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1. Introduction

Fevral�. Dostat� qernil i plakat�.
Boris Pasternak

February. On the whole not a good month in Uppsala. Outside it is cold and

dark, biking paths are bumpy and hostile, and an unholy alliance of calicivirus

and the Eurovision Song Contest tryouts sweeps over the country. And time

has come. Time to put four and a half years of graduate studies into a thesis.

No choice but to get the ink.

No choice.

Choices and parameterizing the possible
Choices are what make life interesting. Without them the world, including

ourselves, would be just a ready-made piece of art for us to perceive, but not

to affect or take part in. Still, there are many important aspects of the universe

not affected by choice. The sunlight always heats the sea sand, and the apple

always falls when the twig breaks. It cannot choose to fly.

Physics is concerned with the part of the world that has no choice. Its aim

is to predict. Given the status of a system at a certain time, any self-respecting

physicist will try to tell you what you can predict, and how to do it. The pre-

dictions are made by physical laws. Newton’s gravitational law is an excellent

example. It states that two massive bodies will attract each other with a force

proportional to the product of their masses and inversely proportional to the

square of their distance:

F = GN
m1m2

r212

.

The constant of proportionality GN is called Newton’s constant.
A certain law can predict the time evolution of many different-looking sys-

tems. Newton’s gravitational law is applicable to the motion of planets in the

solar system as well as to a downhill skier. The motion of the planets or the

skier are examples of different solutions to the same theory. As physicists, we

use the same laws and the same mathematics to describe the two systems, but

the initial conditions are very different. In one case we have a set of big balls

of frozen gas, in the other a small but brave piece of flesh standing on the top

of a slippery slope. In this way, physical laws can be viewed as parameterizing

the possible, the parameters being the initial conditions. Often there are param-
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eters in the laws themselves — in this case Newton’s constant. Formulating

physical laws allows us to understand the choice-less part of the universe.

The laws of physics have different ranges of validity. During the last millen-

nia new laws have been found, old ones refined, and apparently unrelated laws

have been understood to be different manifestations of the same, more general

law. This unification is one of the greatest achievements of physics. As of to-

day, all experiments can be understood by using tools from two frameworks:

General Relativity and Quantum Field Theory.
In the course of this development toward more fundamental and more

widely applicable laws, mathematical beauty and philosophical appeal have

been important complements to experiments as guiding principles. For

instance, when Albert Einstein formulated his theory of General Relativity, he

was lead to it by consistency and beauty — not by unexplained experiments.
The fact that a human(?) mind can guess or “derive” the laws of nature may

suggest that, at a basic level, there is only one way to formulate them, and that
we are approaching that level. In Einstein’s own words:

What really interests me is whether God had any choice in the creation of the
world.

If there is only one consistent way to formulate physical laws describing a

universe at least remotely similar to ours, then these laws parameterize the

possible in a much stronger way. Namely, letting the parameters be both the

initial conditions and the parameters in the laws themselves, they parameterize

what is possible in any world.

The Quantum Field Theory that describes (much of) our universe perhaps

does not look as unique as General Relativity. It is called the Standard Model
and it requires specification of gauge groups and particle content. After these

are fixed to the observed values it involves 28 additional continuous param-

eters which must be empirically determined. This is to say that the theory

would make logical sense for any values of these parameters.

It has been (and still is) a dream of many physicists to explain or derive

gauge groups, field content and the numerical values of these parameters from

“first principles”.

Let us pause here and ask the following question: What does it mean if it is

possible to derive all Standard Model parameters and Newton’s constant? In

such a scenario, a world with physical laws similar to ours would be logically

impossible if the laws were not identical to ours. This does not mean, however,

that the world itself would be identical to ours. Indeed, a physical system is

described by the laws and the initial conditions. Two worlds with identical

laws can be as different as a solar system and a downhill skier. Slightly more

technically put, while the theories are identical, the specific solutions describ-

ing the worlds need not be. Also, the hypothetical uniqueness of the Standard

10



Model says a priori nothing about the choice-full part of worlds described by

it.

Showing uniqueness of the Standard Model would also imply a puzzle. De-

spite that there are many solutions, many possible initial conditions, the val-

ues of the Standard Model parameters heavily influence the properties of the

world. For many sets of values, life would not be possible. It is of course an

enormous task to judge whether life can evolve or not, but there are some solid

claims that can be made. For instance, raising the mass of the up quark would

eventually make all protons unstable. Raising the electromagnetic coupling

constant would destabilize nuclei. It is hard to imagine formation of life under

any of these circumstances, and there are many more examples. Why would

logic demand that these parameters are fine-tuned to make up a world suitable

to host life?

The brilliant success of unification of physical laws, using logic and beauty,

has thus put us before philosophical questions of immense depth. With Gen-

eral Relativity in one hand and the Standard Model in the other we are amazed

with the simplicity, but uneased by the free parameters. But if the parameters

are fixed, we are left with the puzzle of the friendliness of the resulting uni-

verse.

Can a further unification shed light on these questions? What happens if we

can unify General Relativity and Quantum Field Theory? A lot happens.

Quantum gravity and cosmic LEGO
To consistently quantize gravity has become something of a holy grail of the-

oretical physics, and is therefore a subject of intense study and debate. The

reasons for its status are manifold. Apart from the uniqueness question de-

scribed above, understanding quantum gravity is likely to change radically our

understanding of space and time. It will also give us tools to study the birth

and death of our universe and to understand mysterious objects such as black

holes. Furthermore quantizing gravity is a necessary requirement for having a

theory of everything.

Because of the high energies involved, quantum gravity is haunted by a

chronic lack of experimental and observational results. Physicists therefore

must look to other principles, like consistency, correct low-energy limits and

symmetry, to make progress. This is tricky business, but as exemplified by

Einstein above, by no means impossible.

On the other hand, many beautiful explanations have turned out to be wrong

when subjected to experimental tests. Famous examples include Kepler’s try-

ing to explain the sizes of planetary orbits by Platonic solids and string theory

as a theory of the strong interaction.

The poor experimental connection has caused some mild (and some not so

mild) skepticism toward studies of quantum gravity. Perhaps adding to this

skepticism is the fact that the preliminary results are mind-blowing. The by

far most developed candidate for quantum gravity is string theory. In the ear-
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liest developments, string theory was intended as describing the strong force.

As such it was abandoned because of the discovery of Quantum Chromody-

namics (QCD), and also because of some embarrassing features. One of these

embarrassing features — a spin two particle — turns into a lump of gold if

viewed from another angle. Any theory of quantum gravity needs a spin two

particle: the graviton, i.e., the force quantum of gravity.

According to string theory everything in the universe is made up of the

same basic material: string. The string is like a rubber band with tension of the

Planck scale. Different particles are described as different vibrational modes

of the string. One of the vibrational patterns is interpreted as the graviton,

whose existence puts gravity on the same footing as all other fundamental

forces.

But string theory does not stop at unifying all forces and matter. It also

strongly suggests that there is really only one way1 to build the universe. At

least if you want to build it from strings. And if we want it to contain quan-

tum mechanics and gravity, we do not know of any other way to build it. For

instance there are no free parameters in string theory. Everything is instead

fixed from very weak assumptions. Without completely molesting the truth, it

is fair to say that assuming that

• strings are the basic degrees of freedom

• the world is stable (at least on short terms)

• the world is rotationally invariant

leaves you with only one candidate theory. This fact has lead to an almost re-

ligious belief in string theory as the fundamental theory, answering Einstein’s

question in the negative.

In string theory, there is even no choice for the number of spacetime dimen-

sions: there must be ten of them. Whether this is a feature or a bug depends on

your point of view. Indeed, extreme pessimists would say that string theory,

when compared to the real world in the simplest of aspects, failed, and failed

miserably. Let us not join that crowd however, but instead try to fit the world

around us into the newly discovered framework.

One way to get rid of six extra dimensions is to curl them up real tight. The

surface of a straw is two-dimensional. One dimension along the straw, and one

around it. If the world would be two-dimensional, and curled up into a straw,

then big things would not care about the curled up direction2. For instance,

two hands clutching the straw could not pass each other on different sides of

the straw.

Furthermore, in quantum mechanics the momentum of an object is propor-

tional to how fast its structure varies in space. Anything varying over a very

small distance will therefore carry a lot of momentum, and thus a lot of energy.

1There are actually five theories, but in the modern view they are merely different aspects of

the same, underlying theory.
2The curled up dimension is often referred to as “compact” or “internal”.

12



So if people living on a thin straw do not have high energy particle accelera-

tors available, they will not be able to probe the compact direction, and they

will think that their world only has one dimension. String theory suggests that

we are much like the straw people.

Thus we propose that at every point in spacetime there are really six se-

cret directions in which we could move provided we had the energy. With

the present funding for basic research we do not, so we perceive the world as

four-dimensional. From our lower-dimensional perspective physics is excel-

lently described by General Relativity and Quantum Field Theory. The idea

of compact dimensions is not new, but was suggested by Kaluza and Klein in

the 1920s in an ingenious attempt to unify gravity and electromagnetism.

There is a major difference between curling up or compactifying six dimen-

sions and curling up only one. One direction can only be curled up into a circle

while six of them can be compactified in an infinite number of ways, and the

four-dimensional physics that results depends crucially on the geometry of

the curling. When string theory is compactified, the geometry3 of the com-

pact dimensions determines the whole defining data set of the resulting four-

dimensional General Relativity and Quantum Field Theory: gauge groups, par-

ticle content, coupling constants (including Newton’s constant!), masses and

so on.

Not any compact geometry is allowed by string theory. It must solve the

equations of motion and fulfill some consistency requirements. A convincing

amount of evidence suggests that there are many solutions. Typical numbers

cited in the literature are 10500 and∞.
This is a remarkable insight. In the quest for quantum gravity we found

a “unique” theory. It is not a surprise that this theory has many solutions; it
would be a very boring theory otherwise. In some solutions part of spacetime
is compact. The shape of the compact part is an initial condition on the so-
lution. But different choices for the compact part look like different theories
from a four-dimensional perspective. Couplings, masses and the like depend
on the geometry. In this language, the parameters in the four-dimensional the-
ory are really initial conditions! Thus, the parametrization has been changed
from “initial conditions and parameters in the theory” to just “initial condi-
tions”. Put differently, string theory gives Einstein the answer

To use strings was compulsory and they obey strict rules. They are still very
versatile though. Not unlike LEGO.

Note also that even if the theory is devoid of free parameters, string theory

avoids the puzzle of why the “unique” theory would contain life. At low-

energy, there are many solutions of string theory. Some will contain life, and

some will not.

3A note to the experts. The geometry alone is not enough to fully determine the four-

dimensional physics. Data such as the presence of fluxes, branes and orientifold planes also

contributes.
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The set of four-dimensional solutions to string theory has been named the

string theory landscape. Identifying and exploring this landscape is a huge

technical task, and much effort has been put into it. A small part of this effort

is the basis for some of the later chapters of this thesis. The string theory

landscape provides, for the first time in the history of science, a quantitative

framework for parameterizing the set of possible low energy effective theories.

From a four-dimensional point of view, string theory is a theory of theories.

Let us end this string theory commercial with noting that the excitement

over the landscape expressed above is not shared by the whole physics com-

munity. The main logical reason for this is our insofar incomplete understand-

ing of string theory. We do know a lot at the perturbative level but the full,

non-perturbative nature of the theory remains to some extent elusive. There-

fore, it is fair to say that we cannot be completely sure that the solutions we

find with our present tools correspond to solutions to the full theory. Maybe

there are consistency requirements not yet discovered that rule out many (all

but one?) candidate solutions. Moreover, despite a lot of work, an embedding

of the Standard Model into string theory, including all parameters, is yet to

be achieved. There is also an emotional reason for “landskepticism”. Many

physicists would just really like the Standard Model to be derivable. If this is

a repetition of the anthropocentric mistake4, only time will tell.

String theory is not the only framework in which quantum gravity can be

analyzed. (Even if it is possible that string theory contains any framework in

which it can be analyzed.) It is also important and interesting to find techni-

cally simple toy-models that still contain interesting aspects of quantum grav-

ity.

One way to make things simpler is to reduce the number of dimensions.

For instance, taking away two of our spatial dimensions renders gravity trivial

when left on its own. Coupling gravity to other fields like the dilaton however,

leads to interesting physics, e.g., black holes and Hawking radiation. Still, the

models admit quantization by standard canonical or path integral approaches.

In one dimension higher the situation is less clear, but the potential upside

is huge. Three-dimensional gravity contains black holes that are very similar

to four-dimensional ones. As opposed to their two-dimensional cousins they

have spin and a good analog of horizon area. If the microscopic structure of

these black holes is understood, it is likely to tell us a great deal about the

microscopic structure of black holes in our universe. The last chapter in this

thesis is concerned with gravity in three dimensions.

4The anthropocentric mistake is to fallaciously put ourselves in the center of things. Believing

that the earth, the sun or the Milky Way is the center of the universe are examples. Perhaps also

believing that our Standard Model is the only possibility.
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The papers
The research presented in this thesis addresses some (quite diverse) aspects of

quantum gravity. It is contained in seven papers and I would like to devote a

couple of sentences to the contents of each.

In paper I, we study a particularly simple limit of a string theory compacti-

fication: a conifold limit. In particular we study a four-dimensional black hole

in this theory. By combining two previous results we show that it is possible

to understand the thermodynamics of this black hole as the thermodynamics

of a much simpler system: a matrix model.
Paper II studies a similar black hole in a similar compactification. The in-

ternal geometry of this compactification is kept in place by fluxes. It turns out
that not only the fluxes, but also the black hole affects the internal geometry.

We try to find out which effect is the stronger one. If the black hole effect is

stronger, one could imagine that the world looks very different close to the

horizon of a black hole. Perhaps black holes can even destabilize the com-

pactification! We find that the effect from the fluxes is stronger and that the

compactification will be stable even in the presence of a black hole.

The two papers III and IV take us on excursions in the string theory land-

scape. We study a specific corner, and show that in this corner a generic fea-

ture is long sequences of closely related four-dimensional effective theories.

We explain how it is possible to continuously move between these theories.

The papers make use of quite complicated technical machinery to describe the

compact geometry.

Finally, papers V, VI and VII deal with a specific form of gravity in three-

dimensions known as topologically massive gravity. This theory contains both

gravitons and black holes. The gravitons carry a mass originating from a so-

called Chern–Simons term in the action. The mass is a parameter that can be

varied freely. Some of these gravitons seem to have negative energy, meaning

that the theory is unstable. However, for a certain value of the graviton mass

parameter the negative energy gravitons seemingly disappear. If they do (or

if they do not, but can be consistently ignored) topologically massive gravity

would be an ideal candidate for trying to quantize gravity in three dimensions.

We show in V that the gravitons are really there, even for the special value.

However they have different asymptotic behavior. Paper VI explicitly counts,

without any approximations, the degrees of freedom in the theory. We find ex-

actly one graviton. The short note VII demonstrates that the different asymp-

totic behavior found in V in itself is not a problem, and leads to no inconsis-

tencies.

Outline of the thesis
The thesis is divided into two parts. The first three chapters review standard,

textbook material, needed for understanding on a technical level the questions

addressed in the papers. The level is intended to be such that a beginning

graduate student in theoretical physics catches the main ideas without con-

15



sulting further literature. Chapter 2 gives an introduction to Conformal Field
Theory or CFT— a subject of great importance both in string theory and three-

dimensional gravity. String theory is introduced in Chapter 3, and we imme-

diately put CFT to good use. Focusing on the bosonic string we learn why

the number of spacetime dimensions is constrained. Superstrings are treated

less thoroughly, focusing on the resulting low-energy effective theory: super-
gravity. Concluding the prerequisites part, Chapter 4 describes how type IIB

superstring theory compactifications work. Dimensional reduction and moduli

stabilization are explained.

The second part is devoted to putting the different papers into context. After

completing a chapter, the reader is encouraged to read the corresponding pa-

pers, which are reprinted at the end of the thesis. Papers I and II, both dealing

with black holes are described in Chapter 5, and the two landscape papers III

and IV in Chapter 6. The three-dimensional gravity tale of V, VI and VII is

told in Chapter 7.
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Part I:

Prerequisites





2. Conformal field theory

So close, no matter how far...
James Hetfield

Conformal field theory (CFT) lies at the heart of two main topics of this thesis.

It is the technical framework of string theory, and its role in three-dimensional

gravity can hardly be overestimated. In our story, we will need several CFT

results. It is the purpose of this chapter to introduce these and to provide some

intuition for the non-expert. The CFTs relevant to string theory and three-

dimensional gravity are both two-dimensional. We therefore put the empha-

sis on such theories in this chapter. They display many features not shared by

their higher-dimensional counterparts.

There are several nice introductions to CFT available. Almost all material

presented below is contained in two excellent reviews, Ref. [Sch96] by A.N.

Schellekens and Ref. [Car05a] by S. Carlip, and in the big wonderful yellow

book [DFMS] by P. Di Francesco, P Mathieu and D. Sénéchal.

2.1 Conformal invariance

Conformal symmetry is a concept that is intimately connected to distances

and angles, but that does not require any deformation of the metric; indeed it

plays its most important part in non-gravitational theories with fixed metric.

To define conformal invariance in an intuitive way however, it is useful to

first discuss its cousin Weyl invariance which is formulated in terms of the

metric. In some (quite specific) sense, conformal invariance is the part of Weyl

invariance that can be translated into theories with fixed metric.

2.1.1 Weyl or conformal

Consider a field theory containing a set of fields φ living on a (d + 1)-
dimensional manifold with coordinates xα and metric γαβ(x). This theory

is said to be Weyl invariant if its action is left unchanged under the Weyl

rescaling

γαβ(x) → eω(x)γαβ(x). (2.1)

The transformation above is a local scaling of lengths. All angles are pre-

served, but distances are transformed in an x-dependent way. Infinitesimal
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things, i.e, small “lumps of field”, are made bigger or smaller dependent on

location, but their shape is unaltered.

Since the stress-energy tensor Tαβ is defined as the functional derivative of

the action with respect to the metric, Weyl invariance leads directly to off-shell

tracelessness Tα
α = 0. To see this, vary the action by the infinitesimal version

of (2.1) δγαβ = ω(x)γαβ , yielding

0 = δS = −1
2

∫
d(d+1)x

√−γTαβδγαβ =
∫
d(d+1)x

√−γTα
αω(x). (2.2)

Since this is true for any function ω(x), we must have Tα
α = 0.

The explicit form of the metric is subject to coordinate changes. If our Weyl

invariant theory also has general coordinate invariance, changing coordinates

xα → xα + ξα transforms the metric according to

γαβ(x) → γαβ(x) + δγαβ(x) = γαβ(x) +∇(αξβ) (2.3)

if ξ is infinitesimal. Note that, contrary to Weyl rescalings, not only the metric

transforms under coordinate changes. All fields do, with transformation laws

according to their spin.

Under some coordinate changes, the metric transforms by a Weyl rescaling.

All Weyl rescalings cannot be achieved this way. For the ones that can, how-

ever, we can define a transformation that combines a change of coordinates

and a Weyl rescaling that cancels the transformation of the metric. Under such

a transformation the fields transform, but the metric stays the same! Thus, they

make sense even for theories with fixed metrics. These transformations are the

conformal transformations, and invariance under these is the defining property

of conformal field theories.

Before analyzing conformal field theory in two dimensions in some detail,

let us make a note that applies to any dimension. In a world described by a

CFT, two states that differ by a conformal transformation are as similar as

two states differing by a rotation in a world (like ours) described by a Lorentz

invariant theory. Since conformal transformations can be used to scale dis-

tances, this means that there is no notion of length in CFTs. The transfor-

mation x → x′ = 2x, for instance, changes a scalar field φ according to

φ(x) → φ′(x′) = φ(x′/2), but leaves the metric identical in the x and x′ coor-
dinates. This has fundamental implications when the field theory is quantized.

If conformal invariance is left unbroken by quantum effects, there is no scale

in the theory. This means that coupling constants are scale independent and

do not get renormalized.
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2.2 Conformal field theory in two dimensions

In this section we describe some properties of two-dimensional CFTs at the

quantum level. This topic is completely dependent of that quantum mechani-

cal effects break conformal invariance. Namely, any unitary two-dimensional

CFT whose symmetries remain unbroken after quantization is trivial!

The breaking of conformal invariance is parameterized by two single pos-

itive numbers: the left- and right-moving central charges. These numbers

will play an important role in both string theory and in applications to three-

dimensional gravity. In string theory they determine the critical dimension and

in three-dimensional gravity they measure the number of states that we ulti-

mately would like to interpret as black hole microstates. The relation between

the central charges and the asymptotic number of states is expressed by the

Cardy formula presented last in the section.

The way we investigate the breaking of conformal symmetry at the quantum

level is to find the charges that generate the symmetry. These will be integrals

of the field variables in the theory. Promoting the fields to operators will then

possibly induce ordering ambiguities, which alter the symmetry algebra. In

the following subsections we first explore the conformal group in two dimen-

sions. Then we find the generators of the conformal symmetry and study their

quantum realization in a specific all-important example.

2.2.1 Conformal transformations in two spacetime dimensions

IfD = 2 the conformal group turns out to be infinite dimensional. This makes

two-dimensional CFT quite different from higher dimensions where the group

is finite dimensional. Let us find the group of conformal transformations and

the associated algebra.

For our applications keeping a cylindrical topology in mind will be most

useful. Consider therefore a two-dimensional space with coordinates τ and σ
and the fixed flat metric ds2 = ηαβdσ

αdσβ = −dτ2 + dσ2, where σ ∼ σ+π,
In light-cone variables σ± = τ ± σ the metric is ds2 = −dσ+dσ−.

Let us find the infinitesimal conformal transformations. For the metric to

transform by a Weyl rescaling under the transformation

σα → σα + ξα(σ) (2.4)

we must require that δγαβ in (2.3) is proportional to γαβ . In light-cone coordi-

nates this translates to

δγ++ = 2∂+ξ+ = −∂+ξ
− = 0

δγ+− = ∂−ξ+ + ∂+ξ− = −1
2
(
∂−ξ− + ∂+ξ

+
)

= −ω(σ+, σ−)

δγ−− = 2∂−ξ− = −∂−ξ+ = 0.

(2.5)
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We see immediately that the allowed transformations are parameterized by

two arbitrary real functions of one variable: ξ−(σ−) and ξ+(σ+). The global

form of these transformations are σ+ → f(σ+) and σ− → g(σ−) for any

functions f and g.
The conformal transformations are generated by the Lie-algebra elements

ξα∂α = ξ+(σ+)∂+ + ξ−(σ−)∂−. (2.6)

To specify the arbitrary functions ξ+(σ+) and ξ−(σ−) one needs infinitely

many parameters. Therefore the corresponding Lie algebra is infinite dimen-

sional. One choice of basis, suitable for our periodic σ is formed by the Fourier

modes of ξ±:

Ln =
1
2
e2inσ+

∂+ L̄n =
1
2
e2inσ−∂−. (2.7)

satisfying the algebra

[Lm, Ln] = i(m− n)Lm+n (2.8)

and similarly for L̄n. The algebra in equation (2.8) is the celebrated Virasoro

algebra. Thus, the conformal algebra in two dimensions consists of two com-

muting copies of the Virasoro algebra.

2.2.2 An infinite set of conserved quantities

Its algebra being infinite dimensional, conformal symmetry in two dimensions

leads to an infinite set of conserved quantities. More specifically, each Fourier

mode in (2.7) can be seen as a generator of a one-parameter symmetry, each

with its associated Noether charge. Instead of using the Noether procedure we

identify these quantities somewhat indirectly, following the book [GSWa] by

M.B Green, J.H. Schwarz and E. Witten.

From general coordinate invariance it follows that the stress energy tensor

is conserved, ∇αT
αβ = 0. In light cone coordinates and with our flat metric

conservation of a current∇αJ
α = 0 is just ∂+J−+ ∂−J+ = 0. Thus we have

for β = +
∂+T−− + ∂−T+− = 0. (2.9)

The β = − equation is similar but with (+ ↔ −). Now our theory also enjoys

conformal invariance, and we saw that this implies tracelessness of Tαβ . In

our coordinate system

Tα
α = −2T+− = 0. (2.10)

Therefore the conservation of energy momentum reduces to

∂+T−− = 0, (2.11)
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and similarly for (+ ↔ −). Hence T−− is a function only of σ−. But this

means that we can, given any function f(σ−) construct a conserved current

Jf
α :

Jf
− = fT−− Jf

+ = 0. (2.12)

The corresponding Noether charge is

Qf =
∫ π

0
dσJτ

f = −
∫ π

0
dσJf

− = −
∫ π

0
dσfT−−. (2.13)

Exactly the same game can be played with the component T++.

Thus we have found two sets of conserved charges, each parameterized by

an arbitrary function of one variable. That these are conserved depends cru-

cially on conformality. In fact they are the Noether charges of the conformal

transformations.

With appropriate identification of the function, they generate the conformal

transformations (2.6):

Q[ξ−] =
∫ π

0
dσξ−T−− generates ξ−∂− and

Q[ξ+] =
∫ π

0
dσξ+T++ generates ξ+∂+.

(2.14)

For ξ± = e2inσ±/2 we obtain the Virasoro generators Ln and L̄n

Ln =
1
2

∫ π

0
dσe2inσT−−(τ = 0)

L̄n =
1
2

∫ π

0
dσe−2inσT++(τ = 0).

(2.15)

We chose to perform the integration at τ = 0. For a given field theory with a

given action, we can now express the generators Ln and L̄n in the fields and

study how their commutation relations change upon quantization.

2.2.3 Conformal anomaly and the central charge

To understand how conformal invariance is broken upon quantization we study

a specific system: D free scalar fields in two dimensions. This is the system

relevant for string theory, so the results obtained here will be directly appli-

cable in Chapter 3. In string theory the scalar fields will be interpreted as the

spacetime coordinates of a propagating string. Anticipating this interpretation

we denote the scalars Xμ with μ = 0, . . . , D − 1.
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2.2.3.1 Classical analysis
The action describing the scalars is

S = −T
2

∫
dσdτ ηαβ∂αX · ∂βX, (2.16)

where the · means scalar product with respect to some flat metric gμν in

the space of fields on which the Xμ are coordinates. ηαβ is our usual two-

dimensional flat metric, and T is a constant that in the string interpretation

represents the tension of the string.

Finding and solving the equations of motion of this system is an easy task,

and one finds free waves traveling in direction of either increasing or decreas-

ing σ. Let us parameterize these solutions in a way that makes the transition

to quantum mechanics as smooth as possible.

When σ is periodic (as we assume) it makes sense to expandXμ in Fourier

modes:

Xμ(σ, τ) =
∞∑

n=−∞
e2inσxμ

n(τ). (2.17)

Keeping it real requires xμ
n = (xμ

−n)†. After performing the σ-integration our

action becomes

S =
Tπ

2

∫
dτ
∑

n

[ẋn · ẋ−n − (2n)2xn · x−n]. (2.18)

Nicely enough, this is just the action for an infinite number of decoupled har-

monic oscillators! The real and imaginary parts of xμ
n for n > 0 are the corre-

sponding displacement coordinates, and the angular frequencies are ωn = 2n.
xμ

0 are not really oscillators since the potential is flat. These zero modes will

play an important role later.

To prepare for a good old-fashioned canonical quantization, let us pass to a

Hamiltonian description of the system. We choose the xμ
n as canonical coordi-

nates. The momentum πμ
n conjugate to xμ

n is

πμ
n = Tπẋμ

−n, [πμ
m, x

ν
n]P.B. = δmng

μν , (2.19)

where gμν is the inverse metric on X-space and the index P.B. stands for

“Poisson bracket”. The Hamiltonian becomes

H =
1

2πT

∑
n

[πn · π−n + (2πnT )2xn · x−n]. (2.20)

For each mode with n �= 0 we can define creation and annihilation coordinates.

We choose the normalization

αμ
n = −in

√
πTxμ

n +
1√
4πT

πμ
−n α̃n = in

√
πTxμ

−n −
1√
4πT

πμ
n. (2.21)
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In these coordinates the reality condition is (αμ
n)† = αμ

−n and (α̃μ
n)† = α̃μ

−n.

The Poisson brackets read

[αμ
m, α

ν
n]P.B. = [α̃μ

m, α̃
ν
n]P.B. = imδm+ng

μν ,

[α̃μ
m, α

ν
n]P.B. = 0.

(2.22)

and the Hamiltonian is

H =
1

2πT
π2

0 +
∑
n�=0

(α−n · αn + α̃−n · α̃n). (2.23)

By commuting H with αμ
n, α̃

μ
n and xμ

0 it is now simple to solve the Hamilto-

nian equations of motion. We get

Xμ = xμ
0 (0) +

1
Tπ

πμ
0 τ +

i

2
√
πT

∑
n�=0

1
n

[
αμ

n(0)e−2inσ− + α̃μ
n(0)e−2inσ+

]
,

(2.24)

where πμ
0 is constant. We see that α (α̃) are exactly counterclockwise (clock-

wise) moving waves traveling around the compact direction σ. We adopt the

standard terminology right-movers (left-movers) for α (α̃).
This way of solving the equations of motion for free waves in

(1+1)-dimensions is like shooting mosquitoes with a cannon. However, the

stage is now completely set for quantizing the system. Before we do this,

let us express the generators of conformal transformations in terms of the

α. The relevant components of the stress energy tensor are obtained by

varying the covariantized version of action (2.16) with respect to the metric:

T++ = T∂+X · ∂+X and T−− = T∂−X · ∂−X . Adopting the convenient

notation αμ
0 = α̃μ

0 = πμ
0 /
√

4πT we get

Ln =
1
2

∑
m

αn−m · αm

L̄n =
1
2

∑
m

α̃n−m · α̃m.

