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A B S T R A C T

Working from home and increased presence at home have the potential to affect households' ability to use 
electricity flexibly, by expanding the time window during which devices and appliances are used. The COVID-19 
pandemic has led to increased home presence, potentially influencing this flexibility. As flexibility in electricity 
consumption is key focus in demand-side management, understanding how changes in home presence impact 
electricity consumption patterns and potential flexibility is important.

Using survey and electricity meter data, this study examined whether changes in Swedish households' elec
tricity consumption during the pandemic differed between those who spent more time at home during the 
pandemic and those who did not, focusing on two measures capturing electricity consumption patterns: volume 
and variability.

All households showed an increase in average electricity consumption, with more pronounced increases 
during daytime hours among those who reported being home more. Increased presence at home also reduced 
variability, suggesting that those at home more often had a more regular electricity consumption pattern. These 
results are discussed in the light of practical implications for demand-side management.

1. Introduction

Being home and working from home can affect households' ability to 
be flexible with electricity use [1,2]. At the same time, occupants' 
presence at home and working from home can increase residential 
electricity consumption, as the COVID-19 pandemic has shown [3–8]. 
But does an increase in occupants' presence at home in and of itself lead 
to more flexible consumers, without incentives? This study investigated 
how changes in individuals' time spent at home, due to the pandemic, 
has affected electricity consumption patterns, in Sweden.1 While this 
study was conducted in a Swedish suburb, changes in home presence 
and working-from-home activities are global phenomena, and under
standing how electricity consumption patterns are affected by these is 
relevant across different countries and regions.

The following section provides a brief introduction to demand side 
flexibility and how time spent at home could affect both consumption 
and flexibility, followed by changes in home presence due to the 
pandemic, closed by a detailed research aim and questions.

1.1. Demand flexibility and time spent at home

Demand side flexibility (DSF) refers to “the ability of a customer 
(Prosumer) to deviate from its normal electricity consumption (pro
duction) profile, in response to price signals or market incentives” [9], p. 
11, where prosumers are consumers who also engage in co-creation of 
products, in this case the generation of energy [10,11]. In its ideal form, 
DSF can support uptake of intermittent renewable energy [12], affect 
carbon emissions [13], reduce grid congestion during peak periods, 
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1 The Swedish context is different from many other Western countries in that the Swedish government refrained from enforcing strict lockdown measures, instead 
relying on public compliance to voluntary recommendations. It might be for this reason that in the study by van Zoest et al. [7] an increase in total consumption was 
observed: due to mild restrictions, few sectors could effectively reduce their electricity consumption, since there was usually someone available to work at work
places. The few big industries that did have a drop in consumption did not weigh up to the increase of all households together.
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reduce necessity for costly expansion of electricity infrastructure [14] 
and help balance transmission and distribution grids [15]. In a nutshell, 
DSF can play a key role in the development of a cost-reflective, resilient 
and sustainable future energy system, if users are willing and able to 
provide this flexibility.

Users can be flexible in multiple ways, for example by shifting con
sumption in time, reducing consumption or accumulating energy in 
batteries or accumulating heat. Moreover, users can be flexible for 
different reasons. For example, to support the uptake of renewables, 
households can show flexibility in line with the supply of wind and solar 
power, lowering the need for supplementary non-renewable power 
generation. Alternatively, households can be flexible in reducing their 
consumption during times when the electricity grid is congested, thus 
reducing the risk for costly investments in infrastructure. Capturing 
different kinds of flexibility can be difficult and no common quantifi
cation procedure exists [16]. Ettorre and colleagues [17] suggest that 
flexibility is captured “as the difference between the actual (measured) 
consumption and the baseline consumption (estimated), which would 
have been used in the absence of a flexibility event” (p. 8). This approach 
requires the presence of a flexibility event, such as a tariff or alternative 
incentive structure, as a baseline. Alternatively, Duarte et al. [18] look at 
variability in electricity consumption as an indicator of flexibility po
tential, assuming that users showing high variability during a certain 
period of the day have potentially less strict routines during that time, 
and thus higher potential to be flexible. This measure captures regularity 
of electricity consumption above a household's baseline consumption, in 
other words the consumption caused by stochastic use of devices. A 
benefit is that it captures variability that may be indicative of flexibility 
potential, even in the absence of a flexibility event. A downside is that it 
does not incorporate some important potential sources of flexibility such 
as automating heating systems.

As an example, say a hypothetical household has a strict routine at 
9.00 on weekdays (see Fig. 1 – left panel, grey striped bars) using the 
same devices regularly, and thus exhibiting low variability across days 
during this hour.2 This household might be less inclined to deviate from 
their pattern and has low flexibility potential, whereas a household that 
has a more versatile usage at 9.00 (orange bars: sometimes running the 
dishwasher, other times the toaster or oven) may have higher variability 
across days during this hour and may be more willing to perform shifts. 
The opposite is true at 12.00 (right panel), where the striped household 
has a few activities going on. Whomever is running these appliances may 
have the possibility to shift one or more activities to an earlier or later 
time, if needed. The orange household on the other hand, does not have 
much variation at noon, maybe because its household members are at 
work. For them, it might be harder to shift electricity consumption (to or 
from) this point during the day.

