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1 Introduction

The point-particle limit of string amplitudes offers a wealth of perspectives on and tools for
studying scattering amplitudes in gauge theories and (super)gravity. Besides taming the
spurious combinatorial complexity of traditional Feynman rules, string amplitudes naturally
expose the double-copy relation between gauge theory, gravity and a growing web of different
field- and string theories. Moreover, superstring loop amplitudes elegantly manifest the
cancellations between bosonic and fermionic states in the loops of supersymmetric field-theory
amplitudes.

At a practical level, field-theory amplitudes are obtained from the infinite-tension limit
α′ → 0 of their string-theory ancestors while degenerating their two-dimensional worldsheets
to one-dimensional worldlines. In this way, string-theory methods fruitfully draw from and
extend the techniques of the worldline literature.

One rather technical step in the transition from worldsheets to worldlines at loop level
is the extraction of reducible diagrams, namely worldline configurations with external tree-
level diagrams. The systematic identification of such reducible diagrams has been studied
over several decades and is known under the name of pinching rules [1–6]—see [7] for a
review. In both the string-theory literature [8–13] and the worldline literature [14–16], the
pinching rules lead to explicit realizations of the color-kinematics duality at the heart of
the double copy [17–22].

The string-inspired worldline techniques and pinching rules typically recover the Schwinger-
parameter representation of Feynman integrals where the integration variables are worldline
quantities descending from the moduli of string worldsheets instead of loop momenta. On the
one hand, Schwinger parameters inherit valuable structures from the moduli space of world-
sheets which is particularly conveniently described by tropical geometry [23, 24]. On the other
hand, the departure from loop-momentum space obscures the Bern-Carrasco-Johansson double-
copy structure of (super)gravity amplitudes: their assembly from bilinears of gauge-theory
building blocks is performed at the level of loop integrands [17–19], see [20–22] for reviews.

The double-copy relations between loop integrands naturally originate from string theory
because gravitational and gauge multiplets are vibration modes of closed and open strings,
respectively. At loop level, the worldsheet description of string amplitudes requires chiral
splitting [25–27] to manifest the double-copy structure of closed strings: the moduli-space
integrand of closed-string amplitude factorizes into two chiral amplitudes involving open-string
degrees of freedom upon introducing string-theory ancestors of loop momenta (certain zero
modes of worldsheet fields). Accordingly, it is desirable to perform the field-theory limit
of loop-level string amplitudes within the chiral-splitting formulation such as to preserve
manifest double-copy structures of gravitational loop integrands.

However, the vast body of literature on the pinching rules for the field-theory limits
usually starts by integrating out the string loop momentum. The goal of this work is to
extend the pinching rules to the chiral-splitting formulation, with an account and resolution of
subtleties specific to multiparticle amplitudes starting from six points. These extra subtleties
within chiral splitting can be understood from the fact that reducible diagrams are inferred
from poles in the worldsheet moduli in the integrands of string amplitudes. In case of chiral
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splitting, the central building blocks of worldsheet integrands are meromorphic and thereby
have a different pole structure than the non-meromorphic outcome of the loop integration.

We describe the appearance of additional reducible diagrams in the pinching rules of
chiral splitting which for maximally supersymmetric open- and closed-string amplitudes
kick in at six points.1 The new pinching rules specific to chiral splitting can be traced
back to the meromorphic Kronecker-Eisenstein coefficients g(k) with k ∈ N that furnish a
natural language for multiparticle one-loop string amplitudes [28–35]. Starting from k = 2,
the multivalued g(k) have subtle poles away from the origin that are determined by their
monodromies and absent for their doubly-periodic counterparts f (k) that arise from loop
integration. The same monodromies pose restrictions on the integration-by-parts relations
between meromorphic (as opposed to doubly-periodic) Kronecker-Eisenstein coefficients,
and we showcase their resolution at the six-point level. Hence, a key result of this work is
a discussion and constructive fix of two related pitfalls arising in the field-theory limit of
multiparticle string amplitudes in the chiral-splitting formulation.

As a concrete application of the extended pinching rules, we derive a new representation
of the six-point one-loop amplitude of type-IIA/B supergravity from chiral splitting. The
result is written in pure-spinor superspace [36–39], manifesting spacetime supersymmetry
and encoding all component amplitudes for arbitrary combinations of external bosons and
fermions. For all the one-loop box-, pentagon- and hexagon diagrams, the kinematic numerator
factors are written as double copies of gauge-theory polarizations. Moreover, in contrast
to the outcome of the one-loop KLT formula in field theory [40, 41], the propagators in
our six-point amplitude representation take the conventional form quadratic in the loop
momentum. However, the gauge-theory numerators in our supergravity loop integrand do
not obey the kinematic Jacobi relations required by the color-kinematics duality. Relatedly,
not all of the terms in the supergravity integrand correspond to graphs with solely cubic
vertices — we also encounter double-copy contributions associated with contact diagrams
akin to the generalized double copy [42].

Many important facets of double-copy structures in gravitational loop amplitudes were
informed by ambitwistor string theories [43–47]. The ambitwistor construction of loop
integrands in double-copy form from forward limits of tree amplitudes [48–56] gave rise to
all-multiplicity realizations of the color-kinematics duality in a modified setting [41]: the
bookkeeping of cubic one-loop graphs includes all single-cut diagrams, where most of their
inverse propagators are linearized in the loop momentum. In converting back to quadratic
propagators (which can be attained using a variety of approaches [57–65]), the color-kinematics
duality is not guaranteed to be preserved. Since one of the counterexamples is the one-loop
six-point amplitude of type-IIA/B supergravity [9, 41], this work provides its first superspace
representation written in terms of quadratic propagators.

Our extended pinching rules are compared with the results of ambitwistor-string methods
converted to quadratic propagators. Apart from the expected matching of the full one-loop
amplitudes, the results of the two different formalisms are found to match at a refined level,

1By the parallels between one-loop n-point superstring amplitudes with maximal supersymmetry and
(n+2)-point amplitudes with reduced supersymmetry [11, 28], the subtleties discussed and addressed in this
work already concern four-point one-loop amplitudes in K3 or Calabi-Yau compactifications.
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namely at the level of individual homology invariants within the underlying correlation
functions. Homology invariance generalizes the notion of double periodicity for correlation
functions on a torus where shifts of loop momenta compensate for certain types of mon-
odromies [13, 27, 34, 55]. Hence, each of the numerous homology invariants contributing to
multiparticle one-loop amplitudes admits the combined use of the complementary advantages
of pinching rules from conventional string theories and ambitwistor-string techniques.

Integration-by-parts relations in chiral splitting are restricted by the fact that total
derivatives can only be discarded when they act on homology invariants. We show that
this restriction does not apply to the integrands of ambitwistor-string formulae for one-loop
amplitudes, at least when following the evaluation strategy of [48, 51] via forward limits
of trees.

In summary, this work closes several gaps in the literature related to the interplay of
different formalisms for one-loop amplitudes of gauge theories and (super)gravity, with the
one-loop six-point supergravity amplitude as a key illustration and application:

• the pinching rules in the worldline approach to the field-theory limit of one-loop string
amplitudes are extended to account for chiral splitting and the Kronecker-Eisenstein
coefficients in the associated chiral amplitudes

• the comparison between conventional α′-dependent strings and ambitwistor strings is
refined to smaller subsectors of amplitude computations (individual homology invariants),
and the restrictions on integration-by-parts relations in both approaches is clarified

Note added. The closely related work [66] reverses the traditional information flow from
string theory to field theory and constructs chiral one-loop amplitudes at n ≤ 7 points directly
from color-kinematics dual representations of super-Yang-Mills amplitudes and homology
invariance. The absence of Kroencker-Eisenstein derivatives ∂zg(k)(z) in the chiral amplitudes
of the reference resonates with our resolution of the restriction on integrations by parts from
monodromies in chiral splitting. We are grateful to the authors of [66] for notifying us of
their results, and for coordinating the submission.

1.1 Outline

This work is organized as follows: we set the stage for the main results through a detailed
review of pinching rules and chiral splitting of string amplitudes in section 2 which also fixes
our notation. In section 3, the pinching rules are extended to chiral splitting, describing and
overcoming subtleties in the pole structure of Kronecker-Eisenstein coefficients and integration
by parts. Our findings are then applied to present a new superspace representation of the
one-loop six-point supergravity amplitude in section 4. Finally, the comparison and synergies
with ambitwistor strings are discussed in section 5. Three appendices provide further details
on superspace kinematic factors, alternative derivations of reducible diagrams and explicit
formula for field-theory limits at six points.
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2 Review

2.1 Basics of tree-level pinching rules

The pole structure of string amplitudes is determined by the singularities in the integration
over punctures on the worldsheet. In particular, the massless propagators given by inverses
of Mandelstam invariants

sij = (ki+kj)2 = 2ki · kj , si1i2...ip = (ki1+ki2+ . . . +kip)2 (2.1)

arise from a region in moduli space where some of the punctures approach each other: zi → zj

in case of two-particle propagators s−1
ij and a cascade of limits that bring all of zi1 , zi2 , . . . , zip

close to each other in case of p-particle propagators s−1
i1i2...ip

. However, the kinematic poles
are only realized when the moduli-space integrand is “sufficiently singular” in the associated
limits for the marked point. The purpose of pinching rules is to give a precise characterization
of a “sufficiently singular” behavior needed to encounter a given kinematic pole in (2.1).

The short-distance behavior of the moduli-space integrands for open- and closed-string
amplitudes is governed by the universal Koba-Nielsen factor which is

J tree
n (α′) =

n∏
1≤i<j

(zij)α′sij , zij = zi−zj (2.2)

in open-string tree-level amplitudes, |J tree
n (α′/4)|2 in closed-string tree amplitudes and

more generally determined by correlation functions of plane waves eik·X(z) in the conformal-
field-theory description of string amplitudes [67–69]. Even though the Green functions on
worldsheets of genus ≥ 1 take a more involved form than log |zij |, the leading zi → zj behavior
|zij |α

′sij and |zij |α
′sij/2 is universal to Koba-Nielsen factors at any loop order. Throughout

this work, we shall rescale α′ → 4α′ in closed-string amplitudes, resulting for instance in a
tree-level Koba-Nielsen factor |zij |2α′sij instead of |zij |α

′sij/2. This rescaling ensures that the
meromorphic zi-dependence in their integrand matches that of open-string amplitudes and
unifies various pairs of later formulae. Our main results concern the α′ → 0 limit of string
amplitudes and are therefore unaffected by this rescaling of α′.

The nuances of pinching rules are different for open- and closed-string amplitudes. As
will be illustrated via tree-level examples, the organization of open-string amplitudes by
cyclic orderings of punctures on worldsheet boundaries leads to pinching rules where the
neighboring legs . . . < zi < zj < zk < . . . in integration regions are compared with the
integrand and its poles in zij , zik, zjk. For closed strings in turn, the integration region for
punctures is the entire worldsheet — without any notion of neighbors in a cyclic ordering —
and pinching rules amount to comparing the singularity structure in the holomorphic and
antiholomorphic zi-dependence of the integrand.

2.1.1 Open-string examples at tree level

As our first illustrations of pinching rules, we review field-theory limits of selected contributions
to open-string tree amplitudes derived from integrating punctures over the boundary of a
disk worldsheet. More specifically, color-ordered open-string amplitudes Atree(1, 2, . . . , n; α′)
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descend from the cyclic ordering of punctures that corresponds to z1 < z2 < . . . < zn when
parametrizing the disk boundary through the real line.

In our first example at n = 4 points, we pick the SL(2,R) frame where (z1, z3, z4) →
(0, 1,∞) and focus on the disk integral∫ 1

0

dz2
z2

zα′s12
2 (1−z2)α′s23 = 1

α′s12
+ O(α′) (2.3)

while ignoring the accompanying polarization dependent factors.2 The pole in s12 reflects the
fact that a naive α′ → 0 limit at the integrand level would introduce an endpoint divergence
from integrating dz2

z2
close to z2 → 0. There is no pole in s23 since dz2

z2
in absence of additional

rational factors (1−z2)−1 can be smoothly integrated up to z2 → 1. The pole of (2.3) is tied
to the integration region z2 ∈ (0, 1) reflecting the color-ordering of Atree(1, 2, 3, 4; α′) with
cyclic ordering z1 < z2 < z3 < z4 on the boundary of the disk worldsheet.

At n ≥ 5 points, the (n−3)-dimensional moduli-space integrals for punctured disk
worldsheets and integrands with logarithmic singularities yield products of n−3 propagators
si...j in the field-theory limit. The three examples in the SL(2,R) frame (z1, z4, z5) → (0, 1,∞)

lim
α′→0

(α′)2
∫ 1

0
dz3

∫ z3

0
dz2 J tree

5 (α′)

 (z12z13)−1

(z13z23)−1

(z12z23)−1

 =

 (s12s123)−1

(s23s123)−1

(s12s123)−1 + (s23s123)−1

 (2.4)

illustrate how two-particle propagators s−1
ij correlate with simple poles z−1

ij in the integrand
provided that zi and zj are neighbors in the integration region (i.e. there is no pole in s13 from
integrals over z−1

13 ). Similarly, three-particle propagators si−1,i,i+1 involving three neighboring
legs arise from integrals over two factors out of {z−1

i−1,i, z−1
i−1,i+1, z−1

i,i+1} as seen in (2.4) for i = 2.
After earlier studies of five- and six-point examples [70–72], the systematics of field-theory
limits of n-point disk integrals was discussed from several perspectives [73–76] and can be
neatly encoded in doubly-partial amplitudes of bi-adjoint scalars [77, 78].

2.1.2 Closed-string examples at tree level

Closed-string tree amplitudes arise from sphere worldsheets where the punctures are inde-
pendently integrated over C and do not follow any analogue of the ordering along the disk
boundary of the open-string case. In this case, the appearance of massless propagators is
controlled by the alignment of poles z−1

ij and z̄−1
pq in the holomorphic and antiholomorphic

moduli dependence. In the four-point example (with SL(2,C) frame (z1, z3, z4) → (0, 1,∞)
and d2z = dx dy for z = x+iy with x, y ∈ R)

1
π

∫
C

d2z2
z2z̄2(1−z̄2) |z2|2α′s12 |1−z2|2α′s23 = 1

α′s12
+ O(α′2) (2.5)

the pole in s12 can be understood from the fact that a naive limit α′ → 0 in the integrand
yields a divergent integral over d2z2

|z2|2 from a disk around z2 = 0. Integrating d2z2
(1−z̄2) over

the analogous disk centered at z2 = 1 yields a finite result as one can for instance check in
2The polarization dependence of n-point tree amplitudes in supersymmetric, heterotic and bosonic string

theories can for instance be found in the recent review [39].
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polar coordinates z2−1 = reiφ for φ ∈ [0, 2π) and small r ≥ 0, explaining the absence of
propagators s−1

23 in (2.5). Hence, the pole in (2.5) is tied to the matching of the holomorphic
and antiholomorphic singularity in zij and z̄ij at (i, j) = (1, 2).3

Similarly, the (n−3)-dimensional moduli-space of n-point closed-string amplitudes yields
(n−3) simultaneous poles in the field-theory limit of sphere integrals over functions with
logarithmic singularities. Suitable closed-string analogues of the five-point open-string
examples (2.4) (in the SL(2,C) frame (z1, z4, z5) → (0, 1,∞)) are

lim
α′→0

(
α′

π

)2 ∫
C2

d2z2 d2z3 |J tree
5 (α′)|2

z̄43z̄32z̄21

 (z12z13)−1

(z13z23)−1

(z12z23)−1

 =

 (s12s123)−1

(s23s123)−1

(s12s123)−1 + (s23s123)−1

 (2.6)

Here and in fact at arbitrary multiplicity [79], the two-particle propagators s−1
ij arise from

matching singularities zij z̄ij for arbitrary pairs 1 ≤ i < j ≤ n (by the permutation symmetry
of the integration region in the punctures, there is no restriction to j = i±1 here). The field-
theory limits (2.6) furthermore illustrate that three-particle propagators sijk in closed-string
amplitudes arise from integrands involving two out of three factors {z−1

ij , z−1
ik , z−1

jk } and at
the same time two out of {z̄−1

ij , z̄−1
ik , z̄−1

jk }, for arbitrary 1 ≤ i < j < k ≤ n.
Most of the literature on the sphere integrals of closed-string tree amplitudes and their

field-theory limits makes use of the Kawai-Lewellen-Tye relations [80] or the single-valued map
between open- and closed-string α′-expansions4 [75, 76, 79, 81–83]. Direct computations of
propagators (sijspq)−1 in five-point sphere integrals at α′ → 0 can for instance be found in [8].

2.1.3 Summary of tree-level pinching rules

We shall summarize the examples of open- and closed-string pinching rules at tree level for
one and two simultaneous propagators at n = 4 and n = 5 points as follows

open strings closed strings

n = 4 1
z21

→ 1
s12

1
z̄32z̄21×z21

→ 1
s12

1
z12z13

→ 1
s12s123

1
z̄43z̄32z̄21×z12z13

→ 1
s12s123

n = 5 1
z13z23

→ 1
s23s123

1
z̄43z̄32z̄21×z13z23

→ 1
s23s123

1
z12z23

→ 1
s12s123

+ 1
s23s123

1
z̄43z̄32z̄21×z12z23

→ 1
s12s123

+ 1
s23s123

(2.7)

The above cases are adapted to the frame where zn → ∞, and there is no analogue of this
choice in the one-loop pinching rules below. Throughout this work, open-string pinching
rules at tree level and one loop are given for color-ordered amplitudes associated with the
cyclic ordering Tr(ta1ta2 . . . tan).

3Note that changing the rational function (z2z̄2(1−z̄2))−1 in (2.5) to one of (z2z̄2)−1, ((1−z2)(1−z̄2))−1,
(z2(1−z̄2))−1 or ((1−z2)z̄2)−1 would yield poles in s13 = s24 from the region z2 → ∞ (with additional poles
s−1

12 and s−1
23 in the case of (z2z̄2)−1 and ((1−z2)(1−z̄2))−1, respectively). These poles in s13 can be traced

back to singularities in z13, z̄13 or z24, z̄24 by undoing the choice of SL(2,C) frame in (2.5), i.e. recognizing
(z12z24z43z31)−1 and (z14z42z23z31)−1 as the SL(2,C)-covariant uplift of z−1

2 and (1−z2)−1, respectively.
4The denominator (z̄43z̄32z̄21)−1 is naturally introduced by taking the single-valued map of open-string

integrals over the integration region for z2, z3 bounded by z1 < z2 < z3 < z4, see for instance [75].
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Figure 1. Parametrization of the cylinder worldsheet Cτ (left panel) and the torus worldsheet Tτ

(right panel) in one-loop n-point open- and closed-string amplitudes (referring to the color factor
Tr(ta1ta2 . . . tar )Tr(tar+1 . . . tan) in the open-string case) after fixing z1 = 0 by translation invariance.

2.2 Basics of one-loop pinching rules

One-loop string amplitudes are derived from moduli-space integrals over genus-one worldsheets
involving modular parameters τ ∈ H in addition to the punctures zi (with H denoting the
upper half plane in C). In the open-string case, the worldsheets of cylinder and Möbius-strip
topologies are described by τ ∈ iR+ and τ ∈ iR++1

2 , respectively. The modular invariance of
closed-string one-loop amplitudes restricts the modular parameter of the torus worldsheet to
the fundamental domain F of SL(2,Z) defined by |Re(τ)| < 1

2 and |τ | > 1 [67, 69, 84]. Our
parametrizations of cylinder and torus worldsheets Cτ and Tτ are depicted in figure 1 below,
with a single periodic direction zi

∼= zi+τ for the cylinder as well as two periodic directions
zi

∼= zi+1 and zi
∼= zi+τ for the torus. In order to account for the cyclic orderings of the

punctures on the cylinder boundary, we shall use the following shorthand

∂C12...n
τ = {zj = τuj , 0 = u1 < u2 < . . . < un < 1} (2.8)

for the integration domain of planar one-loop open-string amplitudes A1-loop(1, 2, . . . , n)
associated with the color factor Tr(ta1ta2 . . . tan). In other words, we have introduced real
moduli ui ∈ (0, 1) to encode the insertion points of open-string states on the cylinder boundary.
We do not consider the Möbius-strip contribution in this work since the cylinder amplitudes
already degenerate to a basis of color-ordered one-loop amplitudes in gauge theories through
their α′ → 0 limits.5

2.2.1 Chiral splitting

In the chiral-splitting formulation of one-loop string amplitudes [26, 27], the moduli-space
integrands for open and closed strings are governed by the same meromorphic functions
of zi, τ known as chiral amplitudes. Moreover, chiral amplitudes are considered at fixed
loop momentum ℓm — the shared zero mode of the left-and right-moving worldsheet fields

5Non-planar one-loop gauge-theory amplitudes associated with double-trace color factors
Tr(ta1 ta2 . . . tar )Tr(tar+1 . . . tan ) can be obtained from linear combinations of the planar ones accom-
panying Tr(ta1 ta2 . . . tan ) with coefficients 0,±1 through the all-multiplicity relations of [85] and will not be
discussed in this work.
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∂zXm(z) and ∂z̄Xm(z) in D spacetime dimensions, with Lorentz index m = 0, 1, . . . , D−1.
The loop integral in string amplitudes is Gaussian and straightforward to perform in later
steps. We organize chiral amplitudes into a theory-dependent function Kn of the polarizations
to be referred to as chiral correlators (see section 2.3.3 below for examples) and the universal
Koba-Nielsen factor6

Jn(α′) = exp
(

α′
[
2πiτℓ2 + 4πi

n∑
j=1

zj(ℓ · kj) +
n∑

1≤i<j

sij log θ1(zij , τ)
])

(2.9)

generalizing its tree-level counterpart (2.2). We will keep on rescaling α′ → 4α′ in closed-
string amplitudes (the field-theory limits under investigation arise at the leading order in α′)
and stop displaying the α′-dependence in the Jn notation. In this setting, the (planar)
cylinder and torus contributions to n-point open- and closed-string amplitudes A1-loop and
M1-loop are given by

A1-loop(1, 2, . . . , n) = (2π)4(α′)n
∫
RD

dDℓ

∫ i∞

0
dτ

∫
∂C12...n

τ

dz2 . . . dzn |Jn| Kn (2.10)

M1-loop
n = (2π)8

(
α′

π

)n ∫
RD

dDℓ

∫
F

d2τ

∫
(Tτ )n−1

d2z2 . . . d2zn |Jn Kn|2

where we fix translation in variance at genus one by setting z1 = 0 in both cases and in
fact throughout this work. As a key virtue of chiral splitting, the closed-string integrand
∼ |Jn Kn|2 at fixed loop momentum is an absolute-value square and referred to as a double-
copy of the chiral amplitude. In particular, the polarization dependence of closed-string
amplitudes is a double copy of that in the chiral correlators Kn and independent polarization
degrees of freedom7 in the complex conjugate Kn. On these grounds, chiral splitting can
be viewed as the origin of the BCJ double-copy structure of gravity amplitudes [20–22] and
explains why double copy typically occurs at the level of the loop integrand (as opposed
to after loop integration).

2.2.2 Field-theory limit at one loop

One-loop string amplitudes have a long history in offering streamlined derivations of one-loop
amplitudes in supergravity and gauge theories, see for instance [86–89] and more recently [8–
13, 23, 90–94]. The key idea is that the α′ → 0 limits are supported on the boundary
τ → i∞ of moduli space where the cylinder and torus worldsheets both degenerate to
a worldline. These computations of field-theory limits are traditionally performed in the
worldline formalism where the loop momentum is integrated out and renders the worldline
Green function quadratic in proper times [1, 3–7, 23, 91, 95–100].

