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Evidence for saprotrophic digestion of glossopterid pollen from
Permian silicified peats of Antarctica

STEPHEN MCLOUGHLIN!, OLENA A. SHEVCHUK"?, MEGAN M. WINDELL'?> &
BEN J. SLATER*

' Department of Palacobiology, Swedish Museum of Natural History, Stockholm, Sweden, > Paleogenetics Centre of Stockholm
University, Stockholm, Sweden, >Department of Physical Geography, Stockhobm University, Stockholm, Sweden,
*Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden

Abstract

Wind-blown pollen (pollen rain) is a major contributor to element cycling in modern forests and aquatic ecosystems,
particularly in high-latitude and acidic settings where nutrients are a limiting factor. The rich package of proteins,
nitrogen and phosphorus residing within pollen is, nonetheless, inaccessible to most organisms, owing to the indigestible
sporopollenin walls. Saprotrophic breakdown by fungi, and some non-fungal microorganisms, can make nutrients
bioavailable, and represents a key trophic link in element cycling and the transfer of organic carbon. Little is known
about when micro-saprotrophs first adapted to exploit pollen, thus establishing this crucial step in the evolution of
modern terrestrial ecosystems. One approach is to examine the rich fossil record of palynomorphs. Here we describe
translucent bodies referable either to fungi (Chytridiomycota) or water moulds (Oomycetes) within the pollen of
glossopterid gymnosperms and cordaitaleans, and fern spores from silicified Permian (Guadalupian—Lopingian) peats of
the Toploje Member, Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. These probable holocarpic
thalli or oospores exploited the nutrient-rich microgametophyte tissue of dispersed miospores in high-palaeolatitude
wetlands. The exceptional preservation of fossil microorganisms in permineralised peats offers insights into the deep-time
evolution of intimate ecological relationships, otherwise known only among extant biotas. Permineralisation has preserved
sub-micron details of these delicate and cryptic saprotrophs that likely played key roles in cycling nutrients in the acidic
forest mires of the Permian. Our study reveals that the extensive recapture of spore/pollen-derived nutrients via
saprotrophic digestion was already at play in the high-latitude ecosystems of the late Palaeozoic.

Keywords: Chytridiomycota, oomycetes, Prince Charles Mountains, Bainmedart Coal Measures, Guadalupian,
Lopingian, saprotrophy, permineralised peat, Glossopteridales, nutrient cycling

Substantial volumes of pollen are shed by many
plants during their reproductive cycle, yet only a min-
iscule fraction of these dispersed grains are ever
involved in the fertilisation of ovules and generation
of new plant offspring. The remainder -either
become entrained among the plant litter and soils,
or are washed into freshwater aquatic and marine
environments. In principle, this ‘pollen rain’ is a sig-
nificant resource—especially for nutrients, such as

nitrogen and phosphorus—that is available to any
heterotrophic organisms able to capture it (Stark
1972; Greenfield 1999). The notoriously recalcitrant
sporopollenin walls of pollen grains, however, makes
the digestion of pollen a challenge, as attested to by
the rich fossil record of intact spores and pollen.
Several clades of saprotrophic fungi and fungus-like
organisms are, nevertheless, able to degrade and
digest pollen and spores, enabling the liberation of
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these nutrients into the food web (Hutchison &
Barron 1997; Perez-Moreno & Read 2001; Rosel
et al. 2012; Magyar et al. 2018; Manirajan et al.
2018). Pollen that enters the soil is unlikely to be
involved in reproduction and is essentially ‘lost’ to
the parent plant—yet recapture of these nutrients
via mycorrhizal fungal digestion of pollen facilitates
the recycling of otherwise lost pollen resources,
enabling plants to sustain greater yields of wind-
dispersed pollen in the first case (Perez-Moreno &
Read 2001). Despite this importance, surprisingly
little is known about when these crucial processes
first evolved, or how they have changed over
macroevolutionary time as terrestrial ecosystems
developed. This is in spite of the rich archives of
pollen and spores available among the fossil record
of palynomorphs.

In this study, we document exceptionally well pre-
served remains of silicified Permian (c¢. 260 Ma)
pollen and spores that apparently show evidence of
saprotrophic attack by microfungi or other microor-
ganisms. Specifically, we document fossilised
fungus-like remains that appear to have had a special-
ised relationship to pollen of the iconic Permian glos-
sopterid seed plants.

