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Parallel structured adaptive mesh refinement methods decrease the execution time and memory
usage of partial differential equation solvers by adaptively assigning computational resources to
regions with large solution errors. These methods result in a dynamic grid hierarchy. To get good
parallel performance, the grid hierarchy is frequently re-partitioned and distributed over the
processors. Optimally, the partitioner should minimize all performance-inhibiting factors like
load imbalance, communication volumes, synchronization delays, and data migration. No single
partitioner performs well for all hierarchies and parallel computers. Because the partitioning
conditions change during run-time, dynamically selecting a partitioner is non-trivial.

In this thesis, we present the Meta-Partitioner: a partitioning framework that autonomously
selects, configures, invokes, and evaluates partitioning algorithms during run-time. For the
implementation, we use component-based software-engineering. We predict the performance
of the candidate partitioning algorithms with historical performance data for grid hierarchies
similar to the current hierarchy. We focus the partitioning effort on the most performance-
inhibiting factors — the load imbalance and the synchronization delays. At re-partitioning, a
user-specified number of partitioning algorithms is selected and invoked. The performance of
each partitioning is evaluated during run-time and the best one is selected.

The performance of the selected partitioning algorithms was compared both to the average
performance of 768 algorithms and the global minimum at each re-partitioning. The results
showed huge improvements both for the load imbalance and the synchronization delays.
Compared to the average partitioning, the load imbalance was decreased by 28.2%. The
synchronization delays were decreased by 21.5%. Compared to the global optimum, the load
imbalance was increased by only 11.5%. For the synchronization delays, the increase was
13.6%. Often, the Meta-Partitioner selected the best algorithm among all candidate algorithms.
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1. Introduction

Human beings have always pursued increased knowledge of the world sur-
rounding them — from the tiny nanoscale to the vast expanses of deep space.
Scientific experiments have been the most common source of new knowledge.
Unfortunately, many experiments are impossible to perform because the size,
time, or cost might be intractable. During the last decades, computer simula-
tions have become a viable and cost-effective alternative to real-world scien-
tific experiments.

As an alternative to real-world scientific experiments, we use partial dif-
ferential equations (PDEs) to mathematically model the phenomena we are
interested in. The solutions to the PDEs can provide the same information as
the real-world experiments. Because only a few simple PDEs can be solved
analytically, we approximate their solutions with computers. In other words,
we have transformed our original experiment to a computer simulation.

To solve the PDEs with a computer, we transform the domain of the orig-
inal problem to a discrete grid. We apply a numerical solver to the grid and
compute an approximation to the solution at each grid point. In this thesis, we
use structured grids.

In many simulations, features that require high resolution occupy only a
small region of the grid. To increase the efficiency, we adaptively assign com-
putational resources to those regions. We start the simulation with a coarse
base grid. During the execution, we identify regions with large solution er-
rors. To increase the accuracy, new grids with higher spatial and temporal res-
olution are overlaid in these regions. This method, called structured adaptive
mesh refinement (SAMR), results in a dynamic and adaptive grid hierarchy
where grids are created, moved, and deleted during run-time [8].

To decrease the execution time, we often execute the simulations on parallel
computers. The workload is distributed over the processors and each proces-
sor computes a part of the solution. Because the grid hierarchy is dynamic,
we need to repeatedly re-partition and re-distribute it to maintain good perfor-
mance. At each re-partitioning, we should partition the grid hierarchy in a way
that minimizes the performance-inhibiting factors like load imbalance, syn-
chronization delays, communication volumes, and data migration. No single
partitioning algorithm performs well for all grid hierarchies and all parallel
computers [62]. Hence, to consistently construct high-quality partitionings,
we need to select and invoke the partitioning algorithms adaptively during



run-time. This is non-trivial because the conditions for how to partition the
hierarchy can change dramatically between re-partitionings.

In this thesis, we present the motivation for the Meta-Partitioner, as well
as its design and implementation. The Meta-Partitioner is a partitioning
framework for structured adaptive grid hierarchies. At each re-partitioning,
the Meta-Partitioner autonomously selects, invokes, and evaluates multiple
partitioning algorithms. The Meta-Partitioner uses historical performance
data to estimate the impact of the most performance-inhibiting factors for all
candidate partitioning algorithms. The algorithms predicted to result in the
best performance are selected and invoked. The resulting partitionings are
evaluated during run-time and the partitioning with the best performance is
transfered to the SAMR framework.
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2. Structured Adaptive Mesh
Refinement

The solution accuracy for PDE solvers based on finite differences and struc-
tured grids can be controlled with the grid resolution. Increased grid resolution
generally results in higher accuracy but also in longer execution times. Often,
features that require high resolution, like shocks and discontinuities, only oc-
cupy a small part of the grid; a uniform high grid resolution is then a waste
of computational resources. By adaptively increasing the grid resolution in ar-
eas with large solution errors, the execution time and memory usage can be
substantially decreased [8,9].

Structured adaptive mesh refinement (SAMR) starts with a coarse and uni-
form base grid. At regular intervals, the local solution error is estimated and
the grid is recursively refined in areas with large errors. This procedure re-
sults in a dynamic and adaptive grid hierarchy and a solution that conforms to
the desired accuracy. SAMR is widely used in fields like computational fluid
dynamics [8, 22, 36], numerical relativity [54, 60], astrophysics [13, 29, 43],
and hydrodynamics [41]. Frameworks for SAMR include Paramesh [40, 48],
SAMRAI [71], GrACE [50], AMROC [3,21], Chombo [19,20], Enzo [25,44],
and Overture [30].

In the rest of this chapter, we describe SAMR in greater detail. We start
with a general description of the grids, we then turn to the integration algo-
rithm and error estimation, before we finish by describing the grid generation.
The description generally follows the outline of the common Berger-Colella
algorithm [8].

2.1 Grid Description

The basis for SAMR is a uniform and structured grid that covers the entire
computational domain. The resolution of this base grid conforms to the lowest
acceptable solution accuracy. Every subsequently refined grid must be struc-
tured and uniform. All refined grids are separate entities and are not incor-
porated into the base grid. A grid point can be located inside the domain of
several grids, but the grids must reside on separate refinement levels. A refined
grid can overlap several coarser grids as long as the refined grid is covered by
the union of these coarser grids.

11



In the early Berger-Oliger SAMR approach, the refined grids could be ro-
tated with respect to the underlying grids [9]. Rotated grids have an advantage
when steep gradients or discontinuities are present in the solution. The grids
can be aligned with the direction of the phenomena, generally reducing the
size of the refined grids. The more common Berger-Colella approach only
uses non-rotated grids because of the higher complexity of rotated grids, es-
pecially when conservation laws are needed [8].

In the SAMR framework Overture, overlapping grids are used [30]. A grid
hierarchy with overlapping grids consists of base grids and refinement grids.
The grids still need to be structured but they can also be curvilinear. Grids on
the same refinement level are allowed to use different refinement factors. In
contrast to the Berger-Colella approach, adjacent grids on the same refinement
level must always overlap for the computations of the boundary data. Note
that an overlapping grid hierarchy can contain several base grids, each having
a different resolution. Overlapping grids are useful for problems with complex
geometries and problems with moving or deforming boundaries.

2.2 Integration and Error Estimation

The solution on each grid can be computed individually after determining
boundary conditions and initial data. The refined grids will commonly be lo-
cated in the interior of the computational domain. Because interior grids can
not use the boundary conditions supplied with the PDEs, it is necessary to
obtain the boundary data from either adjacent grids or grids on the next lower
level. The initial data are generally supplied by grids on the next lower level.
Hence, all computations on the current refinement level generally must have
finished before the execution can proceed to the next level [63].

To increase the solution accuracy on coarser refinement levels, the solu-
tion on higher levels is projected down to the lower levels. The update pre-
vents the coarser level solution from becoming dispersed or dissipated. Fur-
thermore, the update stops large solution errors from spreading and contami-
nating boundary conditions and initial data for refined grids. If the simulation
involves flows, a correction step is performed to make sure that the flow over
each grid boundary is identical for both grids.

The integration for a single time step is listed in Algorithm 1. The order
of integration is illustrated with the following example. Assume two levels of
refinement and that the solution is going to be advanced from time ¢ to time
t+k. The refinement factor in each dimension is two. The integration starts
with a step of size k on the base grid (level 0). Boundary data for the refined
grids on level 1 are provided by the base grid. The grids on refinement level 1
are integrated once, with a time step of size &/2. The level-1 solution is used
as initial data for grids on level 2 and two time steps, with step size k/4, are
performed on level 2. Thus, the integration has reached time 7+k on the base
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grid and time 7+k/2 on refinement level 1 and 2. The solution on level 2 is
projected down to level 1, which is advanced to time #+k. Using boundary
data from level 1, level 2 is advanced to time 7+k using two steps of size k/4.
The solution on level 2 is projected down to level 1, and the updated level-1
solution is projected down to the base grid.

Algorithm 1 Advance(l,k)

take one step of size k on level /
if / = L then
return
else
interpolate from level / to /41
fori=1to2do
advance(/ + 1,k/2)
end for
project solution from level [ + 1 to /
end if

The solution error is estimated at regular intervals. Generally, the local trun-
cation error and Richardson extrapolation are used for the estimation [9]. First,
a large step of size 24 is performed. The solution from this step is compared
to the solution from two regular integration steps of size 4. Using Richardson
extrapolation, the exact form of the truncation error can be unknown. When
the solution is not smooth, an error estimated with Richardson extrapolation
will be incorrect. However, it is still a useful estimation because the truncation
error will probably be large near singularities [9].