(2.25)

Note that the Hamiltonian is H = 2(L0 + L̄0).
Having expressed the Virasoro generators in terms of the fields we can now

study their quantum commutation relations.

2.2.3.2 Quantization
Quantization of the free scalars is obtained by promoting the fields to opera-

tors and replacing Poisson brackets with commutators:

[αμ
m, α

ν
n] = [α̃μ

m, α̃
ν
n] = mδm+ng

μν [πμ
m, x

ν
n] = −iδmng

μν . (2.26)
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The α and α̃ are now harmonic oscillator creation and annihilation operators.

αμ
−n creates a right-moving quantum with angular frequency 2n.
When fields become operators, one must be careful how to interpret the

product between two fields that do not commute. For our Virasoro operators

there is an ambiguity for n = 0, since αμ
n and αμ

−n do not commute. Therefore

we define L0 and L̄0 to be

L0 ≡ 1
2
α2

0 +
∑
m≥1

α−m · αm

L̄0 ≡ 1
2
α̃2

0 +
∑
m≥1

α̃−m · α̃m.

(2.27)

This definition is normal ordered in the oscillator coordinates. Since the com-

mutator [αμ
n, αν−n] is just a number, the only ambiguity in the definition is

really a constant. It is not obvious that the above definition gives the physical

L0 and L̄0. The quantities appearing in the Hamiltonian for instance can be

shifted by a normal ordering constant.

Let us now study the commutator algebra. For simplicity we focus on the

L algebra. The L̄ story is identical. If the conformal symmetry is preserved,

then

[Lm, Ln] = (m− n)Lm+n. (2.28)

For m + n �= 0 no problem arises, and (2.28) really holds. The computation

goes through exactly as it would for Poisson brackets. The subtlety occurs for

n = −m. Commuting Lm and L−m as given by (2.25) using (2.26) gives

[Lm, L−m] =
1
2

∑
r

[rαm−r · α−(m−r) + (m− r)α−r · αr]. (2.29)

Now, had α±r commuted, we could just have substituted r → m + r in the

first sum to arrive at 2mL0. But we need to see to it that the operators are in

the order α−|k| · α|k|. Otherwise we do not get back L0 the way we defined it.

Indeed, the first term is in the wrong order for r < m and the second is wrong

for r < 0. The price for changing the order is the commutator:

α|k| · α−|k| = α−|k| · α|k| + |k|gμ
μ = α−|k| · α|k| +D|k|, (2.30)
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whereD is the number of fields. Thus, what we obtain in the quantized theory

is

[Lm, L−m] = 2mL0 +
1
2

m−1∑
r=−∞

rD(m− r)− 1
2

−1∑
r=−∞

r(m− r)D =

= 2mL0 +
D

2

m−1∑
r=0

r(m− r) = 2mL0 +
D

12
(m3 −m).

(2.31)

In its full glory the quantum corrected Virasoro algebra is therefore

[Lm, Ln] = (m− n)Lm+n + δm+n
D

12
(m3 −m). (2.32)

In the derivation above we took the difference of two infinite sums. This might

seem dangerous, and there are safer ways to evaluate the commutator. E.g., as

described in [GSWa], requiring the quantum operators to fulfill Jacobi’s iden-

tity determines the form of the anomaly to ∼ c3m
3 + c1m for some constants

c1 and c3. The constant c3 can then be fixed by computing a suitable matrix

element. Note that there is no invariant meaning to the constant c1. It can be

absorbed into the definition of L0, where a normal ordering constant may well

be inserted.

The last term on the right-hand side of (2.32) is just the identity operator

multiplied with a number. For the algebra to be closed we extend the Lie-

algebra to include the identity operator. Since it commutes with all elements

in the algebra, it is called the central extension. The same phenomenon occurs

in any CFT, and the coefficient in front of m3 is usually denoted c/12 where

c is called the central charge.
When the left- and right-movers represent independent degrees of freedom

(as for our D free bosons living on a circle) there is one central charge for

the L-algebra and one for the L̄-algebra. They are denoted cR and cL, respec-
tively. For our bosons cR = cL = D, but if the right- and left-movers behave

differently, cR and cL may be different numbers.

Note that the Virasoro algebra has a closed sub-algebra generated by

L−1, L0 and L1. This sub-algebra is isomorphic to sl(2,R), and is not

affected by the central charge. In the three-dimensional gravity context this

subalgebra is the isometry algebra of the AdS3 background.

2.2.4 Virasoro representation theory and partition functions

In conformal field theory, states in Hilbert space are classified according to

their transformation properties under the conformal group. We will encounter

both unitary and non-unitary representations.
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2.2.4.1 Unitary representations
In unitary representations the Virasoro generators satisfy L†n = L−n with re-

spect to the Hilbert space inner product, implying hermiticity of the energy

momentum tensor. More specifically, the hermiticity of L0 (and L̄0) implies

that the Hamiltonian is Hermitian, and hence that time evolution is unitary.

That L0 is Hermitian also means that state vectors can be decomposed in

eigenvectors of L0.

The most important representations are so-called highest weight represen-
tations. Let n > 0, and suppose that |h, h̄〉 is an L0 and L̄0-eigenstate, i.e.,

that L0|h, h̄〉 = h|h, h̄〉 and L̄0|h, h̄〉 = h̄|h, h̄〉. The eigenvalues (h, h̄) are

called the conformal weights of the state and their sum Δ = h + h̄ is called

the conformal dimension.
The commutation relation

[L0, Ln] = −nLn (2.33)

tells us that Ln lowers the eigenvalue h to h− n:
L0[Ln|h, h̄〉] = (−nLn + LnL0)|h, h̄〉 = (h− n)[Ln|h, h̄〉]. (2.34)

Conversely, L−n raises the L0-eigenvalue by n. A highest weight representa-

tion is a representation containing a state with a lowest eigenvalue of L0 (and

L̄0). Since H ∼ L0 + L̄0 this means that the energy of such a representation

is bounded from below.

The state with the lowest L0 and L̄0 eigenvalues is called the highest weight

state. It is annihilated by all Ln>0 and L̄n>0. All states in the representation

can then be obtained by action of the raising operators Ln<0 and L̄n<0. In

this sense highest weight representations work pretty much the same way as

ordinary SO(3) representations do, L0 playing the role of Jz and L±n general-

izing J±. The highest weight states are also known as primaries and the states

obtained by acting with raising operators are called descendants.

2.2.4.2 Non-unitary representations
The only non-unitary representations we will need are logarithmic representa-

tions. Logarithmic conformal field theories (LCFTs) were recognized as use-

ful physical models in the 1990s. For reviews see e.g. the papers by M. Flohr

[Flo03] and M. Gaberdiel [Gab03]. These theories are applicable to a number

of physical systems including turbulence, the quantum Hall effect and critical

polymers.

In LCFT L0 and L̄0 are not Hermitian. Some representations can be charac-

terized by a highest weight state ψh,h̄ that is not an eigenstate of L0. Rather

L0ψh,h̄ = hψh,h̄ + φh,h̄, (2.35)
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with

L0φh,h̄ = hφh,h̄, (2.36)

and similarly for L̄0. The operators L0 and L̄0 therefore have the matrix rep-

resentations

L0

(
ψ

φ

)
=

(
h 1
0 h

)(
ψ

φ

)
L̄0

(
ψ

φ

)
=

(
h̄ 1
0 h̄

)(
ψ

φ

)
(2.37)

from which it is clear that neither L0 nor L̄0 can be diagonalized. The field ψ
is called the logarithmic partner of φ.

We will not delve deeper into Virasoro representation theory. Unitary and

logarithmic highest weight representations are enough to be equipped at least

for the rest of the thesis.

2.2.4.3 Partition functions
Let us now comment briefly on the torus partition function of a CFT. The mod-

uli space of the torus plays an important part here, and a reader not familiar

with it may want to consult Section 6.1, or skip to subsection 2.2.5.

The only thing we need for our story is some understanding when the parti-

tion function can factorize holomorphically. Compactifying time in our CFT,

τ ∼ τ + πImω, and allowing for a shift σ → σ + πReω when making

the identification, results in a CFT defined on a torus defined by the modular

parameter ω. 1 Let us study the partition function

Z(q, q̄) =
∫
De−SEucl. (2.38)

on the torus. This function depends on the parameter q related to ω as q =
e2πiω. The partition function (2.38) subject to the periodicity conditions can

be computed as the trace

Z(q, q̄) = Tr e−πIm ωH+πiRe ωP (2.39)

where H is the Hamiltonian generating the evolution from τ to τ + πImω,
and P is the σ-momentum generating the twist σ → σ + πReω. At this point

the normal ordering constant that we could have inserted in the definition of

L0 and L̄0 becomes important. Actually, there is a Casimir energy and angular

momentum when a cylindrical or toroidal topology is considered. Fixing L0

and L̄0 by demanding that the vacuum have zero conformal weights shifts

L0 → L0 − cR/24 and L̄0 → L̄0 − cL/24. Thus we have

H = 2(L0 + L̄0 − cL + cR
24

) P = 2(L0 − L̄0 +
cL − cR

24
). (2.40)

1In an attempt to follow many standard conventions at once ω is called τ in Section 6.1.
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Inserting this into (2.39) produces

Z(q, q̄) = Tr qL0−cR/24q̄L̄0−cL/24 = q−cR/24q̄−cL/24 + . . . (2.41)

The partition function is a power expansion in q and q̄ whose coefficients

depend on the number of primaries at each pair of conformal weights. As

indicated in the equation the series starts with the contribution from the unique

vacuum state with h = h̄ = 0. Note that to make sense as a partition function

on the torus Z must be invariant under the modular group generated by ω →
ω + 1 and ω → −1/ω.

A particularly simple class of CFTs are those when the partition function

factorizes in a holomorphic and antiholomorphic piece:

Z(q, q̄) = ζ(q)ζ̄(q̄), (2.42)

where each of the factors, ζ(q) and ζ̄(q̄) can be interpreted as the partition

functions of holomorphic CFTs. These are theories in which one of the Vira-

soro algebras acts trivially. The ζ must then have an expansion

ζ(q) = q−cR/24 + . . . (2.43)

Since q−cR/24 → e−2πicR/24q−cR/24 under the transformation ω → ω + 1 it

is clear that this function can only be modular invariant and thus work as a

CFT partition function if cR = 24kR for some integer kR. The same goes for

cL, so holomorphic factorization is conceivable only if both central charges

are integer multiples of 24. As we will see in Chapter 7 these are exactly the

central charges relevant in three-dimensional gravity.

Let us now turn to the last subject of this chapter: the density of states in

CFTs and the Cardy formula.

2.2.5 States and the Cardy formula

In conformal field theory, the density of states ρ(h) at L0-level h has a uni-

versal behavior for h → ∞. This is the famous formula due to J.L. Cardy

[Car86]:

ρ(h) ∼ exp

(
2π

√
(c− 24h0)h

6

)
ρ(h0) (2.44)

Here h0 is the smallest L0 eigenvalue in the spectrum of the theory, when

defined on the plane. Thus, the asymptotic growth of the number of states is

the same, in any two CFTs sharing the values c and h0. The quantity ceff =
c−24h0 is called the effective central charge. For the density of states at level
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(h, h̄) we get

ρ(h, h̄) ∼ exp

⎛
⎝2π

√
ceffR h

6
+ 2π

√
ceffL h̄

6

⎞
⎠ ρ(h0, h̄0), (2.45)

or for the logarithm

S = log ρ ∼ 2π

√
ceffR h

6
+ 2π

√
ceffL h̄

6
. (2.46)

We will not attempt a derivation of the Cardy formula here, but just check that

it hold for a single free scalar. This theory has a vacuum state |0〉 with

αn|0〉 = α̃n|0〉 = 0 n ≥ 0. (2.47)

This is just the ground state of all the oscillators. From the commutation re-

lations [L0, α−k] it is clear that a general state at level (h, h̄) is obtained by

action of a sequence of creation operators:

α−n1α−n2 . . . α−nN α̃−m1α̃−m2 . . . α̃−mM |0〉 (2.48)

with ni andmj satisfying

N∑
i=1

ni = h
M∑

j=1

mj = h̄. (2.49)

The number of ways to partition the number h into a sum of integers is called

the partition function p(h) of h. This function was studied by S. Ramanjuan

and G.H. Hardy [RH18], who found its asymptotic behavior

p(h) ∼ 1
4h
√

3
exp

(
2π

√
h

6

)
. (2.50)

Thus, for a single scalar,

ρ(h, h̄) = p(h)p(h̄) ∼ 1
4h
√

3
exp

(
2π

√
h

6
+ 2π

√
h̄

6

)
. (2.51)

This matches the Cardy formula for cR = cL = 1.
Let us end this chapter with a brief note on the case c = 0. From the Cardy

formula it seems that the leading contribution to the number of states vanishes

in such a theory. For a unitary theory there is actually a much stronger state-

ment. A unitary CFT with c = 0 contains only the vacuum state, and is thus

trivial. The argument to show this is somewhat involved and the interested

reader is referred to Ref. [Sch96].
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3. String theory

String, or nothing!
Gollum

As advertised in the introduction, string theory aims to unify all forces and

matter. Different particles are described as different vibrational modes of the

string. Being a quantum theory of gravity, the natural mass scale for string

theory is the Planck mass. A naive expectation would therefore be that the en-

ergy quantum of excited strings is Planckian and that all excited strings would

have masses of the Planck scale. This expectation turns out to be erroneous

due to subtle quantum effects. A magical “−1” appears as both a blessing and

a curse: it renders the first excited states massless, but the ground state tachy-

onic. Incorporating supersymmetry lifts the curse and keeps the blessing: the

tachyon can be consistently eliminated.

In this chapter we introduce strings and describe their quantum dynamics.

We start with bosonic strings to keep technical clutter at a minimum. The main

goals here are to establish the critical dimension and present the spectrum.

These results are not explicitly needed in the later chapters of the thesis, but

are included as a motivation for why we study the low-energy theories, and as

an illustration to the deep and rich structure that lies beneath them.

Superstrings are described in less detail, much by analogy to the bosonic

case. Important differences are highlighted and the main goal is to arrive at

the low energy theory of type IIB superstrings that plays an important role

in the subsequent chapters. The chapter ends with a section on D-branes —

objects on which open strings can end.

Everything presented in this chapter is nowadays textbook material. The

textbooks in question include the books by M.B. Green, J.H. Schwarz and

E. Witten [GSWa, GSWb] and the ones by J. Polchinski [Pola, Polb]. These

volumes enjoy a well-deserved biblical status. For a complement, containing

clear, pedagogical and down-to-earth explanations, the reader should consult

the book by B. Zwiebach [Zwi].

3.1 The bosonic string

The bosonic string is a freely moving string, relativistic and quantized. Given

the simplicity of this starting point the richness of the structure that emerges is

amazing. In describing the bosonic string we make use of our knowledge from
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Chapter 2. All conventions and definitions in the description of the D free

scalars in that chapter carry over to the description of strings by the Polyakov

action to be presented below.

3.1.1 Classical string dynamics

A string that moves in spacetime sweeps out a two-dimensional world-volume.
Let us consider a D-dimensional spacetime coordinatized by X0, . . . XD−1.

The degrees of freedom of the string are the embedding coordinates Xμ(σ, τ)
which are functions of the two coordinates σ and τ parameterizing the world-

volume.

The action for a classical relativistic string is called the Nambu–Goto action.
It is proportional to the relativistic area of the world-volume:

SNG = −T
∫
dVol = −T

∫
dσdτ

√
G. (3.1)

Here G is short for the determinant of the induced metric:

G = |detGαβ | = |det ∂αX · ∂βX|. (3.2)

where ∂αX · ∂βX = gμν∂αX
μ∂βX

ν and gμν is the spacetime metric. The

parameter T is the string tension. It appears in a number of guises, so let us

comment on it briefly. First, it may look like a free parameter in a theory ad-

vertised to have none. Being dimensionful however (it has the dimensionM2)

this is not the case. It is nonsense to try to compare two theories with “differ-

ent” values of T . It rather sets the scale of “stringy” effects. For solutions to

the theory that have low energy compared to T , stringy effects will be unim-

portant. More specifically, one can make an expansion in

Energy√
T

, (3.3)

where for low energies only the first term is important. Instead of T often one

of the two parameters �s and α′ is used. �s is the string length and α′ is the

Regge slope parameterizing how fast the mass of the string states grows with

their spin. The parameters are related as

�2s = 2α′ =
1
πT

. (3.4)

The expansion in energies is called the α′ expansion.
It is useful to think of the coordinates σ and τ as coordinates on an ab-

stract two-dimensional surface called the world-sheet rather than on the world-

volume itself. The Xμ are then interpreted as fields living on the world-sheet.

Note that the theory is invariant under reparameterizations of σ and τ . Two

field configurations related by a reparameterization describe the same physi-
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cal situation, so this symmetry is a gauge symmetry and should be modded

out.

While conceptually simple and physically well-motivated, the square root

makes the Nambu–Goto action a difficult starting point for a quantum theory

of strings. Luckily, there is another action that is classically equivalent to (3.1).

In this formulation theXμ are free scalars coupled to a dynamical metric γαβ

on the world-sheet. The action is the Polyakov action

SP = −T
2

∫
d2σ

√
γ γαβ ∂αX · ∂βX = −T

2

∫
d2σ

√
γ TrG (3.5)

where the trace is with respect to the world-sheet metric γαβ . To see that the

actions are equivalent we solve the equations of motion obtained by varying

γαβ . These are just the vanishing of the stress-energy tensor. A straightforward

computation gives

0 =
Tαβ

T
= − 2

T
√
γ

δS

δγαβ
= Gαβ − 1

2
γαβTrG. (3.6)

Taking the determinant of this equation we obtain

G =
γ

4
(TrG)2, (3.7)

where γ = |det γαβ |. Inserting the square root of this into (3.5) gives back the

Nambu–Goto action (3.1).

We thus want to use the Polyakov action as a starting point for our study of

strings. Let us make a few comments on this action and on the theory it defines.

First, note that the action is the covariant version of (2.16): it is a bunch of free

scalar coupled to two-dimensional gravity. Second, even if we must vary the

action with respect to the metric γαβ , it should not really be a physical degree

of freedom. From the spacetime point of view, all we see are the embedding

coordinates Xμ. Therefore, solutions differing only in the metric should be

viewed as physically equivalent.

There are many such equivalent solutions, as can be realized from the fact

that the Polyakov action is invariant under the Weyl rescaling (2.1) affecting

only the metric. Therefore, to have the correct physical degrees of freedom,

we must view the Weyl symmetry of (3.5) as a gauge symmetry. In addition

to this we also have the reparameterization gauge symmetry.

In total there are three gauge transformations with three independent param-

eters. The metric γαβ has three independent components, so these are enough

to locally set γαβ = ηαβ , where ηαβ is the standard flat metric. There are even

some transformations left afterward! Indeed, as we learned in Chapter 2 there

are combinations of reparameterizations and Weyl rescalings that leave the

metric invariant: the conformal transformations. Thus, if we fix the metric to

ηαβ there is a residual conformal symmetry that should be divided out. There
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are three standard approaches to deal with the gauge fixing, and we briefly

describe each of them in the next subsection.

Even if we fix the metric in the Polyakov action we must take into account

the equations of motion obtained by varying it. This means that we need to

impose as constraints the vanishing of the stress energy tensor (3.6). Vanish-

ing of the whole tensor implies vanishing of all its Fourier components, which

are nothing but the Virasoro operators Ln and L̄n. These constraints are im-

plemented in different ways in the three approaches of the next subsection.

Note that the constraints are intimately connected to the residual conformal

symmetry. Requiring Ln|ψ〉 = 0 means that the state |ψ〉 is invariant under

conformal symmetry and thus that it makes sense in a theory where it has been

divided out.

A simple but extremely important point that we have so far not touched

upon is the fact that strings can have two different topologies: they can be open

or closed. Open strings are described by either of two boundary conditions:

Neumann: ∂σX
μ(0, τ) = ∂σX

μ(π, τ) = 0
Dirichlet: Xμ(0, τ) = fμ

0 (τ), Xμ(π, τ) = fμ
π (τ).

(3.8)

The Neumann boundary conditions assert that no momentum is flowing off

the string. They describe freely moving strings. Dirichlet conditions mean that

the string endpoints are attached to an object whose motion is described by the

functions fμ
0,π. These object are called D-branes (D for Dirichlet) and will be

described later. In this case momentum can flow off the string and onto the

D-brane.

Closed strings satisfy the natural periodic boundary conditions

Xμ(0, τ) = Xμ(π, τ). (3.9)

In Chapter 2 we analyzed the free boson action assuming periodicity. We

found two sets of independent oscillators, α and α̃. For the reader’s conve-

nience we repeat the mode expansion here (eliminating T for �s)

Xμ = xμ
0 + �2sπ

μ
0 τ +

i�s
2

∑
n�=0

1
n

[
αμ

ne
−2inσ− + α̃μ

ne
−2inσ+

]
. (3.10)

We use light cone coordinates σ± = τ±σ, and the quantity πμ
0 is the spacetime

center of mass momentum of the string.

For open strings the boundary conditions relate the left- and right-movers

by forcing them to form standing waves. In the Neumann case the mode ex-

pansion becomes

Xμ = xμ
0 + �2sπ

μ
0 τ + i�s

∑
n�=0

1
n
αμ

ne
−inτ cos nσ, (3.11)
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i.e, the oscillators are set equal, α = α̃. Similarly, the conformal transforma-

tions that preserve the boundary of the world-sheet are only the subset of (2.6)

satisfying ξ+(x) = ξ−(x) for a general argument x. Open strings are there-

fore described by just one Virasoro algebra. We denote the generators of this

algebra Ln, but remember that they do not generate the same “right-moving”

transformations as the original closed string homonym Ln.

Accordingly, the closed string Virasoro generators are given exactly as in

(2.25) and (2.27), while the single set of generators for the open strings looks

exactly the same as the Ln for the closed strings:

Ln =
1
2

∑
m

αn−m · αm. (3.12)

A numerical peskiness is that αμ
0 = πμ

0 /
√
πT in the open case but αμ

0 =
πμ

0 /
√

4πT in the closed. Because of the linguistic simplicity of having just

one algebra, we focus on open strings

Before dealing with the gauge-fixing let us make a comment on the operator

L0. We saw in Chapter 2 that the physical L0 includes a normal ordering

constant. This constant plays an important role in string theory, and is fixed

to a certain value. The Virasoro constraints imply that physical states must be

annihilated by the physical L0, differing from our definition by a constant a.
Thus we require

(L0 − a)|ψ〉 = 0 (3.13)

for all physical |ψ〉. Fleshing this out yields[
α′π2

0 − a+
∞∑

m=1

α−m · αm

]
|ψ〉 = 0. (3.14)

Since π0 is the spacetime momentum the above equation gives an expression

for the massM of the state |ψ〉:

M2 =
1
α′

( ∞∑
m=1

α−m · αm − a
)
. (3.15)

We see that our naive expectations were correct inasmuch as the masses of the

string states are Planckian (O(1/
√
α′)), but also that if the correct normal or-

dering constant a is positive, there may be a nontrivial massless representation

in the space of states. On the other hand, if none of the oscillators is excited, a

positive a means that the corresponding state is tachyonic.
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3.1.2 Modding out the conformal group

Let us now turn to the subtle issue of gauge-fixing the Polyakov action. We

view the problem form three different angles. In the first two methods the

world-sheet metric is integrated out already at the classical level, and the

constraints are put in by hand when treating the gauge fixed action. In the

Faddeev–Popov method the metric is integrated out at the quantum level.

In all three approaches problems arise if D �= 26 or a �= 1. The technical

appearance of the problems varies. In fact, one way of viewing the situation

is that, apart from being inconsistent one by one, the three approaches are not

equivalent unless D = 26 and a = 1.

3.1.2.1 Classical covariant quantization
The most straightforward quantization procedure starts by fixing the world-

sheet metric to ηαβ , leaving the action in (2.16)

S = −T
2

∫
dσdτ ηαβ∂αX · ∂βX. (3.16)

We have already dealt with this theory at some length in Chapter 2 and know

that the residual conformal invariance is broken by an anomaly at the quantum

level. Namely, its central charge is c = D. This smells like bad news, since it

is impossible to divide out a broken symmetry.

Put differently, the anomaly affects the way we can impose the constraints.

Imposing Ln|ψ〉 = 0 for all n becomes impossible. Assume, for instance that

Ln|ψ〉 = 0 for n > 0. Then

||L−n|ψ〉||2 = 〈ψ|LnL−n|ψ〉 = 2n〈ψ|L0|ψ〉+
D

12
(n3 − n), (3.17)

where we used (2.32) and that L†n = L−n. Taking n large, the last term domi-

nates and it is evident that we cannot demand L−n|ψ〉 = 0 for all n.
The solution is to impose

Ln>0|ψ〉 = 0 and (L0 − a)|ψ〉 = 0 (3.18)

with no constraints from the negative Virasoro operators. The rationale behind

this is that 〈ψ|Ln − aδn|ψ〉 then vanishes for all n. We thus let (3.18) be the

physical state condition.

Constructing states by choosing a πμ
0 eigenvalue and acting on them with

the Virasoro algebra one can get some feeling for the Hilbert space of states.

The fact thatD enters in the algebra and that a enters in the physical condition

makes the structure of the Hilbert space dependent on them. Playing around a

bit (see Section 2.2 in [GSWa]) reveals that there are negative norm states in

the spectrum if D > 26. In lower dimensions there are both positive and zero

norm states. Zero norm states are, if they decouple, signals of gauge invariance.
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For the particular values D = 26 and a = 1 the number of zero norm states

increases dramatically. This is a first hint of the special status of these values.

Pursuing this covariant method even further reveals unitarity problems if

D < 26.

3.1.2.2 Light-cone gauge quantization
Let us start again by gauging away the metric as in (3.16). It is possible to go

even further and to fix also the residual conformal symmetry of the Polyakov

action. The conformal symmetry affects only the coordinate fields, so the

gauge-fixing condition must be a requirement on these. A very convenient

choice is the light-cone gauge. This approach has the great advantage that the

Hilbert space is composed only of physical states. No zero norm states can

arise. The downside is that Lorentz symmetry is not manifest anymore. Actu-

ally, as we shall see, only ifD = 26 and a = 1 does Lorentz symmetry persist

to the quantum level.

To fix the gauge we choose one of the spacelike directions X1, . . . , XD−1

at random, say XD−1, and define the light-cone coordinates

X+ =
1√
2
(X0 +XD−1)

X− =
1√
2
(X0 −XD−1).

(3.19)

Denote the rest of the coordinates Xi with i = 1, . . . , D − 2. Now using a

conformal transformation σ+ → f(σ+) and σ− → g(σ−) it is simple to show

that τ can be taken to an arbitrary solution of the two-dimensional free wave

equation: τ → (f(σ+)+g(σ−))/2. Since all coordinate fields satisfy the wave

equation we can choose τ to be any of these! In particular let us choose

X+(σ, τ) = x+ + π+
0 τ. (3.20)

This is the light-cone gauge condition. One of its virtues is that the Virasoro

constraints can be solved explicitly. Indeed with the metric fixed to ηαβ the

condition (3.6) reads

∂+X · ∂+X = ∂−X · ∂−X = 0, (3.21)

which in our gauge becomes

∂+X
− =

1
�2sπ

+
0

∂+X
i∂+X

i

∂−X− =
1

�2sπ
+
0

∂−Xi∂−Xi.

(3.22)

This precisely (save for an integration constant) determinesX− in terms of the

Xi. In particular, all creation operators α−n become functions of the αi
n and
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are not considered as independent degrees of freedom. In this formalism it is

clear that the number of physical oscillators corresponds to a transverse set of

degrees of freedom. The only subtlety appears in determining α−0 , since we

then encounter normal ordering ambiguities on the right-hand side. This is the

way the normal ordering constant a enters in the light-cone gauge approach.

Indeed, solving for π−0 we obtain

π−0 =
1

4α′π+
0

( ∞∑
m=−∞

: αi
−mα

i
m : −a

)
, (3.23)

translating into the mass-shell condition

M2 = (2π−0 π
+
0 − πi

0π
i
0) =

1
α′

( ∞∑
m=1

αi
−mα

i
m − a
)

(3.24)

Thus we see that this a plays exactly the same role as the a in (3.13) and

(3.15). In the light-cone gauge, however there are less oscillators to excite.

We are also provided with an intuitive way to determine the correct condition

for a. Since the manifest Lorentz symmetry is broken down to SO(D − 2),
all states in this formalism will furnish representations of this group. Consider

for instance states obtained from the action of αi−1 on the vacuum. They must

transform as vectors of SO(D−2). This is the correct transformation property

for a massless vector in SO(D − 1, 1) and not for a massive one. But we

hope that the Lorentz symmetry we hid by choosing the gauge is still there. It

surely is in the classical theory. So this state really must be a massless Lorentz

vector. Since the state only has one oscillator quantum, computing the mass

from (3.24) gives α′M2 = (1− a) which is canceled only if a = 1.
The statement about when the theory remains Lorentz invariant quantum

mechanically can be made precise by computing the Lorentz algebra. The gen-

erators of the algebra can be found as Noether charges corresponding to the

Lorentz symmetry of the action. Thus their commutation relation can be stud-

ied through those of the oscillator operators αμ
n. Since the α−n are expressed in

terms of the αi
n, problems can arise.