Regardless of how it is measured, DSF concerns changes made by 
electricity users in response to tariff-driven price signals [19]. Given the 
potential benefits of DSF, an important question is whether people are 
willing and able to be flexible with their electricity use. A review by 
Parrish et al. suggests that consumer participation to voluntary demand 
response programs may be lower than expected [20]. Moreover, 
households' technical capacity to be flexible may not be homogenously 
distributed among the population [21], so that not everyone has the 
same capacity to participate. Previous research has moreover put 
question-marks over people's ability to comprehend demand-based tar
iffs [22,23]. Additionally, the design of certain kinds of demand-based 
tariffs and the potential interference between multiple electricity 
price-signals may complicate people's ability to perform the ‘correct’ 
flexible behaviour that benefits the system [24,25]. In terms of 

facilitating factors, energy literacy is suggested to affect users' willing
ness to adopt demand response programs [26]. Non-monetary motiva
tions, too, can play a role in uptake and engagement with demand 
response programs; Bartusch et al. [27], for example, show that moti
vations related to climate change were important drivers for intention to 
shift electricity. In sum, there are various barriers and facilitators to 
demand flexibility among consumers (for systematic reviews of drivers 
and barriers to DR, see [28,29]).

Besides these cognitive motivators, presence at home has also been 
suggested to affect households' response to demand-response tariffs 
[1,2]. There are various electricity-demanding tasks that most house
holds want done during a day for its members to experience an 
acceptable level of comfort (e.g., using the stove, laundry machine, TV, 
or coffee maker). Though it is possible for some devices to be put on a 
timer, distance-controlled or automated, it is evident that it is more 
difficult to perform all tasks flexibly throughout the day when one is 
only home during a limited number of hours. Particularly wet appli
ances, such as laundry and dishwashers, are devices that are easier to 
shift in time when there is a person home to actively perform and 
monitor them [30,31]. This applies even to timer-steered washers, since 
they need to be emptied once done and either air-dried or tumble-dried, 
as laundry machines with integrated dryer are not common to have. In 
short, presence of an (adult) individual at home becomes an important 
enabling condition of households' ability to respond manually to 
demand-response programs. That said, while being at home has a clear 
facilitating effect on flexibly using appliances, time spent away from 
home may have implications for the ‘flexible’ space in which automated 
systems can operate – when people are away from home, homes need to 
be heated/cooled less than when people are home, and temperature 
might be allowed to fluctuate with larger deviations from set comfort 
levels, if no one is home.

Working from home obviously contributes to household members' 
time spent at home. While working from home can lead to an increase in 
the energy consumption for households (for a review, see [32]), it can 
also facilitate shifts in use of electricity. For example, in a sample of 
Canadian residents two months into the COVID-19 pandemic, a majority 
reported cooking and running laundries during daytime, between 9.00 
and 17.00, activities that normally would have to wait until one comes 
home from work [33]. Similarly, a study in California found that, during 
a period of restrictions in the pandemic, people reported increased home 
occupancy during mid-day, and used a series of electric appliances more 
often, particularly households with minors [34].

In a nutshell, electricity consumption patterns are potentially 
affected by increased occupants' presence at home, and by occupants 
working from home. This brings us to the COVID-pandemic, which 
affected these routines dramatically.

1.2. The pandemic and staying/working from home

Apart from direct epidemiological effects, the COVID-19 pandemic 
has impacted people's daily routines, habits and behaviours, many of 
which involving the use of electricity [35]. Although energy demand fell 
by 4 % in 2020 [36], residential electricity consumption went in the 
opposite direction. For example, van Zoest et al. [7] showed that in the 
wake of the pandemic, electricity consumption in a Swedish residential 
sector increased, while consumption in the industrial, public and com
mercial sectors showed less dramatic changes or changes in the opposite 
direction. Studies elsewhere have found similar increases in residential 
electricity consumption, often combined with reduced electricity con
sumption in other sectors (e.g., [3,4,6], frequently, but not always, 
resulting in a reduction of overall electricity consumption for some 
period ([3,5,8], but not in [7]).

One of the causes for these dramatic changes in electricity con
sumption lies in changes in residents' home presence, due to sickness or 
as health safety precautions. Many activities were shifted to the online 
realm, while already digital or online activities increased in frequency, 

2 For sake of simplicity, this visualisation does not include baseline electricity 
consumption due to for example heating or refrigeration. The illustration 
oversimplifies: the illustrated households do not use heating flexibly and this is 
homogenously consuming across days, regardless of temperature.
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such as personal communication [37,38] and entertainment [39]. 
Moreover, many people made the switch to (partly or fully) work from 
home during the pandemic. Bick et al., [40] concluded that, in the US, 
the amount of teleworking individuals increased from 14.4 % to 39.6 % 
from before the pandemic to during the first year of the pandemic, and 
remained high into the second year of the pandemic, at a rate of 
approximately 28.5 %. Overall, there were more people at home during 
more hours of the day, using electric appliances during a wider range of 
hours.

In the wake of the pandemic, energy prices went up due to the energy 
crisis that hit Europe,3 while many workers desired to keep working 
from home to higher extents than before the pandemic [41–44], and 
while lifestyles have undergone, possibly lasting, changes [45]. This 
combination makes for an added layer of potential benefits or downsides 
of time spent at home. On the one hand, increased home presence can 
lead to higher consumption of electricity, and with higher electricity 
prices, this might imply a sharp increase in electricity costs. At the same 
time, being home might facilitate flexibility, and allow households to 
‘flatten their electricity curve’, thus reaping the benefits from demand- 
based electricity tariffs.