An alternative to estimate the solution error is to use features in the solution.
In magnetohydrodynamics, the decision on where to refine or coarsen the grid
hierarchy has been based on local flows that exceed a threshold [53]. Another
approach is to capture and track shocks in the solution and place refined grids
over them [46].

2.3 Grid Generation

The process of constructing refined grids in areas with large solution errors is
called grid generation. All grid points that have an error larger than a threshold
are flagged for refinement. The refined grids must cover all flagged grid points
while the grid size is restricted to minimize unnecessary computations. Also,
the grid-generating algorithm must be fast because it will be invoked numer-
ous times during a simulation. The amount of refinement — the refinement
factor — is usually constant, but a number of SAMR frameworks support dif-
ferent refinement factors for different refinement levels.
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A measure of the quality of a refined grid is its efficiency — the ratio of
flagged grid points to un-flagged points. Low efficiency results in unneces-
sary computations, while a too high efficiency often results in a large number
of small grids and high communication costs. A too high efficiency can also
result in frequent regriddings, as phenomena quickly can move outside the
domain of a refined grid. The optimal efficiency of a grid is application de-
pendent.

The most widely used grid generation algorithm is the Berger-Rigoutsos
algorithm (BR) [10]. The algorithm is based on signatures, a concept used in
edge-detection. The signature for a d-dimensional box is computed by pro-
jecting each flagged grid point (or cell) to the d-axis and summarizing the
number of flagged cells at each point on the axes. The properties of the sec-
ond derivative (i.e. zero-crossings) for the signature decide when and where
the grid is divided.

Several improvements have been made to the BR algorithm. To decrease
fragmentation, grids are only divided if the combined efficiency of the two
created grids are improved by a given amount [71]. To minimize the number
of flagged grid points in the cutting plane, Rantakokko uses a slightly mod-
ified criterion to select the next grid to be divided and where to place the
cut [57]. A parallel version of the BR algorithm, that also employs the im-
provements suggested by Rantakokko, has been developed for the SAMRALI
framework [28].
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Figure 2.1: The creation of a grid hierarchy. The grids are skewed to illustrate the
solution error. In step one and three, the grids are flagged for refinement. The purple
boxes in step two and four shows the boundaries for the resulting refined grids. The
blue flags represent grid points with small solution errors included in the refined grids
to increase their efficiency. The final grid hierarchy is shown in step five.
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3. Partitioning of SAMR Grid
Hierarchies

The parallel efficiency of a SAMR application depends on the partitioning and
distribution of the adaptive dynamic grid hierarchy. Optimally, the partition-
ing algorithm should construct a partitioning that minimizes the impact of all
performance-inhibiting factors like load imbalance, communication, synchro-
nization delays, and data migration. There exist several general approaches for
the partitioning of SAMR grid hierarchies. The different approaches generally
result in partitionings with vastly different properties and performance.

In this chapter, we first define the performance-inhibiting factors that we
use to describe the quality of a partitioning. Next, we discuss the three most
common partitioning approaches.

3.1 Performance-Inhibiting Factors

The parallel efficiency of a SAMR application is to a large extent
determined by several performance-inhibiting factors. During execution,
the impact of these performance-inhibiting factors are dependent on the
partitioning algorithm, the grid hierarchy, and the current characteristics
of the parallel computer. To analyze the performance, we must define
these performance-inhibiting factors. When we evaluate the quality of a
partitioning, we present the results for the processor that has the worst
performance for the relevant performance-inhibiting factor.

Load Imbalance

The most common performance-inhibiting factor is the arithmetical load im-
balance. If a processor is assigned a workload larger than the optimal work-
load, the execution time will increase. We define the arithmetical load imbal-
ance as:

Max {processor workload }

Load imbalance (%) = 100 % 100.

Average workload

Note that we use the workload for the most overloaded processor. It is the
last processor that finishes its computations that determines when the solu-
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tion can be advanced to the next time step. When we present the results, we
generally compute the average load imbalance for all re-partitionings.

Communication

During execution, solution data are exchanged between processors along both
the borders of grids and between adjacent refinement levels (see Chapter 2.2).
Communications on the same refinement level generally consists of boundary
data. When data are exchanged between refinement levels, the data can consist
of a combination of boundary data, initial data, and data needed to update the
coarser level solution.

We use the number of transfered grid points (both sent and received) for
each processor to measure the communication. We divide the communication
into two categories — intra-level communication and inter-level communi-
cation. When both types of communication are present, the inter-level com-
munication volume is usually larger than the intra-level communication vol-
ume. For intra-level communication, only solution data close to the borders of
a grid are exchanged while inter-level communication frequently consists of
complete grids.

The communication volumes are either presented as an average or on a
per time step basis. For the average, the cuamulative communication is always
determined from the processor having the largest amount of communication
after each re-partitioning. Note that the data for the inter-level and intra-level
communication can originate from different processors.

Adjacent grids generally have to exchange data, even when they are as-
signed to the same processor. After each re-partitioning, the SAMR frame-
work needs to determine both the internal data exchanges between grids as-
signed to the same processor and the external communications between grids
assigned to different processors. Depending on the SAMR framework, the
set-up time for all these data exchanges can equal the time for the actual
exchanges. Unfortunately, it is impossible to measure the set-up time using
off-line evaluation tools. However, reducing the number of communications
probably results in a reduced set-up time.

Synchronization Delays

When two processors need to communicate data, one of them is often busy
computing forcing the other processor to stall. This is called a synchroniza-
tion delay. These synchronization delays can be of the same magnitude as the
computational time (for example, see Table 3.1).

Synchronization delays are related to both the communication and the load
imbalance. Because the number of communications affect the number of pos-
sible synchronization delays, each communication can result in a delay. The
severity of a delay is related to the level-wise load imbalance. Large imbal-
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Application Computational  Synchronization Total

time (s) time (s) time (s)
Ramp 1381.2 808.6 3035.1
ShockTurb  2618.4 562.1 4270
ConvShock 1810.7 2262.4 17102
Spheres 1843.5 1141.2 7405

Table 3.1: Comparison between the computational time, synchronization time, and
total execution time for four example applications from the SAMR framework AM-
ROC [3] and a domain-based partitioning algorithm. Except for the computational
time and the synchronization time, the major components of the total time are determi-
nation of neighborhood relations and communication patterns. The data origin from
sixteen processor executions on the ALC parallel computer at Lawrence Livermore
National Laboratory [2]. All data courtesy of Ralf Deiterding, Oak Ridge National
Laboratory.

ances in the individual refinement levels increase the probability of longer
delays. Note that a large load imbalance on an individual refinement levels
does not necessary imply a large load imbalance for the full grid hierarchy.

We approximate the impact of the synchronization delays with a synchro-
nization penalty [63]. The penalty is computed as follows. The processors
check their neighbors on each refinement level for the need to wait for any of
them. If a processor needs to wait, the penalty is approximated by the number
grid points that have to be updated by other processors before the stalled pro-
cessor can resume its computations. The severity of the penalty is affected by
how much work the stalled processor has left on higher refinement levels —
stalling a processor with a great amount of work left is more serious than hold-
ing up a processor with little remaining work. Hence, the penalty is multiplied
by the processor’s remaining workload.

Data Migration

Data migration results when an existing grid is re-assigned to a new processor
at re-partitioning. All data associated with the re-assigned grid must be sent
to its new owners. Because the data migration generally involves the transfer
of complete grids, the amount of migration can be comparable to the total
communication volume (i.e. inter-level and intra-level communication).

To decrease the data migration, the partitioner needs to consider the
old partitioning when the new partitioning is constructed. However, other
performance-inhibiting factors can suffer if a low data migration is pursued
too actively. For example, if the old partitioning is kept as intact as possible,
the load imbalance is increased when the newly created grids are either too
few or too small to be evenly distributed. Furthermore, the communication
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can also be increased if the new grids are assigned to processors that does not
contain any of their neighbors.

Partitioning Time

The last performance-inhibiting factor is the partitioning time — the time
needed to construct the partitioning. This performance-inhibiting factor is a
trade-off between the time invested in computing the partitioning and the qual-
ity of the resulting partitioning. A high-quality partitioning might justify a
longer partitioning time.

To decrease the partitioning time, the partitioning can be performed in
parallel. Unfortunately, parallel partitioners are still uncommon. Another ap-
proach to decrease the partitioning time is to perform the partitioning in a
hierarchical fashion. A single processor partitions the grid into a small num-
ber of partitionings. Each partitioning is assigned to a group of processors.
In each processor group, a single processor partitions the part of the grid as-
signed to the group. The last step is embarrassingly parallel. The communica-
tion patterns between the groups are determined after a partitioning has been
computed for each processor group.

3.2 Partitioning Approaches

In this section, we present three common partitioning approaches; domain-
based partitioning, patch-based partitioning, and hybrid partitioning.