Fungi and oomycetes have a surprisingly rich fossil
record in Antarctica owing to their representation in
an extensive record of fossil leaves, woods and permi-
neralised peats preserved in Permian to Paleogene
strata (Jefferson 1982; Stubblefield et al. 1987;
White & Taylor 1991; Weaver et al. 1997; Cantrill
& Falcon-Lang 2001; Falcon-Lang & Cantrill
2002; Garcia Massini 2007a, 2007b; Slater et al.
2013, 2015; Harper 2015; Hieger et al. 2015;
Pujana et al. 2015; Harper et al. 2016, 2017;
McLoughlin 2020). Antarctic Permian records
derive primarily from a single Capitanian—Wuchia-
pingian permineralised peat in the Prince Charles
Mountains (Slater et al. 2013, 2015) and several
Changhsingian silicified peats in the Transantarctic
Mountains (Harper 2015; Harper et al. 2016, 2017).

The fossil remains of fungi and fungus-like organ-
isms are abundant in a layer of siliceous perminera-
lised peat (chert) exposed near Radok Lake in the
Prince Charles Mountains, MacRobertson ILand,
East Antarctica (Slater et al. 2013, 2015; de Anca
Prado & McLoughlin 2020). These are entombed
within the chert along with a modest range of three-
dimensionally preserved roots, wood and leaves of
glossopterid gymnosperms (Neish et al. 1993;
Weaver et al. 1997), cordaitaleans (McLoughlin &
Drinnan 1996), isoetalean lycopsids (Slater et al.
2011; McLoughlin et al. 2015) and various unde-
scribed ferns (McLoughlin et al. 1997; Lindstrom

& McLoughlin 2007). In addition, coprolites and
various fossil herbivory, detritivory and saprotrophy
traces record a broad range of ecological interactions
in the original mire community (Weaver et al. 1997;
Slater et al. 2012). High abundances of charcoalified
plant remains within the permineralised peats indi-
cate the prevalence of wildfire in these high-latitude
Permian glossopterid-dominated forest mires,
despite the presumably ever-wet conditions during
peat accumulation (Slater et al. 2015; Mays &
McLoughlin 2022). This palacobiota plays an impor-
tant role in understanding the structure of high-
palaeolatitude mire ecosystems close to the end-Gua-
dalupian and end-Permian mass extinction events
and can be related to fossil assemblages preserved
in similar-aged permineralised peats in eastern Aus-
tralia (Gould & Delevoryas 1977; Pigg & McLough-
lin 1997; McLoughlin et al. 2018, 2019) and the
Transantarcic Mountains (Taylor & Taylor 1989).
Fungi play a primary role in the decomposition of
organic remains and the recycling of carbon, nitrogen
and other nutrients in both continental and marine
ecosystems. Fungi are primarily saprotrophs or para-
sites, but many are also involved in symbiotic, mycor-
rhizal, associations with plants. Many fungal groups
have special mutualistic or parasitic associations
with individual plant taxa. Fungi have a patchy
fossil record in permineralised deposits (Taylor
et al. 2015b), as organic films on plant remains
(McLoughlin et al. 2021), and as dispersed acid-
resistant hyphae and spores in palynoassemblages
(Elsik 1981; Shevchuk 2010; Gibson 2022).
Chytrid fungi (Chitridiomycota) include both
saprotrophic and parasitic forms. Parasitic chytrids
primarily infect algae, dinoflagellates and other
eukaryote and prokaryote microbes, but some are
known to target land plants and, particularly, dis-
persed pollen and spores (Skvarla & Anderegg
1972; Taylor et al. 2015b). Chytrids are mostly
aquatic (both marine and freshwater) or are confined
to moist soils and peats. They are considered to play
an important role in the ecology of marine settings,
lakes, wetland ecosystems, moist soils and temporary
forest ponds (Gleason et al. 2008; Davis et al. 2016;
Fernandez-Valero et al. 2023; Hanrahan-Tan et al.
2023) and range from equatorial to polar regions
and oceans to alpine settings (Webster & Weber
2007; Nakanishi et al. 2023). They are able to
degrade particularly robust organic materials, such
as sporopollenin, keratin, chitin and cellulose.
Oomycetes (Stramenopiles) constitute a distinct
lineage of heterotrophic organisms, commonly
referred to as water moulds. Although not true
fungi, they possess fungus-like hyphae, reproduce



both sexually and asexually, have saprotrophic or
parasitic habits, and include forms that are pathogens
on many fish, amphibians and crop plants. Like chy-
trids, some oomycetes are known to target dispersed
pollen and are able to penetrate the robust sporopol-
lenin wall (Stoyneva et al. 2013). Both chytrids and
oomyecetes are candidates for producing the spherical
biotic structures found within Permian pollen grains
from Antarctica.

