

gj+1
nj+1

gj
nj · · · −→ · · · gi

ni
gi+1
ni+1

g
n

gj+1
nj+1

gj
nj · · · (3.5)

The above structure is also very useful in the piece-wise construction of the associated smooth
threefolds as well as the computation of LS charges: i.e. we can take the various SCFT parts
individually and stick the resolved pieces together, to obtain the full smooth threefold that
constructs the LST. This procedure makes it straightforward to read off the second (or more)
fibration and its fibre structure which yields T-dual LSTs.

In some cases, we will actually be able to take “negative” numbers of M5-branes and
to directly glue together the minimal orbi-instanton theories which yield exotic types of
dual theories.

In order to resolve the respective threefolds, we make heavily use of toric geometry,
which will be introduced in the following.

We will go through all ADE singularities but focus in particular details on the exceptional
cases where a perturbative brane picture is lacking.

We start with A-type singularities and their resolutions as warm up and introduce their
toric resolutions. We then move to the exceptional cases where the additional conformal
matter factors and various other technical details are discussed. For completeness we also
briefly discuss the D-type cases.

3.1 Toric preliminaries

This section begins by reviewing a couple of facts about toric fibrations. We heavily rely on the
construction of threefolds via polytopes 4D ∆ which is standard for compact threefolds, which
we adopt and sufficiently generalize for non-compact cases. For further details, see [83–85].
The geometric construction uses the following two steps:

1. The non-compact threefold X is built as the anti-canonical hypersurface in a non-
compact smooth complex four-dimensional toric variety A.

2. The toric variety A is obtained from a Fan that is achieved via a regular fine star
triangulation of the rays, which forms a four-dimensional semi-convex polytope ∆.

We employ the notion of a polytope by ∆ and its dual ∆∗ according to Batyrev & Borisov [86]
and make use of the results of [83].

Consider a polytope ∆ that is the convex hull of a finite set of points vp spanning a
lattice N ∼ Z4. Recall that every point vp ∈ ∆ is associated with a complex coordinate xp as
a copy of C, it corresponds to a toric divisor Dxp : xp = 0. These divisors intersect whenever
their associated vertices share a cone in the fan. Obtaining a desired triangulation of the
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fan is computationally very hard and scales with the number of points in ∆. In practice
we only need to require the existence of such a triangulation, which allows us to deduce
the majority of the structures from the rays alone.9

All the coordinates xp are subject to homogeneous scalings

(x1, x2, x3 . . . xn) ∼ (λk1x1, λk2x2, λk3x3 . . . λknxn) , (3.6)

with λ ∈ C∗ that relates to some torus action. Thus we can read off their linear relations
from the vertices ∑

p

kpvp = 0 . (3.7)

Whenever there is a point v that does admit only a trivial linear relation with other vertices,
it admits a trivial C∗ action and hence is a non-compact direction in the associated toric
variety. Moreover, we can derive linear equivalence relation among divisors using any lattice
vector m from the dual lattice M and obtain∑

i

⟨vp, m⟩Dxp ∼ 0 . (3.8)

To setup a toric fibration, the ambient variety A must admit a fibration structure, [70]
from which the elliptic fibration on X is inherited10 In particular we require

F ↪→ A
↓ π

B2

. (3.9)

Here B2 coincides with the non-compact LST base, while F is a compact complex two-
dimensional weak Fano surface. The weak Fano property leads to the existence of an effective
anti-canonical hypersurface, which is a CY one-fold and hence a torus.

The above structure then implies that the anti-canonical hypersurface in A inherits the
fibration structure and in particular becomes a torus-fibration over B2. In most usages in the
literature, the fibre ambient space is fixed to the Tate model, i.e. F ∼ P2

1,2,3. We will also
deal with different ambient spaces that are not necessarily of Tate-type.11

Recall that the reflexivity of a polytope is defined by the origin 0 being the unique
interior point in the convex hull spanned by the vertices of ∆. Therefore, the polytope ∆ in
our consideration for the LST base is not reflexive as this would imply compactness. In our
cases, the origin locates on a certain face of ∆. The derivation of fibration and resolution
structures does not require compactness.

9Such triangulations are automated in computer algebra programs such as SAGE, CYTools [87, 88] but
only for compact threefolds. We employ those programs as cross-checks for the compactified threefolds in the
following.

10In the compact case, such a sub-polytope guarantees the existence of a triangulation such that the ambient
space admits a fibration by F and thus a toric elliptic fibration [69, 89] of the threefold modulo non-flat fibres.

11In the toric context, there are sixteen toric ambient spaces as two-dimensional reflexive polytopes. Their
fiber structure and F-theory physics have been extensively explored in [70], and we adopt their notation in the
following.

– 15 –



J
H
E
P
0
1
(
2
0
2
4
)
1
0
9

To read off a toric fibration from a polytope ∆, we require the following triangle form

∆ =

F (0)
T B2

 , (3.10)

Here (0) links to the origin of the base toric variety B2 and represents the generic point.
This triangular form implies a projection π acting as

π(∆)→ (B2) . (3.11)

Over the generic point in B2, we find the 2D toric variety is represented by the vertices
of the 2D reflexive polytope F .12

This condition coincides with the toric fibration given in [83] inherited from the ambient
space. We dualize the polytope ∆ into its polar ∆∗ following Batyrev

∆∗ = {m ∈MR|⟨v, m⟩ ≥ −1 for all v ∈ ∆} . (3.12)

If ∆ is reflexive, also ∆∗ would be. Again, this is not going to be the case in our study but
we will continue with that assumption for a moment. The usage of the dual polytope ∆∗

permits the dual points to play the role of monomials in the anti-canonical hypersurface
defining equation. Hence the most generic CY hypersurface is written as

p =
∑

m∈∆∗

∏
vp∈∆

amx⟨vp,m⟩+1
p , (3.13)

which is a generic section of the anti-cannonical class of A. For the non-reflexive polytopes we
are considering, coordinates that are not restricted by C∗ scalings appear as arbitrary power
series in the defining equation which is equivalent to ∆∗ being an infinitely extended prism.

The toric hypersurface (3.10) allows us to set up an elliptic fibration. Namely, over a
generic point in the base, i.e. (0) we assign all base coordinates that are not part of the slice
F to some generic value, such that the CY hypersurface equation p reduces to a hypersurface
in the 2D ambient space F , which is an elliptic curve. To establish an elliptic fibration, the
structure of how a 2D reflexive polytope F becomes a sub-polytope is crucial. Moreover, the
base can be read off directly from a projection of the fan of the toric ambient space as

π(∆)→ ∆B2 . (3.14)

The base B2 must be birational to either P2 or Hirtzebruch surfaces Fn [76] for compactness.
Before moving to the total space, we consider the structure of the LST bases. As reviewed

in section 2.1, the little string base is featured by the non-compactness and the existence
of a unique curve Σ0 of self-intersection Σ2

0 = 0. In addition, there are only two distinct
endpoint topologies after shrinking all possible curves:

BLST,1 : P1 × C BLST,2 : (T2 × C)/Γ with Γ ∈ SU(2) (3.15)
12An important addition though is, that we also have a star triangulation of the rays which respects the

toric morphism π, i.e. cones are mapped to cones. In [69, 89, 90], the argument for the existence of such a
triangulation has been given, although the fibration might not always be flat. In section 3.3 we will show how
to deal with non-flatness.
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In our toric setup, these bases are depicted via 2D toric ambient spaces. However, there is no
2D toric ambient space isomorphic to BLST,2.13 Hence in the toric setup, we are left with
LST bases of type BLST,1 = P1 × C as followed, up to GL(2,Z) transformations

vw0 vw1

vy0

(3.16)

It follows directly from eq. (3.6) and eq. (3.7) that w0, w1 are the two affine coordinates
of a P1 and y0 has no C∗ scaling and hence just parameterize C. The actually geometries
we will consider, will have many more compact curves though and thus toric rays. As all
heterotic LSTs have bases, that must be birational to P1 × C, since there does always exist
a blow-down map, that shrinks the base down to the toric configuration as in (3.16). Note
that the base itself is not longer convex since the two-dimensional cone spanned by vw0 , vw1

includes the origin as an interior point.
We can now start to investigate the general structure of the full polytope over such a

base. Note that non-convexity of the base lifts to the full polytope ∆ which can therefore not
be reflexive either. However, we can still dualize ∆ to obtain the dual polytope ∆∗ using
the Batyrev prescription eq. (3.12). From this it is easy to see, that a generic ray v ∈ ∆
admits the form v = (x, y, z, q) with q ≥ 0.

Hence each dual vector m ∈ ∆∗ with coordinates m = (x∗, y∗, z∗, q∗) admits a q∗

coordinate that is not bounded from above, resulting an infinite set of solutions. Analogous
the tops defined in [83], ∆∗ admits the structure of an infinitely long prism in the q∗ direction.

Since ∆∗ plays the role of the polytope providing monomials in the CY hypersurface, we
conclude that p in (3.13) is an infinite power series in certain coordinates. This is evident
from the fact that e.g. y0 is simply a copy of C with trivial C∗ scaling and thus can appear
to any arbitrary degree in the CY hypersurface p. This fact is useful to keep in mind but in
practice it suffices to truncate the polynomials at some suitable order.

Before constructing some first LST configurations and analyzing their structure, we
discuss some basic properties that can be readily inferred from the toric geometry.

Tops, Kac labels and LS charges from toric geometry. The structure of toric geometry
is powerful enough to construct and deduce many basic ingredients of LSTs, which we will
employ throughout this work.

As previously stated, all toric little string bases in our consideration are birational to
P1 × C1 as given in figure 3.16. For some higher rank LST, we simply add extra vectors vyI

to the configuration with Z2 coordinates vyI : (zI , qI) such that qI > 0 for all I. In addition,
each pair of vectors that span a convex cone must fulfill

|Det(vyI , vyJ )| = 1 . (3.17)

13To achieve this, our construction can be enlarged to CICY bases, similar as discussed in [50]. A
straightforward example would be the anti-cannonical hypersurface in P2 ×C by enlarging the ambient variety
to a fivefold.
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to satisfy the smoothness condition of the base. The intersection form of base curves can
then be easily computed using eq. (3.8).

All the respective divisors DyI : yI = 0 are then compact curves isomorphic to P1’s.14

The condition qI > 0 ensures the existence of a canonical equivalence relation, take the dual
vector as m = (0, 1) and insert to (3.7), it gives us

D0 :
∑

I

qIDyI , (3.18)

and D0 must be a principal divisor. Since each toric ray is also dual to a curve wI , we can
borrow the qI factor to rewrite the above principal divisor in terms of curves as

Σ0 = qIwI . (3.19)

Here Σ0 is precisely the LS curve and qI = lLS,I are the LS charges of the tensors that wrap
the respective curves wI . Thus it is sufficient to know the qI coordinate of the toric rays
along the LS direction to infer the LS charges.

On the other hand, the toric construction is also powerful enough to directly derive
the rough ADE fibre structure of those rays without performing a full fledged intersection
calculation. ADE fibers on P1 can be constructed by a so called top [83] technique, which
refers to multiple vertices vp ∈ ∆ projected onto the same base ray modulo certain multiplicity
q. Consider a local configuration with vi ∈ ∆ with (xi, yi, zi, qi), zi = 0, qi > 0 which projects
onto the base as

π : (x1, x2, x3 . . . xn)→ Ŷ :=
∏
xi

xqi
i . (3.20)

Then Ŷ is a divisor in the base, which is reducible in the full threefold. This implies that
there exists a group of divisors Dxi restricted onto Ŷ = 0 and hence the same codimension
one locus in the base. However, they are also fibral curves Ci which must intersect like an
affine Dynkin diagram of some lie algebra g according to the Kodaira classification. The
multiplicity of such fibral curves is encoded in Ŷ , which are exactly given by qi. Hence those
values are identified with the Kac label di of the affine Dynkin diagram [83]. Clearly, the
same argument applies to a more generic vector with vi = (xi, yi, zi, qi) with di = gcd(zi, qi)
which restricts onto the primitive base ray b = (zi, qi)/di. Note that the affine node always
identifies such base ray as its Kac label daff = 1.

Consequently, all other fibral base rays are a multiple qi of the primitive ray vy0 = (0, 1).15

In summary, we are able to deduce the rank and the Kac labels of some lie algebra from the
data of the toric rays alone.16 From the toric structure, we can read off the number of fibral
curves in the base as well as their Kac labels in a feasible way. This is great information, as

14We should keep in mind not to generate curves of negative self-intersection larger than 12, otherwise the
crepant resolution of our elliptic threefold does not exist.

15Note that this holds only for vertices outside of faces of the top. Divisors within faces can also intersect a
CY but only at codimension two, resulting in non-flat fibers [91–95]. See section 3.3 for explicit examples of
this type.

16In addition, we require the toric rays to be favorable generators of the Kähler cone. This is in general true
but in section 3.3.1 we also discuss some examples where this fails to hold.
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it enables us to almost uniquely identify the fibre structure without the necessity to perform
an intersection computation. E.g. a fibral curve of multiplicity six can only be contained in
an Ê8 fibre as this is the only ADE algebra with this Kac label. Similarly for the elliptic
fibration with a multiplicity four, we know it must be of E7 type.

The geometry of fibral curves naturally connects to the geometry of T-dual bases, where
the flips onto base curves lead to some other fibration (see [5] or [96] for some recent work.).
This ties the g type singularity of certain gauging to the g(1) type of base topologies that we
seek throughout this work. It is natural to expect the connection between the Kac labels
of the affine g(1) fibres and the dual LS charges. This expectation however is almost right
but obstructed by two observations:

1. A base curve Ci of some dual top may not be primitive, but rather a di multiple. The
corresponding dual LS charge lLS,I therefore corresponds to the Kac label aI of the g(1)
fibre which must be divided by the multiplicity dI leading to lLS,I = aI/dI . On the
other hand, the multiplicity dI is identified with the Kac label aI of some other fibral
curve wI , which for aI > 1 implies a D or E type of gauge algbera gI itself with Kac
label di > 1, such as a D or E type fibre.

2. In some cases it may happen, that several fibral curves of some g-type of singularity
are mapped on top of each other upon the new base direction. This implies first, that
this base curve must admit a non-trivial gauge algebra, but also that the topology of
the dual base quiver is not g(1) type but reduced, often times by an automorphism of
the affine quiver.17

The above conclusions hold for the main part of this paper, but we also find a couple of
exotic cases where the picture deviates slightly: e.g. when probing a very small number of
NS5 branes with an g-type singularity (typically less than three), we find the dual base to
miss some divisors to fully complete to an g(1) topology. Secondly, we also find some exotic
cases, where the base topology resembles the affine folded topology of an g-singularity. I.e.
in section 4 we find cases of an e7 singularity becomes an e

(2)
6 shaped base. Note again,

that the base intersection form is still symmetric but the LS charges correspond to the Kac
labels of an (twisted-)affine algebra.

Warmup: E2
8/(Spin(32)/Z2) rank 0 T-dual LSTs. Now we are going to enhance

the LST base by a P2
1,2,3 fiber polytope. The toric semi-convex polytope and configuration

17For e6 gaugings generically find an f
(1)
4 type of quiver in the dual (see section 3.3.3).
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matrix are summarized as follows

xi Coordinate C∗
1 C∗

2

X (1, 0, 0, 0) 2 0
Y (0, 1, 0, 0) 3 0
Z (−2,−3, 0, 0) 1 −2
x0 (−2,−3, 1, 0) 0 1
x1 (−2,−3,−1, 0) 0 1
y0 (−2,−3, 0, 1) 0 0
p − 6 0

(3.21)

where we have depicted two C∗ actions. One refers to the P2
1,2,3 fiber weights and the other to

those of the P1 base part. The weights of the anti-cannonical hypersurface p = 0 of bidegree
(6, 0) are given below, which yields the elliptic threefolds

Y 2 = X3 + a1XY Z + a2X2Z2 + a3Y Z3 + a4XZ4 + a6Z6 , (3.22)

In general, ai is a degree (2i) polynomial in the x0, x1 written e.g. as

a1 = b1,1x2
0 + b1,2x2

1 + b1,3x0x1 , (3.23)

with bi,j being generic complex constants. As y0 does not permit any C∗ scaling, we could
add monomials of arbitrary degree to the above equation.

Note that the above geometry admits not only an elliptic fibration over P1 × C but
also the structure of an elliptic K3 fibered over C. This is directly evident from the facts
explained before and noting that the rays of the coordinates X, Y, Z, x0, x1 span a reflexive
3D polytope fibered over B1 = C. Including this non-compact direction only leads to a
reflexive half-polytope and an infinite prism for its dual.

We proceed by dressing up the K3 fiber polytope. One classic example [97] unifies the
8D SUGRA vacua of the heterotic E8 × E8 and that of Spin(32)/Z2 string within a single
M/F-theory description. This duality and its geometric description serve as the starting
point to construct T-dual little string theories in lower dimensions. The rays of the reflexive
3D sub-polytope are depicted in figure 3 and the associated triangulation produces a toric
variety whose toric hypersurface encodes a K3 with two explicit elliptic fibration structures.

The E2
8 fibration is obtained by the projection onto the z coordinates of the rays with

coordinate v = (x, y, z). The reflexive fiber polytope that lives over the generic base point
“(0)” is the P2

2,3,1 ambient space of the Tate/Weierstrass model X, Y, Z. The base P1 is given
via the vertices z = ±1. Nine vertices project onto that vertex with the z coordinate yields
the e8 Kac labels di. Note that also the intersections in figure 3 can be read off by noting
that each ray has self intersection −2 and intersects an adjacent ray precisely once.

The Spin(32)/Z2 fibration is obtained by the projection onto the x coordinate of the
(x, y, z) rays. The reflexive sub-polytope is not of P2

2,3,1 type anymore but F13 according to
the enumeration used in [70]. The 2D sub-polytope is spanned by the vertices Y and α2̂,±.
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Figure 3. Two depictions of the same 3D reflexive polytope with a K3 hypersurface. The left graph
displays a 2D reflexive sub-polytope of Tate-type and identifies the residual points as two affine e8
fibers. On the right, we illustrate a 2D reflexive sub-polytope of F13 type with an so32 top in red,
green and yellow points.

∆K3 =

Generic Fiber
Z (−2,−3, 0)
X (1, 0, 0)
Y (0, 1, 0)

,

E2
8 tops

α6,± (−2,−3,±6)
α5,± (−2,−3,±5)
α4,± (−2,−3,±4)
α3,± (−2,−3,±3)
α2,± (−2,−3,±2)
α1,± (−2,−3,±1)
α4̂,± (−1,−2,±4)
α2̂,± (0,−1,±2)
α3̂,± (−1,−1,±3)

Table 1. The toric rays, for the K3 polytope depicted in figure 3.

The P1 base is given in a similar way as before. However over the base coordinate “(+1)”
given by X = 0 we find just a trivial top. On the other pole, we discover 17 vertices sitting
over the “(−1)” side, with 12 of them having multiplicity referring to the Kac label two.
This immediately indicates that this fiber must be of type I∗16 as the only option compatible
with this combination of Kac labels. This claim can be verified by directly inspecting the
intersection structure in the figure 3 on the right.

In actuality, the structure is slightly more intricate as the generic fiber admits two sections,
given by α2̂,± = 0 that generates a finite Mordell-Weil group of order two [51, 62]. Again,
their intersection structure is feasibly read off from figure 3, with one section intersecting the
affine node and the other one touching the spinor/co-spinor root. This suffices to write down
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the torsion Shioda map, which implements the restriction of the weight lattice [51, 62].18 To
be fully explicit, we discuss the hypersurface equation in details that is given as

p = α3̂,−α3̂,+Y 2 + α2
2̂,−α2

2̂,+α4̂,−α4̂,+X3

+ α1,−α1,+α2,−α2,+α3,−α3,+α4,−α4,+ α5,−α5,+α6,−α6,+α2̂,−α2̂,+α3̂,−α3̂,+α4̂,−α4̂,+XY Zâ1

+ α2
1,−α2

1,+α2
2,−α2

2,+α2
3,−α2

3,+α2
4,−α2

4,+α2
5,−α2

5,+α2
6,−α2

6,+α2
2̂,−α2

2̂,+α3̂,−α3̂,+α2
4̂,−α2

4̂,+X2Z2â2

+ α3
1,−α3

1,+α3
2,−α3

2,+α3
3,−α3

3,+α3
4,−α3

4,+α3
5,−α3

5,+α3
6,−α3

6,+α2̂,− α2̂,+α2
3̂,−α2

3̂,+α2
4̂,−α2

4̂,+Y Z3â3

+ α4
1,−α4

1,+α4
2,−α4

2,+α4
3,−α4

3,+ α4
4,−α4

4,+α4
5,−α4

5,+α4
6,−α4

6,+ α2
2̂,−α2

2̂,+α2
3̂,−α2

3̂,+α3
4̂,−α3

4̂,+XZ4â4

+ α5
1,−α5

1,+α4
2,−α4

2,+α3
3,−α3

3,+ α2
4,−α2

4,+α5,−α5,+Z6â6 . (3.24)

We have factorized the above equation exactly in such a way, that the Tate-type fibration
is evident. Here the âis are some generic constants. This however is not true for â6 which
is a polynomial of degree two in the appropriate base coordinates Ŷ+, Ŷ− as

â6 = Ŷ 2
+b1 + Ŷ 2

−b2 + Ŷ+Ŷ−b3 , (3.25)

with bi some generic complex constants. Ŷ± are defined in eq. (3.20) that given as

Ŷ± = (α1,±)(α2
2,±)(α3

3,±)(α4
4,±)(α5

5,±) (α6
6,±)(α2

2̂,±)(α
3
3̂,±)(α

4
4̂,±) . (3.26)

The Ŷ± are the base divisors projecting onto the two poles of the base P1 and are themselves
P1 fibrations. They pullback to the nine fibral curves of the affine e8 with powers of the
Dynkin multiplicities/Kac labels as given in figure 3.