3.2.1 Domain-Based Partitioning

A domain-based partitioner partitions the computational domain, rather than
the individual grids [7, 12, 56, 58]. The domain is partitioned along with all
overlaid grids from all refinement levels. Thus, overlaid grids that cover the
same part of the coarse base grid are always assigned to the same processor.
Generally, the workload of the overlaid grids are projected down to the coarse
base grid. For the partitioning, the grid hierarchy is thus conceptually reduced
to a large single grid with heterogeneous workload.

The main advantage of domain-based partitioning is the elimination of
inter-level communication. Because all overlaid grids are assigned to the
same processor, no communication between different refinement levels is
necessary. Another consequence is that the parallelism between different
levels of refinement can potentially be exploited more efficiently.

For deep or complex grid hierarchies, domain-based partitioning can result
in an intractable load imbalance. The resolution of the base grid and the size
of the computational stencil impose restrictions on where the base grid can
be subdivided. Often, the best place for a subdivision is located between grid
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Pl P2 P3 P4

Figure 3.1: A simple domain-based partitioning of a grid hierarchy with two refine-
ment levels and a refinement factor of two. The hierarchy is partitioned for four pro-
cessors. The optimal workload is six units but P is assigned seven units and Py is
assigned five units. Also, P4 is not assigned any work from the highest refinement
level. Note that no communications between the refinement levels are necessary be-
cause all overlaid regions of the grid are assigned to the same processor.

points on the coarse base grid, forcing a sub-optimal cut. A related problem
is "bad cuts" that result in many small blocks with bad aspect ratios. These
blocks are created when grids are subdivided in bad locations, assigning only
a fraction of a grid to one processor while the majority of the grid resides on
another processor.

The domain-based partitioning approach does not generally consider the
workload distribution among the refinement levels. Hence, the work assigned
to one processor might only contain grids located on lower refinement levels
while another processor can be assigned work mostly located on higher re-
finement levels. Thus, load imbalances can be further amplified by even larger
imbalances on the individual refinement levels.

The most common domain-based algorithm is probably recursive coordi-
nate bisection, originally proposed by Berger and Bokhari [7]. Using recti-
linear cuts, the algorithm recursively divides the domain into two parts with
approximately equal workloads. The direction of the divisions is alternated
between the dimensions of the domain, i.e. between horizontal and vertical
cuts for a two-dimensional domain. For SAMR applications, the placement
of the cuts are restricted by the resolution of the coarse base grid. The algo-
rithm proceeds until the number of parts equals the number of processors. The
bisections make the algorithm computationally efficient and result in simple
data structures that are easily mapped to a binary tree. A drawback is that the
algorithm frequently creates very long and thin grids that potentially result in
large amounts of intra-level communication. To create partitionings with bet-
ter aspect ratios, a later version of the algorithm introduced a parametrization
for the trade-off between load balance and communication [12].

Rantakokko combines partitioning techniques from structured and unstruc-
tured grids [56, 58]. The domain is initially subdivided into a large number of
grids using a domain-based algorithm. For this subdivision, a number of algo-
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rithms can be used, including the previously described Berger-Bokhari algo-
rithm [7]. Next, an unstructured graph is constructed. In the graph, the vertices
correspond to grids and the edges indicate communication. The unstructured
graph is partitioned with a general graph partitioning technique, like recursive
spectral bisection [6, 52]. Finally, neighboring grids on the same processor
are merged to reduce the overhead. The approach described by Rantakokko
generally results in high-quality partitionings but also potentially long parti-
tioning times due to the computationally intensive graph based partitioning
techniques.

The domain-based partitioning algorithm in the SAMR framework GrACE
follows elegantly from a linear representation of the grid hierarchy [49, 51].
Each grid is stored in a distributed and dynamic list called a Scalable dis-
tributed dynamic grid (SDDG). The computational cost for the grid is stored
in the SDDG. The SDDGs are dynamically collected to form a Distributed
adaptive grid hierarchy (DAGH) that represents the entire adaptive grid hi-
erarchy. The linear representation is achieved by using inverse space-filling
curves (SFC) to order the SDDGs. An inverse SFC is a recursive mapping
from d-dimensional space to 1-dimensional space i.e., NY — N!, such that
each point in N is mapped to a unique point in N'! [4]. Furthermore, points
close together in N¢ will be mapped to points close to each other in N'.

Initially, the DAGH consists of a single SDDG that represents the coarse
base grid. When a grid is refined, the created SDDG is recursively incorpo-
rated within the DAGH to replace the SDDG sub-list that corresponds to the
refined region. To partition the grid hierarchy, the linear DAGH representation
is divided to balance the computational workload between the processor. Due
to the recursive nature of the DAGH, overlaid grid grids are always assigned
to the same processor. Furthermore, the locality preserving properties of the
SFC reduce the amount of intra-level communication because neighboring
grids are typically assigned to the same processor.

3.2.2 Patch-Based Partitioning

For patch-based partitioners, the distribution decision is made independently
for each grid or refinement level [5,20,35,37,58,71]. A grid may be kept on
the local processor or moved entirely to another processor. If a grid is large, it
can be split into smaller grids.

The main advantage of the patch-based approach is a good load balance
because grids can be subdivided and distributed with few restrictions. Also,
depending on the implementation, re-partitioning at re-griding can be avoided
because created grids can be appended to the partitioning while delete grids
can be removed.

The main shortcoming of the patch-based approach is poor data locality
because neighboring grids are often distributed over different processors. Bad
locality results in large communication volumes and potentially long synchro-
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Figure 3.2: A simple patch-based partitioning of a grid hierarchy with two refinement
levels and a refinement factor of two. The hierarchy is partitioned for four proces-
sors. The workload is perfectly balanced but overlaid parts of the grid are assigned to
different processors. For example, P4 has to communicate the solution on the highest
refinement to P;. After updating the solution on the first refinement level, P; transfers
the solution to P».

nization delays. Also, patch-based partitioners can suffer from an inability to
exploit available parallelism across different levels of refinement.

Bin-packing algorithms are often used in patch-based partitioners to dis-
tribute the grids. An example is the iterative bin-packing approach used by
Balsara and Norton [5]. First, grids much larger than the average grid size
are subdivided. Next, the grids are binned to the processors. The bins are then
paired against each other and grids are exchanged between the bins if the the
exchange reduces the load imbalance. Instead of pairing the bins in sequence,
an offset between the bins is used. The offset reduces the partitioning time
because it quickly brings all bins in contact with each other. Usually, only
a few iterations are necessary. The drawback of this approach is that it dis-
regards the communication costs. By only focusing on the load imbalance,
the locality both on the same refinement level and across different refinement
level can be poor and result in high communication costs. The partitioner were
originally implemented for a shared memory computer, which decreases the
impact of large communication volumes.

The SAMR framework Chombo recently changed its default load
balancing algorithm from recursive coordinate bisection (see Chapter 3.2.1)
to a patch-based algorithm that uses space-filling curves [19, 20]. The new
algorithm reduced the communication volumes and improved the scalability.
The algorithm has many similarities with our patch-based partitioner
described in Paper III. Both partitioners improve the locality by using
space-filling curves [59] to order the grids. The linearly ordered grids are
divided into intervals with equal workloads. We assume that the Chombo
algorithm only divides the grids actually causing a processor to overload, but
no details about this are given. With the new algorithm, the load imbalance is
kept small while only a small fraction of the grids have neighbors located on
other processors.

Lan, Taylor and Bryan [37] use a patch-based approach where grids from
all refinement levels are partitioned simultaneously. They use the previous
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partitioning as a starting point. If the load imbalance is greater than a thresh-
old, they first move complete grids between the processors. If no grids can be
moved without the recipient getting overloaded, they start a new phase. Now,
grids that will cause an overload are split to exactly match the underload on
the recipient. During the partitioning process, the grids are moved and divided
without respect to the refinement level. Thus, a processor can theoretically be
assigned grids that exclusively belong to a single refinement level. If the as-
signed workload is unevenly distributed between the refinement levels, some
processors will probably be idle at any given moment. Processors that have
most of their work on higher refinement levels will have to wait while re-
quired data from lower refinement levels are computed. When these data are
ready, other processors might have finished all of their assigned work. The
remedy is to partition only a single refinement level at a time, distributing it
over all processors.

3.2.3 Hybrid Partitioning

Hybrid partitioners combine elements from both the domain-based and the
patch-based approach. These partitioners aim to avoid the shortcomings in-
herent in the two other partitioning approaches — the high communication
costs for the patch-based partitioners and the intractable load imbalance for
the domain-based partitioners.

The most common hybrid approach is hierarchical partitioning where the
domain-based approach is usually employed to divide the coarse base grid into
a number of large sub-partitionings. Each sub-partitioning is then assigned to
a group of processors and a partitioning is computed for each processor group.

The load balancing scheme DistLLB uses a hybrid and hierarchical approach
to allow for heterogeneous computing environments in cosmology simula-
tions [38]. In the initial domain-based step, which is called the global balanc-
ing phase, the coarse base grid is partitioned and assigned to homogeneous
processor groups. For each homogeneous processor group, a local balancing
phase that uses the previously described patch-based approach developed by
Lan, Taylor, and Bryan is performed [37]. To minimize data migration, the
global balancing phase is only triggered if the computational gain is estimated
to be larger than the redistribution cost.