This study aims to document the distribution and
abundance of enigmatic pollen-hosted fungus-like
bodies in the permineralised peat biota of the
Amery Group, Prince Charles Mountains. We
describe the characters of these fossil microbes and
their host pollen and spores, and offer hypotheses
as to their taxonomic affinities and ecological roles
in the palaeoecosystem.

Geological setting

The studied material derives from multiple sites along
the exposure of a 30—40-cm-thick permineralised (sili-
cified) peat layer capping the uppermost coal bed
within the middle Permian Toploje Member of the
Bainmedart Coal Measures, northern Prince Charles
Mountains, Antarctica (Figure 1A-E). The silicified
peat is exposed over a strike length of around 3 km
and grades laterally into silicified sandy palaeosols
(northward) or non-silicified coals (southward). The
fossiliferous layer represents an accumulation of auto-
chthonous and parautochthonous organic detritus
from a glossopterid-dominated forest-mire commu-
nity (Slater et al. 2015). The peat bed is sharply, but
conformably, overlain by lacustrine sideritic shales
and sandstones of the Dragons Teeth Member (Field-
ing & Webb 1996). The source of the silica involved in
the permineralisation process remains ambiguous,
since there are no volcanogenic sediments associated
with the deposit. Intense silicification might have
derived from hydrothermal fluids emerging from
nearby graben-margin fault systems (e.g. the Amery
Fault) during basin subsidence.

The Toploje Member occurs in the lower part of
the roughly 3-km-thick continental sedimentary suc-
cession constituting the Amery Group preserved
within the Lambert Graben of East Antarctica
(Figure 1A: Fielding & Webb 1995, 1996;
McLoughlin & Drinnan 1997a, 1997b). During the
middle Permian, this basin was located in the
central part of Gondwana (MclLoughlin 2001)
where subsidence was initiated via intracontinental
rifting that created crustal weaknesses that were sub-
sequently exploited during the mid-Mesozoic by tec-
tonic forces that led to Gondwanan continental
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breakup (Harrowfield et al. 2005). During the
middle to late Permian, the Lambert Graben was
located at around 65-70°S (Torsvik & Cocks
2013)—in roughly equivalent palaeolatitudes to its
present location.

The upper bed of the Toploje Member was earlier
assigned a Roadian—Wordian (middle Permian: early
to middle Guadalupian) age via palynostratigraphic
correlation to the Australian Didecitriletes ericianus
Zone, especially based on the presence of the index
taxon Didecitriletes ericianus (Balme et Hennelly)
Venkantachala et Kar, and the occurrence of Camp-
totriletes warchianus Balme, typical of the Dulhuntyis-
pora parvithola Zone, in the immediately overlying
Dragons Teeth Member (Lindstrom & McLoughlin
2007). However, recalibration of the palynozonation
scheme by high-precision U-Pb CA-IDTIMS dating
of zircons from tuff beds in eastern Australian basins
(Laurie et al. 2016) now suggests that the upper part
of the Didecitriletes ericianus Zone may extend up to
the Capitanian or Wuchiapingian.

Material and methods

Around 100 thin-sections (ground to thicknesses of
50 um) and cellulose actetate peels (c. 20-30 um
thick) were prepared from the chert (silicified peat)
blocks following the procedures of Hass and Rowe
(1999) and Galtier and Phillips (1999). Pollen and
spores containing fungal bodies were detectable in
both the cellulose acetate peels and thin-sections.
The pollen and enclosed fungi were generally more dis-
tinct in thin sections, but some features of the dark
fungal walls were clearer in the thinner acetate peels.
All microscopy slides and parent rock samples are
housed in the collections of the Palacobiology Depart-
ment, Swedish Museum of Natural History (NRM),
Stockholm, Sweden, prefixed S, and the Common-
wealth Palaeontological Collections, Geoscience Aus-
tralia, Canberra, Australia, prefixed CPC. Specimens
were photographed with an Olympus BX-51 com-
pound transmitted light microscope equipped with an
Olympus DP-71 digital camera. Microscopic features
were measured using CellSens© Dimension version
1.6 (Olympus Soft Imaging Systems, Minster,
Germany). For enhanced clarity of anatomical fea-
tures, photomicrographs from multiple focal planes
were aligned and stacked into focused composite
images using Adobe Photoshop (Adobe Inc.) software.