6We use the following conventions for the odd Jacobi theta function subject to θ1(z, τ) = zθ′
1(0, τ) + O(z3):

θ1(z, τ) = 2q1/8 sin(πz)
∞∏

n=1

(1−e2πizqn)(1−e−2πizqn)(1−qn).

7The polarization vector em
i of the ith gluon encountered in the meromorphic Kn of open-string amplitudes

is taken to be independent on the polarization vector ẽp
i in the anti-meromorphic Kn. The notation Kn within

the closed-string integrand |Kn|2 = KnKn is understood to take the complex conjugate of the worldsheet
moduli and to replace em

i → ẽm
i without requiring that ẽm

i is the complex conjugate of em
i .
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In order to investigate double-copy representations of loop integrands of gauge theory
and supergravity in momentum space, one can even bypass the evaluation of the Gaussian
loop integral in performing the simultaneous limits α′ → 0 and τ → i∞ of the string
amplitudes (2.10). This is particularly relevant at n ≥ 5 points where the chiral correlators
Kn are non-trivial polynomials in loop momentum and where the Gaussian loop integral in
presence of the closed-string integrand |Kn|2 introduces a growing number of Wick contractions.
The latter contract the Lorentz-vector indices of left- and right-moving polarizations and
illustrate the well-known departures from the BCJ double-copy in passing from momentum
space to Schwinger parameters [5, 6, 8].

Starting from the chiral-splitting representation (2.10) of one-loop string amplitudes, the
field-theory limit of a constant chiral correlator Kn → 1 takes the particularly simple form8

∫
RD

dDℓ

i∞∫
0

dτ

∫
∂C12...n

τ

dz2 . . . dzn |Jn| →
1

(2πi)n(α′)n

∫
RD

dDℓ

ℓ2(ℓ−k1)2(ℓ−k12)2 . . . (ℓ−k12...n−1)2

∫
RD

dDℓ

∫
F

d2τ

∫
(Tτ )n−1

d2z2 . . . d2zn |Jn|2 → 1
(2π)2n

(
π

α′

)n ∫
RD

dDℓ

ℓ2(ℓ−k1)2(ℓ−k12)2 . . . (ℓ−k12...n−1)2

+ perm(2, 3, . . . , n) (2.11)

of a single n-gon Feynman integral in the open-string case and a permutation sum of (n−1)!
such n-gons in the closed-string case. Here and below, we are using the notation

ki1i2...ip = ki1+ki2+ . . . +kip (2.12)

for multiparticle momenta such that si1i2...ip = k2
i1i2...ip

by (2.1).
The field-theory limits (2.11) can be understood from the degeneration limit of the

chiral Green function log θ1(uτ+v, τ) in the Koba-Nielsen factor (2.9) at constant comoving
coordinates u, v ∈ [0, 1),9

log
(

θ1(uτ+v, τ)
2q1/8

)
τ→i∞−→ −iπτ |u| (2.13)

In other words, the second comoving coordinate vi of zi = uiτ+vi contributing solely to the
real part drops out at the boundary τ → i∞ of moduli space. The independent integrations
over 0 < ui < 1 from the integration region (Tτ )n−1 of the closed-string amplitude (2.10)
then decomposes into a sum over (n−1)! permutations ∂C1ρ(2...n)

τ with ρ ∈ Sn−1 covering
all cyclically inequivalent open-string integration regions in (2.8). Each integration simplex

8The (n−1)!-term permutation sum in the closed-string case of (2.11) double-counts the scalar n-gons
since reflections (k2, k3, . . . , kn) → (kn, . . . , k3, k2) leave these loop integrals invariant. Nevertheless, we keep
all pairs of identical scalar n-gons separated to avoid the tedious bookkeeping efforts of relating the tensor
integrals in later sections (with additional factors of ℓm) to their reflection images.

9The zi independent shift of the chiral Green function in log( θ1(uτ+v,τ)
2q1/8 ) = log(θ1(uτ+v, τ)) − log(2q1/8)

drops out from the Koba-Nielsen factor (2.9) by momentum-conservation
∑n

1≤i<j
sij = 0.
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∂C1ρ(2...n)
τ for the ui in (2.8) realizes the Schwinger parametrization of an n-gon integral∫ dDℓ

πD/2
1

ℓ2(ℓ−K1)2(ℓ−K12)2 . . . (ℓ−K12...n−1)2 =
∫ ∞

0

dt

t
tn−D/2 (2.14)

×
∫

0<u2<u3<...<un<1
du2 du3 . . . dun exp

[
−t

n∑
1≤i<j

Ki · Kj
(
u2

ij − |uij |
)]

with u1 = 0 which is also valid for massive external momenta Ki = kab..., i.e. if K2
i ̸= 0.

Further information on the worldsheet origin of the Feynman integrals (2.14) from the
combined limit α′ → 0 and τ → i∞ of open- and closed-string integrals can be found in
appendix A.

2.2.3 One-loop pinching rules in presence of simple poles

The field-theory limits (2.11) only cover constant chiral correlators and need to be extended
to accommodate the non-trivial z-dependence of the actual Kn of the superstring. The
short-distance singularities are well-known to be expressible through derivatives of bosonic
Green functions [30, 90, 91, 101–103] which in the chiral-splitting context reduces to

g
(1)
ij = ∂zi log θ(zij , τ) (2.15)

without the doubly-periodic completion by 2πi
Im zij

Im τ . By the simple pole g
(1)
ij = z−1

ij + O(zij)
and the universal short distance behavior of the Koba-Nielsen factor Jn = z

α′sij

ij (1 + O(zij))
at any genus, integrating g

(1)
ij Jn over the region zj → zi gives rise to massless propagators

s−1
ij as in the tree-level case. Hence, the open- and closed-string pinching rules at genus

zero summarized in section 2.1.3 have an immediate genus-one uplift with almost identical
combinatorial rules to deal with multiple simultaneous poles such as (sijksij)−1.

In presence of a single factor of g
(1)
ij in Kn (resulting in a single pair g

(1)
ij g

(1)
pq from the

double copy |Kn|2 in the closed-string integrand), the n-gon integrals in the field-theory
limit (2.11) may get augmented by (n−1)-gons. However, while the α′ → 0 limits at tree level
reduce to the terms with the maximum number of external propagators s−1

i...j , the field-theory
limits at one loop retain the irreducible n-gon contributions in addition to the (n−1)-gons
due to the pinch caused by g

(1)
ij . More generally, terms with a total of r factors g

(1)
ij in Kn lead

to m-gon Feynman integrals in the range of m ∈ {n−r, n−r+1, . . . , n−1, n} corresponding
to 0, 1, . . . , r simultaneous pinches.

From the derivative of the degeneration limit (2.13) of the Green function, we obtain

lim
τ→i∞

g
(1)
ij = −iπ sgn(ui−uj) (2.16)

which introduces prefactors to the higher-gons for each g
(1)
ij that does not contribute a

pinch. In particular, both individual g
(1)
ij and pairs of g

(1)
ij g

(1)
pq introduce alternating signs

into permutation sums of field-theory limits10 such as (2.11).
10Also for non-constant chiral correlators Kn, the permutation sums over different orderings of the external m-

gon legs arise from the decomposition of the closed-string integration region 0 < ui < 1 for each i = 2, 3, . . . , n

into the simplices (2.8) from open-string integration regions. Since the signum function in the degeneration
limit (2.16) takes different constant values on these simplices which individually yield a single Feynman
integral, each factor of g

(1)
ij or g

(1)
ij translates into sgnρ

ij in (2.17) when it does not contribute a pinch.
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1
A1
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ℓ+kB

ℓ−k1C
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1
C

B

A2

Figure 2. Routing of internal and external momenta for the propagators of (2.18) (left panel, leg 1
in the first position of a massive corner) and (2.19) (right panel, leg 1 in generic positions).

2.2.4 Notation for one-loop pinching rules

In order to compactly represent the multitude of Feynman integrals arising from some of the
subsequent field-theory limits, we shall here introduce several shorthand notations. First,
the alternating signs due to the signum function in (2.16) are represented via

sgnρ
ij =

{
+1 : i is right of j in ρ(. . . i . . . j . . .)
−1 : i is left of j in ρ(. . . i . . . j . . .) (2.17)

Second, the m loop-momentum dependent propagators of an m-gon (i.e. internal propagators
as opposed to external ones si...j) will be gathered in the notation

I
(m)
1A1,A2,...,Am−1,Am

= 1
ℓ2(ℓ − k1A1)2(ℓ − k1A1A2)2 . . . (ℓ − k1A1A2...Am−1)2 (2.18)

where commas separate the ordered sets Ai = a1
i a2

i . . . of particle labels aj
i referring to the

sums (2.12) of external momenta in the ith corner of the m-gon. We are assigning loop
momentum ℓ to the edge of the m-gon adjacent to external leg 1 in counterclockwise direction
as depicted in the left panel of figure 2. This way of singling out leg 1 corresponds to our
choice of fixing z1 = 0 in the parental string amplitudes (2.10). We will also encounter cases
where leg 1 is not in the first position of a massive corner

I
(m)
B1C,A2,...,Am−1,Am

= 1
(ℓ − k1C)2(ℓ − k1CA2)2 . . . (ℓ − k1CA2...Am)2 (2.19)

and emphasize through the underscore notation of 1 that leg 1 governs our choices of
assigning ℓ as in the right panel of figure 2.

Finally, we shall use the following shorthands for the field-theory limits in the open-
and closed-string setting of (2.10):∫
RD

dDℓ FTop
12...n

[
h(zi,τ,ℓ)

]
=(2π)4 lim

α′→0
(α′)n

∫
RD

dDℓ

∫ i∞

0
dτ

∫
∂C12...n

τ

dz2 ...dzn |Jn|h(zi,τ,ℓ)∫
RD

dDℓ FTcl
n

[
h(zi,τ,ℓ)

]
=(2π)8 lim

α′→0

(
α′

π

)n∫
RD

dDℓ

∫
F

d2τ

∫
(Tτ )n−1

d2z2 ...d2zn |Jn|2h(zi,τ,ℓ)

(2.20)
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In other words, the FTop
12...n[. . .]- and FTcl

n [. . .] notations isolate the field-theory limit of the
loop integrands of one-loop string amplitudes in the ellipsis – up to shifts of loop momentum
that drop out under the

∫
RD dDℓ operation on both sides, e.g.

FTop
12...n

[
h(zi, τ, ℓ)

]
= (2π)4 lim

α′→0
(α′)n

i∞∫
0

dτ

∫
∂C12...n

τ

dz2 . . . dzn |Jn|h(zi, τ, ℓ) mod (ℓ → ℓ±kj)

(2.21)

In the open-string case, the placeholder functions h(zi, τ, ℓ) in (2.20) of interest are meromor-
phic combinations of Kronecker-Eisenstein coefficients g(m) (and their z-derivatives) to be
reviewed in section 2.3 below with ki- and ℓ-dependent coefficients. For closed strings, the
placeholders h(zi, τ, ℓ) in the second line of (2.20) additionally incorporate complex conjugate
Kroencker-Eisenstein coefficients.

2.2.5 Examples of one-loop pinching rules

We shall now spell out examples of the one-loop pinching rules that apply to the chiral
correlators Kn of type-I and type-II superstring amplitudes which introduce a maximum of
n−4 factors of g

(1)
ij at n points. Specializing the FT notations (2.20) to zi-independent terms

h(zi, τ, ℓ) → 1 of chiral correlators casts the n-gon examples in (2.11) into the compact form

FTop
12...n

[
1
]

= (2πi)4−nI
(n)
1,2,...,n , FTcl

n

[
1
]

= (2π)2(4−n) ∑
ρ∈S{2,3,...,n}

I
(n)
1,ρ(2,3,...,n) (2.22)

where the commas in the subscripts on the right-hand sides reduce all the ordered sets
Ai in (2.18) to length one. Here and below, the p!-element group of permutations of
A1, A2, . . . , Ap is denoted by S{A1,A2,...,Ap} (instead of Sp), and we tolerate the double-counting
in the (n−1)! permutation sum over ρ ∈ S{2,3,...,n} from

∫
RD dDℓ I

(n)
1,2,3,...,n =

∫
RD dDℓ I

(n)
1,n,...,3,2

by the comments in footnote 8.
The chiral correlators of five-point superstring amplitudes involve a single factor of

g
(1)
ij . In case of adjacent punctures zi, zj on the cylinder boundary, i.e. j = i±1 mod 5, the

open-string field-theory limits involve a box integral I(4) besides the pentagon I(5),

FTop
12345

[
g

(1)
12
]

= 1
2I

(5)
1,2,3,4,5 +

I
(4)
12,3,4,5
s12

, FTop
12345

[
g

(1)
13
]

= 1
2I

(5)
1,2,3,4,5 (2.23)

FTop
12345

[
g

(1)
23
]

= 1
2I

(5)
1,2,3,4,5 +

I
(4)
1,23,4,5
s23

, FTop
12345

[
g

(1)
24
]

= 1
2I

(5)
1,2,3,4,5

The field-theory limits of closed-string five-point integrals feature external propagators s−1
ij

and permutation sums of boxes I(4) if the simple poles of g
(1)
ij g

(1)
pq match, i.e. if {p, q} = {i, j},

FTcl
5
[
g

(1)
23 g

(1)
23
]

= 1
4

∑
ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) + 1

s23

∑
ρ∈S{23,4,5}

I
(4)
1,ρ(23,4,5)

FTcl
5
[
g

(1)
23 g

(1)
24
]

= 1
4

∑
ρ∈S{2,3,4,5}

sgnρ
23 sgnρ

24 I
(5)
1,ρ(2,3,4,5) (2.24)
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see (2.17) for the sign factors sgnρ
ij . The appearance of the box integrals in (2.23) and (2.24)

with prefactors s−1
ij can be viewed as a one-loop uplift of the tree-level pinching rule for

open and closed strings in (2.3) and (2.5), respectively. However, the new feature at one
loop is that also the pentagons I(5), i.e. terms without external propagators s−1

ij , contribute
to the α′ → 0 limit.

At six points, generic field-theory limits mix hexagons I(6) with pentagons I(5) and
boxes I(4). For open strings, three cyclically inequivalent examples are

FTop
12...6

[
g

(1)
12 g

(1)
34
]

= 1
4I

(6)
1,2,3,4,5,6 +

I
(5)
12,3,4,5,6

2s12
+

I
(5)
1,2,34,5,6

2s34
+

I
(4)
12,34,5,6

s12s34

FTop
12...6

[
g

(1)
12 g

(1)
23
]

= 1
4I

(6)
1,2,3,4,5,6 +

I
(5)
12,3,4,5,6

2s12
+

I
(5)
1,23,4,5,6

2s23
+
(

1
s12

+ 1
s23

)
I

(4)
123,4,5,6

s123

FTop
12...6

[
g

(1)
13 g

(1)
23
]

= 1
4I

(6)
1,2,3,4,5,6 +

I
(5)
1,23,4,5,6

2s23
+

I
(4)
123,4,5,6

s23s123
(2.25)

whereas the non-adjacent arguments of g
(1)
12 g

(1)
35 and g

(1)
13 g

(1)
46 would lead to field-theory limits

without boxes and without any boxes or pentagons, respectively. The propagators (s23s123)−1

and (s12s123)−1 along with the box contributions in the last two lines of (2.25) can be
understood by analogy with the tree-level pinching rules (2.4) for integrals over (z12z23)−1

and (z13z23)−1: three-particle propagators s−1
i−1,i,i+1 and the associated boxes I

(4)
...,(i−1)i(i+1),...

are again tied to having two out of the three simple poles of g
(1)
i−1,i, g

(1)
i−1,i+1 and g

(1)
i,i+1. The

two-mass box I
(4)
12,34,5,6 of the first line of (2.25) in turn can be viewed as coming from two

independent applications of the four-point tree-level pinching rule (2.3).11 The poles of g
(1)
ij

for each adjacent j = i±1 mod 6 furthermore lead to pentagons s−1
ij I

(5)
...,ij,....

Finally, closed-string six-point examples with contributions from hexagons, pentagons
and boxes include

FTcl
6
[
g

(1)
23 g

(1)
45 g

(1)
23 g

(1)
45
]

= 1
16

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) + 1

4s23

∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6)

+ 1
4s45

∑
ρ∈S{2,3,45,6}

I
(5)
1,ρ(2,3,45,6) + 1

s23s45

∑
ρ∈S{23,45,6}

I
(4)
1,ρ(23,45,6)

FTcl
6
[
g

(1)
23 g

(1)
34 g

(1)
23 g

(1)
34
]

= 1
16

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) + 1

4s23

∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6)

+ 1
4s34

∑
ρ∈S{2,34,5,6}

I
(5)
1,ρ(2,34,5,6) +

(
1

s23
+ 1

s34

)
1

s234

∑
ρ∈S{234,5,6}

I
(4)
1,ρ(234,5,6)

FTcl
6
[
g

(1)
23 g

(1)
34 g

(1)
24 g

(1)
34
]

= 1
16

∑
ρ∈S{2,3,4,5,6}

sgnρ
23 sgnρ

24 I
(6)
1,ρ(2,3,4,5,6) + 1

4s34

∑
ρ∈S{2,34,5,6}

I
(5)
1,ρ(2,34,5,6)

+ 1
s34s234

∑
ρ∈S{234,5,6}

I
(4)
1,ρ(234,5,6) (2.26)

11The direct tree-level analogue in the SL(2,R) frame (z1, z4, z5) → (0, 1,∞) is given by

lim
α′→0

(α′)2
∫ 1

0
dz3

∫ z3

0
dz2

J tree
5 (α′)
z12z34

= 1
s12s34

.
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where the propagator structure of the box contributions follows that of the tree-level examples
in (2.6): three-particle propagators s−1

ijk together with one-mass boxes I
(4)
...,ijk,... arise when two

out of the three simple poles of g
(1)
ij , g

(1)
ik , g

(1)
jk and g

(1)
ij , g

(1)
ik , g

(1)
jk in both the holomorphic and

the antiholomorphic variables occur in the integrand. The two-mass boxes I
(4)
1,ρ(23,45,6) of the

second line can be viewed as coming from two applications of tree-level pinching rules akin
to (2.5). Finally, each pair g

(1)
ij g

(1)
ij leads to permutation sums over 24 pentagons s−1

ij I
(5)
...,ij,....

Chiral correlators at higher multiplicity n ≥ 7 feature products of up to n−4 factors of
g

(1)
ij which generically result in analogous cascades of r = 0, 1, 2, . . . , n−4 pinches, i.e. the full

bandwidth of boxes, pentagons, . . ., (n−1)-gons and n-gons in the field-theory limit. The box
contributions are governed by the well-known combinatorics of n-point field-theory limits at
tree level [73–78]. The m ≥ 5 gons can be systematically assembled by adapting the tree-level
pinching rules to the situation where subsets of the g

(1)
ij (or pairs with suitable g

(1)
pq in the

closed-string case) contribute via (2.16), summing over all such subsets as in (2.25) and (2.26).

2.2.6 Summary of one-loop pinching rules

As a condensed way of summarizing the six-point examples of pinching rules, we can trans-
late (2.25) and (2.26) into substitution rules at the level of integrands w.r.t. the zi. For the
open-string cases in (2.25) with the color-ordering of Tr(ta1ta2 . . . tan), we can write

g
(1)
12 g

(1)
34 → 1

4 sgn(u12) sgn(u34) − δ(z12) sgn(u34)
2s12

− δ(z34) sgn(u12)
2s34

+ δ(z12)δ(z34)
s12s34

g
(1)
12 g

(1)
23 → 1

4 sgn(u12) sgn(u23) − δ(z12) sgn(u23)
2s12

− δ(z23) sgn(u12)
2s23

+
( 1

s12
+ 1

s23

)
δ(z12)δ(z23)

s123

g
(1)
13 g

(1)
23 → 1

4 sgn(u13) sgn(u23) − δ(z23) sgn(u13)
2s23

+ δ(z13)δ(z23)
s23s123

(2.27)

where the powers of (2πi) in the normalization factors of (2.20) are absorbed into the
→ symbol. Even though the factors of sgn(uij) from (2.16) are constant for the given
color-ordering, we have kept them for clarity. The delta functions δ(zij) = δ(uij)/ Im τ

adapted to the color-ordering collapse the integrations over Schwinger parameters ui in the
parametrization (2.14) of scalar n-gon integrals and implement the pinches.

In the closed-string case, the six-point pinching rules of (2.26) can be condensed into
substitution rules (which again absorb powers of (2πi) from (2.20) into the → symbol)

g
(1)
23 g

(1)
45 g

(1)
23 g

(1)
45 → 1

16 + δ2(z23)
4s23

+ δ2(z45)
4s45

+ δ2(z23)δ2(z45)
s23s45

g
(1)
23 g

(1)
34 g

(1)
23 g

(1)
34 → 1

16 + δ2(z23)
4s23

+ δ2(z34)
4s34

+
( 1

s23
+ 1

s34

)
δ2(z23)δ2(z34)

s234

g
(1)
23 g

(1)
34 g

(1)
24 g

(1)
34 → 1

16 sgn(u23) sgn(u24) + δ2(z34)
4s34

+ δ2(z34)δ2(z24)
s34s234

(2.28)

The sgn(uij) factors are essential to track the relative signs in the permutation sums of (2.26)
that arise from the decomposition of the integration region 0 < ui < 1 (independently for
all i = 2, 3, . . . , n) into (n−1)! simplices (2.8).
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Note that numerator factors sij multiplying contributions g
(1)
ij to the integrand may

cancel the external propagator from the pinching rules. Nevertheless, such factors of sij

do not alter the appearance of (n−1)-gons at n points from the delta functions in (2.27)
and (2.28) which will still be referred to as reducible diagrams.

2.3 Explicit form of chiral correlators

In the previous section, we have reviewed the well-known pinching rules due to simple
poles z−1

ij in one-loop string integrands adapted to the chiral-splitting formulation. Starting
from six points, however, the chiral correlators combine g

(1)
ij = z−1

ij + O(zij) in (2.15) with
higher-order Kronecker-Eisenstein coefficients g

(k≥2)
ij subject to new types of pinching rules.

Moreover, the interplay of B-cycle monodromies zi → zi+τ and integration by parts w.r.t. zi

introduces additional subtleties into the chiral-splitting formulation of (n ≥ 6)-point one-loop
amplitudes. This section aims to review the essential features of multiparticle correlators
needed to complete the pinching rules in section 3.1 below.

