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Cluttered Scenarios

Ossi Kaltiokallio , Member, IEEE, Roland Hostettler , Member, IEEE, Yu Ge , Graduate Student Member, IEEE,
Hyowon Kim , Member, IEEE, Jukka Talvitie , Member, IEEE, Henk Wymeersch , Fellow, IEEE,

and Mikko Valkama , Fellow, IEEE

Abstract—One of the most fundamental problems in simulta-
neous localization and mapping (SLAM) is the ability to take
into account data association (DA) uncertainties. In this article,
this problem is addressed by proposing a multihypotheses sam-
pling distribution for particle filtering-based SLAM algorithms.
By modeling the measurements and landmarks as random finite
sets, an importance density approximation that incorporates DA
uncertainties is derived. Then, a tractable Gaussian mixture model
approximation of the multihypotheses importance density is pro-
posed, in which each mixture component represents a different DA.
Finally, an iterative method for approximating the mixture com-
ponents of the sampling distribution is utilized and a partitioned
update strategy is developed. Using synthetic and experimental
data, it is demonstrated that the proposed importance density
improves the accuracy and robustness of landmark-based SLAM
in cluttered scenarios over state-of-the-art methods. At the same
time, the partitioned update strategy makes it possible to include
multiple DA hypotheses in the importance density approximation,
leading to a favorable linear complexity scaling, in terms of the
number of landmarks in the field-of-view.

Index Terms—Importance density, particle filter (PF),
probability hypotheses density, random finite set (RFS),
simultaneous localization and mapping (SLAM).

NOMENCLATURE

Major Notations of This Article
k Current time index.
xk Pose of the robot at time k.
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uk Control input of the robot at time k.
f(xk−1,uk) Transition function of the robot.
Qk−1 Process noise covariance at time k − 1.
Mk Map at time k.
Mk Number of landmarks in Mk.
mi ith landmark in Mk.
Zk Set of measurements at time k.
Jk Number of measurements in Zk.
zj jth measurement in Zk.
g(Zk|Mk,xk) random finite set (RFS) likelihood.
g(zk|m,xk) Measurement likelihood.
Rk Measurement noise covariance.
λc Poisson rate.
c(z) Clutter intensity.
pD(m

i|xk) Detection probability.
φt,i
k Association variable.

xn
k nth particle of the probability hypothesis

density (PHD)-simultaneous localization and
mapping (SLAM) density.

wn
k Weight of nth particle of the PHD-SLAM den-

sity.
N Number of particles.
vk(m|xn

0:k) PHD conditioned on the nth trajectory.
ηn,ik Weight of the ith component of the Gaussian

mixture (GM)-PHD.
m̂n,i

k Mean of the ith component of the GM-PHD.
Pn,i

k Covariance of the ith component of the GM-
PHD.

Γ Number of Gaussian mixture importance den-
sity (GM-ID) components.

γ̄t Weight of the tth GM-ID component.
μt Mean of the tth GM-ID component.
Σt Covariance of the tth GM-ID component.

I. INTRODUCTION

FOLLOWING pioneering research in autonomous robotics
[1], the simultaneous localization and mapping (SLAM)

problem has gained widespread interest over the past decades,
with numerous applications ranging from mobile robotics [2]
to visual odometry [3]. In recursive probabilistic form, the
SLAM problem requires a robot to incrementally build a map of
the unknown environment, simultaneously localize itself within
the map, and estimate the related uncertainties [4]. There are
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numerous representations for the robot pose and map, including
landmark-based [1], [4], grid-based [5], [6], and graph-based [7],
[8] approaches. Landmark-based approaches decompose the
physical environmental landmarks, such as trees and other obsta-
cles, into parametric representations, such as a point, which then
form a map with an unknown number of landmarks at unknown
locations.

Solving the probabilistic SLAM problem requires propagat-
ing the joint posterior density of the robot trajectory and map
over time [4]. Furthermore, building the map requires the joint
estimation of both the number and location of landmarks that
have been covered by the sensor’s field-of-view (FOV). Con-
ventional SLAM solutions comprise of a three-step approach
in which the measurement to landmark association is solved
first. Then, given the found data association (DA), the joint
posterior density is estimated using Bayesian filtering. Lastly,
a separate map management routine is required to create land-
marks that enter the sensor’s FOV and delete landmarks that
originate from false detections. Numerous works have demon-
strated that such an approach works well in practice [9], [10],
[11], but is sensitive to DA uncertainty [12]. To account for
data ambiguities in a theoretically sound manner requires that
DA uncertainty is treated as a part of the estimation process.
This can be done by modeling the map as a finite set and using
RFS theory for propagating the joint posterior distribution in
time [13]. RFS-based methods are particularly attractive since
they enable a fully integrated Bayesian framework for SLAM
since DA uncertainty is factored in to the estimation process,
uncertainties on both the number of landmarks in the map and
their state are taken into account, there is no ordering of the
landmarks, and the map management routine is integrated in
to the filtering recursion. The RFS formulation for SLAM was
first proposed in [14] and a tractable first-order approximation
coined as PHD-SLAM filter soon followed [13]. Over the years,
various approximations have been used to model the landmark
map resulting in various RFS-SLAM filters including the la-
beled multi-Bernoulli (LMB)-SLAM filter [15], δ-generalized
LMB-SLAM filter [16], and the Poisson multi-Bernoulli mixture
(PMBM)-SLAM filter [17], [18].

In terms of implementation and representation, many SLAM
algorithms take advantage of an important characteristic of the
SLAM problem: by conditioning the map to the robot’s trajec-
tory, the landmarks are conditionally independent [19], making it
natural to apply Rao–Blackwellized particle filter (RBPF) solu-
tions. Such a factored solution was adopted in FastSLAM, which
uses a particle filter (PF) to sample over robot paths and each
particle possesses numerous low-dimensional extended Kalman
filters (EKFs), one for each of the landmarks [11]. The filtering
recursion of PHD-SLAM is similar to that in FastSLAM, but
the use of RFS likelihoods affects how the particle weights are
computed and in addition, PHD filters are used for mapping [13].
The standard PHD-SLAM algorithm [13], similar to that of
FastSLAM 1.0 [11], is a bootstrap filter in which the dynamic
model is used as the importance density. If the robot motion is
affected by large disturbances, a large number of particles are
required to adequately explore the sample space, which can be
computationally expensive.

In this work, we propose an improved importance density
in which poses are sampled under consideration of both the
motion of the robot and the measurements, as well as DA
uncertainty. To account for data ambiguities, a multihypotheses
importance density (MH-ID) approximation is derived and a
Gaussian mixture model (GMM) representation of the multi-
hypotheses importance density (MH-ID) is proposed, in which
each component of the GM represents a single DA. The pro-
posed GM-ID enables us to incorporate DA uncertainty within
the importance density approximation, rather than assume that
the most likely DA is correct as in [20]. Then, for each GM
component, we exploit an iterative method for approximating
parameters of the importance density, which is based on using
generalized statistical linear regression (SLR), combined with
iterated posterior linearization (IPL) [21], [22]. The proposed
solution exploits the measurement model structure and uses
partitioned updates, that is, the importance density is updated
one measurement at a time. The partitioned algorithm scales
linearly with the number of landmarks M within the FOV,
instead of O(M3) when using a joint approximation approach
as proposed in [20]. Using synthetic and experimental data, it is
demonstrated that the proposed GM-ID improves the accuracy
and robustness of PHD-SLAM, while the partitioned update
strategy makes it possible to include multiple DA hypotheses in
the importance density approximation with low computational
complexity.

The contributions of this article are summarized below.
1) A novel GM-ID for probabilistic SLAM: A GM proposal

distribution is developed for PHD-SLAM. In the proposed
GM-ID, individual mixture components represent differ-
ent DAs to account for data ambiguities in high clutter
scenarios. The developed GM-ID provides a new method
for taking into account DA uncertainty, which allows
developing more robust and efficient versions of existing
PHD-SLAM filters.

2) Low-complexity computation of a GM-ID approximation:
An iterative method for approximating the mixture com-
ponents of the GM-ID is utilized and a partitioned update
strategy is developed. The partitioned importance density
algorithm is computationally feasible since it scales ac-
cording to O(M).

3) Comparison against state of the art: We validate the
development efforts using synthetic and experimental data
and compare the proposed algorithm to three other PHD-
SLAM filters. The results indicate that the proposed GM-
ID improves PHD-SLAM performance allowing accurate,
efficient, and robust SLAM even in high clutter scenar-
ios. We provide MATLAB code that runs PHD-SLAM
using the presented GM-ID approximation. In addition,
we provide C/C++ source codes that can be compiled to
MATLAB MEX-files to enable a highly efficient imple-
mentation of the developed algorithm.1

The rest of this article is organized as follows. In Section II,
the related work is presented. In Section III, the probabilistic

1[Online]. Available: https://github.com/okaltiok/PHD-SLAM-3.0

https://github.com/okaltiok/PHD-SLAM-3.0
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SLAM problem is formulated, the underlying models are in-
troduced, and the Bayesian filtering recursion of RFS-SLAM
is presented. Section IV summarizes a first-order solution to
RFS-SLAM, which utilizes an Rao-Blackwellized particle filter
(RBPF) for propagating the robot posterior and a GM-PHD filter
for estimating the map. The proposed GM-ID is introduced
in Section V, with Section VI presenting and discussing its
performance. Finally, Section VII concludes this article. Major
notations of this article are given in the Nomenclature.