Results

Numerous dispersed bisaccate pollen from eight sites
along the exposure of the permineralised peat bear up
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Figure 1. Stratigraphic and geographic sources of the studied material. A. Stratigraphy of the Amery Group showing the position of the
sampled bed (dot). B. Location of the Prince Charles Mountains (box) in east Antarctica. C. Location of the Amery Oasis (box) in the
Prince Charles Mountains. D. Location of the Radok Lake area (box) within the Amery Oasis. E. Geological map of the Radok Lake
area showing the locations of the studied samples (black dots). Map modified from McLoughlin et al. (2015), and ages of stratigraphic
units recalibrated after Laurie et al. (2016).
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Figure 2. Illustrations of chytrid- or oomycete-like remains within bisaccate glossopterid pollen (A-T), monosaccate cordaitalean pollen (U, V)
and a trilete fern spore (W) preserved in permineralised peat from the uppermost bed of the Toploje Member, Bainmedart Coal Measures,
Amery Group (Type 1 bodies in A-T; Type 2 bodies in U-W). A. Two spherical bodies with weakly reticulate ornamentation in pollen
corpus; PCM2B; S089895-01. B. Eight smooth bodies in corpus of obliquely sectioned pollen grain; PCM3; S089923-01. C. Eight smooth
bodies in pollen corpus; PCM3B; S089909-01. D. Bodies with weakly ridged (reticulate?) ornamentation in pollen corpus; PCMS;
S088064(A)-02. E. Four smooth elliptical bodies in pollen corpus; PCM1; S088061-02. F. Bodies of varied size in corpus of pollen in
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oblique section; PCM3B; S089909-01. G. Aggregation of small bodies on one side of pollen corpus; arrow indicates infraexinal ramifications
extending towards, but not filling, saccus chamber; PCM2B; S090342. H. Solitary body in pollen corpus; PCM2B; S089895-01. I. Solitary
body with pore and possible bore and tubular extension in pollen corpus (arrowed); PCM3B; S089909-01. J. Elliptical body in pollen
saccus; PCM2C; S090344. K. Six bodies in corpus of degraded pollen; PCM8; S088064(A)-02. L. At least ten small bodies in pollen
corpus; PCM3B; S090343. M. Two bodies in pollen corpus; PCM1; S089892-02. N. Solitary smooth cleft body in pollen corpus; PCM3B;
S090343. O. Solitary body with crescentic fracture in pollen corpus; PCM1; S124943-02. P. Smooth-walled and cleft bodies in pollen
corpus; PCM2B; S088072-03. Q. Thin-walled bodies in pollen corpus; PCM3B; S089909-01. R. Ragged bodies in pollen corpus;
PCM2B; S088072-03. S. Spherical bodies, one with possible pore and tubular extension (arrowed) in pollen corpus; PCM2B; S088072-03.
T. Elliptical to irregularly distorted bodies in pollen corpus; PCM2A; S090345. U. Large dark body in pollen centre; PCM3; S089923-01.
V. Thin-walled degraded body in centre of pollen grain; PCM1; S088061(A)-03. W. Large spherical body with darkened rim in spinose

spore; PCM1; S089892-02. Scale bars — 20 um. A-C, E-W = thin sections; D = cellulose acetate peel.

to ten spherical darkened bodies within individual
corpi (Figure 2A-I, K-T) and, less commonly, in
the sacci (Figure 2]). A few similar bodies were
noted in other (e.g. monosaccate: cf. Cannanoropollis
sp.) pollen grains (Figure 2U, V) and within trilete
fern spores (e.g. Didecitriletes ericianus [Balme et Hen-
nelly] Venkatachala et Kar: Figure 2W). Rare
examples of similar structures also occur around frag-
mentary organic matter dispersed within the peat
matrix.