2.3.1 Kronecker Eisenstein coefficients

A natural and universal function space for chiral correlators in one-loop amplitudes of various
string theories is furnished by the Kronecker-Eisenstein coefficients g

(k)
ij = g(k)(zij , τ) with

k ≥ 1 [28–35]. Their explicit form is conveniently determined by the generating series

F (z, η, τ) = θ′1(0, τ)θ1(z+η, τ)
θ1(z, τ)θ1(η, τ) =

∞∑
k=0

ηk−1g(k)(z, τ) (2.29)

with θ′1(0, τ) = ∂zθ1(z, τ)|z=0 whose leading orders in the bookkeeping variable η give rise to
g(0)(z, τ) = 1, the expression (2.15) for g(1)(z, τ) and for instance

g(2)(z, τ) = 1
2

[(
∂z log θ1(z, τ)

)2 + ∂2
z log θ1(z, τ) − θ′′′1 (0, τ)

3θ′1(0, τ)

]
(2.30)

At higher multiplicities, chiral correlators additionally feature holomorphic Eisenstein series

Gk(τ) = −g(k)(0, τ) =
∑

m,n∈Z
(m,n) ̸=(0,0)

1
(mτ+n)k

, k ≥ 2 (2.31)

where the double sum is absolutely convergent for k ≥ 3 and vanishes for odd k. At k = 2,
equivalence to the coincident limits zi → zj of g

(k)
ij = g(k)(zij , τ) selects the Eisenstein

summation prescription [104] for the conditionally convergent double sum in (2.31), resulting
in the quasi-modular G2(τ) = − θ′′′1 (0,τ)

3θ′1(0,τ) .
The multiplicative monodromies of the Kronecker-Eisenstein series (2.29)

F (z+1, η, τ) = F (z, η, τ) , F (z+τ, η, τ) = e−2πiηF (z, η, τ) (2.32)

translate into A-cycle periodicity g(k)(z+1, τ) = g(k)(z, τ) and B-cycle monodromies (k ≥ 0)

g(k)(z±τ, τ) = g(k)(z, τ) +
k∑

ℓ=1

(∓2πi)ℓ

ℓ! g(k−ℓ)(z, τ) (2.33)
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for instance

g(1)(z+τ, τ) = g(1)(z, τ) − 2πi (2.34)

g(2)(z+τ, τ) = g(2)(z, τ) − 2πig(1)(z, τ) + 1
2(2πi)2

While g(1)(z, τ) has simple poles with unit residue at any lattice point z ∈ Z+τZ, the higher
g(k≥2)(z, τ) are regular at the origin and throughout the real axis including z ∈ Z. However,
the appearance of g(1)(z, τ) in the B-cycle monodromies (2.33) causes all the g(k≥2)(z, τ)
to have simple poles at z = ±τ and in fact any lattice point z ∈ Z+τZ ̸=0 away from the
real axis, e.g.

g(k)(z, τ) =


(−2πi)k−1

(k−1)!
1

z−τ + O
(
(z−τ)0)

(2πi)k−1

(k−1)!
1

z+τ + O
(
(z+τ)0) (2.35)

and in particular

g(2)(z, τ) =
{

−2πi
z−τ + O

(
(z−τ)0)

2πi
z+τ + O

(
(z+τ)0) (2.36)

Note that doubly-periodic completions of g(k)(z, τ) denoted by f (k)(z, τ) can be generated by
adjoining a non-meromorphic exponential to the generating series (2.29) [30, 105],

exp
(

2πiη
Im z

Im τ

)
θ′1(0, τ)θ1(z+η, τ)

θ1(z, τ)θ1(η, τ) =
∞∑

k=0
ηk−1f (k)(z, τ) (2.37)

f (k)(z, τ) = g(k)(z, τ) +
k∑

ℓ=1

1
ℓ!

(
2πi

Im z

Im τ

)ℓ

g(k−ℓ)(z, τ)

starting with f (0)(z, τ) = 1 and f (1)(z, τ) = g(1)(z, τ) + 2πi Im z
Im τ . The exponent 2πiη Im z

Im τ

in (2.37) is tailored to compensate the multiplicative B-cycle monodromies in (2.32). In the
context of one-loop string amplitudes (2.10), the doubly-periodic completion of g

(k)
ij by powers

of 2πi
Im zij

Im τ arises by performing the Gaussian integral over the loop momentum [34, 35].

2.3.2 Homology invariance

The integrands of one-loop open- and closed-string amplitudes (2.10) with respect to zi

and τ need to enjoy B-cycle periodicity under zi → zi+τ for all of i = 1, 2, . . . , n to be
well-defined on the cylinder and torus worldsheet. This double-periodicity is tied to the loop
integral in (2.10) and does not hold pointwise in ℓ: the B-cycle monodromies zi → zi+τ of the
Koba-Nielsen factor Jn in (2.9) are compensated by a shift of loop momentum ℓ → ℓ−ki which
does not affect the

∫
RD dDℓ integrals of the amplitudes. The same combined transformation

of zi and ℓ has to leave the chiral correlators Kn invariant [13, 27, 34, 106] which imposes
non-trivial constraints on their zi- and ℓ-dependence by the B-cycle monodromies (2.33) of
the Kronecker-Eisenstein building blocks. We shall refer to any function of ℓ, ki, zi, τ with
this property and additional A-cycle periodicity zi → zi+1 as homology invariant,

homology invariance: E(ℓ, ki, zi, τ) = E(ℓ−ki, ki, zi+τ, τ) = E(ℓ, ki, zi+1, τ) (2.38)
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The homology invariants relevant to maximally supersymmetric one-loop amplitudes at five
and six points are given by [34, 106]12

E1|23,4,5 = g
(1)
12 + g

(1)
23 + g

(1)
31

Em
1|2,3,4,5 = 2πiℓm +

[
km

2 g
(1)
12 + (2 ↔ 3, 4, 5)

]
(2.39)

as well as

E1|234,5,6 = g
(1)
12 g

(1)
23 + g

(1)
23 g

(1)
34 + g

(1)
34 g

(1)
41 + g

(1)
41 g

(1)
12

+ g
(1)
12 g

(1)
34 + g

(1)
23 g

(1)
41 + g

(2)
12 + g

(2)
23 + g

(2)
34 + g

(2)
41

E1|23,45,6 = (g(1)
12 + g

(1)
23 + g

(1)
31 )(g(1)

14 + g
(1)
45 + g

(1)
51 )

Em
1|23,4,5,6 = (g(1)

12 + g
(1)
23 + g

(1)
31 )(2πiℓm + km

4 g
(1)
14 + km

5 g
(1)
15 + km

6 g
(1)
16 )

+ [km
2 (g(1)

13 g
(1)
23 + g

(2)
12 − g

(2)
13 − g

(2)
23 ) − (2 ↔ 3)]

Emn
1|2,3,4,5,6 = (2πi)2ℓmℓn + [k(m

2 k
n)
3 g

(1)
12 g

(1)
13 + (2, 3|2, 3, 4, 5, 6)]

+ [2πiℓ
(m

k
n)
2 g

(1)
12 + 2km

2 kn
2 g

(2)
12 + (2 ↔ 3, 4, 5, 6)]

E1|2|3,4,5,6 = 1
2α′∂z1g

(1)
12 + 1

2s12(g(1)
12 )2 − s12g

(2)
12 (2.40)

respectively, where our conventions k
(m
2 k

n)
3 = km

2 kn
3 + kn

2 km
3 for (anti-)symmetrizing vector

indices do not include a factor of 1
2 . The notation +(i1, . . . , ip|j1, . . . , jq) instructs us to sum

over all ordered subsets i1, . . . , ip of j1, . . . , jq, resulting in a total of ( q
p ) terms. While the scalar

examples E1|23,4,5, E1|234,5,6, E1|23,45,6 and E1|2|3,4,5,6 are elliptic functions in the conventional
sense, homology invariance of the vector- and tensor examples Em

1|2,3,4,5, Em
1|23,4,5,6, Emn

1|2,3,4,5,6
relies on the shift of the loop momentum in the transformation of (2.38).

In view of the differential equation of the Koba-Nielsen factor

α′−1
∂zj logJn = 4πi(ℓ · kj) +

n∑
i=1
i ̸=j

sijg
(1)
ji (2.41)

the derivative ∂z1g
(1)
12 in the last example of (2.40) can be absorbed into

E1|2|3,4,5,6J6 = g
(1)
12 (2πiℓ · k2 + 1

2s23g
(1)
23 + 1

2s24g
(1)
24 + 1

2s25g
(1)
25 + 1

2s26g
(1)
26 )J6

− s12g
(2)
12 J6 −

1
2α′∂z2

(
g

(1)
12 J6

)
(2.42)

However, as detailed in section 3.4.1, the total Koba-Nielsen derivative ∂z2(g(1)
12 J6) integrates

to a non-trivial boundary term in the context of closed-string amplitudes (2.10) and cannot
be discarded. Hence, maximally supersymmetric chiral correlators at n ≥ 6 points generically

12The expressions for homology invariants in [34, 106] do not feature any factors of 2πi by the change of
integration variable ℓ → ℓ

2πi
in the references. Moreover, the expression ∂z1 g

(1)
12 + s12(g(1)

12 )2 − 2s12g
(2)
12 for

E1|2|3,4,5,6 in [34, 106] is obtained from the last line of (2.40) by noting the conventions of the references where
2α′ = 1 and sij is normalized as ki · kj rather than 2ki · kj .
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require refined integration by parts to eliminate Kronecker-Eisenstein derivatives ∂zig
(k)
ij

before integration over ℓ, see for instance section 3.4.2.
After loop integration in turn, derivatives ∂zif

(k)
ij of the single-valued functions in (2.37)

can be removed via simpler integrations by parts. Nevertheless, we will see in section 5.2
that, within the application of the chiral correlators below to ambitwistor-string theories, one
can eliminate already ∂zig

(k)
ij via scattering equations analogous to (2.42).

2.3.3 Chiral correlators up to six points

The homology invariants E in (2.39) and (2.40) capture the dependence of the (n ≤ 6)-point
chiral correlators Kn on the worldsheet moduli zi, τ . The second key ingredients of the Kn

are kinematic factors depending on gauge-theory polarizations and external momenta which
double copy to gravitational kinematic factors in closed-string integrands ∼ |Kn|2.

We shall employ the formulation of one-loop kinematic factors in pure-spinor super-
space [38, 107–109] denoted by C1|23,4,5, Cm

1|2,3,4,5 at five points and C1|234,5,6, C1|23,45,6,
Cm

1|23,4,5,6, Cmn
1|2,3,4,5,6, P1|2|3,4,5,6 at six points. They all descend from particular polyno-

mials in Graßmann-odd variables θα — Weyl spinors of SO(10) — with gluon-polarization
vectors, gaugino wavefunctions and momenta as coefficients.13 In this way, the results of
this work apply to any combination of external bosons and fermions in the supersymmetry
multiplets of ten-dimensional super-Yang-Mills and type-IIA/B supergravity as well as their
dimensional reductions.

The combinatorics of five- and six-point superspace kinematic factors C1|23,4,5, Cm
1|2,3,4,5

and C1|234,5,6, C1|23,45,6, Cm
1|23,4,5,6, Cmn

1|2,3,4,5,6, P1|2|3,4,5,6 mirror that of the homology invariants
in (2.39) and (2.40), respectively. In other words, the integration-by-parts relations among
homology invariants (see for instance section 3.4.2 below) have a direct counterpart at the
level of superspace kinematic factors [108] and endow the chiral correlators with a double-copy
structure [34, 35, 106],14

K4 = C1|2,3,4E1|2,3,4

K5 = Cm
1|2,3,4,5Em

1|2,3,4,5 + 1
2
[
s23C1|23,4,5E1|23,4,5 + (2, 3|2, 3, 4, 5)

]
K6 = 1

2Cmn
1|2,...,6Emn

1|2,...,6 + 1
2
[
s23Cm

1|23,4,5,6Em
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
+ 1

4
([

s23s45C1|23,45,6E1|23,45,6 + cyc(3, 4, 5)
]

+ (6 ↔ 5, 4, 3, 2)
)

+ 1
4
([

s23s34C1|234,5,6E1|234,5,6 + cyc(2, 3, 4)
]

+ (2, 3, 4|2, 3, 4, 5, 6)
)

−
[
P1|2|3,4,5,6E1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]
(2.43)

13In slight abuse of notation, we do not display the component prescription ⟨. . .⟩ which extracts the λ3θ5

orders of the enclosed superspace kinematic factors [36, 110], where λα is a Graßmann-even Weyl spinor of
SO(10) subject to the pure-spinor constraint explained in the references.

14Note that the sij in the references are defined as ki ·kj , i.e. without the factor of two in the conventions (2.1)
of this work.
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The trivial homology invariant E1|2,3,4 = 1 at four points has been introduced to bring K4
into the “C · E form” of K5. The four-point kinematic factor

C1|2,3,4 = s12s23Atree
SYM(1, 2, 3, 4) (2.44)

is a direct sum of color-ordered tree-level amplitudes of ten-dimensional super-Yang-Mills
involving any combination of external gauge bosons and gauginos. Similar representations
for some of the (n ≤ 6)-point kinematic factors and compact expressions for all of their
bosonic components are reviewed in appendix B. A collection of component expansions
for kinematic factors in pure-spinor superspace can also be downloaded from [111]. The
BRST (pseudo)invariance of the individual superspace expressions C and P in (2.43) implies
that their bosonic and fermionic components are gauge invariant and supersymmetric [36].
However, the manifest BRST properties of each kinematic factor come at the cost of obscuring
the locality properties of the amplitudes computed from (2.43) since each C and P at six
points has a pole structure of s−1

ij , s−1
ijk, (sijskl)−1 or (sijsijk)−1.

Alternative and manifestly local representations of chiral correlators at n ≤ 7 points can
be found in [35], though the superfields accompanying the individual homology invariants
of (2.43) would then have gauge dependent components. The computation of six-point
supergravity amplitudes in section 4.3 below is mostly driven by the field-theory limits of
closed-string integrals over bilinears in the homology invariants of (2.43). Hence, the methods
of this work can as well be used to obtain manifestly local expressions for the six-point
amplitudes of section 4.3 from the local correlator representations of [35].

2.3.4 Field-theory limit only well-defined for homology invariants

In the same way as individual terms in the component expansion of C and P exhibit nonzero
gauge variations, the individual Kronecker-Eisenstein terms in the homology invariants (2.39)
and (2.40) do not have well-defined field-theory limits. We shall now illustrate via simple
counterexamples that homology invariance is essential for a well-defined field-theory limit.

First, the τ → i∞ limit (2.16) of g
(1)
ij in planar cylinder amplitudes with fixed i, j depends

on the parametrization of the cylinder boundary. For the color-ordering of Tr(ta1ta2 . . . ta5)
the choice of coordinates in (2.8) is as natural as any of its cyclic permutations 0 = ui <

ui+1 < ui+2 < ui+3 < ui+4 < 1 with ui
∼= ui±5. Changing the parametrization by moving

u1 = 0 to the upper end of the integration region u5 < u1 < 1 will flip the sign of
limτ→i∞ g

(1)
12 = iπ sgn(u2−u1). The difference of −2πi can be identified with the B-cycle

monodromy in (2.34) since the change of parametrization in the variables ui descends from
z1 → z1+τ . Accordingly, any contribution to Kn with non-zero homology variation under
zi → zi+τ and ℓ → ℓ−ki will have a parametrization-dependent field-theory limit.

The expressions (2.39) for E1|23,4,5 and Em
1|2,3,4,5 at five points illustrate how two different

types of homology invariant completions of g
(1)
12 give rise to well-defined field-theory limits:

the B-cycle monodromy z1 → z1+τ vanishes for the z1-dependent terms g
(1)
12 −g

(1)
13 of E1|23,4,5,

consistent with the fact that the contributions sgn(u2−u1) − sgn(u3−u1) to the field-theory
limit change with opposite signs under change of parametrizations from u1 = 0 to u5 < u1 < 1.
Similarly, the contributions ∑5

j=2 km
j g

(1)
1j to Em

1|2,3,4,5 have an overall B-cycle monodromy
−2πikm

2345 = 2πikm
1 under z1 → z1+τ which compensates the homology variation ℓ → ℓ−k1.
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On these grounds, particular emphasis will be placed in section 3.2 to 3.5 below on the
field-theory limits (2.20) of homology invariants E for open strings and EĒ for closed strings.

3 Pinching rules and field-theory limits in chiral splitting

In this section, the pinching rules for factors of g
(1)
ij will be completed to those for the Kronecker-

Eisenstein coefficients g
(2)
ij and applied to evaluate the field-theory limits of holomology

invariants of open- and closed-string genus-one amplitudes.

3.1 New pinching rules from higher Kronecker-Eisenstein coefficients

Performing the Gaussian loop integral in one-loop string amplitudes completes the mero-
morphic but multi-valued Kronecker-Eisenstein coefficients g(k) to the single-valued but
non-meromorphic ones f (k) [34, 35]. Since the kernels f (k)(z, τ) of weight k ≥ 2 defined
in (2.37) are non-singular for any z ∈ C, the pinching rules after loop integration only feature
external propagators s−1

i...j from products of f
(1)
ij (as opposed to f

(k≥2)
ij ).

Before loop integration, however, even the g(k≥2)(z, τ) kernels acquire poles at z = ±τ

(and in fact all lattice points z = mτ+n at m, n ∈ Z and m ̸= 0) that follow from the B-cycle
monodromies (2.33) and the poles of g(1)(z, τ), see (2.35). Accordingly, the singularities
g

(2)
ij = −2πi

zij−τ + . . . and g
(2)
ij = 2πi

zij+τ + . . . cause new pinching rules from the integration region
where zi−zj → ±τ . More generally, chiral splitting introduces additional pinching rules for
the entire tower of g

(k≥1)
ij , even though the poles of f

(k)
ij obtained from loop integration are

limited to k = 1. Given that the simplest appearance of g
(2)
ij in maximally supersymmetric

string amplitudes occurs in the chiral six-point correlator K6, there is no hint of these
additional pinching rules at n ≤ 5 points.

3.1.1 Open strings

The simplest pinch from the integration region zi−zj → ±τ for open strings occurs for

FTop
12345[g(1)

15 ] = 1
2I

(5)
1,2,3,4,5 −

I
(4)
51,2,3,4
s15

(3.1)

see (2.19) for the underscore notation of the one-mass box propagators I
(4)
51,2,3,4. The relative

sign between the pentagon and the box is opposite to (2.23) where the analogous box diagram
originates from zi−zj → 0 rather than zi−zj → ±τ . We shall study two types of six-point
analogues of (3.1)

• iteration of the pinch g
(1)
i6 → 1

τ−z6i
:

FTop
123456[g(1)

16 g
(1)
26 ] = 1

4I
(6)
1,2,3,4,5,6 −

I
(5)
61,2,3,4,5
2s16

+
I

(4)
612,3,4,5
s16s126

(3.2)

• a new type of pinch from g
(2)
16 → 2πi

τ−z61
:

FTop
123456[g(2)

16 ] = 1
12I

(6)
1,2,3,4,5,6 −

I
(5)
61,2,3,4,5

s16
(3.3)
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On the one hand, the pentagon term −s−1
16 I

(5)
61,2,3,4,5 in FTop

123456[g(2)
16 ] does not have any

immediate counterpart in the field-theory limit of the doubly-periodic and non-singular f
(2)
16

arising from loop integration. On the other hand, the pentagon I
(5)
61,2,3,4,5 is recovered as a

boundary term in worldline variables when producing f
(2)
16 through the string-theory loop

integral over E1|2|3,4,5,6J6 before taking the field-theory limit. The worldline limits of the
resulting f

(2)
ij and bilinears in f

(1)
ij only line up with Schwinger parametrizations of Feynman

integrals after adding these boundary terms, see appendix A.
In the open-string integration region associated with Tr(ta1ta2 . . . ta6), the remaining g

(2)
ij

with {i, j} ≠ {1, 6} do not allow for the pinch in (3.3) since (z1, z6) is the only pair of points
that gets separated by τ on a boundary component of co-dimension one, i.e. one may write

g
(2)
ij →

{
1
12 − δ(zij)

sij
: |i−j| = n−1

1
12 : otherwise

(3.4)

in the notation of section 2.2.6.
The coefficient 1

12 of the hexagon I
(6)
1,2,3,4,5,6 in (3.3) and (3.4) stems from the τ → i∞ limit

lim
τ→i∞

g
(2)
ij = −2ζ2 = (2πi)2

12 (3.5)

which no longer depends on zi, zj and generalizes as follows to arbitrary Kronecker-Eisenstein
coefficients (with Bk the kth Bernoulli number):

lim
τ→i∞

g
(k)
ij =

{
−2ζk = Bk

k! (2πi)k : k ≥ 2 even
0 : k ≥ 3 odd (3.6)

It would be interesting to relate the open-string pinching rules from (3.4) to (3.6) to the field-
theory limits in section 2.3 of [112]. The reference infers field-theory limits that accommodate
adjustable shifts of loop momenta by external momenta from imposing BRST invariance and
manifest color-kinematics duality of the resulting (n ≤ 7)-point super-Yang-Mills amplitudes.
On the one hand, the coefficients b

(m)
ij and c

(m)
ij in (2.14) and (2.15) of [112] have parallels

with the Bernoulli numbers in (3.6) and, through the dist4(i, j) functions in the c
(m)
ij , with the

new pinching rules of this section. On the other hand, the field-theory limits of the reference
are not claimed to reproduce the α′ → 0 limits of the individual Koba-Nielsen integrals
over Kronecker-Eisenstein coefficients in any given cylinder parametrization of figure 1. The
field-theory limits of [112] can instead be understood as effective rules that lead to the correct
assembly of BRST invariant (and color-kinematics dual) loop integrands.

3.1.2 Closed strings

Pinching rules from the integration region zi−zj → ±τ :

• relative signs for (n−1)-gons.

The pinches from pairs of g
(1)
ij ḡ

(1)
pq exemplified in (2.24), (2.26) and (2.28) receive

contributions from both zi−zj → 0 and zi−zj → ±τ when the puncture z1 = 0 fixed at
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the origin is involved, i.e. if 1 ∈ {i, j}. For instance, the boxes in the five-point case

FTcl
5
[
g

(1)
15 g

(1)
15
]

= 1
4

∑
ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) + 1

2s15

∑
ρ∈S{2,3,4}

(
I

(4)
15,ρ(2,3,4) + I

(4)
51,ρ(2,3,4)

)
= 1

4
∑

ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) + 1

s15

∑
ρ∈S{2,3,4}

I
(4)
15,ρ(2,3,4) (3.7)

receive contributions I
(4)
15,ρ(2,3,4) from z5−z1 → 0 and I

(4)
51,ρ(2,3,4) from z5−z1 → τ . In

absence of loop-momentum dependent factors, we have I
(4)
15,ρ(2,3,4) = I

(4)
51,ρ(2,3,4) and

obtain the relabeling of (2.24) in the second line of (3.7). However, the analogous
pinches in a six-point context involve a second pair of g

(1)
ab ḡ

(1)
pq which may introduce

relative signs between the integration region zi−zj → 0 and zi−zj → ±τ . Indeed, the
pentagons in the field-theory limit

FTcl
6
[
g

(1)
16 g

(1)
26 ḡ

(1)
16 ḡ

(1)
34
]

= 1
16

∑
ρ∈S{2,3,4,5,6}

sgnρ
26 sgnρ

34 I
(6)
1,ρ(2,3,4,5,6) (3.8)

+ 1
8s16

∑
ρ∈S{2,3,4,5}

(
I

(5)
16,ρ(2,3,4,5) − I

(5)
61,ρ(2,3,4,5)

)
sgnρ

34

= 1
16

∑
ρ∈S{2,3,4,5,6}

sgnρ
26 sgnρ

34 I
(6)
1,ρ(2,3,4,5,6)

cancel since the contribution sgn(u26) from g
(1)
26 takes opposite signs along with

I
(5)
16,ρ(2,3,4,5) (coming from the integration region u6 → u1 = 0 < u2) and I

(5)
61,ρ(2,3,4,5)

(coming from u6 → 1 > u2). The field-theory limit FTcl
6 [g(1)

16 g
(1)
12 ḡ

(1)
16 ḡ

(1)
34 ] with g

(1)
12 in-

stead of g
(1)
26 in turn features both of I

(5)
16,ρ(2,3,4,5) and I

(5)
61,ρ(2,3,4,5) with the same prefactor

− 1
8s16

since sgn(u12) has uniform sign for both of u6 → 0 and u6 → 1, leading to
non-zero pentagon contributions.