II. RELATED WORK

In SLAM, non-Gaussian noise and unknown DA have been
the primary drivers for developing multi-hypotheses methods.
Particle filtering approaches, such as FastSLAM [11] and RFS-
SLAM [13], are able to approximate arbitrary probability distri-
butions through a finite number of samples. In FastSLAM, DA
can be determined on a per-particle basis, and hence, different
particles can be associated with different landmarks, which gives
the filter the possibility of dealing with the multihypotheses DA
problem [23]. In contrast, PHD-SLAM avoids explicit DAs, and
DA uncertainty is factored in to the estimation process. More
recent works have considered multihypotheses methods in the
context of GraphSLAM [24], [25], [26]. In [24], a max-mixture
Gaussian distribution is proposed that can be used for example in
implementing robust cost functions to handle uncertain loop clo-
sures. Respectively, the works in [25] and [26] introduce meth-
ods for probabilistic DA. The method in [25] considered proba-
bilistic DA making use of expectation–minimization whereas the
work in [26] uses a max-mixture Gaussian distribution similar
to the work in [24]. In this article, a sum-mixture of Gaussians
is used to model the sampling distribution and each component
of the GM represents a single DA.

The aforementioned filtering approaches are typically re-
ferred to as online SLAM methods since they recursively es-
timate the joint posterior density as new measurements become
available. On the contrary, smoothing approaches utilize the en-
tire data to estimate the full trajectory and a common approach to
solve the problem is using GraphSLAM [7], [8], which consists
of two tasks. The front-end task constructs the graph using odom-
etry and sensor measurements, and the back-end task solves
the optimization problem to determine the best trajectory that
satisfies constraints of the graph. The GraphSLAM algorithms
typically exploit the sparse structure of the problem to efficiently
solve the optimization problem [27], [28], [29]. Throughout this
article, we focus on online SLAM methods and therefore will
only consider such approaches in the following. The interested
reader is referred to [30] for a comparison between PHD-SLAM
and GraphSLAM in which it is demonstrated that the RFS
formulation can be beneficial in scenarios in which DA is very
challenging.

One major weakness of particle filtering-based SLAM so-
lutions is the large number of particles required to propagate
the posterior accurately over time. The culprit is utilizing the
motion model as the proposal distribution, which results in
an inefficient use of particles as most of them will have an
insignificant weight after the posterior update. The FastSLAM

2.0 algorithm addressed this issue by using an improved impor-
tance density in which poses are sampled under consideration
of both the motion of the robot and the measurements [31].
With known DA, the proposal distribution used in FastSLAM 2.0
is an approximation of the optimal importance density (OID),
which is optimal in terms of minimizing the variance of the
incremental particle weights [32]. Similarly, most PHD-SLAM
algorithms suffer from inefficient use of particles since they use
the transition density as the proposal distribution [13], [33], [34].
Inspired by the FastSLAM 2.0 algorithm, two recent works have
proposed improved importance densities for PHD-SLAM [20],
[35]. In [35], the proposal distribution is computed by condition-
ing the predictive distribution of the robot state to the measure-
ments independently and thereafter, the independent conditional
distributions are merged using weighted averaging. On the other
hand, the method in [20] approximates the importance density
by finding the joint approximation of the robot and map first,
and then by conditioning on the measurements of the most
likely DA. While both methods improve the performance with
respect to the original PHD-SLAM algorithm, they still require
quite many particles to function properly. The proposal of Gao
et al. [35] was very conservative, and numerous particles are
needed to propagate the posterior accurately, whereas the work
in [20] is sensitive to incorrect DA and the filter requires many
particles to handle data ambiguities. In this work, we propose
an improved importance density in which poses are sampled
under consideration of both the motion of the robot and the
measurements, as well as DA uncertainty.

III. PROBLEM FORMULATION

Consider a mobile robot exploring an unknown environment.
Its location and orientation at timek are described by state vector,
xk, and the movement is governed by motion command uk.
The robot is equipped with a sensor and it is taking relative
observations of a number of unknown landmarks while moving
in the environment. The ith landmark is described by state vector,
mi, and an observation of a landmark is denoted as zjk. Since
the robot is moving in an uncharted environment, the number
of landmarks within the sensor’s FOV, denoted as FOV(xk), is
unknown and time-varying. Moreover, DA between the observa-
tions and landmarks is unknown, clutter measurements can cause
false alarms and landmarks can be misdetected. Formulating the
problem using RFS theory enables a fully integrated Bayesian
framework for SLAM under DA uncertainty and unknown land-
mark number [13]. The underlying models and the RFS-SLAM
algorithm are summarized in the following.

A. Models

A Gaussian density with zero-mean additive noise is a com-
mon representation of the motion model in SLAM [4]. In addi-
tion, the state transition is assumed independent of the landmarks
and observations, and it is modeled as a Markov process in which
xk only depends on xk−1 and uk. Mathematically, the transition
model of the mobile robot can be expressed as

f(xk|xk−1,uk) = N (xk; f(xk−1,uk),Qk−1) (1)
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where f(·) denotes a known transition function and Qk−1 the
covariance.

Let Mk−1 denote the explored map up to time k − 1, then the
RFS transition density of the map is given by

f(Mk|Mk−1,xk) (2)

and the explored map evolves in time according to [36, eq. (7)]

Mk = Mk−1 ∪ Bk(xk) (3)

in whichBk(xk) is the birth RFS describing the set of landmarks
observed for the first time. Let Mc

k−1 denote the complement
of Mk−1 so that the newly detected landmarks can be defined
asBk(xk) = FOV(xk) ∩Mc

k−1. Essentially, the RFS transition
density of the map describes how the explored map grows
monotonically as the FOV of the robot’s sensor covers more
of the unexplored environment [36].

In this article, we consider a point target measurement model,
where each landmark can create at most one observation per
time instant. Then, the RFS likelihood function is obtained by
summing over all hypotheses [37, eq. (7.2)]

g(Zk|Mk,xk) =

Γall∑
t=1

exp (−λc)

|Zk |∏
j=1

c
(
zjk

)

×
∏

i:φt,i
k =0

[
1− pD(m

i|xk)
] ∏
i:φt,i

k >0

pD(m
i|xk)g

(
z
φt,i
k

k |mi,xk

)

c

(
z
φt,i
k

k

) .

(4)

In (4),Γall is the total number of hypotheses,φt,i
k is an association

variable, λc =
∫
c(z)dz is the Poisson rate, c(z) is the clutter

intensity, pD(m
i|xk) ∈ [0, 1] is the detection probability, and

g(·) is the likelihood function. In SLAM literature, the likelihood
function is typically modeled as a zero-mean Gaussian, given
by [4]

g(zk|m,xk) = N (zk;g(m,xk),Rk) (5)

whereg(m,xk) is a known measurement model andRk denotes
the covariance. The association variable is defined as

φt,i
k =

{
j if mi is associated with zj

0 if mi is undetected.
(6)

B. RFS-SLAM

The objective of probabilistic SLAM is to estimate the joint
posterior density of the map and robot trajectory [4]

p(Mk,x1:k|Z1:k,u1:k,x0) (7)

given the initial pose of the robot, x0, measurements, and con-
trols up to the current time instant k. The RFS-SLAM filter
follows the prediction and update steps of the Bayesian filtering
recursion applied with RFSs [13]. The prediction step of the
filter is given by [13, eq. (7)]

p(Mk,x1:k|Z1:k−1,u1:k,x0) = f(xk|xk−1,uk)

×
∫

f(Mk|Mk−1,xk)p(Mk−1,x1:k−1)δMk−1 (8)

where δMk−1 denotes a set integral [38] and p(Mk−1,x1:k−1)
is the shorthand notation for the posterior at the previous time
step. Once observing Zk, the predicted density can be updated
using the Bayes’ rule to obtain the posterior at time k [13, eq. (8)]

p(Mk,x1:k|Z1:k,u1:k,x0)

=
g(Zk|Mk,xk)p(Mk,x1:k|Z1:k−1,u1:k,x0)

g(Zk|Z0:k−1,x0)
(9)

where the RFS likelihood is given in (4), and the term in the
denominator is a normalization constant.

IV. RAO–BLACKWELLIZED PHD-SLAM FILTER

An RBPF implementation of the PHD-SLAM filter is sum-
marized in this section. Fundamentally, the robot trajectory is
estimated with a PF, and a PHD filter is used for estimating each
trajectory conditioned map.

