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Abstract. Image monitoring and guidance during medical examina-
tions can aid both diagnosis and treatment. However, the sampling fre-
quency is often too low, which creates a need to estimate the missing
images. We present a probabilistic motion model for sequential medical
images, with the ability to both estimate motion between acquired im-
ages and forecast the motion ahead of time. The core is a low-dimensional
temporal process based on a linear Gaussian state-space model with ana-
lytically tractable solutions for forecasting, simulation, and imputation of
missing samples. The results, from two experiments on publicly available
cardiac datasets, show reliable motion estimates and an improved fore-
casting performance using patient-specific adaptation by online learning.

Keywords: Image registration - Online learning - Dynamic proba-
bilistic modeling.

1 Introduction

Sequential imaging during medical interventions, so-called intra-interventional
imaging, appears in several medical examinations. In cardiology, diagnostic de-
cisions may be supported by cardiac ultrasound or cardiac MRI by acquiring
images of the heart over one or several cardiac cycles [i]. In MR-guided radio-
therapy [21], 2D cine MRI is used to monitor moving tumors and organs at risk
during ongoing treatment sessions. This enables controlling and adapting the
treatment beam [I3].

A common desire is to identify the anatomical motion from a static refer-
ence image to each subsequent image in the temporal sequence. This enables
transferring segmentations (e.g. organs) identified in the reference image and
estimating their location in the sequence. Finding the corresponding deforma-
tion field is the main goal of motion estimation. Of particular interest are dif-
feomorphic deformations, which are topology-preserving and ensure one-to-one
mapping between the pixels/voxels in the two images. Examples of conventional
diffeomorphic image registration methods are Large Deformation Diffeomorphic
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Metric Mapping [5] and symmetric normalization [3]. Recently, deep learning
image registration methods [i5, 25] have shown fast and accurate performance
in motion detection and organ tracking by removing the iterative optimization
procedure from inference time and solving tasks in nearly real-time. However,
image registration methods do not consider the sequential nature of an image
sequence and estimate the motion using one image pair at a time.

With sequential images, an interesting research question is to model the
temporal sequence from the data. We refer to this as motion modeling — a model
with the possibility of estimating the motion at the previous, current, and future
times. We present a diffeomorphic motion model suitable for intra-interventional
medical image sequences. For this, we define and model a temporal process in a
low-dimensional latent space with the possibility to impute and forecast missing
samples in the sequence. Furthermore, our model is the first, to the best of our
knowledge, to support online learning of the temporal model which makes it
suitable for real-time scenarios.

2 Related work

Motion modeling and real-time analysis of intra-interventional medical images is
a relatively new research direction. The literature shows that the most common
motion to analyze is cyclic patterns like cardiac or respiratory motion [, 20].
A general approach is to embed the image data into a lower dimensional space
and model the temporal process in this domain. Romaguera et al. [24] present a
forecasting approach where they suggest a convolutional LSTM to extrapolate
the temporal process in the latent dimension. Extension of their work includes a
forecasting 4D motion (3D + time) given 2D intra-interventional images using
a probabilistic setting [23]. Krebs et al. [Id] proposed a more general probabilis-
tic motion model. Their model relies on a conditional variational autoencoder,
where they approximate the posterior distribution in the latent dimension us-
ing a temporal convolutional neural network. During training, they minimize the
KullbackLeibler divergence between their approximate posterior distribution and
a known Gaussian process prior. Missing samples in the sequence are then re-
placed with samples from this prior. Their work shows reliable diffeomorphic
estimates of the displacement field with imputing and forecasting possibility.
However, they are limited to image sequences of fixed length. To overcome this,
Gunnarsson et al. [I0] modeled the low dimensional temporal process using a
linear Gaussian state space model, i.e., a first-order Markov process. The work
we present here is a further development of this model, including support for
online learning and architectural improvements.

3 Background - Linear Gaussian state space model

A linear Gaussian state space model (LG-SSM) is a linear representation of a
state space model. The model defines a first-order Markov process for a dynamic
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state variable z; € RP followed by a transmission operation between the state
variable and an observed variable z; € R, i.e.