• pinches from g
(2)
ij :

There are several variants of how the poles g
(2)
ij = ±2πi

zij±τ + . . . integrate to pinches
multiplied by s−1

ij in a closed-string six-point setting:

FTcl
6
[
g

(2)
16 ḡ

(2)
16
]

= 1
144

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) + 1

2s16

∑
ρ∈S{2,3,4,5}

I
(5)
16,ρ(2,3,4,5) (3.9)

FTcl
6
[
g

(2)
16 ḡ

(1)
16 ḡ

(1)
ij

]
= − 1

48
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

ij −
1

4s16

∑
ρ∈S{2,3,4,5}

I
(5)
16,ρ(2,3,4,5) sgnρ

ij

FTcl
6
[
g

(1)
16 g

(1)
ij ḡ

(2)
16
]

= − 1
48

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

ij −
1

4s16

∑
ρ∈S{2,3,4,5}

I
(5)
16,ρ(2,3,4,5) sgnρ

ij

where {i, j} in the second and third line are distinct from {1, 6}. One may have naively
expected an extra factor of two for the pentagon contributions since the poles |zi−zj |−2

translated into δ2(zij)/sij with coefficient one in the earlier examples (2.28). However,
it is crucial that the torus integration region for z6 only covers half of the disk around
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z61 → τ if z1 = 0 and that the factors of g
(2)
16 and ḡ

(2)
16 are non-singular at z61 → 0. That

is why the pentagon prefactors in (3.9) are only half of those in (2.26) and (2.28).
More generally, closed-string pinches due to g

(k≥2)
1n or ḡ

(k≥2)
1n tend to come with extra

factors of 1
2 relative to those from pairs g

(1)
1n ḡ

(1)
1n since only the latter receive contributions

from both integration regions zn1 → 0 and zn1 → τ .
In the notation of section 2.2.6, we may summarize (3.9) as

g
(2)
16 ḡ

(2)
16 → 1

144 + δ2(z16)
2s16

(3.10)

g
(2)
16 ḡ

(1)
16 ḡ

(1)
ij →

( 1
48 sgn(u16) − δ2(z16)

4s16

)
sgn(uij)

g
(1)
16 g

(1)
ij ḡ

(2)
16 →

( 1
48 sgn(u16) − δ2(z16)

4s16

)
sgn(uij)

The mutual consistency of the field-theory limits in (3.8) and (3.9) can be cross-checked by
virtue of Fay identities among Kronecker-Eisenstein coefficients

g
(1)
ij g

(1)
jk + g

(1)
jk g

(1)
ki + g

(1)
ki g

(1)
ij + g

(2)
ij + g

(2)
jk + g

(2)
ki = 0 (3.11)

which hold in identical form for g(k) → f (k) and whose general form is most conveniently
written at the level of generating functions (2.29) and (2.37) [105]. More specifically, Fay
identities imply the vanishing of the field-theory limits

FTcl
6
[
ḡ

(2)
16 (g(1)

12 g
(1)
26 − g

(1)
12 g

(1)
16 − g

(1)
16 g

(1)
26 + g

(2)
16 + g

(2)
12 + g

(2)
26 )

]
= 0 (3.12)

FTcl
6
[
ḡ

(1)
16 ḡ

(1)
34 (g(1)

12 g
(1)
26 − g

(1)
12 g

(1)
16 − g

(1)
16 g

(1)
26 + g

(2)
16 + g

(2)
12 + g

(2)
26 )

]
= 0

where the first line validates the relative factors of the hexagons and pentagons of (3.9).
The second line of (3.12) in turn is sensitive to the fact that the domains zi−zj → 0 and
zi−zj → ±τ may contribute with opposite signs and verifies consistency of (3.8) with (3.9).

3.1.3 Algorithm for multiparticle generalization

Similar to the discussion in sections 2.2.5 and 2.2.6, the pinching rules for products of
g

(k1)
i1j1

g
(k2)
i2j2

. . . g
(kr)
irjr

can augment the n-gons by reducible diagrams from (n−1)-gons all the
way to (n−r)-gons. One again sums over the non-trivial cascades of pinches obtained from
all subsets of these g

(k1)
i1j1

g
(k2)
i2j2

. . . g
(kr)
irjr

while replacing the remaining Kronecker-Eisenstein
factors by their τ → i∞ limits (2.16) and (3.6). In an eight-point open-string case in the
color-ordering of Tr(ta1ta2 . . . ta8), for instance, the product g

(2)
81 g

(2)
71 induces two non-trivial

pinches − 1
12I

(7)
81,...,6,7/s81 (from g

(2)
81 ) and I

(6)
781,...,6/(s781s81) (from both factors) which are

added to the octagon 1
144I

(8)
1,2,...,8.

The same combinatorial rules apply to closed strings: the pinching rules for products
g

(k1)
i1j1

g
(k2)
i2j2

. . . g
(kr)
irjr

times g
(m1)
p1q1 g

(m2)
p2q2 . . . g

(ms)
psqs sum over all subsets of pairings of meromorphic

and antimeromorphic factors that give rise to non-trivial pole structures by the mechanisms of
section 3.1.2. In the eight-point example of g

(2)
81 g

(2)
71 g

(2)
81 g

(1)
71 g

(1)
34 , the field-theory limit comprises

heptagons ∼ s−1
81 from g

(2)
81 g

(2)
81 , heptagons ∼ s−1

71 from g
(2)
71 g

(1)
71 , hexagons ∼ (s−1

71 +s−1
81 )s−1

781

from g
(2)
81 g

(2)
71 g

(2)
81 g

(1)
71 and a permutation sum over octagons where each of the five factors

is replaced by its τ → i∞ limit.
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3.2 Field-theory limits of open-string homology invariants

In this section, the pinching rules of sections 2.2 and 3.1 are combined to determine the
field-theory limits of the homology invariants of section 2.3.2 in an open-string context.

3.2.1 Five points

At five points, the pinching rules of (2.23) imply the following field-theory limits for the
homology invariants E1|23,4,5 and Em

1|2,3,4,5 in (2.39) in the color-ordering of Tr(ta1ta2 . . . ta5):

FTop
12...5

[
E1|23,4,5

]
= 1

2I
(5)
1,2,3,4,5 + 1

s12
I

(4)
12,3,4,5 + 1

s23
I

(4)
1,23,4,5 (3.13)

FTop
12...5

[
E1|24,3,5

]
= 1

2I
(5)
1,2,3,4,5 + 1

s12
I

(4)
12,3,4,5

FTop
12...5

[
E1|25,3,4

]
= 1

2I
(5)
1,2,3,4,5 + 1

s12
I

(4)
12,3,4,5 + 1

s15
I

(4)
51,2,3,4

FTop
12...5

[
Em

1|2,3,4,5
]

=
(

ℓm + 1
2km

2345

)
I

(5)
1,2,3,4,5 + 1

s12
km

2 I
(4)
12,3,4,5 −

1
s15

km
5 I

(4)
51,2,3,4

The number of box integrals varies between different permutations of Ei|jk,p,q — a single
box in case of non-adjacent p, q with |p−q| = 2, 3 and two boxes in the adjacent case with
|p−q| = 1, 4, consistently with the cyclic property Ei|jk,p,q = Ek|ij,p,q. In the field-theory limit
of Em

1|2,3,4,5, one can view the coefficient ℓm+1
2km

2345 = ℓm−1
2km

1 of the pentagon propagators
I

(5)
1,2,3,4,5 as the average of the momenta ℓ and ℓ−k1 adjacent to leg 1 in figure 2.

3.2.2 Six points

Among the six-point homology invariants in (2.40), we will relegate the case E1|2|3,4,5,6 with
double poles to section 3.5. Except for the two-tensor Emn

1|2,3,4,5,6 with permutation symmetry
in 2, 3, 4, 5, 6, the color-ordering of Tr(ta1ta2 . . . ta6) gives rise to inequivalent field-theory
limits for different permutations:

FTop
12...6

[
E1|23,45,6

]
= 1

4I
(6)
1,2,3,4,5,6 + 1

2s12
I

(5)
12,3,4,5,6 + 1

2s23
I

(5)
1,23,4,5,6 + 1

2s45
I

(5)
1,2,3,45,6 (3.14)

+ 1
s12s45

I
(4)
12,3,45,6 + 1

s23s45
I

(4)
1,23,45,6

FTop
12...6

[
E1|23,46,5

]
= 1

4I
(6)
1,2,3,4,5,6 + 1

2s12
I

(5)
12,3,4,5,6 + 1

2s16
I

(5)
61,2,3,4,5 + 1

2s23
I

(5)
1,23,4,5,6

+ 1
s16s23

I
(4)
61,23,4,5,6 +

( 1
s12

+ 1
s16

) 1
s126

I
(4)
612,3,4,5

FTop
12...6

[
E1|234,5,6

]
= 1

3I
(6)
1,2,3,4,5,6 + 1

2s12
I

(5)
12,3,4,5,6 + 1

2s23
I

(5)
1,23,4,5,6 + 1

2s34
I

(5)
1,2,34,5,6

+ 1
s12s34

I
(4)
12,34,5,6 +

( 1
s12

+ 1
s23

) 1
s123

I
(4)
123,4,5,6 +

( 1
s23

+ 1
s34

) 1
s234

I
(4)
1,234,5,6

FTop
12...6

[
E1|235,4,6

]
= 1

3I
(6)
1,2,3,4,5,6 + 1

2s12
I

(5)
12,3,4,5,6 + 1

2s23
I

(5)
1,23,4,5,6 +

( 1
s12

+ 1
s23

) 1
s123

I
(4)
123,4,5,6
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FTop
12...6

[
Em

1|23,4,5,6
]

=
(1

2

(
ℓm−1

2km
1

)
+ 1

12(km
3 −km

2 )
)

I
(6)
1,2,3,4,5,6 + 1

s12

(
ℓm + 1

2km
3456

)
I

(5)
12,3,4,5,6

− 1
2s16

km
6 I

(5)
61,2,3,4,5 + 1

s23

(
ℓm− 1

2km
1

)
I

(5)
1,23,4,5,6−

1
s16s23

km
6 I

(4)
61,23,4,5

+
(

km
2

s23s123
+
( 1

s12
+ 1

s23

)
km

3
s123

)
I

(4)
123,4,5,6−

( 1
s12

+ 1
s16

) 1
s126

km
6 I

(4)
612,3,4,5

FTop
12...6

[
Em

1|24,3,5,6
]

=
(1

2

(
ℓm−1

2km
1

)
+ 1

12(km
4 −km

2 )
)

I
(6)
1,2,3,4,5,6 + 1

s12

(
ℓm + 1

2km
3456

)
I

(5)
12,3,4,5,6

− 1
2s16

km
6 I

(5)
61,2,3,4,5 + 1

s12s123
km

3 I
(4)
123,4,5,6−

( 1
s12

+ 1
s16

) 1
s126

km
6 I

(4)
612,3,4,5

FTop
12...6

[
Em

1|26,4,5,6
]

=
(1

2

(
ℓm−1

2km
1

)
+ 1

12(km
6 −km

2 )
)

I
(6)
1,2,3,4,5,6 + 1

s12

(
ℓm + 1

2km
3456

)
I

(5)
12,3,4,5,6

+ 1
s16

(
ℓm + 1

2km
6 − 1

2km
1

)
I

(5)
61,2,3,4,5 + 1

s12s123
km

3 I
(4)
123,4,5,6

+
(

km
2

s16s126
− km

6
s12s126

)
I

(4)
612,3,4,5−

1
s16s156

km
5 I

(4)
561,2,3,4

FTop
12...6

[
Emn

1|2,3,4,5,6
]

=
{

ℓmℓn + 1
2
[
k

(m
2 ℓ

n) +(2 ↔ 3,4,5,6)
]
+ 1

4
[
k

(m
2 k

n)
3 +(2,3|2,3,4,5,6)

]
+ 1

6
[
km

2 kn
2 +(2 ↔ 3, . . . ,6)

]}
I

(6)
1,2,3,4,5,6 + 1

s12
k

(m
2

(
ℓ

n) + 1
2k

n)
3456

)
I

(5)
12,3,4,5,6

− 1
s16

k
(m
6

(
ℓ

n) + 1
2k

n)
6 − 1

2k
n)
1

)
I

(5)
61,2,3,4,5 + 1

s12s123
k

(m
2 k

n)
3 I

(4)
123,4,5,6

+ 1
s16s156

k
(m
5 k

n)
6 I

(4)
561,2,3,4−

( 1
s12

+ 1
s16

) 1
s126

k
(m
2 k

n)
6 I

(4)
612,3,4,5

Note that, similar to the five-point case in the last line of (3.13),15 several terms in the field-
theory limits of Em

i|jk,p,q,r again feature the averaged momenta of two neighboring pentagon
edges, for instance (ℓm+1

2km
3456)I(5)

12,3,4,5,6 or (ℓm−1
2km

1 )I(5)
1,23,4,5,6. A complete list of FTop

12...6[E]
for six-point homology invariants can be found in the supplementary material of this work.

3.3 Field-theory limits of closed-string homology invariants

In this section, we proceed to gathering field-theory limits of closed-string homology invariants,
again using the pinching rules of sections 2.2 and 3.1. In view of the double copy |Kn|2 of chiral
correlators in the closed-string integrand of (2.10), we will be interested in arbitrary crossterms
EĒ of the meromorphic homology invariants of section 2.3.2 and their complex conjugates.
Accordingly, closed-string field-theory limits introduce considerably more inequivalent cases
than their open-string counterparts in section 3.2.

15However, the cyclicity Ei|jk,p,q = Ek|ij,p,q of the five-point scalar homology invariants does not carry over
to the six-point vector homology invariants with the same index structure since [34]

Em
1|23,4,5,6 = Em

2|31,4,5,6 +
[
km

4 E1|324,5,6 + (4 ↔ 5, 6)
]

see section 5.2 of the reference for similar identities of more general homology invariants.
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3.3.1 Five points

Given the two types E1|ij,p,q and Em
1|2,3,4,5 of meromorphic homology invariants, there are five

permutation-inequivalent field-theory limits which we assemble from (2.24)

FTcl
5
[
E1|23,4,5Ē1|45,2,3

]
= 1

4
∑

ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) sgnρ

23 sgnρ
45 (3.15)

FTcl
5
[
E1|23,4,5Ē1|24,3,5

]
= 1

4
∑

ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) sgnρ

23 sgnρ
24 + 1

s12

∑
ρ∈S{3,4,5}

I
(4)
12,ρ(3,4,5)

FTcl
5
[
E1|23,4,5Ē1|23,4,5

]
= 1

4
∑

ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) + 1

s23

∑
ρ∈S{23,4,5}

I
(4)
1,ρ(23,4,5)

+ 1
s12

∑
ρ∈S{3,4,5}

I
(4)
12,ρ(3,4,5) + 1

s13

∑
ρ∈S{2,4,5}

I
(4)
13,ρ(2,4,5)

FTcl
5
[
Em

1|2,3,4,5Ē1|23,4,5
]

= −1
2

(
ℓm + 1

2km
2345

) ∑
ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5) sgnρ

23

+ 1
s12

km
2

∑
ρ∈S{3,4,5}

I
(4)
12,ρ(3,4,5) −

1
s13

km
3

∑
ρ∈S{2,4,5}

I
(4)
13,ρ(2,4,5)

FTcl
5
[
Em

1|2,3,4,5Ēp
1|2,3,4,5

]
=
(

ℓm + 1
2km

2345

)(
ℓp + 1

2kp
2345

) ∑
ρ∈S{2,3,4,5}

I
(5)
1,ρ(2,3,4,5)

+
[ 1

s12
km

2 kp
2

∑
ρ∈S{3,4,5}

I
(4)
12,ρ(3,4,5) + (2 ↔ 3, 4, 5)

]

Similar to the open-string analogues (3.13), we encounter the combined momentum ℓm+1
2km

2345
= ℓm−1

2km
1 along with the pentagon propagators which averages over the two edges with

momenta ℓ and ℓ−k1 in figure 2.

3.3.2 Six points

For the pentagon contributions to closed-string field-theory limits at six points, we have seen
in section 3.1.2 that there can be cancellations between the two routings of loop momenta in
I

(5)
21,ρ(3,4,5,6) and I

(5)
12,ρ(3,4,5,6), see figure 2. We have frequently used the equivalence

φ(ℓ)I(5)
21,ρ(3,4,5,6)

∼= φ(ℓ−k2)I(5)
12,ρ(3,4,5,6) (3.16)

under the loop integral in simplifying the expressions for various FTcl
6 [. . .] below and in

appendix C, where φ(ℓ) is a placeholder for an arbitrary (not necessarily scalar) function
of the loop momentum.

In the present discussion of six-point field-theory limits, we shall again relegate homology
invariants involving a permutation of E1|2|3,4,5,6 or its complex conjugates to section 3.5.
Representative examples include the following (see appendix C.1 for additional examples and
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the supplementary material of this work for a comprehensive list):

FTcl
6
[
E1|23,45,6Ē1|23,45,6

]
= 1

16
∑

ρ∈S{2,3,4,5,6}

I1,ρ(2,3,4,5,6) (3.17)

+
[ 1

4s12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) + (2 ↔ 3, 4, 5)

]
+
[ 1

4s23

∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6) + (23 ↔ 45)

]

+
[( 1

s14s23

∑
ρ∈S{23,5,6}

I
(4)
14,ρ(23,5,6) + (4 ↔ 5)

)
+ (23 ↔ 45)

]
+ 1

s23s45

∑
ρ∈S{23,45,6}

I
(4)
1,ρ(23,45,6)

+
[( 1

s124

( 1
s12

+ 1
s14

) ∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) + (4 ↔ 5)

)
+ (2 ↔ 3)

]

+ 1
4s12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) sgnρ

34 sgnρ
45 −

1
4s14

∑
ρ∈S{2,3,5,6}

I
(5)
14,ρ(2,3,5,6)

+ 1
4s23

∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6) sgnρ

34 sgnρ
45 −

1
s124

( 1
s12

+ 1
s14

) ∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6)

− 1
s14s134

∑
ρ∈S{2,5,6}

I
(4)
134,ρ(2,5,6) −

1
s14s23

∑
ρ∈S{23,5,6}

I
(4)
14,ρ(23,5,6)

as well as

FTcl
6
[
E1|23,45,6Ēp

1|23,4,5,6
]

= −1
8

(
ℓp + 1

2kp
23456

) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

45 (3.18)

+ 1
48(kp

3−kp
2)

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45

−
[ 1

2s12

∑
ρ∈S{3,4,5,6}

(
ℓp + 1

2kp
3456

)
I

(5)
12,ρ(3,4,5,6) sgnρ

45 +(2 ↔ 3)
]

+
[ 1

4s14
kp

4
∑

ρ∈S{2,3,5,6}

I
(5)
14,ρ(2,3,5,6) − (4 ↔ 5)

]
−
[ 1

2s23

(
ℓp−1

2kp
1

) ∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6) sgnρ

45

]

+
[( 1

s124

( 1
s12

+ 1
s14

)
kp

4
∑

ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) + (2 ↔ 3)

)
− (4 ↔ 5)

]

+
[ 1

s14s23
kp

4
∑

ρ∈S{23,5,6}

I
(4)
14,ρ(23,5,6) − (4 ↔ 5)

]

FTcl
6
[
E1|23,45,6Ēpq

1|2,3,4,5,6
]

=
(1

4ℓpℓq + 1
8k

(p
23456ℓ

q)
) ∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45

+
( 1

24

6∑
j=2

kp
j kq

j + 1
16
[
k

(p
2 k

q)
3 + (2, 3|2, 3, 4, 5, 6)

]) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45

−
[ 1

2s12
k

(p
2

(
ℓ

q)+1
2k

q)
3456

) ∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) sgnρ

45 −(2 ↔ 3)
]
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−
[ 1

2s14
k

(p
4

(
ℓ

q)+1
2k

q)
2356

) ∑
ρ∈S{3,4,5,6}

I
(5)
14,ρ(2,3,5,6) sgnρ

23 −(4 ↔ 5)
]

+
[( 1

s124

( 1
s12

+ 1
s14

)
k

(p
2 k

q)
4

∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) − (2 ↔ 3)

)
− (4 ↔ 5)

]

and finally

FTcl
6
[
Em

1|23,4,5,6Ēpq
1|2,3,4,5,6

]
= 1

2

(
ℓm + 1

2km
23456

)
ℓpℓq

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) (3.19)

+ 1
12(km

2 −km
3 )ℓpℓq

∑
ρ∈S{2,3,4,5,6}

sgnρ
23 I

(6)
1,ρ(2,3,4,5,6)

+ 1
144

([
2kp

2kq
2 + 6k

(p
2 ℓ

q)(2 ↔ 3, 4, 5, 6)
]

+
[
3k

(p
2 k

q)
3 + (2, 3|2, 3, 4, 5, 6)

])
×

∑
ρ∈S{2,3,4,5,6}

(
6
(

ℓm + 1
2km

23456

)
+ (km

2 −km
3 ) sgnρ

23

)
I

(6)
1,ρ(2,3,4,5,6)

+
[ 1

s12

(
ℓm + 1

2km
3456

)
k

(p
2

(
ℓ

q) + 1
2k

q)
3456

) ∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) − (2 ↔ 3)

]

−
[ 1

2s14
km

4 k
(p
4

(
ℓ

q) + 1
2k

q)
2356

) ∑
ρ∈S{2,3,5,6}

I
(5)
14,ρ(2,3,5,6) sgnρ

23 +(4 ↔ 5, 6)
]

+
[( 1

s124

( 1
s12

+ 1
s14

)
km

4 k
(p
2 k

q)
4

∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) + (4 ↔ 5, 6)

)
− (2 ↔ 3)

]

+
[ 1

s123

(
km

3
s12

− km
2

s13

)
k

(p
2 k

q)
3

∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6)

]

FTcl
6
[
Emn

1|2,3,4,5,6Ēpq
1|2,3,4,5,6

]
=
(

ℓmℓn+1
2k

(m
23456ℓ

n)+1
6

6∑
j=2

km
j kn

j +1
4
[
k

(m
2 k

n)
3 +(2, 3|2, 3, 4, 5, 6)

])

×
(

ℓpℓq+1
2k

(p
23456ℓ

q)+1
6

6∑
j=2

kp
j kq

j +1
4
[
k

(p
2 k

q)
3 +(2, 3|2, 3, 4, 5, 6)

]) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)

+
[ 1

s12
k

(m
2

(
ℓ

n) + 1
2k

n)
3456

)
k

(p
2

(
ℓ

q) + 1
2k

q)
3456

) ∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) + (2 ↔ 3, 4, 5, 6)

]

+
[ 1

s123

( 1
s12

+ 1
s13

)
k

(m
2 k

n)
3 k

(p
2 k

q)
3

∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6) + (2, 3|2, 3, 4, 5, 6)

]

In spite of the lengthy expressions for some of the individual field-theory limits, the resulting
six-point supergravity loop integrand in section 4.3 below takes a reasonably compact form.

3.4 Removal of double poles

This section is dedicated to a subtlety and its resolution in extending the above collection of
six-point field-theory limits to homology invariants involving E1|2|3,4,5,6 with a double pole.
As detailed in section 2.3.2, the naive absorption of ∂z1g

(1)
12 from the expression (2.40) for
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E1|2|3,4,5,6 into the total Koba-Nielsen derivative in (2.42) may result in a boundary term.
After a detailed description of the non-vanishing boundary terms in section 3.4.1, we shall
provide a refined integration-by-parts strategy in section 3.4.2 that eliminates the double
pole and reduces the homology invariant E1|2|3,4,5,6 to combinations of the simpler ones.
As a net result, there is no need for independent pinching rules that address the double
poles in six-point amplitudes.