A. Factorized RFS-SLAM Filter

Analogous to FastSLAM [11], the joint posterior RFS-SLAM
density in (7) can be factorized as [13]

p(Mk,x1:k|Z1:k,u1:k,x0)

= p(x1:k|Z1:k,u1:k,x0)p(Mk|Z1:k,x0:k). (10)

The recursion for the joint RFS-SLAM density presented in
Section III-B is equivalent to jointly propagating the posterior
density of the robot trajectory, p(x1:k|Z1:k,u1:k,x0), and the
posterior density of the map that is conditioned on the trajec-
tory, p(Mk|Z1:k,x0:k). The posterior of the robot trajectory is
computed as [13, eq. (16)]

p(x1:k|Z1:k,u1:k,x0) = p(x1:k−1|Z1:k−1,u1:k−1,x0)

× g(Zk|Z1:k−1,x0:k)f(xk|xk−1,uk)

g(Zk|Z1:k−1)
. (11)

The recursion to propagate the map posterior in time follows
the generalization of the recursive Bayesian filter applied to
sets [38] for which the prediction step is given by the Chapman–
Kolmogorov equation

p(Mk|Z1:k−1,x0:k) =

∫
f(Mk|Mk−1,xk)

× p(Mk−1|Z1:k−1,x0:k−1)δMk−1

(12)

and the update by applying the Bayes’ rule

p(Mk|Z1:k,x0:k) =
g(Zk|Mk,xk)p(Mk|Z1:k−1,x0:k)

g(Zk|Z1:k−1,x0:k)
.

(13)
As detailed in [13], the factorized solution defined by (11)–(13)
is similar to that of FastSLAM [11], [31] and the effect of
conditioning on x0:k is to render each landmark estimate condi-
tionally independent. However, adopting RFS likelihoods affects
how (11) is evaluated. Furthermore, FastSLAM is conditioned
on DA assignments, which are essentially unknown, whereas
RFS-SLAM is not and the recursion defined by (12) and (13) is
that of an RFS-based mapping with known poses.
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B. Representation of the RFS-SLAM Density

We follow an RBPF approach as in [13], [36], and [33] and
approximate the posterior density of the robot trajectory using
a weighted set of N particles

p(x1:k|Z1:k,u1:k,x0) ≈
N∑

n=1

wn
k δ (x1:k − xn

1:k) (14)

where δ(·) is the Dirac delta function, xn
1:k is the nth particle,

and wn
k is the associated weight. The RFS-SLAM density is

parameterized using

{wn
k ,x

n
0:k, p(Mk|Z1:k,x

n
0:k)}Nn=1 (15)

and each particle represents a single trajectory, and a trajectory
conditioned map is associated with each of the particles.

We utilize a map representation based on the PHD by approx-
imating the posterior RFS map using a Poisson point process
(PPP) following assumed-density filtering [13], [39]

p(Mk|Z1:k,x
n
0:k) ≈

∏
m∈M vk(m|xn

0:k)

exp
(∫

vk(m|xn
0:k)dm

) . (16)

In (16), vk(m|xn
0:k) is the shorthand notation for vk(m|Z1:k,

xn
0:k) and it denotes the PHD conditioned on the nth trajectory.

Using a GM parametrization, the PHD is given by [40]

vnk (m|xn
0:k) =

Mn
k∑

i=1

ηn,ik N (m̂n,i
k ,Pn,i

k ) (17)

where Mn
k is the number of GM components at time k and, ηn,ik ,

m̂n,i
k , andPn,i

k are the weight, mean, and covariance of landmark
i for particle n, respectively. It is to be noted that the weights
ηn,ik represent the number of landmarks at m̂n,i

k , and
∑Mn

k
i=1 η

n,i
k

gives the expected number of landmarks in the estimated map. In
PHD-SLAM, the trajectory-conditioned map is estimated using
a PHD filter and the overall PHD-SLAM density at time k is
represented by{

wn
k ,x

n
0:k,

{
ηn,ik , m̂n,i

k ,Pn,i
k

}Mn
k

i=1

}N

n=1

. (18)

C. PHD Filter for Mapping

The utilized mapping algorithm follows the GM implemen-
tation of the PHD filter [13], [40], which is summarized in
the following for the sake of completeness. If the PHD at the
previous time instant is a GM, then it follows that the predicted
PHD is also a GM, given by [13, eq. (22)]

vnk|k−1(m|xn
0:k) = vnk−1(m|xn

0:k−1) + vB
k (m|ZB

k−1,x
n
k−1)

(19)
and it is the union of the prior map, vnk−1(·), and the PHD of the
birth RFS, vB

k (·), which is used to model landmarks that enter
FOV(xk) for the first time, as discussed in Section III-A. The
birth PHD at time k is modeled as a GM withMB,n

k components,
representing a subset of measurements at the previous time
step, ZB

k−1 ⊆ Zk−1 [see definition of ZB
k−1 after (22)].2 Thus,

2A similar approach has been used in [13] and [36] but using all the measure-
ments from time step k − 1, that is, ZB

k−1 = Zk−1.

the predicted PHD has Mn
k|k−1 = Mn

k−1 +MB,n
k components,

and parameters of the prior map are unchanged since the land-
marks are static, that is, ηn,ik|k−1 = ηn,ik−1, m̂n,i

k|k−1 = m̂n,i
k−1, and

Pn,i
k|k−1 = Pn,i

k−1.
Since the likelihood in (5) has a Gaussian form, it follows that

the posterior PHD is also a GM, given by [13, eq. (23)]

vnk (m|xn
0:k) = vnk|k−1(m|xn

0:k)

[
1− pD(m|xn

k )

+
∑
z∈Zk

pD(m|xn
k )g(z|m,xn

k )

c(z) +
∫
Λ(m′, z|xn

0:k)dm
′

]
(20)

where

Λ(m′, z|xn
0:k) = pD(m

′|xn
k )g(z|m′,xn

k )v
n
k|k−1(m

′|xn
0:k).

(21)
In practice, parameters of the updated PHD can be estimated
using any standard Gaussian filtering technique, such as the
extended, unscented, or cubature Kalman filter (see, e.g., [41]).
In this article, a first-order Taylor series-based Gaussian approx-
imation is used allowing EKF style updates, and the reader is
referred to [13] and [36] for further details. To reduce compu-
tational complexity of the update step, ellipsoidal gating [42]
is utilized and a measurement is used to update parameters of
the GM component only if the squared Mahalanobis distance is
below gating threshold TG. Mathematically

‖zjk − g(m̂n,i
k|k−1,x

n
k ))‖2(Sn,i

k|k−1
)−1 ≤ TG (22)

where Sn,i
k|k−1 = GmPn,i

k|k−1G


m +Rk, Gm denotes the Jaco-

bian of g with respect to mi evaluated at m̂n,i
k|k−1, and we have

used the notation ‖e‖2Ω = e
Ωe above. Furthermore, measure-
ments that are not used to update any landmark constitute ZB

k ,
which is then used to initialize new landmarks at the next time
step. The updated map has at most Mn

k|k = Mn
k|k−1 × (|Zk|+

1) components if every component of vnk|k−1(m|xn
0:k) is updated

by a misdetection and by every measurement, but typically
Mn

k|k < Mn
k|k−1 × (|Zk|+ 1).

D. Robot Trajectory

The posterior of the robot trajectory, p(x1:k|Z1:k,u1:k,x0),
can be estimated using, for example, the sequential importance
sampling PF (see, e.g., [43] and [44]), which recursively prop-
agates the weights and support points. The recursion consists
of two steps for every particle n; the importance density is first
computed and sampled from

xn
k ∼ q(xk|xn

0:k−1,Z1:k,u1:k) (23)

and thereafter, the weights are updated according to

wn
k = wn

k−1

g(Zk|Z1:k−1,x
n
0:k)f(x

n
k |xn

k−1,uk)

q(xk|xn
0:k−1,Z1:k,u1:k)

. (24)

The optimal choice, in terms of minimizing the incremental
particle weights, for the importance density in (23) is given by
the OID [2], [44]
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q(xk | xn
0:k−1,Z1:k,u1:k) = p(xk | Z1:k,x

n
0:k−1,u1:k)

=
g(Zk | Z1:k−1,x

n
0:k)f(x

n
k | xn

k−1,uk)

p(Zk | Z1:k−1,xn
0:k−1,u1:k)

. (25)

Unfortunately, sampling directly from this distribution is im-
possible in the general case; it does not even possess a closed
form since we cannot express the right-hand side as a Gaussian
in xk. However, an approximation of the OID can be attained
if the measurement model is approximated by a linear function
whereas the dynamic model may remain nonlinear [32]. Such an
approximation is utilized in FastSLAM 2.0 [31] and a similar one
in a recent PHD-SLAM work [20], but the solutions condition
on the selected best DA assignment, and a wrong assignment can
have significant ramifications to the approximated importance
density. To address this problem, we propose sampling the poses
under consideration of both the motion of the robot and the
measurements, as well as DA uncertainty. The details of the
improved approximation for (25) are given in Section V.

It is to be noted that in PHD-SLAM, a common choice for
(23) is the transition density [13], [33], [34], [36], [45]

q(xk | xn
0:k−1,Z1:k,u1:k) = f(xn

k | xn
k−1,uk) (26)

simplifying the weight update in (24) to

wn
k = wn

k−1g(Zk|Z1:k−1,x
n
0:k). (27)

Using the transition density as the importance density enables
straightforward and efficient particle updates. However, if co-
variance of the process noise is large with respect to the mea-
surement noise covariance, a downside of using such a proposal
is that most of the sampled particles will have an insignificant
weight after computing (24) and a large number of particles are
required to accurately approximate the posterior. In Section VI,
the performance of PHD-SLAM using different importance
densities is presented and discussed.