1.3. Problem statement and research questions

Previous studies have investigated the role of spending time at home 
in consumers' adoption of, and response to demand response programs 
[28], but less is known about what effect presence at home has on 
electricity consumption without the pressure of financial incentives or 
specific demand programs added to the mix. This study aims to generate 
insights into how energy consumption and flexibility potential can 
change as a result of changes in home presence. In particular, we focus 
on two aspects of consumption: 1) how the volume of consumption 

changes when people are home more, and 2) how variability changes 
when people are home more.

In line with previous studies, we expected electricity to increase 
during the pandemic. Moreover, by comparing those who were home 
more to those who were not, we investigated two aspects more specif
ically, both of which are relevant for demand flexibility. First, by 
comparing changes in consumption per hour for those who were home 
more to those who were not, we investigated whether patterns during 
the day changed, i.e., whether being home more attenuated peak hour 
consumption, and increased daytime consumption. If increased presence 
at home indeed has this effect, then encouraging people to work from 
home might lead to reduced stress on the local distribution grid.

Second, by comparing changes in the variability of consumption per 
hour, we investigated whether increased presence at home led to a more 
regular or more variable consumption pattern (as in Fig. 1). Being home 
more could lead to an increase in variability during daytime hours, since 
more home presence means household members are able to run larger 
appliances at various moments during the day. Alternatively, being 
home more often could lead to a more even spread of appliance usage — 
instead of running all appliances during the one day one works from 
home, one can spread these evenly across the week. We had no expec
tations about the direction of this change, but expected differences in 
changed variability to be observable distinctly during daytime hours.

In sum, the following two research questions are inspected: 1) Is the 
change in energy consumption during the pandemic different for those 
who reported increased time spent at home during the pandemic, 
compared to those reporting the same or reduced time spent at home? 
And 2) Is the change in variability before compared to during the 
pandemic different for those who reported increased time spent at home 
during the pandemic, compared to those reporting the same or reduced 
time spent at home?

2. Methods

2.1. Study design

During the pandemic, most households in Sweden were paying 

Fig. 1. Example of two hypothetical households with dissimilar levels of variability in their electricity consumption at 9.00 (left panel) and 12.00 (right panel) across 
several weekdays. The grey striped bars represent a household with strict routines and low variability between days at 9.00 (left panel), but more variation at 12.00 
(right panel), whereas the orange bars represent a household with more variability in their use of appliances at 9.00, and less variation at 12.00. C = coffee machine, 
T = toaster, D = dishwasher, O = oven, B = blender, 10 = minutes or device runs. The aim of these graphs is to illustrate variability in consumption used by 
households with inhabitants present, above and beyond households' baseline consumption, such as refrigerators, heating, etc., to which end only use of some 
transient devices are presented.

3 On the 5th of May 2023, the WHO declared the global Public Health 
Emergency for Covid-19 to be over. From mid-2021 to late 2022, Europe 
experienced an energy crisis, with extremely high prices on gas, coal and 
electricity.
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distribution and retail of electricity separately with volumetric tariffs 
(costs linearly increase per used kWh). Thus, an increase in electricity 
consumption cost more, but changes in flexibility did not. Demand- 
based tariffs were not yet implemented, and the study was conducted 
before the energy crisis, so that, to our knowledge, the only large-scale 
shock to the system was the pandemic and the subsequent change in 
home presence patterns. This set-up allowed us to observe what would 
happen to consumers' consumption patterns in terms of volume and 
variability in electricity use after an increase in home presence, but 
without any additional financial incentives (beyond ‘regular’ electricity 
costs).

Using self-report data, we identified which respondents' homes were 
more occupied during specific hours of the day during the pandemic, 
compared to before (more details in Section 2.3). For each hour, we 
could thus compare households where presence of occupants increased, 
to those where it did not increase during that hour. Using electricity 
meter data from before and during the pandemic, we compared these 
groups in terms of average electricity consumption and variation in their 
electricity consumption. In essence, the analysis followed a difference- 
in-difference logic, where the pre-pandemic data was used as the base
line measurement, and the during-pandemic data as the second mea
surement, grouping households into those who increased home presence 
or not. Fig. 2 illustrates this with a simplified schematic: in this example, 
there is an increase in electricity consumption at 9.00 during the 
pandemic for both households with increased home presence, and those 
without. Moreover, the increase in electricity consumption is greater for 
households with increased home presence than those without. The dif
ference in these groups' differences from one timepoint to the next can 
be considered an indicator of the effect of home presence. The 
difference-in-difference approach allows us to see differences between 
categories even if general trends in electricity consumption exist; that is, 
even if general electricity consumption changes (e.g., due to electrifi
cation, weather, high energy prices), this approach will still allow us to 
investigate whether categories were differently affected, on top of this 
general trend.

2.2. Sample

Two linked sets of data were used: self-reported (stated) data and 
electricity meter data. Self-reported data was gathered via a survey 
conducted in the spring of 2023, among residents of a neighbourhood in 

Stockholm, Sweden.4 The selection of this area was made in consultation 
with the local distribution system operator. This decision was motivated 
by the presence of a new generation of smart electricity meters in all 
households, enabling the collection of hourly electricity consumption 
data. Additionally, the population in this region is considered socio- 
demographically representative of a broader population in terms of 
family composition, household size, income and educational level, age 
and gender balance. Swedish households primarily consume energy for 
heating, hot water, and household electricity. Space heating accounts 
for the largest share of energy use, while household appliances and 
lighting represent a smaller but significant portion of electricity con
sumption [46]. Most electricity is used in the evening hours, with a 
smaller peak in the morning hours [46]. The Swedish electricity system 
is predominantly based on hydro and nuclear power, which together 
accounted for approximately 70–80 % of total electricity production in 
2023 [47].