A different approach is used in the hybrid partitioning framework
Nature+Fable: The computational domain is divided into refined and
unrefined regions [62]. The unrefined regions are partitioned using a custom
SFC patch-based approach. In the refined regions, adjacent refinement levels
are clustered two-by-two into bi-levels. The same custom SFC patch-based
algorithm is applied to the highest refinement level in each bi-level. The
resulting partitioning is projected down to the lower refinement level in
a domain-based fashion. Because the arithmetic workload is generally
concentrated to the higher refinement level in a bi-levels, a good load balance
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can be achieved. Furthermore, the domain-based partitioning eliminates the
inter-level communication inside each bi-level while the load imbalance is
kept small by clustering no more than two levels together. The partitioning
process in Nature+Fable is controlled by 12 parameters and each parameter
setting can be regarded as a different partitioning algorithm.
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4. Dynamic Selection of Partitioning
Algorithms

During the execution of parallel SAMR applications, the dynamic grid hier-
archy is generally frequently re-partitioned and re-distributed over the pro-
cessors. Individual partitioning algorithms produce high-quality partitionings
for only certain types of grid hierarchies — no single partitioning algorithm
results in high-quality partitionings for all grid hierarchies [62]. Similar obser-
vations have been made for unstructured adaptive grids [26,61,64]. The parti-
tioning quality is also dependent on the characteristics and the current state of
the parallel computer. Thus, to get the best possible performance, we need to
dynamically select the partitioning algorithm with respect to the grid hierar-
chy as well as the parallel computer. This is non-trivial because the conditions
for how to partition the hierarchy can change dramatically during run-time.

The range of possible SAMR grid hierarchies is infinite. To consistently
achieve high parallel performance, we need access to a large number of com-
plementing partitioning algorithms that together results in high-quality parti-
tionings for a large range of grid hierarchies. Thus, we should preferably select
between algorithms from all three partitioning approaches described in Chap-
ter 3.2. The complementing characteristics of these approaches are shown in
Figure 4.1. A patch-based partitioner results in small load imbalances but also
in large communication volumes. A domain-based partitioner has an opposite
behavior with small communication volumes and large load imbalances. The
hybrid partitioner constructs partitionings with moderate load imbalances and
communication volumes.

To select a suitable partitioning algorithm, we need to accurately charac-
terize the current grid hierarchy and its partitioning needs. We also need to
determine the characteristics and the current state of the parallel computer.
By combining these properties, we can determine a partitioning focus that di-
rects the partitioning effort towards the most performance-inhibiting factors.
We use the partitioning focus to select the partitioning algorithm predicted
to result in the highest quality partitioning. Because we base the selection on
predicted performance, we might select a partitioning algorithm that results in
poor performance. Thus, we like to evaluate the resulting partitioning before
it is returned to the SAMR framework. If the performance is found to be poor,
an alternative partitioning can be returned instead.

Finally, we need to implement these functions in a framework — a Meta-
Partitioner. Given a grid hierarchy, the Meta-Partitioner should autonomously
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Figure 4.1: Load imbalance and communication for three example partitioners. For
the domain-based partitioner, we used the default partitioning algorithm in the SAMR
framework AMROC [3]. The patch-based partitioner is presented in Paper III [35].
The results for the hybrid partitioner originate from the partitioning framework Na-
ture+Fable and the performance characterization in Paper I [34]. Note the comple-
menting behavior of the three partitioners. The example application, Ramp (from the
Virtual Test Facility [68]) was partitioned for 16 processors.

select, invoke and evaluate partitioning algorithms using the guidelines de-
scribed above. The framework has to be easy to expand and modify with new
or improved partitioning algorithms and/or functionality. The implementation
should be open to facilitate the use of arbitrary SAMR frameworks and par-
titioning algorithms. Furthermore, the Meta-Partitioner must be easy to use,
even without prior knowledge about the SAMR application, the partitioning
algorithms, and the parallel computer.

4.1 The Meta-Partitioner

In this section, we describe the general design and workflow of the Meta-
Partitioner. The workflow is shown in Figure 4.2. Implementation details and
performance evaluations are found in Chapter 5 and in Paper V and VL.

To simplify expansions and modifications, the Meta-Partitioner is designed
using component-based software engineering (CBSE). The use of CBSE also
makes it easier to integrate SAMR frameworks and other external compo-
nents (e.g. performance monitoring tools and data base connections). For the
implementation, we employ the Common Component Architecture (CCA),
a community-based CBSE specification specifically targeted at high perfor-
mance computing [11]. Existing software, e.g. SAMR frameworks, partition-
ers, and performance measurement tools, can easily be transformed into CCA
components by the addition of a simple wrapper.
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Figure 4.2: The Meta-Partitioner workflow. The red hexagons represent tasks that are
performed outside the Meta-Partitioner. The green boxes represent tasks performed
by the Meta-Partitioner. The blue boxes contain input data while the yellow boxes are
comments. Currently, the partitioning focus is static and determined before the start
of the execution.

We base the selection of partitioning algorithms on the assumption that ge-
ometrically similar grid hierarchies have similar partitioning properties. An
algorithm that results in a high-quality partitioning for a given grid hierarchy,
probably also does so for geometrically similar grid hierarchies. As a conse-
quence of this assumption, we can use historic performance data to select the
partitioning algorithm. If the geometrical characteristics of the current hier-
archy are matched with previously encountered hierarchies, the performance
of a candidate partitioning algorithm can be predicted by its historical perfor-
mance data for similar hierarchies.

We have built a data base that stores comprehensive performance data
for 768 partitioning algorithms from the hybrid partitioning framework
Nature+Fable [34, 62]. Each algorithm partitioned almost 1300 different
grid hierarchies from four real-world SAMR applications. The data base
contains all data necessary to predict the performance of a partitioning
algorithm. When new partitioning algorithms become available, they must be
characterized and included in the data base before they can be selected by the
Meta-Partitioner.

Before the start of the execution, we select a static partitioning focus to
direct the partitioning effort to one of the two performance-inhibiting factors
that generally have the largest impact on the execution time — the load im-
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balance or the synchronization delays. Each partitioning focus, i.e FocusLB
and FocusSynch, is associated with a maximum allowed performance de-
viation for its main performance-inhibiting factor. However, it is important
to also consider the other performance-inhibiting factors when the algorithm
is selected. The algorithm that results in the best performance for a certain
performance-inhibiting factor will often perform poorly for all other factors.

At re-partitioning, the Meta-Partitioner receives the current grid hierarchy
from a SAMR framework. The grid hierarchy is translated into an internal
format. The Meta-Partitioner then computes a set of geometrical characteris-
tics for the grid hierarchy. The characteristics for the current grid hierarchy
are matched with the characteristics for all grid hierarchies stored in the per-
formance data base. The N most similar stored grid hierarchies are recorded,
where N is either selected by the user or a default value.

To select the partitioning algorithm, we use the data base to extract the
performance of all eligible partitioning algorithms for the N most similar
stored grid hierarchies. The extracted data is compared to the best recorded
performance for the N stored grid hierarchies. For each of the N hierarchies,
the algorithms that resulted in an equal or better performance than the max-
imum allowed performance deviation are selected as candidate algorithms
(note that the performance deviation is dependent on the partitioning focus).
Next, the candidate algorithms are ordered on the basis of their historic per-
formance for the secondary performance-inhibiting factor (i.e. synchroniza-
tion for FocusLB and load imbalance for FocusSynch). For each of the N
grid hierarchies, the candidate algorithm that resulted in the best performance
for the secondary performance inhibiting factor is selected. Using this strat-
egy, the partitioning effort is concentrated to the most performance-inhibiting
factor while the impact of the secondary factor is kept as low as possible.
Note that an allowed performance deviation of zero will result in the selec-
tion of the algorithm that has the best predicted performance for the most
performance-inhibiting factor, completely disregarding the impact of the sec-
ondary performance-inhibiting factor. The selection of the partitioning algo-
rithm is described in Algorithm 2.

Thus, we have selected the partitioning algorithms predicted to result in the
best performance for each of the N most similar stored grid hierarchies. To se-
lect the algorithm that results in the best performance, we partition the current
grid hierarchy with each of the N algorithms. The performance of the result-
ing partitionings are evaluated during run-time with a SAMR simulator [18].
The simulator mimics the execution of the common Berger-Colella SAMR al-
gorithm and computes the load imbalance and synchronization penalty using
the metrics described in Chapter 3.2. To select the best partitioning, we use
an extended version of Algorithm 2. We do not strictly choose the partitioning
that has the best performance for the primary performance-inhibiting factor —
instead we allow a slight increase in the most performance-inhibiting factor if

30



Algorithm 2 Selection of partitioning algorithm

FocusSynch (deviation)

1 SELECT partAlg AS candidates FROM mostSimilarAppState WHERE
synch < deviation*MIN,;;(synch)

2 SELECT partAlg FROM candidates WHERE LB = MIN_,,,,(LB)

FocusLB (deviation)

1 SELECT partAlg AS candidates FROM mostSimilarAppState WHERE
LB < deviation*MIN,;(LB)

2 SELECT partAlg FROM candidates WHERE synch = MIN_,,;(synch)

Please note the differences in the MIN-clauses. For step 1, MIN cor-
responds to the minimum for all partitioning algorithms. For step 2,
MIN corresponds to the minimum for the candidate algorithms selected
during step 1. In this thesis, deviation=1.25 for FocusSynch and
deviation=1.2 for FocusLB

a large decrease is recorded for the secondary performance-inhibiting factor.
The details of this algorithm are described in Paper V1.