The actual computation is slightly technical, but uses the same techniques

we used when finding the anomalous term in the Virasoro algebra. Careful

evaluation of a suitable commutator shows that the theory is Lorentz invariant

if and only ifD = 26 and a = 1. The curious reader will find the computation

e.g. in Chapter 2 of [GSWa].

3.1.2.3 A ghost story
Our last approach is much more fancy than the two first. Not wanting to intro-

duce too many new tools we keep the discussion quite superficial. Consider
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the Euclidean path integral of the Polyakov action

Z =
∫
DγDX e−SP[γ,X] (3.25)

where we suppress the indices of γαβ and Xμ. This functional integral in-

cludes each physical field configuration many times. Indeed we want to count

configurations differing by a Weyl transformation and a reparameterization as

one and the same. An often used procedure to gauge-fix path integrals was

invented by L. Faddeev and V. Popov [FP67].

The basic problem is the following. Just fixing the symmetry by some gauge

condition is alright as far as the action is concerned. The measure, in this case

DγDX , however also contributes to the path integral, and does so in a way

that depends on the chosen gauge condition. This must be compensated for

by inserting a determinant in the path integral measuring how the condition

depends on transformations in the gauge group.

What Faddeev and Popov found was that there is a neat way of formulating

this determinant in terms of a new factor in the path integral, dependent on

new fields. These fields are called ghosts because they are not representing

physical degrees of freedom.

Using this method and fixing the reparameterization symmetry by the con-

dition

γαβ = eφ(σ,τ)ηαβ (3.26)

yields the following path integral

Z =
∫
DφDX DbDc e−SP[η,X]−Sg , (3.27)

where Sg is the ghost action

Sg = − 1
π

∫
d2σ
(
c−∂+b−− + c+∂−b++

)
. (3.28)

Since the actions are independent of φ, we have managed to gauge-fix exactly

as much as we did in the covariant approach. The φ-integral has become a

trivial factor. Now, however we have new fields! The conformal symmetry is

still unfixed so the total action S = SP + Sg is a conformal field theory. The

Virasoro generators now obtain a term that generates the conformal transfor-

mations of the ghosts:

Ltot
n = Ln + Lghost

n − aδn. (3.29)

We also included the normal ordering constant in the definition of L0 here.
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Computing the quantum corrected Virasoro algebra of the full theory is

analogous to the free scalar case of Chapter 2 and produces

[Ltot
m , Ltot

n ] = (m− n)Ltot
m+n +

(
D − 26

12
m3 − D − 2− 24a

12
m

)
δm+n.

(3.30)

So the theory is really conformally invariant, even at the quantum level, if

D = 26 and a = 1! Put differently, the central charge of the combined system

of scalars and ghosts vanishes: c = 0.
What remains, is to define what is meant by physical states. Clearly, we

should not have more degrees of freedom (b and c) after the gauge fixing than

before. The method for this is the BRST procedure, named after C. Becchi, A

Rouet, R. Stora and I.V. Tyutin [BRS76, Tyu75]. The method depends on that

the total action S = SP+Sg after gauge-fixing possesses a new fermionic sym-

metry generated by a nilpotent charge Q. The physical states are cohomology
classes with respect to Q, meaning that Q|ψ〉 = 0 and that |ψ〉 ∼ |ψ〉+Q|φ〉
for any |φ〉.

In the present case the BRST charge is constructed from the Virasoro gen-

erators and it fails to be nilpotent if there is a central charge in the algebra.

Thus, to be able to define a physical spectrum the theory must be conformally

invariant, i.e, D and a must have their magic values.

This concludes our treatment of the gauge fixing of string theory, but before

presenting the spectrum of physical states let us recollect what the three ap-

proaches taught us. The conformal anomaly that exists if D �= 26 and a �= 1
manifests itself differently in the different cases. This is the common situation

with anomalies: they can be shuffled around, but they never go away1.

Thus, in the classical covariant approach the anomaly surfaces as negative

norm states for D > 26 and as unitarity problems at D < 26. The theory is

manifestly Lorentz invariant in all dimensions though. In light cone gauge on

the other hand, there are no zero or negative norm states. Instead the anomaly

breaks Lorentz invariance unless D = 26 and a = 1. Finally, in the Faddeev–

Popov approach where the gauge fixing takes place at the quantum level the

anomaly appears as the conformal anomaly of the resulting theory if D �=
26 and a �= 1. The absence of this anomaly is equivalent to the existence

of a nilpotent BRST charge, and thus to the consistency of the gauge-fixing

procedure. If we are in 26 spacetime dimensions and choose a = 1, all three
approaches are equivalent.

3.1.3 Spectrum

In the last subsection we put quite some effort into convincing ourselves that

strings have strong opinions on the values of D and a. If D = 26 is an ap-

1For gauge anomalies, this is an instance of a more general principle: conservation of misery.
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pealing answer is left for the reader to judge, but a = 1 excellent! It precisely

allows for one level of massless vibrational states of the string.

Let us explore this level starting with open strings. The most convenient

framework is the light-cone gauge. The string Fock space is built up of simple

harmonic oscillator Hilbert spaces. We have 24 infinite sets of oscillator cre-

ation operators αi−n. As described implicitly in Chapter 2, and as is evident

from the commutation relations (2.26) the operator αi−n raises the eigenvalue

of the number operator

N =
∑
m≥1

αi
−mα

i
m (3.31)

by n. The mass is given simply in terms of N :

α′M2 = N − 1. (3.32)

The oscillator ground state should be annihilated by all αn>0. However, α0

is not an oscillator but describes the spacetime momentum of the string. It

can have any eigenvalue as long as the mass shell condition is satisfied. Thus,

there is a continuous family of oscillator ground states labeled by their πi
0 and

π+
0 eigenvalues, i.e., their spacetime momentum. Let us call these states |0; p〉

where p replaced π0 for brevity and the zero indicates that it is an oscillator

vacuum αi
n>0|0; p〉 = 0. This state has mass M2 = −p2 = −1 and is the

feared for tachyon.

Moving up to the next level we have the states αi−1|0; p〉 representing a

massless vector with 24 polarizations. This is the only massless excitation of

the open string.

To see the connection of string states to spacetime fields, note that we can

construct the superposition

|A, τ〉 =
∫
dpAi(τ, p)αi

−1|0; p〉. (3.33)

The coefficient Ai(p) should be viewed as the momentum space wave func-

tion of a spacetime field, and imposing the world-sheet Schrödinger equation

i∂τ = H shows that A fulfills the light-cone gauge Maxwell equations. Thus

the massless excitation of the open string is a photon.

Let us turn to closed strings. In this case both L0 and L̄0 must be shifted

by the same constant a = 1. This imposes a relation between the α and α̃
operators: N = Ñ . Thus, the total mass must split up in equal amounts com-

ing from left- and right-movers. However, this energy need not be distributed

evenly on the levels. E.g., α̃i−2α
j
−1α

k−1|0; p〉 is perfectly allowed. The closed

strings satisfy a mass shell condition similar to that of open strings:

α′M2 = 8(N − 1) = 8(Ñ − 1). (3.34)
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(a) (b) (c)

Figure 3.1: Three different world-sheet topologies all describing two closed strings

that scatter against each other. The different topologies correspond to different loop

order: (a) is at tree-level, (b) at one loop and (c) at three loops.

Consequently, the ground state is again tachyonic. The massless states are of

the form

|Mij〉 = Mijα
i
−1α̃

j
−1|0; p〉. (3.35)

The matrix Mij splits up in three SO(24) irreducible representations: a trace

part, an antisymmetric tensor Bij and a traceless symmetric tensor gij . These

three fields (and their superstring cousins) all play fundamental roles. The

trace part corresponds to a spacetime field Φ(Xμ) called the dilaton. As we

shall see, it sets the strength of string interactions. The antisymmetric tensor

Bij is a two-form analog of the Maxwell field called the Kalb–Ramond field.

In Chapters 4, 5 and 6 we put the corresponding field strength through com-

pact cycles in the internal geometry to stabilize it. Last, but certainly not least,

the traceless tensor gij is the massless spin two particle that transmits the grav-

itational interaction — the graviton.

3.1.4 Interactions and genus expansion

The way interactions are described in string theory is at the same time beauti-

ful and unsatisfactory. Its beauty lies in the geometric nature, and the unsatis-

faction in the absence (except in very simple cases) of an underlying principle,

like the path integral of quantum field theory.

If we want to study two closed strings that scatter again into two closed

strings we have to specify that the world-sheet looks something like one of

the examples in Figure 3.1. In fact any of the variants in (a)–(c) could do.

String theory proposes that these different topologies of the world-sheet are

the counterparts of the Feynman diagrams of quantum field theory. Thus (a)
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corresponds to a tree diagram, (b) to a one-loop diagram and (c) to a three-

loop diagram. We should therefore sum over all different topologies to get the

total amplitude. This sum is called the genus expansion.
By using gauge invariance the local geometry of the different world-sheets

can be fixed to a “reference shape” much like when we chose γαβ = ηαβ .

When the world-sheet topology is nontrivial this procedure is slightly more

complicated. Not all geometries are gauge equivalent and we must integrate

over the inequivalent ones. Luckily the number of parameters in these inte-

grations is finite. The parameters are called world-sheet moduli. The gauge

freedom is used to put the external legs into points where the initial (final)

states are encoded by insertion of so-called vertex operators, whose positions

should also be integrated over. Thus, formally,

Here the crosses symbolize vertex operator insertions, and an integration over

moduli and insertion points should be carried out for each term.

In field theory there is a coupling constant weighing the amplitudes in the

Feynman expansion, allowing for a well-defined perturbation theory. Strings

have no free parameters, so what should this be? It can only be a field that is

already present in the theory. The field doing the job is the dilaton. Namely,

it turns out that the correct way to couple strings to a (possibly spacetime

dependent) background dilaton Φ(Xμ) is to include the Einstein–Hilbert like

term

Sd =
1
4π

∫
d2σ

√
γ Φ(Xμ)R (3.36)

in the string action. Here R is the world-sheet Ricci scalar obtained from

the metric γαβ . In two-dimensions the Einstein–Hilbert term is topological

and its integral gives 4π times the Euler characteristic χ of the world-sheet,

which is a topological invariant. It is related to the genus h of the surface by

χ = 2(1− h). The genus is simply the number of holes in the surface. A con-

stant vacuum expectation value Φ0 for the dilaton therefore sets the coupling

constant. Consider for instance an amplitude with a world-sheet of genus h:

Zh =
∫
DγDXe−SP−Sd = e−χΦ0Zh[Φ = 0] = g2h−2

s Zh[Φ = 0], (3.37)

where gs ≡ eΦ0 is called the string coupling. Thus, the genus h amplitude is

weighed by g2h−2
s . Rescaling the vertex operators by a factor gs, this is the

power expected from the point particle limit.

To end this section on the bosonic string let us make an additional comment

regarding the spacetime fields that correspond to the energy eigenstates of the
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string. Vacuum expectation values of the fields Φ, Bij and gij can all be in-

corporated naturally in the world-sheet descriptions of the string. The dilaton

was described above, and the correct way to incorporate the graviton is just to

allow for a spacetime dependent (i.e. field dependent) metric2 gμν(X) in the

Polyakov action

SP = −T
2

∫
d2σ

√
γ γαβ gμν(X)∂αX

μ∂βX
ν . (3.38)

The B-field couples to the Xμ through a similar term, but with γαβ replaced

by the two-dimensional antisymmetric tensor εαβ .

Quantum consistency (read no Weyl anomaly) gives conditions on these

background fields. These conditions look exactly as equations of motion. For

instance, to lowest order in α′ the condition on the metric is just Einstein’s

equations for gμν! Strings knows about general relativity. At this point it is

dazzling to remember how little we put in from the start: action equals volume

times tension.

In this way, and through studying scattering amplitudes, it is possible to

formulate the low energy dynamics of string theory in terms of effective field
theory. This is the approach used in Chapters 5 and 6.

Including background fields also allows other exciting effects. For instance

the whole analysis leading to the critical dimension is affected when a non-

trivial background is considered. There are examples of consistent string mod-

els in other dimensions than 26, but the price paid is always Lorentz non-

invariance of the background fields.

3.2 Superstrings

The bosonic string suffers from two major drawbacks. It has a tachyonic

ground state, and it lacks fermions. Including fermions in a way that leads

to spacetime supersymmetry actually solves both these problems.

3.2.1 World-sheet fermions and the critical dimension

In the Ramond–Neveu–Schwarz approach to superstrings one begins by in-

cluding fermionic fields ψμ propagating on the world-sheet. These are Majo-

rana spinors with two real components

ψμ =

(
ψμ
−

ψμ
+

)
(3.39)

2Since the world–sheet action is covariant, what appears is the covariant manifestation gμν of

the light-cone field gij .
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that transform as spacetime vectors. With the two-dimensional “γ”-matrices

ρτ =

(
0 −i
i 0

)
, ρσ =

(
0 i

i 0

)
(3.40)

the supersymmetric action reads

SP = −T
2

∫
d2σ
(
∂αX · ∂αX − iψ̄μρα∂αψμ

)
. (3.41)

This action can be treated very analogously to the bosonic case, and having

analyzed that in some detail we just present the results and main differences.

One important new feature is the possibility for two different boundary con-

ditions for the fermions. Indeed, varying with respect to ψμ in (3.41) and

keeping the boundary terms reveals that one must require

ψ+ · δψ+ = ψ− · δψ− (3.42)

at σ = 0, π for the open strings. This is satisfied for either ψμ
+ = ψμ

− or

ψμ
+ = −ψμ

− at the two boundaries. Since we are free to rename the fields

ψ+ → −ψ+, we can always choose ψμ
+(0) = ψμ

−(0) so that the distinct physi-

cal possibilities are parameterized by the σ = π condition. The two boundary

conditions are known as Ramond (R) and Neveu–Schwarz (NS) boundary con-

ditions:
Ramond : ψμ

+(π) = ψμ
−(π),

Neveu− Schwarz : ψμ
+(π) = −ψμ

−(π).
(3.43)

For closed strings one can choose periodicity (R) or anti-periodicity (NS) for

the left- and right-moving fermions, respectively. This results in four sectors:

NS–NS, NS–R, R–NS and NS–NS.

Proceeding as in the bosonic case, i.e, identifying the constraints3 and im-

plementing them in the light-cone gauge one finds the condition onD. It turns

out that the critical superstring dimension is D = 10.
The spectrum is generated by both bosonic creation operators αμ

n, and

fermionic counterparts ψμ
r playing an almost identical role. Because of the

boundary conditions r takes integer values in the R-sector and half-integer

values in the NS–NS sector. Both closed and open superstring theories

contain a tachyon in the NS–NS and the NS sectors, respectively.

3.2.2 GSO projection and the fantastic five

Even if we did not show it, it seems plausible that the inclusion of world-sheet

fermions also leads to states that transform as spinors under the spacetime

3Now these come from gauge-fixing a supergravity action. The corresponding algebra is called

the super-Virasoro algebra.
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Lorentz group. This is indeed the case. We have therefore met the goal to make

strings that describe spacetime fermions. To wrap things up we just need to

get rid of the tachyon.

Wonderfully enough, superstring theory admits a consistent truncation

known as the GSO projection after its inventors F. Gliozzi, J. Scherk and

D.I. Olive. Basically it projects out the states with an even number of

fermionic excitations and keeps those with an odd number. In the NS sector,

the projection is really as simple as that: the projection operator P is given by

P =
1
2
(1− (−1)F ) (3.44)

where F is the fermion number operator

F =
∑
r>0

ψ−r · ψr. (3.45)

In the R sector it turns out that one has to do a bit more. One has to correlate

the fermion number projected out with the spacetime chirality of the state.

There are two choices for how to do this:

P =
1
2
(1± Γ11(−1)F ) (3.46)

where Γ11 is the spacetime chirality operator. The choice between + and − is

just conventional for open strings, but it becomes important in the R–R sector

of closed strings where it is possible to use different GSO projections for left-

and right-movers.

If the projections above are carried out, only half of the mass levels survive.

In particular, the tachyonic NS mode is eliminated. Left is a theory which

is unitary, Lorentz invariant, free of tachyons, spacetime supersymmetric and

offers a perturbative description of quantum gravity. This is a truly remarkable

achievement.

Let us now try to collect the possible consistent string theories. It turns out

that there are two more pieces of information needed before we can do so.

First, in the open string case one can actually obtain a consistent theory by

choosing the left-movers to be a set of D = 26 bosonic oscillators while the

right-movers are superstring variables. The additional 16 bosonic degrees of

freedom are interpreted as internal. The resulting theory is called heterotic
string theory. Second, it is possible to add non-abelian gauge invariance to

open strings. The quantum theory turns out to be very restrictive on the pos-

sible gauge groups, allowing only SO(32) in the “pure superstring” case and

allowing either of SO(32) or E8 × E8 in the heterotic case.

When the dust settles, there are five known consistent superstring theories:
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• Type I superstrings are open strings with fermionic excitations traveling in

both directions. The only allowed gauge group is SO(32). The theory has

N = 1 supersymmetry in spacetime.

• Type IIA superstrings are closed superstrings where the opposite GSO pro-

jections are chosen for left- and right-movers. The theory is N = 2 space-

time supersymmetric.

• Type IIB superstrings are closed superstrings where the same GSO projec-

tions are chosen for left- and right movers. Also this theory has N = 2
supersymmetry.

• The heterotic SO(32) theory consists of open strings with left-movers from

bosonic string theory. The gauge group is SO(32) and the theory hasN = 1
supersymmetry.

• The heterotic E8 × E8 theory consists of open strings with left-movers

from bosonic string theory. The gauge group is E8×E8 and the theory has

N = 1 supersymmetry.

One can now go on to construct the massless spectra of these theories. The

procedure is identical to that for bosonic strings. We will only be concerned

with type II theories in this thesis, so we present their spectra only.

Spacetime fermions reside in the mixed (NS–R and R–NS) sectors. These

are gravitini (Ψ and Ψ′) and dilatini (λ and λ′). In our story fermions will

always be set to zero. Bosons, on the other hand will play an important part.

In the NS–NS sector we find the massless bosonic fields present already in

the bosonic theory: the graviton gμν , the Kalb–Ramond two-form field4 B2

with corresponding field strength H3 = dB2 and the dilaton Φ. In the R–R

sector type IIA has gauge potentials of odd degree: Ck with k = 1, 3, 5, 7
whereas type IIB has gauge potentials of even degree Ck with k = 0, 2, 4, 6, 8.
The field strength of a k-form gauge potential is a (k + 1)-form given by the

external derivative: Fk+1 = dCk.

These R–R fields turn out to be electromagnetic dual to each other:

Fk+1 = ∗F10−(k+1), (3.47)

where ∗ is the Hodge star operator. Thus only C1,3 and C0,2,4 represent inde-

pendent degrees of freedom and the five-form field strength of type IIB is self

dual:

F5 = ∗F5. (3.48)

The bosonic field content of type II string theories is summarized in Table 3.1.

Let us now turn to the low energy dynamics of the type IIB fields.

4To avoid cluttering the notation with indices we use the language of differential forms to de-

scribe gauge fields and their field strengths. Readers feeling uneasy with forms should without

delay consult the excellent lecture notes on topological strings [Von05] by M. Vonk.
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Sector: IIA IIB

NS–NS gμν , B2,Φ gμν , B2,Φ
NS–R Ψμ, λ Ψμ, λ

R–NS Ψ′μ, λ′ Ψ′μ, λ′

R–R C1, C3, . . . , C7 C0, C2, . . . , C8

Table 3.1: Massless spectra of the type IIA and IIB theories. The NS–NS sector con-
sists of the graviton gμν , the Kalb–Ramond field B2 and the dilaton Φ. The mixed
sectors contain gravitini (Ψ and Ψ′) and dilatini (λ and λ′). In the R–R sector type
IIA has gauge potentials of odd degree, whereas type IIB has gauge potentials of
even degree. Electromagnetic duality relates Ck to C8−k in each theory. In particular
F5 = dC4 is self dual.

3.2.3 Type IIB supergravity

Since string theory is technically very complicated, and computations in the

full formalism are hard, a useful approach is to identify situations where

“stringy” corrections are small. These situations can be analyzed in terms of

a low energy effective theory. For string theory such theories are supergravity
theories, i.e., theories with local supersymmetries.

There are a number of ways to obtain information about the low energy field

theories. One was illustrated in Section 3.1: consistent quantization requires

background fields to fulfill certain equations. One can also use tree-level scat-

tering amplitudes or, as is most efficient in the present case, rely on supersym-

metry. Type IIB string theory is maximally supersymmetric and possesses 32

supersymmetry generators. In ten dimensions there are only two maximal su-

pergravities. These, not coincidentally, go under the names type IIA and type

IIB supergravity.

The bosonic part of the action of type IIB supergravity is5

SIIB = SNS + SR + SCS (3.49)

where

SNS =
1

2κ2
10

∫
d10x
√
|g| e−2Φ

(
R+ 4∂μΦ∂μΦ− 1

2 · 3!
|H3|2
)

SR = − 1
4κ2

10

∫
d10x
√
|g|
(
|F1|2 +

1
3!
|F̃3|2 +

1
2 · 5!

|F̃5|2
)

SCS = − 1
4κ2

10

∫
C4 ∧H3 ∧ F3.

(3.50)

5In taking the square of a p-form, we differ by a factor p! form the conventions of Ref. [Polb].

We take |Fp|2 = Fμ1...μpF μ1...μp .
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The F̃3 and F̃5 are just combinations of the fields and are given by

F̃3 = F3 − C0 ∧H3, F̃5 = F5 − 1
2
C2 ∧H3 +

1
2
B2 ∧ F3, (3.51)

and

κ2
10 =

1
2
(2π)7(α′)4. (3.52)

Nothing in this action is really that surprising. There is an Einstein–Hilbert

term for the metric. It is multiplied by the dilaton, but this coupling can be

eliminated by redefining the metric gE
μν = e−Φ/2gμν . In string lingo this is

known as changing from “string frame” to “Einstein frame”. Then there is a

kinetic term for the dilaton Φ and Maxwell terms |F |2 = F ∧ ∗F for each

of the field strengths F1, F̃3, F̃5 and H3. Regarding these so-called improved
field strengths F̃p+1 it is noteworthy that the gauge transformations that leave

the action invariant are not the naively expected ones. Instead they are

Cp → Cp + dΛp−1 +H ∧ Λp−3. (3.53)

This transformation leaves F̃p invariant, but not Fp = dCp−1. Note that the

field strengths F̃p+1 are not closed. Finally there is a Chern–Simons term SCS.

The action (3.49) almost describes the low-energy dynamics, but not quite.

The self-duality condition of the five-form field strength does not follow from

varying the fields but must be put in by hand at the level of equations of mo-

tion.

This concludes our discussion of perturbative superstring theory. The last

section of this chapter treats other extended objects in string theory: D-branes.

3.3 D-branes

Toward the end of the last section we found that the type II string theories

contain a number of p-form gauge fields. It would be a shame to have all these

gauge fields with nothing to source them. Let us now turn to this issue. As a

warm-up let us deal with a simple system but in fancy language.

Consider a one-form U(1) gauge field C1 = Cμdx
μ in D-dimensional

spacetime. A test-particle is electrically charged under A if there is a term

Scharge = qe

∫
Σ1

C1 (3.54)

in the action. Here Σ1 is the particle’s world-line and qe is the charge. Note

that it is essential that the dimensions match. The one-form is integrated over
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a one-dimensional world-volume. Including also a Maxwell term

SMaxwell =
1
2

∫
Σ1

F2 ∧ ∗F2 (3.55)

the equations of motion read

d ∗ F2 = qeδ
(D−1)(Σ1). (3.56)

They imply the Gauss law∫
SD−2

∗F2 = qe

∫
BD−1

δ(D−1)(Σ1) = q (3.57)

for any spacelike SD−2 = ∂BD−1 enclosing the point charge. For a magneti-

cally charged object, there is no term in the action corresponding to (3.54), be-

cause the gauge potential is not well defined on a magnetic monopole. Namely,

a magnetic charge qm is a source for F2 rather than ∗F2:

dF2 = qmδ
3(ΣD−3) �= 0. (3.58)

This implies ∫
S2

F2 = qm

∫
B3

δ3(ΣD−3) = qm. (3.59)

Note that a magnetic monopole is not point-like ifD �= 4, but rather a (D−4)-
dimensional object with (D − 3)-dimensional world-volume.

For higher dimensional gauge fields the story is completely analogous. A

(p + 1)-form gauge field Cp+1 couples electrically to a p dimensional object

with (p+ 1)-dimensional world-volume:

Sobject = qe

∫
Σp+1

Cp+1, (3.60)

and magnetically to a (D − (p+ 4))-dimensional object with (D − (p+ 3))-
dimensional world-volume:∫

Sp+2

Fp+2 = qm

∫
Bp+3

δ(p+3)(ΣD−(p+3)) = qm. (3.61)

From the perturbative point of view there is only one extended object in string

theories: the string itself. It should be electrically charged under a two-form

gauge field. This gauge field turns out to be the B-field.

For the R–R fields Cp+1 of the type II theories there is no such world-sheet

coupling. Indeed these fields couple to perturbative strings only through their

field strengths and not through the potentials. Strings are therefore not charged

even under the C2 of type IIB for which the dimensions match.
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The nature of the R–R charges was first analyzed from a supergravity per-

spective. The charged objects were found to be solitonic solutions, not unlike

the ordinary magnetic monopole, and were called p-branes.
It was J. Polchinski who in 1995 explained the microscopic nature of the

p-branes from string theory. They are objects on which open strings can end.

Recall the possible boundary conditions for open strings (3.8). One can mix
Neumann and Dirichlet boundary conditions, having different conditions in

different directions:

∂σX
μ(0, τ) = ∂σX

μ(π, τ) = 0 μ = 0 . . . p
Xμ(0, τ) = fμ

0 (τ), Xμ(π, τ) = fμ
π (τ) μ = p+ 1 . . . D.

(3.62)

These boundary conditions mean that the strings are free to move in p spatial

dimensions but constrained in the other D − (p + 1). It is exactly as if the

endpoints were attached to some objects whose motion is described by the

functions fμ
0,π.

What Polchinski did was to compute the R–R charge of such an object,

finding that it corresponds exactly to that of a p-brane! This discovery was

one of the key ingredients in the second superstring revolution of the mid 90s,

the other being the web of dualities and M-theory6.

There are different types of gauge fields in the two type II theories and

therefore different types of D-branes: type IIA has even dimensional branes,

and type IIB odd dimensional. For later reference we write down the value of

the electric R–R charge of a μp of a Dp-brane (i.e., its coupling to Cp+1):

μ2
p =

π

κ2
10

(4π2α′)3−p. (3.63)

Branes are nowadays viewed as our most important window into the non-

perturbative physics of string theory. They are also of crucial importance in

constructing realistic string theory models. In this thesis D-branes will appear

as pieces in this cosmic LEGO in Chapter 6 and as microscopic models of

black holes in Chapter 5.

6We postpone the discussion of string dualities until we need them in Part II of this thesis.
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4. Type IIB compactifications

Rakt fram kan man inte gå så långt
Lille prinsen

To obtain phenomenological models from string theory, the number of

spacetime dimensions must be reduced. The most popular way of doing

this is to compactify six of the dimensions. In this chapter we explain the

basic physics of compactifications of type IIB superstrings. We start by a

down-to-earth treatment of Kaluza–Klein reduction, explaining how the

ten-dimensional fields split up in modes that are massless, and modes with

mass inversely proportional to the compactification radius. Then we describe

type IIB compactifications with N = 2 spacetime supersymmetry in four

dimensions. The corresponding compact spaces are Ricci-flat and Kähler,

and have received their own name: Calabi–Yau manifolds. For a given

Calabi–Yau topology there is a finite-dimensional space of Ricci-flat Kähler

metrics called the moduli space. Deformations of the metric within this space

correspond to unobserved, and hence unwanted, massless scalar fields in four

dimensions.

To construct models where all these fields receive masses is crucial to come

in contact with real world phenomenology. One effect that gives masses to the

moduli fields are R–R and NS–NS fluxes piercing cycles in the internal geom-

etry. These break supersymmetry (at least) to N = 1 in four dimensions and

the resulting theories are called flux compactifications. Flux compactifications

play an important role in this thesis, and we put some effort into reviewing

their basic properties in the last section of this chapter.

4.1 Kaluza–Klein reduction

Suppose that the world, let us call it X , is a direct product of Minkowski space

R
3,1 and a small compact d-dimensional partM:

X = R
3,1 ×M. (4.1)

We denote the coordinates on the whole X by xM with M = 0, . . . d + 3
with a capital Latin index. The coordinates on R

3,1 are denoted xμ with Greek

indices and those onM are called ym,m = 1, . . . , d with small case Latin in-
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dices. Note that this differs from Chapter 3, where the ten-dimensional indices

were labeled by Greek indices.