A total of 7011 surveys were sent out, and 1153 households 
responded (response date = 16.4 %). Incomplete surveys were omitted 
(n = 282), and further data cleaning (see Section 2.2.2) resulted in a 
sample of 842 households (12.2 %). Demographics of this sample are 
presented in Table 1.

2.3. Measures and categories of flexibility opportunities

2.3.1. Home presence
Home presence was measured with a matrix-question that measured, 

for each hour of the day (e.g., 8.00 to 9.00) whether someone in the 
household would usually be home at that time, before, during and after 
the pandemic. Night-time hours (from 22.00 to 6.00 in the morning) 
were covered as a single item, as were weekend/holiday days. Re
spondents were asked to tick boxes for each hour where someone in their 
household usually was home, before, during and after the pandemic 
separately. Fig. 3 gives a fictive example of what a respondent's results 
could look like (though respondents did not see both pre and during 
pandemic columns at the same time).

For every hour during weekdays between 6.00 and 22.00 and the 
night-slot, we noted whether respondents reported at least one house
hold member to be home during that hour, during the pandemic, but not 
before the pandemic. This constitutes an increase in home presence at 
that given hour. For example, the fictive respondent in Fig. 3 had an 
increased home presence at 9, 10 and 15 o'clock.

2.3.2. Electricity meter data
Access was granted to electricity meter data with hourly granularity 

from the same neighbourhood where the survey was distributed, by the 
local collaborating partner, a distribution system operator (sample de
tails in Section 2.2). The complete dataset, described in detail in van 
Zoest et al. [7], contained data from over 14,000 unique electricity 
meters from the period of July 2019 to December 2021. Two periods 
were extracted from this data, one pre-pandemic dataset (from 11 July 
2019 to 28 February 2020) and one during-pandemic dataset (from 11 
July 2020 to 28 February 2021). These periods were selected based on 
data availability as well as to ensure the same months were used in the 
pre-pandemic dataset and in the during-pandemic dataset. For the 
purpose of this study, only meter data corresponding to the 855 survey 
respondents was used. In terms of overall average electricity usage, the 
sample had a slightly elevated consumption pattern compared to the 
area's residential population mean (reported in [7]).

Fig. 2. Schematic depiction of the difference-in-difference (DiD) approach in 
the study.

4 According to the Declaration of Helsinki, studies involving sensitive data, 
interventions, or vulnerable groups should apply to formal ethical approval. 
Our survey did not meet these criteria: no sensitive data was gathered, 
participant were anonymous, and participated voluntarily. Respondents were 
informed about their rights, including anonymity, data use for research pur
poses only, and the option to withdraw at any time.
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The indicators of electricity consumption and variation in this con
sumption described below are based on the assumption that electricity 
meters captured consumption by the hour. Thirteen households were 
omitted entirely from the analyses because there was zero within-day 
variation for all days within at least one of the two periods (pre or 
during pandemic), suggesting that the meters were not measuring 
hourly consumption. Moreover, several meters captured data with zero 
within-day variation on some but not all days, ranging from one to 187 
days, while other meters only reported consumption for <3 h/day. Data 
from days where within-day variation was zero or close to zero (SD <

0.05), and on days where <3 h of meter data were reported, were 
removed.5 Moreover, the analyses focus on reported changes in home 
presence during weekdays, which is in line with previous research that 
has shown that the pandemic had most impact on residential consumers' 
weekday consumption [7,48]. Accordingly, only electricity consump
tion during weekdays was used in analyses.

Two metrics were subsequently extracted from the meter data: 1) 
average hourly energy consumption across the two periods (before and 
during the pandemic), and 2) the coefficient of variation (CV) per hour, 
which indicates, for each hour of the day within a certain period, the 
variation in use.

For average hourly electricity consumption, we calculated, per 
respondent i ∈ {1…ni} and per hour of the day h ∈ {1…nh}, the average 
hourly consumption Ci,h across days k ∈ {1…nk}, separately for before 
and during pandemic data (respectively Ci,h,pre and Ci,h,mid). This resulted 
in nh = 24 observations of average hourly electricity consumption for 
ni = 842 respondents, per period: 

Ci,h =

∑
kCi,h,k

nk
(1) 

To calculate the coefficient of variation (CV) per hour, we calculated 
per respondent i and per hour of the day h, the standard deviation of 
electricity consumption si,h, based on the available data, and divided this 
by the mean of that hour's consumption Ci,h, separately for before and 
during the pandemic. This resulted in in nh = 24 observations of hourly 
CV for ni = 842 respondents, per period: 

CVi,h =
si,h

Ci,h
(2) 

Subsequently a ‘first difference’ estimator was calculated from 
average hourly electricity consumption respectively CV per hour, ΔCi,h 

denoting the change in electricity consumption and ΔCVi,h denoting the 
change in CV from before to during the pandemic, for respondent i during 
hour h. This was done by subtracting the hourly average electricity 
consumption before the pandemic from the hourly average electricity 

Fig. 3. Example of a potential response to the question about home presence. 
Participants indicated during which hours of the day they usually were home, 
before and during the pandemic.

Table 1 
Descriptive statistics on demographic profile of the sample.