Our motivation for invoking and evaluating more than one partitioning al-
gorithm is the observation that the geometrical difference between the current
grid hierarchy and the most similar stored grid hierarchies generally is small.
A small change in one of the geometrical metrics often results in a change
of the most similar stored grid hierarchy and hence also in a change of the
partitioning algorithm. While most of the partitioning algorithms that corre-
spond to the N most similar grid hierarchies are expected to result in good
performance, some might result in either significantly better or worse perfor-
mance. By invoking multiple algorithms, we are more likely to both generate
partitionings with higher quality and to avoid bad performing algorithms.

Each of the N selected algorithms are uniquely determined by the combina-
tion of the partitioning focus and the stored grid hierarchy. Thus, it is possible
to pre-compute the algorithm selection before run-time. For each combination
of stored grid hierarchy and partitioning focus, the best performing algorithm
is recorded. During run-time, the algorithm selection is reduced to finding the
entries in a list that corresponds to the N most similar stored grid hierarchies.

For our experiments, neither the construction of multiple partitionings nor
the performance evaluation add a significant overhead to the execution time
(see Paper VI). Furthermore, both the partitioning and the evaluation is em-
barrassingly parallel and they can easily be performed in parallel if the need
should arise.

To evaluate the performance of the Meta-Partitioner, we use un-partitioned
trace files from four SAMR applications [69]. The trace files contain the com-
plete grid hierarchies from real-world executions of the applications (coordi-
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nates, sizes, refinement factors etc.). The trace files are used as input to the
Meta-Partitioner, one grid hierarchy at a time. The internal functionality of
the Meta-Partitioner is independent of the origins of the current grid hierar-
chy. After selecting, invoking and evaluating multiple partitionings, the best
performing partitioning at each re-partitioning is stored on disk. The stored
partitionings are later evaluated using a more comprehensive version of the
SAMR simulator described above [18]. In addition to the load imbalance and
the synchronization delays, the comprehensive version of the simulator also
computes metrics like communication volumes and the number of grids.

Future Extensions and Improvements

The Meta-Partitioner can be expanded and improved in several ways. The
most important task is to interface real-world SAMR frameworks with the
Meta-Partitioner. Currently, the Meta-Partitioner is limited to the partitioning
of application trace files.

The partitioning focus is static throughout the execution. To dynamically
change the partitioning focus during run-time, the partitioning needs of the
current grid hierarchies must be predicted. Steensland and Ray [65, 66] have
proposed a number of metrics that perform this task and their integration into
the Meta-Partitioner is straightforward. Furthermore, performance measure-
ment tools that continuously monitor the state of the computer should be
added. Several such tools exist, e.g. the Network Weather Service [72] and
Remos [24].

In the current implementation, only hybrid partitioning algorithms from the
partitioning framework Nature+Fable are used. To realize the full potential of
the Meta-Partitioner, both domain-based and patch-based partitioning algo-
rithms should be added.

To use the Meta-Partitioner, extensive knowledge about its implementation
is currently needed. To be accessible to the common user, an intuitive user
interface has to be constructed.

Finally, a comprehensive evaluation of the real-world impact of the
performance-inhibiting factors must be performed when the Meta-Partitioner
has been interfaced with a SAMR framework. This evaluation could result in
tuning of the partitioning focus and the algorithm selection process.

4.2 Related Work

In this section we present work related to the Meta-Partitioner. The section is
divided into two parts. First, we describe existing dynamic partitioning frame-
works for both structured and unstructured grids. In the second part, we dis-
cuss the much larger and more general research field of recommender systems.
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4.2.1 Dynamic Partitioning Frameworks for Grid Hierarchies

ARMaDA, developed at Rutgers University, is an adaptive partitioning frame-
work for dynamic structured grid hierarchies [14, 15,17]. The framework con-
sists of three components; an application state characterization component,
an octant-partitioner mapping policy, and a meta-partitioner component that
selects and invokes the partitioning algorithm. In ARMaDA, the current grid
hierarchy is characterized using three metrics. The first metric computes a
computation-to-communication ratio, the second metric approximates the ap-
plication dynamics (i.e. rate of change) and the last metric concerns the refine-
ment pattern (i.e. scattered vs. localized). After normalization, each metric is
converted to a bit-value (i.e. O or 1). The three metrics are then mapped to a
octant position using a three-bit binary pattern. The resulting octant is used to
select the most appropriate partitioning algorithm (currently one of four avail-
able domain-based partitioning algorithms). Several extensions to ARMaDA
have been proposed and implemented. [15, 16, 17].

Excluding the Meta-Partitioner, ARMaDA is to our knowledge the only
existing adaptive partitioning framework for structured grid hierarchies. The
presented experiments show a decreased execution times compared to the sin-
gle static partitioning algorithm that results in the shortest execution time.
The octant approach allows for eight distinctive characterizations of the cur-
rent grid hierarchy and it limits the number of partitioning algorithms to eight.
To consistently achieve good parallel SAMR performance, we believe that a
continuous classification space that spans over more dimensions is necessary.
Such a classification space allows for both a more accurate classification of
the application and the use of a larger number of complementing partitioning
algorithms.

The data management toolkit Zoltan for unstructured adaptive meshes pro-
vides services for load-balancing, data movement, communication, and mem-
ory management [23]. Instead of imposing a particular data structure on the
applications, Zoltan uses call-back functions to determine necessary informa-
tion about the application. Several partitioners are included in the toolkit, in-
cluding recursive bisection [7], SFC partitioning, and spectral and multilevel
graph partitioning [61]. To change the partitioning algorithm, the user simply
sets a run-time parameter. However, the choice(s) of partitioner(s) is made be-
fore run-time because Zoltan currently lacks necessary components for adap-
tive partitioning (e.g. characterization of the state of the application and the
computer).

Zoltan has been used to examine the benefits of adaptive partitioning of un-
structured meshes [64]. Six applications were adaptively partitioned by five
complementing partitioners and the results were evaluated using a cost func-
tion. The adaptive partitioning performed as good as the best static partitioning
algorithm for each application. Hence, the main benefit of adaptive partition-
ing for unstructured meshes is not an improved parallel efficiency but an elim-
ination of an often expensive search for suitable static partitioning algorithms.
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The Dynamic Resource Utilization Model (DRUM) is a resource-aware tool
that extends the capabilities of Zoltan for heterogeneous and dynamic comput-
ing environments [67]. Drum maintains information about the system charac-
teristics and monitors its current performance. When partitioning is requested,
the performance data is used to determine appropriate parameters for a single
partitioning algorithm. Using Drum, computational nodes can be assigned a
workload that match their capabilities, even if their performance change dur-
ing run-time due to the concurrent execution of other applications.

PLUM is a framework for parallel adaptive flow computations [47]. The
framework includes a dynamic load balancing strategy for unstructured
meshes. After re-partitioning, the partitioning is evaluated using a set of
metrics for load imbalance, communication, and data migration. If the
computation gain is expected to be higher than the data migration cost, the
new partitioning is committed. The Meta-Partitioner can be extended to
consider the data migration in a similar fashion. If the previous partitioning
is stored, the SAMR simulator can compute the resulting data migration for
each of the N partitionings without a significant overhead.

Although not designed as an adaptive partitioning framework, the widely
used graph-based partitioning toolkit ParMETIS uses a similar technique
as the Meta-Partitioner to select between partitioners [61]. Originally
presented as the Unified Repartitioning Algorithm, the method aims to
construct a partitioning that simultaneously minimizes the impact of both
communication and data migration (the load imbalance is assumed to be
sufficiently small). Two partitionings from complementing partitioning
approaches (scratch-remap and diffusion-based) are always constructed at
each re-partitioning. The two partitionings are evaluated using a parameter
that describes the relative communication/migration cost and the partitioning
that results in the lowest cost is selected. This approach is similar to the one
used in the Meta-Partitioner where N partitioning algorithms are invoked and
evaluated at each re-partitioning.

4.2.2 Recommender Systems

The large and active research field of recommender systems is concerned with
the rating and selection of items [1]. A recommender system estimates ratings
for items that have not yet been seen by a user. The estimations are usually
based on ratings given by the user(s) to other items. The yet unrated item with
the highest estimated rating is then recommended to the user. For the SAMR
partitioning problem, the user can be seen as the grid hierarchy and the items
as the available partitioning algorithms. Thus, many ideas and concepts used
in recommender systems are of interest for the Meta-Partitioner.
Recommender systems are usually classified into three categories [1]. For
content-based recommendations, the system will recommended items similar
to items that the user have preferred in the past. A collaborative recommen-
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dation is based on item ratings by users with similar preferences as the user.
Finally, there exist hybrid approaches that combine the content-based and the
collaborative recommendations.

Clearly, a Meta-Partitioner can not implement content-based recommenda-
tions because these recommendations require that we have previously encoun-
tered all grid hierarchies that might arise during a simulation. However, a col-
laborative approach can be used in a Meta-Partitioner. The recommendations
are based on items (candidate partitioning algorithms) that have previously
been rated by other users (grid hierarchies) — the same methodology that we
actually use in the Meta-Partitioner.