3.4.1 Boundary terms obstructing a naive integration by parts

It is tempting to absorb the combination ∂z1g
(1)
12 +α′s12(g(1)

12 )2 with a double pole in E1|2|3,4,5,6

into the total derivative of g
(1)
12 J6 which would lead to

Enaive
1|2|3,4,5,6 = 2πiℓ · k2g

(1)
12 − s12g

(2)
12 + 1

2

6∑
j=3

s2jg
(1)
2j (3.20)

see (2.42). However, the B-cycle monodromy g(1)(z+τ)−g(1)(z) = −2πi implies that the total
derivative g

(1)
12 J6 integrates to a non-trivial boundary term within closed-string amplitudes

and cannot be discarded: in the context of the amplitude prescription (2.10), this boundary
term due to rewritings of K6 can be understood from

B2(z3, . . . , z6, τ) = 2i

∫
RD

dDℓ

∫
Tτ

d2z2 ∂z2

(
g

(1)
12 K6|J6|2

)
(3.21)

which enters M1-loop
6 upon further integration over τ and the remaining zi. The z2-derivative

commutes with the antimeromorphic functions K6J6 (apart from delta distributions from
simple poles in z̄2i that are suppressed by the local behavior ∼ |z2i|2α′s2i of the Koba-Nielsen
factor). By Stokes’ theorem, the z2 integration in (3.21) localizes on the boundary ∂Tτ of
the fundamental domain for the torus in the right panel of figure 3:

B2(z3, . . . , z6, τ) =
∫
RD

dDℓ

∫
∂Tτ

dz̄2 g
(1)
12 K6|J6|2 (3.22)

=
∫
RD

dDℓ

(∫ 1

0
dz̄2 g

(1)
12 K6|J6|2 +

∫ τ̄+1

1
dz̄2 g

(1)
12 K6|J6|2

+
∫ τ̄

τ̄+1
dz̄2 g

(1)
12 K6|J6|2 +

∫ 0

τ̄
dz̄2 g

(1)
12 K6|J6|2

)
=
∫
RD

dDℓ

(∫ 1

0
dz̄2 K6|J6|2

[
g(1)(z12) − g(1)(z12−τ)

]
−
∫ τ̄

0
dz̄2 K6|J6|2

[
g(1)(z12) − g(1)(z12−1)

])
= −2πi

∫
RD

dDℓ

∫ 1

0
dz̄2 K6|J6|2

The non-vanishing of this boundary integral has been exposed by the following three steps:

(i) decomposed the boundary ∂Tτ into the four straight lines of figure 3 in passing to the
second line of (3.22)
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•z1

•z2

• z6

Re(z2)

Im(z2)

A-cycle

B-cycle

•
0

z1=0

||

•
τ̄

|| •
1

||
||

•
τ̄+1

• z̄6

•z̄3
. . .

Figure 3. Decomposition of the boundary ∂Tτ of the fundamental domain of the torus into straight
paths from 0 to 1 and from τ̄+1 to τ̄ (A-cycle, drawn in red) as well as straight paths from 1 to τ̄+1
and from τ̄ to 0 (B-cycle, drawn in blue).

(ii) related the contributions
∫ τ̄+1

1 and
∫ τ̄

τ̄+1 to those over
∫ τ̄

0 and
∫ 0

1 up to shifts of the
integrand by 1 and τ , respectively, in passing to the fourth line

(iii) used the monodromies g(1)(z12) − g(1)(z12−1) = 0 and g(1)(z12) − g(1)(z12−τ) = −2πi

in passing to the sixth line

Moreover, we have also used in step (ii) that the factor of K6|J6|2 is doubly-periodic upon
integration over ℓ by homology invariance of both K6 and |J6|2. Similar types of non-vanishing
boundary terms can already be encountered at five points: one cannot trade s12g

(1)
12 g

(1)
12 for

g
(1)
12 (−4πiℓ·k2 +∑5

j=3 s2jg
(1)
2j ) within Koba-Nielsen integrals since the difference is the total

derivative ∂z̄2(g(1)
12 |J5|2) of a multivalued function of z2.

More generally, the boundary-term analysis in (3.22) can be straightforwardly adapted
to show that total Koba-Nielsen derivatives of multi-valued functions on the torus (such as
g

(1)
12 ) cannot be discarded from closed-string loop amplitudes. Accordingly, chiral correlators
Kn can only be shifted by zi-derivatives of homology invariants, for instance g

(1)
ij +g

(1)
jk +g

(1)
ki

or ℓm +∑
j≥2 km

j g
(1)
1j rather than individual g

(1)
ij . Our reasoning for this boundary term was

already borrowed in the analysis of basis decompositions for more general Koba-Nielsen
integrals at genus one in section 5.1.2 of [113].

Note that this subtlety in integration-by-parts manipulations is specific to chiral splitting:
after performing the Gaussian loop integral of the string amplitudes (2.10) and completing
the meromorphic g

(k)
ij to doubly-periodic f

(k)
ij , one can discard total Koba-Nielsen derivatives

involving individual f
(k)
ij . However, the non-holomorphicity ∂z̄if

(k)
ij = − π

Im τ f
(k−1)
ij following

from (2.37) implies that integration by parts of the left-movers affect those of the right-movers.
Hence, chiral splitting features closely related drawbacks and advantages: on the one hand,
discarding total derivatives before loop integration is tied to homology invariance; on the other
hand, integration-by-parts simplifications of Kn and Kn can be performed independently
at the level of the loop integrand.

It would be interesting to compare the new pinching rules of section 3.1 and the boundary-
term discussion of this section with the monodromy relations of genus-one string amplitudes [12,
114–116]. In particular, it could be worthwhile to investigate a connection of the pinches
due to the poles of g(k≥2)(zij) at zij = ±τ with the triangle-like pinched graphs due to
open-string insertions on the bulk cycles of the monodromy contours in the annulus in
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figure 5 of [12]. The reference also discusses the importance of these pinched graphs for the
double copy which invites comparisons with the representation of the six-point supergravity
amplitude in section 4.3 below.

3.4.2 Integration-by-parts removal of double poles without boundary terms

The boundary-term discussion of the previous section rules out a naive integration by parts
via (2.42) to eliminate the double poles ∂z1g

(1)
12 +α′s12(g(1)

12 )2 in E1|2|3,4,5,6. We shall now present
an alternative total derivative that eliminates said double poles in accordance with homology
invariance, based on the six-point version of the five-point homology invariants (2.39),

E1|23,4,5,6 = g
(1)
12 + g

(1)
23 + g

(1)
31 (3.23)

Em
1|2,3,4,5,6 = ℓm +

[
km

2 g
(1)
12 + (2 ↔ 3, 4, 5, 6)

]

Koba-Nielsen derivatives involving (3.23) can be discarded from string amplitudes without
any boundary terms akin to (3.22) and simplify to combinations of six-point homology
invariants (2.40) such as [34]

∂z1

(
E1|23,4,5,6 J6

)
= 2α′(km

1 Em
1|23,4,5,6 + E1|2|3,4,5,6 − E1|3|2,4,5,6)J6 (3.24)

∂z2

(
Em

1|2,3,4,5,6 J6
)

= α′(2kp
2Emp

1|2,3,4,5,6 − 2km
2 E1|2|3,4,5,6 +

[
s23Em

1|23,4,5,6 + (3 ↔ 4, 5, 6)
])
J6

By contracting the second identity with km
1 , one can solve for the homology invariant E1|2|3,4,5,6

involving double poles in terms of Emp
1|2,3,4,5,6 and Em

1|23,4,5,6 with only logarithmic singularities:

s12E1|2|3,4,5,6 ∼= 2km
1 kp

2Emp
1|2,3,4,5,6 +

[
s23km

1 Em
1|23,4,5,6 + (3 ↔ 4, 5, 6)

]
(3.25)

This equivalence up to Koba-Nielsen derivatives of homology invariants indicated by ∼= can
be used to infer field-theory limits of E1|2|3,4,5,6 from those of the right-hand side which
are available from sections 3.1 to 3.3. Field-theory limits of permutations E1|j|k,p,q,r can be
obtained from relabelings of (3.25) or reduced to those of E1|2|3,4,5,6 via the first line of (3.24).

3.5 Field-theory limits involving double poles

This section (together with appendix C.2) gathers the six-point field-theory limits involving the
homology invariant E1|2|3,4,5,6 with a double pole which follow from the improved integration
by parts in (3.25).
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3.5.1 Open strings

Based on (3.25) together with permutations of the simpler field-theory limits in (3.14), we
obtain the following samples of cyclically inequivalent cases:

FTop
12...6

[
E1|2|3,4,5,6

]
= 1

24s12I
(6)
1,2,3,4,5,6 + 1

2I
(5)
12,3,4,5,6 + 1

2s12
(ℓ−k1)2I

(5)
12,3,4,5,6

− s13
2s12s123

I
(4)
123,4,5,6 −

s26
2s12s126

I
(4)
612,3,4,5

FTop
12...6

[
E1|3|2,4,5,6

]
= 1

24s13I
(6)
1,2,3,4,5,6 −

1
2s123

I
(4)
123,4,5,6

FTop
12...6

[
E1|6|2,3,4,5

]
= 1

24s16I
(6)
1,2,3,4,5,6 + 1

2I
(5)
61,2,3,4,5 + 1

2s16
ℓ2I

(5)
61,2,3,4,5

− s26
2s16s126

I
(4)
612,3,4,5 −

s15
2s16s156

I
(4)
561,2,3,4 (3.26)

Note that, in planar open-string amplitudes, the total derivative ∂z2g
(1)
12 J6 integrates to zero

for all color-orderings since the boundary terms z2 → zi or z2 → zi+τ are suppressed by
the local behavior |z2i|α

′s2i and |z2i−τ |α′s2i of the Koba-Nielsen factor. In other words, the
boundary terms (3.22) obstructing the naive integration by parts (2.42) in E1|2|3,4,5,6 are
a peculiarity of closed strings. At any rate, manipulations of chiral amplitudes involving
total derivatives of g

(1)
ij Jn undermine their universal applicability to open and closed strings,

which is the original motivation for chiral splitting.
On these grounds, the open-string field-theory limits (3.26) can be used to cross-check the

improved integration by parts (3.25): we have reproduced the expressions on the right-hand
side of (3.26) by applying the pinching rules of earlier sections to Enaive

1|2|3,4,5,6 in (3.20) with
logarithmic singularities instead of E1|2|3,4,5,6.

3.5.2 Closed strings

For closed strings, the Koba-Nielsen integrals of Enaive
1|2|3,4,5,6 and E1|2|3,4,5,6 differ by boundary

terms with non-zero field-theory limits. That is why one has to employ the improved
integration by parts (3.25) to arrive at the following results and cannot compare with any
field-theory limit of (3.20):

FTcl
6
[
E1|2|3,4,5,6Ē1|23,45,6

]
= s12

96
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45 (3.27)

− 1
8s12

∑
ρ∈S{3,4,5,6}

(
(ℓ − k1)2I

(5)
12,ρ(3,4,5,6) − ℓ2I

(5)
21,ρ(3,4,5,6)

)
sgnρ

45

+
[(

s24
2s12s124

− 1
4s12

) ∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) − (4 ↔ 5)

]

FTcl
6
[
E1|2|3,4,5,6Ē1|234,5,6

]
= s12

288
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)(1+3 sgnρ

23 sgnρ
34)

+ 1
24

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)
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− 1
8s12

∑
ρ∈S{3,4,5,6}

(
(ℓ − k1)2I

(5)
12,ρ(3,4,5,6) − ℓ2I

(5)
21,ρ(3,4,5,6)

)
sgnρ

34

+
( 1

4s12
− s13

2s12s123

) ∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6)

+
( 1

4s12
− s24

2s12s124

) ∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6)

as well as

FTcl
6
[
E1|2|3,4,5,6Ē1|3|2,4,5,6

]
= s12s13

576
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) (3.28)

+
[

s13
48

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) + (2 ↔ 3)

]
+ s12+s13

4s123

∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6)

FTcl
6
[
E1|2|3,4,5,6Ē1|2|3,4,5,6

]
= s2

12
576

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) −

s12
12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)

+
[(

s123
4s12

+ (s13+s23)
8s123

+ s2
13+s2

23
8s12s123

− ℓ·k123
2s12

) ∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6) + (3 ↔ 4, 5, 6)

]

and

FTcl
6
[
E1|2|3,4,5,6Ēp

1|23,4,5,6
]

= −s12
48

(
ℓp+1

2kp
23456

) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 (3.29)

+ s12
288(kp

3−kp
2)

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)

+ 1
24(2kp

2 + kp
3)

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)

+ 1
4s12

∑
ρ∈S{3,4,5,6}

((
ℓp + 1

2kp
3456

)
(ℓ−k1)2I

(5)
12,ρ(3,4,5,6)

−
(

ℓp + 1
2kp

3456 + kp
2

)
ℓ2I

(5)
21,ρ(3,4,5,6)

)
+
(

kp
2

2s123
+ kp

3
4s12

− s13kp
3

2s12s123

) ∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6)

−
[( 1

4s12
− s24

2s12s124

)
kp

4
∑

ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) + (4 ↔ 5, 6)

]

Additional closed-string field-theory limits involving E1|2|3,4,5,6 can be found in appendix C.2,
and the complete set of FTcl

6 [EĒ] is provided in the supplementary material. We reiterate
that the six-point supergravity loop integrand in section 4.3 below takes a considerably
simpler form than one might anticipate from the size of individual field-theory limits.
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4 Six-point applications

The methods of the previous section determine the field-theory limits of all open- and closed-
string integrals over the homology invariants up to six points in (2.43). In this section,
we shall apply these field-theory limits to construct a new representation of the six-point
one-loop amplitude of type-IIA/B supergravity in pure-spinor superspace. In contrast to
earlier manifestly supersymmetric expressions in [40, 41], the result of this section is expressed
in terms of Feynman propagators quadratic in the loop momentum. Each contribution to our
six-point loop integrand takes a double-copy form — most terms corresponding to the cubic
diagrams of the BCJ double copy [20–22] and other terms representing contact diagrams
with a quintic vertex as in the generalized double copy [42].

4.1 Assembly of one-loop field-theory amplitudes

The field-theory amplitudes A1-loop
SYM (1, 2, . . . , n) and M1-loop

SG, n obtained from the α′ → 0 limit
of one-loop superstring amplitudes take the following form upon combining (2.10) and (2.20)

A1-loop
SYM (1, 2, . . . , n) =

∫
RD

dDℓ FTop
12...n

[
Kn
]

(4.1)

M1-loop
SG, n =

∫
RD

dDℓ FTcl
n

[
KnKn

]

with chiral correlators Kn≤6 given by (2.43). The superspace kinematic factors in Kn (briefly
reviewed in section 2.3.3 and appendix B) can be pulled out of the FT[. . .] prescriptions (2.20),
for instance

A1-loop
SYM (1, 2, 3, 4, 5) =

∫
RD

dDℓ

{
Cm

1|2,3,4,5FTop
12345

[
Em

1|2,3,4,5
]

(4.2)

+ 1
2s23C1|23,4,5FTop

12345
[
E1|23,4,5

]
+ 1

2s24C1|24,3,5FTop
12345

[
E1|24,3,5

]
+ 1

2s25C1|25,3,4FTop
12345

[
E1|25,3,4

]
+ 1

2s34C1|34,2,5FTop
12345

[
E1|34,2,5

]
+ 1

2s35C1|35,2,4FTop
12345

[
E1|35,2,4

]
+ 1

2s45C1|45,2,3FTop
12345

[
E1|45,2,3

]}

The translation of the leftover FTop
12...n[E] or FTcl

n [EĒ] into loop-momentum dependent
propagators is discussed in section 3, see the supplementary material of this work for
the complete set of six-point open- and closed-string results. Upon inserting these field-
theory limits obtained from the new pinching rules of this work, we recover the manifestly
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supersymmetric representations of [9] for the super-Yang-Mills amplitudes

A1-loop
SYM (1,2,...,5)=

∫
RD

dDℓ

{
1
2C1|23,4,5I

(4)
1,23,4,5+ 1

2C1|34,2,5I
(4)
1,2,34,5 (4.3)

+ 1
2C1|45,2,3I

(4)
1,2,3,45+(C1|2;3;4;5+ℓmCm

1|2,3,4,5)I(5)
1,2,3,4,5

}
A1-loop

SYM (1,2,...,6)=
∫
RD

dDℓ

{
1
4

[
C1|234,5,6I

(4)
1,234,5,6+C1|2,345,6I

(4)
1,2,345,6+C1|2,3,456I

(4)
1,2,3,456

+C1|23,45,6I
(4)
1,23,45,6+C1|23,4,56I

(4)
1,23,4,56+C1|2,34,56I

(4)
1,2,34,56

]
+ 1

2

[
(C1|23;4;5;6+ℓmCm

1|23,4,5,6)I(5)
1,23,4,5,6+(C1|2;34;5;6+ℓmCm

1|2,34,5,6)I(5)
1,2,34,5,6

+(C1|2;3;45;6+ℓmCm
1|2,3,45,6)I(5)

1,2,3,45,6+(C1|2;3;4;56+ℓmCm
1|2,3,4,56)I(5)

1,2,3,4,56

]
+
(
C1|2;3;4;5;6+ℓmCm

1|2;3;4;5;6+ 1
2ℓmℓnCmn

1|2,3,4,5,6
)
I

(6)
1,2,3,4,5,6−

1
2P1|6|2,3,4,5I

(5)
61,2,3,4,5

}
and the five-point supergravity amplitude

M1-loop
SG, 5 =

∫
RD

dDℓ

{[ ∣∣C1|2;3;4;5 + ℓmCm
1|2,3,4,5

∣∣2 I
(5)
1,2,3,4,5 + perm(2, 3, 4, 5)

]
(4.4)

+ 1
4
[
s23|C1|23,4,5|2

∑
ρ∈S{23,4,5}

I
(4)
1,ρ(23,4,5) + (2, 3|2, 3, 4, 5)

]}

also see [90] for earlier expressions for the bosonic components in generic spacetime dimension
and [10, 85, 117–119] for four-dimensional spinor-helicity expressions. The superspace kine-
matic factors with semicolons in their subscript are composite [9]: scalar pentagon numerators

4C1|2;3;4;5 = s23C1|23,4,5 + (2, 3|2, 3, 4, 5) (4.5)
4C1|23;4;5;6 = s45C1|23,45,6+s46C1|23,46,5+s56C1|23,56,4 +

[
s34C1|234,5,6−s24C1|324,5,6+(4 ↔ 5, 6)

]
4C1|2;34;5;6 = s56C1|2,34,56 + s25C1|25,34,6 + s26C1|26,34,5

+
[
s23C1|234,5,6 + s45C1|2,345,6 + s46C1|2,346,5 − (3 ↔ 4)

]
4C1|2;3;45;6 = s23C1|23,45,6 + s26C1|26,45,3 + s36C1|2,36,45

+
[
s24C1|245,3,6 + s34C1|345,2,6 + s56C1|2,3,456 − (4 ↔ 5)

]
4C1|2;3;4;56 = s23C1|23,4,56+s24C1|24,3,56+s34C1|2,34,56 +

[
s45C1|2,3,456−s46C1|2,3,465+(4 ↔ 2, 3)

]
as well as scalar and vector hexagon numerators

4Cm
1|2;3;4;5;6 = s23Cm

1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6) (4.6)

8C1|2;3;4;5;6 = 1
2
[
s23s45C1|23,45,6 + s24s35C1|24,35,6 + s25s34C1|25,34,6 + (6 ↔ 5, 4, 3, 2)

]
+ 1

3
[
s23
(
s34C1|234,5,6−s24C1|324,5,6

)
+ s43

(
s32C1|432,5,6−s24C1|342,5,6

)
+ (2, 3, 4|2, 3, 4, 5, 6)

]
+ 1

3
[
(km

3 −km
2 )s23Cm

1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)
]
− 1

3Cmn
1|2,3,4,5,6

[
k1

mk1
n + (1 ↔ 2, 3, 4, 5, 6)

]
Following our conventions for the chiral correlators, we employ shorthands like |C1|23,4,5|2 =
C1|23,4,5C̃1|23,4,5 in (4.4) and section 4.3 below for contributions to supergravity amplitudes in
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double-copy form. The tilde on the superfields is understood to convert the gluon polarization
vectors em

i into independent copies ẽm
i and similarly for the fermion wavefunctions.

Both of (4.3) and (4.4) are free of boxes with leg 1 in a massive corner (say I
(4)
12,3,4,5,

I
(4)
51,2,3,4, I

(4)
12,34,5,6 or I

(4)
612,3,4,5). When deriving the field-theory amplitudes from (4.1) and the

representation (2.43) of Kn, these cancellations are due to superspace identities such as

km
2 Cm

1|2,3,4,5 + 1
2
[
s23C1|23,4,5 + (3 ↔ 4, 5)

]
= 0 (4.7)

see sections 9 and 10 of [108] for their origin from BRST-exact expressions and their all-
multiplicity systematics. However, the six-point amplitude in (4.3) does feature the pentagon
I

(5)
61,2,3,4,5 with leg 1 in a massive corner which is crucial for the hexagon anomaly of ten-

dimensional super-Yang-Mills as explained in section 4.5 of [9].

4.2 Double-copy form of one-loop six-point amplitudes in the literature

The five-point super-Yang-Mills and supergravity amplitudes in (4.3) and (4.4) are related by
the BCJ double copy [20–22] since the box- and pentagon numerators in the super-Yang-Mills
case obey the color-kinematics duality [9]. However, the six-point super-Yang-Mills numerators
in (4.3) violate the color-kinematics duality, so it does not admit an immediate construction of
M1-loop

SG, 6 at the level of cubic graphs. Instead, the literature offers several avenues to reconcile
maximally supersymmetric one-loop six-point amplitudes with the color-kinematics duality:

• restriction of the external polarizations to four-dimensional MHV helicities [10]

• transition from the conventional Feynman propagators (ℓ−Ki)−2 to linearized ones
(K2

i −2Ki·ℓ)−1 as reviewed in section 5.1.2 below, where the color-kinematics duality is
preserved on the resulting forward limits of tree diagrams [41]

• admitting different shifts of loop momenta by ki...j in the bookkeeping of cubic graphs as
in [112], where the color-kinematics duality holds in superspace on quadratic propagators
but does not yield the supergravity amplitude upon double copy16

• employing the color-kinematics dual numerators of [120] with contributions ∼ (ℓ−k12...i)2

to the hexagon numerator which are so far only known for bosonic external states

Additional options to obtain the one-loop six-point supergravity integrand in superspace from
the super-Yang-Mills amplitude in (4.3) are the one-loop field-theory KLT formula [40] and
the generalized double copy [42]. However, both of these options have their own drawbacks:
the one-loop KLT formula for supergravity loop integrands is only available at the level of
linearized propagators,17 and the generalized double copy would make the construction of
the contact terms from the prescription in [42] somewhat laborious. Hence, we will follow a
different approach and compute M1-loop

SG, 6 from the α′ → 0 limit of the closed-string amplitude,
in particular from the field-theory limits FTcl

6 [EĒ] derived in section 3.
16As detailed in section 3.4.2 of [112], the assignment of separate numerators to cubic graphs with different

shifts of loop momenta does not preserve the automorphism properties of the graphs which obstructs the
double copy towards supergravity.

17It would be interesting to extract a quadratic-propagator formulation of the one-loop field-theory KLT
formula [40] from the recent work on KLT formulae for one-loop string amplitudes [121–124].
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4.3 The six-point one-loop supergravity amplitude

We shall now derive a new superspace representation of the six-point one-loop supergrav-
ity amplitude from (4.1). In order to illustrate the workflow, we introduce the following
compressed notation for the 51-term chiral correlator (2.43),

K6 =
∑
P

CP EP (4.8)

with collective indices P gathering the subscripts and Lorentz indices of EP ∈ {Emn
1|2,3,4,5,6,

E1|234,5,6, E1|2|3,4,5,6, . . .} and CP ∈ {1
2Cmn

1|2,3,4,5,6, 1
4s23s34E1|234,5,6, −P1|2|3,4,5,6, . . .} denoting

their respective coefficients in (2.43). The supergravity amplitude then takes the form

M1-loop
SG, 6 =

∫
RD

dDℓ
∑
P,Q

CP C̃Q FTcl
6
[
EP ĒQ

]
(4.9)

The closed-string field-theory limits on the right-hand side can be found in sections 3.3.2, 3.5.2,
appendix C and the supplementary material of this work. Each of the 51×51 terms
FTcl

6 [EP ĒQ] contains several propagator structures I(r) with r = 4, 5, 6, so a first step is to
gather the huge numbers of bilinears CP C̃Q contributing to each box, pentagon and hexagon.