One can double check consistency by going to the singular model. To achieve this, we
shrink down all nodes except fibral components intersected by the zero-section Z = 0, which
is α1,±. The vanishing order of the respective Tate coefficients is then given as

ordvan[a1, a2, a3, a4, a6] = [1, 2, 3, 4, 5] , (3.27)

and hence compatible with the Tate-classification of a type II∗ singularity, i.e. an e8.
The same applies to the Spin(32)/Z2 model. For that we rewrite Eqn (3.24) in a

different factorized form. First, we rename the generic fiber coordinates Y and α2̂,± in a
more suggestive way as

Y → z, α2̂,+ → x α2̂,− → y . (3.28)

We choose x = 0 as the zero-section and shrink down all but the fibral components that
intersect it. These are further renamed as the P1 coordinates wi, namely α4̂,+ → w0 and
X → w1. For simplicity, we blow down all other fibral curves by setting them to 1. Making
all these substitutions and inserting â6 yields the hypersurface equation as

p = z2 + x2y2w0w3
1 + xyzw0w1a1 + x2y2w2

0w2
1a2 + xyzw2

0a3 + x2y2w3
0w1a4

+ (x4w8
0b1 + y4b2 + x2y2w4

0b3) . (3.29)
18Also see [18, 63–65, 98] for a recent discussion in terms of restricted monodromies.
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As expected we find the fiber to be F13 type, according to [70], with the general form

p = x4s1 + x2y2s2 + y4s3 + xyzs6 + z2s9 . (3.30)

Here the si are analogous to the Tate-coefficients, that admit the following map into Weier-
strass form

f = 1
48(−s4

6 + 8s2s2
6s9 − 16(s2

2 − 3s1s3)s2
9) ,

g = 1
864(s

2
6 − 4s2s9)(s4

6 − 8s2s2
6s9 + 8(2s2

2 − 9s1s3)s2
9),

(3.31)

The above equation is going to become relevant when we consider other types of models
with additional fibers. Comparing coefficients with the generic form in eq. (3.29), we obtain
the following replacements

s1 → w8
0b1 , s2 → w0d3 , s3 → b2 , s6 → w0d1 , s9 → 1 . (3.32)

The codimension one singularity over w0 = 0 yields the vanishing orders vanord(f, g,∆) =
(2, 3, 18) which is exactly the desired I∗16 type of fiber.19

With the structure of the K3 fibration and its T-duality being manifest, we simply need
to complete the K3 fiber over C by embedding the K3 reflexive polytope ∆K3 into a toric
fourfold ambient space. We essentially combine the generic LST base of the previous section
with the constructed E2

8/(Spin(32)/Z2) polytope. The resulting polytope is then given as

∆ =

 (∆K3, 0, 0)
(−2,−3, 0, 1)

 . (3.33)

It is important to note that neither the E2
8 nor the Spin(32)/Z2 are gauge symmetries anymore

but only flavor symmetries as they live over non-compact divisors.
In conclusion, this simple setup yields a pair of T-dual LST theories

[e8]− (0)− [e8] ← T-dual→ [so32]− (0) . (3.34)

At next we generalize the setup further by decorating the base with more divisors, such
that this action respects the two fibrations.

Toric realization of higher rank theories. Now we decorate the rank 0 LST configuration
with additional rays, which on the E8 × E8 fibration yield N small E8 instantons. This is
achieved by including N additional rays between E8 factors with vyi = (−2,−3, i, 1), i =
1 . . . N . For clarity we have omitted the two E8 factors, which should be added according to
the table 2. Here the C∗

i scalings are written in a redundant way to read off intersections
easier, with N independent C∗ scalings between the N + 1 rays yi. The little string curve
Σ0 = lLS,IwI in the E8 picture determines the following LS charge

l⃗LS = (1, 1, . . . , 1, . . . , 1, 1︸ ︷︷ ︸
×N+1

) . (3.35)

19In addition we find that the Weierstrass model is simply a specialization of the most general order two
MW group model, given in [51].
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xi vertex C∗
l C∗

0 C∗
1 C∗

2 . . . C∗
N−1 Ĉ∗

N

Z (−2,−3, 0, 0) −2 −1 0 0 . . . 0 −1
α+

1 (−2,−3, 1, 0) 1 0 0 0 . . . 0 1
α−

1 (−2,−3,−1, 0) 1 1 0 0 . . . 0 0
y0 (−2,−3, 0, 1) 0 −1 1 0 . . . 0 0
y1 (−2,−3, 1, 1) 0 1 −2 1 . . . 0 0
y2 (−2,−3, 2, 1) 0 0 1 −2 . . . 0 0
...

... 0
...

...
...

...
...

...
yN−1 (−2,−3, N − 1, 1) 0 0 0 0 . . . −2 1
yN (−2,−3, N, 1) 0 0 0 0 . . . 1 −1

Table 2. The toric rays of the ambient fourfold, including the zero-section Z and their C∗ relations.
One of the C∗ relations is linear dependent.

· · ·

[e8] [e8]

1 2 2 1

[so32]

spN

0

Figure 4. Toric diagram of N instantons E8 on the left, its T-dual Spin(32)/Z2 theory with spN

gauge group is given on the right.

The T-dual configuration is again obtained by projecting onto the (x, q) plane, where all
toric rays map down to the same ray with (−2, 1) coordinates. This is the same 0 curve
described in the warmup example before but now we include spN non-trivial gauge algebra
as depicted in figure 4.

Note that we find no gauge algebra but only N +1 tensors on the E8 side, with E-strings
contributed as “matter content” in the 6D anomaly. On the Spin(32)/Z2 description there is
only one single 0 LST tensor with the spN gauge algebra on top of it. It is known that both
configurations have an additional unbroken SU(2)L flavor symmetry, which is not realized
as any toric rays in our setup. Nevertheless, the T-dual picture allows us to track the locus
of that SU(2)L divisor.

We start on the Spin(32)/Z2 side first, such that every irrelevant elements are blown
down in order to only keep the compact curves resolved. Then the hypersurface becomes

p = d2w0x2y2 + d3y4
(

N∏
i=1

yi
N−i

)
+ d1w8

0x4
(

N∏
i=1

yi
i

)
+ d6w0xyz + z2 (3.36)

whereas d1, d2, d3 and d6 are polynomials in the P1 coordinates w0, w1 as well as the spN

zero curve Ŷ = 0 given by

Ŷ =
N∏

i=0
yi . (3.37)
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where Ŷ = 0 determines exactly the little string curve in the T-dual E8 picture. We denote
yN as the affine node of the spN , which intersects x = 0, and another fibral divisor y0 = 0 that
intersects the torsion section y = 0. Note that di are additional polynomials in the wi and Ŷ .
As there is no C∗ scaling acting on the Ŷ , the polynomial is of infinite order. In practice, we
truncate it to simply a constant such that [d1] = [d3] = 1, [d2] = 3 and [d6] = 1. 6D anomaly
cancellation requires the spN to have 16 Fundamentals and one antisymmetric representation
hypermultiplet. The former is supported at intersection points along the Spin(32)/Z2 flavor
group, which can be read off from figure 3.20 However, the antisymmetric is not directly
evident as it is non-localized, due to the fact that the anti-symmetrics of spN originate from
a Z2 monodromy effect that folds the su2N to spN in the fibre. The respective group theory
decomposition is traced from the adjoint of su2N , which splits into an adjoint and the antisym-
metric of spN . The folding originate from the non-trivial intersection of the Z2 ramification
divisor DL and the curve that carries the su2N , which interchanges the two classes of nodes.

This locus is actually positioned at codimension two component of the discriminant where
the resolved fiber becomes further reducible. The finding task becomes more convenient
after shrinking all fibral curves but the affine node fN by setting them to 1 and mapping
into the Weierstrass form via Eqn (3.31), which yields

f = − 1
48w2

0(16d2
2 − 8d2d2

6w0 + d4
6w2

0 − 48w6
0yN

N ) ,

g = − 1
864w3

0(4d2 − d2
6w0)(16d2

2 − 8d2d2
6w0 + d4

6w2
0 − 72w6

0yN
N ) ,

∆ = 1
16w18

0 y2N
N (−(−4d2 + d2

6w0)2 + 64w6
0yN

N ) .

(3.38)

Indeed we find the expected I∗16 fiber over w0 = 0 as well as the spN over yN = 0. The
bifundamental matter arises at their collision and the ramification locus is given by

DL = −4d2 + d2
6w0 = 0 . (3.39)

Naively this locus looks like a further enhancement as the discriminant seems to have an
enhanced vanishing order but it is actually the aforementioned monodromy divisor.

By construction, DL intersects the Ŷ = 0 divisor and thus its fibral components yi = 0
for i = 1 . . . N − 1. It is noteworthy that the fibre degenerates into two copies of P1 over
such points. E.g. in the fully resolve fibration we find

pDL=fi=0 = 1
4(d6w0xy + 2z)2 for i = 1 . . . N − 1. (3.40)

The same type of factorization does not occur for the y0 = 0 and yN = 0 fibral curves i.e.
the affine and opposite spN fibral curves.

This demonstrates that the fibral divisors yi = 0 with i = 1 . . . N − 1 precisely map
to the (negative) self-intersection 2 curves in the T-dual of the E2

8 fibration, while y0 = 0
and yN = 0 are the two 1 curves. As argued before, the single divisor DL = 0 intersects
all the yi = 0 divisors, leading to a subtle degeneration of the respective curves observed
in the T-dual picture.

20The bi-fundamentals are only 1
2 hypermultiplets.
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This suggests that DL plays the role of the SU(2)L flavor divisor in the E8 picture and
explains why there is only a single SU(2)L flavor group, as opposed to a copy to each of
the (N − 1)× 2 curves.

We end with various field theory checks for T-dual pairs. I.e. the 5D Coulomb branch
must be exactly N -dimensional with a rank 16+1 flavor group. In addition, the matched
2-group structure constants are given by

κ̂R = h∨
g = N + 1 , κ̂P = 2 . (3.41)

T-duality breakdown by SCFT limit. In the following, we intend to use the same
techniques to construct many more non-trivial T-dual little string theories. One might then
wonder if the same T-duality procedure is possible for QFTs that flow to SCFTs instead of
LSTs. This is of course a contradiction, as SCFTs have a unique stress energy tensor and
no intrinsic scale along which we could perform T-dualization. However it is instructive to
reach the same conclusion from the toric geometry point of view.

One can obtain an SCFT from an LST simply by decompactifying any compact curve
in the LST configuration [5]. For instance, let us decompactify the whole configuration to
a rank n E-string theory in the E8 picture. We do so by removing all base divisors right
next to the curve yn. From the perspective of toric geometry, we simply remove all rays
(x, y, z, q) with z > n. This procedure removes N − n vertices in addition to one e8 flavor
factor and changes the base as to the n-th blow-up of C2 which is an SCFT configuration.
Now we note however, that the T-dual fibration got removed by the this decompactification:
to complete the second fibration we require the vertices α2̂,± : (0,−1,±2, 0) to complete the
F13 polytope. Those vertices however, were part of the second e8 flavor top that we just
removed. Hence when degenerating the LST to an SCFT configuration, the disappearance of
one e8 flavor top forbids us to preserve the second fibration structure. A similar argument
holds on the so32 side: for instance, decompactifying the base P1 into C2 by removing the
vertex w1: (1, 0, 0, 0). This ray corresponds to the P2

1,2,3 coordinate X, that is necessary for
the Tate-model description in the e2

8 dual model. As anticipated by the field theory, we also
find that T-duality here to be incompatible with an SCFT.

3.2 A-type singularities

Equipped with the toric machinery used throughout this work, we will explore various ADE
singularities and their T-duals. For the A and D type cases, we first stick to trivial flavor
holonomies but also discuss some special choices in section 4.1. Some of those cases for the
generic number of heterotic instantons M have been discussed in [32, 78], which we will
repeat here plus special cases for M = 1 that correspond to the fractionalization of the pure
heterotic string (see [29]) and their T-duals.

Below, we begin with the configuration of E8 × E8 heterotic string probing the C2/Z3
singularity. The tensor branch geometry is given via the quiver

[e8] 1 2
su2
2

su3
2

[NF =2]

su2
2 2 1 [e8] , (3.42)

with the toric data given in table 3. The T-dual description is obtained by projecting the
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xi vertices e8-frame group
y0 (−2,−3, 0, 1) ∅
y1 (−2,−3, 1, 1) ∅
y2,i (−2,−3, 2, 1), (−1,−2, 2, 1) SU(2)
y3,i (−2,−3, 3, 1), (−1,−1, 3, 1), (−1,−2, 3, 1) SU(3)
y4,i (−2,−3, 4, 1), (−1,−2, 4, 1) SU(2)
y5 (−2,−3, 5, 1) ∅
y6 (−2,−3, 6, 1) ∅

Table 3. Toric data for the SU(3)× SU(2)× SU(2) gauge group in the E8 × E8 picture.

[e8] [e8]

2
su2
21

su3
2

su2
2 2 1

[so32]

sp6
1

su4
1

Figure 5. Toric diagram that corresponds to the E8 ×E8 flavor symmetry with the SU(3)× SU(2)×
SU(2) gauge group on the left and its T-dual on the right.

rays onto the (x, q) plane. The tensor branch consists of six Spin(32)/Z2 instantons probing
an A3 singularity expressed by the quiver below

[so32]
sp6
1

su4
1 [NA = 1] (3.43)

Having constructed two T-dual theories we can compute and confirm matched 2-group
structure constants as shown below:

κ̂R = 11 , κ̂P = 2 . (3.44)

The above configuration is easily generalized to arbitrary suN distinguished by two different
types, e.g. su2N and su2N+1. Note that the relevant superconformal matter is

T (e8, suN ) : [e8] 1 2
su2
2

su3
2 . . .

suN−1
2 [suN ] . (3.45)

Upon inserting the respective superconformal matter we will always end up with suN on
a 2 curve. Hence, we can never have an spN gauging for those type of curves as it is not
consistent with anomalies (e.g. see [68]). The tensor branch on the e8 side then becomes

[e8]
suN

0 [e8] → [e8] 1 2
su2
2 . . .

suN−1
2

suN

2
[NF =2]

suN−1
2 . . .

su2
2 2 1 [e8] . (3.46)

We highlight that the suN gauging requires two more flavors in order to be consistent with
anomalies. The LS charges are universally one in this type of case.
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The T-dual theory for the su2N guaging is given as

[so32]
sp4N

1
su8(N−1)

2 . . .
su8(N−1−k)

2 . . .
su8
2︸ ︷︷ ︸

(N−1)×

1 . (3.47)

similarly for the su2N+1 gauging the chain is given as

[so32]
sp4N+2

1
su8N−4

2 . . .
su8(N−k)−4

2 . . .
su12
2︸ ︷︷ ︸

(N−1)×

su4
1

[NA=1]
. (3.48)

In all theories above, we find that the dual quiver in the so side forms the shape of an affine
sp

(1)
N type when starting with some su2N gauging.

The above theories have special properties as additional localized flavors group in the
e2
8 LST as well as the different structure carried by the final curve in its T-dual. However,

they often go away when considering gauging M curves given by the quiver21

[e8]
suN

1
suN

2 . . .
suN

2
suN

1︸ ︷︷ ︸
×M

[e8] , (3.49)

which admits a similar tensor branch as before with extra suN plateau of length M . Thus
for suM

2N gaugings we have the associated T-dual description22

[so32]
sp4N+M−1

1
su8N−10+2M

2 . . .
su8(N−k)+2M−2

2 . . .
su6+2M

2
spM−1
1︸ ︷︷ ︸

×N

, (3.50)

and for su2N+1 we have

[so32]
sp4N+M+1

1
su8N+2M−6

2 . . .
su8(N−k)+2M+2

2 . . .
su2M+10

2
su2M+2

1︸ ︷︷ ︸
×N

. (3.51)

The CB dimension and the κ̂R can be matched and given below as

[e8]− suM
2N − [e8] T-dual [e8]− suM

2N+1 − [e8] T-dual
Dim(CB) 4N2 + 2NM − 2N + 1 4N2 + 2NM + 2N + M + 1

κ̂R 4N2 + 2NM − 2N + 2 4N2 + 2NM + 2N + M + 2
(3.52)

3.3 E-type singularities

With the above strategy, we are now equipped to decorate the En flavor symmetries and
LSTs with exceptional gauge groups. I.e. we want to set up LST chains of the form

[em]
en

1
en

2 . . .
en

2
en

1︸ ︷︷ ︸
×M

[eo] , (3.53)

21When setting N = 2, this quiver coincides with the KN (1 + 1, 1 + 1; su2) model presented in table 1 of [30]
after applying the notation M = N+1. Meanwhile, the N = 3 setup coincides with the KN (1+1+1, 1+1+1; su3)
model presented in eq. (4.41) of the same literature when setting the notation M = N + 1.

22When setting N = 1, this quiver coincides with the K̃
Ñ

(0, 16; su2) model presented in eq. (4.20) of [30]
after replacing the notation M = N + 1.
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for m, n, o = 8, 7, 6 that refers to the e side and compute their T-duals. The results are
summarized in table 14. Note that the above geometry requires the insertion of sufficient
superconformal matter factors, which can be found in [2] between the various en factors, they
require additional blow-ups in base and fibre directions.

All of the geometries are constructed to explicitly admit a second fibration, similar to the
simple examples in the preceding sections. The geometry proves the T-duality via the match
of computational results as the CB dimension, the flavor rank and the 2-group structure
constants. We illustrate our approach in several examples and discuss their geometric
properties. This involves in particular the appearance of non-toric flavor group factors on
the Spin(32)/Z2 side, as well as the non-flatness of both fibrations. I.e. we will find that at
codimension two locus, the fibre dimension jumps and becomes a surface. Such effects are well
understood by now [91–95] and they generally highlight the presence of superconformal matter.
Moreover, it is expected that the flat resolution over a birational base is part of the extended
Kähler cone of the threefold, with the same Hodge numbers. Hence we can treat the non-flat
fibers as base and fibral divisors of the flat resolution, which allows us to extract sufficient
information for the tensor branches of the LST that we are constructing in the following.

3.3.1 [e8] − eM
8 − [e8] LSTs

We start by appending the e2
8 type of configuration with rank M heterotic instanton and

then gauging this chain of curves with an e8 symmetry on each of the tensors

[e8]
e8
1

e8
2 . . .

e8
2

e8
1︸ ︷︷ ︸

×M

[e8] . (3.54)

The mutual e8 intersections do not lead to a smooth elliptic fibration or a perturbative LST
tensor branch, but rather the insertion of T (e8, e8) conformal matter at each intersection, which
has been systematically determined in [2], we repeat them here modulo the hypermultiplet
content as

[e8] 1 2
sp1
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1 [e8] . (3.55)

By doing so, we enhance the 1 and 2 negative self-intersections to 11 and 12 respectively.
In the special scenario when M = 1, the 0 curve is enhanced to a 10 curve. However an
e8 requires a 12 curve from the anomaly to be fully consistent. Blowing up E-string as
additional (4, 6, 12) points over the 10 and 11 curves leads to a 12 curves as desired in [99],
which results in the chain

1 1
[e8]

e8
2

e8
2 . . .

e8
2

e8
2 [e8] .

(3.56)

Now we employ toric geometry to engineer the above setup in a fully resolved manner. Note
that only linear chains can be resolved, thus we are obstructed by the additional 1 curves at
the beginning and the end e8’s. However, the fibration structure of the resolved threefold can
still be utilized but in a non-flat way. To show how this works we consider a very concrete
example for M = 1 first. The relevant toric rays are given in table 4.
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Tate-Fiber
Z (-2,-3,0,0 )
X (1,0,0,0 )
Y (0,1,0,0 )

e2
8 Flavor

α6,± (−2,−3,±6, 0)
α5,± (−2,−3,±5, 0)
α4,± (−2,−3,±4, 0)
α3,± (−2,−3,±3, 0)
α2,± (−2,−3,±2, 0)
α1,± (−2,−3,±1, 0)
α4̂,± (−1,−2,±4, 0)
α2̂,± (0,−1,±2, 0)
α3̂,± (−1,−1,±3, 0)

e8 gauge factor
f6 (−2,−3, 0, 6)
f5 (−2,−3, 0, 5)
f4 (−2,−3, 0, 4)
f3 (−2,−3, 0, 3)
f2 (−2,−3, 0, 2)
f1 (−2,−3, 0, 1)
f4̂ (−1,−2, 0, 4)
f2̂ (0,−1, 0, 2)
f3̂ (−1,−1, 0, 3)
fnf (0, 0, 0, 1)

T (e8, e8) Conformal Matter
s±1 (−2,−3,±1, 5)
s±2 (−2,−3,±1, 4)
s±3,i (−2,−3,±1, 3), (−1,−2,±1, 3)
s±4,j (−2,−3,±1, 2), (−1,−1,±1, 2), (−2,−3,±2, 4)
s±5 (−2,−3,±2, 3)

s±6,k (−2,−3,±1, 1), (0,−1,±1, 1), (−1,−2,±2, 2), (−2,−3,±2, 2), (−2,−3,±3, 3)
s±7 (−2,−3,±3, 2)

s±8,j (−2,−3,±2, 1), (−1,−1,±2, 1), (−2,−3,±4, 2)
s±9,i (−2,−3,±3, 1), (−1,−2,±3, 1)
s±10 (−2,−3,±4, 1)
s±11 (−2,−3,±5, 1)

Table 4. Toric vertices that resolve the e8− e8− e8 little string configuration. The fi are the e8 fibral
divisors and the s±j,k resolve the superconformal matter.

This configuration meets all necessary requirements for the fibration to exist and it is
also evident from the rays, that they lead to 11 base rays on the left and right of gauge e8 on
the 10 curve given by the affine node f1. The curve configuration from the projection to the
base as well as the gauge algebra factors are pictured in figure 6 on the left.

In order to check the non-flat fiber resolution, we need to study the hypersurface. For
simplicity, we blow down all but the affine e8 fibral divisor f1 = 0 and the non flat fiber
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|e8| |e8|

1 2 sp1
2 g2

3

1

f4
5

1
g2
3

sp1
2

2

1

e8
10 12sp1

2g2
3

1

f4
5

1

g2
3

sp1
2

2

1

sp10
1

so24
4

sp6
1

so16
4

sp2
1

so7
3

1

so8
4

|so32|

Figure 6. Toric rays for two T-dual LST configurations with self-intersection and gauge algebra
decorations: on the left is a E8 × E8 flavor symmetry with e8 gauge group on a 10 curve, with two
non-flat fibers. On the right we show the T-dual toric base of the Spin(32)/Z2 side.

surface fnf = 0. The local Tate-model around the 10 curve is then written as

p = fnf X3 + fnf Y 2 + a1XY Zf1fnf + a2X2Z2f2
1 fnf

+ a3Y Z3f3
1 fnf + a4XZ4f4

1 fnf + a6Z6f5
1 . (3.57)

fnf = 0 restricts down to the same base locus as f1 = 0, however it misses the CY hypersurface
in codimension one. It restricts onto the hypersurface when the a6 = 0 locus intersects the 10
curve at codimension two. We can check by blowing down fnf and find that over f1 = a6 = 0
there is a (1, 2, 3, 4, 6) point in terms of Tate-coefficient. Note that a6 is a polynomial of degree
two in local coordinates s1,±, which can easily be seen by noting that this is locally a P1×C1

base, with f1 and fnf living over C1 and a6 must therefore be of degree 2 in the P1 coordinates.
Thus there are two intersection points leading to two solutions of the non-flat fiber.23

To fully remove this locus we need to blow-up the 10 curve at the non-toric intersection
loci f1 = a6 = 0. Keeping in mind that this base blow-up exists we can still infer the flat
resolution though. The actual base intersection of the flat fibration is therefore given by

1

[e8] 1 2
sp1
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1

e8
12 1 2

sp1
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1 [e8]

1

(3.58)

We proceed by computing the little string charges of the above configuration given as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1,

1
5, 4, 3, 2, 3, 1, 2, 1, 1, 1, 1) . (3.59)

23This single toric ambient divisor fnf = 0 contributes to two Kahler deformations on the CY hypersurface,
those configurations have been called non-Kähler favorable [50].
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The T-dual configuration is obtained by projecting toric rays in table 4 onto the (x, q)
surface as depicted in figure 6 on the right. This leads to an F13 type fiber with a Z2 MW
group as a non-trivial global flavor group of the LST. There are two tricks to deduce the
correct gauge algebra factors. We can either blow down all but the affine node per base ray
and determine the singularity type in the Weierstrass model, or we use the fact that each
collection of rays projecting onto the same base ray is a top [75, 83] and derive the local
fibral intersection structure under the assumption that a desired triangulation exists. In
practice, the number of toric rays and their multiplicities are usually sufficient to determine
the ADE type. The Weierstrass model can then be applied to double check whether a
configuration is (non-)split inferred from the gauge anomalies and the base curve structures.
For instance, consider the following four rays

s+,6,2 : (0,−1,−1, 1) , s−,6,2 : (0,−1, 1, 1) , fnf : (0, 0, 0, 1) , f2̂ : (0,−1, 0, 2) , (3.60)

that project onto the y0 = (0, 1) base ray, which is a 4 curve. The fibral divisor f2̂ is 2y0 with
Dynkin multiplicity two, while the rest have Dynkin multiplicity one, which naively suggests
an so7 gauge algebra. However, this is in contradiction with the gauge anomaly, as this is
a 4 curve in the base. Note that fnf = 0 contains two divisors of Dynkin multiplicity one
as it was non-Kähler favorable and intersects the CY hypersurface twice, thus the actual
gauge algebra is so8 and consistent with the anomaly. This fact can be double checked in
an explicit triangulation by computing the intersection form of the resolved structure and
the singular Weierstrsass model.