Collaborative recommendations are often grouped into two classes;
memory-based and model-based. For the model-based approach, a collection
of ratings are used to build a model for the recommendations. The
memory-based approach computes the rating as an aggregate of the ratings
given to the item by other users (usually, the M most similar users). For
M = 1, the memory-based approach is identical to the selection approach
in the Meta-Partitioner — we use the most similar user (grid hierarchy) to
select the item (partitioning algorithm) that was given the highest rating by
the current user (while the Meta-Partitioner initially selects N algorithms,
the selection of the individual algorithms correspond to M = 1 because
we only use ratings from a single grid hierarchy at a time). Hence, in the
context of recommender systems, the Meta-Partitioner can be classified as a
memory-based collaborative recommender system.

Recommender systems are most common in business applications where
they are used to recommend books, music, movies, and electronics etc. to
potential customers [39]. In scientific computing, recommender systems has
so far seen a more limited use.

The PYTHIA-II framework aims to recommend the best-performing solver
for a known class of equations and a given computer system [32]. The frame-
work also estimates values for associated parameters like grid size, accuracy,
and solution time. A collaborative model-based approach is used for the rec-
ommendation of the solver and the parameters. The framework has a web-
based interface that makes it easy to add new performance data and models.
In an evaluation with a limited number of users (families of PDEs) and items
(solvers), the framework is generally able to recommend a good-performing
solver for the specified PDE.

JAMES 1l is a simulation framework that can be extended to select simula-
tion algorithms for a single problem [27]. The creators behind JAMES II argue
that a framework limited to a single problem at a time can achieve better re-
sults than a more general and complex selection framework like PYTHIA-IL.
In its core version, JAMES Il is a flexible, extensible, and modular framework
for the execution of large numbers of simulations [31]. When performance
data is available for the problem at hand, an algorithm selection plug-in can
be attached to the framework. Before run-time, a simulation algorithm selec-

35



tion rule is generated from the performance data and the entries in the rule
are ordered with respect to their performance. During run-time, incompati-
ble simulation algorithms are temporarily removed from the rule and the first
remaining entry in the rule (i.e. the algorithm having the best predicted perfor-
mance) is selected and invoked. This selection methodology is similar to the
selection process in the Meta-Partitioner — both frameworks use the collabo-
rative memory based approach, they pre-compute the rules, and they remove
incompatible algorithms (the algorithm selection in the Meta-Partitioner can
be seen as a removal of the algorithms that do not correspond to the most
similar stored grid hierarchies). JAMES II has been used to evaluate the per-
formance of a limited number of graph-based partitioning algorithms for un-
structured meshes [26]. We are not aware if the partitioning data have been
used to adaptively select partitioning algorithms during run-time.

The performance of a numerical simulation is generally influenced by a
number of continuous-valued attributes, e.g. scalars present in the PDE and
parameters in the candidate solvers. Ramakrishnan and Ribbens describe a
method where association rule mining is used to determine the best solver for
different attributes [55]. In association rule mining, the goal is to find connec-
tions between entities that occur together, i.e. connections between features
of PDE problem instances and the solver(s) that performed best for these in-
stances. Hence, association rule mining is a model-based approach. In the case
studies presented by Ramakrishnan and Ribbens, mined association rules are
successfully used to select the best of two different serial solvers when up
to three continuous-valued attributes are varied. For the Meta-Partitioner, we
believe that it is infeasible to use association rule mining. When a rule is con-
structed, data are generally discarded or aggregated. Because of the similar-
ities between many of the stored grid hierarchies and the sensibility of the
algorithm selection, we are convinced that we must use all available data to
consistently generate high-quality partitionings.

Vuduc, Demmel and Bilmes discuss automatic tuning of library subroutines
using statistical models [70]. Libraries allow for portable high performing ap-
plications, provided that the libraries are tuned for the platform of choice. Nor-
mally, a large number of possible tuning strategies are automatically tested and
the fastest implementation is selected. This search for a good performing im-
plementation is generally very time-consuming. Vuduc, Demmel and Bilmes
show how the search can be stopped early with methods from statistics. Before
the start of the search, the user specifies the proximity to the best performance
as well as a desired confidence. The search is terminated when a sufficiently
good implementation is found (i.e. equal to or better than the desired perfor-
mance) at the specified confidence. This early stopping method can be used
in the Meta-Partitioner when partitioning performance data for new grid hi-
erarchies are added to the performance data base. Instead of partitioning the
new grid hierarchies with all available partitioning algorithms, we can stop the
partitioning process pre-maturely to save time.

36



5. Contributions

In this chapter, we describe the contributions of the papers included in this
thesis. We present the motivation, the design, and a suggestion for an ini-
tial implementation of the Meta-Partitioner in Paper II. This paper can been
seen as the template for the Meta-Partitioner and can be used as a reference
guide for the other papers in the thesis. In Paper II, we discuss the need
for adaptive partitioning and the necessity to have access to a large num-
ber of complementing partitioning algorithms to consistently construct high-
quality partitionings. We describe how the partitioning effort is focused on
the performance-inhibiting factors with the largest impact on the partitioning
quality. We present our design philosophy behind the Meta-Partitioner and
how the Meta-Partitioner can be implemented with component-based soft-
ware engineering. We describe the workflow of Meta-Partitioner and the re-
sulting components separately to give a clear presentation of the algorithm
selection process and the suggested implementation. The extensions to the
Meta-Partitioner presented in Paper VI are not included in Paper II.

The rest of this chapter is divided into two parts. The first part lays the foun-
dation for the Meta-Partitioner. The second part presents the implementation
and performance of two versions of the Meta-Partitioner.

5.1 Foundations

To consistently select good performing partitioning algorithms during run-
time, we need performance data for all candidate partitioning algorithms.
Without it, it is impossible to predict the quality of the resulting partition-
ings. In Paper I, we present a comprehensive performance characterization of
a large number of partitioning algorithms [34]. The analysis is an extension of
an early characterization that involved a small number of hybrid partitioning
algorithms from Nature+Fable [33]. The goal of the initial characterization
was to manually find simple relations between the algorithm, the grid hierar-
chy, and the performance. We could often select a hybrid partitioning algo-
rithm to influence a specific performance metric, i.e. load imbalance, but the
amount of change was inconsistent. The effects on other performance metrics,
i.e. communication and synchronization delays, were generally unpredictable.

To construct more advanced algorithm selection methods, we needed a
comprehensive performance characterization. Compared to the initial char-
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acterization, we substantially expanded the number of hybrid partitioning al-
gorithms. We also complemented the characterization with performance data
from the domain-based partitioner used in the SAMR framework AMROC [3,
21]. For the characterization, we used trace files from four real-world appli-
cations taken from the Virtual Test Facility [68, 22]. The Ramp-application
simulates the reflection of a planar Mach 10 shock wave striking a 30 degree
wedge. The initial grid size is 480x120 grid points and the application uses
three levels of refinement with refinement factors {2,2,4}. ShockTurb treats
the interaction of two contacting gases with different densities that are sub-
ject to a shock wave that creates a Richtmyer-Meshkov instability. The initial
grid size is 240x120 grid points and and the application uses three levels of
refinement with a constant refinement factor of two. ConvShock simulates a
Richtmyer-Meshkov instability that is created by a Mach 5 spherical and con-
verging shock wave. The initial grid size is 200x200 grid points and the appli-
cation uses four levels of refinement with refinement factors {2,2,4,2}. In the
Spheres application, a constant Mach 10 flow passes over two spheres placed
inside the computational domain. The initial grid size is 200x160 grid points
and the application uses three levels of refinement with a constant refinement
factor of two. To evaluate the partitionings, we used the SAMR simulator de-
scribed in Chapter 4 [18]. The performance data were stored in a data base for
easy access and evaluation.

The performance data verified the complementing characteristics of the hy-
brid and domain-based partitioning approaches (see Figure 4.1 and Chapter 3).
The hybrid algorithms generally performed better for complex and scattered
refinement patterns, while the domain-based algorithm was more success-
ful when the refined areas were large and uniform. The characterization also
proved the viability of the Meta-Partitioner — we observed large performance
differences between the best performing partitioning algorithms and a random
partitioning algorithm. With sufficiently many complementing algorithms, the
characterization showed that there will generally be a number of partitioning
algorithms that results in high-quality partitionings at each re-partitioning.

To consistently select partitioning algorithms that generates high-quality
partitionings, we need to use complementing partitioning algorithms from all
major partitioning approaches. To our knowledge, there does not exist any
stand-alone patch-based partitioner for SAMR grid hierarchies that can be
used by the Meta-Partitioner. In Paper III, we present a patch-based partitioner
suitable for the Meta-Partitioner [35]. We are unaware of any comprehensive
performance evaluation of a similar patch-based partitioner.

To preserve the locality and to decrease the communication volumes, the
patch-based partitioner orders the grid patches on each refinement level ac-
cording to an inverse SFC (see Chapter 3.2.1) [4]. For each refinement level,
the partitioner divides the ordered list of grid patches into p parts, where p is
the number of processors.
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Figure 5.1: The load imbalance and the total communication volume for the patch-
based partitioner compared to the hybrid partitioner Nature+Fable [62] and the
domain-based partitioner from the SAMR framework AMROC [3]. Note the small
load imbalance for the patch-based partitioner compared to the two other partitioners.