Zt|2’t—1 NN(Zt\AZt—l,Q)7 $t|2’t NN($t|CZt,R)7 20 ™~ N(ZO|M07P0)7 (1)

where A € RP*P and C' € R?*P denote the state and observation matrix, respec-
tively, @ € RP*P and R € R?*? denote covariance matrices for uncertainties and
o, Po is the initial values of the state process. Besides that, LG-SSMs are ben-
eficial since the state prediction, z;4x | 2¢, and smoothing, z;_x | 2, k > 0, are
analytically tractable using i.e. Kalman filtering [2] and RTS smoothing [22].
Lately, parameter-estimated LG-SSM has shown impressive results in long-range
sequence modeling tasks, outperforming recent methods like RNNs, CNNs, and
Transformers[i0].

To reduce the computational complexity of high-dimensional sequences y =
[y1,.--,y7], like videos, Fraccaro et al. [8] proposed a probabilistic dynamical
model that embeds the sequence into a lower-dimensional space where it is rep-
resented as an LG-SSM.

4 Method

Given the data {(yo, y)(i)}?:1 of static reference images 3y and time sequences
Yy = [y1,...yr| our goal is to first model the spatiotemporal changes and then
use this model to reconstruct and generate samples at other times. For this,
we explain the spatiotemporal changes as the spatial transformation ¢; from
the static reference image to each time step ¢ in the sequence such that y; ~
Yo © ¢ [I]. To include spatial information in the transformation, like contour
information and description of shapes, but still limit the temporal process to
the most significant temporal changes, we estimate ¢; based on the temporal
process and spatial information s given the static reference image vy, i.e,

o1 = go,(x1,5), s = fo.(y0), (2)

where z; is a low-dimensional variable at time ¢. By doing this, we can separate
the temporal changes and characteristic features from the images within the
sequence. Since the image process may be incomplete due to e.g. missing samples,
we define the spatial information based on the static reference image yo only.
The spatial transformation ¢; is a function of x; and s (and s is a function of
Yo), we can parameterize pg(y | yo,x) = Hle po(yt | Yo, x:) with a generative
network with parameters 6 = {6, 6} and model the likelihood pg(y: | yo,z¢) =
po(yt | Yo, ) as any computable continuous distribution in §. Furthermore, to
estimate missing samples in the sequence we model the temporal process in the
lower dimension using an LG-SSM, driven by the state variables z; and with
parameters v = {A,Q,C, R, uo, Xo}. Finally, given an approximate posterior
q(xz,z | yo,y) = qs(x | Yo, y)py(z | ) an evidence lower bound (ELBO) can be
derived as

Po(Y | Yo, p)

logp(y | vo) > Ey, (@lyo.y) | 108
9 (@lyo.9) a¢(x | Yo, y)

+Ep, (21e) [10% mﬂ SNC)
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where p.,(z, z) and p,(z | ) are both analytical tractable using Kalman filtering
and RTS smoothing. During the training process we maximize the approximate
ELBO by sampling & ~ g4(x | yo,y) and 2 ~ p,(z | ) and update the param-
eters of the inference network (¢), the LG-SSM () and the generative network
(0) simultaneously. For a complete derivation of the ELBO, we refer to sup-
plemental material. A schematic overview of our probabilistic model given the
observed variables y, yy and unobserved variables «, z is shown in Fig. .

*, | ENCODER

o™
® o

(a) Inference network. (b) Generative network. (c) Entire model.

Fig. 1. An observation y; is downsampled to the temporal process [&)]. The spatial
transformation is generated given yo and the low-dimensional motion model [b].
visualizes the entire model.

4.1 Online learning

To adapt the model for individual patient motion, we propose a fast online learn-
ing procedure that operates on the motion model only. This means we only focus
on the LG-SSM parameters v and keep the inference and generative network pa-
rameters {¢, 0} fixed (shown in Fig. B). To update the LG-SSM parameters, we
iteratively maximize the exact marginal log-likelihood for the N most recent
samples of the temporal process at each sampling time t, i.e,

t

max log p, (¢~ n:t) = maxlog H Doy, (@ | T—1). (4)
Tt vt ot — N

This approach is based on the moving horizon estimation technique [I6], which
is a well-established method for state estimation in real-time applications. We
calculate the marginal log-likelihood using the Kalman filter and update the
parameters using gradient-based optimization methods. The algorithm for our
proposed online learning procedure is shown in Algorithm .