The most common pollen types hosting these
spherical remains in the assemblage are bisaccate,
haploxylonoid to weakly diploxylonoid forms refer-
able to the Protohaploxypinus limpidus — Protohaploxi-
pinus  amplus —  Striatopodocarpites  cancellatus
complex (see Lindstréom et al. 1997), with corpus
and saccus lengths of 19-50 um, corpus widths of

35-47 um, saccus widths of 12-40 um and total
widths of 47-107 um. Infraexinal ramifications
extend interiorly from the exine but do not fill the
sacci, leaving broad cavities (Figures 2G arrow, H,
], 3D). Taeniate bisaccate pollen grains of this type,
lacking any fungal contents, are dispersed extensively
within the same peat layer (Figure 3A-E).

Invasive bodies contained within the corpus or
sacci of pollen grains appear to belong to at least
two forms based on shape, gross dimensions, wall
density and number of enclosed bodies. Type 1
bodies are primarily spherical or slightly elliptical,
hollow, with diameters of 5-25 um (average 13 um),
and of variable opacity. In rare cases, these bodies
are contracted and oblong or have less regular
shapes (Figure 2T). Type 1 bodies have a robust
wall ¢. 0.5-1 pm thick with a smooth (Figure 20-S)

Figure 3. Typical taeniate bisaccate glossopterid pollen (lacking fungus-like inclusions) attributable to the Protohaploxypinus limpidus—Pro-
tohaploxypinus amplus—Striatopodocarpites cancellatus complex extracted by acid dissolution (Lindstréom et al. 1997) from the permineralised
peat of the uppermost bed of the Toploje Member, Bainmedart Coal Measures, East Antarctica. A. Light micrograph of Protohaploxypinus
limpidus-type pollen in polar view with haploxylonoid amb; PCM3B; CPC34338. B. Scanning electron microscopy image of Striatopodocar-
pites cancellatus-type pollen with taeniate corpus; PCM3B; CPC34305-01. C. Striatopodocarpites-type pollen with darkened corpus; PCM 1;
S089892-02. D. Section through pollen grain in equatorial view showing hollow sacci; PCM2A; S090345. E. Striatopodocarpites-type pollen
in distal polar view showing dark-rimmed leptoma: PCM1; S088061-02. Scale bars — 10 pm.



to weakly reticulate or ridged (Figure 2A, D) surface.
Apart from the weak ornamentation on some speci-
mens, there are no discernible structural components
within the fungal body wall. A single pore (1-2 pm
diameter) and, in some cases, a narrow (2 pum
wide), short (6-15 um long), hyphal extension is
evident in a few specimens (Figure 2I, S arrowed).
Several bodies bear desiccation cracks or fractures
in the wall (Figure 2N-P). The fungal bodies are
commonly clustered within the corpus (Figure 2B)
and, in some cases, located close to the corpus wall
(Figure 2G). However, they do not occur in a regi-
mented arrangement, and some occur markedly iso-
lated from others (Figure 2P, Q).

Type 2 bodies (Figure 2T-W) occur centrally
within both monosaccate pollen (48-72pum in
maximum dimensions) and trilete spores (54—
57 um in equatorial diameter). These fungus-like
bodies are circular to elliptical, large (30-40 um in
maximum dimensions), thin- to thick-walled (c.
0.3-1.5 um thick) and strongly (Figure 2V, W) to
weakly (Figure 2T) translucent. No pores or hyphal
remains were identified in these specimens.

Occurrences of infected pollen among the samples
are relatively common. A survey of thin-sectioned
peat blocks taken from eight sites along the outcrop
of the permineralised peat revealed modest variation
(10.4-23.3% based on counts of 30500 grains per
sample) in the proportions of pollen grains hosting
fungus-like bodies within the palaeomire complex
(Table I). Various other hyphae and reproductive
structures of fungi and oomycetes were detected in
the silicified peat profiles, but none could be phys-
ically linked to those preserved within the pollen
and spores.

Table I. Percentage of dispersed pollen/spores in the
permineralised peat containing fungus-like bodies in the corpus or
sacci segregated by sampling locality (Figure 1E). Total counts
represent all available dispersed miospores counted in the
representative slide, constituting a total of 1274 grains studied
from the peat bed.