We assume that the background metric is block-diagonal in (xμ, ym):

gMN =

(
ημν 0
0 gmn(y)

)
, (4.2)

where ημν is the four-dimensional Minkowski metric.

Suppose now that there is some field theory living on X . We are interested

in the low-energy physics, i.e., physics that takes place at length scales much

larger than the compactification radius R = (Vol(M))1/d. Consider first a

massless scalar field φ obeying the Klein–Gordon equation

∇M∇Mφ = ∂μ∂μφ+∇m∇mφ = 0. (4.3)

Let us expand φ in the eigenfunctions of the Laplacian Δ(d) onMd:

φ =
∑

n

fn(xμ)hn(y), Δ(d)hn = ∇m∇mhn = −M2
nhn. (4.4)

We have denoted the (non-positive) eigenvalues of the Laplacian by −M2
n.

They indeed have mass-dimension two, and by inserting the expansion into

(4.3) we find

∂μ∂μfn −M2
nfn = 0. (4.5)

The expansion coefficients fn behave as four-dimensional fields with mass

Mn. This infinite tower of massive fields is called the Kaluza–Klein (KK)

tower after T. Kaluza and O. Klein who studied compactifications in the 1920s

[Kal21, Kle26]. Their motivation was to unify electromagnetism and general

relativity.

The eigenvalues of the Laplacian go as Mn ∼ 1/R, so the low energy

physics taking place at length scales� R will not be able to excite expansion

coefficients with nonzeroMn. For the scalar field case this means that the low

energy degrees of freedom are constant onMd since any harmonic function

on a compact manifold is constant. Let us, just for fun, put a naive experi-

mental upper bound on the size R of extra dimensions. In the latest particle

accelerators we are able to detect particles of masses M ∼ 102 GeV, so we

should see the first states of the KK tower if the compact dimensions have a

size of order

R ∼ �c

102GeV
∼ 10−18 m. (4.6)

Not only scalar fields give rise to massless modes and KK towers when com-

pactified. For fields with nonzero spin the analysis is very similar, but a little

more interesting. Let us consider the gauge potentials C0,2,4 and B2 of type
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IIB for instance. Making a similar expansion as in (4.4) one finds that modes

that do not receive KK masses correspond to harmonic forms on the internal

space. There are two crucial differences from the scalar case. First, the legs of

the form can be split up in several ways into external and internal indices. For

definiteness, B2 will have three components:

B2(x, y) = B2(x) +B1(x) ∧ v(y) + b(x)ω(y). (4.7)

Here B2(x), B1(x) and b(x) are a two-form, a one-form and a scalar, respec-

tively. These forms have no legs in the compact dimensions, and do not depend

on them. The forms v and ω are purely compact forms (v is a one-form and ω
is a two-form). The compact forms must be harmonic for the multiplying non-

compact form to be massless. Thus a two-form field can give rise to massless

two-forms, one-forms and scalars in four-dimensions!

Secondly, the harmonic forms are more interesting than the harmonic

scalars that are simply constant. A compact manifold can have many

independent harmonic forms of a given degree. The space of harmonic forms

is in one-to-one correspondence with de Rham cohomology classes. So (4.7)

should really look like this:

B2(x, y) = B2(x) +BA
1 (x) ∧ vA + ba(x)ωa(y), (4.8)

where vA is a basis of H1
Δ(M) ≈ H1

deRham(M) and ωa is a basis for

H2
Δ(M) ≈ H2

deRham(M).
Here we encounter the fact that the topology of the compact manifold M

influences the low energy field content of the four dimensional theory. The

dimensions of the de Rham cohomology groups — the Betti numbers — are

topological invariants. They determine the spectrum of four-dimensional form

fields.

By diagonalizing the relevant wave operator, fermion fields can be treated in

a very similar manner. Treating fluctuations of the metric also follows a closely

related routine. Fluctuations δgμν in the non-compact components of the met-

ric are heavy unless they fulfill the linearized four-dimensional Einstein’s

equations. They are ordinary gravitational waves. Massless off-diagonal fluc-

tuations δgmμ are in one-to-one correspondence with continuous isometries

of the compact manifold. These isometries and their generating Killing vec-

tors thus play the role harmonic one-forms did for antisymmetric two-tensors.

Their existence directly influences the low-energy field content. Last, a field

z(x) multiplying a purely internal fluctuation δgmn is massless only if the

fluctuation δgmn keeps the internal geometry Ricci flat. Such fluctuations pa-

rameterize the possible background metrics and are called moduli. Thus, a
continuous degeneracy in the space of compact background metrics gmn re-

sults in massless scalars in four-dimensions.

So we learned that in compactifying a higher dimensional field theory, the

compact geometry and topology provide the defining data of the low-energy
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effective field theory. With our newly acquired knowledge of string theory we

immediately ask ourselves if there are any special compact geometries that

string theory would like, or perhaps even demand. We saw earlier that string

theory is picky with a lot of things. Happily or sadly, dependent on your incli-

nation, it seems that string theory has relatively mild opinions regarding the

compact space. From a computational and phenomenological point of view

however, supersymmetry is very desirable. Let us turn to a class of compacti-

fications having this feature.

4.2 Calabi–Yau spaces

The most obvious requirement that the internal geometry must fulfill is that

it solves the equations of motion. If we consider just empty space, these are

(to first order in α′) Einstein’s vacuum equations Rmn = 0. If we consider

more general backgrounds, e.g including fluxes, the equations are more com-

plicated.

Another, albeit not a priori necessary, but both phenomenologically and

practically attractive feature is supersymmetry. The phenomenological appeal

comes from a tentative solution to the hierarchy problem and a more accu-

rate unification of gauge couplings. Supersymmetry is also desirable from a

practical perspective. It is much simpler to find supersymmetric solutions to

a theory, and supersymmetry can restrict e.g. the form of the resulting low

energy action.

Supersymmetry will play a vital role in the rest of this chapter, and also

in Chapters 5 and 6. It will mainly do so behind the scenes, but now and

again some technicalities will surface. We do not attempt any introduction to

supersymmetry here. Instead we try to explain the necessary concepts first

when explicitly forced to, starting in the next subsection. A reader completely

unfamiliar with supersymmetry will find the explanations far from sufficient

though, and should consult e.g. the reviews by J.M. Figueroa-O’Farrill [FO01]

and D.G. Cerdeno and C. Munoz [CM] which are both very readable.

4.2.1 Geometry and supersymmetry

Supersymmetry is a symmetry relating fermions and bosons; a supersymmetry

transformation takes bosons to fermions and vice versa. Consequently, the in-

finitesimal parameter in the transformation must be Grassmannian. Denoting

bosonic fields collectively by φ and fermionic fields by ψ, a very schematic

transformation would look like

δεφ ∼ ε̄ψ

δεψ ∼ γMD(φ,ψ)
M ε.

(4.9)
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Here γM are the Dirac matrices and D(φ,ψ)
M is a differential operator possibly

depending on the fields. We are concerned with local supersymmetry, i.e., we

let the transformation parameter ε depend on position.

In (4.9) the fermions are implicitly assumed to be spin 1/2. For spin 3/2 the

spinor has both a spinor index and a vector index. The corresponding transfor-

mation is (still very formally, and with the spinor index still suppressed)

δεψM ∼ D(φ,ψ)
M ε. (4.10)

A supersymmetric theory has an action that is invariant under transformations

such as (4.9) and (4.10), and to find a supersymmetric solution means to find

a field configuration that is annihilated by them.

Typically one is interested in purely bosonic backgrounds (i.e., ψ = 0). For
such field configurations the bosonic variations δεφ automatically vanish. The

relevant conditions for supersymmetry therefore become the vanishing of the

fermionic variations: δεψ = 0. In type IIB supergravity there are four spinors

— two dilatini and two gravitini. These are denoted λ, λ′ and1 ΨM , Ψ′M in

Table 3.1. Here we collect them into column vectors:

λ =

(
λ

λ′

)
(4.11)

and similarly for ΨM . Setting all fermions to zero, the gravitini and dilatini

variations of type IIB read

δεψM = ∇M ε− 1
4
/HMσ

3ε+
1
16
eφ

9∑
n=1

/̃FnγMPnε

δελ =
(
/∂φ− 1

2
/Hσ3

)
ε+

1
8
eφ

9∑
n=1

(−1)n(5− n)/̃FnPnε.

(4.12)

In these equations ∇M is the covariant derivative with respect to the Levi-

Civita connection, a “/” means a suitable contraction with Dirac γ-matrices

and the operators Pn are either σ1 or iσ2 dependent on n. (Note that these

Pauli matrices act not on the individual spinors, but on the column vectors of

spinors.) The variations in (4.12) seem horrendously complicated. However,

if we are interested in backgrounds where also no bosonic fields are excited,

there are big simplifications. Indeed, setting all fields save for the metric to

zero yields

δεψM = ∇M ε

δελ = 0.
(4.13)

1We remind of the difference in conventions: In Chapter 3 ten-dimensional indices were de-

noted by Greek letters.
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Demanding that the gravitino variation vanishes implies∇M ε = 0. Therefore
empty space can be supersymmetric if and only if there exists a covariantly

constant spinor ε. Splitting this spinor into compact and non-compact compo-

nents this implies the existence of a covariantly constant spinor η+ = (η−)∗
on the compact spaceM. The supersymmetry parameter ε decomposes as

ε = ξ+ ⊗ η+ + (c.c.), (4.14)

where ξ+ is a four-dimensional spinor. The spinor ξ+ plays the role of the

supersymmetry parameter in the four-dimensional effective theory.

Existence of a covariantly constant spinor turns out to be a condition with

quite profound implications. These implications were first analyzed in the sem-

inal paper Ref. [CHSW85] by P. Candelas, G. Horowitz, A. Strominger and E.

Witten. Let us follow in their footsteps.

A covariantly constant spinor has constant norm (let us choose ||η+|| = 1),
and is therefore nowhere vanishing. The existence of a nowhere vanishing

spinor is a topological condition and∇mη+ = 0 is a differential condition, so

they restrict both the topology and the metric onM. These conditions can be

conveniently formulated in terms of holonomy. On any Riemannian manifold

one can parallel transport tangent vectors. Doing this along a loop, starting

and ending at the same point, the result is in general a new vector, related to

the old by a linear transformation. This linear transformation depends on the

chosen path and is called a holonomy. The set of holonomies forms a group,

depending on both the topology and geometry of the manifold. For a generic
d-dimensional Riemannian manifold this group is SO(d), but it can also be

smaller. For flat Euclidean space for instance the group is just the identity

element, and for the flat Möbius strip it is Z2. Let us now heuristically explain

the connection between existence of spinors and holonomy.

The spin group of six dimensions is the double cover of SO(6) which is

SU(4). A spinor transforms in the fundamental 4 or the anti-fundamental 4̄ of

SU(4) depending on chirality. Let us consider our covariantly constant spinor

η+ at some point p inM. We choose coordinates so that η+(p) = (1, 0, 0, 0).
Since a covariantly constant spinor is invariant under holonomy, it means that

whatever loop we traverse, η+ must return to itself. Therefore, in this param-

eterization, the holonomy group ofM must leave the first component of any

spinor invariant, and only act on the following three components. This implies

that the holonomy is contained in SU(3) ⊂ SO(6). To have supersymmetry in

four dimensions we thus require our compactification manifold to have SU(3)
holonomy.

The U in SU(3) indicates that it might be convenient to describe the com-

pact geometry using complex geometry2. This is indeed the case. Using the

language of complex geometry it is straightforward to show that the existence

2We assume some familiarity with this subject. Recommended places to acquire this familiarity

include Vonk’s lecture notes [Von05] and the book “Mirror symmetry” [H+] by K. Hori et al.
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of a covariantly constant spinor also implies that the manifold is Ricci flat, i.e.,

that the equations of motion are fulfilled. Let us briefly describe this argument.

The spinor η+ defines an almost complex structure Jm
n by

Jm
n = i(η+)†γm

nη+. (4.15)

Since η+ is covariantly constant it follows that Jm
n also is covariantly con-

stant. This implies directly that we can lose the “almost”: Jm
n is a complex

structure.

We remind the reader that defining a complex structure allows one to split

the coordinates in holomorphic zi and antiholomorphic coordinates z ı̄. In

these coordinates the only non-zero components of Jm
n are pure: Ji

j = iδj
i

and Jı̄
j̄ = −iδj̄

ı̄ . A Hermitian metric has only mixed components: ds2 =
gij̄dz

idz j̄ and defines a (1, 1)-form J :

J = igij̄dz
i ∧ dz j̄ = Jij̄dz

i ∧ dz j̄. (4.16)

This form is called the Kähler form. If the Kähler form is closed dJ = 0 the

metric gij̄ is said to be Kähler.

The Kähler condition dJ = 0 is equivalent to Jm
n being covariantly con-

stant. Therefore the existence η+ with ∇+η = 0 implies thatM is a complex

Kähler manifold. We also know that the holonomy must be SU(3). Manifolds

with these properties are called Calabi–Yau manifolds after the geometers E.

Calabi and S-T. Yau who respectively conjectured and proved a deep theorem

concerning these spaces. We come to this result shortly. Let us for emphasis

write down a formal definition.

Definition 1 An n complex dimensional Calabi–Yau manifold is a compact,
Kähler manifold having SU(n) holonomy.

Note that we (this is a matter of taste) require the holonomy to be exactly
SU(n) and not a subgroup of it. Thus we do not consider, e.g., flat tori to be

Calabi–Yau. We will exclusively deal with the case n = 3.
It is an easy exercise to show that for a Kähler metric all Christoffel symbols

having mixed indices are zero, meaning that (anti)holomorphic vectors stay

(anti)holomorphic under parallel transport. This is equivalent to the holonomy

being contained in U(3). From the Christoffel symbols one can work out the

Ricci form:

Rij̄ = −∂j̄Γk
ik. (4.17)

The trace part Γk
ik of the connection generates the U(1)-factor of U(3) and van-

ishes for SU(3) holonomy. Therefore such a manifold is automatically Ricci

flat.

We have now reached the conclusion that supersymmetric compactifica-

tions with no non-zero fields (except the metric) are compactifications on

Calabi–Yau manifolds. Such manifolds therefore have played a very impor-
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tant part in string phenomenology. In the next subsection we dig deeper into

Calabi–Yau geometry and present some concepts that will feature in Chapters

5 and 6.

Let us end this subsection by noting that in type II theories there really two

spinors, ε and ε′ corresponding to the two column vector components of (4.13).

This means that there are two four-dimensional supersymmetry generators ξ+
and ξ′+, and thus that there are two unbroken supersymmetries: N = 2. In
type I and heterotic theories Calabi–Yau compactifications result in N = 1
supergravities in four-dimensions.

4.2.2 Calabi–Yau geometry

In the last subsection we found a condition on M that results in supersym-

metric compactifications. To do phenomenology it is crucial to find such man-

ifolds. To construct complex Kähler manifolds is relatively easy, but to con-

struct the Ricci flat metric with SU(3) holonomy is not. In fact for n = 3 there

is not a single example of an explicitly known Calabi–Yau metric.

There is however a simple condition which is equivalent to the existence of

a Ricci flat metric. Namely, we have

Theorem 1 SupposeM is a complex Kähler manifold with Kähler form J . If
the first Chern class of M vanishes, then there is a unique Ricci flat Kähler
metric onM, whose Kähler form is in the same cohomology class as J .

The first Chern class c1(M) is a cohomology class inH2
deRham(M). In fact it

is the cohomology class of the (suitable normalized) Ricci form: c1 = [R/2π].
It is therefore obvious that a Ricci flat manifold must have c1 = 0. It is the

converse, formalized in the theorem above that is highly nontrivial. E. Calabi

showed the uniqueness part of the theorem in 1955 [Cal55]: if the Ricci flat

metric exists it is unique. He also conjectured the existence which was proven

later by S-T. Yau [Yau78].

Using Yau’s theorem one can now construct Kähler manifolds, compute c1
(which is straightforward) and, if c1 = 0, be certain that there is a metric on

the manifold suitable for superstring compactification.

Yau’s theorem also hints at the structure of the moduli space of Ricci flat

metrics. Recall that metric deformations that preserve Ricci flatness are called

moduli, and that they correspond to massless fields in four dimensions. For a

Calabi–Yau, given a complex structure and a Kähler class the Ricci flat met-

ric is completely determined. The moduli space of a Calabi–Yau manifold is

therefore identical to the combined moduli space of complex structures and

Kähler classes. In Chapters 5 and 6 we will be very interested in Calabi–Yau

moduli spaces, and in particular in the complex structure moduli space. There-

fore we put some effort into describing them here. Dolbeault cohomology

theory is essential for this, so let us recall a few facts.
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On a complex manifold the exterior derivative can be split up into a sum of

a holomorphic and antiholomorphic derivative:

d = ∂ + ∂̄. (4.18)

Forms similarly split up according to the number of holomorphic and antiholo-

morphic indices: e.g, dzi∧dzj∧dzk is a (3, 0)-form, whereas dzi∧dzj∧dzk̄ is

a (2, 1)-form. Both ∂ and ∂̄ square to zero and can be used to define Dolbeault
cohomology classes Hp,q

∂ and Hp,q

∂̄
of (p, q)-forms. For a Kähler manifold,

Hp,q

∂̄
≈ Hp,q

∂ and the de Rham cohomology is a sum of Dolbeault cohomol-

ogy:

Hk
deRham = Hk,0

∂̄
⊕Hk−1,1

∂̄
⊕ . . .⊕H0,k

∂̄
. (4.19)

The Betti numbers bk = dim(Hk
deRham) consequently become sums over inte-

gers hp,q = dim(Hp,q

∂̄
) called the Hodge numbers:

bk = hk,0 + hk−1,1 + . . .+ h0,k. (4.20)

Using complex conjugation and Poincaré duality, the Hodge numbers satisfy

hp,q = hq,p and hp,q = hn−p,n−q. A common way to present the Hodge

numbers is in a so-called Hodge diamond. For the case n = 3 it is

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

. (4.21)

The relation between the Hodge numbers implies that this figure is symmetric

under reflection in both the horizontal and vertical axes.

On a Calabi–Yau manifold the Hodge numbers are even more constrained.

SU(3) holonomy implies the existence of a unique (up to constant rescal-

ings) nowhere vanishing holomorphic three-form Ω. This means that h3,0 =
h0,3 = 1. Furthermore, one can show that these are the only nontrivial purely

(anti)holomorphic cohomology classes3: h1,0 = h0,1 = h2,0 = h0,1 = 0. We

therefore end up with a hodge diamond of the following form for Calabi–Yau

3Here it is essential that the holonomy is exactly SU(3). Manifold with further restricted holon-

omy need e.g, not be simply connected: h1,0(T 6) = 3 �= 0.
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spaces:

1
0 0

0 h1,1 0
1 h2,1 h1,2 1

0 h1,1 0
0 0

1

. (4.22)

The vanishing of h1,0 = h0,1 is related to the fact that there are no continuous

isometries on a Calabi-Yau manifold. There are no globally defined Killing

vectors, and thus the off-diagonal metric perturbations δgmμ are all massive.

Let us return to the holomorphic top-form Ω. This form is of importance

since it parameterizes the complex structure of the manifold. To understand

this, note that in local coordinates we must have

Ω = f(z)dz1 ∧ dz2 ∧ dz3 (4.23)

for some holomorphic function f . Hence, Ω determines the complex coordi-

nates, and thus the complex structure. The Calabi–Yau metric is in this way

determined by two forms: the (3, 0)-form Ω and the (1, 1)-form J .
These two forms (or rather their cohomology classes) parameterize the com-

plex structure and Kähler moduli spaces, respectively. Through studying small

deformations of the forms, we obtain local descriptions of these moduli spaces,

as we now explain.

For a given complex structure, Yau’s theorem tells us that each (1, 1) coho-

mology class [J ] corresponds to a Ricci-flat metric. The only requirement on

J is that the corresponding metric gij̄ (recall (4.16)) is positive definite. This

leads to some inequalities on [J ] forcing it to lie in a cone of maximal dimen-

sion in H1,1. Therefore the Kähler moduli space is locally described by H1,1

— in particular its dimension is h1,1. In a Calabi–Yau compactification there

are thus h1,1 massless scalar fields corresponding to the Kähler moduli.

It is a little more subtle to describe the deformations of complex structure.

We can for instance not perform the deformation keeping the Kähler class

constant since the notion of (1, 1)-form depends on complex structure. The

space of deformations of complex structure is in fact isomorphic to H2,1. A

heuristic way to see this is the following. An infinitesimal deformation of

complex structure is a deformation of the complex coordinates zi. Locally

zi → zi + εijz
j + εij̄z

j̄. (4.24)

Expanding Ω to first order in ε shows that it changes by a rescaling and a

general (2, 1)-form. The rescaling does not change the complex structure, so
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the relevant deformation of the cohomology class [Ω] is a (2, 1)-cohomology

class. Thus the complex structure moduli correspond to h2,1 massless scalar

fields in four dimensions.

Chapters 5 and 6 both deal with the physics of complex structure moduli. In

the next subsection we introduce the necessary mathematical tools to describe

this space.

4.2.3 More on the complex structure moduli space

Consider a Calabi–Yau three-fold M with complex structure moduli space

M . The complex structure is described by the cohomology class of the holo-

morphic three-form Ω. By the duality between homology and cohomology

H3 ≈ H3 such a class is completely described by the integrals over a basis

of H3. Let us choose such a basis CI with I = 1, . . . , b3 = dim(H3). The
integrals

ΠI =
∮

CI

Ω (4.25)

are called the periods, and form a set of coordinates on M . This set is re-

dundant: we learned in the last subsection that dim(M) = h2,1 but b3 =
1 + h2,1 + h1,2 + 1 = 2h2+1 + 2.

There is a useful way of splitting the set {CI} in two, to obtain homo-

geneous coordinates on M . In a six dimensional manifold, two three-cycles

generically intersect each other in a number of points. If these points are

counted with a sign corresponding to the orientation of the intersection, this

number is a topological invariant of the two cycles. We denote the intersec-

tion number between CI and CJ by CI ∩CJ . The ∩ defines an antisymmetric

product on H3. It is the Poincaré dual4 of the intersection product

〈γI , γJ〉 =
∫
M
γI ∧ γJ (4.26)

between three-cohomology classes γI .

We can choose a so-called symplectic basis of cycles AI , BI with I, J =
0, . . . h2,1

AI ∩AJ = BI ∩BJ = 0 AI ∩BJ = −BJ ∩AI = δI
J . (4.27)

Letting αI denote the Poincaré dual of BI and −βJ the dual of AJ we have∮
AI

βJ =
∮

BI

αJ = 0 (4.28)

4We remind the reader that the Poincaré dual of a homology class C ∈ Hk is the unique

cohomology class [γ] ∈ Hd−k satisfying
∫

C
ω =
∫
M γ ∧ ω for all ω ∈ Hk.
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and ∮
AI

αJ =
∮

BJ

βI =
∮
M
αJ ∧ βI = AI ∩BJ = δI

J . (4.29)

Let us now construct homogeneous coordinates on the complex structure mod-

uli spaceM . Forming the period integrals

XI =
∮

AI

Ω

FJ =
∮

BJ

Ω
(4.30)

we have

Ω = XIαI + FJβ
J . (4.31)

The periodsXI and FI determine the form Ω, and thus the complex structure,

i.e. a point in M . There can be only h2,1 independent coordinates on M , so

half of the periods are enough. Let us take the FI as functions of theXI . This

is still one coordinate too many, reflecting the fact that multiplying Ω with a

constant does not change the complex structure.

We learned in the last subsection that the infinitesimal variation of the (3, 0)-
form Ω is a (2, 1)-form. Thus the form ∂IΩ (∂I denotes differentiation with

respect toXI ) is a (2, 1)-form.Wedging a (3, 0) form with a (2, 1)-form yields

zero since there are only three holomorphic coordinates. Therefore we have

0 =
∫
M

Ω ∧ ∂IΩ =
∫
M

(XKαK + FKβ
K) ∧ (αI + ∂IFLβ

L) =

= −XJ∂IFJ + FI = 2FI − ∂I

(
XJFJ

) (4.32)

where we used (4.29). It is clear that the FI are the XI -derivatives of a func-

tion F (XI) satisfying

F =
1
2
XJ∂JF. (4.33)

The function F is called the prepotential of the Calabi–Yau and plays an im-

portant part in the effective four-dimensional theory of N = 2 compactifi-

cations. It is a homogeneous function of degree two in XI as is realized by

performing the rescaling Ω → λΩ under which

XI → λXI FI → λFI (4.34)

and thus F (λXI) = λ2F (XI). As noted, such a rescaling does not change

the complex structure, henceXI and λXI denote the same point onM which

is to say that XI are homogeneous coordinates. In a patch of moduli space

where X0 �= 0, affine coordinates are given by zI = XI/X0.
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In the way described above, complex structure moduli can be viewed as

the relative ‘holomorphic volumes’
∫
AI Ω of three-cycles AI in the Calabi–

Yau. It is therefore plausible that objects whose energy depends on three-cycle

volumes will create potentials for the moduli. We explore such objects in the

next section: fluxes piercing cycles in the internal geometry.

This concludes our introduction to Calabi–Yau manifolds. It has been a

quite technical story and it is easy to lose the grip on what we are really doing.

Let us therefore conclude with a bulleted summary.

• Compactification with unbroken supersymmetry requires the existence of

a covariantly constant spinor on the internal manifold. This constrains both

the topology and geometry of the space. Eligible manifolds are Calabi–Yau
manifolds that have SU(3) holonomy, and are Ricci flat and Kähler.

• Calabi–Yau manifolds have very special Hodge numbers. The only ones

that are not fixed are h1,1 and h2,1. They measure the number of Kähler

and complex structure moduli, respectively.

• The moduli correspond to deformations of (the cohomology classes of) the

holomorphic three-form Ω and the Kähler form J . Ω determines what we

mean by complex coordinates. When this is specified J determines the

metric: J = gij̄dz
i ∧ dz j̄.

• The period integralsXI =
∫
AI Ω can be used as homogeneous coordinates

on the complex structure moduli space. Affine coordinates are given e.g. by

zI = XI/X0.

In the next section we describe a way to fix the complex structure moduli

in type IIB string theory.

4.3 Fluxes and complex structure moduli stabilization

In the late 1980s Calabi–Yau and simpler toroidal compactifications of het-

erotic strings were used to engineer phenomenological models with Standard

Model or GUT gauge groups. Examples of these models are Ref. [Wit86]

by E. Witten, Refs. [GKMR87, GKMR86] by B.R. Greene et al. and Ref.

[AEHN88] by I. Antoniadis et al. While the more developed of these models

display impressive features such as explaining the number of fermion fami-

lies from topological data, all of them suffered from the problem of massless

geometric moduli.

In the mid 90s it was realized, notably in Ref. [PS96] by J. Polchinski and A.

Strominger and in Ref. [Mic97] by J. Michelson, that inclusion of non-zero

RR and NS–NS field strengths — fluxes — can create potentials for these

moduli. The corresponding models are called flux compactifications and form

a very active area of research. Apart from offering a physical mechanism that

stabilizes moduli, fluxes also provide effects that can accommodate the large

hierarchy between the Planck and weak scales.
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In this section we review the basic physics of flux compactifications. Our fo-

cus is almost exclusively on type IIB compactifications, and even more specifi-

cally, on conformal Calabi–Yau compactifications of IIB. This is just one kind

of beast from the rich flux compactifications fauna. Zoology interested readers

should consult (at least) one of the great reviews in the field. Prominent exam-

ples include Ref. [Gra06] by M. Graña and Ref. [DK07] by M. R. Douglas

and S. Kachru. Both reviews also provide extensive lists of references.

4.3.1 General idea

The reason that fluxes can influence the geometric moduli is that their energy

depends on the volume they are confined to. Therefore, fluxes through differ-

ent cycles in a Calabi–Yau result in a potential energy that depends on the

volume of these cycles. And as we learned in the last section, the volumes of

three-cycles determine the complex structure moduli.

A more direct way of seeing that fluxes can influence the geometry is by

the terms in the action. The Maxwell-like terms in (3.50) all depend on the

metric. The metric changes as the moduli vary, and thus fluxes couple to them.

In this way fluxes influence the equations of motion and their presence can

potentially lift the degeneracy of the solutions.

Before we get into technical detail, let us stress that the flux we want to put

on Calabi–Yau cycles is not supported by any charge. A non-zero flux through

a submanifold ∂X that is the boundary of another submanifold X always im-

plies the existence of a net charge in X by Gauss’ law. There is, however no

Gauss law for closed submanifolds that is not the boundary of anything, and

there is no charge associated with such flux. More fancily, flux through homol-

ogy trivial cycles is supported by charges, flux through homology nontrivial

cycles just is.

An important feature of flux is that it is quantized. The integral of a field

strength over a closed hypersurface can only take discrete values, even if it is

not supported by charge. This means that the set of possible flux configura-

tions is discrete rather than continuous. Let us briefly recall Dirac flux quan-

tization. Consider type IIB string theory and imagine some p-form flux Fp

through a closed p-dimensional sphere Sp:

f =
∫

Sp

Fp. (4.35)

If f is non-zero, it is impossible to define a continuous gauge potential Cp−1

everywhere on Sp. Splitting it up in northern SN and southern SS hemispheres

however, we can choose CN
p−1 and CS

p−1 differing by a gauge transformation

on the intersection ∂SN = −∂SS ≈ Sp−1. The flux through Sp can now be
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written using Stokes’ theorem as

f =
∫

SN

Fp +
∫

SS

Fp =
∫

∂SN

CN
p−1 +

∫
∂SS

CS
p−1 =

=
∫

∂SN

CN
p−1 −

∫
∂SN

CS
p−1.