Variable Level Total sample 
(N = 842)

(Semi-)detached homes1

(N = 396)
Apartments 
(N = 446)

M (SD)/count (%) in sample M (SD)/count (%) in sample M (SD)/count (%) in sample

Number of household members 2.4 (1.20) 2.9 (1.18) 2.0 (1.05)
Gender Female 347 (41 %) 122 (31 %) 225 (50 %)

Male 488 (58 %) 272 (69 %) 216 (48 %)
Other 7 (1 %) 2 (1 %) 5 (1 %)

Families without young children 668 (79 %) 297 (75 %) 371 (83 %)
Families without teenaged children 675 (80 %) 289 (73 %) 386 (87 %)
Families with children (under 18) 289 (34 %) 172 (43 %) 117 (26 %)
Occupation Full time work 444 (53 %) 241 (61 %) 203 (46 %)

Part time work 37 (4 %) 14 (4 %) 23 (5 %)
Pension 319 (38 %) 130 (33 %) 189 (42 %)
Other 42 (5 %) 11 (3 %) 29 (7 %)

Heating system District heating 326 (39 %) 17 (4 %) 309 (69 %)
Heat pump 364 (43 %) 327 (83 %) 37 (8 %)
Electric boiler 32 (4 %) 27 (7 %) 5 (1 %)
Biomass boiler 13 (2 %) 13 (3 %) 0 (0 %)
Electric space heaters 30 (4 %) 11 (3 %) 19 (4 %)
Other 77 (9 %) 1 (0 %) 76 (17 %)

Average household income before taxes 82,038 (167,377) 96,411 (178,779) 69,320 (155,698)

1 There were separate categories for detached and semi-attached houses in the survey but since the latter category was relatively small (N = 38) and comparable in 
electricity consumption to detached homes, these two were combined.

5 At the level of data per day per household, respectively 23 % and 11 % of 
the data were omitted due to not fulfilling these criteria. These missing days 
were evenly spread out across months and weekdays, and not seasonally 
dependent, eliminating the possibility that the loss of data is caused by meters 
not working during cold days or specific sample-wide events.
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consumption during the pandemic, so that positive values denote an 
increase over time, as follows: 

ΔCi,h = Ci,h,mid − Ci,h,pre (3) 

and similarly for the coefficient of variation: 

ΔCVi,h = CVi,h,pre − CVi,h,mid (4) 

2.4. Analyses

In the results, we present analyses of average hourly electricity 
consumption first, and CV per hour thereafter, following the same pro
cedure for both. First, descriptive plots visualise the average hourly 
electricity consumption (alternatively CV per hour) for those living in 
(semi-)detached homes vs. those living in apartments, comparing data 
from before to during the pandemic. These plots and subsequent ana
lyses are split up per housing type because electricity consumption 
patterns are known to differ strongly between housing types. One of the 
main reasons for this difference lies in the different heating systems that 
are commonly used in detached houses compared to apartments. In this 
sample, as is shown in Table 1, over 80 % of the sample uses either 
district heating or heat pumps, with the former being used predomi
nantly in apartments (69 %) and the latter predominantly in detached 
homes (83 %). Besides this difference, family size and income differed 
between apartments and detached homes. Separating the data instead 
according to heating type (i.e., comparing the largest groups: heat 
pumps and district heating) did not yield any different conclusions, as 
can be seen in the auxiliary analyses in the Supplementary Tables 4 and 
6, and neither did the inclusion of predictors covering size of home, 
number of those living in the home and specific heating type (see Sup
plementary Tables 7–8).

After a visual inspection, a multilevel null model (unconditional 
means model) is used to identify whether the mean of change in elec
tricity consumption is significantly different from zero (α = 0.05). A 
random intercept ui per household is included in the model, because the 
hourly observations are nested by household and cannot be considered 
independent. The estimated global intercepts from these models indicate 
the global mean of the change metrics, showing if, across households 
and hours of the day, there was an average positive or negative change 
for electricity consumption or CV. 

ΔCi,h = β0 + ui + εi,h (5) 

ΔCVi,h = β0 + ui + εi,h (6) 

where β0 denotes the global intercept, ui the household-level random 
intercepts and εi,h the residual error term, assumed to be normally 
distributed with a mean of zero and a constant variance, but not required 
to be independent and identically distributed (i.i.d.) due to the hierar
chical structure of the data. The use of restricted maximum likelihood 
(REML) for parameter estimation in our multilevel model accounts for 
this structure and provides robust estimates of the variance components. 
Subsequently, multilevel models were used to inspect whether changes 
in hourly electricity consumption (alternatively CV per hour) were 
conditional on the hour of the day as well as on whether, during specific 
hours, data came from households who increased home presence or not. 
That is, changes in hourly electricity consumption were predicted with 
hour of the day, and the interaction between hour and home presence 
status, as follows: 

ΔCi,h = β0 +
∑

h
(βhxh)+

∑

h

∑

HO

(
βh,HOxhxHO,i,h

)
+ ui + εi,h (7) 

where xh is a dummy variable for hour h ∈ {1…24} with coefficients βh 
and xHO is a binary dummy variable indicating increased home presence. 
Similarly, a multilevel model was built for changes in CV per hour: 

ΔCVi,h = β0 +
∑

h
(βhxh)+

∑

h

∑

HO

(
βh,HOxhxHO,i,h

)
+ ui + εi,h (8) 

Interaction effects βh,HO between hour and home presence status 
indicate whether, for any given hour, there is a difference in estimated 
changes dependent on home presence status. If the coefficients of these 
interaction effects are significantly different from zero, we reject the 
assumption that home presence status had no effect on consumption or 
variability changes during that hour.