V. MULTIHYPOTHESES IMPORTANCE DENSITY

This section presents an improved approximation for the im-
portance density given in (25) to better cope with DA uncertainty.
To handle data ambiguities, an MH-ID is derived and a GMM
representation is proposed, in which each component of the
GM represents a single DA. Before presenting the MH-ID, we
introduce a method that can be used to rank the DAs in the
ascending order of cost. Then, the Γ best DAs are used for
approximating the MH-ID. In the following, the importance
density in (23) and weight in (24) are computed independently
for each particle and dependence of xn

k and vnk (·) on particle n
is excluded from the notation for brevity.

A. Computation of Γ Best DAs

If the DA is unknown, the number of ways Mk landmarks
can be assigned to Jk measurements increases very fast as
Mk and Jk grow. Instead of exhaustively computing all the
possible assignments, Γall, the goal is to rank the candidate DA
assignments in the ascending order of cost, select the Γ best
DAs, and truncate the rest. This problem can be cast as a ranked
assignment problem and solved using Murty’s algorithm [46].

The ranked assignment problem can be formulated using the
optimal assignment problem, given by [47]

minimize tr
(
Φ
L

)
s.t. {Φ}i,j ∈ {0, 1} ∀ i, j

Mk+Jk∑
j=1

{Φ}i,j = 1 ∀ i

Mk∑
i=1

{Φ}i,j ∈ {0, 1} ∀ j (28)

where Φ is the assignment matrix variable, L is the cost matrix,
i ∈ {1, . . . ,Mk}, and j ∈ {1, . . . ,Mk + Jk}. The cost matrix
is defined as

L = − log

⎡
⎢⎣

�1,1 . . . �1,Jk

...
. . .

...
�Mk,1 . . . �Mk,Jk

∣∣∣∣∣∣∣
�1,0 . . . 0

...
. . .

...
0 . . . �Mk,0

⎤
⎥⎦ (29)

where the leftMk × Jk submatrix corresponds to measurements
that are associated with a landmark and the right Mk ×Mk

diagonal submatrix corresponds to misdetections. The elements
of the cost matrix are given by [48]

�i,j =

∫
pD(m

i|x)
c(z)

g(zjk | mi,xk|k−1)p(m
i|x)dmi (30)

�i,0 =

∫
(1− pD(m

i|x))p(mi|x)dmi (31)

in which xk|k−1 = f(xk−1,uk) denotes the predicted state,
p(mi|x) = vk|k−1(m

i|x0:k) is the shorthand notation for the
predicted density of the ith landmark, and the detection proba-
bility is approximated as pD(m

i|x) ≈ pD(m̂
i
k|k−1 | xk|k−1) to

make computation of the integrals feasible.
The optimal assignment problem seeks an assignment matrix

Φ that minimizes (28) and the ranked assignment problem seeks
an enumeration of the least highest cost assignment matrices in
nondecreasing order [46]. The cost of assignment Φ is

γk|k−1 = exp
(−tr(Φ
L)

)
(32)

and Murty’s algorithm [46] is used to find Γ̃ assignment matrices
such that γ1

k|k−1 ≤ γ2
k|k−1 ≤ · · · ≤ γΓ̃

k|k−1. A fixed value could

be used for Γ̃ but to conserve computational resources, Γ̃ is
adaptively tuned to only account for DAs with a meaningful
cost as proposed in [49]. In Murty’s algorithm, we terminate
hypotheses generation whenever the cost of the most likely
hypotheses is below some fixed percentage of the cost of the
next hypotheses, that is, γ1

k|k−1/γ
Γ̃
k|k−1. We have noticed that

including the assignment, {ΦΓ̃+1}i,j = 1 ∀ i ∧ j = Jk + i, in-
creases robustness of the proposed algorithm in scenarios where
a wrong DA leads to an inaccurate importance density. In such
circumstances, it is beneficial to treat all of the measurements as
clutter and use the transition density as the importance density.
Thus, the total number of DAs is Γ = Γ̃ + 1.

To make the treatment comprehensive, the mapping from
Φ to the association variable φt,i

k in (6) is defined as follows.
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Let Φt denote the tth association matrix with cost γt
k|k−1. The

association variable is defined as φt
k = [φt,1

k , . . . , φt,Mk

k ] for
which the elements are given by

φt,i
k =

{
j if {Φt}i,j = 1 and j ≤ Jk
0 otherwise.

(33)

B. MH-ID Approximation

The proposed method to compute parameters of the impor-
tance density is based on the IPL OID approximation intro-
duced in [22]. The proposed solution exploits the measurement
model structure and uses partitioned updates, that is, updates
the importance density approximation using one measurement
at a time, which yields an algorithm that scales according to
O(|M|). This efficiency makes it possible to include multiple
DA hypotheses in the importance density approximation and
still obtain a computationally efficient algorithm.

First, recall that the optimal choice (that minimizes the in-
cremental particle weights) for the importance density q(xk |
x0:k−1,Z1:k,u1:k) in (23) for the PHD-SLAM filter is given
by [2], [44]

q(xk | x0:k−1,Z1:k,u1:k) ∝ g(Zk | Z1:k−1,x0:k)

× f(xk | xk−1,uk) (34)

where [13, eq. (24)]

g(Zk | Z1:k−1,x0:k) =

∫
g(Zk,Mk|Z1:k−1,x0:k)δMk

=

∫
g(Zk | Mk,xk)p(Mk | Z1:k−1,x0:k)δMk

(35)
with g(Zk | Mk,xk) and p(Mk | Z1:k−1,x0:k) as in (4)
and (12), respectively. Then, for Γ DA hypotheses, we have (see
the Appendix for details of the derivation)

g (Zk | Z1:k−1,x0:k)

=

Γ∑
t=1

exp(−λc)

|Z|∏
j=1

c(zjk)

×
∏

i:φt,i
k =0

ηik|k−1

∫ [
1− pD

(
mi | xk

)]

×N
(
mi; m̂i

k|k−1,P
i
k|k−1

)
dmi

×
∏

i:φt,i
k >0

ηik|k−1

c

(
z
φt,i
k

k

)
∫

pD
(
mi | xk

)
g

(
z
φt,i
k

k | mi,xk

)

×N
(
mi; m̂i

k|k−1,P
i
k|k−1

)
dmi. (36)

Unfortunately, the detection probability makes the solution of
the remaining integrals not feasible. However, using the pre-
dicted probability of detection p̂iD ≈ pD(m̂

i
k|k−1 | xk|k−1) (ob-

tained from the DA, Section V-A), we obtain the approximation

g(Zk | Z1:k−1,x0:k)

≈
Γ∑

t=1

exp(−λc)

|Z|∏
j=1

c(zjk)
∏

i:φt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:φt,i
k >0

ηik|k−1p̂
i
D

c

(
z
φt,i
k

k

)

×
∫

g

(
z
φt,i
k

k | mi,xk

)
N

(
mi; m̂i

k|k−1,P
i
k|k−1

)
dmi.

(37)

Next, recall that PHD-SLAM (as well as FastSLAM) uses
an affine approximation of the likelihood around the predicted
landmark state m̂i

k|k−1 to facilitate the use of approximate Rao–
Blackwellization in the PF, which makes the SLAM problem
tractable. This yields the affine approximation of the measure-
ment likelihood function (5)

g(z
φt,i
k

k | mi,xk)

≈ N
(
z
φt,i
k

k ;g(m̂i
k|k−1,xk) +Gm,k(m

i − m̂i
k|k−1),Rk

)

where Gm,k is the Jacobian of g with respect to mi evaluated
at m̂i

k|k−1. Hence, the predicted likelihood is approximated as

g(Zk | Z1:k−1,x0:k)

≈
Γ∑

t=1

exp(−λc)

|Z|∏
j=1

c(zjk)
∏

i:φt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:φt,i
k >0

ηik|k−1p̂
i
D

c

(
z
φt,i
k

k

)

×N
(
z
φt,i
k

k ;g
(
m̂i

k|k−1,xk

)
,Gm,kP

i
k|k−1G



m,k+Rk

)
.

(38)

Then, the MH-ID can in turn be approximated as

p(xk | Z1:k,x0:k−1,u1:k)

∝∼
Γ∑

t=1

κt
k|k−1f(xk | xk−1,uk)

×
∏

i:φt,i
k >0

N
(
z
φt,i
k

k ;g
(
m̂i

k|k−1,xk

)
,

Gm,kP
i
k|k−1G



m,k +Rk

)
(39)
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where ∝∼ denotes “approximately proportional to.” This is a

mixture density with mixture weights

κt
k|k−1 ∝ exp(−λc)

|Z|∏
j=1

c(zjk)
∏

i:φt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:φt,i
k >0

ηik|k−1p̂
i
D

c

(
z
φt,i
k

k

) . (40)

Unfortunately, this cannot be sampled from and instead, we
propose to approximate the above mixture density using a GM
of the form

p (xk | Z1:k,x0:k−1,u1:k) ≈
Γ∑

t=1

κt
k N

(
xk;μ

t
k,Σ

t
k

)
(41)

instead. It is to be noted that the work in [20] uses a single
Gaussian representing one DA to approximate the importance
density, whereas in this work, we use a GM representing Γ DAs
to approximate the importance density. As in [20], the mixture
moments μt

k and Σt
k are calculated using the IPL-based OID

approximation approach [22]. However, we use a partitioned
update strategy, which entails that the individual landmark mea-
surements are used one at a time to update the proposal density,
whereas the work in [20] uses a joint update strategy.