(4.36)

Now, taking a probe D(p − 2)-brane around ∂SN changes its phase by the

corresponding action:

S = μp−2

∫
∂SN

Cp−1. (4.37)

This procedure must be independent of which representative CN
p−1 or CS

p−1

we choose in (4.37), so the difference in action must be a multiple n of 2π.
Therefore (recall Eq. (3.63))

f =
∫

Sp

Fp =
2πn
μp−2

= n
(
4π2α′
)(p−1)/2

. (4.38)

We see that the existence of charged objects forces flux quantization upon

us, even if there is no charge inside the Sp. (Or more correctly if there is no

“inside Sp”.) Note that the field strengths that are quantized are the Fp, not the

improved field strengths F̃p.

How should we now proceed to find models with flux stabilized moduli?

We would like to specify a Calabi–Yau topology, and then postulate a fixed

amount of flux through some of its (homology classes of) cycles. Then we

need to find solutions to the full supergravity equations of motion subject to

these “boundary conditions”. One might (correctly) anticipate that this is very

complicated. For instance, presence of flux will induce a non-zero energy mo-

mentum tensor so we expect Rmn �= 0 from Einstein’s equations. Fluxes also

couple to the dilaton and amongst themselves. It is however possible to find

such solutions. And there are good reasons to expect that there are many of

them.

In the next subsection we discuss an interesting feature of flux compactifi-

cations: the geometry becomes warped. We also present some, at first sight,

discouraging results.

4.3.2 Warping and evading no-go theorems

When discussing Kaluza–Klein compactification we used the metric ansatz

(4.2). This is however not the most general ansatz compatible with maximal

symmetry in four dimensions, which instead is

gMN =

(
e2A(y)g̃μν(x) 0

0 e−2A(y)g̃mn(y)

)
. (4.39)
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Here g̃μν(x) can be either of four-dimensional Minkowski, de Sitter (dS4) or

anti-de Sitter (AdS4) spacetimes. The factor e2A(y) dependent on the inter-

nal coordinates is called a warp factor, and compactifications on metrics of

the form (4.39) are called warped compactifications. Including the warp fac-

tor also in the compact metric is conventional. In flux-less, supersymmetric

compactifications, a nontrivial warp factor is not needed (even forbidden) but

when flux is included it plays an important role. If the warping varies apprecia-

bly on the compact space, different regions are red-shifted relative each other,

allowing for localized physics to have hierarchically different energy scales.

In the quest of finding solutions to the supergravity equations of motions in-

cluding flux, some no-go theorems were developed. The most important one

(and the only one we study here) was found by J. Maldacena and C. Nuñes

[MN01]. They proved that including fluxes (and only fluxes) in a compactifi-

cation makes Minkowski or dS4 impossible as non-compact geometries. The

argument is quite straightforward, and the reader can collect all details in the

original paper.

The line of reasoning uses the properties of the energy-momentum tensor

from fluxes, and goes as follows. By tracing Einstein’s equations the ten-

dimensional curvature scalar R can be solved for in terms of the energy-

momentum tensor TMN . Reinserting the result into Einstein’s equation yields

RMN = TMN − 1
8
gMNT

L
L . (4.40)

Separating the contributions from the warp factor and g̃μν in the non-compact

components of (4.40) and contracting these with g̃μν produces

2∇2e2A = e2A(R̃+ e2AT̂ ). (4.41)

Here R̃ is the Ricci scalar of g̃μν and 2T̂ = (Tm
m − Tμ

μ ). By straightfor-

ward analysis of the stress tensors of p-form fluxes it is possible to show that

T̂fluxes ≥ 0 with equality only for one-form flux.

This poses a problem as is most simply seen by integrating (4.41) over the

compact manifold. The integral of the Laplacian of any function vanishes, so

the left-hand side vanishes upon integration. But if T̂ is positive, then R̃ has

to be negative! (Or zero if we only have F1-flux.) The conclusion for type

IIB is that the fluxes F̃3, H3 and F̃5 are all forbidden in dS or Minkowski

compactifications. Sadly, F̃3 and H3 are exactly the fluxes we are interested

in to stabilize complex structure moduli.

This no-go theorem is a very powerful result. It is applicable to any solution,

not only supersymmetric ones. It furthermore gives a clear-cut criterion for

what is needed to evade it. We must include objects having T̂ < 0 in the

compactification. String theory has such objects: orientifold planes. Let us

take a moment to describe them.
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Suppose the manifold M has a discrete symmetry I acting on its points

I : M → M. Let us for simplicity assume that I2 = 1. One can construct

a new (possibly singular) manifold M/I through orbifolding by I , i.e., by
identifying points: p ∼ I(p). The set of fixed-points of I becomes a singular

submanifold of the orbifold called the orbifold plane. In an ordinary orbifold

projection one keeps the states that are symmetric under I .
Orientifolding includes orbifolding the space. However, one also does

something more. Let P denote the world-sheet parity operator. This operator

sends the string world-sheet coordinate σ to π − σ. Orientifolding divides

the space of states by PI . Only states that are even under this combined

transformation are kept in an orientifold projection. The resulting singular

submanifold is called an orientifold plane or an Op-plane where p is its

spatial dimension.

It is possible to determine the RR charges of orientifold planes, and they

turn out to be negative. In fact the charge of an Op-plane is −2p−5μp. Their

presence leads to negative contributions to T̂ and thus makes flux compactifi-

cations possible.

4.3.3 Solving the equations à la GKP

Let us now review the famous approach [GKP02] to solving the equations of

motion introduced by S.B. Giddings, S. Kachru and J. Polchinski, a trio that

will henceforth be referred to as GKP. Given the very complicated system,

and given that no supersymmetry is assumed, the simplicity of this class of

solutions is remarkable.

Our framework is type IIB supergravity, described by the action given in

(3.49) and (3.50). It is convenient to make a few field redefinitions, including

going to Einstein frame. Defining

τ = C0 + ie−Φ

G = F3 − τH3
(4.42)

the action is

SIIB =
1

2κ2
10

∫
d10x
√
|g|
(
R− ∂Mτ∂

M τ̄

2(Im τ)2
− G3 · Ḡ3

12Im τ
− |F̃5|2

4 · 5!

)

+ SCS + Sloc,

(4.43)

where at every explicit or implicit appearance of a metric, the Einstein frame

metric is understood (even if we suppressed the superscript E). The term Sloc

is the action for localized sources like D-branes or O-planes. Our objective is

to find solutions to the equations of motion. The solutions we find will all be

Minkowski in four dimensions.
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We start by making some ansätze that respect four-dimensional Poincaré

invariance. As an ansatz for the Einstein frame metric gMN we take (4.39),

with g̃μν = ημν(x). Four-dimensional Poincaré invariance restricts τ = τ(y)
to be a function only of y and forces GNMP = Gmnp(y) to have legs only

in the internal directions. The five-form field strength can actually have a non-

compact part if it is proportional to the four-dimensional volume form:

F̃5 = (1 + ∗)[dα ∧ dVol4]. (4.44)

The factor (1 + ∗) makes the ansatz self-dual.

Computing the energy-momentum tensor for these ansätze, and plugging

the result into (4.41) produces

∇̃2e4A = e2A |G3|2
12Im τ

+ e−6A
(|∂α|2 + |∂e4A|2)+ κ2

10e
2AT̂ loc (4.45)

In the absolute squares in this equation contraction with the six-dimensional

metric e2Ag̃mn is understood. ∇̃ is with respect to g̃mn. If we had omitted the

energy-momentum tensor T̂ loc originating from localized sources, this would

have been an instance of the no-go theorem of Ref. [MN01] since the other

terms on the right-hand side of (4.45) are manifestly positive, while the left

hand side integrates to zero.

Now we used Einstein’s equations, but there are of course more equations

to fulfill. In particular we have the Bianchi identity for F̃5. Since F5 = dC4 is

sourced by D3 branes and O3-planes this equation reads

dF̃5 = H3 ∧ F3 + (2π)4(α′)2ρloc
3 . (4.46)

ρloc
3 is the density of D3-charge from D3-branes and O3-planes. Inserting the

GKP ansatz for F̃5, H3 and F3 and subtracting the result from (4.45) gives

∇̃2(e4A − α) = e2A |iG3 − ∗6G3|2
6Im τ

+ e−6A|∂(e4A − α)|2

+ κ2
10e

2A[
1
2
T̂ loc − μ3ρ

loc
3 ].

(4.47)

GKP noted that something special happens if we consider only localized

sources that fulfill
1
2
T̂ loc − μ3ρ

loc
3 ≥ 0. (4.48)

If this inequality holds then all terms on the right hand side of (4.47) are non-

negative. The left hand side still integrates to zero though. Thus, Minkowski

compactifications with objects satisfying (4.48) are allowed only if all terms

on the right hand side vanish! This gives two simple conditions that the fields

must fulfill. The five form is directly related to the warping, α = e4A and
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the three-form field strength G3 is imaginary self dual (ISD): ∗6G3 = iG3.

Furthermore, the sources must actually saturate the inequality (4.48).

There are a lot of relevant sources that saturate the inequality. Space-filling

D3-branes and O3-planes are two examples, as are D7-branes or O7-planes

wrapped on internal four-cycles. The ISD condition ∗6G3 = iG3 is what fixes

the complex structure moduli and the value of the axio-dilaton τ . We return to

a more detailed analysis of this fixing in the next subsection.

GKP go on to show that these conditions imply all the other equations of

motion except for two equations. These two equations relate τ and the Ricci

tensor R̃mn of g̃mn to the stress tensor of D7-branes. In the case of no D7

branes these equations are simply

R̃mn = 0
∂mτ = 0.

(4.49)

To complete the construction there are now only two conditions left, coming

from the Bianchi identity (4.46) for F̃5. First, since α = e4A it gives an equa-

tion for the warping in terms of the D3-charges F3 ∧H3 and ρ3:

− ∇̃2e−4A = (2π)2α′2ρ3 +
GmnpG

m̃ñp̃

12Im τ
(4.50)

where we use g̃mn to raise the indices of G3.

Second, integrating (4.46) over the internal manifold gives the condition

that the total D3-brane charge on the compact space vanishes. The charge

density ρ3 comes from both D3-branes and O3-planes. Remembering that the

latter carry −1/4 of D3-charge we get

ND3 − 1
4
NO3 +

1
(2π)4α′2

∫
H3 ∧ F3 = 0. (4.51)

This equation is a condition on three integers: the number of D3-branes ND3,

the number of O3-planes NO3 and the D3-charge induced from fluxes. This

term is integral because of flux quantization.

Thus, for local sources saturating (4.48) we can construct solutions as fol-

lows. We choose a number of D3-branes, O3-planes and flux quanta satisfying

(4.51) on a Calabi–Yau topology. The quantity α = e4A is then determined by

the F̃5 Bianchi identity. This yields the five-form flux and the warping. More-

over g̃mn is Ricci flat, and thus a Calabi–Yau metric. The corresponding com-

plex structure moduli and constant axio-dilaton τ are fixed by the condition

that G3 is ISD.

We see that the degeneracy of solutions to the equations of motion is par-

tially lifted when fluxes are included. The complex structure and the axio-

dilaton are not moduli anymore. In the next subsection we analyze the same

effect from the viewpoint of effective four-dimensional actions.
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Before turning to this issue, let us note that the GKP solutions have a radial

modulus. It is possible to rescale the internal metric g̃mn → λ2g̃mn and still

obtain a solution. The warping however scales non-trivially, as can be realized

from (4.50). In this equation the ∇̃2e−4A will scale as λ−2, whereas the other

two terms scale as λ−6. This means that if we take the internal dimensions

to be large relative to the string scale, the warping will be approximately con-

stant. In this limit the internal geometry is effectively Ricci flat, and thus a

Calabi–Yau metric. The whole machinery of Calabi–Yau geometry thus be-

comes applicable without modifications.

4.3.4 Effective supergravity actions

The ultimate goal of compactifying strings is of course to make contact with

real-world phenomenology. To this end, the next step after finding the back-

ground is to derive the physics of low energy fluctuations around that back-

ground. The low energy effective field theories of superstring compactifica-

tion are four-dimensional supergravity theories, whose actions are determined

by a small set of functions. In this section we describe how the geometric data

of a string compactification fit into this framework.

The field content of a supersymmetric theory splits up in multiplets, i.e.
fields that transform into each other under supersymmetry transformations. In

the superspace formalism the fields in a multiplet are components of the same

superfield. Naturally any supersymmetry multiplet contains both bosons and

fermions. Our focus will be completely on the bosons, so for the most part we

simply ignore the fermionic field content. In string theory compactifications

the multiplet structure depends on the cohomology structure of the Calabi–

Yau manifold.

The restrictions that local supersymmetry puts on supergravity actions can

often be formulated in terms of the geometry of field space. The scalar field

space of N = 2 supergravity is “quaternionic Kähler”, and the corresponding

space forN = 1 supergravity is Kähler. The part of theN = 2 field space we

are interested in will be Kähler as well, so this is the only concept we need.

A Kähler metric is specified by a real function called the Kähler potential. It
determines the metric on field space, and thus the kinetic terms. E.g., for a set

of complex scalar fields (φi, φı̄) with Kähler potentialK(φ, φ̄) the metricKij̄

is

Kij̄ =
∂2

∂φi∂φj̄
K(φ, φ̄), (4.52)

yielding the kinetic term

Skin. = −1
2

∫ √
|g|Kij̄∂μφ

i∂μφj̄. (4.53)
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Two remarks are in order. First, a metric coming from a Kähler potential is

indeed a Kähler metric as this concept was defined in Section 4.2. The fact

that partial derivatives commute makes it clear that ∂iKjk̄ = ∂jKik̄ which

together with its complex conjugate is exactly the Kähler condition. Second,

the metric does not determine K completely. There is a freedom of choice

K → K + f(φ) + f̄(φ̄) for any holomorphic f .
There are also other terms than the kinetic ones in supergravity actions.

They are determined by superpotentials that are always holomorphic functions

of the fields.

Performing a dimensional reduction of compactified type IIB supergrav-

ity leads to expressions for the Kähler and superpotentials of the resulting

four-dimensional theory. This is hard work, and below we collect only the re-

sults. We are interested in two types of compactifications: fluxless Calabi–Yau

compactifications leading to N = 2 supergravity in four dimensions and flux

compactifications with (at most) N = 1 supersymmetry. Let us treat them in

turn.

4.3.4.1 No flux: N = 2
N = 2 supergravity in four dimensions has four types of multiplets: the grav-

ity multiplet, vector multiplets, hypermultiplets and the double tensor multi-

plet. The fields appearing in these multiplets come from a Kaluza–Klein re-

duction of ten-dimensional type IIB theory. We remember that the massless

fields correspond to harmonic forms on the compact manifold. Denoting a

basis of H3(M) by (αI , β
J), I, J = 0 . . . h2,1 a basis of H1,1(M) by ωa

a = 1 . . . h1,1 and the corresponding basis of H2,2 by ω̃a we can make the

expansions

B2(x, y) = B2(x) + ba(x)ωa, C2(x, y) = C2(x) + ca(x)ωa,

C4(x, y) = Da
2(x) ∧ ωa + V I(x) ∧ αI−UI(x) ∧ βI + ρa(x)ω̃a

(4.54)

The reader is allowed to forget about the gray terms: because of the self-duality

of the five-form field strength, only half of the fields represent independent

degrees of freedom.

Also the metric perturbations, i.e. the moduli, are parameterized by har-

monic forms. The Kähler moduli correspond to deformations of the Kähler

form J :
J = va(x)ωa. (4.55)

The Kähler modulus va, corresponding to the H1,1(M) element ωa trans-

forms in the same multiplet as all other fields that are expansion coefficients of

ωa or its dual: ba, ca and ρa. These h1,1 multiplets are called hypermultiplets.

The complex structure moduli zI(x) = XI/X0 are associated to three-

forms. However not all three-forms correspond to complex structure moduli:

only the the (2, 1)-forms do. As might be expected, the complex structure mod-
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uli form multiplets with the linear combinations of the V I(x) corresponding

to (2, 1)-forms. These multiplets are called vector multiplets, their namesake

being the vector bosons. The vector boson corresponding to the (3, 0)-form
Ω transforms in a multiplet together with the four-dimensional graviton gμν .

This is the gravity multiplet and the vector boson is called the graviphoton.
We denote it V 0 even if it is not proportional to α0, but rather to Ω. Finally,

there is a double tensor multiplet whose bosonic content is B2(x), C2(x) and

τ . It can be dualized to a “universal” hypermultiplet.

Our main interest is in the complex structure, and thus in the vector mul-

tiplets. The constraints on the geometry of the vector multiplet moduli space

were first studied from a four-dimensional perspective by B. deWit, P.G Lauw-

ers and A. Van Proeyen [dWLVP85]. A. Strominger then described this geom-

etry that was named special geometry in a coordinate independent manner,

and showed how it beautifully emerges Calabi–Yau geometry [Str90].

de Wit et al. showed that the action is locally defined by a single holomor-

phic function F . In terms of the homogeneous coordinates XI on complex

structure moduli space F has a very nice interpretation. It is nothing but the

prepotential of the Calabi–Yau as defined in Section 4.2! The corresponding

Kähler potential is

K = − ln
[
−i
∫

Ω ∧ Ω̄
]
. (4.56)

Note that the rescaling Ω → e−fΩ with f a holomorphic function on moduli

space corresponds to a choice of Kähler gauge:K → K+f+f̄ . By Eqs. (4.31)

and (4.29) we can express the Kähler potential in terms of the prepotential:

K = − ln
[
i(X̄IFI −XI F̄I)

]
. (4.57)

We do not need to flesh out the full bosonic action in terms of these func-

tions here. The important pieces of information are that the complex structure

moduli form vector multiplets with the (2,1)-coefficients of C4, that the left

over (3,0)-coefficient is the graviphoton of the gravity multiplet, and that the

prepotential F determines the action in terms of Calabi–Yau data.

4.3.4.2 Flux: N = 1
In the GKP setup, fluxes break supersymmetry at least down to N = 1. The
relevant geometry for the entire field space ofN = 1 supergravity is Kähler as

explained by B. Zumino [Zum79]. In fact, assuming only terms with up to two

derivatives, the entire action is specified by a single function. Symbolically,

with φ denoting all scalars, the function is

G(φ, φ̄) = K(φ, φ̄) + ln |W (φ)|2 (4.58)
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K is the Kähler potential determining the kinetic terms andW is the superpo-

tential. The bosonic part of the Lagrangian is

Lbos =
√
|g|
(
−1

2
R−Gij̄∂μφ

i∂μφj̄ − eG[GiG
ij̄Gj̄ − 3]

)
. (4.59)

Subscript i (̄ı) means differentiation with respect to φi (φı̄), and Gij̄ is the

matrix inverse of Gij̄.

A quaternionic Kähler manifold is not Kähler, but a submanifold of it can

be. Consistent with this, the N = 2 spectrum is truncated when the theory

only has N = 1 supersymmetry. From the ten-dimensional point of view, the

truncation of the field content is due to the orientifold projection. This pro-

jection also alters the multiplet structure. The graviphoton is projected out

and thus leaves the gravity multiplet whose bosonic content is now just the

graviton. The vector multiplets split up according to the parity under the ori-

entifold projection I of the corresponding basis element ofH2,1(M). We can

decompose H2,1(M) into forms that are even (+) or odd (−) under I:

H2,1(M) = H2,1
+ (M)⊕H2,1

− (M). (4.60)

In the multiplets that correspond to forms of even parity, the complex struc-

ture modulus is projected out. This leaves h2,1
+ vector multiplets (V κ), κ =

1, . . . h2,1
+ . The opposite happens for multiplets corresponding to forms having

odd parity. Here, the vector boson is projected out, and the resulting h2,1
− so-

called chiral multiplets contain the surviving complex structure moduli (zk),
k = 1, . . . h2,1

− . The hypermultiplets similarly split into chiral multiplets, while

the double tensor multiplet loses the two two-forms B2 and C2. Any fluxes

present must of course survive the orientifold projection, meaning that they

must be harmonic elements of H3−(M).
The presence of fluxes G3 = F3 − τH3 leads to a non-zero superpoten-

tial W , which in the action (4.59) leads to a potential for the complex struc-

ture moduli zk. In the limit of large volume and hence constant warping this

potential was derived by GKP in Ref. [GKP02]. It has the form proposed

by S. Gukov, C. Vafa and E. Witten (GVW) in the context of domain walls

[GVW00]. It is quite simple and reads

W (z) =
∫
G3 ∧ Ω(z). (4.61)

In the same limit of large warping, the Kähler potential is identical to the one

in N = 2 compactifications. Including complex structure moduli, the axio-

dilaton τ and the overall volume of the Calabi–Yau parameterized by a field ρ
it reads

K = − ln
[
−i
∫

Ω ∧ Ω̄
]
− ln [−i(τ − τ̄)]− 3 ln [−i(ρ− ρ̄)] . (4.62)
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Inserted in the Lagrangian (4.59) thisW andK give rise to a potential for the

scalar fields:

V (z, z̄, τ, τ̄ , ρ, ρ̄) = eK
(
Kij̄DiWDj̄W̄ +Kτ τ̄DτWDτ̄W̄

+Kρρ̄DρWDρ̄W̄ − 3|W |2). (4.63)

Here the capitalD’s denote Kähler covariant derivatives. For an arbitrary field

index A we define

DAW = (∂A + ∂AK)W. (4.64)

The potential V sets the dynamics of the scalar fields. Minimizing it fixes

the complex structure moduli and the axio-dilaton, and the matrix of second

derivatives at the minimum determines the corresponding masses. In Chapters

5 and 6 we analyze the moduli dynamics, and V plays a prominent role.

To prepare for these chapters, let us analyze some of the properties of V .

First, because of ∂ρW = 0 and the special dependence ofK on ρ, the last two

terms actually cancel:

Kρρ̄DρWDρ̄W̄ = 3|W |2, (4.65)

leaving

V = eK
(
Kij̄DiWDj̄W̄ +Kτ τ̄DτWDτ̄W̄

)
. (4.66)

The potential therefore is positive semidefinite, and is zero if and only if

DiW = 0 and DτW = 0. (4.67)

These conditions are equivalent to∫
∂iΩ ∧G3 = 0 and

∫
Ω ∧ Ḡ3 = 0. (4.68)

We see that [G3] ∈ H2,1⊕H0,3. Because of the geometric facts that the Hodge

star has +i (−i) eigenspaces H2,1 ⊕ H0,3 (H1,2 ⊕ H3,0) this is exactly the

condition that G3 is ISD. Thus, the GKP solutions minimize the effective po-

tential V to a global minimum V = 0. A background value of V corresponds

to a cosmological constant in the effective action, so the GKP solutions are

indeed Minkowski.

The N = 1 condition for a supersymmetric background is that DAW = 0
for all fields A. This is generally not the case for the GKP solutions because

of (4.65). Only if

W =
∫
G3 ∧ Ω = 0, (4.69)

implying the vanishing of the (0, 3)-piece of G3 is the solution supersymmet-

ric.
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Note that the radial modulus ρ of the GKP solutions is evident from this

formulation. If V = 0 for a given value of the complex structure, then ∂ρV =
0 at this point since the only dependence on ρ comes from the prefactor eK .

This behavior is called no-scale behavior and the corresponding models are

no-scale models.

Let us end this section by a few comments regarding corrections. Incorpo-

rating the effects of warping is quite complicated, but significant progress has

been achieved recently. S. Giddings and O. DeWolfe [DG03] demonstrated

that the superpotential is unaltered while the Kähler potential changes when

warping is taken into account, and Giddings and A. Maharana [GM06] ana-

lyzed the effective field theory of perturbations around a warped background

on the level of field equations. More recently G. Shiu, G. Torroba, B. Under-

wood and M.R. Douglas presented an elegant analysis [STUD08] resulting in

an effective action including also KK modes that become light at large warp-

ing.

Apart from warping, the above analysis gets corrections from the α′ and
string loop expansions and from non-perturbative effects. The latter can re-

sult in a superpotential W depending also on ρ. This was used by S. Kachru,

R. Kallosh, A. Linde and S. Trivedi to construct models where also Kähler

moduli are stabilized. This is known as the KKLT scenario.

The α′ and loop corrections also spoil the no-scale structure and can be

used to find completely stable vacua with large compact volumes. These con-

structions were pioneered by V. Balasubramanian, P. Berglund, J. Conlon and

F. Quevedo [CQ04].

Here the introductory part of this thesis ends. It is my hope that the reader

now will be prepared for the following three chapters treating more recent

developments, and in particular the questions that led to the papers I to VII.

79





Part II:

Developments





5. Black holes in type IIB

Me no wanna go in there
Kalle Baah

Black holes are at the core of studies of quantum gravity. They are predicted

by Einstein’s theory of general relativity. In fact, the solution discovered by

K. Schwarzschild [Sch16] was the first non-trivial exact solution found. Black

holes turn up-side-down our everyday experience almost as violently as quan-

tum mechanics. For instance, it is impossible to get out of a black hole; the

only way back goes backwards in time. Furthermore, even if an observer

falling into a black hole certainly will pass the horizon, from the outside it

is actually impossible to see something fall in! By now there is convincing

evidence that these objects actually exist in our universe. We should therefore

take physical questions about them very seriously.

Black holes become even more interesting when they are treated quantum

mechanically. In 1975 S. Hawking showed by a semiclassical analysis that

black holes radiate through quantum effects [Haw75]. Eventually a black hole

will evaporate through this radiation. In Hawking’s analysis the radiation does

not contain any information. One way to understand this is that the radiation is

produced outside the black hole horizon, by the gravitational field. Uniqueness

theorems for black holes (so-called no-hair theorems) however state that from

the outside a black hole is completely specified by a small set of conserved

charges. The outside cannot contain any information. This poses a problem for

a quantum mechanical description of a black hole. Quantum mechanics is uni-
tary and unitarity implies that information cannot be destroyed. The process

of some stuff collapsing to a black hole and then being radiated as Hawking

radiation, thus seems to be incompatible with quantum mechanics.

Even before Hawking’s discovery, it was known that black holes have a

whole set of thermodynamical laws that follow from general relativity. In par-

ticular J. Bekenstein explained that they have a macroscopic entropy [Bek73].

In Einstein gravity the entropy is S = A/4 where A is the horizon area in

Planck units. This relation receives corrections for theories with higher deriva-

tive terms in the action. In ordinary quantum mechanics, the entropy of a sys-

tem is the logarithm of the number of possible microstates. The entropy of

black holes cries out for such a microscopic explanation. The unitarity and

microstate problems are perfect challenges for any theory of quantum gravity.

String theory has made impressive progress in understanding these ques-

tions. One major development followed in the wake of the AdS/CFT corre-
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spondence discovered by J. Maldacena [Mal98]. While still formally a con-

jecture, the evidence for the duality is by now overwhelming. In general,

AdS/CFT relates string theory on an anti de Sitter background to a confor-

mal field theory living on the conformal boundary of the AdS spacetime. The

original example constructed by Maldacena was the duality between type IIB

strings on AdS5×S5 andN = 4 super Yang–Mills theory in four dimensions.

The relevance of AdS/CFT for black holes comes from the fact that putting

a black hole in the AdS background translates to letting the CFT have a finite

temperature. Because the thermodynamics of conformal field theory certainly

derives from a unitary system, this gives convincing evidence that string the-

ory describes black holes without sacrificing unitarity.

Another equally impressive result is the derivation of the macroscopic black

hole entropy frommicroscopic principles. Compactifying string theory results,

as we saw in Chapter 4, in lower-dimensional supergravity theories. These

generally have black hole solutions with computable macroscopic entropy. If

the black holes are charged under the gauge fields of the supergravity, it means

that they microscopically must consists of D-branes. In 1996 A. Strominger

and C. Vafa [SV96] performed such a microscopic construction and computed

the asymptotic degeneracy of states, finding agreement with the Bekenstein–

Hawking entropy. The way they counted the states was by reducing the brane

effective theory to a two-dimensional CFT and then applying the Cardy for-

mula we met in Chapter 2.

In this thesis we consider a type of black holes that feature in Calabi–

Yau compactifications of type IIB string theory. They consist of D3 branes

wrapped around internal three-cycles. Being charged under the five-form field

strength F5, these black holes generate five form flux piercing three-cycles of

the Calabi–Yau, and having two legs in the non-compact directions. Thus they

appear as point particles in four dimensions charged under the various vector

fields of N = 2 supergravity.

Having flux through internal three-cycles affects the complex structure mod-

uli much in the same way as the three-form flux did in Chapter 4. This inter-

play between black holes and the complex structure moduli is the interest of

two of the papers on which this thesis is based. In particular, paper I deals with

quantum corrections to the entropy of these black holes. Paper II estimates the

relative strengths of the effect that black holes contra three-form fluxes have

on the complex structure.

5.1 D3-brane black holes

In this section we describe how charged black holes in type IIB compactifi-

cations can be described as D3-branes. We follow more or less the charming

treatment provided by F. Denef in Ref. [Den00]. Consider a flux-less Calabi–

Yau compactification of type IIB string theory resulting in a low energy ef-
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fective N = 2 supergravity with massless vector and hypermultiplets. The

gauge fields in the vector multiplets V I originate from the four-form C4 of

the ten-dimensional theory, and are thus sourced by D3-branes.