To summarize, we obtain the following T-dual chain and LS charge

[so32]
sp10
1

so24
4

sp6
1

so16
4

sp2
1

so7
3 1

so8
4 , l⃗LS = (1, 1, 3, 2, 5, 3, 4, 1) . (3.61)

The T-duality of the above two LSTs can be verified by the matched data below

[e8]− e8 − [e8] T-dual
Dim(CB) 52

κ̂R 122
(3.62)

Generalization to arbitrary M. Having discussed the case of a single 0 curve gauged by
an e8 and how to resolve it, we can generalize the above construction by additional M×e8
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ray collections24 given as25

em
8 gauge factor

f6,n (−2,−3, 6m, 6)
f5,n (−2,−3, 5m, 5)
f4,n (−2,−3, 4m, 4)
f3,n (−2,−3, 3m, 3)
f2,n (−2,−3, 2m, 2)
f1,n (−2,−3, m, 1)
f4̂,n

(−1,−2, 4m, 4)
f2̂,n

(0,−1, 2m, 2)
f3̂,n

(−1,−1, 3m, 3)
fnf,0 (0, 0, 0, 1)
fnf,N (0, 0, M, 1)

for m = 1 . . . M , (3.63)

This yields a resolved chain of M× e8’s as in (3.56), with two non-flat fiber divisors fnf,0, fnf,M

that work in a similar way as for the M = 1 case.
Introducing all the mutually intersecting e8 factors, also requires us to incorporate their

superconformal matter to obtain a fully consistent tensor branch geometry. This enhances
the self-intersection of every compact e8 curve by 10 and obtain a chain as given in (3.55).
From such a quiver we can then easily compute the LS charge as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1 , 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M − 4 . . .

. . .1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6,

1
1 , 5, 4, 3, 2, 3, 1, 2, 1, 1, 1, 1) . (3.64)

The respective rays that resolve the full threefold are given in table 5. Note that the conformal
matter between the e8 flavor factors and the e1

8 and eM
8 gauge factors are slightly differently

although they yield the same base and fibral blow-ups. This is clear, as their fibral divisors
have different LS charges that are represented by the q − th component of the 4d ray as
discussed in section 3.1. This in fact allows us to easily deduce the full resolution.

The T-dual LST. The T-dual theory is again obtained by the new base projection on
the first and fourth component which yields the same base configuration as given in figure 6.
However now we have larger tops over each base ray and thus a higher rank gauge group.

24Note that for low M we can double check the proposed ray collection, by compactifying the toric variety
by adding the (−2,−3, 0,−1) ray and confirm reflexivity of the respective polytope.

25This coincides with [e8] − eN
8 − [e8] quiver presented in table 7 of [30] when replacing the notation

M → N + 1.
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T (e8e
1
8) Conformal Matter

s−1 (−2,−3,−5, 1)
s−2 (−2,−3,−4, 1)

s−3,i (−2,−3,−3, 1), (−1,−2,−3, 1)
s−4,j (−2,−3,−2, 1), (−1,−1,−2, 1), (−2,−3,−4, 2)
s−5 (−2,−3,−3, 2)

s−6,k (−2,−3,−1, 1), (0,−1,−1, 1), (−1,−2,−2, 2), (−2,−3,−2, 2), (−2,−3,−3, 3)
s−7 (−2,−3,−2, 3)

s−8,j (−2,−3,−1, 2), (−1,−1,−1, 2), (−2,−3,−2, 4)
s−9,i (−2,−3,−1, 3), (−1,−2,−1, 3)
s−10 (−2,−3,−1, 4)
s−11 (−2,−3,−1, 5)

T (eM
8 e8) Conformal Matter

s+1 (−2,−3, 5M − 4, 5)
s+2 (−2,−3, 4M − 3, 4)

s+3,i (−2,−3, 3M − 2, 3), (−1,−2, 3M − 2, 3)
s+4,j (−2,−3, 2M − 1, 2), (−1,−1, 2M − 1, 2), (−2,−3, 4M − 2, 4)
s+5 (−2,−3, 3M − 1, 3)

s+6,k (−2,−3, M, 1), (0,−1, M, 1), (−1,−2, 2M, 2), (−2,−3, 2M, 2), (−2,−3, 3M, 3)
s+7 (−2,−3, 2M + 1, 2)

s+8,j (−2,−3, M + 1, 1), (−1,−1, M + 1, 1), (−2,−3, 2M + 2, 2)
s+9,i (−2,−3, M + 2, 1), (−1,−2, M + 2, 1)
s+10 (−2,−3, M + 3, 1)
s+11 (−2,−3, M + 4, 1)

T (em
8 em+1

8 ) Conformal Matter for all m = 0 . . . M − 1 if M > 1
s1,m (−2,−3, 1 + 6m, 6)
s2,m (−2,−3, 1 + 5m, 5)

s3,m,i (−2,−3, 1 + 4m, 4), (−1,−2, 1 + 4m, 4)
s4,m,j (−2,−3, 1 + 3m, 3), (−1,−1, 1 + 3m, 3), (−2,−3, 2 + 6m, 6)
s5,m (−2,−3, 2 + 5m, 5)

s6,m,k (−2,−3, 1 + 2m, 2), (0,−1, 1 + 2m, 2), (−1,−2, 2 + 4m, 4), (−2,−3, 2 + 4m, 4), (−2,−3, 3 + 6m, 6)
s7,m (−2,−3, 3 + 5m, 5)

s8,m,j (−2,−3, 2 + 3m, 3), (−1,−1, 2 + 3m, 3), (−2,−3, 4 + 6m, 6)
s9,m,i (−2,−3, 3 + 4m, 4), (−1,−2, 3 + 4m, 4)
s10,m (−2,−3, 4 + 5m, 5)
s11,m (−2,−3, 5 + 6m, 6)

Table 5. Depiction of the toric rays that resolve the M + 1 T (e8, e8) conformal matter between the
M× e8 gauge factors and the two e8 flavor factors.

Unlike in the E8 frame, the number of tensors in this T-dual frame is fixed to 8 + 1∗. The
additional 1∗ tensor appears only for M > 2 and is again realized through a non-flat fiber
which must be properly resolved.

The general fiber structure over each base ray follows the same algorithm as discussed
before. E.g. over the base ray (−1, 1) we have

s−3,2 : (−1,−2,−3, 1) , s−4,2 : (−1,−1,−2, 1) ,

s+8,2 : (−1,−1, M + 1, 1) , s+9,2 : (−1,−2, M + 2, 1) .
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In addition there are the following rays that restrict with multiplicity two

s−4,3 : (−2,−3,−4, 2) s−5 : (−2,−3,−3, 2) s−6,4 : (−2,−3,−2, 2)
s−8,1 : (−2,−3,−1, 2) s+4,1 : (−2,−3, 2M − 1, 2) s+6,4 : (−2,−3, 2M, 2)
s+7 : (−2,−3, 2M + 1, 2) s8,3 : (−2,−3, 2M + 2, 2)
f2,m : (−2,−3, 2m, 2) s6,m̂,1 : (−2,−3, 1 + 2m̂, 2)

where m ranges from 1 to M and m̂ ranges between 0 and M − 1. Hence we have four fibral
curves of Kac label one and 8 + M + (M − 1) = 2M + 7 rays of Kac label two. Only so2k

type of (affine) Dynkin diagrams are of those type and from the multiplicity two roots we
can easily deduce its rank as so4M+20.

We can proceed similarly for the other rays, but the base ray (−1, 3) needs a bit more
care: from (3.63) and table 5 we deduce the top rays again. Lets first consider those of
multiplicity two, i.e. the ones with (−2,−,−, 6) which are concretely given by

f6,m for m = 1 . . . M

s1,m , s4,m,3 , s6,m,5 , s8,m,3 , s11,m with m = 0 . . . M − 1 for M > 1 ,

which in total yield 6M − 5 rays. These rays are the middle roots of Dynkin multiplicity
two in some so type and thus count the rank to be 12M − 4. However, this base curve is
just a 3 curve, which is not consistent with the 6D gauge anomalies. Now let us count the
rays of multiplicity one, for which we expect to find four (or three) just as before. Instead
we find the following collection:

f3̂,m
with m = 1 . . . M and s+3,2 , s−9,3 ,

s4,m,2 , s8,m,2 with m = 0 . . . M − 1 for M > 1 .

This totals 3M rays instead of the four we would expect. It turns out though that again
3M − 4 of those rays are actually non-flat fibers. When M > 1, these non-flat fibers can be
removed by a single base blow-up and results in a 1 curve with an sp3M−5 gauge algebra over
it. This blowup enhances the base 3 curve to a 4 curve and thus becomes consistent with
gauge anomalies. We sum up the final tensor branch configuration as26

[so32]
spM+9
1

so4M+20
4

sp3M+3
1

so8M+8
4

sp5M−3
1

sp3M−5
1∗

so12M−4
4∗ sp4M−4

1
so4M+4

4 . (3.65)

Here the ∗ indicates that the presence of the 1∗ curve is only for M > 1 and that the 4∗ is
a 3 curve otherwise. Therefore, the LS charges are given as

l⃗LS = (1, 1, 3, 2, 5,

3∗

3, 4, 1) . (3.66)

26This coincides with the dual theory of the [e8]− eN
8 − [e8] quiver presented in table 7 of [30] when replacing

the notation M → N + 1.
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Also here the 3∗ is absent, as we saw for M = 1, but the other LS charges do not change.
Finally lets comment on the global structure of the flavor group: each flavor and gauge group
factor contributes to the naive total centre as

Z(Gf ;
9∏
i

Gi) = (Z2
2;Z2,Z2

2,Z2,Z2
2,Z2,Z2,Z2

2) , (3.67)

Each individual factor is broken by bi-fundamental matter but a diagonal combination can
survive. Indeed, due to the presence of a Z2 MW group such a diagonal group is present
and in fact gauged [63, 92].

The geometry proves the T-duality of the two theories in terms of the matched CB
branch dimension and the 2-group structure coefficient:

[e8]− eM
8 − [e8] T-dual

Dim(CB) 22 + 30M

κ̂R 120M + 2
(3.68)

T-dual base from the fiber. A remarkable observation of our T-dual models is, that its
base resembles the exact intersection picture of an affine E8 Dynkin diagram. This follows
directly from the geometry as discussed in the section before. We observe that the toric
rays of the affine E8 gauge group become the base rays, when projecting onto the T-dual
base. The E8 Kac labels di become the new LS charges

lLS,i = di/d̂i . (3.69)

Note that d̂i = GCD(zi, wi) of the ray vi = (xi, wi) which we have to divide by to obtain the
primitve ray. Note that d̂i on the other hand yields the Kac label of the respective fibral
curve that sits over the ray. Hence if d̂i > 1, we know that there must be a non-trivial
fibre which is at least of D or E type.

We depict the fibral intersection of the later but factor out the multiplicity factor d̂i

(f3̂)
(f1) 2(f2) (f3) 2(f4) (f5) 2(f6) (f4̂) 2(f2̂) ,

(3.70)

after dividing by the multiplicity factor d̂i, we find the T-dual LS charges of (3.66). As every
second vertex admits a multiplicity of two, it is clear that we must have an ortho-symplectic
quiver, already from this qualitative picture.

3.3.2 [e′7] − eM
7 − [e′7] LSTs

We continue by the toric construction a similar family of LST theories but with E′
7

27 flavor
and gauge groups, the set of rays are given below, whereas the αi,± are the non-compact e′7

27We employ the notation E′
s used in [30] to clarify specific type of 6d SCFTs of type T (µ, E8) that

corresponds to the toric construction in this work.
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Z (-2,-3,0,0)
X (1,0,0,0)
Y (0,1,0,0)

α4,± (−2,−3,±4, 0)
α3,± (−2,−3,±3, 0)
α2,± (−2,−3,±2, 0)
α1,± (−2,−3,±1, 0)
α3̂,± (−1,−2,±3, 0)
α2̂,± (0,−1,±2, 0)
α1̂,± (0, 0,±1, 0)
α2̃,± (−1,−1,−2, 0)

em
7 gauge factor, m = 1 . . . M

f4,m (−2,−3, 4m, 4)
f3,m (−2,−3, 3m, 3)
f2,m (−2,−3, 2m, 2)
f1,m (−2,−3, m, 1)
f4̂,m

(−1,−2, 4m, 4)
f2̂,m

(0,−1, 2m, 2)
f3̂,m

(−1,−1, 3m, 3)
f1̂,m

(0, 0, m, 1)
f2̃,m

(−1,−1, 2m, 2)

Table 6. The toric rays that resolve an (E′
7)2 flavor group and M × e7’s.

flavor divisors and the fi,m the M × 8 compact e7 gauge divisors. The affine node of each
e7 is given by α1,±, f1,m. Thus the little string chain looks then like28

[e′7]
e7
1

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e′7] . (3.71)

As the intersection of two e7 divisors leads to a non-minimal singularity in the elliptic fiber
we shall resolve this via the inclusion of superconformal matter given as [2]

sp1 so7 sp1

[e7] 1 2 3 2 1 [e7]
. (3.72)

The toric rays for the full resolved space are depicted in table 7, whereas the inclusion of
the superconformal matter 3.72 increases the (negative) self-intersection by 6. Hence, the
first and the last e7 in the chain29 admit a 56 half-hypermultiplet. It is straightforward to
read off the LS charges of the tensors, which are given as

l⃗LS = (1, 1, 1, 2, 3, 1, 4, 3, 2, 3, 4, 1, . . . , 1, 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
×M

, 3, 2, 1, 1, 1) . (3.73)

The T-dual LST. The T-dual configuration are extracted from a second 2D reflexive
sub-polytope given by the (0, y, z, 0) projection. This is again an F13 type and hence admits
a Z2 MW group, but with two more non-compact toric rays α1̂,± that were not present in the
E8 T-dual. This highlights the presence of two additional non-toric su2 flavor branes, which
can be seen by explicitly writing the model in the F13 way after renaming the coordinates as

Y → z , α2̂,+ → x , α2̂,− → y , α1̂,+ → e1 , α1̂,− → e2 , (3.74)

28This coincides with [e′7] − eN
7 − [e′7] quiver presented in table 6 of [30] when replacing the notation

M → N + 1.
29For the special case M = 1 we actually have two 56-half hypermultiplets.
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T (e′7, e1
7) Conformal Matter

s−1 (−2,−3,−3, 1)
s−2 (−2,−3,−2, 1), (−1,−2,−2, 1)

s−3,k (−2,−3,−1, 1), (−2,−3,−2, 2), (0,−1,−1, 1), (−1,−1,−1, 1)
s−4 (−2,−3,−1, 2), (−1,−2,−1, 2)
s−5 (−2,−3,−1, 3)

T (eM
7 , e′7) Conformal Matter

s+1 (−2,−3, 3M − 2, 3)
s+2 (−2,−3, 2M − 1, 2), (−1,−2, 2M − 1, 2)

s+3,k (−2,−3, M, 1), (−2,−3, 2M, 2), (0,−1, M, 1), (−1,−1, M, 1),
s+4 (−2,−3, M + 1, 1), (−1,−2, M + 1, 1)
s+5 (−2,−3, M + 2, 1)

T (em
7 em+1

7 ) Conformal Matter for all m = 0 . . . M − 1 if M > 1
s1,m (−2,−3, 4m + 1, 4)
s2,m (−2,−3, 3m + 1, 3), (−1,−2, 3m + 1, 3)

s3,m,k (−2,−3, 2m + 1, 2), (−2,−3, 4m + 2, 4), (0,−1, 2m + 1, 2), (−1,−1, 2m + 1, 2)
s4,m (−2,−3, 3m + 2, 3), (−1,−2, 3m + 2, 3)
s5,m (−2,−3, 4m + 3, 4)

Table 7. Depiction of the toric rays that resolve the (M + 1)× T (e7, e7) conformal matter between
the M× e7 gauge factors and the two e′

7 flavor factors.

such that over a generic base point, the elliptic fiber equation becomes

p = s1e2
1x4 + s3e2

2y4 + s6e1e2xyz + s2e2e1x2y2 + e1e2z2 . (3.75)

As opposed to the E8 example, s1 and s3 are no longer constants but polynomials in the
coordinates w0 : (−1, 0) and w1 : (1, 0). It is then evident that over s1 = 0 or s3 = 0, the
fiber becomes of Is

2 type, i.e. an su2 flavor algebra resolved by e1, e2.30

The toric rays of the T-dual base are depicted in figure 7 with two 3 curves that host non-
flat fibers when M > 1.31 The combination of the SO(24) flavor group plus the aforementioned
su2 flavor factors match the rank 14 flavor algebra of the E7 side. Furthermore, both s1 and s3
polynomials over the locus y0 = 0 intersect the 3∗so4M+4 curve in a single point, thus we expect
a bifundamental representation as being consistent with the expected anomalies. Moreover,
when M > 2, resolving the non-flat fibers introduces another 1 curve with an spM−3 and

30The same structure can also be deduced from the compact K3, which is fibered over P.
31For M = 1 the final 3 curve admits an so7 gauge algebra only.
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spM+5
1

so4M+12
4

sp3M−1
1

so8M

3∗

sp3M−3
1

so4M+4
3∗

[so24]

Figure 7. The toric base of the eM
7 T-dual model. Curves with a ∗ admit additional non-flat fibers

whose resolution goes beyond the toric base. The two additional su2 flavor factors live over a non-toric
locus and are therefore not depicted here.

enhances the 3 curve to a 4 curve. In the following we summarize the full flat quiver as32

sp2M−4
1∗

spM−3
1∗

[so24]
spM+5
1

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗ [su2

2]
(3.76)

The LS charges are then straightforward to compute and given as

2∗ 1∗

l⃗LS = (1, 1, 3, 2, 3, 1∗)
(3.77)

Note that the base configuration is an affine e7 Dynkin diagram coming from the e7 fibers of
the T-dual gauge groups. Similar as the E8 example, we project onto the base and factor
out the multiplicity factor d̂i and get

(f2̃) (f1̃)
(f1) 2(f2) (f3) 2(f4) (f3̂) 2(f2̂) ,

(3.78)

which coincides with the LS charges for lLS,I = dI/d̂I .
We close this section by two remarks: first, the LST configuration found here is non-

simply connected due to the MW torsion group. I.e. a Z2 center gauging acts diagonally on
flavor and gauge group factors;33 Second, for M > 1, the base two-cycles intersect exactly
in the form of an affine e7 Dynkin diagram, modulo self-intersections. The 2-groups and
CB dimension can be matched and are given below as

[e′7]− eM
7 − [e′7] T-dual

Dim(CB) 9 + 18M

κ̂R 48M

(3.79)

32This is denoted by the dual theory of the [e′7] − eN
7 − [e′7] quiver presented in table 6 of [30] after replacing

the notation M → N + 1.
33Also see [7, 63] for a recent discussion.
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3.3.3 [e6] − eM
6 − [e6] LSTs

In this section we construct an E6 type of theory using the same algorithm as before. This
case however admits a substantially changed T-dual ambient space where the MW group
is not finite anymore and highlights the presence of an Abelian flavor group. We first start
with the E6 theory by employing the following type of resolutions

Z (-2,-3,0,0)
X (1,0,0,0)
Y (0,1,0,0)

α3,± (−2,−3,±3, 0)
α2,± (−2,−3,±2, 0)
α1,± (−2,−3,±1, 0)
α2̂,± (−1,−1,±2, 0)
α1̂,± (0, 0,±1, 0)
α2̃,± (−1,−2,±2, 0)
α1̃,± (0,−1,±1, 0)

em
6 gauge factor, m = 1 . . . M

f3,n (−2,−3, 3m, 3)
f2,n (−2,−3, 2m, 2)
f1,n (−2,−3, m, 1)
f2̂,n

(−1,−1, 2m, 2)
f1̂,n

(0, 0, m, 1)
f2̃,n

(−1,−2, 2m, 2)
f1̃,n

(0,−1, m, 1)

When projected onto the (primitive) base rays, we obtain a chain as of34

[e6]
e6
1

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

| [e6] , (3.80)

which needs to be supplemented by the superconformal matter given by

su3

[e6] 1 3 1 [e6]
. (3.81)

Thus we need to add 3M base blowups for M× e6 gauge algebra factors with two more fibral
divisors. These superconformal matter configurations are resolved via the toric rays as given
in table 8. There are no charged hypermultiplets in the theory except the 27’s of the first
and last e6.35 In 6D LST, each naive E6 enhances to the real flavor group of type E6 ×U(1)
according to the fusion theory described in our companion work [30].

It is straightforward to read off the LS charges of the tensors, which are given as

l⃗LS = (1, 1, 2, 1, 3, 2, 3, 1, . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

, 2, 1, 1) . (3.82)

The T-dual LST. We identify the second fibration by the 2D reflexive sub-polytope given
via vertices of the form (0, y, z, 0) with the toric rays

Y : (0, 1, 0, 0) , α1̂,± : (0, 0,±1, 0) , α1̃,± : (0,−1,±1, 0) . (3.83)

34This coincides with the KN (E6 × U(1), E6 × U(1); g = e6) quiver presented in Sec 6.1 [30] when replacing
the notation M → N + 1.

35For M = 1 there are again two 27 plets on the single e6 gauge factor.
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T (e6, e1
6) Conformal Matter

s−1 (−2,−3,−2, 1)
s−2,k (−2,−3,−1, 1), (−1,−2,−1, 1), (−1,−1,−1, 1)
s−3 (−2,−3,−1, 2)

T (eM
6 , e6) Conformal Matter

s+1 (−2,−3, 2M − 1, 2)
s+2,k (−2,−3, M, 1), (−1,−2, M, 1), (−1,−1, M, 1)
s+3 (−2,−3, M + 1, 1)

T (em
6 , em+1

6 ) Conformal Matter for all m = 0 . . . M − 1 if M > 1
s1,m (−2,−3, 3m + 1, 3)

s2,m,k (−2,−3, 2m + 1, 2), (−1,−2, 2m + 1, 2), (−1,−1, 2m + 1, 2)
s3,m (−2,−3, 3m + 2, 3)

Table 8. Depiction of the toric rays that resolve the (M + 1)× T (e6, e6) conformal matter between
the M× e6 gauge and the two E6 ×U(1) flavor factors.