In a second step, the coefficients of each I(r) resulting from (4.9) are simplified using
kinematic identities analogous to (4.7) — see sections 9 and 10 of [108] — and identified as
double copies. It is reasonable to expect remnants of a double-copy form since the super-Yang-
Mills numerators encoded in the open-string field-theory limit (4.3) obey a considerable subset
of the one-loop six-point kinematic Jacobi identities [9] at the heart of the color-kinematics
duality. Indeed, the reorganization of (4.9) according to diagrams

M1-loop
SG, 6 =

∫
RD

dDℓ

{[
|N1|2,3,4,5,6|2 I

(6)
1,2,3,4,5,6 + perm(2, 3, 4, 5, 6)

]
(4.10)

+
[ 1

s23

∑
ρ∈S{23,4,5,6}

|N1|ρ(23,4,5,6)|2 I
(5)
1,ρ(23,4,5,6) + (2, 3|2, . . . , 6)

]

+
[ |N12|3,4,5,6|2

s12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) + (2 ↔ 3, 4, 5, 6)

]

+
[ |N1|23,45,6|2

s23s45

∑
ρ∈S{23,45,6}

I
(4)
1,ρ(23,45,6) +

|N1|24,35,6|2

s24s35

∑
ρ∈S{24,35,6}

I
(4)
1,ρ(24,35,6)

+
|N1|25,34,6|2

s25s34

∑
ρ∈S{25,34,6}

I
(4)
1,ρ(25,34,6) + (6 ↔ 5, 4, 3, 2)

]

+
[( |N1|234,5,6|2

s23s234
+

|N1|342,5,6|2

s34s234
+

|N1|423,5,6|2

s24s234

) ∑
ρ∈S{234,5,6}

I
(4)
1,ρ(234,5,6)

+ (2, 3, 4|2, 3, 4, 5, 6)
]

−1
8
[∣∣N{123},4,5,6

∣∣2 ∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6) + (2, 3|2, 3, 4, 5, 6)

]}
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N1|2,3,4,5,6 N1|23,4,5,6 N1|234,5,6 N1|23,45,6

43

2

1 6

5

ℓ

4

1 6

5

3

2

ℓ 1 6

52

3
4

ℓ 1 6

2

3 4

5

ℓ

Figure 4. Cubic diagrams corresponding to the kinematic numerators N1|... defined in (4.11)
and (4.12). Permutations of the external legs 2, 3, 4, 5, 6 (i.e. excluding leg 1) in the diagrams of
the figure are implemented by relabelings of the associated numerators. In case of pentagons, the
figure illustrates the diagram associated with N1|23,4,5,6 where the massive corner is adjacent to leg 1
(which always serves as the reference for the loop momentum). The numerators of the remaining
pentagons (with massive corners in different positions) can be found in (4.11), and their scalar parts
C1|2;34;5;6, C1|2;3;45;6, C1|2;3;4;56 given by (4.5) do not follow from a mere relabeling of the scalar part
C1|23;4;5;6 of N1|23,4,5,6.

has all the hexagons and pentagons in a double-copy form tailored to cubic diagrams with
the following numerators:

N1|2,3,4,5,6 = C1|2;3;4;5;6 + ℓµCµ
1|2;3;4;5;6 + 1

2ℓµℓνCµν
1|2,3,4,5,6 −

1
4
[
P1|2|3,4,5,6(ℓ−k1)2+P1|6|2,3,4,5ℓ2]

N1|23,4,5,6 = 1
2s23

(
C1|23;4;5;6 + ℓµCµ

1|23,4,5,6
)

, N1|2,34,5,6 = 1
2s34

(
C1|2;34;5;6 + ℓµCµ

1|2,34,5,6
)

N1|2,3,45,6 = 1
2s45

(
C1|2;3;45;6 + ℓµCµ

1|2,3,45,6
)

, N1|2,3,4,56 = 1
2s56

(
C1|2;3;4;56 + ℓµCµ

1|2,3,4,56
)

N12|3,4,5,6 = 1
4s12 P1|2|3,4,5,6 (4.11)

The composite kinematic factors with semicolons in their subscripts can be found in (4.5)
and (4.6).

However, the box contributions to (4.10) mix different notions of double copy. For
those boxes I

(4)
1,... with leg 1 in a massless corner, the fourth to seventh line of (4.10) exhibit

the six propagators of cubic diagrams where the associated numerator factors obey the
kinematic Jacobi identities:

N1|23,45,6 = 1
4s23s45 C1|23,45,6 (4.12)

N1|234,5,6 = 1
4s23

(
s34 C1|234,5,6 − s24 C1|324,5,6

)
The cubic diagrams associated with the numerators in (4.11) and (4.12) are drawn in figure 4.

The remaining boxes in the last line of (4.10) have leg 1 in a massive corner such as
I

(4)
123,... and lack the two external propagators seen in the coefficients of I

(4)
1,... in the fourth to

seventh line of (4.10). Hence, the accompanying factors of

N{123},4,5,6 = P1|2|3,4,5,6 − P1|3|2,4,5,6 (4.13)
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N{123},4,5,6

54

2 6ℓ

1

3

Figure 5. Contact diagram corresponding to the numerator N{123},4,5,6 as defined in (4.13). Its
quintic vertex reflects the pole structure in the last line of (4.10).

can be thought of as kinematic numerators associated with the contact diagram of figure 5
involving a quintic vertex. We use a different font for the quintic-vertex numerators N{123},4,5,6
in (4.13) to distinguish them from the cubic-diagram numerators N in (4.11) and (4.12).

The double-copy numerators |N{123},4,5,6|2 associated with the contact-term diagrams
in the last line of (4.10) are a common theme with the generalized double copy [42]: even
a gauge-theory-amplitude representation that violates the color-kinematics duality can be
taken as a starting point to construct gravitational loop integrands if also the violations
of kinematic Jacobi identities are double copied and associated with contact diagrams.
Indeed, the difference in (4.13) is identified as a violation of kinematic Jacobi identities in
section 6.3 of [9] associated with the representation (4.3) of the six-point one-loop amplitude
of super-Yang-Mills. However, typical applications of the generalized double copy would first
involve quartic-vertex contact diagrams prior to the quintic diagram associated with (4.13).
Accordingly, the absence of quartic-vertex diagrams in (4.10) is surprising from the viewpoint
of [42], or at least suggests that we cannot identify our representation of M1-loop

SG, 6 with a
known formulation of the generalized double copy.

4.3.1 Comparison with the super-Yang-Mills amplitude

As we shall now demonstrate, the cubic-diagram numerators N in (4.11) and (4.12) give rise to
an alternative representation of the six-point super-Yang-Mills amplitude (4.3) up to rational
terms in D = 10 dimensions. The general parametrization in terms of cubic diagrams without
triangles, tadpoles and bubbles, and where we furthermore impose vanishing numerators
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for boxes with leg 1 in a massive corner, is given by

A1-loop
SYM (1, 2, . . . , 6) =

∫
RD

dDℓ

{ 1
s234

(
N1|234,5,6

s23
+

N1|432,5,6
s34

)
I

(4)
1,234,5,6 (4.14)

+ 1
s345

(
N1|345,2,6

s34
+

N1|543,2,6
s45

)
I

(4)
1,2,345,6 + 1

s456

(
N1|456,2,3

s45
+

N1|654,2,3
s56

)
I

(4)
1,2,3,456

+
N1|23,45,6

s23s45
I

(4)
1,23,45,6 +

N1|23,56,4
s23s56

I
(4)
1,23,4,56 +

N1|34,56,2
s34s56

I
(4)
1,2,34,56

+
N1|23,4,5,6

s23
I

(5)
1,23,4,5,6 +

N1|2,34,5,6
s34

I
(5)
1,2,34,5,6 +

N1|2,3,45,6
s45

I
(5)
1,2,3,45,6 +

N1|2,3,4,56
s56

I
(5)
1,2,3,4,56

+
N12|3,4,5,6

s12
I

(5)
12,3,4,5,6 −

N16|2,3,4,5
s61

I
(5)
61,2,3,4,5 + N1|2,3,4,5,6I

(6)
1,2,3,4,5,6

}
mod rat. terms

with a minus sign in the numerator of the pentagon I
(5)
61,2,3,4,5 in view of the cubic-vertex flip

that relates the cyclic image of the I
(5)
12,3,4,5,6 diagram to its relabeling 2 ↔ 6. The first four

lines of the expressions (4.3) and (4.14) are readily seen to match after inserting the numerators
in (4.11), (4.12) and using the shuffle property C1|234,5,6 = C1|432,5,6 = −C1|324,5,6 − C1|243,5,6.
The integrands of the last lines of (4.3) and (4.14) agree upon comparison of

1
4P1|2|3,4,5,6I

(5)
12,3,4,5,6 −

1
4P1|6|2,3,4,5I

(5)
61,2,3,4,5 −

1
4I

(6)
1,2,3,4,5,6

[
(ℓ−k1)2P1|2|3,4,5,6 + ℓ2P1|6|2,3,4,5

]
= −1

2P1|6|2,3,4,5I
(5)
61,2,3,4,5 (4.15)

where the first line gathers all the terms of the form P1|i|j,k,l,m in (4.11) that enter the
hexagon and pentagon numerators. However, the matching of loop integrands in (4.15)
makes use of cancellations ℓ2

ℓ2 → 1 which are problematic upon loop integration in D = 10
spacetime dimensions but readily applicable to dimensions D ≤ 9. Indeed, the integrated
expressions (4.3) and (4.14) differ by rational terms ∼ (P1|2|3,4,5,6+P1|6|2,3,4,5) in D = 10
that are known from the hexagon anomaly.

Note that (4.14) does not feature any analogue of the boxes |N{123},4,5,6|2I
(4)
123,ρ(4,5,6) in the

last line of the supergravity integrand (4.10), see figure 5 for their contact-term interpretation.
Adding any cyclic combination of such boxes to (4.14) would clearly result in departures from
the super-Yang-Mills integrand (4.3) beyond the rational terms specific to D = 10.

4.3.2 Crossing-symmetry properties

The expressions (2.43) for the chiral correlators only expose a reduced permutation invariance
in legs 2, 3, . . . , n, i.e. leg 1 enters on special footing. Starting from six points, this is
inevitable since the lack of full permutation invariance by a boundary term in τ [35, 41, 125] is
a worldsheet manifestation of the hexagon anomaly of ten-dimensional super-Yang-Mills [126,
127] and individual topologies of the type-I superstring [128–131]. As a result, the amplitude
representations to be derived from (2.43) are only expected to manifest crossing symmetry in
legs 2, 3, . . . , n excluding leg 1. Indeed, we have seen that the super-Yang-Mills amplitudes
and five-point supergravity amplitudes in the form of (4.3) and (4.4) do not feature any
boxes with leg 1 in a massive corner.
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We have given separate expressions for the pentagon numerators N1|23,4,5,6, N1|2,34,5,6,
N1|2,3,45,6 and N1|2,3,4,56 in (4.11) since the functional form of their scalar parts C1|23;4;5;6,
C1|2;34;5;6, C1|2;3;45;6 and C1|2;3;4;56 in (4.5) depends on the relative position of the massive
corner and leg 1. For the box contributions (4.12) and (4.13) in turn, the numerators do
not depend on the orientation of the three massless legs.

Since gravitational anomalies are absent from type-II supergravity [132] and type-II
superstrings [133–135], the lack of full permutation symmetry of K6 by a boundary term [35,
41, 125] does not affect M1-loop

SG, 6 in the field-theory limit. Hence, the six-point one-loop
amplitude (4.10) must have a hidden permutation symmetry including leg 1, even though
the explicit check based on permutation properties of the BRST (pseudo)invariants [108]
would be tedious.

4.3.3 Locality properties

We have expressed all the dependence on the external polarizations in terms of BRST
(pseudo)invariants C and P which manifest spacetime supersymmetry and gauge invariance of
the bosonic components. These manifestations are at the cost of the locality properties since
each six-point (pseudo)invariant introduces pole structures s−1

ij , s−1
ijk, (sijskl)−1 or (sijsijk)−1

in the external momenta. In particular, individual bilinears in the supergravity amplitude such
as |s23(s34C1|234,5,6 − s24C1|324,5,6)|2/(s23s234) from the box contributions (4.12) introduce
propagator combinations such as (s123s124)−1 that are incompatible with cubic diagrams
and cancel in the overall amplitude.

The trade-off between the manifestation of gauge invariance and locality is ubiquitous
in scattering amplitudes. An alternative representation of the supergravity amplitude that
exposes locality instead of gauge- or BRST-invariance can be derived from the manifestly
local form of the chiral correlators that are referred to as T · E representations in [35]. These
local correlator representations can be obtained from (2.43) through a coherent replacement
of the (pseudo)invariants C and P by certain local superfields denoted by T and J [108, 109]
with a non-zero but well-controlled BRST variation. Inserting these local expressions for Kn

into (4.1) then results in a manifestly local form of the one-loop field-theory amplitudes.
However, the local counterparts of the BRST (pseudo)invariants no longer obey the

kinematic identities of the C. Instead, the local variant of the kinematic identity (4.7) under
the formal C → T substitution features a non-zero right-hand side for V1(km

2 T m
2,3,4,5 + T23,4,5 +

T24,3,5 + T25,3,4). Hence, the box propagators I
(4)
12,3,4,5 and I

(4)
51,2,3,4 would no longer cancel from

the manifestly local representation of A1-loop
SYM (1, 2, 3, 4, 5), and the expression in (4.3) would

grow by two terms. Thanks to the expressions for FTcl
6 [EĒ] in the supplementary material

of this work, it is tedious but straightforward to assemble a manifestly local representation
of the six-point supergravity amplitude, with a more drastic growth of terms than in the
five-point super-Yang-Mills case.

4.3.4 Ultraviolet divergences

As an important consistency check for our new representation of the six-point supergravity
amplitude, we have verified that its ultraviolet (UV) divergence in eight spacetime dimensions
takes the correct form. This UV divergence is obtained by performing the Feynman integrals
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of (4.10) in D = 8−2ϵ dimensions and isolating the simple pole in ϵ. By the power counting
of one-loop supergravity amplitudes to have at most 2m−8 loop momenta in m-gon numera-
tors [90, 136–138], the only contributions to the desired six-point UV divergence stem from

I
(4)
A,B,C,D

∣∣
UV = 1

3! , ℓmℓnI
(5)
A,B,C,D,E

∣∣
UV = ηmn

2 · 4! (4.16)

ℓmℓnℓpℓqI
(6)
A,B,C,D,E,F

∣∣
UV = ηmnηpq + ηmpηnq + ηmqηnp

4 · 5!

for arbitrary massive or massless external legs A, B, . . . , F , while pentagons with ≤ 1 power
and hexagons with ≤ 3 powers of loop momentum yield UV-finite integrals in D = 8.

The one-loop UV divergences of type-IIA/B supergravity in the critical dimension D = 8
are well-known to match the matrix elements of a supersymmetrized R4 counterterm which
are also the low-energy limits of the respective string amplitudes. Up to and including six
points, the pure-spinor superspace representations of these matrix elements are given by [125]

M1-loop
SG, 4

∣∣
UV = C1|2,3,4C̃1|2,3,4

2 M1-loop
SG, 5

∣∣
UV = Cm

1|2,3,4,5C̃m
1|2,3,4,5 + 1

2
[
s23C1|23,4,5C̃1|23,4,5 + (2, 3|2, 3, 4, 5)

]
4 M1-loop

SG, 6
∣∣
UV = 1

2Cmn
1|2,...,6C̃mn

1|2,...,6 + 1
2
[
s23Cm

1|23,4,5,6C̃m
1|23,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
+ 1

4
([

s23s45C1|23,45,6C̃1|23,45,6 + cyc(3, 4, 5)
]

+ (6 ↔ 5, 4, 3, 2)
)

+ 1
4
([

s23s34C1|234,5,6C̃1|234,5,6 + cyc(2, 3, 4)
]

+ (2, 3, 4|2, 3, 4, 5, 6)
)

−
[
P1|2|3,4,5,6P̃1|2|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]
(4.17)

Their formal similarity to the chiral correlators Kn≤6 in (2.43) and the interpretation of this
observation in the light of double-copy structures is discussed in [35, 106].

According to (4.16), the UV contributions to the six-point supergravity amplitude (4.10)
stem from boxes, pentagons and hexagons. The most delicate part is the assembly of the
PP̃ terms of (4.17) which receive contributions from the boxes in the last line of (4.10) with
numerators in (4.13) and the double copy of the hexagon terms in (4.11) quadratic in ℓ

N1|2,3,4,5,6
∣∣
ℓ2 = 1

2ℓmℓnCmn
1|2,3,4,5,6 −

1
4ℓ2(P1|2|3,4,5,6+P1|6|2,3,4,5) (4.18)

After performing the permutation sums in (4.10), we have crosschecked in superspace that
the UV divergence of the six-point supergravity amplitude in D = 8 dimensions18 indeed
takes the desired form (4.17).

5 Comparison with ambitwistor-string computations

An alternative worldsheet approach to loop integrands in gauge theory and (super)gravity
descends from ambitwistor string theories which do not feature any analogue of α′ and

18It is crucial to evaluate the contractions of metric tensors from (4.16) with those of ℓ2 = ηmnℓmℓn as
ηmnηmn = 8 in computing eight-dimensional UV divergences. A simple crosscheck is the D = 8 UV divergence
of a pentagon with numerator ℓ2 whose evaluation via (4.16) and ηmnηmn = 8 matches that of a box.
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directly compute field-theory amplitudes [43–47]. In particular, the methods of [48, 51]
reduce the one-loop amplitude formulae of ambitwistor strings to forward limits of tree
amplitudes [40, 41, 49, 50, 52–56]. We shall here compare the applications of pinching rules
in conventional, α′-dependent superstring theories with the forward-limit-based evaluation
of ambitwistor-string integrals.

The simplified expressions for chiral correlators Kn of conventional superstrings can
be straightforwardly exported to ambitwistor string theories [41, 139, 140], possibly after
taking the tensionless limit α′ → ∞ [141–144]. We will perform the comparison at the
level of homology invariants E carrying the moduli dependence of Kn≤6 points instead of
the full chiral amplitudes. Already for the individual homology invariants, we find perfect
matching for the supergravity propagators resulting from arbitrary combinations EĒ of five-
and six-point cases in (2.39) and (2.40).

As we will see, the subtleties in the integration-by-parts treatment of the double pole
of E1|2|3,4,5,6 in section 3.4 do not carry over to the ambitwistor setup. More specifically,
the gauge-theory and supergravity propagators from worldsheet integrals over E1|2|3,4,5,6 are
accurately reproduced by the ambitwistor-string methods when employing the naive version
Enaive

1|2|3,4,5,6 in (3.20), with logarithmic singularities instead of double poles.

5.1 Basics of one-loop ambitwistor-string amplitudes

The simplification of one-loop n-point integrals of ambitwistor-string amplitudes using the
residue theorem for the modular parameter τ as in [48, 51] reproduces the tree-level measure

dµtree
n+2 = d2σ2 d2σ3 . . . d2σn

n∏
i=2

δ2
(

2
n+2∑
j ̸=i

ki · kj

σij

)
, σij = σi−σj (5.1)

for the moduli space of n+2 marked points on the sphere. The total of n−1 delta distributions
localizes any integral

∫
Cn−1 dµtree

n+2 to the solutions of the scattering equations ∑n+2
j ̸=i

ki·kj

σij
= 0

which are known as the backbone of CHY formulae for tree amplitudes [77, 145, 146]. The
expression (5.1) for the measure and later formulae of this section are adapted to the SL(2,C)
frame where three of the marked points σi on the sphere are fixed at σ1 = 1 as well as
(σn+1, σn+2) → (0,∞). We will also write (σ+, σ−) = (σn+1, σn+2) throughout this section.

The measure (5.1) is a universal building block of one-loop amplitudes from ambitwistor
strings which for gauge theories and (super)gravity read

A1-loop
SYM (1, 2, . . . , n) =

∫
RD

dDℓ

ℓ2 lim
k±→±ℓ

∫
Cn−1

dµtree
n+2 In(ℓ)

∑
γ∈cyc(1,2,...,n)

PT(+, γ(1, 2, . . . , n),−)

M1-loop
SG, n =

∫
RD

dDℓ

ℓ2 lim
k±→±ℓ

∫
Cn−1

dµtree
n+2 In(ℓ) Ĩn(ℓ) (5.2)

and involve the following constituents

• The loop momentum stems from the last two legs k+ = kn+1 and k− = kn+2 of the
(n+2)-point tree-level configuration of (5.1), and k± → ±ℓ implements a forward limit.

– 44 –



J
H
E
P
0
5
(
2
0
2
5
)
1
0
1

• The color ordering ∼ Tr(ta1ta2 . . . tan) of the planar super-Yang-Mills amplitudes in (5.2)
is reflected by the cyclic ordering of legs 1, 2, . . . , n in the Parke-Taylor factor

PT(+, 1, 2, . . . , n,−) = 1
σ+1σ12σ23 . . . σn−1,n

(5.3)

• The kinematic building blocks In(ℓ) in (5.2) encode the dependence on external polar-
izations and the amount of supersymmetry of the massless spectrum in the loop. We
will focus on the maximally supersymmetric case were In(ℓ) are the τ → i∞ limits of
the chiral correlators Kn(ℓ) in (2.10) at vanishing string tension

In(ℓ) = lim
α′→∞

lim
τ→i∞

Kn(ℓ)
(2πi)n−4σ1σ2 . . . σn

(5.4)

The inverse factors of σi can be understood from the change of integration variables dzi =
dσi

2πiσi
converting the coordinate zi on the torus (with periodicities zi

∼= zi+1 ∼= zi+τ)
to that on the sphere σi = e2πizi . Up to and including six points, the tensionless limit
α′ → ∞ only affects the homology invariant E1|2|3,4,5,6 by suppressing the contribution

1
2α′ ∂z1g

(1)
12 and can otherwise be dropped in the examples of this work.

On the support of the scattering equations in (5.1), any contribution to the kinematic building
block (5.4) can be expanded in terms of Parke-Taylor factors (5.3),

In(ℓ) =
∑

ρ∈Sn

N+|ρ(12...n)|−(ℓ) PT(+, ρ(1, 2, . . . , n),−) (5.5)

regardless on the amount of supersymmetry in the loop. This follows from mathematical
results of [147], led to dramatic simplifications of string tree-level amplitudes [148–151] as
reviewed in [39] and can be explicitly carried out using a variety of methods [41, 152–157].