A black hole is obtained by wrapping a D3-brane around a three-cycle in

the Calabi–Yau. The brane is localized to a point in non-compact spacetime.

Let us choose to wrap the brane qI times around the cycle AI and −pJ times

around the cycle BJ . This gives rise to a self dual five-form flux

F̃5 = F5 = (1 + ∗)F . (5.1)

Defining the three-form Γ = qIβ
I + pIαI , a suitable F is

F =
1

2μ3
dVolS2 ∧ Γ. (5.2)

Here the S2 is a spacelike sphere in the non-compact directions centered at

the D3-brane, and dVolS2 = sin θdθdφ. To see that this field corresponds to

the correct charge, we perform the integrations∫
S2×BI

F5 =
∫

S2×BI

F =
2π
μ3

∫
M
αI ∧ Γ = (4π2α′)2qI

∫
S2×AI

F5 =
∫

S2×AI

F = −2π
μ3

∫
M
βI ∧ Γ = (4π2α′)2pI .

(5.3)

Note that the manifold S2 × AI is “linked” with a D-brane wrapping the BI -

cycle somewhere inside the S2. The same goes for AI ↔ BI , but then the

orientation of the linking is reversed. This is why it makes sense to interpret

the second equation in (5.3) as the presence of a brane wrapping the BI cycle

−pI times.

Thus, the brane surrounds itself with a five-form field strength wrapped on

the three-cycles αI and βI . From a four-dimensional point of view, the object

is a black hole charged under the fields V I of Eq. (4.54). It will generate

a potential for the complex structure moduli analogously to the presence of

three-form fluxes. An important difference in this case is that the potential

will depend on the distance to the black hole.

Let us investigate this potential. Performing a dimensional reduction with

this brane and corresponding flux requires some care because of the self-

duality of F̃5. Writing the black hole metric in the form

ds2 = −e2U(r)dt2 +R2(r)dVolS2 + f(r)dr2 (5.4)
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where r is a radial coordinate from the black hole, and following the lead of

Denef1 the effective action becomes

Seff. =
1

16π

∫
dVol4

(
R4 − 2Kij̄∂μz

i∂μz j̄ − 1
R(r)4

〈Γ, Γ̂〉
)
. (5.5)

HereKij̄ is the Kähler metric on moduli space as defined in (4.56) and 〈Γ, Γ̂〉
is the intersection product (4.26). Γ̂ is the six-dimensional Hodge dual of Γ.

The term with 〈Γ, Γ̂〉 acts as a potential for the complex structure moduli.

By expanding Γ in a harmonic basis {Ω, DiΩ, Ω̄, Dı̄Ω̄} one sees that it has

the standard form of an N = 2 scalar potential coming from a holomorphic

superpotential. This superpotential has the GVW form

Wbh(z) =
∫
M

Γ ∧ Ω, (5.6)

and the potential expressed in this quantity is

V (z) ≡ 1
2
〈Γ, Γ̂〉 = eK

(
Kij̄DiWbhDj̄W̄bh + |Wbh|2

)
, (5.7)

which is the usual N = 2 result. In paper II we consider a D3-brane black

hole in a flux compactification. The potential for the complex structure moduli

then also has a contribution from the fluxes of the form (4.66). We compare

the effects of these potentials and find that the flux potential dominates except

in fine-tuned cases. The last section in this chapter makes a few comments on

this paper.

In place of Wbh it is convenient and customary to use a rescaled quantity

Z = eK/2Wbh called the central charge2 of the black hole. The central charge

is not holomorphic, but its absolute value is independent of Kähler rescalings

Ω → e−fΩ.

Let us now consider the special case of supersymmetric black holes. In

N = 2 supergravity there are black hole solutions preserving half of the super-

symmetry. These states are called BPS states since they saturate the so-called

BPS bound M ≥ |Z|. In the context of magnetic monopoles, this inequal-

ity was discovered by E.B. Bogomolny [Bog76], and states saturating it were

studied by M.K. Prasad and C.M. Sommerfield [PS75].

BPS black holes have a metric of a more restrictive form than (5.4):

ds2 = −e2U(r)dt2 + e−2U(r)[r2dVolS2 + dr2]. (5.8)

1Who in his turn follows the lead of M. Henneaux in collaborations with C. Teitelboim [HT88]

and X. Bekaert [BH99].
2The reason for this nomenclature is that theories with extended supersymmetry have nontrivial

anti-commutation relations between the generators QA
α , A = 1, . . . ,N of the different super-

symmetries: {QA
α , QB

β } = εαβZAB . The matrix ZAB commutes with all other generators, and

is thus a central term. Since ZAB is antisymmetric it has only one component in N = 2.
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Plugging this metric into (5.5), assuming zi = zi(r) and integrating over

angular coordinates produces the following effective action per unit time

Seff = −1
2

∫ ∞
0

dτ
(
U̇2 + gij̄ż

iż j̄ + e2UV (z)
)

(5.9)

where we ignored boundary terms and introduced τ = 1/r. A dot denotes

differentiation with respect to τ . The action (5.9) determines U and the moduli

fields zi as functions of the radial coordinate. Since we are considering an

N = 2 compactification without flux, there is no potential for the moduli far

away from the black hole. At τ = 0 they can take any values, zi(0), but closer
to the black hole the zi start experiencing the potential V .

For extremal black holes there is a remarkable result known as the attractor
mechanism. It states that the moduli fields are fixed to take values determined

by the charges qI , p
I at the horizon, and that these values are independent of

zi(0). Indeed, as we describe briefly below, the equations of motion derived

from (5.9) describe an attractor flow converging to an attractor point.

Let us explain how this works. Dropping a boundary term, the action (5.9)

can be recast into

Seff = −1
2

∫ ∞
0

dτ

([
U̇ + eU |Z|

]2
+
∥∥żi + 2eUKij̄∂j̄|Z|

∥∥2) . (5.10)

From this the equations of motion are obvious:

U̇ = −eU |Z|
żi = −2eUKij̄∂j̄|Z|.

(5.11)

The second equation gives

∂τ |Z| = ∂i|Z|żi + c.c. = −4eU ‖∂i|Z|‖2 ≤ 0. (5.12)

We see that the equations of motion imply that |Z| decreases as we approach

the horizon, to a minimal value |Z∞| at τ = ∞. For solutions where Z∞ �=
0 the geometry (5.8) describes an extremal supersymmetric black hole with

horizon at τ = ∞. Straightforward analysis of the equations close to τ = ∞
reveals that the near horizon geometry is AdS2 × S2 with horizon area A =
4π|Z∞| and that ∂τ |Z| = 0 there. The latter implies

∂i|Z|
∣∣∣
τ=∞

= 0 (5.13)

by (5.12). So the function |Z(qI , pI , zi)| is minimized with respect to zi at

the horizon. The particular values of zi and of the entropy SBH = A/4 =
π|Z∞| is therefore determined as a function of the integer charges qI and pI ,

but are unaffected by the background values of the moduli zi(0). This is the

celebrated attractor behavior. It was discovered by S. Ferrara, R. Kallosh and
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A. Strominger in 1995 [FKS95], and developed further by the same authors in

Refs. [Str96, FK96a, FK96b].

It is possible to explicitly solve the minimization problem. Defining the

quantity C ≡ 2ieK/2Z̄ the solution is

pI = Re (CXI)
qI = Re (CFI).

(5.14)

These equations are known as the attractor equations.

5.2 Higher order corrections and the OSV conjecture

Let us now describe how some stringy corrections to the entropy of our

N = 2 black holes can be taken into account. This was developed in a

series of papers by G.L. Cardoso, B. de Wit and T. Mohaupt [LCdWM99],

[LCdWM00b], [LCdWM00c], [LCdWM00a]. The presentation here follows

closely Ref. [Von05].

Considering string-loop diagrams results in corrections to the low energy

N = 2 effective action. Interactions between the graviton and graviphoton

field strength T = dV 0 for instance give higher curvature terms. The only

non-zero string theory g-loop amplitudes between these fields involve 2g − 2
graviphotons and 2 gravitons. To reproduce these interactions in the effective

theory one needs to include terms that are quadratic in the Ricci scalar in the

action. The correct terms are neatly summarized in superspace formalism. If

W denotes the superfield of the gravity multiplet the corrections are given by

a function F (XI ,W 2):

Scorr. ∼
∫
dx4dθ4F (XI ,W 2). (5.15)

The function F is the string loop corrected holomorphic prepotential. It is

given as an expansion inW 2:

F (XI ,W 2) =
∞∑

g=0

Fg(XI)W 2g. (5.16)

The tree-level contribution F0(XI) is identical to the prepotential of the

Calabi–Yau which we denoted F (XI). We keep this potentially confusing

double meaning of F , but always write out the second argument in the

corrected quantity.

To determine the thermodynamics of a black hole in higher curvature grav-

ity, one has to use the formalism developed by R. Wald [Wal93]. Cardoso et
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al. perform this analysis. They find that the value ofW 2 is fixed at the horizon

W 2 = −64Z̄2e−K = 256/C2, (5.17)

and that the entropy is given by

SBH(p, q) = π[|Z| − 256FÂ(XI ,W 2)]. (5.18)

Here we used subscript Â to denote differentiation of F (XI ,W 2) with respect

to the second argument. On the left-hand sideXI andW 2 should be evaluated

at their attractor values. The attraction point itself is also affected by the cor-

rections. To take this into account, all one has to do is to use the corrected

prepotential in the new attractor equations:

pI = Re (CXI)

qI = Re
[
CFI

(
XJ ,

256
C2

)]
.

(5.19)

So if we can compute the corrections Fg(XI) we can compute string loop

corrections to the entropy of a black hole! The terms Fg(XI) have indeed been

calculated. In two impressive works, one by I. Antoniadis et al. [AGNT94] and

one by Bershadsky et al. [BCOV94] it is shown that the Fg(XI) is the genus g
contribution to the free energy of the B-model topological string propagating

on the Calabi–Yau.

Topological string theory can be considered as a toy-model for the full

string theory. It comes in two variants, the A- and B-models, related to the

type IIA and IIB superstring theories, respectively. The topological strings

care less than usual about the metric of the space on which they propagate.

On a Calabi–Yau, the A-model only depends on the Kähler structure, and the

B-model conversely only on the complex structure. In this sense they only de-

pend on “half of” the metric. Topological string theory originated in a work

by E. Witten [Wit90].

In 2004 H. Ooguri, A. Strominger and C. Vafa — henceforth OSV — beau-

tifully combined the works of Cardoso et al. and Antoniadis et al. OSV advo-

cate a very simple relation between the black hole entropy (5.18) and the free

energy of the topological B-model. Let φI denote πIm (CXI) and define the

function

F(φ, p) = −πIm
[
F

(
pI +

i

π
φI , 256

)]
. (5.20)

Expressed in this function the entropy becomes

SBH(p, q) = F(φ, p)− φI ∂

∂φI
F(φ, p), (5.21)
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where φI should be substituted in favor of qI through the qI -attractor equations
which in this language read

qI = − ∂

∂φI
F(φ, p). (5.22)

The interpretation of Eqs. (5.21) and (5.22) is that SBH is the Legendre trans-

form of F and that φI are chemical potentials for qI .
The main conjecture of OSV is the identification of the function F with the

free energy Ftop of the topological B-model

Ftop(tA, gtop) =
∞∑

g=0

g2g−2
top Fg(tA). (5.23)

Here tA = XA/X0 parameterize the complex structure. With an appropriate

identification of the topological coupling constant gtop, and the tA evaluated

at the attractor point, the correspondence reads

F(φ, p) = Ftop(tA, gtop) + F̄top(tĀ, ḡtop) (5.24)

with

tA =
pI + iφI/π

p0 + iφ0/π
gtop = ± 4πi

p0 + iφ0/π
. (5.25)

Exponentiating yields the corresponding relation between partition functions

ZBH(φI , pI) = |Ztop(tA, gtop)|2. (5.26)

The fully corrected thermodynamics of the supersymmetric D3-brane black

hole is consequently governed by a gas of topological strings propagating on

the particular Calabi–Yau geometry realized at the horizon.

5.3 Matrix model description of black holes

Even if it is known in principle how to compute the topological amplitudes Fg

for a given Calabi–Yau threefold, it is still very complicated. There are explicit

results available though, e.g. in Ref. [HKQ09], M-X. Huang, A. Klemm and S.

Quackenbush compute the topological partition function for the quintic three-

fold3 to genus 51!

In Ref. [BCOV94] the behavior of topological strings close to singularities

in moduli space known as conifold singularities is analyzed. It is found that it

is related to simple toy models of string theory known as c = 1 strings. These

3The quintic Calabi–Yau can be described as the zero locus of degree five polynomials in the

projective coordinates on P
4. We will get to know this space more intimately in Chapter 6.
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are string theories in two space-time dimensions that are free from the confor-

mal anomaly, paying the price of sacrificing Lorentz invariance: the dilaton

is linear in the spatial coordinate. The c = 1 string theories are equivalent to

systems that are exactly soluble — matrix models4.
D. Ghoshal and C. Vafa made this connection between topological strings

and c = 1 strings much more explicit, identifying the free energies of the two

systems [GV95]. Let us briefly describe both conifolds and matrix models.

Conifolds are treated to greater extent in Chapter 6 and a good reference for

matrix models is I. Klebanov’s review, Ref. [Kle91].

A conifold singularity in a Calabi–Yau manifold can locally be described

by a hypersurface in C
4:

uv − st = 0. (5.27)

Here u, v, s and t are complex coordinates on C
4. The singularity is at u =

v = s = t = 0, and is the tip of a cone with base S2 × S3. These singularities

occur in Calabi–Yau spaces. In such a case some region of the compact space

can be mapped to the vicinity of the singular point in (5.27). Conifold singu-

larities develop at special loci in the complex structure moduli space: when

the moduli approach such a locus, some region of the manifold approaches

the singular geometry (5.27). Close, but not at such a conifold locus the mani-

fold is smooth, and the local geometry of the would-be singular region has the

form
uv − st = μ0. (5.28)

The deformation parameter μ0 is a parameter on the moduli space5. The coni-

fold locus is at μ0 = 0. As the parameter μ0 goes to zero a three-sphere in

the geometry shrinks to a point. A. Strominger showed in a beautiful paper

[Str95] that type IIB string theory is smooth on such singular manifolds. The

smoothening happens trough non-perturbative effects: D3-branes that wrap

the vanishing cycle become massless and contribute to the dynamics.

A matrix model is a simple version of non-abelian gauge theory. The basic

degree of freedom is an (N ×N)-matrix X , and a typical action is

S =
∫ 2πR

0
dt βTr

(
Ẋ2 − V (X)

)
. (5.29)

The function V acts as a potential, and the parameter β as the inverse of

Planck’s constant. We put the system at a finite temperature T = 1/2πR.

4Often the term matrix model is used for a zero-dimensional (i.e. timeless) model. In that lan-

guage the models we consider are called matrix quantum mechanics.
5In paper II we denote the modulus μ which in the matrix model language introduced below is

μ = μ0β. On a non-compact space as (5.28) this is irrelevant, but in a compact Calabi–Yau, it

is really μ0 that corresponds to the deformation parameter.
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Figure 5.1: The potential for the c = 1 matrix model. To the left we see the full

potential and to the right the effective potential after the double-scaling: a zoom-in on

the top of the potential. The parameter μ is ∼ β(μc − μF ).

By diagonalizing the matrix X the dynamics of the system can be reduced

to that of the eigenvalues λi of X . Taking appropriate care of the volume

measure in the path integral, one learns that the eigenvalues behave as non-

interacting fermions living in the potential V ! This is indeed a remarkable

simplification; in fact it makes the theory so simple that it often is exactly

soluble.

Matrix models are studied perturbatively by putting the N eigenvalues in

the fermion ground state, corresponding to a Fermi level μF which is a func-

tion of N/β. The matrix model studied by Goshal and Vafa, simply called

the c = 1 matrix model, has a potential with a maximum at X = 0: V (X) ∼
−X2. The appropriate limit for describing the conifold is when μF approaches

a critical value μc where the Fermi surface reaches the top of the potential. At

the same time one should send β → ∞. More precisely the correct limit is

taking μ0 ∼ μc − μF to zero, but keeping μ ≡ μ0β at a constant value. This

double-scaling limit effectively zooms in on the top of the potential. An illus-

tration of this is provided in Figure 5.1.

The free energy of the c = 1 matrix model can be explicitly computed:

Fc=1(μ,R) = −R
2
μ2 ln(μ0)− 1

24

(
R+

1
R

)
ln(μ0) + ... (5.30)

where the ellipsis denotes an expansion in powers of μ−2 all coefficients in

which are known. Goshal and Vafa argued that at a the self-dual6 radiusR = 1
this exactly reproduces the B-model topological string free energy close to

6Note that the free energy is invariant under R → 1/R and μ → Rμ. This is indeed a symmetry

of the whole theory.
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Figure 5.2: The potentials for the 0A and 0B matrix models. On the left we have 0A.

The potential wall at X = 0 prevents tunneling. For 0B on the right the system is

stable because both sides of the potential are filled.

a conifold point. In this correspondence the role of β is played by 1/gtop.

As explained by C. Vafa [Vaf95], the factor −1/12 in front of the genus one

contribution is essential for the string theory resolution of the conifold through

the Strominger D3-branes.

The OSV conjecture immediately made it possible to connect the thermody-

namics ofN = 2 black holes to matrix models. Indeed, if FBH = Ftop +F̄top

and Ftop = Fc=1 then there really should exist such a correspondence! This

is made explicit in the two papers Ref. [DOV04] by U.H. Danielsson, M.E.

Olsson and M. Vonk, and in paper I of this thesis, which a careful reader at

this point should be well prepared to read.

Let us make a few remarks on the results obtained. An important point is

the appearance of two matrix models closely related, but not identical to the

c = 1 matrix model. These are called the 0A and 0B models. They too are dual

to two-dimensional string theories. One of their virtues is the non-perturbative

stability. In the c = 1 matrix model only one side of the potential barrier is

filled with fermions (see Figure 5.1). Allowing for tunneling to the other side,

this configuration is unstable! The 0A and 0B models instead have potentials

as depicted in Figure 5.2. In the 0A case the potential is

V (X) ∼ −X
2

2
+
q − 1/4
X2

, (5.31)

and in the 0B case both sides of the potential are filled with fermions. Both

result in non-perturbatively stable theories.

In Ref. [DOV04] it is pointed out that the free energy of the 0A matrix

model should correspond to the free energy of a black hole in a compactifica-

tion with singular geometry. It is emphasized that the thermodynamics of the
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two systems are not dual in the naive way. In particular, the extremal black

holes have zero temperature while the matrix model is at its self-dual temper-

ature T = Ts = 1/π. Also other matrix model temperatures are studied and

the corresponding geometries analyzed.

In paper I the proposed correspondence is slightly refined. We argue that

the geometry naturally associated with the 0A matrix model is not a geometry

leading to F0A = Ftop, but rather a geometry satisfying

F0A = Ftop + F̄top, (5.32)

something that also was hinted at in Ref. [DOV04]. Making this interpretation,

the 0A theory at the self-dual radius corresponds to the conifold. We make a

detailed match by the parameters in the matrix model and the N = 2 black

hole charges, and also discuss how, from a matrix model perspective, to in-

corporate large classical contribution to the black hole entropy coming from

embedding the conifold in a compact Calabi–Yau.

Finally, we suggest how to make sense of the correspondence at multiples

of the self-dual radius, in spite of the fact that the logarithmic genus one con-

tribution does not come with the crucial factor −1/12. By rewriting the free

energy in a way that mixes terms of different genera, it takes the form of the

free energy of a black hole living in a compactification exhibiting multiple

conifold singularities.

It is noteworthy that such simple systems as matrix models are able to

compute highly nontrivial quantities in full-fledged string theory on Calabi–

Yau manifolds. These toy-models are also well defined non-perturbatively and

could potentially provide information about the non-perturbative nature of the

topological string.

5.4 Black holes and flux compactifications

The second paper in this thesis, paper II, estimates the relative impact of a

D3-brane black hole and a flux background on the complex structure moduli.

The general argument is quite simple. It uses the result (5.5). The potential

originating from the black hole comes with a factor 1/R4, where R is defined

in (5.4). Denoting the integer flux quanta by Q and the black hole charges by

q, this means that the black hole potential is suppressed by a factor

Vflux ∼ 1
Q2q2

. (5.33)

at the horizon. To see this note that Vflux ∼ Q2, VBH ∼ q2 and Rhor. ∼ q.
Since Q is typically of order 10 and q is very large for black holes of macro-

scopic size, there will be no effect from the black hole on moduli stabilization.
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An end left loose in paper II is to incorporate the dependence of this rea-

soning on the size of the extra dimensions. Let us include this analysis here.

Performing a dimensional reduction we see that the terms in the action come

with the following factors:

1
2κ2

10

∫
dx10√gR10 ∼ 1

2κ2
4

∫
dVol4R4

− 1
4κ2

10

∫
dx10√g |F̃5|2

2 · 5!
∼ 1

8π

∫
dVol4

〈ΓBH, Γ̂BH〉
R4

− 1
4κ2

10

∫
dx10√g |F̃3|2

3!
∼ 1

8π

∫
dVol4

gs〈Γflux, Γ̂flux〉
(4πα′)2

.

(5.34)

The four-dimensional Planck length κ4 is

κ2
4 =

κ2
10

V6
(5.35)

where V6 is the internal volume. The different Γ are integer cohomology forms:

ΓBH ∼ q and Γflux ∼ Q. The horizon radius for the black hole will be of

order Rhor. ∼ qκ4 for an extremal black hole. For non-extremal black holes

the radius will be larger, and the effect will be smaller.

Putting things together, using (3.52) we obtain that the black hole dominates

at the horizon if the radius R6 of the compact dimensions satisfies

R6 > g1/3
s Q2/3R

2/3
BHκ

1/3
4 . (5.36)

With our naive bound (4.6), and taking κ4 ∼ 10−35m, we see that we must

require

RBH <
10−9m
Qg2

s

(5.37)

to see an effect. The interpretation of this is that a black hole can possibly

affect the internal geometry of a flux compactification only at a late stage of

Hawking evaporation. However, for such black holes the supergravity approx-

imation we use breaks down.
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6. Landscape topography

Over the hills and far away
Gary Moore

The GKP construction described in Chapter 4 comes a long way toward cre-

ating “semi-realistic” vacua of string theory. Stabilization of Kähler moduli is

not taken into account, but as noted in the closing paragraphs of the same chap-

ter, there are convincing models achieving also this. There are a lot of choices

involved in these setups: the compact topology, the number of O3-planes and

the number of flux quanta through each of the compact three-cycles are exam-

ples. There are also many other string theory models, based e.g. on type IIA

or heterotic strings.

Since there are no known reasons why these vacuum solutions would be

inconsistent, the emerging picture is that of a huge discrete set of possible low

energy theories. This set is known as the string theory landscape, a term coined

by L. Susskind [Sus03]. In principle, one could also speak of a landscape at

the level of four-dimensional quantum field theories, but there are two crucial

differences.

First and foremost the vacua in the string landscape have a consistent em-

bedding in a full theory of quantum gravity. It is an interesting and challenging

problem to understand which four-dimensional field theories are possible as

effective descriptions of string theory. The set of those that cannot has been

named “the swampland” by C. Vafa [Vaf05]. Some features distinguish the

landscape from the swampland. As described by N. Arkani-Hamed, L. Motl,

A. Nicolis and C. Vafa [AHMNV07], one striking such feature is the weakness

of gravity.

Second, string theory does not only provide a set of vacua— it also contains

the dynamics for describing processes in which many vacua take part. There is

an effective potential on the string theory landscape. A recent review making

these aspects very clear is that of A.N. Schellekens [Sch08].

Assuming that we live in a string theory vacuum, i.e. at a critical point

of this potential, several questions become pertinent. One is about the selec-

tion of the particular vacuum that describes our universe. Is it dynamically

selected? Or is it a random process? Another issue concerns our immediate

surroundings in the landscape. Since they are in principle dynamically acces-

sible it is of great interest to understand if there are observable consequences

that depend on them. For instance, the masses of the moduli fields depend on
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the second derivatives of the potential evaluated at the minimum, but there are

also more elaborate effects.

Chain inflation is such an example. It was proposed by K. Freese and D.

Spolyar [FS05] and analyzed in the landscape in collaboration with J.T Liu

[FLS06]. More recently the idea was revisited by D. Chialva and U.H. Daniels-

son [CD08b, CD08a]. In this scenario inflation takes place in several different

vacua between which the universe tunnels. If there are long series of connected

vacua in the landscape, this scenario could have a natural embedding in string

theory. Another consequence of long sequences of vacua was explained by H.

Tye. Connected vacua can aid tunneling in the landscape by resonance effects

[Tye06].

A very interesting, albeit speculative, idea is that our universe went through

a phase where many vacua were accessed. This process may well leave an

observable imprint on cosmological data, as was explored by H. Davoudiasl,

S. Sarangi and G. Shiu [DSS07].

All these effects depend on the local topographic structure of the landscape,

i.e., on the structure of the effective potential. It is therefore of considerable

interest to study this structure. The two papers III and IV analyze the corner

of the string theory landscape corresponding to some GKP models. We pick

a particular Calabi–Yau manifold and perform both analytical and numerical

investigations of the corresponding scalar potential (4.66) governing the dy-

namics of complex structure moduli and the dilaton. An important result is

that we find that the long connected series of vacua relevant for chain inflation

and resonance tunneling are a typical feature.

In both these studies the concept of monodromies of the internal space is

of great importance. Let us therefore describe this in some detail in a simple

example.

6.1 Monodromies

The best friend of many geometrical physicist is the two-dimensional torus

T 2. Complex structure, Kähler structure, cohomology and monodromies are

all abstract concepts that have simple, yet nontrivial realizations in T 2. This

space is of immense help in trying to understand more complicated Calabi–

Yau manifolds.

The torus also plays a very important part of its own in string theory. One-

loop string amplitudes are amplitudes on the torus, and the SL(2,Z) self-

duality of type IIB can be understood as the modular group of the torus in

an elliptically fibered F-theory compactification. Furthermore, compactifica-

tions of string theory on flat or twisted tori are simple models with rich semi-

realistic phenomenology.
Given these facts, it is very hard not to think as highly of tori as Homer

Simpson does:
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Figure 6.1: A torus. The best friend of many geometrical physicists. The torus is

obtained from the complex plane by the identifications z ∼ z+m+nτ withm,n ∈ Z.

It inherits its flat Kähler metric from that of the complex plane.

Doughnuts. Is there anything they can’t do?

The complex geometry of the torus is described e.g. in Chapter 5 of Polchin-

ski’s book [Pola], but let us recall some facts.

To put a complex structure on T 2 we define it as the complex plane subject

to the identification

z ∼ z +m+ nτ m, n ∈ Z. (6.1)

Here z = x + iy is the coordinate on C. This defines a torus for any τ =
τ1 + iτ2 ∈ C \R, which parameterizes the complex structure. As we shall see,

not all τ define different structures. For instance τ → τ̄ clearly gives the same

torus, so we restrict ourselves to τ2 > 0.
The fundamental domain of the identification (6.1) is depicted in Figure 6.1.

The Ricci-flat (remember that in two dimensions this means flat) and Kähler

metric corresponding to τ is inherited from the flat metric ds2 = (A/τ2)dzdz̄
on C. With this perhaps strange-looking normalization of the metric, the pa-

rameter A is the area of the torus. Let us write this metric in standard periodic

coordinates θ1, θ2, satisfying

θi ∈ [0, 1] and

{
(0, θ2) ∼ (1, θ2)
(θ1, 0) ∼ (θ1, 1)

(6.2)

The most natural ones, running along the sides of the torus in Figure 6.1 are

θ1 = x− τ1
τ2
y θ2 =

y

τ2
. (6.3)

99



�

�

������

Figure 6.2: Two identical tori corresponding to different τ . The corresponding flat

metrics and the coordinate transformation relating them are described in the text.

In these coordinates the metric reads

gij =
A

τ2

(
1 τ1

τ1 |τ |2
)

ij

. (6.4)

We see explicitly how different τ means different metrics on T 2. By our choice

of normalization for the metric on C we factored out the overall volume A of

the torus. This parameter corresponds to a Kähler modulus.

As mentioned, different τ can lead to the same complex structure. Indeed

τ ′ = τ + 1 leads to exactly the same set of identifications as (6.1). Also

τ ′ = −1/τ does, provided that we scale the parameter on C: z → τz. Let

us illustrate the former on the level of the metric — from (6.4) it looks as if

they would be different. The two (identical) tori have fundamental domains

as shown in Figure 6.2. Let us make a coordinate change to see that they are

really the same. Define new coordinates θ̃1,2 on the first torus by

θ̃1 =

{
θ1 − θ2; θ2 < θ1

1 + θ1 − θ2; θ1 < θ2
θ̃2 = θ2. (6.5)

These coordinates also satisfy (6.2). Expressed in these, the metric (6.4) is

gij =
A

τ2

(
1 τ1 + 1

τ1 + 1 |τ + 1|2
)

ij

. (6.6)

This is the metric corresponding to τ +1, so these two tori are really the same

expressed in different coordinates.
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Figure 6.3: The famous picture of the torus moduli space |τ1| ≤ 1/2 and |τ | ≥ 1. The
two lines going off to infinity are identified, as are the circle arches on the left and

right side of τ = i.