This is a fiber type F9 according to the enumeration used in [70]. Once we rename the
above coordinates to

Y → w, α1,+ → e1, α1,− → v, α1̃,− → e3, α1̃,+ → u . (3.84)

Then the generic fiber equation becomes

pF 9 = e2
1s1u3 + e1s2u2v + s3uv2 + e2

1s5u2w + e1s6uvw + s7v2w + e1vw2 , (3.85)

which can be viewed as a restricted cubic equation in P2
u,v,w where the si are some polynomials

in the base. There are three sections u = 0, e1 = 0, v = 0 that generate a rank two free
MW group, which in the F-theory lift becomes a U(1)2 gauge group for compact bases [70]
and a flavor group in the non-compact limit [60, 61].

The gauge algebra factors of the T-dual theory can then be deduced just following the
general strategy as before with no non-flat fibers for any M . A novelty in these models
are the suk gauge factors present over 2 curves in the chain. The toric base and their toric
gauge and flavor factors are summarized in figure 8.

When investigating the toric fibral divisors fi for some M in the E6 frame, with i being
their Kac label as fibral curves, we project onto the base coordinates as

f1 → y4 , f2 → y3 , f3 → y2 ,
{

f2̂, f2̃

}
→ y1 ,

{
f1̂, f1̃

}
→ y0 . (3.86)

This identification is akin to an e6 → f4 folding. The LS charges coincide with the Kac
labels of affine f4 whereas the LS charge of f2 had to be divided by two, due to the so

gauge algebra factor.
In the T-dual frame, v = 0 and e1 = 0 become purely Abelian flavor group generators,

these U(1) flavor factors contribute to the total flavor rank matching and are also important
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spM+3
1

so4M+8
4

sp3M−3
1

su4M−2
2

su2M

2

[so20]

Figure 8. The toric base of the eM
6 T-dual model.

for the su4M−2 and su2M gauge factors over the last two 2 curves respectively. Both of them
require two more fundamentals to be consistent with anomalies.

We can deduce those factors by mapping our F9 elliptic curve into a singular Weierstrass
model and derive the matter from the discriminant. For the simplest case when M = 3,
we blow down all fibral divisors and the MW generators e1 and e3 but the affine node, and
arrive at the singular restricted cubic

p = ŝ2u2vy0y3 + ŝ5u2wy0y4
1y6

2y4
3 + ŝ6uvww0y3y4 + ŝ1u3y2

0y4
1y7

2y5
3y4

+ ŝ7v2ww4
0y0y6

4 + ŝ3uv2w4
0y2

0y2y3y7
4 + vw2w0y1 , (3.87)

In the equation above, we have named the compact base divisors yi i = 0 . . . 4 according
to the rays in figure 8 in counterclockwise direction, starting at the “12” position. We
can map this configuration into the singular Weierstrass model via the methods layed out
in [70, 91] which then yields

f = 1
48w2

0y2
3[−w2

0y2
3y4

4(ŝ2
6−4ŝ5ŝ7w2

0y2
0y4

1y6
2y2

3y4
4)2+8w0y0y1y3y2

4(ŝ2(ŝ2
6+2ŝ5ŝ7w2

0y2
0y4

1y6
2y2

3y4
4)

−3ŝ6(ŝ3ŝ5+ ŝ1ŝ7)w3
0y2

0y4
1y7

2y3
3y6

4)+16y2
0y2

1(−ŝ2
2+3ŝ1ŝ3w4

0y2
0y4

1y8
2y4

3y8
4)] ,

g =− 1
864w3

0y3
3[w3

0y3
3y6

4(ŝ2
6−4ŝ5ŝ7w2

0y2
0y4

1y6
2y2

3y4
4)3−12w2

0y0y1y2
3y4

4(ŝ2
6−4ŝ5ŝ7w2

0y2
0y4

1y6
2y2

3y4
4)

×(−3ŝ6(ŝ3ŝ5+ ŝ1ŝ7)w3
0y2

0y4
1y7

2y3
3y6

4 + ŝ2(ŝ2
6+2ŝ5ŝ7w2

0y2
0y4

1y6
2y2

3y4
4))

+2ŝ2
2(ŝ2

6+2ŝ5ŝ7w2
0y2

0y4
1y6

2y2
3y4

4)+32ŝ2y3
0y3

1(−2ŝ2
2+9ŝ1ŝ3w4

0y2
0y4

1y8
2y4

3y8
4)

+3w4
0y2

0y4
1y8

2y4
3y8

4(−ŝ1ŝ3ŝ2
6+(3ŝ2

3ŝ2
5−2ŝ1ŝ3ŝ5ŝ7+3ŝ2

1ŝ2
7)w2

0y2
0y4

1y6
2y2

3y4
4))

+24w0y2
0y2

1y3y2
4(−6ŝ2ŝ6(ŝ3ŝ5+ ŝ1ŝ7)w3

0y2
0y4

1y7
2y3

3y6
4] . (3.88)

We can then obtain the discriminant

∆ = w12
0 y6

0y10
1 y12

2 y12
3 y12

4 ∆̂ . (3.89)

From this discriminant we can again, read off the singularities to double check flavor and
gauge group factors, that we inferred from the toric rays. The matter can be deduced from
the codimension two loci where the vanishing order of the discriminant further enhances. In
particular for the su10 and su6 factor over y1 and y0 we will further factorize the residual
discriminant, which reveals the two reducible loci

QA = ŝ2ŝ5 − ŝ1ŝ6w0y2y3y2
4 , QB = ŝ2ŝ7 − ŝ3ŝ6w0y2y3y2

4 . (3.90)
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Indeed we find the discriminant to enhance as

vanord(f, g,∆)|y0=0 : (0, 0, 6)
QA/B=0
−−−−−→ (0, 0, 7)

vanord(f, g,∆)|y1=0 : (0, 0, 10)
QA/B=0
−−−−−→ (0, 0, 11)

, (3.91)

which is expected from additional fundamentals using the Kac-Vafa method. In particular
ŝ2 is a linear polynomial over the vanishing of y0 and y1 respectively while the other are
constants. Hence [y1/2] · [QA,B ] = 1 and therefore we find exactly one fundamental over each
vanishing locus, consistent with anomalies. The chain is given by

[so20]
spM+3
1

so4M+8
4

sp3M−3
1

su4M−2
2

[su2]

su2M

2 [su2] (3.92)

It is straightforward to read off the LS charges of the tensors above figure 8

l⃗LS = (1, 1, 3, 2, 1) , (3.93)

which coincide with the second component of the yi vectors in (3.86). Finally we confirm
the match of Coulomb branches and 2-group structure constants.

[e6]− eM
6 − [e6] T-dual

Dim(CB) 4 + 12M

κ̂R 24M

(3.94)

3.3.4 [e8] − eM
6 − [e7] LSTs

Finally we consider another LST configuration, where the two En flavor factors as well as
the eM

m gauging is different. We exemplify this with an infinite family of type

[e8]
e6
1

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

[e7] . (3.95)

As usual, we need to include the T (e6, e6), T (e8, e6) and T (e6, e7) conformal matter. We
repeat the later at the tensor branch as

sp1 g2 f4 su3

[e8] 1 2 2 3 1 5 1 3 1 [e6] ,
sp1 so7 sp1

[e6] 1 2 3 2 1 [e7]
. (3.96)

The toric rays that implement the resolution is given in table 9. The resolution of the
E8 and E7 flavor groups can be taken from the sections before, just as the eM

6 gauge and
conformal matter factors. Note that for every M , the e6 factors sit over 6 curves and hence,
have no matter. The LS charges are

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

, 3, 2, 1, 1, 1) . (3.97)
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T (e8, e1
6) Conformal Matter

s−1 (−2,−3,−5, 1)
s−2 (−2,−3,−4, 1)

s−3,k (−2,−3,−3, 1), (−1,−2,−3, 1)
s−4,k (−2,−3,−2, 1), (−1− 2,−3,−4, 2), (−1,−1,−2, 1)
s−5 (−2,−3,−3, 2)

s−6,k (−2,−3,−1, 1), (0,−1,−1, 1), (−2,−3,−2, 2), (−1,−2,−2, 2), (−2,−3,−3, 3)
s−7 (−2,−3,−2, 3)

s−8,k (−2,−3,−1, 2), (−1,−2,−1, 2), (−1,−1,−1, 2)
s−9 (−2,−3,−1, 3)

T (eM
6 , e7) Conformal Matter

s+1 (−2,−3, 3M − 2, 3)
s+2 (−2,−3, 2M − 1, 2), (−1,−2, 2M − 1, 2)

s+3,k (−2,−3, M, 1), (−2,−3, 2M, 2), (0,−1, M, 1), (−1,−1, M, 1),
s+4 (−2,−3, M + 1, 1), (−1,−2, M + 1, 1)
s+5 (−2,−3, M + 2, 1)

Table 9. Toric rays that resolve the T (e8, e1
6) and T (eM

6 , e7) conformal matter.

The T-dual LST. We now collect the rays in the second projection and deduce the gauge
group and matter factors. The relevant toric rays for the fibre ambient space are given as

z : (0, 1, 0, 0) , x : (0,−1, 2, 0) , y : (0,−1,−2, 0) , e1 : (0, 0, 1, 0) , (3.98)

which is again of F13 type with a Z2 MW group. As opposed to the eM
7 case, there is only a

single non-toric su2 factor appearing, which is consistent with anomalies and the full flavor
rank matching. The toric diagram of the base is exactly the same as in the eM

6 type given in
figure 8 however with some enhanced flavor and gauge group factors. The chain is given as

[so28]
spM+7
1

so4M+16
4

sp3N+1
1

su4N+2
2

su2N+2
2 [su2] , (3.99)

and thus also admits the very same LS charges given as

l⃗LS = (1, 1, 3, 2, 1) . (3.100)

The 2-groups data and CB dimension can be matched and are given below as

[e8]− eM
6 − [e7] T-dual

Dim(CB) 22 + 12M

κ̂R 24M + 34
(3.101)
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3.3.5 The [e8] − f4 − eM−2
6 − f4 − [e8] LSTs

Next we discuss an unbroken e8 flavor group but probing an e6 singularity. However we
write the quiver little bit differently to match this quiver to also access some exotic lower
rank theories. The starting quiver is of type

[e8]
f4
1

f6
2 . . .

f6
2

f4
1︸ ︷︷ ︸

×M

[e8] . (3.102)

The tensor branch of T (e8, f4) and T (f4, f4) conformal matter are given as

sp1 g2

[e8] 1 2 2 3 1 [f4] ,

su3

[f4] 1 3 1 [f4] .
(3.103)

Note that here one might have wondered, if one could have replaced the e6 gauge factors
on the 2 curves in the configuration above with f4 factors. This however is not possible,
as the conformal matter will automatically enhance these curves to 6 curves and thus also
the gauge algebra to e6 due to anomalies. This way of writing however, also leads to the
possibility to start with M = 1 or M = 2 configurations for which the T (1, e6) orbi-instanton
theories in the fusion process start to overlap. I.e. we obtain the two exotic cases. For
M = 1 and M = 2 we therefore have

[e8] 1 2
sp1
2

g2
3 1

f4
4

[NF =1]
1

g2
3

sp1
2 2 1 [e8] , [e8] 1 2

sp1
2

g2
3 1

f4
5 1

su3
3 1

f4
5 1

g2
3

sp1
2 2 1 [e8] (3.104)

Their respective T-duals are then given as

[so32]
sp8
1

so16
4 1 2 2 , and [so32]

sp9
1

so20
4

sp3
1

su4
2

su2
2 , (3.105)

respectively. The LS charges are again simply

l⃗LS = (1, 1, 3, 2, 1) . (3.106)

This allows to explicitly match the 2-groups and CB dimension that are given as

(Dim(CB), κ̂R) = (20, 29) , and (Dim(CB), κ̂R) = (30, 48) . (3.107)

Note that the f4 flavor factors for M > 1 have no hypermultiplets. For M > 2 we need
to include e6 rays and their conformal matter. The resolution thus follows by first taking
the (M − 2)× e6 toric rays are given as

f4 gauge factors, m = 1, M

f3,m (−2,−3, 3m, 3)
f2,m (−2,−3, 2m, 2)
f1,m (−2,−3, m, 1)
f2̃,m

(−1,−2, 2m, 2)
f1̃,m

(0,−1, m, 1)

em
6 gauge factor, m = 2 . . . M − 1

f3,m (−2,−3, 3m, 3)
f2,m (−2,−3, 2m, 2)
f1,m (−2,−3, m, 1)
f2̂,m

(−1,−1, 2m, 2)
f1̂,m

(0, 0, m, 1)
f2̃,m

(−1,−2, 2m, 2)
f1̃,m

(0,−1, m, 1)
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T (e8, f4) Conformal Matter
s−1 (−2,−3,−5, 1)
s−2 (−2,−3,−4, 1)

s−3,k (−2,−3,−3, 1), (−1,−2,−3, 1)
s−4,k (−2,−3,−2, 1), (−1− 2,−3,−4, 2), (−1,−1,−2, 1)
s−5 (−2,−3,−3, 2)

T (f4, e8) Conformal Matter
s+1 (−2,−3, 2M − 12)

s+2,k (−2,−3, M, 1), (−1− 2,−3, 2M, 2), (−1,−1, M, 1)
s+3,k (−2,−3, M + 1, 1), (−1,−2, M + 1, 1)
s+4 (−2,−3, M + 2, 1)
s+5 (−2,−3, M + 3, 1)

T (f4/em
6 , em+1

6 /f4) Conformal Matter for all m = 0 . . . M − 1 if M > 1
s1,m (−2,−3, 3m + 1, 3)

s2,m,k (−2,−3, 2m + 1, 2), (−1,−2, 2m + 1, 2), (−1,−1, 2m + 1, 2)
s3,m (−2,−3, 3m + 2, 3)

Table 10. Depiction of the toric rays that resolve the T (e8, f4) conformal matter and those in between
and T (f4, f4), T (f4, e6), T (f6, f6) conformal matter.

where the toric rays of E8 flavor group and P2
1,2,3 fibre coordinates from table 2 should be

added to the full Fan. The superconformal matter is then simply given by the toric rays in
table 10. The LS charges can readily be read off from the toric rays as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 1, . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

, 2, 1, 1, 1, 1) . (3.108)

Next we are switching to the T-dual theory. The base quiver then becomes

[so32]
spM+7
1

so4M+12
4

sp3M−3
1

su4M−4
2

su2M−2
2 . (3.109)

with the usual LS charges. We close by the matching of the Coulomb branch dimension and
the 2-group structure constants for large M > 2, which is given by

[e8]− f4 − eM−2
6 − f4 − [e8] T-dual

Dim(CB) 6 + 12M

κ̂R 24M + 2
(3.110)

3.4 D-type singularities

The D-type singularities work similarly as the exceptional ones, but are a bit simpler. In
the following we omit the details of the exact toric resolution and give just the results of
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the two T-dual pairs which coincide with those given in [31] modulo some low rank cases.
We close by adding some novel cases with broken flavor groups.

In the following it is beneficial to discuss the so4N+2 and so4N type of singularities
separately. We start with the cases with very low number of NS5 branes that is the M = 1
cases as these oftentimes have unexpected T-duals. Let us also discuss the particular low
case gauge group case of an so8 type of singularity. The full tensor branch an LS charge
is then given as

[e8] 1 2
su2
2

g2
3 1

so8
4 1

g2
3

su2
2 2 1 [e8] , l⃗LS = (1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1) , (3.111)

with the T-dual is given by

1 1

[so32]
sp8
1

so16
4 1 , l⃗LS = (1, 1, 1) ,

1 1

(3.112)

which is exactly of so8 affine type. When proceeding to arbitrary M we obtain the same
type of quiver with an additional T (so8, so8) conformal matter interpreted as an E-string.
Thus the generalized quiver looks like36

[e8]
so8
1

so8
2 . . .

so8
2

so8
1︸ ︷︷ ︸

×M

[e8] , (3.113)

and we obtain the T-dual37

spM−1
1

[so32]
sp8+M−1

1
so16+4M−4

4
spM−1
1

spM−1
1

. (3.114)

The above theory retains the full S3 symmetry of so8 as a symmetry of the tensors, which is
a highly special feature of so8 alone and no longer hold for more general so4N+8 type.

We generalize this quiver to so4N+8 and include a chain containing M copies of so4N+8

[e8] . . .
so4N+7
4

sp2N

1
[NF =1]

so4N+8
4

sp2N

1 . . .
so4N+8
4 . . .

sp2N

1
so4N+8
4︸ ︷︷ ︸

×2M−1

sp2N

1
[NF =1]

so4N+7
4 . . . [e8] . (3.115)

whereas the so group has no additional flavors. The LS charge is then given as

l⃗LS = (1, 1, 1, 1, . . . 1, 2, 1, 2, . . . 1 . . . 2, 1︸ ︷︷ ︸
×2M−1

, 2, 1 . . . , 1, 1, 1, 1) , (3.116)

36This coincides with the KN (E8, E8; so8) quiver presented in eq. (5.7) of [30] when setting the notation
M = N + 1.

37This quiver coincides with the model presented in eq. (5.3) of [30] after replacing the notation M = N + 1.
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and there is the T-dual LST
sp4N+M−1

1
spM−1

1

[so32]
sp4N+M+7

1
so16N+4M+12

4
sp8N+2M−2

1
so16N+4M−4

4 . . .
sp8(N−k)+2M−2

1
so16(N−k)+4M−4

4 . . .
sp2M+6

1
so4M+12

4︸ ︷︷ ︸
×2N

spM−1
1

(3.117)
Note that the T-dual LST admits a Z2 symmetry for the last two spinor legs and admits
the exact so

(1)
4N+8 shape with LS charges

1 1
l⃗LS = (1, 1, 2, 1, . . . 2, 1, . . . 2, 1︸ ︷︷ ︸

×2N

, 1) . (3.118)

The 2-groups and CB dimension can be matched and are given below as

[e8]− soM
4N+8 − [e8] T-dual

Dim(CB) 8N2 + 4NM + 22N + 6M + 14
κ̂R 16N2 + 8NM + 32N + 8M + 18

(3.119)

Next we consider the so4N+6 type of gauging, whose T-dual is slightly different to that
of the so4N+8. On the E2

8 side we start with a quiver in the form of

[e8]
so4N+6
1 . . .

so4N+6
2 . . .

so4N+6
1︸ ︷︷ ︸

×M

[e8] . (3.120)

The superconformal matter and the LS charges are the same as before. However, the T-dual
differs slightly on the last node as

sp4N+M−3
1

[so32]
sp4N+M+5

1
so16N+4M+4

4
sp8N+2M−6

1 . . .
so16(N−k)+4M+4

4
sp8(N−k)+2M−6

1 . . .
so4M+20

4
sp2M+2

1︸ ︷︷ ︸
2N×

su2M+2
2 ,

(3.121)
with the LS charge

1
l⃗LS = (1, 1, 2, . . . 1, 2, . . . 1, 2, 1) .

(3.122)

The quiver ends on an so4M+20 node with a single neighboring 2 curve, such that the T-dual
looks more like an so

(1)
4N+5 type of quiver. The 2-groups and CB dimension can be matched

and are given below as

[e8]− soM
4N+6 − [e8] T-dual

Dim(CB) 8N2 + 4NM + 14N + 4M + 5
κ̂R 16N2 + 8NM + 16N + 4M + 6

(3.123)
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An interesting case are very low rank cases i.e. when taking so8 but for very low values
of M . The resulting quivers we can construct are given as

[e8] 1 2
sp1
2

g2
2

[NF =2]

sp1
2 2 1 [e8] , and [e8] 1 2

sp1
2

g2
3 1

g2
3

sp1
2 2 1 [e8] , (3.124)

and their T-duals

[so32]
sp6
1

so7
1

[NF =2]
, and [so32]

sp7
1

so12
1

[NS= 1
2 ]

, (3.125)

with Coulomb branch and 2-group structure constants

(Dim(CB), κ̂R) = (10, 12) , and (Dim(CB), κ̂R) = (14, 18) . (3.126)

In a similar way, we can also take the two T (e8, so2n) conformal matter (e.g. see [2] but
fuse at some so2n−1 factor that appears at the chain. This yields quivers as in

[e8]
so4N+5
1

so4N+5
2 . . .

so4N+5
2

so4N+5
2 . . .

so4N+5
1 [e8] , (3.127)

and the analogous chain for so4N+7 we are forced to put in T (so4N+5, so4N+5) conformal
matter blocks, that are given as

[so4N+5]
sp2N−1

1 [so4N+5] , [so4N+7]
sp2N

1 [so4N+7] (3.128)

From the conformal matter point of view it is evident, that we can not start with a configuration
that had an so4N+6±1 factor on a 2 curve: whenever we tried to do that, we obtained a
chain like

. . .
sp2N−1

1
so4N+5
4

sp2N−1
1 . . . , and . . .

sp2N

1
so4N+7
4

sp2N

1 ,

which is not consistent with anomalies. Instead the so algebras enhance again to so4M+6 and
so4N+8 singularities which brings us back to the g = so4M+7±1 and M = 1 cases that we
discussed before. Thus there are only two new exotic families for each type of singularity.
The first two are given as

[e8] 1 2
su2
2

g2
3 . . .

so4N+3
4

sp2N−2
1

so4N+5
4

[NF =1]

sp2N−2
1

so4N+3
4 . . .

g2
3

su2
2 2 1 [e8] . (3.129)

and second two as

[e8] 1 2
su2
2

g2
3 . . .

so4N+5
4

sp2N−1
1

so4N+7
4

[NF =1]

sp2N−1
1

so4N+5
4 . . .

g2
3

su2
2 2 1 [e8] . (3.130)

Their LS charges of both theories is in the form of

l⃗LS = (1, 1, 1, 1, . . . 1, 2, 1, 2, 1 . . . , 1, 1, 1, 1) (3.131)

Their associated T-duals are given by
sp4N−4

1

[so32]
sp4N+4

1
so16N

4
sp8N−8

1
so16N−16

4 . . .
sp8N−8

1 . . .
sp8
1

so16
4 1︸ ︷︷ ︸

2N×

2 ,
(3.132)
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with the LS charges

1
l⃗LS = (1, 1, 2, 1, . . . 2, 1, . . . 1, 2︸ ︷︷ ︸

2N×

, 1) . (3.133)

and
sp4N−2

1

[so32]
sp4N+6

1
so16N+8

4
sp8N−4

1
so16N−8

4 . . .
sp8(N−k)−4

1
so16(N−k)−8

4 . . .
sp12
1

so24
4

sp4
1

so7
2

[NF =1]︸ ︷︷ ︸
2N×

, (3.134)

with respective LS charges

1
l⃗LS = (1, 1, 2, 1, . . . 2, 1, . . . 2, 1︸ ︷︷ ︸

2N×

) . (3.135)

The 2-groups and CB dimension can be matched and are given below as

[e8]− so4N+5 − [e8] T-dual [e8]− so4N+7 − [e8] T-dual
Dim(CB) 8N2 + 10N + 2 8N2 + 18N + 10

κ̂R 16N2 + 8N + 3 16N2 + 24N + 11
(3.136)

For the M = 2, the chain in the E8 × E8 side are simply obtained by inserting one copy of
so4N+5 or so4N+7 and resolved by the SCM. Their corresponding T-duals are given by

sp4N−3
1

[so32]
sp4N+5

1
so16N+4

4
sp8N−6

1 . . .
so16(N−k)+4

4
sp8(N−k)−6

1 . . .
so20
4

sp2
1︸ ︷︷ ︸

2N×

su2
2 ,

(3.137)

and
sp4N−1

1

[so32]
sp4N+7

1
so16N+12

4
sp8N−2

1
so16N−4

4 . . .
sp8(N−k)−2

1
so16(N−k)−4

4 . . .
sp6
1

so12
2

[NS=1]︸ ︷︷ ︸
2N×

. (3.138)

The 2-groups and CB dimension can be matched and are given below as

[e8]− so2
4N+5 − [e8] T-dual [e8]− so2

4N+7 − [e8] T-dual
Dim(CB) 8N2 + 14N + 5 8N2 + 22N + 14

κ̂R 16N2 + 16N + 6 16N2 + 32N + 18
(3.139)
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Example with broken flavor group. We close the D-type singularities, by also presenting
an example with broken flavor symmetry. In the following we focus on a simple example,
with only a single broken e8 flavor factor. More exotic cases are presented in section 4. We
use g = so8+4N as the starting singularity and break one E8 to an E7 × su2 flavor group.
The LST is then given as the following chain

[e8]
so8+4N

1 2 . . . 2
so8+4N

1
[su2]︸ ︷︷ ︸

M×

[e7] (3.140)

for M > 0. We recall the conformal matter theories T (e8, so8+4N ) in the following as

[e8] 1 2
su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1 . . .

so7+2k

4
spk

1 . . .
so7+4N

4
sp2N

1 [so8+4N ] , (3.141)

The T ((so8+4N , e7)/Z2) conformal matter that we fuse on the right of the LS chain are
given in [7] as

[so8+4N ]
sp2N−1

1
so8+4(N−1)

1
sp2(N−1)−1

1 . . .
sp2(N−k)−1

1
so8+4(N−k)

1 . . .
so16
4

sp3
1

so12
4

sp1
1

so7
3

su2
2 1 [e7]

(3.142)
and for T (so8+4N , so8+4N ) there is the tensor branch

[so8+4N ]
sp2N

1 [so8+4N ] . (3.143)

Fusing together all of the above contributions we obtain the total LS charges

l⃗LS = (1, 1, 1, 1, 2, 1, 2, 1, 2, . . . 1, 2, 1 . . . 1, 2, 1, 2, 1, 2, 1, . . . , 1, 2, 1, 2, 1, 1, 1) . (3.144)

The T-dual LST admits an (SO(28) × SO(4))/Z2 Flavor group. The dual LS quiver
is given as

sp3N+M−2
1

spM−2
1

[so28]
sp3N+M+5

1
so12N+4M+8

4
sp6N+2M−3

1 . . .
so12(N−k)+4M+8

4
sp6(N−k)+2M−3

1 . . .
sp2M+3

1
so8+4M

4
spM−1

1 [so4]
(3.145)

The LS charges are simply those that resemble the so8+4N singularity as before

1 1
l⃗LS = (1, 1, 2, 1, . . . 2, 1, . . . 2, 1︸ ︷︷ ︸

2N×

, 1) . (3.146)

The 2-groups and CB dimension can be matched and are given below as

[e8]− soM
4N+8 − [e7 × su2] T-dual

Dim(CB) 6N2 + 4NM + 15N + 6M + 8
κ̂R 12N2 + 8NM + 20N + 8M + 10

(3.147)

Breaking the E8 flavor group with a discrete holonomy as above, allows to construct theories
that still exhibit the full flavor rank. Such theories exhibit some more interesting exotic
properties that we discuss in the next section.
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4 Exotic little string theories

In this section we discuss some theories, that are also engineered via toric geometry but go
beyond the fusion algorithm discussed before, which yields exotic types of little strings.