Percentage of pollen/ Number of dispersed

Sampling spores containing fungus- pollen/spores
locality like bodies counted
PCM1 22.8 145
PCM2A 14.6 321
PCM2B 10.4 67
PCM2C 19.9 146
PCM3B 14.6 501
PCMS8 21.9 32
PCM9 23.3 30
PCM15 12.5 32

Saprotrophic digestion of glossopterid pollen 9

Discussion
Affinities of palynomorph inclusions

Fungi and fungus-like organisms have various
relationships to spores and pollen, from degradation
of sporopollenin walls (a habit that forms character-
istic crater-like scarring; Srivastava et al. 1999), to
penetration and exploitation of pollen contents as a
nutrient source (Perez-Moreno & Read 2001;
Marques et al. 2013; Kagami et al. 2017). Some
extant ascomycote fungi (e.g. Reriarius) have even
been documented to produce erect hyphae or
conidia specially adapted to capture and parasitise
viable wind-borne pollen grains in the phyllosphere
(Olivier 1978; Magyar et al. 2017).

Our results show infestation of the corpi of bisac-
cate pollen to be relatively common in the middle—
upper Permian peat deposits of East Antarctica.
The great majority of infected palynomorphs are
bisaccate pollen of more-or-less identical dimensions
and morphology. Although taeniae are rarely evident
on those pollen containing inclusions, owing to the
plane of section passing through the centre of the
corpus, these grains are consistent in all other
respects with the Protohaploxypinus limpidus—Protoha-
ploxipinus  amplus—Striatopodocarpites  cancellatus
complex (Figure 3A—E; Lindstrom et al. 1997) pro-
duced by glossopterid gymnosperms (McLoughlin
& Prevec 2021). Permian pollen from India bearing
equivalent dark bodies have been assigned previously
to a broad range of taxa including Striatopodocarpites,
Faunipollenites, Ibisporites, Platysaccus and Scheuringi-
pollenites (Tiwari & Kumar 2002; Aggarwal et al.
2015). However, we consider nearly all of those pre-
viously illustrated forms to represent variably orien-
tated, folded and compressed specimens consistent
with the Prowohaploxypinus hmpidus—P. amplus—
Striatopodocarpites cancellarus complex, meaning that
the Indian examples also likely represent sapro-
trophic fungal infestation of glossopterid pollen.
The only exception to this is a monosaccate grain
figured by Aggarwal et al. (2015, figure 3C) and
assigned to Barakarites enclosing at least four
darkened bodies. We noted two monosaccate
(Cannanoropollis-type) pollen grains in the Toploje
Member peat that contain single large darkened
(Type 2) bodies. Permian monosaccate pollen from
Gondwana is generally considered to be affiliated
with cordaitaleans or conifers (Pant 1982; Archan-
gelsky & Cuneo 1987; Balme 1995). Two examples
of possible fungus-like inclusions within spinose
fern spores (both Didecitriletes ericianus) in the
Antarctic material further suggests that microbial
saprotrophy may have targeted a broader array of
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palynomorphs, though glossopterids represent the
overwhelming majority of pollen subject to degra-
dation. The percentage of palynomorphs infected
by fungus-like bodies in samples from the Toploje
Member peat (¢. 10-23%) is generally higher than
that (2-14%) recorded by Aggarwal et al. (2015),
however, the Indian palynoassemblages probably
represent pollen and spores derived from a broader
fluvial catchment area. Palynoassemblages from the
Lopingian of Europe dominated by bisaccate
conifer pollen reveal strongly variable infection
rates by fungus-like bodies of < 1% to 27.5%
(Gibson 2022).

Fungi and bacteria that primarily attack pollen or
other plant cell walls typically leave stereotypical
crater-, chamber- or tunnel-like damage features
that are commonly aggregated (Daniel & Nilsson
1988; Maheshwari & Bajpai 1996; Srivastava et al.
1999; Nilsson & Bjordal 2008; Philippe et al.
2022). Given the attached hyphae and substantial
size of the spherical bodies preserved inside the
pollen grains, we exclude their affiliation with bac-
teria or other prokaryotes. Nor are the regular spheri-
cal shapes of these bodies consistent with the
contracted remnants of microgametophyte tissues
(Vijaya & Meena 1996). We interpret these bodies
to have fungal or fungus-like affinities based on
their size, shape, robust walls, and rare pores or
emergent hypha-like filaments. In agreement with
Aggarwal et al. (2015), we interpret the solitary
pores and rare filaments attached to these bodies as
pre-formed discharge pores or tubes of some sapro-
trophic or parasitic fungus, or fungus-like organism.
Several similar types of remains have been reported
previously from late Permian glossopterid pollen in
both dispersed palynological assemblages from
India (Vijaya & Meena 1996; Aggarwal et al. 2015)
and within permineralised peats from the Transan-
tarctic Mountains (Harper 2015; Harper et al.
2016) and these likely have the same affiliation.