The two transformations τ → τ + 1 and τ → −1/τ can be performed

any number of times and in any order. Together they generate the group

PSL(2,Z) = SL(2,Z)/Z2. A general transformation is of the form

τ → aτ + b

cτ + d
(6.7)

with a, b, c, d ∈ Z and ad − bc = 1. The factoring by Z2 is needed since

changing the sign of a, b, c, d yields the same transformation. The true moduli

space of the torus is therefore H/PSL(2,Z), where H is the upper half plane.

The covering space H is called the Teichmüller space of T 2.

One can show that any point τ ∈ H can be mapped to the region |τ1| ≤
1/2 and |τ | ≥ 1. This map is unique except at the boundaries. With proper

identifications at the boudaries, the strip in Figure 6.3 is a fundamental domain

of the PSL(2,Z) action, and thus constitutes the moduli space of the torus.

Before analyzing the moduli space further, let us make a small digression

on type IIB supergravity. Look back at the supergravity action (4.43), and the

definition of the axio-dilaton τ (4.42). It is a straightforward exercise to show

that the action is invariant under the combined transformation (6.7) and

G3 → G3

cτ + d
(6.8)

where τ now is the axio-dilaton. Type IIB supergravity thus has an SL(2,Z)
symmetry. This is an instance of the S-duality of string theory, and config-

101



Figure 6.4: A sphere with three special points. They can be singular or removed. This

space is a toy-model for the torus moduli space, or for the mirror quintic moduli space

to be introduced below.

urations related by this symmetry should really be considered equivalent. If

type IIB is viewed as a limit of a toroidal F-theory compactification the axio-

dilaton τ really is the complex structure modulus of the torus fiber. Note that

S-duality can interchange theories with large and small string coupling.

Returning to our description of the torus moduli space, there are three points

of special significance in this space. First, the point τ2 → ∞ corresponds to

a degenerate torus where the ratio of the two radii goes to zero. A bit more

subtle are the points τ = i and τ = ±1/2 + i
√

3/2. The first of these is a

fixed point of τ → −1/τ . It does not correspond to a singular torus, but the

moduli space is singular here. The reason for this is that moving in different

directions in Teichmüller space corresponds to moving in the same direction

in moduli space. E.g., τ = i+ εi and τ = i− εi correspond to the same torus.

Therefore this is an orbifold singularity of the moduli space. A similar thing

happens at the point τ = ±1/2 + i
√

3/2.
A sphere with three singular points is therefore a good picture of the T 2

moduli space. One point, τ2 = ∞, should really be removed, the other two

correspond to regular tori but the moduli space is singular. A sphere with three

special points is shown in Figure 6.4.

Let us now investigate in some detail what happens if we continuously de-

form a torus, but end up at the same geometry that we started with, i.e. if we

take the torus around a loop in moduli space. At first sight it does not seem

that exciting, but if the loop encircles one of the singular points interesting

things can happen. Such loops lift to open curves in Teichmüller space.

Let us denote the continuous deformation of a torus τ → τ + 1 by t∞. This

transformation corresponds to encircling the point τ2 = ∞. To generate the

full fundamental group of the three times punctured S2, also the continuous

encircling of τ = i denoted ti and corresponding to τ → −1/τ is needed.
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Figure 6.5: The torus with two of its one-cycles painted up. The A-cycle is red and

the B-cycle is blue.

Suppose now that we wrap something on the cycles of the torus: rubber

bands, fluxes, branes or something of the like. Or that we just paint them as

in Figure 6.5. We choose two cycles, A and B, forming a basis of H1(T 2,Z).
Now we perform the transformation t∞. We continuously increase the real

part τ1 until we reach τ + 1. At this stage the torus looks as the non-dashed

part of Figure 6.6. We have now traversed the full loop and are back at the

original torus. If we let our coordinate system vary continuously however, the

metric has changed: τ became τ+1. Changing coordinates so that we get back

our original coordinatization corresponds to the inverse of the reparameteriza-

tion (6.5). This essentially corresponds to cutting out the rightmost triangle of

Figure 6.6 and gluing it one unit to the left, producing the dashed torus.

The dashed torus has the original coordinatization, but something remark-

able has occurred. The paint is now around different cycles! Indeed, the A-

cycle is the same, but B has turned to B +A! There is apparently a nontrivial

action of t∞ on H1(T 2,Z). The action is linear, and in the {A,B} basis the

corresponding matrix is

t∞ =

(
1 0
1 1

)
. (6.9)

Such a transformation is called a monodromy.
Going around the point τ = i will also produce a monodromy, and one can

show that the action is an interchange of the two cycles and a sign:

ti =

(
0 1
−1 0

)
. (6.10)
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Figure 6.6: Under a continuous transformation τ → τ + 1, the two painted cycles

of Figure 6.5 end up as the solid cycles in the present figure. A torus with parameter

τ + 1 is however the same as a torus with parameter τ . Transforming back to the

original coordinates corresponds to cutting out the triangle to the right and gluing it

to the left (dashed). We see that the B-cycle has received an addition of the A-cycle.

A monodromy!

The two matrices t∞ and ti generate the monodromy group of the torus. It is

nothing but SL(2,Z).
One of the reasons for taking so much space to explain monodromies is that

they often seem counter-intuitive at first encounter. It appears that it is possible

to wrap a rubber band around one cycle and then continuously move it to a

different cycle. This must be topologically impossible. Indeed it is impossible:

there is no homotopy between homotopy inequivalent cycles. The magic trick

is to realize that there is an ambiguity in the labeling of the cycles, and that if

one changes also the space, then what was once an A-cycle might now look

like a B-cycle!

Our interest in monodromies arises from the study of flux compactifications.

Calabi–Yau spaces have monodromies just like the torus. Starting with flux

through some of the cycles and performing a monodromy transformation, the

geometry looks the same, but the fluxes have switched cycles. If the fluxes

are just slightly changed by the monodromy, the resulting configuration is

closely related to the original one, but different. And — more importantly

— there is a continuous path between the configurations. In papers III and

IV we explore several aspects of monodromies in flux compactifications, a

distinguished feature being the discovery of long series of connected minima.

In these papers we deal not with tori but with Calabi–Yau three-folds. The

monodromies are slightly more complicated, but the analogy is straightfor-

ward. In the next section we introduce the reader to two prominent members

of the Calabi–Yau family: the quintic and its mirror.
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6.2 The quintic and its mirror

Before describing the manifolds let us comment on the word “mirror”. A won-

derful and surprising feature of type II Calabi–Yau compactifications is that

there are pairs of manifolds that result in the same effective theory. Type IIA

compactified on a manifoldM is identical to type IIB compactified on its mir-

rorW . In type IIA the relation between multiplets and cohomology is reversed

as compared to type IIB: the vector multiplets correspond to H1,1 and the hy-

permultiplets to H2,1. This means that the Hodge diamonds (4.22) of mirror

manifolds are each other’s reflection in a diagonal line. For a long, thorough

introduction to mirror symmetry, including prerequisites in mathematics and

physics, the reader is referred to Ref. [H+] by K. Hori et al.
One of the most popular ways to describe Calabi–Yau manifolds is as zero-

sets of polynomials in (products of) complex projective spaces. Taking the

polynomials to be holomorphic in the projective coordinates, the manifold in-

herits a complex structure from the projective space. Thus, the complex struc-

ture of the Calabi–Yau is parameterized by the coefficients of the polynomial.

The best known such manifold is the quintic1 W(1,101) in P
4. Denoting the

projective coordinates on P
4 by x1, . . . , x5 the quintic is given as the zero set

of a general quintic polynomial p(x):

p(x) = 0. (6.11)

Note that for this zero set to make sense under rescalings xi → λxi all mono-

mials must be quintic.

Let us count the dimension of the complex structure moduli space. It is an

amusing exercise to compute the number of degree dmonomials in n variables.

The result is (
n+ d− 1
n− 1

)
. (6.12)

Hence, there are 126 distinct quintic monomials in five variables, meaning

that the polynomial p(x) have 126 free complex coefficients. However, this

is overcounting the degrees of freedom. Making a linear coordinate change

of the zi transmutes the monomials, and hence changes the coefficients. The

group of such transformations is GL(5,C) having 5 · 5 = 25 complex di-

mensions. The dimension of the quintic complex structure moduli space is

therefore 126− 25 = 101 as indicated by the notationW(1,101).

Let us now study the mirror manifoldM(101,1). Its complex structure mod-

uli space, which we denote M(101,1), is one-dimensional, facilitating its de-

scription. This is the manifold under study in papers III and IV. The mir-

1We let the subscript on Calabi–Yau manifolds denote their Hodge numbers in the order

(h1,1, h2,1). The reader is warned, however. Specifying the Hodge numbers does not specify

the manifold completely.
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ror pair M(101,1) and W(1,101) was extensively and cleverly described in a

beautiful paper by P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes

[CDLOGP91].

The mirror quintic can in fact be obtained as a quotient of a special class of

quintics, parameterized by the single complex parameter ψ:

5∑
i=1

x5
i − 5ψ

5∏
i=1

xi = 0. (6.13)

The quotient is by a Z
3
5 symmetry group leaving this class of hypersurfaces

invariant. After taking the quotient some singularities require blow-up. The

precise construction does not concern us.

The parameter ψ takes values in the complex numbers, but not all ψ corre-

spond to different complex structures. Indeed if α5 = 1 then ψ ∼ αψ, since
the shift can be undone by a coordinate transformation x1 → α−1x1. Conse-

quently the moduli space is C/Z5, having an orbifold singularity at the origin.

There are two more special points in the moduli space. One is at ψ = ∞
where the manifold is singular. This is referred to as the large complex struc-
ture limit. The other point is ψ = 1. Also here the manifold is singular, but in

a much milder way. It is a conifold.

The topology ofM(101,1) is thus similar to the one of the torus moduli space.

It is a sphere with three special points (one singular and two removed). Pre-

cisely as the nontrivial fundamental group of the torus moduli space supports

a monodromy group, so does the one of M(101,1). Let us describe it briefly,

focusing on the transformation around the conifold point.

As mentioned in Chapter 5 a conifold singularity occurs when a three-cycle

of topology S3 in the manifold shrinks to zero volume. For the mirror quintic,

this cycle is given explicitly in Ref. [CDLOGP91]. The situation is almost

completely analogous to the torus, where the role of ψ = 1 is played by τ2 =
∞. At that point the A-cycle of Figure 6.5 shrinks to zero relative volume. Let

us denote also the shrinking S3 byA2. It has a dual three-cycleB2 intersecting

it once. In fact the pair (A2, B2) can be chosen as one pair in a symplectic basis

{AI , BI} I = 1, 2 of H3(M(101,1),Z). C.f. Subsection 4.2.3.

Completely analogously to the torus case, the cycle B2 obtains an addition

of A2 as a loop encircling the conifold point ψ = 1 is traversed. The other

basis cycles A1, A2 and B1 are left unchanged by the transformation, which

with the ordering2 (A2, B1, A
1, B2) is given by the matrix

T1 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎟⎠ . (6.14)

2This differs from Ref. [CDLOGP91]. It is chosen to concur with the papers III and IV.
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The complete monodromy group of the mirror quintic is generated by this

transformation together with any of the transformations corresponding to en-

circling ψ = 0 or ψ = ∞. To make the notation coincide with papers III and

IV we denote these transformations T∞ and T0. The reason for this confusing

naming is that papers III and IV use the variable z = ψ−5, thus interchanging

the meaning of 0 and∞. In the conventions of papers III and IV T0 is

T0 =

⎛
⎜⎜⎜⎝

1 1 3 −5
0 1 −5 −8
0 0 1 1
0 0 0 1

⎞
⎟⎟⎟⎠ . (6.15)

At this point we would like to remind the reader of the period integrals (4.30).

Recall that the corresponding prepotential (4.33) determines the low energy

effective theory of type II strings compactified on the Calabi–Yau. Since the

periods are integrals over a basis of three-cycles also they are subject to mon-

odromies. Around the conifold point, e.g., we have

F2 → F2 +X2. (6.16)

In particular this means that the prepotential F cannot be analytical at the

conifold point! Instead it implies the presence of logarithmic branch cuts close

to X2 = 0:

F2 =
X2

2πi
log
(
X2

X1

)
+ analytic. (6.17)

For the prepotential itself this translates to

F =
(X2)2

4πi
log
(
X2

X1

)
+ analytic. (6.18)

An astute reader will recall that the genus zero term in the c = 1 matrix

model free energy (5.30) has exactly this form with μ ∼ X2. This is as it

should, because this free energy is nothing but the free energy of topological

strings on the conifold, the genus zero contribution of which is precisely the

prepotential of the conifold.

Let us end this section by collecting our knowledge in a picture — Figure

6.7 — of the ψ-plane. A fundamental domain forM(101,1) is given by argψ ∈
[0, 2π/5), and M(101,1) itself can be thought of as the punctured sphere in

Figure 6.4. The points ψ = e2πin/5 correspond to the conifold point, and

logarithmic branch cuts extend from them to infinity. Since the ψ-plane is

a five-fold cover of M(101,1) there is no trace of the singularity at ψ = 0:
the monodromy T∞, encircling ψ = 0, corresponds to ψ → e2πi/5ψ when

|ψ| < 1.
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Figure 6.7: A picture of the ψ-plane. The fundamental domain argψ ∈ [0, 2π/5)
has been striped, and logarithmic branch cuts emanating from the fifth roots of unity

extend to infinity.

6.3 Series of minima and domain walls

At this point, the reader should be fairly fit to read paper III. There we study

the scalar potential V given in (4.66). Minima to this effective potential corre-

spond to string theory vacua. We use the mirror quintic as a technically simple

model. Almost any Calabi–Yau manifold will, however display the same char-

acteristic features, since these depend only on the presence of monodromies

and minima of the potential.

Practically, we choose various sets of integer flux quanta and compute
V (ψ, τ) numerically using expressions for the period integrals originally

derived in Ref. [CDLOGP91]. Close to the conifold point, however,

analytical treatment is feasible. A crucial point is that V is a multivalued

function on the moduli space: it is subject to monodromies. This is clear

since the superpotential W =
∫

Ω ∧ G3 is expressed in terms of the periods,

and the periods transform. By the torus example it is also intuitively clear.

Letting the paint on the tori in Figures 6.5 and 6.6 symbolize flux lines we

see that traversing the moduli space loop τ → τ + 1 changes the flux quanta.
With new fluxes obviously the potential has changed.

Exploiting this structure of the scalar potential we find a number of inter-

esting topographic traits. In particular, close to the singular points in moduli

space the potential forms spiral staircases due to the logarithmic cuts. At the

bottom of such a staircase, there may or may not be a minimum of the poten-

tial.

Furthermore, there are long series of minima, typically connected by coni-

fold monodromies. The existence of such series could have been anticipated.

Indeed, if the flux quanta on the conifold cycle are small, then the potential
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will not change much under the monodromy. If there is a minimum to begin

with, it is likely to still be there after the monodromy. We also find seemingly

infinite series that become periodic when the SL(2,Z) symmetry is taken into

account. Despite some effort to find infinite series of connected minima, we

do not achieve this. However we are able to relate their existence to open

mathematical questions.

The possibility to connect configurations corresponding to different flux

quanta by monodromies allows for the construction of domain walls. Consider

e.g. two minima connected by a conifold monodromy. Letting the complex

structure of the internal manifold encircle the conifold point when going from

one side of the wall to the other, produces a flux changing domain wall. This

object thus appears to be charged under the three-form fluxes. This is to say,

a D5/NS5 brane wrapping the appropriate three-cycle acts as a domain wall

relating the same two flux configurations! It is intriguing that there are two

completely different ways of creating very related objects, and further studies

of this correspondence would be interesting.

As mentioned in the beginning of this chapter, long series of vacua are very

interesting from a cosmological point of view. The concept of chain inflation

for instance, fits nicely in this framework as described by Chialva and Daniels-

son [CD08b, CD08a].

Another neat feature is that the potential between different minima is known

and calculable. This makes it feasible to numerically search for regions suit-

able for slow-roll inflation, construct domain wall solutions and calculate tun-

neling amplitudes. An in-depth study of the flux potential regarding all these

aspects was performed by M.C. Johnson and M. Larfors in Ref. [JL08b]. This

work also established several novel results applicable to general multi-field

tunneling, properly accounting for gravitational effects.

Extending the model to include Kähler moduli, and using topographic fea-

tures of the potential, the same authors have also demonstrated that there are

severe restrictions on the existence of tunneling instantons in the flux land-

scape [JL08a]. These results potentially have profound implications on the

possibility to embed scenarios like eternal inflation into string theory.

6.4 Geometric transitions

To prepare for paper IV, we need to provide some more depth in our treatment

of conifold singularities. In the 1980s it was realized, notably by P.S. Green

and T. Hübsch, that the moduli spaces of many Calabi–Yau manifold of dif-

ferent topology are connected [GH88b, GH88a]. At the loci where different

moduli spaces meet, the corresponding geometries are singular. The conifold

singularity is exactly such a singularity, as we now describe. We follow closely

the treatment in Ref. [CGH90] by P. Candelas, P.S. Green and T. Hübsch.
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Consider the product P
4 × P

1 of complex projective spaces. Let us denote

projective coordinates on P
4 by [x1 : x2 : x3 : x4 : x5] and on P

1 by [y1 : y2].
A class of Calabi–Yau manifolds is described as the combined zero locus of

polynomials

u(x)y1 + t(x)y2 = 0
s(x)y1 + v(x)y2 = 0,

(6.19)

where u and t are quartic and s and v are linear polynomials in the xi. The

manifold thus obtained has Hodge numbers h1,1 = 2 and h2,1 = 86 and we

denote itW(2,86).

If the P
1 shrinks to zero size this manifold becomes singular. It is still a

subset of P
4 though, and it is in fact given by a quintic equation. To see this,

note that since y1 and y2 can never vanish simultaneously we must have

p(x) ≡ u(x)v(x)− s(x)t(x) = 0. (6.20)

Both uv and st constitute quintic polynomials. Hence this space is a singular

version of the quintic three-fold! The singular locus is where p fails to be

transverse: dp = 0, i.e. u = v = s = t = 0. An observant reader has already

made the connection to (5.27) of the previous chapter. This is a conifold.

It is straightforward to make the quintic non-singular. We just add a suitable

small quintic polynomial μ0(x) to the left-hand side of (6.20):

u(x)v(x)− s(x)t(x) = μ0(x). (6.21)

This blows up an S3 in the quintic. There are thus two topologically distinct

ways of making the conifold smooth. Inflating an S3 is called deforming the

conifold and blowing up a P
2 ≈ S2 is called resolving it. This kind of transi-

tions are called geometric transitions — this particular one relates the quintic

W(1,101) and theW(2,86).

In paper IV we study the mirror of this process, relating the manifolds

M(86,2) and the mirror quintic M(101,1) in much detail. The mirror quintic

corresponds to the resolved geometry, whereas M(86,2) corresponds to the

deformed geometry. We find the six periods of the two-dimensional complex

structure moduli space M(86,2) of M(86,2) and find the corresponding mon-

odromies.

Note that the conifold locus inM(86,2) exactly corresponds to the full com-

plex structure moduli space M(101,1) of the mirror quintic. We provide this

embedding ofM(101,1) intoM(86,2) explicitly, including monodromies. These

constructions make heavy use of a Calabi–Yau geometry toolkit known as

toric geometry, and are interesting in their own right.

However, we exploit this system to generalize the concept of monodromies

to include paths that pass from one moduli space to another. The monodromy

group ofM(86,2) is larger than that of the mirror quintic, so passing through
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the transition (deforming), performing a monodromy (revolving) and going

back to the mirror quintic (resolving), thus allows for more general transfor-

mations than the monodromy group of the mirror quintic. Amusingly, this gen-

eralization is large enough to allow us to find infinite series of continuously

connected minima.

Applying these transformations to configurations with fluxes introduces

some issues only partially resolved in IV. If there is flux through the shrinking
A-cycle in M(86,2), this will persist as a flux through a chain on the mirror

quintic, sourced by space-filling D5 branes wrapped on the blown-up S2. The

fate of flux through the dual B cycle is much more mysterious and is under

current investigation.
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7. Gravity in three dimensions

Login/Logout?

Up until now, the developments described in this thesis have been within the

rich and complicated structure of string theory. We described black holes in

Calabi–Yau compactifications using topological strings, investigated the inter-

play between the potentials induced from fluxes and D3-brane black holes,

and went on excursions in winding spirals in the string theory landscape.

In this chapter we switch gears a bit. Instead of using the full machinery,

we try to isolate typical traits of quantum gravity and study them in as simple

a setting as possible. Namely we study gravity in three dimensions. We do not

reach as far as a quantization of the theory, but we attack questions that are

very relevant for this quest at the classical level.

Let us stress that the objective is to quantize three-dimensional gravity on its
own. We are not attempting to compactify seven of the dimensions of string

theory to arrive at an effective theory containing 3D gravity. Such construc-

tions are indeed possible, but all known models of this sort contain other fields

than the metric itself. It is not at all clear whether our goal is possible to reach.

Actually both a consistent quantization of three-dimensional gravity and a

no-go theorem would be very interesting results. The first would provide an

excellent playground for asking questions about quantum gravity, and in par-

ticular about black holes. The second would be exciting news for string theory:

as soon as gravity gets complicated enough, strings are needed to quantize it.

7.1 (2+1)-dimensional gravity as of 2007

In this section we review the developments in three-dimensional gravity up

until E. Witten reignited the interest in the field with his talk at Strings 2007

and the corresponding paper [Wit07]. For the interested reader a nice review

containing more information is the one by S. Carlip [Car05a].

Let us first make a general comment on gravitational actions in the presence

of asymptotic boundaries. Gravity has an interesting feature when it comes to

the relation between the action and the equations of motion. For most solu-

tions the variation of the bulk action is not zero even if the fields satisfy the

equations of motion. The reason for this is that the partial integration used in

obtaining the equations produces boundary terms that do not vanish. To rem-

edy this, boundary terms have to be added to the action. It is remarkable that
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to have a well-defined variational principle, e.g. for a black hole solution, puts

restrictions on the form of the action infinitely far away. The boundary terms

we encounter in paper V are the Gibbons–Hawking–York term proportional

to the extrinsic curvature, and a boundary cosmological constant.

Let us now turn to the bulk action in three dimensions. We consider three

natural terms containing just the metric and describe their corresponding dy-

namics.

7.1.1 Einstein–Hilbert term

The simplest term is the standard Einstein–Hilbert term

SEH =
1

16πG

∫
d3x

√
g R, (7.1)

yielding the equations of motion

Rμν = 0. (7.2)

In three dimensions the Riemann curvature tensor has equally many indepen-

dent components as the Ricci tensor. This means that Eq. (7.2) fixes the geom-

etry completely. More specifically it implies

Rμ
νκλ = 0, (7.3)

meaning that the geometry is flat. This sounds like a fairly boring theory, but

there are some interesting results. S. Deser, R. Jackiw and G. ’t Hooft studied

the dynamics of point sources [DJtH84] and S. Carlip [Car93, Car05b] showed

that on a manifold of nontrivial topology the gluing of flat Minkowski patches

need not be unique. However, to be interesting as an analog system for four-

dimensional gravity, this theory is too simple.

7.1.2 Cosmological constant

Surprisingly and interestingly, the inclusion of a cosmological constant Λ
opens up a world of possibilities. The action is

S = SEH + ΛScc (7.4)

with

Scc = − 2
16πG

∫
d3x

√
g. (7.5)

One of the earliest treatments of this model was done by S. Deser and R.

Jackiw who explored the corresponding many-particle solutions [DJ84].
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We will solely be concerned with Λ < 0, and therefore we choose the

parametrization Λ = −1/�2. The equations of motion read

Gμν = Rμν −
[
R

2
+

1
�2

]
gμν = 0. (7.6)

Note that we have included the cosmological constant term in defining the

“cosmological” Einstein tensor Gμν . Einstein’s equations still determine the

local geometry completely, but now imply (trace (7.6)) a constant scalar cur-

vature R = 6Λ. The space is locally three-dimensional anti-de Sitter space,

AdS3. That the local geometry is fixed means that there are no propagating

degrees of freedom, i.e., no gravitons.

The natural ground sate of the theory is global AdS3. In papers V, VI and

VII we meet this space in two different coordinate systems. In global coordi-

nates the metric is

ds2 = �2
(− cosh2ρ dτ2 + sinh2ρ dφ2 + dρ2

)
. (7.7)

Here ρ ∈ [0,∞) is a radial coordinate, φ ∈ [0, 2π) is the corresponding polar

angle and τ ∈ R is timelike. This coordinate system has the great virtue that

it describes the entire AdS3 space. The asymptotic boundary, corresponding

to ρ = ∞ is parameterized by φ and τ . We often use light-cone coordinates

u, v = τ ± φ.
Another, often technically simpler coordinate system is the Poincaré patch

ds2 = �2
(
dx+ dx− + dy2

y2

)
, (7.8)

Here y ∈ [0,∞) and x± ∈ R are light-cone coordinates. This patch covers

half of global AdS, and the exact description of the boundary in these coordi-

nates is very complicated1.

AdS3 has an SL(2,R)×SL(2,R) isometry group. The explicit generators

can be found, e.g., in paper V.

7.1.2.1 The BTZ black hole
Given that any geometry solving the equations of motion is locally AdS, it

came as a great surprise that there are black hole solutions. These were found

by M. Bañados, C. Teitelboim and J. Zanelli in Ref. [BTZ92] and are called

BTZ black holes after their discoverers.

BTZ black holes are very similar to ordinary four-dimensional Kerr black

holes. The solutions are parameterized by two real parameters m and j de-

noting the mass and angular momentum, respectively. They are related to the

1For the complete map between local and global coordinates we refer to Ref. [BB07] by C.A.

Bayona and N.R.F. Braga.
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inner r− and outer r+ horizon radii as

m =
r2+ + r2−
8G�2

j =
r+r−
4G�

. (7.9)

Defining the functions

L =
(r+ + r−)2

16G�
L̄ =

(r+ − r−)2

16G�
(7.10)

the corresponding black hole metrics are

ds2 = −4G�(Ldu2 + L̄dv2)− (�2e2ρ̃ +16G2LL̄e−2ρ̃)dudv+ �2dρ̃2. (7.11)

The coordinate ρ̃ is shifted by a constant with respect to ρ:

ρ̃ = ρ+ ρ0, e2ρ0 =
r2+ − r2−

4�2
. (7.12)

If |j| < �m (7.9) can be solved for real r±, and (7.11) describes a black hole

with two horizons. The Bekenstein–Hawking entropy is given by the area law

SBH =
A

4G
=

2πr+
4G

. (7.13)

Continuing formally tom = −1/8G and taking j = 0 one obtains pure global

AdS. Metrics corresponding to −1/8G < m < 0 are singular, and thus there

is a mass gap in the spectrum of black hole states.

The geometry of the BTZ black holes has been studied in much detail by

the BTZ trio in collaboration with M. Henneaux [BHTZ93]. Though not at all

evident from the metric (7.11), the geometries are discrete quotients of global

AdS3. This is in accordance with the three-dimensional Einstein equations,

requiring the space to be locally AdS. The singularity at ρ = 0 is a singularity

in the causal structure rather than a curvature singularity.

The existence of the BTZ black holes makes a consistent quantization of

three-dimensional gravity an extremely attractive scenario. If understood,

three-dimensional quantum gravity would be an ideal gedanken laboratory

for asking nontrivial questions about quantum black holes, and the answers

are likely to be relevant to our four-dimensional world.

7.1.2.2 Asymptotic symmetries
As alluded to earlier, spacetimes with asymptotic boundaries require careful

treatment in gravitational theories. For the action to have any extrema at all,

boundary terms and boundary conditions must be specified. Another subtle

feature that appears in gauge theories in general and in gravity in particular

are the asymptotic symmetries.
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It turns out that gauge transformations — i.e. diffeomorphisms — that do

not vanish at the boundary should not be regarded as gauge transformations.

Rather they are symmetries of the theory! One way to understand this is to

consider the generator algebra in the canonical formalism. Here both symme-

tries and gauge transformations are generated by constraints that split up in

two classes. First class constraints generate gauge transformations and second

class constraints generate symmetries. The would-be-gauge transformations

are generated by constraints that are first class in the bulk, but become second

class at the boundary.

Three-dimensional gravity in asymptotically AdS spacetimes has a highly

nontrivial structure in this regard. J.D. Brown and M. Henneaux [BH86] con-

sidered the canonical formulation of three-dimensional gravity, and found that

imposing boundary conditions has interesting consequences. They considered

metrics of the form

gμν = gAdS
μν + hμν (7.14)

with h not necessarily small and imposed the Brown–Henneaux (BH) bound-

ary conditions. In the Poincaré coordinates these read⎛
⎜⎝ h++ = O(1) h+− = O(1) h+y = O(y)

h−− = O(1) h−y = O(y)
hyy = O(1)

⎞
⎟⎠ . (7.15)

These conditions are preserved by a set of infinitesimal diffeomorphisms ζμ

whose asymptotics fulfill

ζ+ = ε+(x+)− y2

2
∂2
−ε
− +O(y4)

ζ− = ε−(x−)− y2

2
∂2

+ε
+ +O(y4)

ζy =
y

2
(
∂+ε

+(x+) + ∂−ε−(x−)
)

+O(y3).