First we start by engineering elliptic K3s, that admit different fibre type structures that
generally have more than just fibrations and thus also more than just two T-duals LSTs. Indeed
those general fibre constructions are key for another class of exotic theories, where the flavor
holonomies µi admit a discrete piece which breaks the E8 group to some non-simply connected
maximal subgroups. Those theories have in general multiple T-duals and in particular bases,
that seem to be related to the original singularity by an twisted (affine) folding.

Finally, we give an outlook on the generality of our proposals, by abandoning the toric
framework to discuss six different LSTs with a rank 18 flavor group that we propose to
be all T-dual to each other.

4.1 Discrete holonomy theories

In this section, we explore the geometric models with a non-trivial global structure. Notably,
we will study the discrete holonomy LSTs that are systematically constructed in [29] and
focus here on the Z2 and Z3 cases. They contain a beautiful toric realization of the fibre
type F16 and F13 respectively, according to the enumeration in [70]. As discussed in more
detail in [51], those theories are characterized by breaking the E8 flavor factors in a maximal
rank preserving manner via a discrete holonomy µi = Zn. These factors correspond to the
exclusion of a node in the E8 affine Cartan matrix with Kac label n. The resulting flavor
group then admits a non-simply connected structure that acts diagonally on the gauge group.
From the geometric perspective, such models can be achieved by having a non-trivial but
finite Mordell-Weil group, which occurs naturally in the Spin(32)/Z2 type of theories that
contain an Z2 MW group in general. Now, we directly break the E8 flavor group such that
the discrete holonomies yield a finite MW group. Although more restricted than the most
general flavor deformation, those theories are still very rich. For the sake of brevity, we focus
on the rank preserving case and leave a more general classification for future work.

4.1.1 A multi-T-dual LST

We start by realizing the flavor branes with a single 0 curve and then keep decorating with
more compact divisors. We begin with the elliptic K3, which engineers the flavor group, and
then the compact curves that engineer the dynamical degrees of freedom. The SO(16)2/Z2
flavor group is induced by the rays given in table 11. For each toric fibration, it is necessary
to identify a reflexive 2D sub-polytope that resides over the generic point of the residual base.
For a generic vector v = (x, y, z, q), we can generate such a 2D reflexive polytope via:

1. Fibration 1: with base in the (zi, qi) plane and fibre spanned by Z, X, Y , with F13
generic ambient space, containing a Z2 MW group and SO(16)2/Z2 flavor group.

2. Fibration 2: with base in the (yi, qi) plane and fibre spanned by Z, β4,±, with F13
generic ambient space, containing a Z2 MW group and SO(16)2/Z2 flavor group.
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Z (1,0,0,0)
X (-1,2,0,0)
Y (-1,-2,0,0)

β1,± (−1, 2,±2, 0)
β2,± (−1,−2,±2, 0)
β3,± (−1,−1,±2, 0)
β4,± (−1, 0,±2, 0)
β5,± (−1, 1,±2, 0)
α1,± (−1,−2,±1, 0)
α2,± (−1, 2,±1, 0)
α3,± (0,−1,±1, 0)
α4,± (0, 1,±1, 0)
y0 (−1,−2, 0, 1)

Table 11. The toric rays the yield an F13 type of fibre [70] and the resolution divisors of two so16
flavor branes.

3. Fibration 3: with base in the (xi, qi) plane and fibre spanned by α3,±, α4,±, that is an
F15 fibre type and an SU(16)/Z2 ×U(1) flavor group.

Now we decorate the graph with more compact divisors via the following set of vertices

yi : (−1,−2, n, 1) , for i = 1 . . . M . (4.1)

This results to three different T-dual frames with the following little string theories:

1. A trivial gauge theory but M additional tensors and hence a chain

[so16] 1 2 . . . 2 1︸ ︷︷ ︸
×M+1

[so16] . (4.2)

2. An single tensor theory with gauge group as

[so16]
spM

0 [so16] , (4.3)

with bi-fundamentals of spM as well as one more antisymmetric representation.

3. An single tensor theory with gauge group as

[su16]
suM+1
0 , (4.4)

with bi-fundamental matter as well as two more antisymmetric representations.
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These three different theories all have uniform LS charge 1 and thus their 2-group structure
constant is simply the already matched Coulomb branch.38

We can further decorate the above configuration in some other non-trivial way by adding
the following set of vertices

yi : (−1,−1, n, 1) , for i = 1 . . . M . (4.5)

This decoration affects each LST differently, given as

1. An suM+1
2 given by the following quiver

[so16]
su2
1

su2
2 . . .

su2
2

su2
1︸ ︷︷ ︸

×M+1

[so16] . (4.6)

The matter consists of bifundamentals only. Note that the diagonal Z2 gauging allows
only for bifundamental matter.

2. A two tensor theory with

[so16]
spM

1
spM

1 [so16] . (4.7)

Again, with a bifundamental modding as before.

3. A single tensor theory with

[su16 × u1]
su2M+1

0
[NA=2]

, (4.8)

Again, we have only bifundamentals and some antisymmetrics at the last curve.

The above three cases summarize that: first we find an expected T-dual where the affine fibres
of the gauging enter the base, but a third fibration that has not appeared in the sections
before. Instead of the two expected curves, we find just one as if the affine su

(1)
2 base quiver

has likely been further reduced to a su
(2)
2 . This is indeed the correct interpretation in the

more generalized examples presented in the next sections.

4.1.2 Z2 discrete holonomy LSTs

We start by the flavor breaking given below, which is also considered in [51, 92]

Z2 : e8 → {e7 × su2, so16} . (4.9)

In the case before, we already studied the SO(16)2 flavor group breaking, which lead to
various new T-dual theories. Here we mainly focus the (E7 × SU(2))2/Z2 flavor group that
produces more exotic T-duals. We start of with e7 gaugings leading to an LST39

[su2]
1

[su2]
1

[e7] 1
su2
2

so7
3

su2
2 1

e7
8 1

su2
2

so7
3

su2
2 1

e7
8 . . .

e7
8 1

su2
2

so7
3

su2
2 1

e7
8︸ ︷︷ ︸

×M

1
su2
2

so7
3

su2
2 1 [e7] .

(4.10)

38For those models one might actually expect a flavor enhancement of so2
16 to E2

8 and so32 respectively.
39This coincides with the KN (E7 ×SU(2), E7 ×SU(2); g = e7) quiver described in Sec 6.2 [30] when replacing

the notation M → N + 1.
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T-dual−−−→

Figure 9. Depiction of an e
(1)
7 fibre that becomes a e

(2)
6 type of base upon T-duality. The nodes

intersected by the two torsion sections are marked in red and are mapped onto each other taking all
other nodes but the middle ones, marked in black, along. The right picture shows the shape of the
resulting base quiver.

It is straightforward to read off the LS charges of the tensors, which are given as

1 1
l⃗LS = (1, 1, 1, 2, 3, 1, 4, 3, 2, 3, 4, 1 . . . 1, 4, 3, 2, 3, 4, 1︸ ︷︷ ︸

×M

, 3, 2, 1, 1, 1) . (4.11)

This is distinct from a simple e8 → e7 breaking due to the absence of e7 matter multiplets,
implemented by the global Z2 gauging in the center of gauge and flavor groups. The resolution
of the model is done via an F13 type of ambient space summarized in table 7. This choice
admits two more inequivalent toric fibrations both also with an F13 type of fibre that has
a Z2 MW group. The first one is given as

sp2M−4
1∗

[so8]
spM−1
1

so4M+4
4

sp3M−3
1

so8M∗

4∗
sp3M−1

1
so4M+12

4
spM+5
1 [so24] ,

(4.12)

with the LS charges given by

2∗

l⃗LS = (1, 1, 3, 2∗, 3, 1, 1) .
(4.13)

Note that for M = 1 the ∗ curve is just a
so7
3 and the attached 1∗ is missing. We find the

chain to have the full e(1)
7 topology. The third fibration has the quiver given as

[u16]
su2M+10

2
su4M+4

2
su6M−2

2
sp4M−4

1
so4M+4
4∗ , (4.14)

with the LS charges given by

l⃗LS = (1, 2, 3, 4, 1∗) . (4.15)

That is those of an e
(2)
6 modulo the expected division by two due to the so4M+4 gauge algebra.

Hence, we find the twisted affine folded type of the e
(1)
7 base, see figure 9 for a depiction.

The 2-groups and CB dimension and matched are given below as

Dim(CB) = 18M + 11 , κ̂R = 48M + 2 . (4.16)
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Such type of foldings occur for various other choices of gaugings with the same flavor
group. E.g. take the M× so4N+8 gauging which yields

[e7]
so4N+8
1

[su2]

so4N+8
2 . . .

so4N+8
2

so4N+8
1

[su2]︸ ︷︷ ︸
M×

[e7] (4.17)

upon the inclusion of the sufficient conformal matter

[so4N+8]
sp2N

1 [so4N+8] (4.18)

Note that the conformal matter of such theories differs slightly due to the Z2 gauging. E.g.
for M = 1 it is given as

[e7] 1
su2
2

so7
3

sp1
1 . . .

sp2N−3
1

so4N+4
4

sp2N−1
1

so4N+8
4

[su2
2]

sp2N−1
1

so4N+4
4

sp2N−3
1 , . . .

sp1
1

so7
3

su2
2 1 [e7] . (4.19)

There are again two T-dual theories. The second fibration admits the quiver

sp2N+M−3
1

spM−3
1∗

[so24]
sp2N+M+3

1
so8N+4M+4

4 . . .
sp4(N−k)+2M−4

1
so8(N−k)+4M−4

4 . . .
sp2M

1
so4M+4
4∗︸ ︷︷ ︸

2N×

spM−1
1 [so8] .

(4.20)

Here we find that the dual base has the so
(1)
4N+8 shape, whereas the last node is completed

for M > 2. The LS charges of the tensors are given as

1 1∗

l⃗LS = (1, 1, . . . 2, 1, . . . 2, 1∗,︸ ︷︷ ︸
2N×

1) . (4.21)

For the third fibration on the other hand we have the following quiver,

[su16 × u1]
su4N+2M+6

2
su8N+4M−4

2
su8N+4M−12

2
su8N+4M−20

2 . . .
su4M+4

2
sp2M−2

1︸ ︷︷ ︸
N×

su4N+2M−2
2

(4.22)

With the LS charges given as

1
l⃗LS = ( 2, 2, 2, . . . 2, 2) .

1
(4.23)

Here the so
(1)
4N+8 is folded by a Z2 to an su

(2)
N+3(see figure 10 for a depiction). From the

so
(1)
4N+8 point of view, only the middle node is fixed under the involution, which can also be
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T-dual−−−→

Figure 10. Depiction of an so
(1)
4N+8 fibre that becomes su

(2)
3N+2 type of base upon T-duality. The

nodes intersected by the two torsion sections are marked in red and are mapped onto each other
taking all other nodes but the middle one, marked in black along. The right picture shows the shape
of the resulting base quiver.

seen from the fact that it hosts an sp type of gauge algebra. The 2-groups and CB dimension
can be matched and are given below as

[e7]− soM
4N+8 − [e7] T-duals

Dim(CB) 4N2 + 4NM + 8N + 6M + 2
κ̂R 8N2 + 8NM + 8N + 8M + 2

(4.24)

These are features of the flavor group from the respective K3 in use, hence we also
observe them in the last possible gauging, i.e. of su2N type. For simplicity we again look at
the fractionalization of the pure heterotic string to obtain the generalized form

[e7]
su2N

0 [e7] , →
[su2]

[e7] 1
su2
2

su4
2 . . .

su2N−2
2

su2N

2
su2N−2

2 . . .
su4
2

su2
2 1 [e7] .

[su2]

(4.25)

The first T-dual is given as,

[so24]
sp2N

1
su4N−4

2 . . .
su4(N−n)−4

2 . . .
su4
2 1︸ ︷︷ ︸

×N

[so8] , (4.26)

which looks like a quiver of sp(1)
N type associated to a regular reduction of the su2N Cartan

matrix. The third T-dual quiver is given as

[su16]

1
su8
2 . . .

su4N−8
2

su4N

2
su4N−8

2 . . .
su8
2 1︸ ︷︷ ︸

×(N+1) for N even

,

[su16]
su4
1

NA=1

su12
2 . . .

su4N−8
2

su4N

2
su4N−8

2 . . .
su12
2

su4
1

NA=1︸ ︷︷ ︸
×N for N odd

(4.27)

Notably we find that the LS charges are universally one in all models and all nodes are of
suk gauge algebra type which suggests a folding which leaves none of the su

(1)
2N nodes fixed.

Instead it identifies the affine node with the N -th node in the su
(1)
2N Cartan matrix. The

dimension of the Coulomn branch and κ̂R are given by Dim(CB) + 1 = κ̂R = 2N2 + 2.

4.1.3 Z3 discrete holonomy LSTs

We continue with Z3 discrete holonomy theories, which admit additional exotic features as
well as self-T-duality. The flavor breaking of the two e8s are given by

e8 → {e6 × su3, su9} , (4.28)
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where only su3N and e6 singularities can lead to this type of breaking. These theories have
similar properties as the ones before as well as self T-dual cases presented in the next section.
An interesting example to start with are those specified with the quivers

[su3]
1

[e6] 1
su3
3 1

e6
6 1

su3
3 1

e6
6 . . .

e6
6︸ ︷︷ ︸

M×

1
su3
2

su6
2 [su9]

(4.29)

It is straightforward to read off the LS charges of the tensors, which are given as

1
l⃗LS = (1, 1, 2, 1, 3, 2, 3, 1, . . . 1,︸ ︷︷ ︸

×M

3, 2, 1) . (4.30)

where we have included in total M× e6 factors. This theory can be resolved via the toric rays
given in table 12, which admits again two more inequivalent fibrations. Here, all rays are toric
and flat except f0. Both other fibrations however, admit the very same flavor group and in fact
also the same type of fibres, i.e. they are T-self-dual. The fibre type is that of F11 and admits
an additional U(1) MW group generator which mixes with the various gauge group factors.
The quiver itself admits the shape of an f

(1)
4 similar to all other e6 T-duals and is given as

[u11]
su6+2M

2
su1+4M

2
sp3M−2

1
so6+4M

4
spM

1 [so10] , (4.31)

with the LS charge

l⃗LS = (1, 2, 3, 1, 1) . (4.32)

Note that this duality is not a simple identification but is really due to a non-trivial symmetry
of moduli space of the M-theory compactification. I.e. when compactifying the second T-dual,
we obtain the same 5D theory only after a non-trivial action in the CB moduli space. Finally
we verify the matching of CB and 2-group structure constants.

[e6]− eM
6 − [su9] T-dual

Dim(CB) 12M + 10
κ̂R 24M + 10

(4.33)

Similarly we can consider a theory that have two E6 flavor factors given via the quiver40

[su3]
1

[su3]
1

[e6] 1
su3
3 1

e6
6 1

su3
3 1

e6
6 . . .

e6
6 . . .

e6
6 1

su3
3 1

e6
6︸ ︷︷ ︸

M×

1
su3
3 1 [e6] .

(4.34)

40This coincides with the KN (E6 ×SU(3), E6 ×SU(3); g = e6) quiver presented in Sec 6.1 [30] when replacing
the notation M → N + 1.
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F16 fibre
Z (-1,-1,0,0)
X (-1,2,0,0)
Y (2,-1,0,0)
e1 (1,0,0,0)
e2 (0,1,0,0)

e6 flavor
α3 (-1,-1,-3,0)
α̂1 (-1,-1,-1,0)
α̂2 (-1,-1,-2,0)
α2 (-1,0,-2,0)
α̃1 (-1,1,-1,0)
α̃2 (0,-1,-2,0)
α1 (1,-1,-1,0)

su9 flavor
β0 (-1,-1,1,0)
β1 (-1,0,1,0)
β2 (-1,1,1,0)
β3 (-1,2,1,0)
β4 (0,1,1,0)
β5 (1,0,1,0)
β6 (2,-1,1,0)
β7 (1,-1,1,0)
β8 (0,-1,1,0)

ei
6 i = 1 . . . M

α3,i (-1,-1,3i,3)
α̂1,i (-1,-1,i,1)
α̂2,i (-1,-1,2i,2)
α2,i (-1,0, 2i,2)
α̃1,i (-1,1,i,1)
α̃2,i (0,-1,2i,2)
α1,i (1,-1,-1,0)
f0 (0,0,0,1)

T (e6, e1
6) conformal matter

s−1 (-1,-1,-2,1)
s−2,k (-1,-1,-1,1) , (-1,0,-1,1), (0,-1,-1,1)
s−3 (-1,-1,-1,2)

T (ei
6, ei+1

6 ), i = 1 . . . M − 1 conformal matter
s3,i (-1,-1,3i-2,3)

s2,i,k (-1,-1,2i-1,2) , (-1,0,2i-1,2), (0,-1,2i-1,2)
ŝ3,i,k (-1,-1,3i-1,3)
T (eM

6 , su9) conformal matter
s+3 (-1,-1,3M+1,3)

s+2,k (-1,-1,2M+1,2) , (-1,0,2M,2), (0,-1,2M,2)
s+1,k (-1,-1,M+1,1) ,(-1,0,M+1,1),(-1,1,M+1,1) ,(0,-1,M+1,1), (0,0,M+1,1) ,(1,-1,M+1,1)

Table 12. The toric resolution of (E6 × SU(3)× SU(9))/Z3 probing M× e6 singularity.

It is straightforward to read off the LS charges of the tensors, which is given as

1 1
l⃗LS = (1, 1, 2, 1, 3, 2, 3, 1, . . . 1, . . . 1, 3, 2, 3, 1,︸ ︷︷ ︸

×M

2, 1, 1) . (4.35)

The resolution process is fully analogous and can be obtained, when exchanging the SU(9)
flavor group for E6 as given in the table together with its matching conformal matter. The
resulting theory admits again two more identical fibration with an F13 fibre type which hosts
an U(1) × Z2 MW group. The resulting quiver is given as

[u12]
su2M+6

2
su4M

2
sp3M−3

1
so4+4M

4
spM−1
1 [so8] , l⃗LS = (1, 2, 3, 1, 1) . (4.36)

Note that the theory is very similar to the one before but with a slightly modifed flavor group.
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T-dual−−−→

Figure 11. Depiction of the identification of an su
(1)
3N fibre under T-duality. The red nodes are

mapped on top of each other, carrying the other ones along, leading to the base quiver on the right.
From red to blue, there are N nodes, while there are N/2 from red to black, for odd N .

The 2-groups and CB dimension can be matched and are given below as

[e6]− eM
6 − [e6] T-dual

Dim(CB) 12M + 6
κ̂R 24M + 2

(4.37)

Similarly, we can consider the T-duals of the SU(9)2/Z3 type of flavor groups probing
eM
6 singularities. Their tensor branch is just as in the example above but with the quiver

[su9]
su6
2

su3
2 1

e6
6 1

su3
3 1

e6
6 . . .

e6
6︸ ︷︷ ︸

×M

1
su3
2

su6
2 [su9] . (4.38)

It is straightforward to read off the LS charges of the tensors, which is given as

NI = (1, 2, 3, 1, 3, 2, 3, 1, . . . 1,︸ ︷︷ ︸
×M

3, 2, 1) , (4.39)

The toric resolution is realized by the combination of the su9 flavor rays βi and the
T (su9, e6) conformal matter, then reflect them to the (x, y,−1, 0) side. There are two self-dual
theories with the fiber being the F15 type, which admits a free and a torsional MW generator.
Therefore the total quiver is given as

[u10]
su6+2M

2
su2+4M

2
sp3M−1

1
so8+4M

4
sp1+M

1 [so12] , l⃗LS = (1, 2, 3, 1, 1) . (4.40)

The 2-groups and CB dimension can be matched and are given below as

[su9]− eM
6 − [su9] T-dual

Dim(CB) 12M + 14
κ̂R 24M + 22

(4.41)

At next we consider su3N gaugings which surprisingly will be more exotic than the e6
cases. For simplicity we start with the (E6 × SU(3))2/Z3 flavor group and no additional
NS5 brane i.e. M=1, for which we get

[e6] 1
su3
2 . . .

su3n−3
2

su3n

2
[su2

3]
. . .

su3n−3
2

su3
2 1 [e6] . (4.42)
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as discussed in [29]. As the Flavor group is purely determined by the K3, we already know
that it is the same as in the models before, but the quiver now looks like

[u12]

1
su8
2 . . .

su4N−8
2︸ ︷︷ ︸

×N/2

su4N

2
su4N−4

2 . . .
su4
2 1︸ ︷︷ ︸

×(N) for N even

[so8] ,

[u12]
su4
1

[NA=1]

su12
2 . . .

su4N−8
2︸ ︷︷ ︸

×(N−1)/2

su4N

2
su4N−4

2 . . .
su4
2 1︸ ︷︷ ︸

×(N) for N odd

[so8] .