Algorithm 1 summarizes the resulting algorithm, which con-
sists of three steps. First, the measurement likelihood is lin-
earized, which requires calculating the moments

μ̃z
l = Eπ{g(m̂i

k|k−1,xk)} (42a)

Σ̃
zz

l = Eπ{(g(m̂i
k|k−1,xk)− μ̃z

l )(g(m̂
i
k|k−1,xk)− μ̃z

l )

}

+ Eπ{Gm,kP
i
k|k−1G



m,k}+Rk (42b)

Σ̃
zx

l = Eπ{(g(m̂i
k|k−1,xk)− μ̃z

l )(xk − μ̃x
l )


} (42c)

where Eπ{·} denotes the expectation with respect to the lin-
earization density π(xk). Note that the resulting integrals can
typically not be solved in closed form, but Taylor series expan-
sion or sigma points can be used to approximate them. In this
article, we resort to local linearization using a first-order Taylor
series expansion.

Second, based on the linearization moments (42), the mo-
ments of the linearized likelihood (linearized w.r.t. π(xk)) are
calculated according to [21], [22]

Bl = Σ̃
zx

l

(
Σ̃

xx

l−1

)−1

(43a)

μz
l = μ̃z

l +Bl

(
μ̃x

l − μ̃x
l−1

)
(43b)

Σzz
l = Σ̃

zz

l +Bl

(
Σ̃

xx

l − Σ̃
xx

l−1

)
B


l (43c)

Σxz
l = Σ̃

xx

l B

l . (43d)

Third, the mean and covariance of the mixture component
are updated using the standard Kalman filter update. Note,
however, that the measurements are incorporated one at a time
in a partitioned update scheme, which has computational cost

Algorithm 1: IPL Approximation for Mixture Component t.

1: Set μ̃x
0 = f(xk−1,uk), Σ̃

xx

0 = Qk−1

2: for l = 1, . . . , L do
3: Set μ̃x

l = f(xk−1,uk), Σ̃
xx

l = Qk−1

4: for i : φt,i
k > 0 do

5: Linearization: Calculate the moments μ̃z
l , Σ̃

zz

l ,

and Σ̃
zx

l using z
φt,i
k

k w.r.t. the linearization density
π(xk) = N (xk; μ̃

x
l−1, Σ̃

xx

l−1) according to (42)
6: Moment matching: Calculate the moments μz

l ,
Σzz

l , and Σzx
l of the linearized measurement

model according to (43)
7: Measurement update for landmark i:

Kl = Σxz
l (Σzz

l )−1

μ̃x
l = μ̃x

l +Kl(z
φt,i
k

k − μz
l )

Σ̃
xx

l = Σ̃
xx

l −KlΣ
zz
l K


l

8: end for
9: end for

10: Set μt
k = μ̃x

L, Σt
k = Σ̃

xx

L

of O(|Mk|), compared with a full joint update used in [20] that
scales according to O(|Mk|3).

The choice of the linearization density is as follows. First,
the linearization density is chosen to the dynamic model
(i.e., the prior). Then, after each iteration, a new approximation
of the posterior density is obtained, which is then used as
the linearization density in the next iteration. The procedure
is repeated either for a fixed number of iterations L or upon
convergence, see [22]. Once the moments have been computed,
weight of the mixture component is given by

κt
k ∝ exp(−λc)

|Z|∏
j=1

c(zjk)
∏

i:φt,i
k =0

ηik|k−1[1− p̂iD]

×
∏

i:φt,i
k >0

ηik|k−1p̂
i
D

c

(
z
φt,i
k

k

)N
(
z
φt,i
k

k ;g
(
m̂i

k|k−1,μ
t
k

)
,St,i

k

)

(44)

where St,i
k = Gx,kΣ

t
kG



x,k +Gm,kP

i
k|k−1G



m,k +Rk and

Gx,k is the Jacobian of g with respect to x evaluated at μt
k.

C. Sampling and Importance Weight

After computing parameters of the GM-ID approximation in
(41), a new particle xn

k is drawn from the proposed importance
density as follows. First, a component t is randomly drawn from
the categorical distribution defined by the weights (44). There-
after, the multivariate normal distribution with moments μt

k and
Σt

k is sampled from, that is, xn
k ∼ N (μt

k,Σ
t
k). It is important

to note that for each particle only one mixture component is
sampled from the GM-ID and the multihypotheses structure is
only partially preserved over time for a single particle. Since
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Algorithm 2: Proposed Algorithm to Update Particle n.

1: Input: Zk, uk, {wn
k−1,x

n
k−1, v

n
k|k−1(m|xn

0:k)}Nn=1

2: Procedure Compute GM-ID
3: Cost matrix: Propagate particle

xk|k−1 = f(xk−1,uk) and compute L according
to (29).

4: Rank DAs: Compute Γ best DAs using L and
Murty’s algorithm as presented in Section V-A.

5: for t = 1, . . . ,Γ do
6: Compute moments μt

k and Σt
k using Algorithm 1

and weight κt
k according to (44).

7: end for
8: end procedure
9: Sample from GM-ID: xn

k ∼ ∑Γ
t=1 κ

t
kN (xk;μ

t
k,Σ

t
k).

10: Incremental weight: Update wn
k according to (45).

11: Output: Updated particle {wn
k ,x

n
k} at time step k

the weights are normalized by the likelihood of the GM-ID, the
multihypotheses structure is encoded in the weights of the par-
ticles. In addition, different particles, even with the same prior,
can sample different mixture components from the GM-ID, and
the PHD-SLAM density in (18) is able to capture N hypotheses
overall.

Log of the importance weight in (24), w̃n
k = log(wn

k ), is
updated using

w̃n
k = log

(
wn

k−1

g(Zk|Z1:k−1,x
n
0:k)f(x

n
k |xn

k−1,uk)

q(xk|xn
0:k−1,Z1:k,u1:k)

)

= w̃n
k−1 + w̃n

meas. + w̃n
prior − w̃n

prop.. (45)

In literature, several methods for computing w̃n
meas. have been

proposed including an empty map update [13], single feature
update [13], and multifeature update [33]. With a PPP prior and
a point object measurement model, we use the exact expression
for w̃n

meas., computed as [34]

w̃n
meas. =

∑
z∈Zk

log

(
c(z) +

∫
Λ(m, z|xn

k )dm

)
(46)

where Λ(·) is defined in (21). Log-likelihood of the prior is
given by

w̃n
prior = logN (

xn
k ; f(x

n
k−1,uk),Qk−1

)
. (47)

Respectively, log-likelihood of the proposal is computed using

w̃n
prop. = log

Γ∑
t=1

κ̃t
kN

(
xn
k ;μ

t
k,Σ

t
k

)
(48)

where κ̃t = κt
k/

∑Γ
t κ

t
k are the normalized weights. Algo-

rithm 2 summarizes the proposed algorithm to approximate the
importance density in (23), sample from it in closed form, and
update the incremental weights in (24). In practice however,
it is computationally more efficient to compute the incremental
weight in two phases. The weight is updated with log-likelihoods
of the prior and proposal during the weight update and w̃n

meas. is
added to the importance weight during the PHD update step.

Algorithm 3: Proposed PHD-SLAM Algorithm at Time
Step k.

1: Input: Zk, uk, {wn
k−1,x

n
k−1, v

n
k−1(m|xn

0:k−1)}Nn=1

2: for n = 1, . . . , N do
3: PHD predict: Compute vnk|k−1(m|xn

0:k) using (19).
4: Particle update: Use Algorithm 2 to obtain

{wn
k ,x

n
k}.

5: PHD update: Compute vnk (m|xn
0:k) using (20).

6: Hypotheses reduction: Prune and merge Mn
k|k GM-

PHD components to obtain a reduced number of
components, Mn

k ≤ Mn
k|k, as presented in [40].

7: end for
8: Estimate: Find j = argmaxN{wk}Nn=1 and compute

the map M̂k = {m̂j,i
k : ηj,i ≥ Tη, i = 1, . . . ,M j

k}
and robot x̂k = xj

k estimates.
9: Resample: Normalize the weights

wn
k = wn

k/
∑N

n=1 w
n
k , compute the effective sample

size ESS = 1/
∑N

n=1 w
n
k . and resample if

ESS ≤ TESS.
10: Output: M̂k, x̂k, {wn

k ,x
n
k , v

n
k (m|xn

0:k)}Nn=1.

VI. EXPERIMENTAL RESULTS

The development efforts of the article are evaluated with syn-
thetic data [35] and the experimental Victoria Park dataset [50].
The experiments focus on vehicles operating in planar environ-
ments so that pose can be represented by the 2-D location (x, y)
and heading θ. Furthermore, the vehicle is controlled by speed v
and steeringω commands. Thus, the state and control input of the
vehicle at time k are xk = [xk, yk, θk]


 and uk = [vk, ωk]

,

in respective order. The landmarks in the environment are static,
and location of the ith landmark is mi = [xi, yi]
.