(7.16)

The leading order gauge-transformations parameterized by the two real one-

variable functions ε± do not vanish at the boundary. They generate symme-

tries rather than gauge transformations. The group of these transformations

is known as the asymptotic symmetry group (ASG). Brown and Henneaux

worked out the symmetry algebra and found that it is exactly the conformal al-

gebra. The closed SL(2,R)×SL(2,R) sub-algebra is identified with the isom-

etry algebra of pure AdS3. Brown and Henneaux find that the Virasoro algebra

has nonzero central charges:

cL = cR =
3�
2G

. (7.17)
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These discoveries were made several years before the AdS/CFT revolution,

but in its light the appearance of the two-dimensional conformal group at the

boundary of a three-dimensional gravitational theory is not surprising. Instead

it is evidence for that any consistent quantization of three-dimensional gravity

with negative cosmological constant is dual to a two-dimensional CFT.

Let us comment on the way these symmetries act on the black hole metrics

(7.11). Using ε−, it is possible to convert the constant L to an arbitrary func-

tion of u, and using ε+ one can put L̄ to an arbitrary function of v. So writing

L(u) and L̄(v) in (7.11), the metric still solves the equations of motion. Since

the symmetries are not proper gauge transformations, these metrics represent

different states. In a canonical treatment the L and L̄ represent degrees of free-

dom that generate the conformal symmetry. Their Fourier components are the

Virasoro generators of this theory.

As beautifully realized by A. Strominger [Str98] the stage is now set for a

microscopic explanation for the entropy of the BTZ black holes. Namely, we

have all the pieces needed to use the Cardy formula to count the states! The

constant terms in L and L̄ correspond as operators to L0 and L̄0, and thus to

the conformal weights (h, h̄) of the black hole state. For a black hole with

radii r±

h =
(r+ + r−)2

16G�
h̄ =

(r+ − r−)2

16G�
. (7.18)

As described in Chapter 2, the Cardy formula computes the logarithm of the

density of states of a certain weight. Given the central charges cL = cR =
3�/G we obtain

Smicro ∼ 2π

√
cRh

6
+ 2π

√
cLh̄

6
=

2πr+
4G

=
A

4G
= SBH. (7.19)

Note that the derivation uses no string theory, no extremality and no supersym-

metry. This agreement between the microscopic and macroscopic entropies

comprises striking evidence that gravity in three dimensions really is dual to

a conformal field theory in two dimensions, and that the quantization of this

field theory accounts for the black hole microstates.

7.1.3 Chern–Simons term

It is possible to deform pure gravity in a second way in three-dimensions.

S. Deser, R. Jackiw and S. Templeton (DJT) showed that the inclusion of a

gravitational Chern–Simons term has very interesting consequences [DJT82b,

DJT82a]. The Chern–Simons term contains three derivatives of the metric:

SCS =
1

32πG
ελμνΓρ

λσ

(
∂μΓσ

νρ +
2
3

Γσ
μτΓτ

νρ

)
, (7.20)
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where Γρ
λσ are the Christoffel symbols. Left on its own, this action would

define a topological theory, but if combined with the Einstein–Hilbert term

the resulting theory is anything but trivial. DJT studied a theory described by

the action

S = −SEH +
1
μ
SCS. (7.21)

We shall comment on the sign in front of the Einstein–Hilbert term shortly.

The equations of motion are

−Gμν +
1
μ
Cμν = 0 , (7.22)

where

Cμν = εμ
αβ ∇α

(
Rβν − 1

4
gβνR

)
(7.23)

is known as the Cotton tensor. It is straightforward to check that Cμν is trace-

less for any metric, and that it vanishes identically for Einstein metrics. Thus,

including SCS keeps all solutions to Einstein’s equations (also if there is a

cosmological term). There are however new solutions where both tensorsGμν

and Cμν are nonzero but cancel.

DJT linearized the action and found that there is a propagating spin two

degree of freedom with a Klein–Gordon action. The inclusion of the Chern–

Simons term provides a graviton! This particle has mass proportional to μ, and
mediates finite-range interactions. It is the presence of the graviton that forces

us to choose the unconventional sign of the Einstein–Hilbert term; only with

this choice the graviton has positive energy [DJT82b, DJT82a]. DJT named

this theory topologically massive gravity (TMG).

Including all three terms yields cosmological topologically massive gravity

(CTMG), first considered (in its supersymmetric version) by S. Deser [Des].

This theory exhibits both gravitons and black holes and constitutes the basic

framework of papers V, VI and VII. Let us end this section by listing some of

its properties.

First, note that the theory has two free dimensionless parameters �/G and

μ�, so we are really dealing with a two-parameter family of theories. Second,

the negative sign needed for positive graviton energy now becomes a serious

issue2. The reason for this is that there are black holes in the theory, and their

mass is bounded from below only if the “standard” positive sign is chosen!

This signals an instability in the theory — an instability that is the object

of study in papers V, VI and VII. In this thesis we define CTMG with the

positive sign of the Einstein–Hilbert term, i.e., with negative energy gravitons

2This was actually not pointed out until Ref. [LSS08a].
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but positive mass black holes:

SCTMG = SEH − 1
�2
Scc +

1
μ
SCS. (7.24)

Third, since the Chern–Simons term treats left- and right-moving excitations

differently, it shifts the central charges. P. Kraus and F. Larsen determined this

shift by computing and comparing two anomalies: the non-diffeomorphism

invariance in the bulk and the gravitational anomaly on the boundary [KL06].

Namely, the Chern–Simons term transforms under diffeomorphisms by a

boundary term that exactly matches the corresponding anomaly in CFTs with

unequal central charges. The result of the matching is

cL =
3�
2G

(
1− 1

μ�

)
cR =

3�
2G

(
1 +

1
μ�

)
. (7.25)

Kraus and Larsen also determined the boundary stress tensor of the theory,

as defined by J.D. Brown and J.W. York [BY93]. This object corresponds

to the energy-momentum tensor of the dual CFT. It is obtained as follows.

A three-dimensional metric satisfying the Einstein equations admits a

Fefferman–Graham expansion [FG85]

ds2 = �2 dρ2 +
(
e2ρ γ

(0)
ij + γ

(2)
ij + . . .

)
dxidxj . (7.26)

Performing a variation of the metric γ
(k)
ij → γ

(k)
ij + δγ

(k)
ij changes the action

by

δSCTMG =
1
2

∫
∂M

d2x

√
−γ(0) T ij δγ

(0)
ij . (7.27)

This is the defining equation for the boundary stress tensor T ij . This tensor is

a state dependent quantity and the spacelike boundary integrals of its compo-

nents correspond to the mass M and angular momentum J of the state. For

the black hole metrics in (7.11), Kraus’s and Larsen’s results are

M = m+
j

μ�2

J = j +
m

μ
.

(7.28)

Interestingly, the Chern–Simons term shifts the mass and angular momentum

of the spacetimes. Note that pure AdS3 achieves a Casimir angular momen-

tum:

JAdS = − 1
8Gμ

. (7.29)

This concludes our summary of the status of three-dimensional gravity before

Witten’s 2007 paper. Let us now discuss some of the ideas presented there.
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7.2 Witten and the Monster

In a beautiful and speculative paper [Wit07] Witten proposes that solving pure

gravity with negative cosmological constant in three dimensions is equivalent

to finding the dual CFT, and he sets out to find it. Let us follow in his footsteps.

A first observation is that there is a theorem by A. B. Zamolodchikov [Zam86]

stating that cL and cR of any continuous family of two-dimensional CFTs

are constant. Since they in pure gravity are given by cL = cR = 3G/2�
this means that the theory makes sense at most at some discrete values of

G/�. To get a hint as to which are the correct values Witten uses that pure

gravity is perturbatively dual to Chern–Simons theory. In fact, the action can

be formulated as a sum of two Chern–Simons terms3. This correspondence

was discovered by A. Achúcarro and P. Townsend [AT86] and expanded on

by E. Witten [Wit88]. The central charges appear as the Chern–Simons levels,

and those should be quantized. The suggested values are

cL = 24kL, cR = 24kR, kL/R ∈ Z. (7.30)

Suggestively, as remarked in Chapter 2, these are precisely the values for

which holomorphic factorization of the CFT is possible. Another circumstan-

tial piece of evidence in this direction is the fact that the action is a sum of two

Chern–Simons terms. Holomorphic factorization is one of the main assump-

tions in Ref. [Wit07].

With this assumption it suffices to study one of the holomorphic factors, de-

scribed by c = 24k. The holomorphicity and the values of the central charges

are already a lot of information, but they are not enough to uniquely deter-

mine the theory. At the lowest possible value of G/�, i.e. at c = 24, A.N.

Schellekens has argued [Sch93] that there are exactly 71 holomorphic CFTs.

All save for one of these have some extended symmetry that would correspond

to additional gauge fields in the bulk. The odd-one-out is a conformal field the-

ory constructed by I.B. Frenkel, J. Lepowsky and A. Meurman [FLM84]. It

has a large discrete symmetry group, in fact the largest of all sporadic finite

groups. This is known as the Fischer–Griess monster group M.

The states in the monster theory furnish representations of M. The ground

state is the AdS3 vacuum with conformal weights (0, 0). Conformal primaries

of higher weights are identified with black hole states, i.e. the metrics (7.11)

with constant L and L̄. Counting these primaries reveals an agreement with

the Bekenstein–Hawking entropy of the BTZ black holes. Descendants of the

primaries correspond to metrics of the form (7.11) with L(L̄) being functions

of u(v). We interpret these metrics as black holes surrounded by boundary
gravitons. They are excitations that are pure gauge in the bulk but not on the

3While this statement remains true for CTMG the dynamics of CTMG is (contrary to pure

gravity) not identical to that of Chern–Simons theory. For instance, in paper VI we use the

Chern–Simons form of the action, but pay by introducing a Lagrange multiplier.
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boundary. Descendants of the vacuum are just boundary gravitons without any

black hole.

Witten goes on to make a proposal for a criterion that the CFTs dual to

pure AdS gravity for k > 1 should fulfill. It states that there should be no

primary fields of dimension lower than k + 1. Such CFTs are called extremal
CFTs, and their partition functions are uniquely determined. The number of

primaries again reproduces the Bekenstein–Hawking entropy.

The construction described above is a beautiful suggestion for a micro-

scopic unitary theory describing black hole microstates. But it is not without

problems. Firstly, there are no known examples of extremal CFTs at k > 1.
This is despite considerable efforts to find them. Also, A. Maloney and E. Wit-

ten [MW07] actually computed all known contributions to the partition func-

tion of AdS gravity. The result does not factorize holomorphically, posing a

serious problem for the scenario in [Wit07]. Possible resolutions suggested by

Maloney and Witten are unknown states in the spectrum and the inclusion of

complex geometries.

On the other hand, one can argue that the construction of Witten simply is

too beautiful to be wrong. W. Li, W. Song and A. Strominger have not lost

hope in this picture. We turn now to their proposal of chiral gravity in three-

dimensions [LSS08a], and the wave of papers that followed in its wake.

7.3 Chiral gravity and log gravity

Li, Song and Strominger (LSS) aim in their January 2008 paper Ref. [LSS08a]

to construct a gravitational dual of a holomorphic CFT. Their proposal is to

consider CTMG with action (7.24) at a special tuning of one of the free pa-

rameters of the theory: μ� = 1. At this point4 (henceforth the chiral point)

remarkable things happen.

First and foremost, as is evident from (7.25) the left-moving central charge

vanishes! LSS point out that if the dual theory is unitary, then cL = 0 im-

plies that the left-moving sector is trivial and thus that the theory is purely

right-moving. Such a theory is not only holomorphically factorizable — it

is holomorphic. Unitarity thus implies Witten’s all-important assumption that

seems to fail for pure gravity. Second, the BTZ black holes all fulfillM� = J .
This can be interpreted as the statement that all black holes are right-moving.

The inequality �m ≥ |j| also implies that all black holes have non-negative

massM ≥ 0.
Promising though these facts seem, a pertinent question arises at this point.

Because of the sign in front of the Einstein–Hilbert term chosen in (7.24) the

massive gravitons should have negative energy. Linearizing the equations of

motion in global coordinates, LSS argue that at the chiral point the massive

4Since we only restrict one of two free parameters it is really a line, and with Witten’s quanti-

zation argument it is an infinite discrete set of points on this line.
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graviton ψM actually becomes identical to the left-moving boundary gravi-

ton ψL and that its energy vanishes. Together with the fact that cL = 0 this

indicates that the left moving sector is really pure gauge. Thus LSS conjec-

ture the existence of a theory with only non-negative excitations at the chiral

point. Since the technicalities of the LSS argument are reviewed in some de-

tail in paper V we omit them here. Note that if everything works out well,

chiral gravity is an ideal candidate for quantizing three-dimensional gravity.

It is holomorphic, contains black holes and has a conformal symmetry at the

boundary.

The claim that the massive gravitons disappear ignited a quite intense de-

bate. The rest of this chapter is devoted to summarizing these discussions, in

parts represented by the papers V, VI and VII. We do not provide a complete

list of references; a reader interested in all aspects of the story is referred to

the literature.

Starting off the discussions was a paper by S. Carlip, S. Deser, A. Wal-

dron and D. Wise (CDWW) [CDWW09] (see also the follow-up paper Ref.

[CDWW08]). Working in the Poincaré patch, CDWW linearize the action

rather than the equations of motion, and find a propagating bulk degree of

freedom — a massive graviton.

This apparent discrepancy with the LSS conjecture was the inspiration for

papers V and VI, which the reader is now encouraged to turn her or his atten-

tion to. In the former paper we use the LSS setting and construct the missing

graviton solutions, thus resolving the paradox. The main observation is that

even if the massive graviton becomes identical to the left-mover as μ�→ 1:

ψM (μ�) → ψL, (7.31)

this does not imply that one linearly independent solution disappears. Instead

a new branch appears:

ψnew = lim
μ�→1

ψM (μ�)− ψL

μ�− 1
. (7.32)

The mode ψnew also has an infinite tower of descendants. This mode has a

number of interesting properties. In particular it grows linearly in τ and ρ.
Since ρ is the logarithm of the proper radius we call this a logarithmic mode.
Despite the divergence its energy is finite, negative and time-independent. Fur-

thermore, the variational principle is well-defined, including the boundary is-

sues mentioned in the beginning of this chapter. Because of the divergent be-

havior, this is highly non-trivial. In fact, the result depends crucially on the spe-

cific form of ψnew. Only because of non-trivial cancellations are the boundary

quantities finite — any logarithmic behavior in ψnew would not be allowed.

We also make an important observation regarding the matrix representa-

tions of the operators L0 and L̄0. The SL(2,R)×SL(2,R) subalgebra of the

Virasoro algebra is realized as the isometry algebra of AdS3, and thus it is
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straightforward to analyze its action on bulk modes. For the new mode we

obtain representations identical to those in logarithmic CFT (LCFT). We dis-

cussed them in Subsection 2.2.4. ψnew is identified as the logarithmic partner

of ψL. This immediately shows that the theory cannot be unitary and that ψnew

cannot be decomposed in L0 and L̄0 eigenstates. These facts lead us to pro-

pose that CTMG at the chiral point is holographically dual to a logarithmic
CFT! As pointed out to us by M. Gaberdiel, a logarithmic CFT can never be

chiral.

The mode ψnew is compatible with spacetime being asymptotically AdS.

However, the linear growth in ρ means that it does not obey the Brown–

Henneaux boundary conditions. This fact leaves an escape route open for the

chiral gravity conjecture of LSS: if the restriction to Brown–Henneaux bound-

ary conditions is a consistent truncation, this subsector of the theory might

be unitary and chiral. This would map holographically to a unitary truncation

of an LCFT. In this way the logarithmic modes resurrect the graviton in the

LSS setting, but also provide a candidate exclusion mechanism through the

BH boundary conditions.

As a complement to the above perturbative analysis, paper VI counts the

number of degrees of freedom at the non-perturbative level. We make a clas-

sical canonical analysis, counting the number of first and second class con-

straints. We find one degree of freedom per point — the graviton. This analy-

sis, however, does not take any specific boundary conditions into account. Our

results were confirmed as a special case of a more general analysis performed

by S. Carlip [Car08].

Continuing the debate on bulk modes fulfilling the Brown–Henneaux con-

ditions LSS dispute [LSS08b] the results of CDWW. They argue that the

CDWW modes blow up at points on the boundary of AdS3 not included in

the set y = 0. CDWW reply, in arXiv version 2 of [CDWW09] that their set

of modes is complete, and that they can form wave-packets of compact sup-

port. Furthermore, G. Giribet, M. Kleban and M. Porrati (GKP) consider a

descendant of ψnew [GKP08]. They show that by a suitable diffeomorphism

it is actually possible to transform this mode into a form that respects the BH

conditions. They conclude that chiral gravity is not unitary. At this point the

status of the spectrum of linearized chiral gravity is unclear.

Meanwhile, A. Strominger presents a proof of the triviality of the left-

moving sector in Ref. [Str08]. The Brown–York procedure is used to compute

the stress tensor for a perturbation hμν precisely as was done by Ref. [KL06],

resulting in (using Poincaré coordinates)

T++ =
(

1 +
1
μ�

)
1

8πG�
h++

T−− =
(

1− 1
μ�

)
1

8πG�
h−−

T+− = 0.

(7.33)
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The generators Q(ζ) for the ASG can now be obtained as boundary integrals

of these quantities. For a transformation of the form (7.16)

Q(ζ) =
(

1 +
1
μ�

)
1

8πG�

∫
∂Σ
dx+ h++ε

+

+
(

1− 1
μ�

)
1

8πG�

∫
∂Σ
dx− h−−ε−.

(7.34)

We see that all left-moving charges go to zero as μ�→ 1.
Although to some extent implicit in paper V, we were triggered by Ref.

[Str08] and private communications with LSS, to make the boundary condi-

tions required for the logarithmic mode ψnew explicit. This we do in paper VII.

Guided by the results of paper V, we show that the appropriate procedure is to

only logarithmically weaken the conditions on h−− and h−y: h−− = O(log y)
and h−y = O(y log y). We demonstrate that the asymptotic symmetry group

for these relaxed boundary conditions is still the conformal group, and that the

symmetry generators are finite.

These results were confirmed and much generalized by M. Henneaux, C.

Martinez and R. Troncoso [HMT09]. This paper also points out a subtlety

overlooked in paper VII. (This is also noted in Ref. [MSS09].) The Brown–

York formalism is not directly applicable when the boundary conditions are

weaker than BH, so our result for the generators of the ASG misses a finite

term. This termmakes the left-moving charge non-zero, and thus shows explic-

itly the LCFT inspired conclusion of paper V: the theory with log boundary

conditions is not chiral.

The paper Ref. [MSS09] by A. Maloney, W. Song and A. Strominger rep-

resents the latest development in the chiral gravity saga, and appeared just

days before this thesis was sent to press. As already noted Maloney, Song

and Strominger extend the Brown–York analysis of Ref. [Str08] so that it ap-

plies also to weaker boundary conditions. It is confirmed that BH boundary

conditions imply that the left-moving charges vanish. The GKP modes have

non-vanishing left-moving charges, and this is shown to result from a logarith-

mic behavior of the second order perturbation. Therefore the fully corrected

solution corresponding to the GKP modes does not fulfill BH boundary condi-

tions. MSS go even further. Using the complete set of modes found by CDWW,

they argue that any linearized solution that is not a solution to the linearized

Einstein equations must violate the boundary conditions! Since the linearized

Einstein solutions have positive energy, these results are very encouraging for

the prospects of chiral gravity. However, a non-perturbative positive energy

theorem would be desirable. MSS determine the partition function of chiral

gravity by somewhat non-rigorous methods, and find that it is exactly the par-

tition function of the extremal CTF with the appropriate central charge.

With log boundary conditions the theory (denoted log gravity) is, as already

mentioned, not chiral and the existence of the LCFT dual proposed in papers
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V and VII seems plausible. MSS argue that there is a consistent truncation to

chiral gravity from log gravity. The truncation is achieved by restricting to the

sector with vanishing left-moving charges. We should note, however, that D.

Grumiller and I. Sachs find that gravitational three-point correlators between

boundary gravitons and the logarithmic modes do not vanish [GS09] which

appears to be incompatible with such a truncation

The LCFT interpretation opens up the possibility of a very interesting sce-

nario [MSS09]. One can imagine that no unitary extremal CFTs exist for
k > 1, explaining why they have not been found, but that logarithmic ex-

tremal CFTs do exist. Log gravity could then be dual to such a theory. If the

truncation to chiral gravity is consistent, it could then correspond to a unitary

subsector of this LCFT that is not a local CFT on its own. It is amusing to

note that when we made sense of two-dimensional gravity in Chapter 3 we

encountered a similar situation: a non-unitary CFT at c = 0 was truncated to

yield a unitary subsector, not itself a CFT. The existence of log extremal CFTs

is a pivotal open question at this point.

Another alternative is that extremal unitary CFTs really exist and that these

are dual to chiral gravity. Both alternatives would provide good hope to find

consistent theories of quantum gravity in three-dimensions, something that

would be a major breakthrough.

In addition to this there is a long list of other interesting open questions

related to three-dimensional CTMG, and one can be certain that the future

will hold exciting results, continued debates and many surprises.
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Epilogue

What a long strange trip it’s been
The Grateful Dead

Even if the land we finally sat foot on turned out to be the gangplank aboard

another ship, we have now reached the end of this particular journey. Let us

briefly contemplate on what we learned and what it was all good for.

The goal of the natural sciences is to understand the various features

of the world around us, whether it is the formation of a drop of rain, the

anisotropy of the cosmic microwave background, or the complexity structure

of Minesweeper. This curiosity is part of what makes us human.

However, the topics treated in the present text seem to lie far from the real

world. Indeed, who will ever use the landscape maps that we drew in Chapter

6 to find a safe way home? Who lives in the worlds corresponding to the min-

ima we found? Will anyone ever visit a supersymmetric D3-brane black hole?

Does anybody sleep calmer just because flux compactifications are stable in

the presence of charged black holes? And who cares if the dual monsters of

three-dimensional gravity have logarithmic tails?

Admittedly, it is unlikely (although not impossible!) that our present results

will have direct impact on how we understand the world. But this is the path

one has to take to understand the questions of study here. Even if a partic-

ular scenario is not realized in our universe, its description can trigger new

thoughts, discover weak points and suggest future directions and new, more

relevant questions. The entire field of quantum gravity is currently in the mid-

dle of such a process. We do not know what the correct theory is or if its

description will have any practical consequences. We do know, however that

there is a theory to be found and we have very good indications that under-

standing it will revolutionize the way we view our world.

The work presented in this thesis is part of this process. By viewing string

theory from different angles we gained physical insight in models of great

complexity. For instance, quite general features of the landscape topography

were revealed. In all thinkable models where monodromies occur, the main

reasoning of Chapter 6 will be applicable. Furthermore, in finding the lost log

in three-dimensional gravity we took an important step toward a toy-model

suitable for analyzing the microstates of reasonably realistic quantum black

holes. These insights have inspired to new investigations, and led to novel

points of view. They made us and other researchers stop worrying about some

problems and allowed us to look ahead.
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It is a good feeling to understand something. Be it small or large, be it

simple or complex. This is what research as well as teaching is all about. At

the end of the day, the world should seem bigger and more exciting, but at the

same time safer. My time as a PhD student and the work in this thesis certainly

achieved this for me personally. It is my hope that they have contributed in this

direction also to my colleagues and my students. And, dear reader, to you.
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Summary in Swedish

Kvantgravitation ur klassiska synvinklar

Den här avhandlingen behandlar ett antal relativt skilda aspekter av kvant-

gravitation. Att formulera en teori som beskriver fenomen där både kvant-

mekanik och gravitation är viktiga har blivit något av en helig graal för den

teoretiska fysiken. En sådan teori behövs för att kunna beskriva universums

födelse och död, samt svarta hål. Den klassiska teorin för gravitation är allmän
relativitetsteori och den beskriver tyngdkraften som rumtidens krökning. En

kvantmekanisk beskrivning av gravitation kommer därför sannolikt att i grun-

den förändra vår syn på tid och rum.

Den i särklass mest utvecklade kandidaten för kvantgravitation är sträng-

teori — en teori som ursprungligen utvecklades som en möjlig beskrivning

av den den starka kraften. Enligt denna består alla partiklar av vibrerande

strängar: vibrationsmönstret avgör vilken partikel det är frågan om. En av par-

tiklarna, gravitonen, förmedlar den gravitationella växelverkan. Att strängte-

ori innehåller denna partikel möjliggör en störningsteoretisk beskrivning av

kvantgravitation.

Strängteori har inre motsägelser om rumtiden inte har tio dimensioner. Vår

värld har bara fyra, så för att kunna beskriva verklig fysik måste teorin anpas-

sas på något sätt. Ett framgångsrikt sätt att göra detta på är så kallade kompak-
tifieringar. Man antar här att rumtiden har en icke-kompakt fyrdimensionell

del och en kompakt sexdimensionell del med mycket liten storlek. Om man

betraktar strängteori på en sådan bakgrund slipper man motsägelser, men re-

sultatet blir ändå en effektiv fyrdimensionell teori som innehåller gravitation!

Kompaktifieringar är därför ett mycket aktivt forskningsområde inom

strängteorin. Ett viktig resultat från dessa studier är att det tycks finnas

ett mycket stort antal fyrdimensionella teorier som kan uppkomma från

strängteori. Hur teorin ser ut beror till exempel på den kompakta geometrin.

Mängden av dessa fyrdimensionella teorier kallas strängteorins landskap.
I denna avhandling studeras kompaktifieringar och landskapet ur olika

synvinklar.

Ett annat sätt att komma till insikter om kvantgravitation är att försöka hitta

enkla modeller som ändå innehåller relevanta drag. För att åstadkomma så-

dana kan man till exempel reducera antalet dimensioner. Gravitation i två

rumtidsdimensioner kan kvantiseras, och leder till många intressanta resul-

tat. I tre dimensioner är problemet svårt, men mycket tyder på att lösningen

kommer att vara extremt intressant. Till exempel innehåller tredimensionell
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gravitation svarta hål som är mycket lika våra fyrdimensionella. Gravitation i

tre dimensioner studeras i avhandlingens sista kapitel.

Forskningen som presenteras i denna avhandling har publicerats i sju artik-

lar, och jag skulle vilja ägna några meningar åt var och en av dessa.

I artikel I studerar vi en särskilt enkel gräns av en strängteorikompaktifier-

ing, och undersöker ett svart hål i denna kompaktifiering. Genom att kombin-

era två tidigare resultat visar vi att man kan förstå det svarta hålets termody-

namik i termer av ett mycket enklare system: en matrismodell.
Artikel II studerar ett svart hål i en liknande kompaktifiering. Den kompakta

geometrin stabiliseras i detta fall av magnetiska flöden. Det visar sig att inte

bara flödena utan också det svarta hålet påverkar den kompakta geometrin. Vi

försöker ta reda på vilken effekt som är starkast. Om det svarta hålet har en be-

tydande effekt skulle man kunna tänka sig att världen ser väldigt annorlunda

ut nära ett svart hål. Kanske kan det svarta hålet till och med göra kompakti-

fieringen instabil! Våra resultat visar att detta inte sker. Flödena har en starkare

effekt, och kompaktifieringen är stabil.

I de två artiklarna III and IV studerar vi strängteorins landskap. Vi väljer en

stor klass av modeller och visar att ett typiskt drag är långa serier av likartade

fyrdimensionella teorier. Vi förklarar att, och hur, det är möjligt att röra sig

mellan dessa teorier. Detta kan ha haft betydelse i det tidiga universum, kanske

till och med på ett sätt som lämnat avtryck som fortfarande finns kvar. De

två artiklarna använder ett tekniskt komplicerat verktyg för att beskriva den

kompakta geometrin: torisk geometri.
De tre sista artiklarna V, VI and VII behandlar en speciell sorts gravitation i

tre dimensioner— topologiskt massiv gravitation. Denna teori innehåller både

gravitoner och svarta hål. Gravitonerna är, i motsats till vanliga gravitoner,

massiva. Denna massa är en fri parameter i teorin: man kan välja vilket värde

som helst. Ett problem som denna teori har är att gravitonerna har negativ

energi, vilket skulle innebära att teorin är instabil. Om man väljer ett speciellt

värde på gravitonmassan händer emellertid två mycket intressanta saker.

För det första verkar det som att en hel sektor av teorin blir trivial och

försvinner. Detta skulle göra teorin mycket enklare att kvantisera. För det an-

dra verkar det som att gravitonerna med negativ energi försvinner! Om detta

är sant, eller om man kan utesluta gravitonerna från teorins spektrum utan att

motsägelser uppstår, skulle detta vara en utmärkt utgångspunkt för en teori för

kvantgravitation.

I artikel V visar vi att gravitonerna verkligen finns, också för det speciella

värdet på massan, men att de har ett annat asymptotiskt beteende. Artikel

VI utför en kanonisk analys av systemet och bestämmer antalet frihetsgrader

genom att räkna första och andra klassens villkor. Resultatet är att det finns

en frihetsgrad per punkt — gravitonen. Den sista artikeln VII visar att det nya

asymptotiska beteendet inte utgör något problem i sig.
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