4.2 Implementation details

In our implementation, the inference network and the spatial feature extraction
share a similar network architecture. We downsample the data using convo-
lutional layers with filters [32,32,32,16], extract the spatial features at each
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Algorithm 1 Online training
Require: o, ¢,0,y0, N
8 < fo(yo)

while y; arrives do
Ty ~ qo(zt | Yo, yt)

T (2 \ Te—nN) Uy > Data collection
Dvy,_, () < Kalman Filter(z)
L+ logpy, ,(x) > Equation (H)

¥t < update(yi—1, V,_, L)

46t | Yo, ye)

? | Lassm (m)
vy

\
.

Fig. 2. During online-learning we fix the parameters of the encoder (¢) and the decoder
(0), and only update the parameters of the LG-SSM (7).

level, and estimate the mean and covariance of xz; at the bottom level. For
the LG-SSM, we use eight dimensions for z; (p = 8) and 16 for the state-
variable z; (¢ = 16) and estimate all model parameters. In the generative net-
work, we use attention gates [I8] to focus the temporal changes on the spatial
features of the reference image at each resolution and use the same number
of filters as in the inference network. To ensure diffeomorphic estimation of
¢ we consider the output as the stationary velocity field v; and first smooth
it using a Gaussian filter [15] and then compute the transformation numeri-
cally using four scaling-and-squaring layers [2], a proven approach to obtain
diffeomorphic registrations [§, I5]. Our implementation is publicly available at
https://github.com/ngunnar/2D motion model and for a more detailed de-
scription, we refer to supplemental material.

5 Experiments

For experiments, we evaluate our model on two publicly available datasets: i)
single-cycle cine-MRI sequences from the Automatic Cardiac Diagnosis Chal-
lenge (ACDC) [B], and ii) longer sequences of cardiac ultrasound images from
the EchoNet-Dynamic database [I9]. On the EchoNet-Dynamic dataset, we per-
form online learning with a moving horizon of N = 75. This is not suitable for the
ACDC dataset as the sequences are too short. Instead, on the ACDC dataset
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we evaluate the capability to reconstruct the sequence from sparsely sampled
sequences where we only observe a subset of the images in the sequence.

Both datasets are segmented manually at the end-systole and the end-diastole
time points. We use the first time point as our static reference image and calcu-
late the Dice score coefficients (DSC) and the 95%-th Hausdorff distance (HD95)
between the other manually segmented frame and our estimation at the given
point for evaluation. We compare our registration accuracy against no estimated
motion and two well-established image registration methods: symmetric normal-
ization (SyN) [B] and elastic registration [I7], both using the ANTs software [d].
Moreover, for online learning, we leave a horizon of H = 50 samples for each se-
quence and calculate both the log-likelihood of the unseen sequence .7+ g and
the RMSE between 50 samples from the forecasting distribution and the true
latent values. Furthermore, we also calculated the Dice score between the sam-
ples 25 steps ahead and the estimated segmentation given the entire sequence.
In Table M, we present the overall result from both datasets. All models produce
diffeomorphic deformations (positive Jacobian determinants) and this metric is
omitted from the table. The execution times for motion estimation with and
without online learning are approximately 15 ms and 75 ms on a single CPU,
respectively.

0 10 20 30

o Yt o Yo O Yt ° GT All 5th 10th

Fig. 3. Overlay of true sequence (magenta), and ¢; = 0, on top, and our estimation
given every 10th sample, on bottom (green). On the right, the distribution of the left
ventricle area for 20 latent samples under three scenarios: all time points observed,
every bHth, and every 10th. The figure is colored in the online version.