(4.43)
All LS charges in the above theories are one, the dimension of the Coulomb branch and
κ̂R differ by one, namely Dim(CB)+1= κ̂R = 3N2 + 2. The above result is very surprising
as it looks almost like an sp

(1)
2N type of quiver. In terms of the geometry of the su

(1)
3N fibral

curves, we can deduce this action directly in the T-dual geometry as depicted in figure 11.
The affine Dynkin diagram shapes exactly as an equilateral triangle with the corners nodes
intersected by the Z3 torsion sections each. Under T-duality, two red nodes are mapped
on top of each other, while the blue one stays invariant. Besides, there can be another
node invariant under the action, colored in black, in case that N is odd, which is why we
had to distinguish those two cases.

4.2 Quotient base of the heterotic string

In this section, we want to consider a small class of heterotic LST bases, that is not (directly)
related to those of some N NS5 branes supsended between the two E8 walls. As we have seen,
those configurations can be related to two 1 curves in between a crepant ZN singularity.

Instead, here we consider the geometry of no NS5 brane, that is M=1 but take a quotient
of the configuration,41 given as

B = (P1 × C)/ΓM . (4.44)

The quotient ΓM is only crepant for M = 2 and it can be implemented as a refinement of
the 2D lattice in which the toric rays live

w0 : (−1, 0) , w1 : (1, 0) , y0 : (1, 0)→ ŷM : (1, M) . (4.45)

This action implements the discrete action on the coordinates, which yields the singular points

{γw0, γ1ŷM} and {γŷM , γ−1w1} , (4.46)

with γ being an M -th root of unity. The first singularity is in general a non-crepant singularity,
while the second one is. The resolved base quiver is then given as

M 1 2 2 . . . 2︸ ︷︷ ︸
×M−1

, l⃗LS = (1, M, M − 1, M − 2, . . . 1) . (4.47)

Torically, we can resolve these singularities by adding the rays that split the singular cones,
which yields

w0 : (−1, 0), y0 : (0, 1) , ŷ : (1, M) , ym : (1, m) , w1 : (1, 0) , for m = 1 . . . M − 1 . (4.48)
41For more details on those types of bases and a connection to 2-form gauge symmetries, see [100].
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M 2 3 4 5 6 7 8 9 10 11 12
CB 2 5 8 10 12 14 15 20 20 20 20
κ̂R 3 9 16 24 33 46 54 78 87 97 108

Table 13. Coulomb branches and 2-group structure constants of (P1 × C)/ΓM type of LSTs.

This type of bases are limited to the families M = 2 . . . 12 in order to allow for a crepant
resolvable threefold. Again, the LS charges are given by the second coordinate of the toric
vectors and are given as

l⃗LS = (1, M, M − 1, M − 2, . . . , 1) . (4.49)

From this it is directly evident that the 2-group structure constant is κ̂P and hence we have
a heterotic LST. This is also clear by noting, the we can blow-down the 1 curve consecutively
again and obtain a base of the type P1 × C consistent with the 2-group structure constant.

The presence of the single non-Higgsable cluster on the left of the chain yields additional
singular fibres i.e. gauge groups in the F-theory context [58, 99] , such as su3, so8, f5, e6, e7
for M = 2 . . . 7. Some care has to be taken when M = 9 as this leads to 12−M additional
(4, 6, 12) points that can be removed via a 1 curve blow-up adding to the CB dimension and
the 2-group structure constant. In table 13 we have listed all Coulomb branch dimensions
and 2-group structure constants of the respective models. In general, we can add some
non-trivial flavor groups and hence also gauge group factors. A couple of simple options
where we just decorate by some suk factors are given as

su3
3 1

su6
2

su12
2 [u18] , {Dim(CB), κR} = {21, 30} (4.50)

or
e6
6 1

su3
2

su6
2

su9
2

su12
2

su15
2 [u18] , {Dim(CB), κR} = {52, 123} (4.51)

and similarly

e7
8 1

su2
2

su4
2

su6
2

su8
2

su10
2

su12
2

su14
2 [u16] , {Dim(CB), κR} = {64, 194} (4.52)

The large rank of the flavor group and the absence of an obvious e2
8 HW picture makes it

hard to explicitly construct T-dual LSTs.42

Moreover, the high rank of the flavor symmetry does not allow us to engineer the first
two models torically at all. This is due to the reason, that toric geometry confines us to
K3s with a rank 17 flavor group at most.

In cases of large flavor groups like those, we might have more general arguments at our
disposal to deduce possible T-dual fibrations.

42The toric construction of the last model does not admit any other fibrations and hence T-dual models. A
different phase in the Kähler cone however, might admit another fibration.
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4.3 Extremal flavor rank and T-hexality

We conclude this paper by giving an example that goes beyond the toric construction and
illustrates the validity of our more general proposal. Here we present Heterotic LSTs that
have a maximal flavor group from the K3 perspective. In all these examples the Poincaré
2-group structure constant κP equals two, which signals the presence of two M9 branes in
the M-theory dual. However, the flavor symmetry here enhances to groups with rank 18. The
origin of such a rank 2 enhancement is harder to trace in the Horava-Witten picture [79, 80]. A
possible geometric origin for such an enhancement can be indeed recognised: by construction
transverse directions to branes often give rise to global symmetries along their worldvolumes.
For M5 branes in M-theory, we indeed have an SO(5) transverse isometry which is interpreted
in terms of the 6d (2,0) R-symmetry. In presence of M9 branes such SO(5) is broken to
SO(4) ≃ SU(2)× SU(2) where the first factor is the 6d (1,0) R-symmetry, while the second
factor is enhancing the global symmetry to SU(2)×E8 ×E8. In the non-geometric Heterotic
theories we are constructing in this section we see an enhancement of rank two. We believe
this is related to the extra dimensions of F-theory, which give a further transverse direction
which justifies the further rank enhancement. In this sense the Heterotic/F-theory duality
building on K3 is giving a slight generalisation of the HW picture.

As usual, our starting points will be the elliptic K3s fibres that encode the flavor group
of the LST configuration once we add additional singularities. The underlying K3s discussed
here differ drastically from those considered in the bulk of this work: i.e., any of the 3145
toric Kreutzer-Skarke K3s can at most have an NS lattice of rank 19 and hence a frame lattice
of rank 17.43 However, there exist plenty of elliptic K3s with maximal NS lattice as classified
in [101, 102]. To get a better understanding of the underlying geometry, it is beneficial to view
the flavor configuration inherited from the K3 from an 8D SUGRA perspective [39, 40, 78].

Those cases admit a Weierstrass description as well as a heterotic dual in terms of a
(Narain-) torus, simply due to the perfect match of 8D F-theory and heterotic string vacua.
Due to a large amount of symmetries, these lack a geometric description in the heterotic
string perspective (see [29] for more details) E.g., in the following, we consider the heterotic
string with a E2

8 × SU(3) flavor group. In this case, the 8D heterotic string is compactified
on a torus with fixed complex structure τ = e−2πi/3 at the self-dual radii, which enhances
the su2

2 symmetry to su3. This theory maps to F-theory on an extremal rational elliptic
surface, with the very same type of fibres.

As pointed out in section 2.3, we expect T-duality of LSTs to be inherited from multiple
fibration structures of the underlying non-compact elliptic K3 fibre. Hence, the problem of
determining inequivalent elliptic fibrations reduces to classify elliptic fibrations of the K3.
This is not an easy task in general, but lattice theoretic techniques of K3 can substantially
help to do so. For some cases, such classifications have been done [74], and it includes the
E2

8 × SU(3) case discussed before as one of six different elliptic fibrations in the same K3.
This Hexality of dual theories is given in figure 12.

43Since all toric hypersurfaces are geometric, they must admit at least one Kähler class inherited from the
ambient space. On the other hand, all toric polytopes are closed under the mirror symmetry. As there exists
at least one Kähler modulus, there must also be at least one dual complex structure modulus. For K3s, this
implies that the NS lattice can never fill out the full 20-dimensional second cohomology.
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E2
8 × SU(3) Spin(32)/Z2 × SU(3)

E3
6/Z3 U(18)/Z3

(Spin(14)× SU(12))/Z4 (Spin(20)× E7)/Z2 ×U(1)

T-Hexality

Figure 12. The six different flavor groups, obtained from different elliptic fibration structure of the
same K3 [74]. Those map to non-geometric heterotic string backgrounds and yield the universal flavor
groups of six different 6D LSTs.

Note that we have reversed the logic that is usually applied in order to construct LSTs or
SCFTs: we start by knowing the flavor group but without knowing the actual tensor branch
and gauge group of the full configuration. In fact, there might be multiple configurations
with the same flavor group, as we have seen for the other e2

8 cases before, but with different
tensor branches.44 Finding a working configuration, however, is highly non-trivial due to the
rigidity of the extremal K3, which makes an ADE classification with arbitrary NS5 brane
numbers impossible. Instead, we should expect only very few configurations, if at all.

By conjecture, though, we expect that any consistent LST configuration with a fixed
flavor group, must admit dual theories for each of the other flavor groups and matching
Coulomb branch as well as 2-group structure constants. Then the best starting point is
the pure heterotic string i.e. simply a 0 curve probed by some singularity, as this gives us
the most flexibility [29].

To give evidence for our proposal, we construct six different LSTs based on the flavor
groups as given in figure 12 and the following Coulomb branch and 2-group data

Dim(CB) = 21 , κ̂R = 30 . (4.53)

This gives very strong evidence that all configurations are T-hexal to each other. Note that
all but one theory are discrete holonomy theories as well as that Dim(CB) ̸= κ̂R from which
follows that we can not have lLS,I = 1 with type Im fibres. The restricted structure of the
K3 fibre and its elliptic curve will help us to deduce all of them correctly.

1. E2
8 × SU(3) flavor. This configuration is very close to those we discussed in the bulk

of this work but with an enhanced su3 flavor group which coincides with the very same
self-dual su3 torus that the heterotic string is compactified on. Since this is the torus that
maps to the F-theory torus, we find that the complex structure must be fixed to the very
same elliptic point. This rules out singularities such as e7. Note that we have constructed
already a quite close cousin of his theory with dim(CB) = 20 , κ̂R = 29 and an E2

8 flavor
group. It is the M = 1 configuration given by (3.104). This configuration admits enough

44Note that the 2-group symmetries lead in general to an additional set of global symmetries to distinguish
those theories.
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room, to add an have an flavor factor, which then yields

[su3]
1

[e8] 1 2
sp1
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1 [e8]

,
1

l⃗LS = (1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1)
(4.54)

2. (SO(32)/Z2 × SU(3) flavor. In this case we simply T-dualize the known configuration
of the one before. This duality is simply inherited from 10D and thus, we still expect simply
the heterotic string to be on an su3 self-dual torus that the so32 heterotic string is compactified
on. Moreover, we already know the T-dual of configuration (3.104) which is (3.105), which
only needs the addition of an su3 flavor group. The only possible location is at the final
2 curve, which yields the configuration

[so32]
sp8
1

so16
4 1 2

su2
2

[NF =1]
[su3] , l⃗LS = (1, 1, 3, 2, 1) . (4.55)

Notably, the inserted conformal mater that starts from the so16 curve looks like that of
T (e8, su3). Note that the Mordell-Weil Z2 modding does affect this sub part of the quiver,
which would be inconsistent either with the odd su3 center and the single fundamental of
the su2 gauge group.

3. E3
6/Z3 flavor. This singular K3 surface admits actually a very nice construction as

the Jacobian of the global toroidal quotient T 2 × T 2/Z3 [103–105]. For this orbifold to be
consistent, the complex structures of both ambient tori must again be fixed to τ = e2πi/3

which is relevant for the possible F-theory singularities we can add to the LST. From the
8D heterotic string perspective we obtain a naive su3 self-dual lattice torus in 8D which
again would enhance the group to an su3. However this time we have a fully non-geometric
compactification where also both E2

8 are broken to (E6 × SU(3))/Z3 by a discrete holonomy.
Then the three su3 factors recombine to a third E6. The presence of the MW torsion and the
fact that the complex structure is fixed to an elliptic point allows for su3n and e6 singularities
only. We choose the later which yields the configuration

[e6]
1
su3
3
1

[e6] 1
su3
3 1

e6
6 1

su3
3 1 [e6]

1
1
2

, l⃗LS = (1, 1, 2, 1, 2, 1, 1 )

(4.56)

Note that we admit a full S3 permutation symmetry of the three tensor legs.

4. (SO(14) × SU(12))/Z4) flavor. For this case, we find a Z4 MW group which again
restricts the admissible singularities to so6+4n and su4n. Moreover due to the e6 singularity
appearing in the models before and the son × sum flavor group here [30] one might expect a
base of type f

(1)
4 similar to what we found in section 4.1.3. Indeed, when choosing an so10

singularity and insert the right type of conformal matter with Z4 global structure [7] we obtain

[so14]
sp2
1

so10
4 1

su4
2

su8
2 [su12] , l⃗LS = (1, 1, 3, 2, 1) . (4.57)
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5. U(18)/Z3 flavor. For this case, we again have restricted monodromies due to the Z3
MW group. I.e. when gauging with a su3 type of singularity one obtains the chain

su3
3 1

su6
2

su12
2 [u18] , l⃗LS = (1, 3, 2, 1) . (4.58)

Note here, that we require the u1 flavor to complete the e8 flavor symmetry of the E-string
curve, when being attached to the su3 and su6 neighbours.

6. (SO(20) × E7)/Z2 × U(1) flavor. The final configuration is similar as before, but
with an Z2 MW group as well as an overall u1 part [7] we obtain

[so20]
sp4
1

so12
4 1

su2
2

so7
3

su2
2 1 [e7 × u1] , l⃗LS = (1, 1, 3, 2, 1, 1, 1) . (4.59)

This concludes all six models.
At this point, we have not directly proven the full birational equivalence of the six

underlying threefolds. However there is very strong evidence for it, as the six different
fibration structure are all part of the same K3 and in particular the Coulomb branch and
2-group structure constants match. We also note that it is highly non-trivial for those six
models to exist at all: on the one hand this is because the K3 fibre in each case is rigid and
thus also the elliptic fibre in it, which fixes itself to specific values. On top of that, we often
times find finite MW groups that constrain the global structure considerably, such that only
a handfull of singularities are possible over the compact curves.

E.g. for the Z3 or Z4 model, there is almost no other choice but the ones we proposed.
Also adding any additional NS5 brane before adding some singularity would essentially

not be possible as they lead to non-crepant singularities. This makes LSTs based on such
extremal flavor groups an interesting and concise class of models to classify. We hope to
return to this question in future work.

5 Conclusion and outlook

This work scratches just the surface of the vast geometrical interplay which underlies little
string theories and their networks of T-dualities. Here we have taken a deep dive into the
geometric engineering of the Heteorotic theories using F-theory on non-compact elliptic
threefolds, giving a complementary analysis to the one of our previous paper, where field
theoretical methods were exploited to predict novel T-duals from the match of the 2-groups [30].
Here we probe such conjectures exploiting geometric techniques confirming the field theoretical
predictions. Our technique is to exploit hypersurfaces in non-compact toric varieties, which
admit multiple elliptic fibration structures, inherited from the ambient space. This leads us to
propose a couple of universal features purely from geometry: first we find that all threefolds
must underlie a nested elliptic K3 fibration structure over a complex line. The K3 structure
makes the Heterotic/F-theory duality manifest and encodes the flavor group which bounds
the full 6D flavor group to be of rank 18 at most. The elliptic K3 fibre may split into multiple
compact surfaces, akin to a finer generalisation of Kulikov degenerations, which corresponds
to the location of the LST, where more interesting degrees of freedom are localised.
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In the examples we consider here T-duality is geometrically realized, when the threefold
admits multiple inequivalent fibration structures. In all the examples considered in this
work this structure directly descends from a property of the K3 fiber, thus akin to an eight
dimensional SUGRA origin for the Heterotic LST T-dualities.

We use those general considerations to construct a plethora of LSTs using toric geometry
techniques. Concretely, we start by considering NS5 branes that probe some ADE singularity
and some flat connections that break the E2

8 flavor group and map it to the corresponding
Spin(32)/Z2 T-dual, focusing mainly on exceptional groups. The toric framework we use, has
the advantage that it makes many physics properties very simple to read off : first, different
elliptic fibrations are realized via inequivalent 2D sub-polytopes. This relates fibral curves in
one fibration, to base curves in another. This clarifies the fibre-base duality flip geometrically,
where the base topology resembles the affine g(1) topology, of the respective gauge group in
the dual configuration. This perspective also allows to directly infer the little string charges in
terms of the Kac label of the respective singularity. Second, we also explore many exotic little
string theories that yield interesting new behavior under T-duality: we engineer non-simply
connected flavor groups via a discrete flat connections that break the e8s in a rank preserving
way [51]. Those models generically admit up to three distinct T-dual models with bases that
resemble the structure of a twisted affine diagram g(n). The structure of the gauge groups
we find in this context is of course compatible with the analysis of real versus complex or
quaternionic representations according to the MacKay correspondence [33, 34, 106, 107].

Finally we consider cases that are neither confined to e8 flavor holonomies, nor to toric
geometry: we discuss LSTs with the maximal possible rank 18 flavor groups which we argue
must map to non-geometric heterotic compactifications [39, 78] in 8D. The F-theory geometry
is based on extremal elliptic K3 surfaces, which due to their rigidity is quite remarkable to exist
at all. In fact we are able to construct six different LSTs with maximal Flavor ranks that are
closed under a T-hexality, which is fixed solely by analysing the inequivalent elliptic structures
for their fixed K3 fibre, building on [74]. This is probably the most interesting result in this
paper, and we plan to explore this connection further to develop a better dictionary between
Heterotic LSTs in geometric and non-geometric cases and elliptic/genus-one structures of K3
manifolds. This will give a very efficient way of generating very large families of T-dual models.

While this work puts first steps towards a complete understanding of heterotic LSTs,
we leave various future research directions: first, a more complete exploration of all other
types of flavor groups and gaugings for the heterotic LSTs, potentially with the help of
machine learning techniques would be desirable. Secondly, we have only considered heterotic
LSTs but not the cases corresponding to non-Heterotic LSTs, given by systems without M9
branes (i.e. with κ̂p = 0), that required the extension to a CICY base in terms of our toric
framework. From this perspective it would also be extremely interesting to try to construct
consistent geometries with κ̂p = 1, corresponding to little CHL-like strings [108]. Third,
we have so far left out the possibility for twisted compactifications, following the methods
used in [109, 110] and [12, 47, 111–113] we expect the latter are related to genus-one fibered
threefolds in F-theory, and it would be extremely fruitful to explore their interplay with
genus-one fibered K3s, for the case of Heterotic models.
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Finally it would be very interesting to connect heterotic LSTs directly with the mathe-
matical classification of degenerate K3 surfaces: as pointed out, the reducible K3 fibrations
we find share many features with Kulikov degenerations. Unfortunately the Kulikov clas-
sification itself is too coarse for our purposes as it allows for quadratic base changes and
no higher multiplicity surfaces.45 Classifying heterotic LSTs should then be equivalent to
the classification of such generalized elliptic Kulikov degenerations, with a close interplay
with the classification of Heteoritc bundles on ALE generalising the beautiful results by
Friedman-Morgan-Witten to this more general scenario [71, 114].
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g F (µ1, µ2) κ̂R T-dual theory description Dim(CB)

eM
6 E8 × E8 24M + 50 [so32]

spM+9
1

so4M+20
4

sp3M+3
1

su4M+4
2

su2M+2
2 12M + 30

E8 × E7 24M + 34 [so28]
spM+7
1

so4M+16
4

sp3M+1
1

su4M+2
2

su2M+2
2 [su2] 12M + 22

E8 × E6 ×U(1) 24M + 25 [u1 × so26]
spM+6
1

so4M+14
4

sp3M

1
su4M+1

2
[NF =1]

su2M+1
2

[NF =1]
12M + 17

E7 × E7 24M + 18 [so24]
spM+5
1

so4M+12
4

sp3M−1
1

su4M

2
su2M+2

2 [su2
2] 12M + 14

E7 × E6 ×U(1) 24M + 9 [so22]
spM+4
1

so4M+10
4

sp3M−2
1

su4M−1
2

[NF =1]

su2M+1
2

[NF =1]
[u2] 12M + 9

(E6 ×U(1))2 24M [so20]
spM+3
1

so4M+8
4

sp3M−3
1

su4M−2
2

[su2]

su2M

2 [su2] 12M + 4

E6 × E6 24M + 42 [so20]
sp5+M

1
so16+4M

4
sp3+3M

1
[NF =2]

su4+4M

2
su2+2M

2 12M + 24

(E6 × SU(9)× SU(3))/Z3 24M + 10 [u11]
su2M+6

2
so4M+1

2
sp3M−2

1
so4M+6

4
spM

1 [so10] 12M + 10

(SU(9)× SU(9))/Z3 24M + 22 [u10]
su2M+6

2
so4M+2

2
sp3M−1

1
so4M+8

4
spM+1
1 [so12] 12M + 14

(E6 × E6 × SU(3)2)/Z3 24M + 2 [so8]
spM−1
1

so4M+4
4

sp3M−3
1

su4M

2
su2M+6

2 [u12] 12M + 6

eM
7 E8 × E8 48M + 50

sp2M−2
1∗

spM−3
1∗ 18M + 29

[so32]
spM+9
1

so4M+20
4

sp3M+3
1

so8M+8
4∗

sp3M−1
1

so4M+4
4∗

E8 × E′
7 48M + 25

sp2M−3
1∗

spM−3
1∗ 18M + 19

[so28]
spM+7
1

so4M+16
4

sp3M+1
1

so8M+4
4∗

sp3M−2
1

so4M+4
4∗ [su2]

E8 × E6 48M + 25
sp2M−3
1∗

spM−3
1∗ 18M + 19

[u1 × so26]
spM+7
1

[NF =1]

so4M+16
4

sp3M+1
1

so8M+4
4∗

sp3M−2
1

so4M+4
4∗

[NF =1]

E′
7 × E′

7 48M
sp2M−4
1∗

spM−3
1∗ 18M + 9

[so24]
spM+5
1

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗ [su2

2]

E′
7 × E6 48M

sp2M−4
1∗

spM−3
1∗ 18M + 9

[so22]
spM+5
1

[NF =1]

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗ [u2]