The performance evaluation shows a small and stable load imbalance for
all applications. On average, the load imbalance was only 3.1%. The load im-
balance was also significantly smaller than the imbalance for the two other
common types of partitioners. Patch-based partitioners generally suffer from
high communication volumes. By using SFCs to increase the locality, the to-
tal communication volume was decreased with 17 percent. Compared to the
domain-based partitioner in the SAMR framework AMROC and the hybrid
partitioner Nature+Fable, the total communication volume was still 6.7 re-
spectively 4.5 times higher for the patch-based partitioner.

The performance data base that resulted from the characterization presented
in Paper I is crucial for the algorithm selection process. In paper 1V, a data
base interface component for the Common Component Architecture (CCA) is
presented. The CCA is the component-based software engineering framework
that we use for the implementation of the Meta-Partitioner. The database inter-
face component was developed in the wider context of Computational Quality
of Service (CQoS) [42,45]. The definition of CQoS is the ability of a system
to ensure that a scientific problem is solved with the best available hardware
and software resources. This definition coincides with the goal of the Meta-
Partitioner.

With the database interface component, the Meta-Partitioner can be ex-
panded with the ability to access the performance data base, or any other
data base, during run-time. In Paper IV, we describe how the matching of
the grid hierarchies can be performed directly in the data base. If we move the
matching to the data base, we will retrieve data from the data base at each re-
partitioning. The data retrieval might add an overhead to the selection process
but it can also facilitate new algorithm selection methods.

Substantial amounts of data used by the Meta-Partitioner during run-time
are currently stored on disk. With the database interface component, much
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of the data can be moved to a data base for a more efficient retrieval during
run-time.

We can also use the data base component to maintain a globally accessi-
ble data base that contains the characteristics of all encountered grid hierar-
chies, the performance data for all partitioning algorithms, and all algorithm
selection rules. Before run-time, the user can download the most up-to-date
selection rules and any recently added grid hierarchies. Furthermore, after the
execution, the user can upload the encountered grid hierarchies to the data
base. The new hierarchies can be partitioned with all available algorithms to
improve the selection rules.

5.2 Implementation and evaluation

Our initial implementation of the Meta-Partitioner is presented in Paper V. The
implementation follows the general description in Chapter 4.1 with the excep-
tion that the algorithm selection is limited to a single partitioning algorithm
(N=1). The initial implementation was evaluated with the same applications
used in Paper I. For both partitioning focuses (FocusLB and FocusSynch),
the initial version resulted in consistent and significant improvements for the
most performance-inhibiting factor compared to the average result for all par-
titioning algorithms. For FocusLB, the load imbalance was decreased by
10.9-15.5% compared to the average performing partitioning (see Figure 5.2).
When FocusSynch was used, the reduction in the average synchroniza-
tion penalty was in the interval 1.7% to 10.8% (see Figure 5.3). Compared
to the static partitioning algorithms that in average resulted in the best perfor-
mance, the improvements were smaller but generally noticeable. Furthermore,
the Meta-Partitioner did not negatively affect the results for the secondary
performance-inhibiting factor.

Load Imbalance, FocusLB Synchronization, FocusLB
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(a) Load imbalance (b) Synchronization

Figure 5.2: Results for the initial version of the Meta-Partitioner and the partitioning
focus FocusLB. Note that the Meta-Partitioner consistently generates partitionings
with a smaller load imbalance than the average imbalance for all algorithms.
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Figure 5.3: Results for the initial version of the Meta-Partitioner and the partition-
ing focus FocusSynch. Note that the Meta-Partitioner consistently generates parti-
tionings with smaller synchronization penalties than the average penalty for all algo-
rithms.

We also performed a theoretically derived analysis of the stability and accu-
racy of the matching process in the initial implementation. The results showed
that large performance gains were possible if multiple partitioning algorithms
are invoked and evaluated at each re-partitioning. While the Meta-Partitioner
could easily be modified to select and invoke multiple algorithms, it was in-
tractable to evaluate the resulting partitionings during run-time due to the long
execution time of the SAMR simulator.

An analysis of the simulator showed that the largest part of the execution
time was used for computing the communication volumes. By restricting the
computations to the load imbalance and the synchronization penalty, we could
reduce the execution time with approximately a factor of 500.

The shorter execution time of the modified simulator made it possible to
evaluate the resulting partitionings during run-time. We expanded the mod-
ified simulator into a CCA component and connected the simulator to the
Meta-Partitioner. The details of the extended Meta-Partitioner are described
in Paper VI. Before execution, the user can choose the number of partitioning
algorithms that will be selected and invoked at each re-partitioning.

The user is also presented with several options for how to select the par-
titioning algorithms. The basic option is to select the partitioning algorithms
that correspond to any number of the most similar grid hierarchies. This op-
tion is called " MP {X}’, where X is the number of matched grid hierarchies.
A second option is to use the performance data base to determine the partition-
ing algorithm that has the best average performance and invoke this algorithm
together with any other algorithm(s). This option is labeled * Static’. For
geometrically unusual grid hierarchies, the performance might benefit if the
matched hierarchies also include at least one hierarchy from each application
present in the performance data base — even if the geometrical similarity is
low. This approach is labeled ’ Apps’ . Finally, different combinations of the
approaches can also be used (see Table 5.1).
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Name Description #Algorithms

MP1 Most similar grid hierarchy 1

MP1+Static | Most similar grid hierarchy and 2
the best static algorithm

MP10 10 most similar grid hierarchies 10

MP10+Static | 10 most similar grid hierarchies 11

and best static algorithm
MP+Apps 10 most similar grid hierarchies 10-12
and hierarchies from all applications
MP10+Al11 10 most similar grid hierarchies, 11-13
best static algorithm, and hierarchies

from all applications

Table 5.1: The selection approaches used by the extended version of the Meta-
Fartitioner for the matching of the grid hierarchies. The Rpps and A1l configu-
rations make sure that at least one hierarchy from each of the applications in the
performance data base is used, even if the similarity is low.

To evaluate the extended version of the Meta-Partitioner, we re-used the
real-world applications from the Virtual Test Facility. Note that the perfor-
mance data base includes performance data for all possible combinations of
partitioning algorithm and grid hierarchy that can be encountered during the
evaluation. Hence, we could compute a minimum value for each metric and
application used in the evaluation.

The initial and the extended version of the Meta-Partitioner are function-
ally identical when a single algorithm is selected and invoked at each re-
partitioning (i.e. MP1). Hence, the MP1-configuration and the initial imple-
mentation resulted in identical performance. For the MP1+Static configu-
ration and FocusLB, the load imbalance was on average decreased by 4.8%
compared to MP1 (see Figure 5.4). MP1+Static and FocusSynch de-
creased the synchronization penalty with on average 10.2% compared to MP 1
(see Figure 5.5).

For the MP 1 0-configurations, both the load imbalance and the synchroniza-
tion penalty were significantly reduced compared to the MP 1-configuration.
For FocusLB, the load imbalance was reduced with on average 21%. The
synchronization penalty was decreased with 15.5% when the FocusSynch
was used. More importantly, these reductions brought both the load imbalance
and the synchronization penalty close to their respectively minimum values.
On average, the load imbalance was increased with only 11.5% compared to
its minimum value. For the ShockTurb application, the increase in load im-
balance was as small as 2.4%. The synchronization penalty was on average
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Figure 5.4: Load imbalance for the different configurations of the extended Meta-
Partitioner and the partitioning focus FocusLB. Note that the configurations based
on MP 10 result in a load imbalance that is close to the minimum imbalance.

increased by 13.6% compared to its minimum value. For both partitioning fo-
cuses, the MP 1 0-configuration often selected the best performing partitioning
algorithm among all of the 768 partitioning algorithms!

The more advanced configurations that are based on MP10 —
MP10+Static, MP10+Apps, and MP10+A11 — all result in further, but
small reductions of the load imbalance and the synchronization penalty. Due
to the longer partitioning times of these configurations (see Table 5.2), they
will probably not decrease the total execution time for the application.

The algorithm selection and the construction and evaluation of multiple par-
titionings add an overhead to the execution time of the application. To de-
crease the execution time, the overhead must be smaller than the resulting
reduction in simulation time. Generally, the most time consuming component
of the Meta-Partitioner is the construction of the partitionings (see Table 5.2).
The partitioning time grows proportionally to the number of constructed par-
titionings. The time needed to match the grid hierarchies, select one or more
partitioning algorithms, and evaluate the resulting partitionings was substan-
tially smaller than the partitioning time. Currently, all partitionings are con-
structed and evaluated by a single processor. However, the partitionings can
easily be constructed and evaluated in parallel to significantly decrease the
overhead generated by the Meta-Partitioner.
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Figure 5.5: The synchronization penalty for the different configurations of the ex-
tended Meta-Partitioner and the partitioning focus FocusSynch. Note that the con-
figurations based on MP10 result in a synchronization penalty that is close to the
minimum penalty.