ACDC: In the ACDC experiment, which consists of 100 patients for training
and 50 for testing, we resample the images with spacing 1.5 x 1.5 mm and crop
it to 128 x 128 pixels with the ventricles in the center. The original sequences
are in 3D with limited resolution in one orientation. Therefore we only consider
the 2D motion in the other two orientations. For training, we split the volume
into slices and removed slices with no annotations, resulting in a training set
of 840 sequences. In the evaluation part, we use the middle slice of the volume
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in the test dataset to ensure connected segmented regions with no mismatch
due to out-of-plane motions. For consistency regarding the sequence length, we
resample each sequence to 35 samples using bilinear interpolation. During the
training phase, we augment the data using random rotation, flip, and transla-
tion of the whole sequences. For evaluation, we use the segmented regions of
the right ventricle (RV), the left ventricle myocardium (LV-Myo), and the left
ventricle blood pool (LV-BP). Fig. B shows the result from where we reconstruct
the entire sequence using only every 10th sample as input to our model.

EchoNet-Dynamic: The EchoNet-Dynamic dataset includes 10 023 unique car-
diac ultrasound videos of various lengths with left ventricle segmentations (LV).
We split this data into a training set of 9540 videos and 483 videos for testing.
Furthermore, during training, for each epoch, we randomly selected a sequence
of 50 frames from each video. Fig. @ shows the result of online training when we
forecast the motion 50 time-steps ahead.

Dice
1.00
0.95 \\,\/\«Ar"
0.90
0.85
0.80
075" 150 200 220
- t
o Yt yoop: Mt|t t | tr (forecast) vs. Online

Fig. 4. Overlay between true sequence (magenta) and forecasted sequence (green) using
pre-trained model, on top, and online learning, on bottom. To the right, Dice score
distribution of the left ventricle from 20 forecasted samples and the estimated region
given the entire sequence. The figure is colored in the online version.

6 Discussion and conclusion

In this work, we have presented a motion model for intra-interventional medical
images. We define the motion model in a low-dimensional space as a probabilistic
LG-SSM with analytical solutions to the inference problem, like imputation for
undersampled data (smoothing) and forecasting into the future (prediction). In
the first experiment, on the ACDC dataset, we show a marginally improved ac-
curacy compared to well-established diffeomorphic image registration methods,
even in cases where we subsample the data and retain only 10% of the original
sequence. Our model, operating in a lower and more manageable latent space,
shows similar accuracy to recent work [4]. However, a direct comparison is not
feasible since both the code and some of the data are not publicly available. In
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Table 1. Overall results from the two datasets.

ACDC EchoNet

DSC HD95[mm] DSC HD95*

RV LV-Myo LV-BP RV LV-Myo LV-BP|LV LV

None 0.70  0.52 0.66 9.11  8.46 11.06 |0.74  8.37
Elastic 0.77  0.72 0.81 6.81  5.88 6.33 |0.87  5.94
SyN 0.79 0.72 0.86 588 522 4.69 |0.88 4.68
Our 0.80 0.82 084 535 4.34 5.18 |0.86  4.92
Our 5th  |0.80 0.81 0.84 5.28  4.44 5.27 | — -
Our 10th |0.79  0.80 0.83 551  4.63 557 | — -

EchoNet Forecasting

log py (mT:T+H) RMSE (ZET:TJrH) DSC (SOT+25\T)
Pre-trained —10.5 7.04 0.81
Online —-6.3 5.54 0.85

! Spacing is not specified in the dataset. The metric is given in pixels.

the second experiment, on the EchoNet-dynamics dataset, we show the capac-
ity of the model to adapt to new, patient-specific data by using online learning
and updating the weights in the low-dimensional LG-SSM. The online learned
model shows forecasting improvements in both similarities of the latent process
with higher likelihood given the true process and lower distance between the
samples compared to the pre-trained model as well as the calculated Dice score
for predicted samples. The registration accuracy in this experiment is slightly
worse than the conventional image registration methods, and can hopefully be
improved by refining the hyperparameter settings or data preprocessing. Fi-
nally, we believe patient-specific adaptation and reliable forecasting predictions
are necessary for longer sequences to support advanced procedures, like real-time
adaptation in MR-guided radiotherapy. Other topics for further investigation in-
clude relating the uncertainty in the latent temporal process to the uncertainty
in the estimated displacement field and observing how each component of the
latent space contributes to the actual motion.
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Supplemental Materials:
Online learning in motion modeling for intra-interventional image
sequences