(E7 × E7 × SU(2))/Z2 48M + 2 [su16 × u1]
su2M+10

2
su4M+4

2
su6M−2

2
sp4M−4

1
so4M+4

4 18M + 11

sp2M−4
1∗

[so8]
spM−1
1

so4M+4
4

so3M−3
4

so8M∗

4∗
sp3M−1

1
so4M+12

4
spM+5
1 [so24]

Table 14. T-duality theories verified so far via the matching of 2-group stucture constants, dimension
of the Coulomb branch Dim(CB) and the rank of the flavor groups. Note that for M = 1, the (−1)
curve highlighted with ∗ is absent.
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g F (µ1, µ2) κ̂R T-dual theory description Dim(CB)

eM
7 E6 × E6 48M

sp2M−4
1∗

spM−3
1∗ 18M + 9

[u2
1 × so20]

spM+5
1

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗

[NF =1]

eM
8 E8 × E8 120M + 2

sp3M−5
1∗ 30M + 22

[so32]
spM+9
1

so4M+20
4

sp3M+3
1

so8M+8
4

sp5M−3
1

so12M−4
4

sp4M−4
1

so4M+4
4

E7 × E7 120M
sp3M−5
1∗ 30M + 20

[so24]
spM+7
1

so4M+20
4

[su2
2]

sp3M+3
1

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

E8 × E7 120M + 1
sp3M−5
1∗ 30M + 21

[so28]
spM+8
1

so4M+20
4

[su2]

sp3M+3
1

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

E8 × E6 120M − 2
sp3M−5
1∗ 30M + 19

[u1 × so26]
spM+7
1

so4M+18
4

sp3M+3
1

[NF =1]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

E7 × E6 120M − 3
sp3M−5
1∗ 30M + 18

[so22]
spM+6
1

so4M+18
4

[u2]

sp3M+3
1

[NF =1]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

E6 × E6 120M − 6
sp3M−5
1∗ 30M + 16

[u2
1 × so20]

spM+5
1

so4M+16
4

sp3M+3
1

[NF =2]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

suM
4 E8 × E6 4M + 11 [u1 × so26]

spM+5
1

su2M+5
2

[su2]

spM−1
1

[NF =1]
4M + 10

g2 E8 × E8 12 [so32]
sp6
1

so7
1

[NS=2]
10

g2
2 E8 × E8 18 [so32]

sp7
1

so12
1

[NS=3]
14

f4 × eM−2
6 × f4 E8 × E8 24M + 2 [so32]

spM+7
1

so4M+12
4

sp3M−3
1

su4M−4
2

su2M−2
2 12M + 6

f4 × eM
7 × f4 E7 × E7 48M + 48

sp2M−2
1∗ 18M + 27

[so24]
sp7+M

1
so20+4M

4
[so4]

sp3+3M

1
so8+8M

4
sp3M−1

1
so4+4M

4
spM−3
1∗

E6 × E6 48M + 42
sp2M−2
1∗ 18M + 23

[so20]
sp5+M

1
so16+4M

4
sp3+3M

1
[NF =2]

so8+8M

4
sp3M−1

1
so4+4M

4∗
spM−3
1∗

Table 15. Continuation of 14.
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f4 × eM
6 × f4 E7 × E7 24M + 48 [so24]

sp7+M

1
so20+4M

4
[so4]

sp3+3M

1
su4+4M

2
su2+2M

2 12M + 28

e6 × eM
8 × e6 E′

6 × E′
6 120M + 90

[NF =2]
sp3M−1

1 30M + 38

[so20]
sp5+M

1
so16+4M

4
sp3+3M

1
so8M+12

4
sp5M+1

1
so12M+8

4
sp4M

1
so4M+8

4

suM
2N E8 × E8 4N2 + 2NM − 2N + 2 [so32]

sp4N+M−1
1

su8N+2M−10
2 . . .

su8(N−k)+2M−2
2

su2M+6
2

spM−1
1︸ ︷︷ ︸

×N

4N2 + 2NM − 2N + 1

suM
2N+1 E8 × E8 4N2 + 2NM + 2N + M + 2 [so32]

sp4N+M+1
1

su8N+2M−6
2 . . .

su8(N−k)+2M+2
2

su2M+10
2

su2M+2
1︸ ︷︷ ︸

×N

4N2 + 2NM + M + 2N + 1

soM
4N+8 E8 × E8 16N2 + 8NM + 32N + 8M + 18

sp4N+M−1
1

spM−1
1 8N2 + 4NM + 22N + 6M + 14

[so32]
sp4N+M+7

1
so16N+4M+12

4
sp8N+2M−2

1 . . .
sp8N−8k+2M−2

1
so16N−16k+4M−4

4 . . .
so4M+12

4︸ ︷︷ ︸
×2N

spM−1
1

E8 × E7 × SU(2) 12N2 + 8NM + 20N + 8M + 10
sp3N+M−2

1
spM−2
1 6N2 + 4NM + 15N + 6M + 8

[so28]
sp3N+M+5

1
so12N+4M+8

4
sp6N+2M−3

1 . . .
sp6N−6k+2M−3

1
so12N−12k+4M−4

4 . . .
so4M+8

4︸ ︷︷ ︸
×2N

spM−1
1 [so4]

soM
4N+6 E8 × E8 16N2 + 8NM + 16N + 4M + 6

sp4N+M−3
1 8N2 + 4NM + 14N + 4M + 5

[so32]
sp4N+M+5

1
so16N+4M+4

4 . . .
sp8N−8k+2M−6

1
so16N−16k+4M−12

4 . . .
sp2M+2

1︸ ︷︷ ︸
×2N

su2M−2
2

so4N+5 E8 × E8 16N2 + 8N + 3
sp4N−4

1 8N2 + 10N + 2

[so32]
sp4N+4

1
so16N

4
sp8N−8

1
so16N−16

4 . . .
sp8N−8

1 . . .
sp8
1

so16
4 1︸ ︷︷ ︸

2N×

2

so4N+7 E8 × E8 16N2 + 24N + 11
sp4N−2

1 8N2 + 18N + 10

[so32]
sp4N+6

1
so16N+8

4
sp8N−4

1
so16N−8

4 . . .
sp8(N−k)−4

1
so16(N−k)−8

4 . . .
sp12
1

so24
4

sp4
1

so7
2

[NF =2]︸ ︷︷ ︸
2N×

Table 16. Continuation of 14.
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so2
4N+5 E8 × E8 16N2 + 16N + 6

sp4N−3
1 8N2 + 14N + 5

[so32]
sp4N+5

1
so16N+4

4
sp8N−6

1 . . .
so16(N−k)+4

4
sp8(N−k)−6

1 . . .
so20
4

sp2
1︸ ︷︷ ︸

2N×

su2
2

so2
4N+7 E8 × E8 16N2 + 32N + 18

sp4N−3
1 8N2 + 22N + 14

[so32]
sp4N+7

1
so16N+12

4
sp8N−2

1
so16N−4

4 . . .
sp8(N−k)−2

1
so16(N−k)−4

4 . . .
sp6
1

so12
2

[NS=2]︸ ︷︷ ︸
2N×

soM
4N+8 (E7 × E7 × SU(2))/Z2 8N2 + 8NM + 8N + 8M + 2

sp2N+M−3
1

spM−3
1∗ 4N2 + 4NM + 8N + 6M + 2

[so24]
sp2N+M+3

1
so8N+4M+4

4
so8N+4M−4

4
sp4N+2M−8

1 . . .
so8N+4M−8k+4

4
sp4N+2M−4−4k

1 . . .
sp2M

1
so4M+4
4∗︸ ︷︷ ︸

2N×

spM−1
1 [so8]

su4N+2M+6
2

[su16 × u1]
su8N+4M−4

2
su8N+4M−12

2
su8N+4M−20

2 . . .
su4M+4

2
sp2M−2

1︸ ︷︷ ︸
N×

su4N+2M−2
2

su2N (E7 × E7 × SU(2))/Z2 2N2 + 2 [so24]
sp2N

1
su4N−4

2 . . .
su4(N−n)−4

2 . . .
su4
2 1︸ ︷︷ ︸

N×

[so8] 2N2 + 1

[su16] [su16]

1
su8
2 . . .

su4N−8
2

su4N

2
su4N−8

2 . . .
su8
2 1︸ ︷︷ ︸

×(N+1) for N even

,
su4
1

[NA=1]

su12
2 . . .

su4N−8
2

su4N

2
su4N−8

2 . . .
su12
2

su4
1

[NA=1]︸ ︷︷ ︸
×N for N odd

su3N (E6 × SU(3))2/Z3 3N2 + 2 [su12 × u1] [su12 × u1] 3N2 + 1

1
su8
2 . . .

su4N−8
2︸ ︷︷ ︸

N/2×

su4N

2
su4N−4

2 . . .
su4
2 1 [so8]︸ ︷︷ ︸

×(N) for N even

,
su4
1

[NA=1]

su12
2 . . .

su4N−8
2︸ ︷︷ ︸

(N−1)/2×

su4N

2
su4N−4

2 . . .
su4
2 1 [so8]︸ ︷︷ ︸

×(N) for N odd

e7 − eM
8 − e7 E7 × E7 120M + 144

sp3M−1
1 30M + 54

[so24]
sp7+M

1
so20+4M

4
sp5+3M

1
so8M+16

4
sp5M+3

1
so12M+12

4
sp4M+2

1
so4M+12

4 [so4]

Table 17. Continuation of 14.
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A Kulikov model — a quick review

We present a quick recap of its definition [48, 115, 116] in appendix A.

Definition A.1 Let π : X → Disc be a family of surfaces over the unit Disc:= {u ∈ C||u| <
1}, and π is a morphism of a complex manifold X, dimX = 3 such that all fibers Su := π−1(u)
for u ∈ Disc\{0} are non-singular K3 surfaces. The central fibre S0 := π−1(0) is degenerate.

These K3 degenerations concern smooth degenerated K3s around a neighborhood of the origin
of the base C1. A K3 degeneration is semi-stable if the following two conditions are satisfied:

• The central fiber S0 = V0 ∪ V1 ∪ . . . ∪ Vn is a divisor of normal crossings.

• All Vi are smooth surfaces with multiplicity one.

Every degeneration then becomes an inequivalent semi-stable degeneration upon a possible
base change u = sN [117] and a chain of birational transformations. Finally, in addition if
the total space has KX = 0, then degeneration is a Kulikov model, just as our total space.

Kulikov degenerations are generally classified into three different types via an monodromy
matrix T = exp(N) that acts on the second cohomology H2(Su;Z) for u ̸= 0 around the
point of degeneration u = 0. The three types are distinguished by the order of the nilpotency
of the matrix N as

• Type I: S0 = V0 is a irreducible nonsingular K3 surface with N = 0.

• Type II: S0 = V0 ∪ V1 ∪ . . . ∪ Vn consists of M + 1 > 1 irreducible components
intersecting in a chain with V0 and VM are rational surfaces and V1, · · · , Vn−1 have a
minimal model that are elliptic ruled surfaces. The double curves Ci,j = Vi ∩ Vj are
non-empty elliptic curves if and only if |j − i| = 1; N ̸= 0, but N2 = 0.

• Type III: S0 = V0 ∪ V1 ∪ . . . ∪ Vn, where all Vi are rational surfaces; the double curves
Ci,j are rational and form a cycle on each of the surfaces Vi; N2 ̸= 0, but N3 = 0.

The number of irreducible components is common to by a pair of Type II degenerations of
K3 surfaces that are birational transformations of one another. The rational surfaces V0 and
Vn of one degeneration however may not be isomorphic to each other.

Note that type II degenerations directly correspond to heterotic LSTs with M NS5 branes,
as we discuss in section 3. The Kulikov degenerations are in many regards to coarse as they
allow for base changes and reducible surfaces of multiplicity one only. As the base is physical,
we can not allow for such changes. Moreover, [116] proposed non-Kulikov degenerations (see
also [48]). Without the base changes, such degenerations can have fractional monodromy
actions [116] that correspond to fractional branes, similar to the perspective in [2].

B Details of all the models in table 14

In this appendix we discuss the T-dual LST pairs that are summarized in table 14 in more
detail. Here we give more details in particular on the en models, discuss their general curve
structure and number of tensors. For all models we explicitly summarize the LS charges,
requires to compute the 2-group structure constants and comment on their global structure.
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B.1 The [e8] − eM
7 − [e8] LST

We construct the E8 theory by the following LST chain of curves

[e8]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e8] , (B.1)

where the e7 resolution divisors are given in table 18. In addition we need to complete
the quiver with the superconformal matter theories, which is simply that of T (e8, e8) but
with one tensor less on the e7 end. From this data we can compute the number of tensors
and 5D Coulom branch as

{T, Dim(CB)}(T (e8, e7)) = {10, 20} , {T, Dim(CB)}(T (e7, e7)) = {5, 10} , (B.2)

and then in total

{T, Dim(CB)}(M · e7 +2 · T (e8, e7)+ (M − 1) · T (e7, e7)− 1} = {14+6M, 29+18M} . (B.3)

The LS charges of the curves, upon inserting the superconformal matter are given as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 4, 3, 2, 3, 4, . . . 1 . . . , 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
×M

4, 3, 2, 3, 1, 2, 1, 1, 1, 1) .

(B.4)
In order to resolve the full elliptic threefold, we can simply use the e8 resolutions from table 18,
the eM

7 ’s and T (em
7 , em+1

7 ) conformal matter. The T (e8, e1
7) and T (eM

7 , e8) need a slightly
different resolution, which can be inferred from those of e8 by dropping the one additional
tensor ray. For convenience we depict those rays again in table 18.

T-dual LST. The T-dual configuration is given as
sp2M−2
1∗

spM−3
1∗

[so32]
sp9+M

1
so20+4M

4
sp3+3M

1
so8+8M

4∗
sp3M−1

1
so4+4M

4∗ ,

(B.5)

where we note that the whole flavor algebra is concentrated on the left node. The T-dual
fiber type is again F13 as before with an Z2 finite MW group. For M ≤ 2 the 1 curves are
absent and the touching curve admits simply a self-intersection of 3. In particular, when
M = 2, the so12 admits a spinor representation with localized SO(1) flavor symmetry required
by the anomaly. For M = 1, the respective algebra is further reduced to so7. The tensor
branch dimension of the above LST is given as

T = 5 + 1∗ + 1∗ . (B.6)

The shape of the quiver coincides with affine e7 and also the LS charges are given by its Kac
labels, modulo division by two, when an so gauge algebra is present

2∗ 1∗

l⃗LS = (1, 1, 3, 2, 3, 1) .
(B.7)

The T-dual systems described in the above content, as well as those in the subsequent
subsections, are verified through the consistent matching of the 2-group structure constants
and the dimension of Coulomb branch, as summarized in 14.
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T (e8, e1
7) Conformal Matter

s−1 (−2,−3,−5, 1)
s−2 (−2,−3,−4, 1)
s−3,i (−2,−3,−3, 1), (−1,−2,−3, 1)
s−4,j (−2,−3,−2, 1), (−1,−1,−2, 1), (−2,−3,−4, 2)
s−5 (−2,−3,−3, 2)

s−6,k (−2,−3,−1, 1), (0,−1,−1, 1), (−1,−2,−2, 2), (−2,−3,−2, 2), (−2,−3,−3, 3)
s−7 (−2,−3,−2, 3)

s−8,j (−2,−3,−1, 2), (−1,−1,−1, 2), (−2,−3,−2, 4)
s−9,i (−2,−3,−1, 3), (−1,−2,−1, 3)
s−10 (−2,−3,−1, 4)

T (eM
7 , e8) Conformal Matter

s+1 (−2,−3, 4M − 3, 4)
s+2,i (−2,−3, 3M − 2, 3), (−1,−2, 3M − 2, 3)
s+3,j (−2,−3, 2M − 1, 2), (−1,−1, 2M − 1, 2), (−2,−3, 4M − 2, 4)
s+4 (−2,−3, 3M − 1, 3)

s+5,k (−2,−3, M, 1), (0,−1, M, 1), (−1,−2, 2M, 2), (−2,−3, 2M, 2), (−2,−3, 3M, 3)
s+6 (−2,−3, 2M + 1, 2)

s+7,j (−2,−3, M + 1, 1), (−1,−1, M + 1, 1), (−2,−3, 2M + 2, 2)
s+8,i (−2,−3, M + 2, 1), (−1,−2, M + 2, 1)
s+9 (−2,−3, M + 3, 1)
s+10 (−2,−3, M + 4, 1)

Table 18. Depiction of the toric rays that resolve T (e8, e1
7) and T (eM

7 , e8) conformal matter as well
as those for the (M − 1)× T (e7, e7)’s between the M× e7 gauge factors.

B.2 The [e8] − eM
6 − [e8] LST

Next we gauge the compact curves with e6 while keeping the flavor group. Explicitly for
M = 1 the full resolved chain is then given as

[e8] 1 2
sp1
2

g2
3 1

f4
5 1

su2
3 1

e6
6 1

su2
3 1

f4
5 1

g2
3

sp1
2 2 1 [e8] . (B.8)

From the above basic data we can compute the LS charges as the following

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1) . (B.9)

This can be generalized by decorating with M × e6 gauge algebra factors to obtain

[e8]
e6
1

e6
2 . . .

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

[e8] . (B.10)
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We then include the T (e6, e6) superconformal matter factors discussed in (3.81) with the
general LS charges

N = (1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1 . . . 1 . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

3, 2, 3, 1, 2, 1, 1, 1, 1, ) . (B.11)

The resolution of the above model can again be composed out of the toric rays that resolve
the eM

6 gauge algebra and T (em
6 , em+1

6 ) superconformal matter factors depicted in table 8.
The T (e8, e6) superconformal matter is resolved via the rays in table 9.

From the above data we can readily deduce the general number of tensor multiplets
and the dimension of the 5D Coulomb branch. We use the following ingredients for the
superconformal matter theories

{T, Dim(CB)}(T (e8, e6)) = {9, 18} , {T, Dim(CB)}(T (e6, e6)) = {3, 5} , (B.12)

and then deduce

{T, Dim(CB)}(M · e6 +2 · T (e8, e6)+(M −1) · T (e6, e6)−1) = {14+4M, 30+12M} . (B.13)

The T-dual LST. The T-dual configuration is given as

[so32]
sp9+M

1
so20+4M

4
sp3+3M

1
su4+4M

2
su2+2M

2 . (B.14)

We find the expected F13 fibre type and the whole flavor group is concentrated on the left,
inherrited from the T-dual of the e8 flavor group. The Z2 MW group again highlights the
presence of an diagonal gauging across the center of flavor and gauge group factors. The LS
charge is again simply that of the universal eM

6 gauge group dual, i.e.

l⃗LS = (1, 1, 3, 2, 1) , (B.15)

which is consistent with the reduced Kac labels of affine f4. From this we can compute and
match the 2-group structure constants, as summarized in 14.

B.3 The [e7] − eM
8 − [e7] LST

We construct the [e7] − eM
8 − [e7] LST which first leads to the chain

1 1
[e7]

e8
2

e8
2 . . .

e8
2

e8
2 [e7] .

(B.16)

Note the necessity to include two 1 curves for the first and last e8 gauge factor. This is also
clearly required when including the superconformal matter factors to obtain an anomaly
free e8. For M = 1 this chain looks like

1

[e7] 1
su2
2

g2
3 1

f4
5 1

g2
3

sp1
2 2 1

e8
12 1 2

sp1
2

g2
3 1

f4
5 1

g2
3

su2
2 1 [e7]

1

. (B.17)
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Note that above, we have two 1 curves touching the middle e8 which we will need to resolve
torically by an non-flat fibers just as in the e8 case discussed in section 3.3. The LS charges
for those are given as

l⃗LS = (1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1,

1
5, 4, 3, 2, 3, 1, 2, 1, 1, 1, 1, 1) . (B.18)

When M > 1 we simply include more eM
8 factors and its superconformal matter in between.

This results in all e8 curves to be 12 curves with the first and the last having the above
mentioned 1 curve, analogous to the e8 flavor case. The LS charges are then given as

l⃗LS = (1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M

. . .

1
1 , 5, 4, 3, 2, 3, 1, 2, 1, 1, 1) . (B.19)

The resolution of the elliptic threefolds is analogous to the cases before: table 6 includes
the e7 rays, (3.63) those of the e8’s and table 5 its superconformal matter. New is only the
T (e7, e8) superconformal matter which requires the removal of one 1 curve only. The number
of tensors and CB parameters is that of the [e8] − eM

8 − [e8] theories minus two.

The T-dual LST. Projecting onto the second sub-polytope in the ray configuration of the
resolved model above, leads to an F13 type of fibration with the chain for an M .

sp3M−5
1∗

[so24]
sp7+M

1
so4M+20

4
[su2

2]

sp3M+3
1

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

. (B.20)

with the familiar LS charge

3∗

l⃗LS = (1, 1, 3, 2, 5, 3, 4, 1) .
(B.21)

The F13 fibre type includes two su2 flavor factors in the generic fiber, just as in the [e7]−eM
7 −[e7]

theories, which intersect the first so4M+20 factor and lead to bi-fundamental matter, consistent
with the gauge anomalies. The shape and the general structure of eM

8 T-dual theories has
not changed, i.e. the base is that of an e8 affine Dynkin diagram. Indeed we might interpret
this phase as the T-dual of the Higgs branch deformation of the E8 × E8 theory, which
comes at the cost of two tensors. On the T-dual side, the SO(32) flavor group breaks to
SO(24) × SU(2)2 at the cost of two ranks in the middle spN+9 → spN+7. Note that this
specific Higgs branch deformation in the SO side also preserves the Z2 center gauging. In
appendix B.15 we discuss the intermediate model with so28 × su2 flavor group in the T-dual
model, which admits similar features.
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B.4 The [e8] − suM
4 − [e6] LST

Here we construct the deformed suM
4 theory. This one is easy as it does not require super-

conformal matter between the su4 factors. The chain is given as46

[e8] 1 2
su2
2

[NF =1]

su3
2

su4
2 . . .

su4
2︸ ︷︷ ︸

×M

su3
2

[NF =2]
1 [e6] . (B.22)

Note that also the first and last su4 at the edge of the ramp admits one more additional
fundamental each. The first su2 and the last su3 admit extra fundamental(s), which does
not come from the neighbouring gauge node.

The T-dual LST. The resolved geometry can readily be constructed via suk tops along
the lines of the sections before. We can readily flip to the T-dual configuration. First we
note as before, that we obtain a fibration with F11 fibre type with an MW group and su2
factor being effective, which are not compatible with a Z2 center gauging. Indeed, we find

[u1 × so26]
spM+5
1

su2M+5
2

[su2]

spM−1
1

NF =1
. (B.23)

Note that the base topology is that of affine sp2, i.e. the Z2 folding of su4. As there are no
so groups, also the LS charges are all 1. The middle su2M+5 factor explicitly breaks the Z2
center gauging, which is consistent with the F11 fibre type.

Comparison to [e8]−suM
4 − [e8] LST. As discussed in the main text, the [e8]−suM

4 − [e6]
LST can be seen as a deformed [e8]− suM

4 − [e8] theory with holonomies at infinity via the
following chain

[e8] 1 2
su2
2

su3
2

su4
2 . . .

su4
2︸ ︷︷ ︸

×M

su3
2

su2
2 2 1 [e8] . (B.24)

The T-dual of this theory is well known [12, 32] and is given as

[so32]
spM+7
1

su2M+6
2

spM−1
1 . (B.25)

The above theory admits a Z2 center gauging, obtained from the order two MW group. Also
in this model, the LS charge is simply one for each tensor.