3. Results

3.1. Electricity consumption

Inspecting first the average electricity consumption per hour before 
and during the pandemic, descriptive plots in Fig. 4 show different 
patterns in electricity consumption for those living in (semi-)detached 
homes, compared to those living in apartments. Those living in detached 
homes exhibited two clear clusters of hours where electricity con
sumption tended to be higher; between 6 and 10 o'clock, and between 16 
and 22 o'clock. For apartments, there was only one pronounced cluster 
of hours with higher electricity consumption, occurring between 16 and 
22. Fig. 4 moreover gives the impression of an increase in electricity 
consumption during the pandemic, and furthermore that this increase 

Fig. 4. Descriptive plots of average hourly electricity consumption before (red) and during (blue) the pandemic, plotted per hour (x-axis) and separated by housing 
type (left panel for (semi-)detached homes and right panel for apartments). Note there is a difference in y-axes, to optimally visualise consumption levels of (semi-) 
detached homes and apartments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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occurred mostly during daytime hours. This begs the question, was this 
increase part of a normal trend, or due to occupants' increased presence 
at home?

Fig. 5 illustrates the distribution of changes in average hourly elec
tricity consumption from before to during the pandemic, with positive 
values on the y-axis denoting an increase in consumption. Multilevel 
unconditional means models (Table 2) show that across all data, the 
changes in average hourly electricity consumption were above zero (β0 
= 0.12 respectively 0.03), indicating that there was an overall increase 
in electricity consumption. This was the case for both detached homes 
and apartments.

Multilevel models predicting this change in electricity consumption 
with hour of the day conditional on whether people were home or not, 
confirm that during several hours of the day, the increase in electricity 
consumption was larger for those who reported being home more during 
the day (see asterisks in Fig. 5, and Supplementary Table 1). More 
specifically, the increase in energy consumption during the pandemic 
was larger for those who reported being home more around 10 to 15 (for 
those in detached homes) and 9 to 16 (for those living in apartments). 
On two occasions, the reverse was true, with those who did not increase 

home presence having a stronger growth in consumption than those who 
increased presence at home: for those living in detached homes at 7 
o'clock and for those living in apartments at 21 o'clock.

In conclusion, the data replicates earlier findings of increased elec
tricity consumption during the pandemic. Moreover, the analyses show 
that the increase was stronger when people were home, suggesting that 
at least part of the increase can be attributed to increased home 
presence.

3.2. Average CV

Subsequently looking at CV per hour of the day, before and during 
the pandemic, the descriptive plots in Fig. 6 show different patterns for 
those living in (semi-)detached homes and those living in apartments. 
The difference between lowest and highest CV during the day is larger 
for those living in apartments, compared to those living in detached 
homes, and this does not change during the pandemic. Fig. 6 also sug
gests that there are larger increases in CV in detached homes during the 
morning hours, while there are larger decreases in apartments during 
the afternoon hours.

Fig. 5. Marginal effects of changes in households' average hourly electricity consumption from before to during the pandemic (y-axis), per hour of the day (x-axis) 
and by housing type (left panel for (semi-)detached homes and right panel for apartments). Positive values denote an increase in consumption. Colours denote 
whether data comes from households that indicated their home presence increased during that hour of the day. Red dashed line highlights the point where there was 
no difference in average hourly consumption from before to during the pandemic. Asterisks indicate significant differences in mean hourly consumption for specific 
hours between those who increased home presence compared to those that did not. Note there is a difference in y-axes between panels, to optimally visualise 
consumption levels of (semi-)detached homes and apartments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 2 
Unconditional means models predicting the change in hourly electricity consumption during the pandemic with a random intercept per household only, separated by 
housing type.

Predictors (Semi-)detached homes Apartments

Estimates CI p Estimates CI p

Intercept (β0) 0.12 0.08–0.16 <0.001 0.03 0.02–0.03 <0.001

Random effects
σ2 0.06 0.01
τ00 0.15ID 0.01ID

ICC 0.73 0.47
N (observations) 395 (9480) 444 (10656)
Marginal R2/conditional R2 0.000/0.725 0.000/0.468

Bold font indicates statistical significance at p < 0.05.
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Fig. 7 illustrates the distribution of changes in average hourly CV 
from before to during the pandemic, with positive values denoting an 
increase in CV. Multilevel unconditional means models (Table 3) show 
that the changes in average hourly CV were above zero for those living in 
detached homes, indicating an overall increase in variability per hour 
during the pandemic. There was a decrease in CV for those living in 
apartments, indicating instead a reduction in variability per hour during 
the pandemic: consumption patterns became more regular.