Derivation of the ELBO
The conditional probability density function

p(iL‘, Y,z ‘ yO) (1)

P\Y | Yo) = 3
W [ 30) p(x, 2 | Yo, y)

is infeasible due to the intractable posterior distribution p(x, z | yo, y). Instead,
we can approximate the posterior distribution, and identify a lower bound of
p(y | yo). In KVAE the posterior distribution is approximated as

q(z, 2 [ yo,y) = qo(x | yo, ) (2 | ), (2)

where gg(z | yo,y) = Hthl qs(x¢ | yo,y:) is parameterized using the inference
network, i.e.

Qg (e [ Yo, ye) = N (@ | pg™, 257°). (3)
If we rewrite the true posterior distribution

p(yan’waZ)
p(@yz | yo,y) = ————, 4
(@2 [ 40,) (Y0, y) )

and derive the full distribution model
P(Yo, ys 5 2) = p(yo)pe(y | yo, x)py (2, 2), ()
the true posterior distribution is equivalent to

~ p(yo)po(y | Yo, ®)py(, 2)

p(w,z ‘ y07y) - p(yo,y) (6)
~ po(y | yo, ®)py(z, 2)
B »(y | %o) ' @

Next, from the KL divergence between the true posterior distribution and our
approximate posterior distribution

Dxkw(q(z, 2z | yo, y)l|p(x, 2 | yo,y)) >0, (8)
we have that
q(x, 2z | yo,y)
D q|lp) =Eq(z,= [log } 9
KL (/1) =Eqte.zluo0) p(z, 2 | yo,y) ©)
9s( | Yo, y)p (2 | )p(y | yo)]
=E, (2.2 log 10
o(@:210.9) { Po | 90, 2P, (@, 2) (10)

Po(y | yo,w)pw(xvz)} >0 (11)

=10gp(y | %0) — Eq(a, {log
(Y | 90) = Eq(a,zly0.w) as(z | o, y)py (2 | )
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Finally, by moving the expectation to the right-hand side of the inequality, a
tractable lower bound of the likelihood is identified

Po(Y | vo, x)p (2, 2)
a5(x | yo, y)py (2 | @) |

Ing(y | yO) Z Eq(w,z\yo,y) IOg (12)

Model architecture

Encoder (129k & 84k parameters): The inference network and the spatial fea-
ture extraction share a similar network architecture. We downsample the data
using a stack of convolutional layers, where we extract spatial features at each
resolution. The network downsamples the data four times using CNNs with fil-
ters [32,32,32,16] and then flattens and feeds the features into a dense network.
We approximate the posterior distribution by estimating the mean and covari-
ance of x;.

Decoder (129k parameters): For the generative network, we use attention gates
to focus the temporal changes on the spatial features of the reference image
at each resolution, followed by an upsampling CNN. The upsampling uses the
same number of resolution layers and filters per level as the downsampling. At
the output level, we apply a Gaussian filter (with og = 2 in the ACDC model
and og = 4 in the EchoNet-Dynamic model) after the last convolutional layer.
To enforce diffeomorphic estimates of ¢;, we consider the output as the sta-
tionary velocity field v, and compute the transformation numerically using four
scaling and squaring layers.

LG-SSM (976 parameters): We design the LG-SSM using eight dimensions for
x¢ (p = 8) and 16 for the state-variable z; (¢ = 16). We estimate the full matrices
A, C, the initial mean pg, and the lower triangular matrices of the covariances
R7 Q7 EO-

Training procedure: For training purposes, we transform the reference im-
age yo using the estimated spatial transformation to compute the likelihood
po(yt | Yo, p+). For the ACDC experiment, we use a local cross-correlation dis-
tribution as likelihood and a Gaussian distribution in the EchoNet-dynamic ex-
periment. We optimize the network using Adam optimizer with a learning rate
5 x 107% in both the offline and online scenarios. During offline training, we
used a batch size of 4 and trained the ACDC model for 500 epochs and the
EchoNet-Dynamic model for 50 epochs.
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