5.1.1 Evaluation of Parke-Taylor integrals

The sphere integrals in the one-loop amplitudes (5.2) are most conveniently evaluated in
terms of doubly-partial amplitudes m(α|β) of bi-adjoint scalars.19 The latter arise from
CHY integrals over two Parke-Taylor factors [77]∫

CN−3
dµtree

N PT
(
α(1, 2, . . . , N)

)
PT
(
β(1, 2, . . . , N)

)
= m(α|β) (5.6)

with α, β ∈ SN and can be efficiently expressed in terms of products of tree-level propagators
through the Berends-Giele recursion in [78]. Under the forward limit k± → ±ℓ and the
identification N = n+2, we obtain the simplified form of the one-loop amplitudes (5.2) after
inserting the Parke-Taylor expansion (5.5):

A1-loop
SYM (1, 2, . . . , n) =

∫
RD

dDℓ

ℓ2 lim
k±→±ℓ

∑
γ∈cyc(1,2,...,n)

∑
ρ∈Sn

m(+, γ,−|+, ρ,−)N+|ρ|−(ℓ)

M1-loop
n,SUGRA =

∫
RD

dDℓ

ℓ2 lim
k±→±ℓ

∑
γ,ρ∈Sn

m(+, γ,−|+, ρ,−)N+|γ|−(ℓ)Ñ+|ρ|−(ℓ) (5.7)

19The permutations α, β ∈ SN refer to the coefficients of two species of traces Tr(tα(1)tα(2) . . . tα(N)) and
Tr(t̃β(1) t̃β(2) . . . t̃β(N)) in color-dressed N -point tree-level amplitudes of bi-adjoint scalars ϕa|ã with a cubic
coupling ∼ fabcf̃ãb̃c̃ϕa|ãϕb|b̃ϕc|c̃ in their Lagrangian.
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On the one hand, (5.7) clarifies the interpretation of the polarization-dependent coefficients
N+|ρ(12...n)|−(ℓ) in (5.5) as master numerators with manifest color-kinematics duality for the
forward limits of tree amplitudes. On the other hand, these N+|ρ(12...n)|−(ℓ) differ from the
kinematic numerators N of the one-loop diagrams in section 4.3 as will be elaborated next.

5.1.2 Undoing partial-fraction decompositions

Since the tree-level building blocks m(+, γ,−|+, ρ,−) in the one-loop amplitudes (5.7) are
tailored to massless external legs, there is no way of generating squares ℓ2 of the loop
momentum under the forward limit k± → ±ℓ. Instead, the ℓ-dependence of their forward
limits occurs via linearized propagators given by the inverses of

si1i2...ir,±ℓ = si1i2...ir ± 2ℓ · ki1i2...ir (5.8)

and formally obtained from discarding the ℓ2 summand in (ℓ±ki1i2...ir)−2. The linearized
propagators s−1

i1i2...ir,±ℓ in the amplitudes (5.7) can be reconciled with the expected Feynman
propagators quadratic in ℓ by performing the standard partial-fraction decomposition∫
RD

dDℓ φ(ℓ)
ℓ2(ℓ+k1)2(ℓ+k12)2 . . . (ℓ+k12...n−1)2 =

n−1∑
i=0

∫
RD

dDℓ φ(ℓ)
(ℓ+k12...i)2

n∏
j ̸=i

1
(ℓ+k12...j)2 − (ℓ+k12...i)2

=
n−1∑
i=0

∫
RD

dDℓ

ℓ2 φ(ℓ−k12...i)
i−1∏
j=0

1
sj+1,j+2,...,i,−ℓ

n−1∏
j=i+1

1
si+1,i+2,...,j,ℓ

(5.9)

The numerator factor φ(ℓ) refers to an arbitrary polynomial in the loop momentum, and
each summand of the second line is interpreted as the forward limit of a tree diagram, see
figure 6. In the setting of section 4.3, the numerators N of the one-loop diagrams on quadratic
propagators take the role of φ(ℓ) on the left-hand side of (5.9). The coefficients N+|ρ(12...n)|− in
the Parke-Taylor expansion (5.5) in turn are identified with the shifted numerators φ(ℓ−k12...i)
on the right-hand side of (5.9), up to redefinitions that follow from the scattering equations
among different permutations of PT(+, ρ(1, 2, . . . , n),−).

Conversely, however, it is not possible to recombine individual summands in the second
line of (5.9) to Feynman integrals with quadratic propagators (ℓ±ki1i2...ir )−2. In particular,
the shifts in the argument of the polynomial φ(ℓ−k12...i) between different summands in (5.9)
require even more care in recombining linearized propagators to quadratic ones. It is not
obvious from the general expression (5.7) for one-loop super-Yang-Mills and supergravity
amplitudes that they are eventually expressible in terms of quadratic Feynman propagators.

Note that a variety of strategies to recombine linearized propagators in the second line
of (5.9) to quadratic ones and to directly obtain quadratic propagators from ambitwistor
strings can be found in [57–65].

5.2 Matching pinching rules with ambitwistor integrals

When extracting ambitwistor-string integrands In(ℓ) from chiral correlators Kn(ℓ) on the torus
via (5.4), one finds that individual terms g

(1)
ij or ℓm of Kn(ℓ) do not yield amplitude contribu-

tions to (5.7) that can be recombined to quadratic propagators. This is the ambitwistor-string
counterpart of the closely related issue in section 2.3.4 that Koba-Nielsen integrals over
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n 1
2

3

||−
+

+ cyclic(1, 2, . . . , n)+ℓ −ℓ

1 2 3 n

Figure 6. n-gon diagram associated with the color ordering Tr(ta1ta2 . . . tan) (left panel) and the
partial-fraction decomposition (5.9) relating each n-gon to a cyclic orbit of the depicted (n+2)-point
tree-level diagram.

individual terms g
(1)
ij or ℓm of chiral correlators do not have a well-defined field-theory limit.

In the same was as homology invariant combinations of g
(k)
ij and ℓm resolve all ambiguities

in the field-theory limit of string integrals, it was conjectured in section 5.2 of [158] that
homology invariance guarantees the availability of quadratic-propagator representations.
More specifically, the reference claims that the loop integrals∫

RD
dDℓ ATop

12...n

[
EP

]
=
∫
RD

dDℓ

ℓ2

∫
Cn−1

dµtree
n+2 lim

τ→i∞
α′→∞

EP (σj , ℓ, τ)
(2πi)n−4σ1σ2 . . . σn

(5.10)

×
∑

γ∈cyc(1,2,...,n)
PT(+, γ(1, 2, . . . , n),−)

∫
RD

dDℓ ATcl
n

[
EP EQ

]
=
∫
RD

dDℓ

ℓ2

∫
Cn−1

dµtree
n+2 lim

τ→i∞
α′→∞

EP (σj , ℓ, τ) EQ(σj , ℓ, τ)
(2π)2n−8|σ1σ2 . . . σn|2

adapted to super-Yang-Mills and supergravity amplitudes can be combined to those over
quadratic propagators for arbitrary homology invariants EP (zj , ℓ, τ) and EQ(zj , ℓ, τ). The
quadratic-propagator representations of these ATop

12...n[. . .] and ATcl
n [. . .] can only be attained

after shifts of loop momentum as in (5.9), that is why incorporated the loop integrations
into the definition (5.10).

5.2.1 Comparison at the level of homology invariants

The combinations of loop integrals in (5.10) are the direct ambitwistor-string analogues of
the notation (2.20) for field-theory limits FTop

12...n[. . .] and FTcl
n [. . .] which are also defined

only up to shifts of loop momenta. Since ambitwistor strings and field-theory limits of
conventional superstrings are expected to yield the same super-Yang-Mills and supergravity
amplitudes, a necessary requirement is to have

FTop
12...n

[
Kn
]

= ATop
12...n

[
Kn
]
, FTcl

n

[
KnKn

]
= ATcl

n

[
KnK̃n

]
, mod (ℓ → ℓ±kj) (5.11)

at the level of the full-fledged chiral amplitudes. However, we shall here make the stronger
claim that the FT[. . .] and AT[. . .] prescriptions in (2.20) and (5.10) already match at the
level of individual homology invariants

FTop
12...n

[
EP

]
= ATop

12...n

[
EP

]
, FTcl

n

[
EP EQ

]
= ATcl

n

[
EP EQ

]
, mod (ℓ → ℓ±kj) (5.12)

which implies (5.11) without any further information on the kinematic coefficients of EP

within the chiral correlators. This is plausible since both the FT[. . .] and AT[. . .] prescriptions
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share the consistency condition of homology invariance for the expression in the square
brackets. Moreover, we have explicitly verified (5.12) for all the homology invariants in
the five- and six-point correlators of section 2.3 (including all the 51 × 51 combinations
EP EQ for FTcl

6 and EP EQ for ATcl
6 ). Note that EP and EQ in (5.12) need to obey the

homology-invariance condition (2.38) already before integration over zi, that is why Enaive
1|2|3,4,5,6

in (3.20) with Koba-Nielsen derivatives as its homology variation is not a valid choice.
The advantage of (5.12) over (5.11) is that different worldsheet approaches to loop

amplitudes can be compared at a refined level. Given that K6 in the form of (2.43) comprises
51 homology invariants, (5.12) allows us to study the interplay of conventional superstrings
and ambitwistor strings on the basis of considerably smaller expressions than the complete six-
point one-loop amplitudes. By the intricacies of the pinching rules in presence of multivalued
g(k≥2) as described in section 3.1, it is valuable to have (5.12) as an alternative evaluation
method of field-theory limits, either as cross-checks or to optimize runtimes in computer-
algebra implementations. Conversely, it may be useful that direct calculations of α′ → 0
limits anticipate the results of recombining linearized-propagator expressions in intermediate
steps of AT[. . .] to quadratic propagators.

5.2.2 Naive integration by parts in ambitwistor strings: six-point case study

The second main result of this section besides (5.12) is that the homology invariants with
double poles or other non-logarithmic singularities admit more direct simplification methods
in an ambitwistor setting. More specifically, the boundary term of section 3.4.1 which
obstructed a naive integration-by-parts simplification of E1|2|3,4,5,6 via (2.42) does not have
any analogue on the support of the scattering equations in the ambitwistor measure (5.1).
This can be seen by applying the degenerations (recall that σi = e2πizi)

1
2πi

lim
τ→i∞

g
(1)
ab = σa+σb

2σab
,

1
(2πi)2 lim

τ→i∞
g

(2)
ab = 1

12 (5.13)

to the limits on the right-hand side of (5.10) relevant to the AT[. . .] prescriptions:

lim
τ→i∞
α′→∞

E1|2|3,4,5,6
(2πi)2σ1σ2 . . . σ6

= k1 · k2
(2πi)2σ1σ2 . . . σ6

lim
τ→i∞

[
(g(1)

12 )2 − 2g
(2)
12
]

= k1 · k2
σ3σ4σ5σ6

{ 1
σ2

12
+ 1

12σ1σ2

}
(5.14)

This needs to be compared with the AT[. . .] images of Enaive
1|2|3,4,5,6 in (3.20). The latter does

not depend on α′, so we only need to implement the τ → i∞ limit via (5.13) and obtain

lim
τ→i∞

Enaive
1|2|3,4,5,6

(2πi)2σ1σ2 . . . σ6
= 1

σ1σ2 . . . σ6

{
ℓ·k2

σ1+σ2
2σ12

− k1·k2
6 + σ1+σ2

2σ12

6∑
j=3

k2·kj
σ2+σj

2σ2j

}
(5.15)

On the support of the scattering equations and momentum conservation, the rational functions
on the right-hand sides of (5.14) and (5.15) match since their difference is given by

lim
τ→i∞
α′→∞

Enaive
1|2|3,4,5,6 − E1|2|3,4,5,6

(2πi)2σ1σ2 . . . σ6
= 1

σ3σ4σ5σ6

{ 1
σ12

− 1
2σ1

}(
ℓ · k2
σ2

+
6∑

j=1
j ̸=2

k2 · kj

σ2j

)
∼= 0 (5.16)
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More precisely, the expression in the round parenthesis vanishes on the support of the
scattering equation at i = 2 in (5.1) in the SL(2,C) frame with (σn+1, σn+2) → (0,∞) and
the forward limit (kn+1, kn+2) → (ℓ,−ℓ).

5.2.3 Naive integration by parts in ambitwistor strings: general argument

The viability of the naive integration-by-parts simplification (2.42) in an ambitwistor-string
context is not surprising since Enaive

1|2|3,4,5,6 is obtained from E1|2|3,4,5,6 by discarding a total
derivative

∂za

(
h(zi, τ, ℓ)Jn

)
=
{

∂zah(zi, τ, ℓ) + α′h(zi, τ, ℓ)
(

4πi(ℓ · ka) +
n∑

b=1
b ̸=a

sabg
(1)
ab

)}
Jn (5.17)

in the special case of n = 6, a = 2 and h(zi, τ, ℓ) = g
(1)
12 . For a general choice of n and

h(zi, τ, ℓ), the α′ → ∞ limit relevant to the integrand of ambitwistor strings suppresses the
first term ∂zah(zi, τ, ℓ) in the curly bracket. The second term in turn is proportional to
∂za logJn and vanishes on the support of the scattering equations on the torus [45]. By
this general argument, one can discard arbitrary total derivatives (5.17) when exporting
chiral correlators to the ambitwistor-string setting via (5.4), even if the function h(zi, τ, ℓ)
is not homology invariant. That is why the boundary term in section 3.4.1 obtained from
integrating (5.17) at h(zi, τ, ℓ) = g

(1)
12 does not have any ambitwistor analogue, and one

can identify E1|2|3,4,5,6 → Enaive
1|2|3,4,5,6 within the AT[. . .] prescription (5.10). However, we

reiterate that it is not possible to replace E1|2|3,4,5,6 → Enaive
1|2|3,4,5,6 within the prescription

FTcl
n [. . .] of conventional strings since the boundary terms of section 3.4.1 generically have

non-vanishing field-theory limits.
Note that the degeneration τ → i∞ reduces the scattering equations on the torus

∂za logJn = 0 to those on the sphere enforced by the delta distributions in (5.1) [48, 51].
Accordingly, (5.16) is nothing but the τ → i∞ limit of the relation

Enaive
1|2|3,4,5,6 = lim

α′→∞
E1|2|3,4,5,6 + 1

2α′ g
(1)
12 ∂z2 logJ6 (5.18)

which explains why the curly parenthesis in (5.16) is given by the τ → i∞ limit of g
(1)
12

2πiσ1
.

6 Conclusion and outlook

In this work, we have developed advanced tools to perform the field-theory limit of multiparticle
one-loop string amplitudes in their chiral-splitting formulation [25–27]. The latter employs
loop momenta to express closed-string integrands as double copies of meromorphic chiral
amplitudes. Starting from six external legs, the modern formulation of chiral amplitudes
in terms of Kronecker-Eisenstein coefficients is shown to introduce technical pitfalls in the
pinching rules that determine the reducible diagrams in the field-theory limit. We close a
gap in the literature by discussing and overcoming subtleties in multiparticle pinching rules
and restrictions on integration-by-parts simplifications of chiral amplitudes.

The goal of this work is to pave the way for practical calculations. Accordingly, our
extended pinching rules for chiral splitting are applied to six-point one-loop supergravity
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amplitudes: we obtain a new representation (4.10) of their loop integrand from the field-
theory limit of type-IIA/B superstrings. As an echo of chiral splitting, the kinematic factors
of the box-, pentagon- and hexagon diagrams in the loop integrand (4.10) are presented
in a double-copy form. However, instead of the initial cubic-diagram formulation of the
gravitational double copy [19], our supergravity integrand also involves contact terms akin to
the generalized double copy [42]. We leave it as an open problem for the future to identify
the incarnation of the generalized double copy at higher multiplicity and loop order which
results from the extended pinching rules of chiral splitting.

Our representation (4.10) of six-point one-loop supergravity amplitudes for the first time
reconciles manifest spacetime supersymmetry via pure-spinor methods with the conventional
Feynman propagators quadratic in the loop momentum. This standard form of the propagators
is sometimes obscured in ambitwistor-string constructions and closely related all-multiplicity
realizations of one-loop double copy in field theory [40, 41]. The outcomes of our pinching
rules in terms of quadratic propagators match the results of ambitwistor-string computations,
not only at the level of the full six-point amplitudes but already for considerably smaller
portions that arise from so-called homology invariants on the torus. Hence, our findings
identify homology invariants as the optimal organization level of amplitude computations for
the comparison of pinching rules with ambitwistor methods and for a broader exploration of
their synergies. A notable example of such synergies between ambitwistor and conventional
string theories is the construction of chiral amplitudes from color-kinematics dual numerators
in [66, 159].

Another open problem for the future is the all-multiplicity systematics of the refined
integration-by-parts relations that preserve the homology-invariance condition required by
chiral splitting. At six points, chiral splitting necessitates the more elaborate integration-by-
parts relation (3.25) to eliminate double poles as compared to the simpler identity (A.5) of
the manifestly doubly-periodic setup after integrating the loop momentum. A comprehensive
integration-by-parts elimination of non-logarithmic singularities after loop integration is
performed in [113, 160]. It remains to pinpoint the total derivatives of homology invariants
that eliminate the analogous non-logarithmic singularities in chiral splitting: a key step is
already taken in the all-multiplicity relations in section 5.1.3 of [34], but the residual task is
to pinpoint convenient tensor contractions of the tensor-valued identities in the reference.

It would furthermore be interesting to adapt the pinching rules of this work to string- and
field-theory amplitudes with reduced supersymmetry. On the one hand, the parity-even parts
of n-point amplitudes with half- and quarter-maximal supersymmetry share the combinatorial
structure and the types of Kronecker-Eisenstein coefficients with maximally supersymmetric
(n+2)-point amplitudes [11, 28]. On the other hand, it remains to analyze the interplay of
the infrared-regularization scheme of the references for s−1

12...n−1 dubbed Minahaning [87] with
the kinematic poles introduced by our pinching rules in non-maximally supersymmetric cases.
Upcoming work of Berg, Haack and Zimmerman [161] will describe new facets of Minahaning
in gravitational four-point amplitudes with 16 supercharges which correspond to the six-point
amplitude (4.10) under the combinatorial dictionary of [11, 28].

At higher genus, the worldsheet integrands of multiparticle string amplitudes are ex-
pected to have natural representations in terms of the integration kernels for higher-genus
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polylogarithms. Particularly promising candidates are the single-valued but non-holomorphic
f -tensors of the polylogarithms in [162] — see [163] for their appearance from fermion Green
functions and [164] for their functional identities. Their analogues for the loop integrand
in chiral splitting are the meromorphic but multivalued Enriquez kernels [165] which were
recently investigated from the viewpoint of Schottky parametrizations [166] and functional
identities [164, 167]. An important open problem is to formulate pinching rules for these
types of higher-genus integration kernels and the associated homology invariants as done
at the two-loop five-point level in [13].
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A Reducible diagrams from worldline boundary terms

As detailed in section 3.1, the pinching rule (3.3) producing a pentagon from six-point
integrals over g

(2)
16 is specific to meromorphic Kronecker-Eisenstein kernels with simple poles

at z61= ± τ and does not arise for its doubly-periodic and non-singular counterpart f
(2)
16 . We

shall here describe an alternative mechanism that generates reducible diagrams in field-theory
limits from representations of homology invariants in terms of f

(k)
ij . As we will see, analyzing

field-theory limits of E1|2|3,4,5,6 in terms of f
(k)
ij introduces boundary terms with respect to

worldline variables that reproduce the pentagon in (3.3) from a different perspective.
Throughout this appendix, the discussion is tailored to the contribution to one-loop

open-string amplitudes from planar cylinder worldsheets in the parametrization of figure 1.
The closed-string counterpart of the analysis is similar but combinatorially more involved.
The key steps in this appendix also appeared in section 6.2 of [11] in the context of four-point
one-loop open-string amplitudes with reduced supersymmetry.

A.1 Non-chiral Koba-Nielsen factor and f (k) representations

The first step is to provide a manifestly doubly-periodic representation of the homology
invariant E1|2|3,4,5,6 in (2.40) with only simple poles. For this purpose, we rewrite the chiral
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Koba-Nielsen factor (2.9) as

Jn = exp
(

2πiα′τ

[
ℓ +

n∑
j=1

zj

τ
kj

]2
− 2πiα′

τ

n∑
i=1

ziki ·
n∑

j=1
zjkj + α′

n∑
1≤i<j

sij log θ1(zij , τ)
)

= exp
(

2πiτα′p2 + α′
n∑

1≤i<j

sijGB(zij , τ)
)

(A.1)

with the shifted loop momentum p and the B-cycle Green function GB in the second line

pm = ℓm +
n∑

j=1

zj

τ
km

j , GB(z, τ) = log θ1(z, τ) + iπz2

τ
(A.2)

For chiral correlators Kn independent on ℓ, the Gaussian loop integral over the first factor
e2πiτα′p2 with purely imaginary τ can be readily performed to yield a non-chiral version
Πn of the Koba-Nielsen factor (2.9)∫

RD
dDℓJn = Πn

(2α′ Im τ)D/2 , Πn = exp
(

α′
n∑

1≤i<j

sijGB(zij , τ)
)

(A.3)

The Green function GB in (A.2) is meromorphic, and its z-derivative coincides with the
restriction of the non-meromorphic f (1) to the boundary of the cylinder worldsheet in figure 1,
i.e. to the B-cycle [0, 1) × τ where z

τ = Im z
Im τ ,

∂zGB(z, τ) = ∂z log θ1(z, τ) + 2πi
z

τ
= ∂z log θ1(z, τ) + 2πi

Im z

Im τ

∣∣∣∣
[0,1)τ

= f (1)(z, τ)
∣∣
[0,1)τ (A.4)

Conversely, with the understanding of z and τ as open-string moduli with one real (instead
of complex) degree of freedom each, the second derivative of GB yields ∂zf (1)(z, τ)

∣∣
[0,1)τ =

∂zg(1)(z, τ)+ 2π
Im τ upon restriction of z to the B-cycle and τ ∈ iR+.20 As a consequence, the

homology invariant E1|2|3,4,5,6 admits the following rewriting within cylinder amplitudes

E1|2|3,4,5,6 = − π

α′ Im τ
+ 1

2α′∂z1f
(1)
12 + 1

2s12(f (1)
12 )2 − s12f

(2)
12 (A.5)

∼= − π

α′ Im τ
− s12f

(2)
12 + 1

2f
(1)
12 (s23f

(1)
23 + s24f

(1)
24 + s25f

(1)
25 + s26f

(1)
26 )

where all the singularities of the second line are logarithmic. In passing to the second line,
we have shifted E1|2|3,4,5,6Πn by a total z2 derivative of 1

2α′ f
(1)
12 Πn, where the non-chiral

Koba-Nielsen factor Πn in (A.1) gives rise to

∂za log Πn = α′
n∑

b=1
b ̸=a

sabf
(1)
ab (A.6)

maintaining the restriction of all the zi to the B-cycle. Nevertheless, the integration by
parts in (A.5) is also valid for closed strings since the function f

(1)
12 in the primitive is doubly

periodic, and there is no analogue of the boundary term (3.22).
20In a closed-string context where ∂z is understood as a complex derivative distinct from ∂z̄, the analogous

differential equation is ∂zf (1)(z, τ) = ∂zg(1)(z, τ)+ π
τ

without the factor of two.
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A.2 Worldline limits

This section gathers the worldline limits of the non-chiral Koba-Nielsen factor (A.3) and the
representation (A.5) of E1|2|3,4,5,6. It will be convenient to introduce the shorthands

t = 2πα′ Im τ , uj = Im zj

Im τ
(A.7)

and all the subsequent field-theory limits α′ → 0 and τ → i∞ are taken at fixed values of
the worldline length t and the comoving coordinates uj . By the degeneration (2.13) of the
θ1-function, the τ → i∞ asymptotics of the non-chiral Koba-Nielsen factor is given by

Πn → Πi∞
n = exp

(
−t

n∑
1≤i<j

ki · kj
(
u2

ij − |uij |
))

(A.8)

which reproduces the exponential in the Schwinger parametrization (2.14) of Feynman
integrals. The first step towards the analogous worldline limit of the homology invariant
E1|2|3,4,5,6 is to identify

1
2πi

lim
τ→i∞

f
(1)
ij = uij −

1
2 sgn(uij) ,

1
(2πi)2 lim

τ→i∞
f

(2)
ij = 1

2u2
ij −

1
2 |uij | + 1

12 (A.9)

based on the degenerations (2.16) and (3.4) of g(k), where we again keep the comoving
coordinates uj fixed. In the first place, (A.9) brings the degeneration of (A.5) into the form

lim
τ→i∞

E1|2|3,4,5,6
(2πi)2 = 1

2t
+ 1

2

[
s23

(
u12u13 + 1

2 sgn(u12)(u21+u31) + 1
2 sgn(u23)u21 (A.10)

+ 1
4 sgn(u12) sgn(u23) + 1

6

)
+ (3 ↔ 4, 5, 6)

]
The comoving coordinates ui are interpreted as proper times of the worldline that arises
from the tropical degeneration of both torus and cylinder worldsheets. In order to find a
momentum-space representation of (A.10), it remains to match the polynomials in ui with
the results of the Schwinger parametrizations (with u1 = 0)∫

RD

dDℓ

πD/2
α + βmℓm + γmnℓmℓn

ℓ2(ℓ−K1)2 . . . (ℓ−K12...n−1)2 =
∫ ∞

0

dt

t
tn−D/2

∫
0<u2<...<un<1

du2 du3 . . . dun

×
(

α + βmLm(ui) + γmn

[
Lm(ui)Ln(ui)+

ηmn

2t

])
exp

[
−t

n∑
1≤i<j

Ki · Kj
(
u2

ij − |uij |
)]

(A.11)

generalizing (2.14) to vector and tensor Feynman integrals. In intermediate steps of the
derivation of (A.11), the loop integral is brought into Gaussian form whose evaluation
necessitates a shift of the loop momentum by

Lm(ui) = −
n∑

j=1
Km

j uj (A.12)

which is equivalent to ℓm = pm + Lm(ui) in (A.2) for zj on the B-cycle and massless momenta
Km

j → km
j . In the form of (A.10), it is not possible to match the degree-two polynomial in ui
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with a Schwinger-parametrized hexagon (A.11), regardless of the choice of α, βm, γmn. Instead,
we absorb the quadratic terms in ui of (A.10) into the total worldline derivative of (A.8)

∂ua log Πi∞
n = −t

n∑
b=1
b ̸=a

sab

(
uab −

1
2 sgn(uab)

)
(A.13)

such that we can recombine all the residual factors of ui into the shift of loop momentum
in (A.12) via s23u31 + (3 ↔ 4, 5, 6) = −2k2 · L with the massless version Km

j → km
j of

the momenta in (A.12):

lim
τ→i∞

E1|2|3,4,5,6
(2πi)2 Π6 = 1

2t
∂u2

(
u21Πi∞

6
)

+ 1
2 Πi∞

6 sgn(u21) k2 · L (A.14)

+ Πi∞
6

(1
8 sgn(u12)

[
s23 sgn(u23) + (3 ↔ 4, 5, 6)

]
− s12

12

)
One can also view this result as the worldline limit of (2.42) whose total worldsheet derivative
− 1

2α′ ∂z2(g(1)
12 J6) in the second line corresponds to the u2-derivative in (A.14). Note, however,

that the worldline analogue (A.8) of the Koba-Nielsen factor does not share the short-distance
behavior |zij |2α′sij of Jn. Instead, the limits ui → uj of Πi∞

6 are non-zero and give rise to the
composite Ka = kij in the exponentials of (A.11) reducible diagrams. Hence, while boundary
terms zi → zj drop out from open-string worldsheet integrals, this is not the case for the
worldline boundary terms from ∂u2(u21Πi∞

6 ) in (A.14).