These changes in CV over time should be interpreted with care, since 
the CV measure can be affected by changes in the average consumption 
of electricity. Two households who use exactly the same set of appli
ances at the same times, causing the same pattern of variation, but with 
different baseload energy use, can differ in CV, since CV equals the 

variation divided by the mean; thus, a household with a higher baseload 
and similar variation will have lower CV. A change in CV between pre 
and mid pandemic might thus be due to differences other than a change 
in variation, such as differences in temperatures.6

Multilevel models predicting pre-to during pandemic changes in CV 
with hour of the day and whether people were home or not suggest that 
for those living in apartments, during several hours during daytime (9 to 
13 o'clock), and 2 h at night (3 and 4 o'clock) the decrease in CV is larger 
in those who reported being home more than those who were not (see 
asterisks in Fig. 7, and Supplementary Table 2). For those living in 

Fig. 6. Descriptive plots of average hourly CV before (red) and during (blue) the pandemic, plotted per hour (x-axis) and separated by housing type (left two panels 
for (semi-)detached homes and right two panels for apartments). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 7. Marginal effects of changes in households' average hourly CV from before to during the pandemic (y-axis), per hour of the day (x-axis) and by housing type 
(left panel for (semi-)detached homes and right panel for apartments). Positive values denote an increase in consumption. Colours denote whether data comes from 
households that indicated their home presence increased during that hour of the day. Red dashed line highlights the point where there was no difference in average 
hourly consumption from before to during the pandemic. Asterisks indicate significant differences in mean CV for specific hours between those who increased home 
presence compared to those that did not. Note there is a difference in y-axes, to optimally visualise consumption levels of (semi-)detached homes and apartments. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6 The average temperatures and deviations in the region were Mpre = 8.22, 
SDpre = 6.73, Mmid = 7.80, SDmid = 8.06, according to data from the Swedish 
Meteorological and Hydrological Institute [49].
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detached homes, CV increased less for those who were home more, 
compared to those who were not, for two day-time hours (8 and 10 
o'clock).

In summary, three interesting observations can be made from the 
analysis of changes in CV per hour during the pandemic. First, though 
this should be interpreted with care as to what caused it, there is an 
increase in CV for those who live in detached homes, while there seems 
to be a decrease in CV for those living in apartments. Second, in de
tached homes, at least for some daytime hours, the variation in elec
tricity consumption increased more for those who were not home more. 
Third, in apartments, at least for some daytime hours, the variation 
decreased less for those who were not home more. If the data from those 
who were not home more is taken as representative of the baseline 
changes in CV over time, then it seems that home presence has a 
decreasing effect on CV on top of that trend, during daytime.

3.3. Overview of findings

The findings are summarised as follows (see also Table 4): for those 
living in detached homes, average hourly electricity consumption seems 
to have increased during, compared to before the pandemic, and those 
who increased their home presence during daytime hours have a larger 
increase in electricity consumption than those who did not increase 
home presence during daytime hours. The same applied for those living 
in apartments.

Regarding CV in electricity consumption, there was a general in
crease in CV for those living in detached homes during, compared to 
before the pandemic, though during some daytime hours, this increase 
was lower for those who increased home presence. In other words, being 
home more dampened the increase in variation. There was a general 
decrease in CV for those living in apartments during, compared to before 
the pandemic, and during some daytime hours, this decrease was larger 
for those who increased home presence. In other words, here being 
home more exacerbated the decreased variation.

4. Discussion

This study investigated whether there are differences in households' 
a) energy consumption pattern and b) variability, depending on changes 
in households' time spent at home. A difference-in-difference approach 
was used to compare trends over time between two groups: those who 
were home more vs. those who were not. The results showed that during 
the pandemic, households with increased home presence used more 
electricity, particularly during the expected workday hours, compared 
to those who were homeless. Among households living in detached 
homes, we moreover detected that those who were home more had a 
weaker increase in consumption during the morning, compared to 
households who were not home more. This might be because people 
who spent more time at home skipped activities they would typically do 
in the morning when leaving for work. A similar effect arose among 
apartment owners in the evening hours, where there was a stronger 
reduction in energy consumption during the pandemic among those who 
were home more; possibly since a set of household activities that typi
cally were performed in the evening were moved to daytime. These 
observations suggest that being home may affect households' load shape 
in that electricity from morning or evening times is shifted towards 
daytime. In sum, besides an overall increase in consumption, being 
home more also seems to affect the pattern of energy consumption over 
the day, with a shift towards more daytime use, and potentially reduced 
use during the morning or evening hours.

Concerning variability, the results show that in both detached homes 
and apartments, households with increased home presence had a lower 
CV compared to households that did not increase home presence. This 
effect is predominantly occurring in the first half of the day. In other 
words, per hour variability was lower when people were home more; 
they were more regular. If high variability indicates flexibility potential, 
then being home more does not contribute to it. However, when CV is 
considered alongside the increased consumption for those who are home 
more, a different interpretation can be given. While variability 
decreased, consumption increased during the first half of the day, for 
those with increased home presence, which suggests that a) they used 
more electricity than those did not increase home presence and b) they 
were doing so more consistently. In sum, the lower variability in those 
who were home more is suggestive of changed routines.

4.1. Implications

This study adds to previous literature in highlighting that being 
home is a factor influencing households' response to demand-response 
programs [1,2]. It shows that, even without demand-response pro
grams, the mere increase of home presence can affect energy con
sumption patterns, in ways that at least to some extent may be beneficial 
to the electricity system (i.e., by potentially shifting electricity con
sumption to daytime hours). On the other hand, depending on when 
peaks in the grid occur, an increase in afternoon consumption (16–17 

Table 3 
Unconditional means models predicting the changes in households' average hourly CV during the pandemic with a random intercept per household only, separated by 
housing type.

Predictors (Semi-)detached homes Apartments

Estimates CI p Estimates CI p

Intercept 0.08 0.07–0.09 <0.001 − 0.04 − 0.05 to − 0.02 <0.001

Random effects
σ2 0.01 0.05
τ00 0.01ID 0.02ID

ICC 0.54 0.30
N (observations) 395 (9480) 443 (10,632)
Marginal R2/conditional R2 0.000/0.543 0.000/0.301

Bold font indicates statistical significance at p < 0.05.