5.3 Conclusions

In this thesis, we present the Meta-Partitioner — a partitioning framework for
parallel SAMR applications that autonomously selects, invokes, and evalu-
ates multiple partitioning algorithms during run-time. The basis of the Meta-
Partitioner is a comprehensive performance data base that currently contains
partitioning data for 768 partitioning algorithms and over 1300 SAMR grid hi-
erarchies. To complement the available partitioning algorithms, we developed
a patch-based partitioner. The patch-based partitioner produced a smaller load
imbalance than partitioners from the other partitioning approaches. We also
presented a data base interface component that can extend the capabilities of
future versions of the Meta-Partitioner.

The initial implementation of the Meta-Partitioner selected the partitioning
algorithm that was predicted to result in the best performance with regard to
the most-performance inhibiting factor. To make the Meta-Partitioner easy to
modify and expand, we used component-based software engineering for the
implementation. The performance evaluation showed that the initial imple-
mentation consistently generated partitionings with a better performance than
the average partitioning. Furthermore, a theoretical analysis showed that large
performance gains were possible if several alternative partitionings could be
evaluated during run-time.
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ConvShock Ramp
Total \ MP \ Part | Total \ MP \ Part

MP1 198 | 4.1 | 15.7 9.2 2.9 6.3
MP1+Static 352 | 5.6 | 29.6 194 | 49 | 14.1
MP10 185 | 28.5 | 156.5 || 959 | 21 | 749

MP10+Static || 203.4 | 30.7 | 172.7 || 106.2 | 23.2 | 82.9
MP10+Apps || 218.5 | 33.2 | 185.3 || 108.1 | 21 87.1
MP10+All || 233.4 | 345 | 1989 || 118.7 | 26.6 | 92.1

ShockTurb Spheres
Total | MP | Part | Total | MP | Part
MP1 4.5 2.2 2.3 206 | 39 | 16.7
MP1+Static 7.5 2.7 4.8 39 5.6 | 333
MP10 32.6 | 87 | 239 || 188.2 | 222 | 166

MP10+Static | 35.5 | 94 | 26.1 || 206.8 | 24.3 | 1825
MP10+Apps | 39.6 | 11 | 28.6 | 221.2]26.8 | 1944
MP10+All | 427 | 11.7 | 31 || 239.6 | 28.9 | 210.7

Table 5.2: The execution time for the complete partitioning process (Total) is the sum
of the time needed by the Meta-Partitioner to select and to evaluate appropriate par-
titioning algorithms (MP) and the time needed to partition the grid hierarchy (Part).

To evaluate multiple partitionings during run-time, we developed a substan-
tially faster version of the SAMR simulator. We incorporated the new simula-
tor into an extended version of the Meta-Partitioner. The performance evalua-
tion showed that the extended Meta-Partitioner consistently generated high-
quality partitionings. The resulting performance were close to the optimal
performance that can be achieved with the available partitioning algorithms.
Often, the Meta-Partitioner even selected the best performing partitioning al-
gorithm among all 768 different algorithms! When the Meta-Partitioner has
been interfaced with a SAMR framework, it has the potential to significantly
reduce the execution time for parallel SAMR applications.
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Svensk sammanfattning

Manga naturvetenskapliga experiment dr antingen sa dyra, sa stora eller sa
tidskrdvande att de i praktiken inte gar att genomfora. Den snabba utveckling-
en inom datoromradet har medfort att manga experiment kan simuleras med
hjilp av en dator.

Innan en datorsimulering kan genomforas maste det naturvetenskapliga
experimentet ersittas med en matematisk modell. Modellen innehaller ofta
partiella differentialekvationer (PDE:er). Eftersom en PDE normalt inte kan
16sas analytiskt maste dess 16sning approximeras. Berdkningsomradet delas
forst upp i ett strukturerat diskret nit. Efter att en lamplig berdkningsmetod
valts approximeras 19sningen genom att metoden appliceras pa samtliga
punkter i berdkningsnitet.

I manga simuleringar upptar de fenomen som kridver hog upplosning
hos berdkningsniitet endast en mindre del av nitet. For att minska
exekveringstiden kan upplosningen hos nitet anpassas efter losningens
egenskaper. Simuleringen startar dd med ett basndt som har en lag
upplosning. Genom att uppskatta det lokala berdkningsfelet kan nidt med en
hogre upplosning ldggas ovanpa de omraden som har ett stort fel. Den hir
metoden kallas for adaptiv nitforfining! och den ger upphov till en hierarki
av berdkningsnit. Nathierarkin fordndras kontinuerligt under simuleringen
allteftersom nit skapas, flyttas och tas bort.

Exekveringstiden kan minskas ytterligare om simuleringen utfoérs pa en
parallelldator. Varje processor i parallelldatorn approximerar da 16sningen
for en del av beridkningsnitet. Eftersom nithierarkin anpassas adaptivt
efter berdkningsfelet kan hierarkin se helt olika ut vid tva nirliggande
tidpunkter. Det hir dr ett stort potentiellt problem nér simuleringen utfors
pa en parallelldator. Nagra processorer kommer med tiden troligen att
fa en for hog arbetsbelastning medan andra processorer kommer att fa
for en 1ag arbetsbelastning. Processorernas arbetsfordelning maste darfor
kontinuerligt uppdateras. En sadan uppdatering kallas for lastbalansering och
den resulterande uppdelningen kallas for partitionering. Lastbalanseringen
kompliceras av att exekveringstiden beror pa fler faktorer dn en jadmn
fordelning av berdkningsarbetet, t ex har kommunikation, datamigrering och
synkronisering stor piverkan péi exekveringstiden. Aven parallelldatorns
egenskaper och dess aktuella arbetsbelastning paverkar exekveringstiden.

leng. structured adaptive mesh refinement (SAMR)
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Ingen enskild lastbalanseringsalgoritm ger ett bra resultat for alla nit-
hierarkier. For att minimera exekveringstiden bor lastbalanseringsalgoritmen
dirfor viljas dynamiskt under simuleringen. Optimalt ska algoritmen
viljas sa att inverkan fran samtliga faktorer som paverkar exekveringstiden
minimeras. Det &r ett svart problem eftersom forutsdttningarna for
lastbalanseringen kan fordndras kraftigt under simuleringen.

Meta-Partitioneraren

I den hidr avhandlingen presenteras en Meta-Partitionerare for parallell-
datorsimuleringar baserade pa adaptiv nitforfining. Meta-Partitioneraren
viljer, exekverar och utvérderar automatiskt lastbalanseringsalgoritmer under
simuleringens gang. For att forenkla framtida utvidgningar och modifieringar
har komponentbaserad mjukvaruutveckling anvénts for implementeringen av
Meta-Partitioneraren.

Eftersom exekveringstiden beror pa manga faktorer dr det orealistiskt
att hitta den absolut bista lastbalanseringsalgoritmen for den aktuella
néthierarkin. Istdllet fokuseras lastbalanseringen pa att minimera effekten av
de tva faktorer som har storst paverkan pa exekveringstiden, lastbalansen och
synkroniseringstiden.

Valet av lastbalanseringsalgoritm baseras pa att liknande nithierarkier
resulterar i liknande partitioneringar ndr de lastbalanseras med samma
algoritm. Detta beteende medfor att data fran tidigare lastbalanseringar kan
anvindas for att vilja algoritm for den aktuella hierarkin.

En databas med information om 768 lastbalanseringsalgoritmer utgor
grunden for algoritmvalet. Varje algoritm anvidndes for att lastbalansera
nédstan 1300 nithierarkier fran fyra olika simuleringar. I databasen finns
information om lastbalans, kommunikation och synkronisering for de olika
kombinationerna av algoritm och néthierarki.

Niér néthierarkin behover lastbalanseras karaktériseras forst hierarkins geo-
metriska egenskaper. Dessa egenskaper jimfors sedan med de geometriska
egenskaperna hos de nithierarkier som finns sparade i databasen. Ur data-
basen extraheras data som beskriver utfallet av samtliga lastbalanseringar for
de X hierarkier som dr mest lika den nuvarande hierarkin, dir X &r ett an-
tal som bestamts av anvindaren. For varje hierarki véljs den algoritm ut som
historiskt presterade bast med avseende pa en kombination av tva de faktorer
som har storst paverkan pa kvalitén hos partitioneringen (lastbalansering och
synkronisering).

Eftersom valet av lastbalanseringsalgoritm &r baserat pa historisk prestanda
for liknande hierarkier sa gar det inte att garantera att en vald algoritm
resulterar i en bra partitionering. Genom att vélja flera algoritmer minskas
risken att fa en dalig partitionering. Samtliga algoritmer som valts ut far
partitionera den aktuella hierarkin. De resulterande partitioneringarna
utvirderas och partitioneringen med hogst kvalité anvinds av simuleringen.
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En omfattande analys av Meta-Partitionerarens prestanda visade goda
resultat. Genom att anvinda Meta-Partitioneraren minskades lastobalansen
med i snitt 28,2% jamfort med medelvidrdet for samtliga partitioneringar
1 analysen. For synkroniseringen var motsvarande minskning 21,5%. Nir
resultaten jimfordes med det globala minimumvérdet for de aktuella
applikationerna och algoritmerna 6kade lastobalansen och synkroniseringen
med endast 11,5% respektive 13,6%. For manga nithierarkier valde
Meta-Partitioneraren ut den bist presterande algoritmen av totalt 768
algoritmer. Resultaten visar att Meta-Partitioneraren har potential att kraftigt
minska exekveringstiden for parallelldatorsimuleringar baserade pa adaptiv
nitforfining.
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