Chytridiomycota represents one of the earliest
diverging lineages of fungi (Li et al. 2021) and this
group is atypical for fungi in reproducing via flagel-
late zoospores produced via mitosis. Sparse sexual
reproduction generates a zygote that is held in a
resting spore or cyst that aids survival through
adverse environmental conditions. Given their
common association with modern pollen, the
Permian fossils are possibly affiliated with Chytridio-
mycota as suggested by Aggarwal et al. (2015).
However, most putative fossil chytrids are inter-
preted to represent zoospores attached to the outer
surface of spores or pollen, or =zoosporangia
embedded within the spore-pollen wall (Taylor

et al. 2015a) based on comparison with extant Chy-
tridomycota that attack pollen (e.g. Skvarla & Ander-
egg 1972). Some modern chytrids, particularly those
that infect Pinus pollen, also produce a globose spor-
angium within the corpus (Ubelmesser 1956). In the
fossil record, there is at least one example of chytrid
endobiotic sporangia containing zoospores within
the corpus of the Pennsylvanian cordaitalean pollen
Sullisaccites (Millay & Taylor 1978), and similar fea-
tures have been illustrated in Gondwanan Permian
monosaccate pollen (Foster 1979, pl. 22, figure 7).
Owing to the morphological simplicity of these struc-
tures (Taylor et al. 2015b) and overall paucity of
characters, it is inherently difficult to determine the
lower-order taxonomic affinities of these organic
microfossils with any precision.

Impediments to a confident assignment to Chytri-
diomycota are also posed by possible affinities to
other fungi-like groups, in particular Hyphochytrio-
mycetes and Oomycetes. These groups all have
representatives that produce morphologically simple
reproductive bodies or resting cysts (Barr 1970;
Marano & Steciow 2006; Taylor et al. 2015b). In
many cases, where fossil specimens lack diagnostic
connections with hyphal, zoospore or oogonia
remains, it is currently not possible to distinguish
which particular groups the fossils belong to
(Taylor et al. 2015b). The dark spherical bodies
found inside glossopterid pollen are preserved
within the corpus (or more rarely the sacci) and
may, plausibly, represent oomycete holocarpic thalli
or oospores similar to those of the extant endobiotic
parasite Ducellieria chodarii (F. Ducell.), which are
known to occur in clusters within modern Pinaceae
pollen (Hesse et al. 1989; Stoyneva et al. 2013; see
also figure 1A of Buaya & Thines 2023). In typical
Ducellieria, a zoospore bearing two laterally inserted
flagella settles on a pollen grain, penetrates the wall
layers and develops as an internal spherical to ovoid
holocarpic thallus/zoosporangium. After maturation,
many new protoplasmatic units are then released
through one or more short discharge tubes and go
on to form a new Ducellieria aggregate that generates
new zoospores. It is not uncommon for multiple
zoospores to infest a single pollen grain. After many
cycles, and where several zoospores penetrate a
pollen grain, sexual reproduction may occur, and
an oosporangium with a single, smooth, thick-
walled resting spore (oospore) is developed (Hesse
et al. 1989; Stoyneva et al. 2013). Indeed, a new
order of obligate endobiotic pollen-parasitic oomy-
cetes has recently been recognised and established
as ‘Ducellieriales’ (Buaya & Thines 2023), compris-
ing the known species D. chodari (Ducellier)



Teiling, D. tricuspidata (Borge) Teiling, and
D. corcontica Matula. Although we did not detect
any contents within the invasive bodies, their spheri-
cal shape, thick, smooth or weakly sculptured walls,
single aperture with a short extension, and multiple
occurrences within the corpus has strong parallels
with the holocarpic thalli/oosporangia and/or oos-
pores of Ducellieria-type oomycetes. It is worth
noting that there is an extensive fossil record of
such fungal and oomycete interactions with spores
and pollen extending back to the very dawn of land
plants (Taylor et al. 2015b).