Table 4 
Summary of main findings from analyses in the study, comparing changes in 
average hourly consumption and coefficient of variation over time, between 
those whose home presence increased compared to those whose home presence 
did not increase during the pandemic.

Housing type Average hourly consumption Coefficient of variation

(Semi-) 
detached 
homes

Larger increase in hourly 
consumption for those who 
increased home presence during 
daytime hours

Increase in CV is attenuated by 
increased home presence 
during daytime hours

Apartments Larger increase in hourly 
consumption for those who 
increased home presence during 
daytime hours

Decrease in CV is exacerbated 
by increased home presence 
during daytime hours
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o'clock) for those at home might exacerbate a system's peak capacity 
problems. While there is a trend towards working from home to higher 
extents than before the pandemic [41–44], this study has indicated that 
changes in time spent at home can have an impact on electricity con
sumption patterns. The teleworking trend is unlikely to revert back to 
pre-pandemic levels. What, then, are implications of changes in people's 
time spent at home, for demand response?

Recognizing the impact of consumers' presence at home on their 
electricity consumption patterns helps utilities and policymakers in 
tailoring demand-response strategies to consumer segments, to account 
for diverse consumer needs and preferences. For instance, the finding 
that higher and more regular electricity consumption was associated 
with being home more can be combined with other insights concerning 
consumer characteristics. An engaged ‘resource man’ [50] who is at 
home might be able to engage in different strategies compared to a 
similar household where members are often away from home during 
daytime, or to a household where members are at home, but whose 
desire to engage in electricity consumption patterns is minimal. For 
engaged consumers who are at home, communication and tariff incen
tive structures could emphasize shifting consumption, using time-of-use 
or real-time pricing schemes or real-time energy consumption feedback. 
For households with low time spent at home, or little desire to engage in 
their consumption patterns, automated solutions that prioritise conve
nience might be more suitable.

In this sense, the findings from this study are a small piece of a larger 
puzzle where the diversity of consumer preferences and lifestyles is 
recognized. Utilities can, rather than applying one-size-fits-all solutions, 
design flexible demand-response programs that accommodate different 
levels of engagement and participation. This approach allows consumers 
to engage with demand flexibility initiatives in a way that aligns with 
their needs and preferences.

4.2. Limitations and future research

A limit to this study is reliance on respondents' ability to remember 
their and household members' presence at home before, during and after 
the pandemic. Respondents might over- or underestimate their presence 
at home, but that in itself is not a threat to the study, since the main 
variable of interest was difference in presence. The study is sensitive to 
whether respondents had a biased memory of home presence condi
tional on the question concerning time before or during the pandemic. 
One source of confounding in this study therefore is if the group of re
spondents who had more (or less) of a bias in home presence differences 
before and during the pandemic, also had stronger changes in their 
consumption patterns, for other reasons. If this is the case, then the re
sults might be due to these other reasons, and not changes in home 
presence. We do not see any obvious candidate suggestions for this, but 
it remains a limit of the study that we relied on self-reported home 
presence and could therefore not control for this potential influence of 
confounders.

A second limitation is the geographically limited scope of the study. 
The data originates from a suburb in Stockholm, and the response rate to 
the survey was low, which impacts the generalizability of the findings to 
other neighbourhoods, regions or countries. The socio-demographic 
data (Table 1) did not reveal a socio-demographic stratum that was 
notably underrepresented, but it remains a question how well the 
findings might be extrapolated beyond the Swedish context. Working 
from home is a trend that is found across many countries [42,51], and 
increased time spent at home might have similar effects on load curves 
in many European countries as it has in Sweden, though this should be 
confirmed with further studies.

A third limit is in the assumption that there are parallel trends in the 
groups of respondents with increased home presence and those without, 
which underlies the difference-in-difference approach used here. It is 
possible that there are differences in these groups that would have 
caused the groups to develop differently, even in the absence of changes 

in time spent at home. Future studies might consider different study 
designs to overcome this possible limitation, for example by designing 
experiments in living-lab settings (e.g., as in [52]).

This study looked at presence at home as a potential cause of changes 
in energy consumption. It is evident that mere presence is not sufficient 
to affect consumption: it is the activities that accompany such presence 
that matter. Given that this study was done during the pandemic, the 
results found here might be an attribute of pandemic-specific behaviours 
or more general behaviours that one undertakes when one is home. 
Future research should therefore focus on the mechanisms behind con
sumption pattern changes as a result of increased home presence. What 
are the activities that potentially lead to increased or decreased vari
ability and increases in daytime consumption, with increased home 
presence?

5. Conclusion

This paper started with the question of whether increased time spent 
at home, without any other incentives to drive consumers, could lead to 
changes in electricity consumption patterns. In conclusion, the data 
suggest that consumption patterns changed during the pandemic, and 
these changes depended on whether people spent more time at home or 
not. Increased home presence was associated to increased energy con
sumption during the day, and in some cases, a reduced consumption 
during morning or evening hours, while it also resulted in a somewhat 
more regular energy consumption pattern during the morning hours.

It should be noted that, while people working from home during the 
pandemic may have had a changed potential for flexibly using energy, 
they were not actively encouraged to do so. This study looked at the 
changes in volume and variability in electricity consumption which 
naturally occur when people change home presence/time spent at home. 
Demand response programs and policy makers can utilise this by 
tailoring approaches to different consumer segments, which may have 
dissimilar kinds of flexibility that they can exhibit, and different abilities 
in responding flexibly.
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