B.5 The [e7] − eM
6 − [e7] LST

The starting chain is given as

[e7]
e6
1

e6
2 . . .

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

[e7] . (B.26)

The superconformal matter insertions have been given in the sections before together with
their resolutions. The general Little string charge is then composed as

l⃗LS = (1, 1, 1, 2, 3, 1, 3, 2, 3, 1 . . . 1 . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

3, 2, 1, 1, 1) . (B.27)

46This quiver coincides with KN (1 + 1 + 1 + 1; 1 + 3; su4) quiver presented in eq. (4.49) of [30] when setting
the notation M = N + 1.
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The T-dual LST. The T-dual theory has an F13 fibre type with a Z2 MW group as well
as two non-toric su2 flavor factors. The dual quiver is given as

[so24]
sp5+M

1
so12+4M

4
sp3M−1

1
su4M

2
su2M+2

2 [su2
2] , (B.28)

with bifundamentals under the su2M+2 and both su2 flavor factors. The LS charges can
readily be computed and are given as

l⃗LS = (1, 1, 3, 2, 1) . (B.29)

B.6 The [e6] − eM
8 − [e6] LST

At next we start with an e6 flavor group and gauge the internal chain by an e8 gauge group
leading to the chain

1 1
[e6]

e8
2

e8
2 . . .

e8
2

e8
2 [e6] .

(B.30)

We again require a 1 curve for the first and last e8 to ensure a 12 curve upon inserting all
conformal matter, given in eq. (3.55). Upons inserting those, we obtain a regular model,
with the following LS charges

l⃗LS = (1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1 , 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M

. . .

1
1 , 5, 4, 3, 2, 3, 1, 2, 1, 1, 1, 1) . (B.31)

The T-dual LST. Since all e6 T-duals the generic fiber is of F9 type and admits a rank
one MW group, we expect a u2

1 flavor group. The base topology is that of an affine e8 given as

sp3M−5
1∗

[u2
1 × so20]

spM+5
1

so4M+16
4

sp3M+3
1

[NF =2]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4 .

(B.32)

There is no Z2 center gauging, consistent with the absence of a Z2 MW group. For M = 1
the 1∗ curve is absent and the 4∗ is just a 3 curve and the respective gauge group is just so7.
The little string charges are the universal ones for E8 gaugings, given as

3∗

l⃗LS = (1, 1, 3, 2, 5, 3, 4, 1)
. (B.33)
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B.7 The [e6] − eM
7 − [e6] LST

We again start by gauging by an e7 group, which leads to

[e6]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e6] , (B.34)

upon inserting the superconformal matter. For M = 1 this then looks like

[e6] 1
su2
2

so7
3

su2
2 1

e7
6 1

su2
2

so7
3

su2
2 1 [e6] . (B.35)

This case has two 1
256-plets over the 6 curve. For higher M the first and last e7 sit over a 7

curve with an 1
256 plet over each of them. The toric insertion of T (e7, e7) conformal matter

are given in section 3.3.2. The LS charges are then given as

l⃗LS = (1, 1, 1, 2, 3, 1, 4, 3, 2, 3, 4, 1 . . . 1 . . . , 1, 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
×M

3, 2, 1, 1, 1) . (B.36)

T-dual. The T-dual admits a generic F9 fiber type with a rank two MW group, with the
base again being an affine e7 shape and is given as

sp2M−4
1∗

spM−3
1∗

[u2
1 × so20]

spM+5
1

[NF =2]

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗

[NF =1]

(B.37)

where the first 1∗ curve is only present for M > 1 and the second one for M > 2. Their
respective touching curves are then only 3 curves. Note that there are two fundamentals
for the first sp group and another vector for the last so group require by anomalies. The
LS charge is than of a universal e7 T-dual, that is

2∗ 1∗

l⃗LS = (1, 1, 3, 2, 3, 1) .
(B.38)

B.8 The [e7] − eM
6 − [e6] LST

We start by an e7 and e6 flavor group and gauge the N compact curves by e6, which yields
the following chain

[e7]
e6
1

e6
2 . . .

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

[e6] . (B.39)

Including the T (e7, e6) conformal matter increases the negative self-intersection on the e6
by three, while the T (e6, e6) increases it by two. Hence the rightmost e6 gauge factor sits
on a 5 curve and hence has one 27-plet while the other ones live on 6 curves. The LS
charge is given by

l⃗LS = (1, 1, 1, 2, 3, 1, 3, 2, 3, 1 . . . 1 . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

2, 1, 1) . (B.40)
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The T-dual LST. The dual elliptic fibration is of F11 fiber type with an su2 and a u1
generator. This model admits no explicit Z2 MW generator and therefore no global quotient
group. This is consistent with the following T-dual chain that admits two su gauge factors
with odd centre symmetries, given as

[so22]
spM+4
1

so4M+10
4

sp3M−2
1

su4M−1
2

[NF =1]

su2M+1
2

[NF =1]
[u2] (B.41)

We have the su2 flavor brane to only intersect the last su2M+1 factor contributing a bifunda-
mental which we have combined with the u1 MW factor. The LS charges are

l⃗LS = (1, 1, 3, 2, 1) . (B.42)

B.9 The [e7] − eM
7 − [e6] LST

We use the same flavor group as before but gauge by an e7 group, leading to the chain

[e7]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e6] . (B.43)

The inclusion of each conformal matter factor increases the self-intersection by three. Hence
the first and last e7 gauge factor admit one 1

256-plet over a 7 curve, while the other ones
do not. In the M = 1 case the e7 lives over a 6 curve and admits two 1

256-plets. From the
configuration, we can then compute the LS charges given by

l⃗LS = (1, 1, 1, 2, 3, 1, 4, 3, 2, 3, 4, 1 . . . 1, . . . , 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
×M

3, 2, 1, 1, 1) . (B.44)

The T-dual LST. The dual model is of F11 fiber type where an su2 and a u1 generator.
Similar to the model before, this one admits no Z2 MW torsion and therefore we do not
expect a center gauging of gauge group and flavor factors. The dual chain is given as

sp2M−4
1∗

spM−3
1∗

[so22]
spM+5
1

[NF =1]

so4M+12
4

sp3M−1
1

so8M

4∗
sp3M−3

1
so4M+4
4∗ [u2] .

(B.45)

The u1 intersections above explicitly along codimension two component in the discriminant
of the singular model. Similarly we find the intersection with the su2 flavor brane intersects
at the end of the chain explicitly. The LS charges are given as

2∗ 1∗

l⃗LS = (1, 1, 3, 2, 3, 1) .
(B.46)

B.10 The [e7] − eM
8 − [e6] LST

We gauge the tensors along the E7 × E6 flavor factors with an e8. These require additional 1
curves in order to be consistent with anomalies such that the chain is given as

1 1
[e7]

e8
2

e8
2 . . .

e8
2

e8
2 [e6] .

(B.47)
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This is due to the fact, that the superconformal matter insertions, increase the e8 curve
self-intersection by 5. The little string charge is then given as

l⃗LS = (1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1 , 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M

. . .

1
1, 5, 4, 3, 2, 3, 1, 2, 1, 1) . (B.48)

The T-dual LST. The fiber ambient for the T-dual is F11 with an su2 and u1 enhanced
flavor symmetry. The dual base is that of e8 affine base given as

sp3M−5
1∗

[so22]
spM+6
1

so4M+18
4

[u2]

sp3M+3
1

[NF =1]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
4

so4M+4
4 ,

(B.49)

where the 1∗ curve exists only for M > 1, when for M = 1, the 4∗ is just a 3 curve. The
little string charges are

3∗

l⃗LS = (1, 1, 3, 2, 5, 3, 4, 1) .
(B.50)

Again we expect no Z2 gauging of the centre factors since the fundamental of sp3N+3 with
the u1 flavor factor breaks it.

B.11 The [e8] − eM
6 − [e6] LST

Gauging the E8 × E6 theory with e6 over the additional tensors, we obtain the chain

[e8]
e6
1

e6
2 . . .

e6
2 . . .

e6
2

e6
1︸ ︷︷ ︸

×M

[e6] . (B.51)

The inclusion of the conformal matter factors enhances the self-intersection number of the
left-most e6 gauge factor by 5 and for all other ones by 4. Hence the rightmost e6 sits on a
5 curve and hosts a single 27-plet. We then obtain the LS charges as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1 . . . 1 . . . , 1, 3, 2, 3, 1︸ ︷︷ ︸
×M

2, 1, 1) . (B.52)

The T-dual LST. The T-dual fibration is of F11 fiber type but only the rank one MW
group generator is effective. Hence the fibre model is known as u1 restricted Tate model,
where the a6 Tate-coefficient is absent globally. The dual LST chain is given as

[u1 × so26]
spM+6
1

so4M+14
4

sp3M

1
su4M+1

2
[NF =1]

su2M+1
2

[NF =1]
, (B.53)

where the u1 flavor factor introduces an additional fundamental in the last two gauge group
factors. These two factors also highlight the absence of an Z2 center gauging in this model.
The LS charges are

l⃗LS = (1, 1, 3, 2, 1) . (B.54)
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B.12 The [e8] − eM
7 − [e6] LST

Gauging the E8 × E6 flavor factors with M× e7’s, we obtain

[e8]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e6] . (B.55)

Introducing the conformal matter factors, enhances the self-intersection of the leftmost e7
gauge factor by seven and all the other ones by six. Hence only the rightmost e7 admits a
matter in the 1

256. The LS charges are then given as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 4, 3, 2, 3, 4, 1 . . . 1, . . . , 4, 3, 2, 3, 4, 1,︸ ︷︷ ︸
×M

3, 2, 1, 1, 1) . (B.56)

The T-dual LST. The T-dual fibration has F11 fibre type and supports a rank one MW
group that corresponds to a u1 flavor group and no finite MW torsion factor. The dual chain is

sp2M−3
1∗

spM−3
1∗

[u1 × so26]
spM+7
1

[NF =1]

so4M+16
4

sp3M+1
1

so8M+4
4∗

sp3M−2
1

so4M+4
4∗

[NF =1]

. (B.57)

We have added an additional u1 flavor factor that appears due to the MW group generator
in the quiver above. There are also additional fundamentals for the sp and last so gauge
factor. The LS charge is given as

2∗ 1∗

l⃗LS = (1, 1, 3, 2, 3, 1) .
(B.58)

B.13 The [e8] − eM
8 − [e6] LST

Gauging the flavor factors E8 × E6 by the eM
8 factors yields the following chain

1 1
|e8|

e8
2

e8
2 . . .

e8
2

e8
2 |e6| .

(B.59)

The insertion of the superconformal matter increases the self-intersection by 10 for all curves.
The explicit form and resolutions have been given before. The LS charge of this type of
model are then given as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1 , 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M

. . .

1
1, 5, 4, 3, 2, 3, 1, 2, 1, 1) . (B.60)
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The T-dual LST. The T-dual fibration is of F11 fibre type and supports a rank one
MW group that corresponds to a u1 flavor group and no finite MW torsion factor. The
dual chain is given by

sp3M−5
1∗

[u1 × so26]
spM+7
1

so4M+18
4

sp3M+3
1

[NF =1]

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

(B.61)

Where we find an additional fundamental for sp3M+3 as required by anomalies. The LS
charge is again the same as for all e8 gauged T-duals with

l⃗LS = (1, 1, 3, 2, 5,

3∗

3, 4, 1) . (B.62)

B.14 The [e8] − eM
7 − [e7] LST

Gauging the E8 × E7 flavor factors with M× e7’s, we obtain the chain

[e8]
e7
1

e7
2 . . .

e7
2 . . .

e7
2

e7
1︸ ︷︷ ︸

×M

[e7] . (B.63)

The superconformal matter insertions increases the self-intersections for all curves by six but
for the rightmost e7 curve where it is increased by 7. Thus only the rightmost e7 admits on
1
256-plet while the other ones have none. We have the following LS charges as

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 4, 3, 2, 3, 4, 1, . . . 1, . . . , 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
×M

3, 2, 1, 1, 1) . (B.64)

The T-dual LST. Here the generic ambient space is of F14 type and hence admits an Z2
MW group with a single su2 flavor group generator. The T-dual chain is given as

sp2M−3
1∗

spM−3
1∗

[so28]
spM+7
1

so4M+16
4

sp3M+1
1

so8M+4
4∗

sp3M−2
1

so4M+4
4∗ [su2]

. (B.65)

According to the anomaly, we find a half-hypermultiplet in the bifundamental represen-
tation of so4M+4 × su2 on the right. The whole structure is also consistent with the diagonal
Z2 gauings in flavor and gauge group factors, implemented by the Z2 MW group. The LS
charges are the universal ones for a e7 gauging and we repeat them as

l⃗LS = (1, 1, 3,

2∗

2∗, 3,

1∗

1 ) . (B.66)
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B.15 The [e8] − eM
8 − [e7] LST

Starting with E8 × E7 flavor symmetry and gauging by M× e8’s leads to the chain

1 1
[e8]

e8
2

e8
2 . . .

e8
2

e8
2 [e7] ,

(B.67)

After the insertion of the superconformal matter, we compute the LS charges, which are
given by the repeating pattern

l⃗LS = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5,

1
1 , 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .×M

. . .

1
1 , 5, 4, 3, 2, 3, 1, 2, 1, 1, 1) . (B.68)

The T-dual LST. The T-dual LST admits a fibration of F13 fiber type, which admits an
su2 flavor group and a Z2 MW group. The dual LST chain looks like

sp3M−5
1∗

[so28]
spM+8
1

so4M+20
4

[su2]

sp3M+3
1

so8M+8
4

sp5M−3
1

so12M−4
4∗

sp4M−4
1

so4M+4
4

(B.69)

The intersection of the su2 flavor divisor can explicitly be computed and the bifundamentals
are consistent with anomaly cancellation as well as the global Z2 modding in flavor and gauge
group factors. The LS charge is then explicitly given as

l⃗LS = (1, 1, 3, 2, 5,

3
3, 4, 1) . (B.70)

B.16 Second [e6] − eM
6 − [e6] LST

In this section we engineer the e6 flavor deformations, as given in [30] of an e6 theory. The
minimal tensor branch of this theory is given by the quiver

[e6] 1
su3
3 1

f4
5 1

su3
3 1

e6
6 1

su3
3 1 [e6] . (B.71)

We therefore consider the class of models as given as

[e6]
f4
1

e6
2 . . .

e6
2 . . .

e6
2︸ ︷︷ ︸

×M

f4
1 [e6] (B.72)

and fill in with the conformal matter, i.e. chains of 1
su3
3 1 . The LS charges of such a chain,

upon inserting the conformal matter is then given as

l⃗LS = (1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, . . . , 1, . . . 3, 2, 3, 1︸ ︷︷ ︸
×M

, 3, 2, 3, 1, 2, 1, 1, 1) (B.73)

The resolution follows simply from the e6 rays given in the sections before.
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The T-dual LST. The dual LST admits again a u2
1 MW group, given by the F9 ambient

space. The T-dual model can then be obtained from

[so20]
sp5+M

1
so16+4M

4
sp3+3M

1
[NF =2]

su4+4M

2
su2+2M

2 (B.74)

Note that from [30] we expect the two additional fundamentals to arise from an u2
1 → SO(4)

enhancement. This model coincides with the dual in table 5 in [30] upon switching M = N +1.

B.17 Second [e7] − f4 − eM
7 − f4 − [e7] LST

Similarly, there is another deformation of the orbi-instanton theory of an e7 singularity to
have an e7 flavor group, given as

[e7] 1
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7] . (B.75)

We glue the above pieces together and obtain a chain, modulo conformal matter as

[e7]
f4
1

e7
2 . . .

e7
2 . . .

e7
2︸ ︷︷ ︸

M×

f4
1 [e7] (B.76)

The LS charges are again easily been read of as

l⃗LS = (1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 4, 3, 2, 3, 4, . . . 1, . . . , 4, 3, 2, 3, 4, 1︸ ︷︷ ︸
M×

, 4, 3, 2, 3, 1, 2, 1, 1, 1) (B.77)

The T-dual LST. The T-dual LST can again be obtained from the usual methods. In
the enumeration we have, two more interesting cases appear, i.e. those for M = 1 and
M = 2 before going to the general case. These cases yield incomplete e

(1)
7 base topologies.

In the first case it is

[so24]
sp8
1

so24
4

[so4]

sp6
1

so16
4

sp2
1

so7
3

sp2
1

[so24]
sp9
1

so28
4

[so4]

sp9
1

so24
4

sp5
1

so12
3

[NS= 1
2 ]

(B.78)

and for general M > 2

sp2M−2
1∗

[so24]
sp7+M

1
so20+4M

4
[so4]

sp3+3M

1
so8+8M

4
sp3M−1

1
so4+4M

4
spM−3
1∗

(B.79)

with the LS charges

2∗

l⃗LS = (1, 1 3, 2, 3, 1, 1∗) ,
(B.80)

where the stared curves are only present for M > 1 and M > 2 respectively. This quiver
coincides with that of [30] when setting M = N + 1.
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B.18 The [e7] − f4 − eM
6 − f4 − [e7] LST

We turn to the second type of deformations possible for e6 singularities that deform the
[e8] flavor groups to [e7] , given by

[e7] 1
su2
2

g2
3 1

f4
5 1

su3
3 1

e6
6 1

su3
3 1 [e6] . (B.81)

which we can fuse along the e6. In short, this yields quivers of the type

[e7]
f4
1

e6
2 . . .

e6
2 . . .

e6
2︸ ︷︷ ︸

×M

f4
1 [e7] , (B.82)

modulo insertion of superconformal matter which can be directly read off from (B.81). The
LS charges is then given as

l⃗LS = (1, 1, 1, 2, 1, 3, 2, 3, 1, . . . , 1, . . . , 1,︸ ︷︷ ︸
M×

, 3, 2, 3, 1, 2, 1, 1, 1) (B.83)

The resolution of the above quiver again simply follows from those of f4, e6 and f7 fibral
singularities and the additions of their conformal matter.

The T-dual LST. The T-dual LST, admits again a Z2 finite MW group as well as an
su2

2 ∼ so4 flavor rays in the generic fibre.

[so24]
sp7+M

1
so20+4M

4
[so4]

sp3+3M

1
su4+4M

2
su2+2M

1 . (B.84)

Note that the above configuration is also consistent for M = 0. Upon sending M = N + 1
this configuration coincides with [30]. The LS charges are simply the universal ones for
an e6 gauging i.e.

l⃗LS = (1, 1, 3, 2, 1) , (B.85)

B.19 The [e6] − f4 − eM
7 − f4 − [e6] LST

This configuration again yields the e6 deformation of e8 due to an e7 singularity, which
yields the quiver

[e6] 1
su3
3 1

f4
5 1

g2
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7] . (B.86)

Thus generalizing, fusing by the e7 factors leads to a generalized quiver of LSTs which looks like

[e6]
f4
1

e7
2 . . .

e7
2 . . .

e7
2︸ ︷︷ ︸

×M

f4
1 [e6] , (B.87)

modulo the conformal matter. The LS charges above are given by

l⃗LS = (1, 1, 2, 1, 3, 2, 3, 4, 1, 4, 3, 2, 3, 4, . . . , 1, . . . , 4, 3, 2, 3, 4, 1,︸ ︷︷ ︸
×M

4, 3, 2, 3, 1, 2, 1, 1) (B.88)
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B.19.1 The T-dual LST

The T-dual LST admits again an u2
1 generic flavor group and so20 flavor rays. There are again

the two special cases M = 1 and M = 2 that are an incomplete fusion. They are given as

[so20]
sp6
1

so20
4

sp6
1

[NF =2]

so16
4

sp2
1

so7
3

sp2
1

[so20]
sp7
1

so24
4

sp9
1

[NF =2]

so24
4

sp5
1

so12
3

[NS= 1
2 ]

(B.89)

and for general M > 2
sp2M−2
1∗

[so20]
sp5+M

1
so16+4M

4
sp3+3M

1
[NF =2]

so8+8M

4
sp3M−1

1
so4+4M

4∗
spM−3
1∗

(B.90)

with the LS charges

2∗

l⃗LS = (1, 1, 3, 2, 3, 1, 1∗) ,
(B.91)

where the stared curves are only present for M > 1 and M > 2 respectively. This quiver
coincides with that of [30] when setting M = N + 1.

B.20 The [e6] − e6 − eM
8 − e6 − [e6] LST

At next we discuss the E′
6 deformation of e8 probing an e8 singularity given by the quiver

[e6] 1
su3
3 1

e6
6 1

su3
3 1

f4
5 1

g2
3

su2
2 2 1 [e8] (B.92)

In order to engineer those, we start off with quivers of the following type

[e6]
e6
1

e8
2 . . .

e8
2 . . .

e8
2︸ ︷︷ ︸

×M

e6
1 [e6] , (B.93)

modulo the insertion of the respective conformal matter. The LS charges are given as

l⃗LS = (1, 1, 2, 1, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, . . . 1 . . .

. . . 1 . . . , , 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 1, 2, 1, 1)
(B.94)

The resolution can be done as before, using the toric rays of T (e6, e6), T (e6, e8) as well as
T (e8, e8) conformal matter given in the tables above.

The T-dual LST. The T-dual LST is given via the usual flip of the toric rays. The dual
fibre is in the F9 toric ambient space which admits an u2

1 MW group. The dual quiver is
of the usual e

(1)
8 form given as

[NF =2]
sp3M−1

1

[so20]
sp5+M

1
so16+4M

4
sp3+3M

1
so8M+12

4
sp5M+1

1
so12M+8

4
sp4M

1
so4M+8

4
(B.95)
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The LS charge is as usual given as

l⃗LS = (1, 1, 3, 2, 5,

3
3, 4, 1) . (B.96)

B.21 The [e7] − e7 − eM
8 − e7 − [e7] LST

The above configuration corresponds to the fusion of two identical orbi-instanton theories of
an e8 singularity, with a deformation to e7 flavor given by the following quiver

[e7] 1
su2
2

so7
3

su2
2 1

e7
8 1

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8] . (B.97)

This configuration corresponds to the E′
7 flavor configuration given in [30]. To engineer

this, we can equally start with the quiver

[e7]
e7
1

e8
2 . . .

e8
2 . . .

e8
2︸ ︷︷ ︸

×M

e7
1 [e7] , (B.98)

and insert the conformal matter theories as given above. The LS charges are then given as

l⃗LS = (1, 1, 1, 2, 3, 1, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1 . . .

. . . 1 . . . 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 1, 3, 2, 1, 1, 1) .
(B.99)

The resolution can again be done with the usual rays for the conformal matter theories
that is given in the bulk of this work.

The T-dual LST. The T-dual LST has as before an Z2 MW group and two su2
2 ∼ so4

non-toric rays. The T-dual quiver is given as

sp3M−1
1

[so24]
sp7+M

1
so20+4M

4
sp5+3M

1
so8M+16

4
sp5M+3

1
so12M+12

4
sp4M+2

1
so4M+12

4 [so4]
(B.100)

The LS charges are given as

l⃗LS = (1, 1, 3, 2, 5,

3,

3, 4, 1) . (B.101)

The above theory coincides with the T̂N (E′
7, E′

7, g = e8) T-dual theory upon setting M = N−1
. Note that in geometry we find an su2

2 = so4 flavor group on the last note, instead of the
sp2 that one might have expected field theoretically.
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