We compare the developed filter only with other PHD-SLAM
filters [13], [20], [35], since it has already been demonstrated
that they outperform more conventional SLAM filters (e.g., [11],
[31], and [51]) in high clutter scenarios [13], [20], [33], [35]. We
refer to the original PHD-SLAM filter [13] as PHD-SLAM 1.0
and the other two filters as PHD-SLAM 2.0a [35] and PHD-
SLAM 2.0b [20] since both approximate the importance density
considering both the motion of the robot and the measurements.
This naming convention follows the FastSLAM algorithms,
since the original algorithm that used the motion model as the
importance density was coined as FastSLAM 1.0 [11] and the
filter that used the improved sampling distribution was named
as FastSLAM 2.0 [31]. Honoring this naming convention, the
algorithm implemented in this article is coined as PHD-SLAM
3.0, since the presented MH-ID offers a notable advantage in
cluttered scenarios where data ambiguities are common.

Overall, 100 Monte Carlo simulations (MCSs) are performed
and the results are obtained by averaging over the independent
simulations. The accuracy of the state estimates is evaluated
using the root mean squared error (RMSE) and mapping ac-
curacy is evaluated with the generalized optimal subpattern
assignment (GOSPA) metric, which captures the localization
error and penalizes for missed and false landmarks. Let Mk =
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{m1
k, . . . ,m

|M|
k } and M̂k = {m̂1

k, . . . , m̂
|M̂|
k } denote the map

and its estimate at time k, respectively. Now, GOSPA is defined
as [52]

dck,p(Mk,M̂k)

=

⎡
⎣min

ξ∈Ξ

∑
(i,j)∈ξ

‖mi
k−m̂j

k‖p+
cp

2

(
|Mk|+|M̂k|−2|γ|

)⎤⎦
1
p

in which ξ is the assignment set between M and M̂, Ξ is the
set of all possible assignment sets ξ, ‖ · ‖ denotes the Euclidean
norm, and c defines the maximum allowable localization error.
Unless otherwise stated, GOSPA is computed only for the last
time instant to capture the localization and cardinality errors
of the final map. Parameters used in computing GOSPA are:
c = 20 m and p = 2.

As with all PHD-SLAM filters, pruning and merging opera-
tions are required to limit the exponential growth of Gaussian
components in the PHD. These operations are carried out as
in [40, Table II] using a pruning threshold of log(10−6) and
a merging threshold of 50. In addition, ellipsoidal gating with
threshold TG = 41.4465 is used to lower computational com-
plexity of the PHD update step in (20), as well as, computing
the cost matrix in (29). Weight of newly created landmarks
is initialized to η = log(10−6). The map estimate threshold is
Tη = (1− pD)

2 to allow two consecutive misdetections before
the landmark is not considered as an estimate. The maximum
number of ranked assignments computed by Murty’s algorithm
is limited to Γ̃ = 50 and the threshold to terminate hypotheses
generation is Tγ = log(10−3). The maximum number of IPL
iterations is L = 5 and the convergence threshold is ε = 10−3

[22, eq. (11)]. The effective sample size (ESS) threshold to
perform resampling is set to TESS = 0.2×N . The developed
PHD-SLAM filter is summarized in Algorithm 3.

The PHD-SLAM filters are implemented using MATLAB
and the core functions are written in C/C++ and compiled to
MATLAB MEX-files to enable a highly efficient implementa-
tion of the algorithms. The simulations and experiments are run
on a Lenovo ThinkPad P1 Gen 2, with a 2.6 GHz 6-Core Intel
i7-9850H CPU and 64 GB of memory. Multithreading is not
exploited and the simulations are run on a single CPU core.

A. Synthetic Dataset

The simulation scenario is illustrated in Fig. 1 in which a
robot is exploring a 1 km2 area that contains 160 landmarks
along the robot trajectory. Kinematics of the robot is described
by a velocity motion model [2]

f(xk−1,uk)

=

⎡
⎣xk−1 − vk

ωk
sin(θk−1) +

vk

ωk
sin(θk−1 + ωkT )

yk−1 +
vk

ωk
cos(θk−1)− vk

ωk
cos(θk−1 + ωkT )

θk−1 + ωkT

⎤
⎦ (49)

and disturbances enter the system via a noisy control input that
is corrupted by zero-mean independent identically distributed
(i.i.d.) Gaussian noise ϑk ∼ N (0,Q), with covariance Q =

Fig. 1. Simulation scenario in which the landmarks are illustrated using ( ),
the robot trajectory with ( ), and measurements as observed from the ground
truth poses using ( ). Trajectory estimate only using odometry information ( )
and the trajectory ( ) and map ( ) estimates of PHD-SLAM 3.0 using one
particle. In the example, rms positioning error is 1.30 m, rms heading error is
0.27◦, and GOSPA of the final map is 21.94 m.

diag(σ2
v , σ

2
ω). The robot is equipped with a sensor that measures

the range and bearing of the landmark relative to the robot’s local
coordinate frame. The measurement model for the ith landmark
is given by [2]

g(mi,xk) =

[ √
(xi − xk)2 + (yi − yk)2

atan2(yi − yk, x
i − xk)− θk

]
(50)

and the measurements are corrupted by zero-mean i.i.d. Gaus-
sian noise, εk ∼ N (0,R), with covariance R = diag(σ2

r , σ
2
φ).

In the simulations, the robot speed is 1 m/s on average and
the maximum angular velocity is approximately 1 ◦/s. Stan-
dard deviations of the control noises are σv = 0.8 m/s and
σω = 0.5π

180 rad/s. The range-bearing sensor outputs a measure-
ment every T = 1 s, and the sensor has a limited FOV with
a ± 90◦ scanning angle and a maximum range of 150 m. The
detection probability is pD = 0.95 within the FOV, zero outside
the FOV, and the detection probability is approximated using
E{pD(m | xk)} in which the expectation is evaluated with re-
spect to the landmark density N (m̂,P). Standard deviations
of measurement noise are σr = 0.8 m and σφ = 0.3π

180 rad. The
clutter intensity inside the FOV is λ = 5 so that the expected
number of false measurements is five per time epoch. The
simulation parameters are the same as used in [35].

1) Particle Degeneracy: We begin the evaluation by exam-
ining sample degeneracy of the filters. PFs utilize resampling
to algorithmically limit degeneracy of the particles [32] but as
a drawback, diversity in the sample set is decreased as some
of the particles are neglected while others are duplicated. After
resampling has been performed enough times, all of the particles
will share a single mutual ancestor and diversity in the sample set
beyond this point is lost. The distance to the common ancestor
is crucial to the performance of RBPF-based SLAM algorithms,
since it defines how large a loop can effectively be closed [53].
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Fig. 2. Evaluation metrics as a function of time for the different filters, which
are illustrated using: PHD 2.0a ( ), PHD 2.0b ( ), and PHD 3.0 ( ) for
which the estimated trajectory is shown in Fig. 1. On the bottom, the number
of GM components used in the PHD 3.0 GM-ID approximation, and as shown,
data ambiguity increases the number of GM components, which enables the
proposed filter to account for DA uncertainty. Wrong DA can cause a filter to
diverge as portrayed by PHD 2.0b at time instance k = 689.

Hence, resampling is disabled in the following analysis to em-
phasize sample degeneracy. Results for PHD-SLAM 1.0 are
partly omitted in the following analysis since the filter exhibits
severe particle degeneracy and requires very frequent resam-
pling. For brevity, we refer to the filters simply as PHD X.0x
from now on.

The evaluation metrics of an exemplar MCS and the number
of GM components used by the proposed GM-ID approximation
are illustrated in Fig. 2. In the example, the filters only use
one particle and as visualized, the proposed filter is able to
track the robot and map the environment accurately (see also
Fig. 1). On the contrary, PHD 2.0a and PHD 2.0b diverge as
indicated by the evaluation metrics. The importance density
of PHD 2.0a is computed by conditioning the predicted robot
state to the measurements independently to obtain |Mk| × |Zk|
independent conditional distributions. Thereafter, the GMM is
approximated as a single Gaussian using weighted averaging
to obtain the mean and covariance of the proposal density. The
method is suboptimal since the dependencies between the robot
and landmarks are mostly ignored. PHD 2.0b approximates the
importance density by first finding the joint approximation of the
robot and map, and then by conditioning on the measurements
of a single DA. Although this approach typically yields a more
accurate approximation of the importance density, it is sensi-
tive to data ambiguities, which can cause the filter to diverge,
as illustrated in Fig. 2. The proposal of PHD 3.0 takes data
ambiguity into account by computing the importance density
approximation for multiple DAs resulting in a GMM proposal,

TABLE I
POSITIONING AND MAPPING ACCURACY OF PHD-SLAM WITHOUT

RESAMPLING

which is then used for sampling. As illustrated in Fig. 2, the
proposed filter is able to handle data ambiguities, at for example
samplek = 689, resulting in good performance even when using
just one particle.