A.3 Contributions before pinching

With the manifestly doubly-periodic representation (A.5) and its worldline limit (A.14) at
hand, we shall now present an alternative computation of the field-theory limit of open-string
integrals over E1|2|3,4,5,6. Similar to the assembly of field-theory limits from the pinching
rules of g

(k)
ij in the main body of this work, we evaluate the pinch contributions to the

representation (A.5) in terms of f
(k)
ij in a separate section A.4 below. The present section

is dedicated to the first term in

FTop
12...6

[
E1|2|3,4,5,6

]
= FTi∞

12...6
[
E1|2|3,4,5,6

]
+ FTpinch

12...6
[
E1|2|3,4,5,6

]
(A.15)

which gathers the contributions from the worldline limit (A.14) before accounting for any
pinches of (A.5). From the translation (A.11) between momentum space and Schwinger
parameters, the target expression FTi∞

12...6
[
E1|2|3,4,5,6

]
will be determined from

∫
RD

dDℓ

πD/2 FTi∞
12...6

[
E1|2|3,4,5,6

]
=
∫ ∞

0

dt

t
t6−D/2

∫
0<u2<...<u6<1

du2 . . . du6 Πi∞
6 lim

τ→i∞

E1|2|3,4,5,6
(2πi)2

(A.16)

Upon insertion of (A.14) on the right-hand side, we find

FTi∞
12...6

[
E1|2|3,4,5,6

]
=
(1

2ℓ · k2 −
5
24s12

)
I

(6)
1,2,3,4,5,6 −

1
2I

(5)
1,23,4,5,6[u13] (A.17)
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where I
(5)
1,23,4,5,6[u13] refers to a one-mass pentagon with an additional insertion of u13 into its

Schwinger representation (A.11) due to the total derivative on the right-hand side of (A.14).
Since I

(5)
1,23,4,5,6[u13] will eventually drop out from (A.15) within worldline computations, we

do not need the cumbersome momentum-space description of this quantity.21

After the rewriting 2ℓ·k2 = (ℓ−k1)2 − (ℓ−k12)2 + s12 of the hexagon numerator in (A.17),
one arrives at the following alternative form:

FTi∞
12...6

[
E1|2|3,4,5,6

]
= s12

24 I
(6)
1,2,3,4,5,6 + 1

4I
(5)
12,3,4,5,6 −

1
4I

(5)
1,23,4,5,6 −

1
2I

(5)
1,23,4,5,6[u13] (A.18)

Upon extending (A.15) and (A.16) to the permutations E1|3|2,4,5,6 and E1|6|2,3,4,5 of the above
homology invariant, similar methods result in

FTi∞
12...6

[
E1|3|2,4,5,6

]
= s13

24 I
(6)
1,2,3,4,5,6+1

4(I(5)
1,23,4,5,6−I

(5)
1,2,34,5,6)+1

2(I(5)
1,23,4,5,6[u13]−I

(5)
1,2,34,5,6[u13])

FTi∞
12...6

[
E1|6|2,3,4,5

]
= s16

24 I
(6)
1,2,3,4,5,6 + 1

4I
(5)
61,2,3,4,5 + 1

4I
(5)
1,2,3,4,56 + 1

2I
(5)
1,2,3,4,56[u15] (A.19)

where the coefficient 1
4 of I

(5)
61,2,3,4,5 receives contributions from both the boundary term

∫ ∞

0

dt

t
t6−D/2

∫
0<u2<...<u6<1

du2 . . . du6 ∂u6

(
u61
2t

Πi∞
6

)
=
∫
RD

dDℓ

πD/2
1
2
(
I

(5)
61,2,3,4,5 + I

(5)
1,2,3,4,56[u15]

)
(A.20)

and the rewriting of a hexagon numerator 2ℓ·k6 = (ℓ+k6)2 − ℓ2 in intermediate steps.

A.4 Adding pinched terms

Our last step in the assembly of the field-theory limits of open-string integrals over E1|i|j,p,q,r is
to combine (A.18) and (A.19) with the pinch contributions to (A.15). Given that the doubly-
periodic f

(k)
ij with k ≥ 2 are non-singular throughout the torus, the only source of reducible

diagrams is f
(1)
ij . Its pinching rules are identical to those of g

(1)
ij and formally obtained from

those in (2.27) by replacing sgn(uij) → sgn(uij) − 2uij . The terms in (2.27) without any
delta distributions (with two factors of sgn(uij)) need to be dropped since they are already

21A momentum-space realization of the spurious quantity I
(5)
1,23,4,5,6[u13] in (A.17) can be found by noticing

that an extra factor of u13 in the worldline integrand of (A.11) results from the loop integral of I
(5)
1,23,4,5,6ℓm:

when expanding this vector integral in the independent momenta km
23, km

4 , km
5 , km

6 of the problem and projecting
to the component along km

23, the remnant Lm of the loop momentum in (A.12) for this one-mass pentagon
reduces to the desired factor of u13 in the worldline integrand (with a renaming of the proper times in (A.11)
to u1 = 0 < u3 < u4 < u5 < u6 < 1).
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accounted for in section A.3. For the permutations discussed in the previous section, we find

FTpinch
12...6

[
E1|2|3,4,5,6

]
= 1

4I
(5)
1,23,4,5,6 + 1

2I
(5)
1,23,4,5,6[u13] − 1

4I
(5)
12,3,4,5,6 + ℓ · k2

s12
I

(5)
12,3,4,5,6 (A.21)

− s26
2s12s612

I
(4)
612,3,4,5 + s23

2s123

( 1
s12

+ 1
s23

)
I

(4)
123,4,5,6

FTpinch
12...6

[
E1|3|2,4,5,6

]
= 1

4I
(5)
1,2,34,5,6 + 1

2I
(5)
1,2,34,5,6[u13] − 1

4I
(5)
1,23,4,5,6 −

1
2I

(5)
1,23,4,5,6[u13] −

I
(4)
123,4,5,6
2s123

FTpinch
12...6

[
E1|6|2,3,4,5

]
= 1

4I
(5)
61,2,3,4,5 −

ℓ · k6
s16

I
(5)
61,2,3,4,5 −

1
4I

(5)
1,2,3,4,56 −

1
2I

(5)
1,2,3,4,56[u15]

− s26
2s16s612

I
(4)
612,3,4,5 + s56

2s561

( 1
s56

+ 1
s16

)
I

(4)
561,2,3,4

By adding this to the FTi∞
12...6

[
E1|i|j,p,q,r

]
in (A.18) and (A.19), we arrive at the final results

for the field-theory limits

FTop
12...6

[
E1|2|3,4,5,6

]
= 1

24s12I
(6)
1,2,3,4,5,6 + ℓ · k2

s12
I

(5)
12,3,4,5,6

− s26
2s12s126

I
(4)
612,3,4,5 + s23

2s123

( 1
s12

+ 1
s23

)
I

(4)
123,4,5,6

FTop
12...6

[
E1|3|2,4,5,6

]
= 1

24s13I
(6)
1,2,3,4,5,6 −

1
2s123

I
(4)
123,4,5,6

FTop
12...6

[
E1|6|2,3,4,5

]
= 1

24s16I
(6)
1,2,3,4,5,6 +

(1
2 − ℓ · k6

s16

)
I

(5)
61,2,3,4,5

− s26
2s16s126

I
(4)
612,3,4,5 + s56

2s561

( 1
s56

+ 1
s16

)
I

(4)
561,2,3,4 (A.22)

which match the expressions in (3.26) obtained from the pinching rules of g
(1)
ij and g

(2)
ij after

minor rearrangements such as (ℓ−k1)2 = (ℓ−k12)2+2ℓ·k2−s12. Note that all the pentagons
with insertions of u1i in the Schwinger integrand (such as I

(5)
1,23,4,5,6[u13] in the case of E1|2|3,4,5,6)

cancel between the pinch contributions (A.21) and those from the boundary terms in the
worldline limits of (A.18) and (A.19).

B Components of superspace kinematic factors

This appendix gathers further information on the components of the kinematic factors in
pure-spinor superspace that enter the chiral correlators (2.43) at n ≤ 6 points.

B.1 Scalar kinematic factors in terms of SYM trees

We shall here generalize the four-point relation (2.44) between scalar BRST invariants C1|A,B,C

and color-ordered tree-level amplitudes Atree
SYM(1, . . . , n) of ten-dimensional super-Yang-Mills

to five and six points. By the all-multiplicity dictionary between C1|A,B,C and Atree
SYM(1, . . . , n)

in appendix B.2 of [107], we have

C1|23,4,5 = s45
[
s34Atree

SYM(1, 2, 3, 4, 5) − s24Atree
SYM(1, 3, 2, 4, 5)

]
(B.1)
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as well as

C1|234,5,6 = s45s56Atree
SYM(1, 2, 3, 4, 5, 6) + s25s56Atree

SYM(1, 4, 3, 2, 5, 6) (B.2)
− s35s56

[
Atree

SYM(1, 2, 4, 3, 5, 6) + Atree
SYM(1, 4, 2, 3, 5, 6)

]
C1|23,45,6 = s36s46Atree

SYM(1, 2, 3, 6, 4, 5) − s36s56Atree
SYM(1, 2, 3, 6, 5, 4)

− s26s46Atree
SYM(1, 3, 2, 6, 4, 5) + s26s56Atree

SYM(1, 3, 2, 6, 5, 4)

The bosonic and fermionic components of the super-Yang-Mills tree amplitudes in (B.1)
and (B.2) can be downloaded from [111], also see [168] for a description in terms of Berends-
Giele currents with a superspace origin in [169]. The gluon-polarization vectors and gaugino
wavefunctions in the component expressions can be straightforwardly dimensionally reduced
and yield kinematic factors of maximally supersymmetric Yang-Mills theories in D < 10
dimensions.

B.2 Bosonic components of six-point kinematic factors

Generic contributions to chiral correlators Kn cannot be expressed in terms of super-Yang-Mills
tree amplitudes. This is obvious for kinematic factors Cm and Cmn with free vector indices,
but also the scalar quantity P1|2|3,4,5,6 in the last line of (2.43) features tensor structures
including parity-odd terms that do not arise in Atree

SYM.
Accordingly, we cannot describe the components of all the kinematic factors in Kn≤6 in

terms of Atree
SYM. Instead, we shall here review the Berends-Giele construction of the bosonic

components for all kinematic factors beyond the reach of C1|A,B,C .
In a first step, we combine the polarization vectors em

i of the ith external gluon (subject
to transversality ki · ei = 0) to Berends-Giele currents [170] of rank two

em
12 = 1

s12

[
2em

2 (k2 · e1) − 2em
1 (k1 · e2) + (km

1 − km
2 )(e1 · e2)

]
(B.3)

fmn
12 = km

12e
n
12 − kn

12e
m
12 − em

1 en
2 + en

1 em
2

and rank three

em
123 = 1

s123

[
em
3 (k3 · e12) + ep

3f
mp
12 − em

12(k3 · e3) − ep
12f

mp
3 (B.4)

+ em
23(k3 · e1) + ep

23f
mp
1 − em

1 (k3 · e23) − ep
1f

mp
23
]

fmn
123 = km

123e
n
123 − kn

123e
m
123 − em

12e
n
3 + en

12e
m
3 − em

1 en
23 + en

1 e
m
23

We have introduced the notation em
i = em

i and fmn
i = km

i en
i − kn

i em
i for the sake of a unified

representation.
In a second step, the above Berends-Giele currents are contracted with the famous

t8-tensor and its generalizations with free vector indices and parity-odd terms [41]

tA,B,C,D = tr(fAfBfCfD) − 1
4tr(fAfB)tr(fCfD) + cyc(B, C, D) (B.5)

tm
A|B,C,D,E =

[
em
A tB,C,D,E + (A ↔ B, C, D, E)

]
+ i

16εm
10(eA, fB, fC , fD, fE)

tmn
A|B,C,D,E,F =

[
e
(m
A e

n)
B tC,D,E,F + (A, B|A, B, C, D, E, F )

]
+ i

16
[
e
(m
B ε

n)
10(eA, fC , fD, fE , fF ) + (B ↔ C, D, E, F )

]
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where the traces in the first line refer to Lorentz indices, e.g. tr(fAfBfCfD) = fmn
A fnp

B fpq
C fqm

D ,
and εm

10(eA, fB, . . .) = εmnpq...
10 en

Af
pq
B . . .. We reiterate that the symmetrization conventions in

e
(m
A e

n)
B = em

A en
B + en

Ae
m
B and elsewhere do not include a factor of 1

2 .
In a third step, the bosonic components of the kinematic factors in chiral correlators are

assembled from combinations of the t-tensors in (B.5) of different rank [41, 108],

Cm
1|2,3,4,5 = tm

1|2,3,4,5 +
[
km

2 t12,3,4,5 + (2 ↔ 3, 4, 5)
]

(B.6)

Cm
1|23,4,5,6 = tm

1|23,4,5,6 + tm
12|3,4,5,6 − tm

13|2,4,5,6 + km
3 t123,4,5,6 − km

2 t132,4,5,6

+
[
km

4 (t14,23,5,6 − t214,3,5,6 + t314,2,5,6) + (4 ↔ 5, 6)
]

Cmn
1|2,3,4,5,6 = tmn

1|2,3,4,5,6 +
[
k

(m
2 t

n)
12|3,4,5,6 + (2 ↔ 3, 4, 5, 6)

]
−
[
k

(m
2 k

n)
3 t213,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
P1|2|3,4,5,6 = (e1 · e2)t3,4,5,6 −

i

16ε10(e1, e2, f3, f4, f5, f6) + 1
2
[
(e2 · e3)t1,4,5,6 + (3 ↔ 4, 5, 6)

]
+ km

2 tm
12|3,4,5,6 +

[
(k2 · k3)t123,4,5,6 + (3 ↔ 4, 5, 6)

]
The local terms in the first line of P1|2|3,4,5,6 are inferred from the components of the
closely related kinematic factor P1|2|3,4 relevant to half-maximally supersymmetric one-
loop amplitudes [11]. The bosonic components of Cm

1|2,3,4,5, Cm
1|23,4,5,6 and all the C1|A,B,C

enjoy linearized gauge invariance under em
i → km

i for all of i = 1, 2, . . . , n. The six-point
kinematic factors Cmn

1|2,3,4,5,6 and P1|2|3,4,5,6 are only gauge invariant in legs 2, 3, . . . , 6 but
exhibit anomalous variations

Cmn
1|2,3,4,5,6

∣∣
em

1 →km
1

= i

16ηmnε10(f2, f3, f4, f5, f6) (B.7)

P1|2|3,4,5,6
∣∣
em

1 →km
1

= i

16ε10(f2, f3, f4, f5, f6)

in the first leg. These gauge variations descend from the notion of BRST pseudo-invariance
in pure-spinor superspace [108] and give rise to the hexagon gauge anomaly of the six-
point one-loop amplitude of ten-dimensional super-Yang-Mills [126, 127], see in particular
section 4.5 of [9].

C Field-theory limits of closed-string six-point homology invariants

In this appendix, we display additional examples of the closed-string field-theory limits (2.20)
at n = 6 points. However, we do not attempt to cover all the permutation-inequivalent
instances of FTcl

6 [EP EQ] in this appendix that are missing in sections 3.3.2 and 3.5.2. The
reader is referred to the supplementary material of this work for a comprehensive list of
FTcl

6 [EP EQ] relevant to K6 in (2.43).

C.1 Cases without factors of E1|2|3,4,5,6

Section 3.3.2 gathers field-theory limits of six-point closed-string homology invariants without
the double poles of E1|2|3,4,5,6. We shall here give additional permutation-inequivalent
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samples, namely two scalars

FTcl
6
[
E1|23,45,6Ē1|23,46,5

]
= 1

16
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)sgnρ

46sgnρ
45 (C.1)

+
[( 1

4s12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)+(2↔3,4)

)
sgnρ

46sgnρ
45

]

+ 1
4s23

∑
ρ∈S{23,4,5,6}

I
(5)
1,ρ(23,4,5,6)sgnρ

46sgnρ
45+ 1

s14s23

∑
ρ∈S{23,5,6}

I
(4)
14,ρ(23,5,6)

+
[ 1

s124

( 1
s12

+ 1
s14

) ∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6)+(2↔3)

]

FTcl
6
[
E1|234,5,6Ē1|256,3,4

]
= 1

144
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)(1+3sgnρ

23sgnρ
34)(1+3sgnρ

25sgnρ
56)

+ 1
4s12

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)sgnρ

34sgnρ
56

as well as one vector and two-tensor each:

FTcl
6
[
E1|23,45,6Ēp

1|26,3,4,5
]

= −1
8
(
ℓp + 1

2kp
23456

) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45 sgnρ

26 (C.2)

+ 1
48(kp

6−kp
2)

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

23 sgnρ
45

+ 1
2s12

(
ℓp + 1

2kp
3456

) ∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)

− 1
4s13

kp
3

∑
ρ∈S{2,4,5,6}

I
(5)
13,ρ(2,4,5,6) sgnρ

45 sgnρ
26

+
[ 1

4s14
kp

4
∑

ρ∈S{2,3,5,6}

I
(5)
14,ρ(2,3,5,6) sgnρ

23 sgnρ
26 −(4 ↔ 5)

]

+
[ 1

s124

( 1
s12

+ 1
s14

)
kp

4
∑

ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6) − (4 ↔ 5)

]

FTcl
6
[
E1|234,5,6Ēpq

1|2,3,4,5,6
]

= 1
12

(
ℓpℓq+1

2k
(p
23456ℓ

q)+1
6

6∑
j=2

kp
j kq

j +1
4
[
k

(p
2 k

q)
3 +(2, 3|2, 3, 4, 5, 6)

])
×

∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)(1+3 sgnρ

23 sgnρ
34)

+
[ 1

2s12
k

(p
2
(
ℓ

q)+1
2k

q)
3456

) ∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) sgnρ

23 sgnρ
34 +(2 ↔ 4)

]

+
[ 1

s12s123
k

(p
2 k

q)
3

∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6) + (2 ↔ 4)

]

−
[ 1

s124

( 1
s12

+ 1
s14

)
k

(p
2 k

q)
4

∑
ρ∈S{3,5,6}

I
(4)
124,ρ(3,5,6)

]
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C.2 Cases with factors of E1|2|3,4,5,6

This section extends the examples in section 3.5.2 by additional instances of FTcl
6 [E1|2|3,4,5,6EQ]

FTcl
6
[
E1|2|3,4,5,6Ē1|34,56,2

]
= s12

96
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6) sgnρ

34 sgnρ
56 (C.3)

+ 1
8

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6) sgnρ

34 sgnρ
56

FTcl
6
[
E1|2|3,4,5,6Ē1|345,2,6

]
= s12

288
∑

ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)(1 + 3 sgnρ

34 sgnρ
45)

+ 1
24

∑
ρ∈S{3,4,5,6}

I
(5)
12,ρ(3,4,5,6)(1 + 3 sgnρ

34 sgnρ
45)

FTcl
6
[
E1|2|3,4,5,6Ēpq

1|2,3,4,5,6
]

= s12
24

(
ℓpℓq + 1

2k
(p
23456ℓ

q) + 1
6

6∑
j=2

kp
j kq

j

+ 1
4
[
k

(p
2 k

q)
3 +(2, 3|2, 3, 4, 5, 6)

]) ∑
ρ∈S{2,3,4,5,6}

I
(6)
1,ρ(2,3,4,5,6)

+
(1

2ℓpℓq + 1
4k

(p
3456ℓ

q) + 1
12

6∑
j=2

kp
j kq

j

+ 1
8
[
k

(p
3 k

q)
4 + (3, 4|3, 4, 5, 6)

]) ∑
ρ∈S{2,4,5,6}

I
(5)
12,ρ(3,4,5,6)

+ 1
4s12

∑
ρ∈S{3,4,5,6}

(
k

(p
2
(
ℓ

q) + 1
2k

q)
3456

)
(ℓ − k1)2I

(5)
12,ρ(3,4,5,6)

− k
(p
2
(
ℓ

q) + 1
2k

q)
3456 + k

q)
2
)
ℓ2I

(5)
21,ρ(3,4,5,6)

)
−
[( 1

4s12
− s23

2s12s123

)
k

(p
2 k

q)
3

∑
ρ∈S{4,5,6}

I
(4)
123,ρ(4,5,6) + (3 ↔ 4, 5, 6)

]
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