Saprotrophic digestion of pollen in modern and ancient
ecosystems

Pollen accumulations represent a substantial portion of
the nutrients potentially available in many terrestrial
and aquatic ecosystems (Hutchison & Barron 1997).
Nevertheless, the resilient sporopollenin walls of
pollen makes these dispersed nutrient-rich grains
essentially indigestible or difficult for other organisms
to access the contents. However, saprotrophic chytrids
degrade pollen, and thereby make the nutrients locked
within the microgametophyte bioavailable (Phuphu-
mirat et al. 2011). This is particularly important in
modern freshwater aquatic settings (Masclaux et al.
2011; Rosel et al. 2012; Wurzbacher et al. 2014;
Kagami et al. 2017; Page & Flannery 2018), where
chytrid breakdown of pollen means that the contents
become available as a significant food resource for
aquatic invertebrates, especially immature crustacean
zooplankton (e.g. Daphnia), benefiting their growth
and eventual reproductive capacity (Gleason et al.
2008). A comparable process with consumption by
zooplankton has also been documented where pollen
is dispersed into marine habitats (Pawlik & Ficek
2023). Significantly, the higher proportions of sapro-
troph-like inclusions within bisaccate fossil pollen
described here may reflect a trend that has been
observed in extant ecosystems: when entrained in
water, most pollen sinks rapidly, yet wind-dispersed
bisaccate pollen possessing air-sacs tends to float, or
sink more slowly, allowing time for exposure to coloni-
sation by fungal pathogens (e.g. chytrid fungi) in the
water column (Hopkins 1950; Kagami et al. 2017). It
is plausible that a similar process was at play during
the Permian, whereby annual shedding of glossopterid
pollen in Gondwanan high-latitudes provided an injec-
tion of nutrients, organic carbon, and a burst of fungal
zoospores that enriched surrounding soils and lacus-
trine trophic systems. Indeed, the peats of the Bainme-
dart Coal Measures have been hypothesised to be
derived from ombrotrophic Permian mires (Slater
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et al. 2015). In recent (Holocene—present) rainwater-
fed mires of this kind, pollen has been shown to be
an important component of the available nutrient
supply (Shumilovskikh et al. 2015).

Oomycetes are also important saprotrophs and
parasites in modern marine, freshwater and moist
terrestrial environments (Masigol et al. 2019).
Aquatic fungi and fungus-like organisms are
especially important in regulating nitrogen and phos-
phorus in modern acidic wetlands (Gulis et al. 2006;
Dileo et al. 2010; Krauss et al. 2011). Modern
groups of oomycetes and fungi also have mechanisms
for metal avoidance and tolerance (Krauss et al.
2011) that, if analogous in their ancient relatives,
might provide insights into the chemistry of the
ancient mire—lake system that was entombed by
silica in the Prince Charles Mountains area.

The fairly common occurrence of chytrid- or
oomycete-like remains in the dispersed pollen of
the Toploje Member peat, and in non-marine depos-
its of India, the Transantarctic Mountains, and
northwest Europe (Gibson 2022) suggests that
these organisms were important contributors to
nutrient recycling in middle-late Permian wetland
communities across Gondwana and in Northern
Hemisphere lowland settings. Tracking the first
occurrences of such pollen—fungi/oomycete associ-
ations in the fossil record should provide insights
into when saprotrophic chytrids/oomycetes evolved
to exploit pollen in deep time, and how this impacted
nutrient flow in continental ecosystems.

Conclusions

This study builds upon the range of known fossil
organisms preserved in the Amery Group perminera-
lised peat, and the interactions represented in the
middle to late Permian high-palaeolatitude mire
community. Significantly, this study highlights the
importance of permineralised peats in preserving
very small and delicate saprotrophic/parasitic organ-
isms that provide a window into the composition of
the cryptic components of ancient terrestrial ecosys-
tems. The ancient chytrid- or oomycete-like organ-
isms documented here were clearly important
decomposers of robust glossopterid pollen grains,
along with cordaitalean pollen and the spores of
some ferns. This saprotrophic relationship,
common in modern high-latitude forests where
pollen production is high, appears to have already
evolved by the late Paleozoic, and was likely a key
part of the trophic structure within the consistently
moist high-latitude mires that once covered much
of Gondwana. Regardless of the affinities of these
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saprotrophs (fungal or fungus-like oomycetes), they
clearly represent organisms that fed on the nutrient-
rich contents of the plant microgametophyte and
were important for recycling organic nutrients in
the acidic forest-mire ecosystem.
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