In general, the accuracy of RBPF-based SLAM solutions
can be improved using more particles, and Fig. 3 illustrates
the trajectories of 100 independent particles of an exemplar
MCS. As illustrated, PHD 3.0 is able to constrain uncertainty
of the posterior approximation at a much lower level than the
benchmark solutions, which is advantageous when closing large
loops. The proposal used in PHD 2.0a is overly conservative
and the filter is unable to propagate the posterior approximation
accurately over time leading to satisfactory performance. The
proposal of PHD 2.0b utilizes an importance density approxima-
tion similar to the OID improving the performance with respect
to PHD 2.0a. However, wrong DAs increase dispersion of the
particles and the filter requires a high number of particles to
account for data ambiguities. On the contrary, PHD 3.0 is able
to achieve high accuracy already with one particle since the
posterior can be accurately approximated over extended periods
of time and under DA uncertainty. The results with different
number of particles are summarized in Table I and the results
imply that PHD 3.0 has notable benefits with respect to the
benchmark solutions.

The DAs used by PHD 2.0b and PHD 3.0 for approximat-
ing the importance density are explicitly defined so that we
can quantify the accuracy of DA for these two filters. Assign-
ing measurements to correct landmarks is measured using the
true positive ratio (TPR), assigning measurements to clutter
is measured using the true negative ratio (TNR), and value
of one corresponds to perfect DA. For PHD 2.0b, TPR =
0.9223 and TNR = 0.9980, and for PHD 3.0, TPR = 0.9829
and TNR = 0.9984. It is important to note that for PHD 3.0,
the DA assignments are ranked in nondecreasing order of cost,
that is, γ1

k|k−1 ≤ γ2
k|k−1 ≤ · · · ≤ γΓ

k|k−1. PHD 2.0b always uses

the optimal assignment with cost γ1
k|k−1 for approximating the

importance density. On the other hand, PHD 3.0 samples from
the GMM according to the mixture weights κt

k and it is possible
that the optimal assignment with cost γ1

k|k−1 does not result to
the highest weight so that another mixture component is sampled
instead. The main difference of computing γt

k|k−1 and κt
k is the

used prior, γt
k|k−1 is computed using the predicted vehicle pose,

whereas κt
k is computed using the IPL approximation. Thanks

to this subtle but important difference, PHD 3.0 is able to make
correct DAs more frequently, validating the research premise
that the GM-ID is more suited for modeling DA uncertainty.
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Fig. 3. In total, 100 particle trajectories estimated using PHD 2.0a, PHD 2.0b, and PHD 3.0 without resampling. In the figures, the landmarks are illustrated
using ( ) and the ground truth trajectory with ( ). The independent particle trajectories shown with ( ), the most likely hypotheses illustrated using ( ) and
its map estimate portrayed with ( ). (a) PHD 2.0a. (b) PHD 2.0b. (c) PHD 3.0.

TABLE II
PERFORMANCE SUMMARY USING SYNTHETIC DATA

Comprehensive understanding of the underlying uncertainties
supports inference, which in turn can be used to improve the
overall performance of PHD-SLAM as we have demonstrated
above.

2) Filter Performance: Resampling is a crucial step of most
PFs to limit degeneracy of the algorithm [32], and as summa-
rized in Table II, the performance of all filters improves when
resampling is enabled. Most of the particles sampled from the
proposals of PHD 1.0 and PHD 2.0a have an insignificant weight
as indicated by the low ESS and as a result, these filters rely on
resampling at nearly every time step to avoid sample degeneracy.
ESS of PHD 2.0b and PHD 3.0 is significantly higher, and resam-
pling is performed only at a fraction of times, which increases
the probability to close larger loops effectively. In addition,
more efficient use of particles enables the proposed system to
achieve comparative performance and a reduced computational
overhead, or higher accuracy and a comparative run time with
respect to the benchmark PHD-SLAM filters.

To investigate RBPF-based SLAM performance with perfect
DAs, we implement an Oracle RBPF algorithm that knows the
correspondences between measurements and landmarks. The
implemented algorithm is similar to FastSLAM 2.0 [31] with the
difference that the used sampling distribution is replaced with
the IPL-based OID approximation approach [22]. The reason

why we implement FastSLAM 2.0 is that PHD-SLAM does not
offer any advantage over FastSLAM 2.0 if the correspondences
are known since clutter, detections, misdetections, and DAs can
be discarded. The results of the Oracle RBPF are tabulated in
Table II and interestingly, PHD 3.0 nearly achieves the same
performance and the difference between the two diminishes as
N grows. Already with 100 particles, PHD 3.0 and Oracle RBPF
yield comparative tracking accuracy but the mapping accuracy
of PHD 3.0 is worse. The reason is that PHD 3.0 occasionally
has a missed or false landmark in the final map and the GOSPA
metric penalizes heavily for such cardinality errors. For Oracle
RBPF, the cardinality error is always zero since the DAs are
known. Since PHD 3.0 has comparative accuracy to the Oracle
RBPF, it can be concluded that the PHD-SLAM filter combined
with the proposed GM-ID fulfills the objectives of probabilistic
SLAM, that is, accurately estimate the joint posterior density of
the map and robot trajectory.

3) Computational Complexity: Let M = |MFOV| denote the
number of landmarks within the FOV and let us assume
each landmark is associated with a measurement for simplic-
ity. The joint importance density approximation utilized by
PHD 2.0b has complexity O(M3), whereas the partitioned up-
date proposed in this article scales linearly as O(M). Moreover,
the joint approximation requires (dim(x) + dim(m)×M)2 =
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Fig. 4. Filter performance using one particle with the benchmark Victoria Park dataset. The GPS coordinates illustrated using ( ), the estimated trajectory with
( ), and the map estimate portrayed with ( ). (a) PHD-SLAM 2.0a. (b) PHD-SLAM 2.0b. (c) PHD-SLAM 3.0.

(3 + 2 M)2 of memory, which must be allocated dynamically,
whereas the partitioned update only requires 32 + 22 of static
memory. The aforementioned memory requirements are only for
the covariance matrix in (42) and similar memory requirements
also hold for other parameters involved in the importance density
approximation (see Algorithm 1). These beneficial features of
the partitioned IPL importance density approximation yield to
a notable reduction in computational complexity and on av-
erage, the partitioned approximation can be computed in 14.0
μs for a single particle and GM component, whereas the joint
approximation takes 173.4 μs. As a result, even though the
proposed approach considers multiple DAs in the GM-ID, the
overall filtering algorithm is computationally more efficient than
PHD 2.0b, as tabulated in Table II. With respect to PHD 1.0 and
PHD 2.0a, the higher computational cost of PHD 3.0 can be
easily justified since the number of particles can be reduced
notably resulting in a much more efficient algorithm.

B. Victoria Park Dataset

The algorithms are also tested on a benchmark SLAM dataset
collected with an instrumented vehicle covering a distance of
over 4 km in Victoria Park, Sydney [10]. The vehicle is equipped
with a laser rangefinder, encoders, and GPS. The laser scans are
used to obtain range and bearing measurements to nearby trees
and the encoders are used to measure velocity and steering angle
of the vehicle. The GPS is used for evaluation purposes only
and it provides ground truth for the vehicle trajectory, while no
ground truth data are available for the locations of the landmarks.
The reader is referred to [10] and [50] for further details on the
dataset and used models. To make the scenario more challenging,
artificial clutter is added to the original dataset to make the
detection conditions less ideal as in [33]. The clutter measure-
ments follow a Poisson distribution with clutter intensity λ = 5
and the false measurements are uniformly distributed inside the
FOV. In the experiment, the FOV is limited to ± 85◦ scanning
angle and 50 m scanning range, and the detection probability
is approximated using pD = 0.7(1− ‖m̂− xk‖/50) within the
FOV. The filters use Q = diag([12 [m/s]2, ( 4π

180 )
2 [rad/s]2]) and

R = diag([12 [m]2, ( 1π
180 )

2 [rad]2]) for the control and measure-
ment covariances, respectively. To demonstrate the capability of

TABLE III
PERFORMANCE SUMMARY USING THE VICTORIA PARK DATASET

PHD 2.0b and PHD 3.0 to close large loops, the ESS threshold
to perform resampling is set to TESS = 1 for these two filters in
the Victoria Park experiments.

Fig. 4 illustrates a typical estimation result of the filters, and
Table III summarizes performance of the algorithms. The results
are inline with the simulations, PHD 1.0 and PHD 2.0a3 require
a high number of particles to obtain satisfactory performance,
and PHD 2.0b outperforms the two but is prone to diverge if
a low number of particles are used. PHD 3.0 is robust to data
ambiguities and results to the best overall performance. It is
to be noted that correct DA is very challenging in the consid-
ered scenario and PHD 3.0 confronts this difficulty by using
more components in the GM-ID approximation, which increases
computational overhead of the algorithm. However, the small
number of particles required by PHD-SLAM 3.0 translates to a
highly efficient algorithm. While the data acquisition phase in
the Victoria Park dataset required 1549 s, the proposed algorithm
with one particle only takes 2.90 s to run, which is only 0.19%
of the experiment duration.

3The reference implementation of PHD2.0a, which is available at [54], does
not sample the particles according to [35, eq. (51)] but uses the mean of the
importance density instead. In this article, we have implemented PHD2.0a as
presented in [35] and how PFs typically operate, that is, sampling is performed by
drawing random samples from the approximated importance density. In addition,
we have added artificial clutter to the measurements and therefore, the presented
results for PHD 2.0a differ significantly from the ones presented in [35].
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Fig. 5. Sensitivity analysis using the synthetic ( ) and Victoria Park ( )
datasets. (a) RMSE as a function of detection probability. (b) RMSE as a function
of clutter intensity. In (b), the large changes in RMSE for λ ≥ 5 are caused by
a single MCS, which has much higher RMSE with some specific λ values.

C. Discussion

The proposed PHD filter has numerous tuning parameters that
provide a tradeoff between accuracy and computational com-
plexity. These tuning parameters include the gating threshold,
hypotheses pruning parameters, and IPL parameters. We have set
the parameters such that the values provide a good compromise
between accuracy and computational complexity. For example,
increasing Γ̃ improves the accuracy up to some limit, but at the
same time, the computational complexity increases. We have
set the value such that it provides fairly low computational
overhead and still high enough so that the performance cannot
be improved using an even higher value (Γ̃ > 50). The other
tuning parameters behave in the same manner. Either increasing
or decreasing the parameter value improves the accuracy up to
some limit but it also increases the computational overhead. The
values of the other parameters were adjusted to achieve good
filter performance and moderate computational overhead.

There are also models and parameters that are not precisely
known in real-world experiments. As an example, the detection
statistics are unknown for the Victoria Park dataset since it is
a function of the used sensor as well as the environment. In
this work, the detection statistics are approximated using the
probability of detection and clutter intensity parameters. Since
these two parameters are also very central for the PHD filter, we
have analyzed sensitivity of the proposed algorithm to changes
in these parameters for which the results are illustrated in Fig. 5.
As shown, the algorithm is not very sensitive to changes in either
of the parameters and good accuracy is achieved when pD ≥ 0.4
and λ ≥ 5. It is to be noted that in the Victoria Park experiment,
the used model for the detection probability is sufficient to
obtain good accuracy but it has certain limitations since it does
not account for obstructions created by other landmarks and
vegetation. Using more accurate detection statistics, which is
able to take occlusions into account [55], it is possible to further
improve the filter performance, which we will explore in future
research.

The most significant weakness of the proposed algorithm
is inconsistency of the filter, which is mostly caused by lin-
earization errors combined with resampling. The problem is that
whenever resampling is performed, an entire trajectory and map
hypotheses are lost permanently for those particles that are not
selected. This depletes the number of samples representing past
poses and consequently erodes the statistics of the landmark
estimates conditioned on these past poses. After resampling has
been performed enough times, all of the particles will share
a single mutual ancestor and estimate diversity beyond this
point is lost forever. As a consequence, the loss of particle
diversity can prevent a consistent long-term estimate of the joint
RFS-SLAM density. The very same problem is encountered
by FastSLAM [56] and, even though not reported in literature,
other PHD-SLAM filters. To prolong the time-period over which
RBPF-SLAM solutions are reasonably consistent, it is necessary
to reduce the impact of resampling [56], [57]. In this regard,
the proposed algorithm’s ability to constrain uncertainty of the
posterior approximation at a much lower level and the ability to
achieve good performance even without resampling can be seen
as a major advantage.

Most filtering-based SLAM methods have been shown to be
inconsistent [56], [58]. Fundamentally, inconsistency is caused
by the filter’s inability to reflect the unobservable degrees of
freedom of SLAM and the filter tends to erroneously acquire
information along the directions spanned by these unobservable
states [59]. These erroneous updates cannot be undone in the
filtering framework and therefore, more robust SLAM solu-
tions consider the smoothing version of the SLAM problem
instead [7], [8], [27], [28], [29]. A smoothing approach to
SLAM involves not just the most current robot location, but
the entire robot trajectory up to the current time. A significant
advantage of the smoothing approach is that the problem can
be relinearized and wrong DAs can be corrected in the SLAM
front-end. An interesting comparison between PHD-SLAM and
GraphSLAM is provided in [30] in which it is shown that
PHD-SLAM can outperform GraphSLAM in scenarios in which
DA is very challenging. Moreover, the authors also present the
smoothing version of PHD-SLAM called Loopy PHD-SLAM
that combines beneficial properties of both SLAM methods. As
the authors discuss in [30, Ch. 3.3], the PHD-SLAM method is
not very efficient and it would benefit from a better importance
density approximation and the GM-ID proposed in this article
is a good alternative. Moreover, in the GraphSLAM front-end
one needs to solve the DA problem [8] and the method proposed
in this article presents one alternative to model DA uncertainty
and for solving the DA problem.

VII. CONCLUSION

This article presents an MH-ID approximation to improve
the efficiency and robustness of landmark-based SLAM. By
modeling the measurements and landmarks as RFSs, an MH-ID
that incorporates DA uncertainties is derived and a tractable
GM-ID approximation is presented that can be sampled from
in closed form. In the proposed GM-ID, each mixture compo-
nent represents a single DA and the GM representation allows
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incorporating multiple DAs into the importance density approx-
imation. An iterative method based on using generalized SLR
combined with IPL is used to compute parameters of the GM
components and a partitioned update strategy that exploits the
measurement model structure is developed.

Analysis was carried out both in a simulated environment
through MCS and an experimental outdoor Victoria Park SLAM
dataset. Results demonstrated the accuracy and robustness of
the proposed method, as well as, the efficiency of the developed
PHD-SLAM filter. In fact, it is demonstrated that a single particle
is sufficient to generate an accurate map of the environment
even in high clutter scenarios. The newly proposed GM-ID
approximation admits numerous possibilities of future research
into other RBPF-based SLAM approaches or enhancements via
other RFS-SLAM filters. For example, the PMBM filter is ex-
pected to improve the robustness to clutter and data ambiguities,
improving the overall performance even more. Moreover, the
proposed GM-ID approximation could be directly or with small
modifications used in any particle filtering SLAM approach that
utilize an importance density approximation similar to the one
used in FastSLAM 1.0 and 2.0. As an example, Pareja [30] dis-
cussed that the PHD filter for visual SLAM is not very efficient
and the method would benefit using a better importance density.
In future work, the proposed method will be evaluated with other
experimental datasets and the algorithm will be applied to other
SLAM approaches, such as visual SLAM.

APPENDIX

This Appendix provides a more detailed derivation of the ap-
proximation of g(Zk | Z1:k−1,x0:k) used in the approximation
of the MH-ID. First, recall that

g (Zk | Z1:k−1,x0:k)

=

∫
g (Zk | Mk,xk) p (Mk | Z1:k−1,x0:k) δMk.

Next, we plug in (4) for g(Zk | Mk,xk), p(Mk | Z1:k−1,x0:k)
is approximated using (16) and (19), and since the cardinality is
known for each DA, we get

g(Zk | Z1:k−1,x0:k)

=

∫ Γ∑
t=1

exp(−λc)

|Z|∏
j=1

c(zjk)
∏

i:φt,i
k =0

[
1− pD

(
mi | xk

)]

×
∏

i:φt,i
k >0

pD
(
mi | xk

)
g

(
z
φt,i
k

k | mi,xk

)

c

(
z
φt,i
k

k

)

×
Mk∏
i=1

ηik|k−1N
(
mi; m̂i

k|k−1,P
i
k|k−1

)
dm1 . . . dmMk .

Regrouping the landmarks mi from the prior with the mi from
the likelihood and moving terms independent of any mi out of
the integral yields

g(Zk | Z1:k−1,x0:k)

=

Γ∑
t=1

exp(−λc)

|Z|∏
j=1

c(zjk)

×
∫ ∏

i:φt,i
k =0

[
1− pD

(
mi | xk

)]

× ηik|k−1N
(
mi; m̂i

k|k−1,P
i
k|k−1

)

×
∏

i:φt,i
k >0

pD
(
mi | xk

)
g

(
z
φt,i
k

k | mi,xk

)

c

(
z
φt,i
k

k

)

× ηik|k−1N
(
mi; m̂i

k|k−1,P
i
k|k−1

)
dm1 . . . dmMk .

Noting that any landmark mi is either detected (φt,i
k > 0) or

misdetected (φt,i
k = 0), the integral over the products can be

written as

g(Zk | Z1:k−1,x0:k)

=

Γ∑
t=1

exp(−λc)

|Z|∏
j=1

c(zjk)

×
∏

i:φt,i
k =0

∫ [
1− pD

(
mi | xk

)]

× ηik|k−1N (mi; m̂i
k|k−1,P

i
k|k−1) dm

i

×
∏

i:φt,i
k >0

∫ pD
(
mi | xk

)
g

(
z
φt,i
k
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)

c

(
z
φt,i
k

k

)

× ηik|k−1N
(
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i
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)
dmi.

Finally, rearranging the integrals yields

g(Zk | Z1:k−1,x0:k)

=

Γ∑
t=1

exp(−λc)

|Z|∏
j=1

c(zjk)

×
∏

i:φt,i
k =0

ηik|k−1

∫ [
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(
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(
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×
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k

)
∫

pD
(
mi | xk

)
g

(
z
φt,i
k

k | mi,xk

)

×N
(
mi; m̂i

k|k−1,P
i
k|k−1

)
dmi

which is (36).
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