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1. Introduction

“To explain — since every piece of matter in the
Universe is in some way affected by every other
piece of matter in the Universe, it is in theory pos-
sible to extrapolate the whole of creation — every
sun, every planet, their orbits, their composition
and their economic and social history from, say,
one small piece of fairy cake.”

Douglas Adams
The Restaurant at the End of the Universe

Nature, as we perceive it, has three spatial dimensions (up-down, left-right,
forward-backward) plus one dimension for time. Does this mean that the phys-
ical theories that we use to describe nature must also be four-dimensional?
In this thesis, we will argue that this is not necessary. A theory that lives in
more than four dimensions can have solutions that describe four-dimensional
worlds.

The extra dimensions might challenge our imagination, but do not neces-
sarily make the formulation of the physical theories much more difficult. Fur-
thermore, a higher dimensional theory might provide explanations for physics
that we have trouble explaining with four-dimensional theories. For example,
it seems that the ten-dimensional string theories can help us understand the
mysteries of quantum gravity, i.e. how gravity should be described on very
small distances, and do so without a single tunable parameter. This is a mar-
velous feat, that no other theory has achieved.

The four-dimensional solutions of string theory are known as string theory
compactifications, and have been the topic of my research as a PhD student. In
particular, I have, together with my collaborators, investigated what happens
when the extra dimensions of string theory are pierced by fluxes, wrapped by
branes, or torn at singularities. The results of these studies are published in
Papers I-VI. The goal of this thesis is to provide a reasonably self-contained
introduction to this field of research. The intended audience consists of grad-
uate students in physics with some familiarity with string theory and quantum
field theory.
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1.1 Setting the Stage

Before we dive into the details that lie behind the research presented in this
thesis, it’s probably a good idea to give an overview of the field this work
has been performed in. We therefore start with two sections that introduce the
main subjects of this thesis: string theory and compactifications. The idea is
to give the reader a feeling for these concepts without introducing any mathe-
matics. The necessary details will then be fleshed out in the following chapters
of the thesis.1

1.1.1 String Theory in a Nutshell

So what is string theory? As the name suggests, it is a theory whose basic
constituents are strings. These strings move in spacetime and can interact with
each other. We will assume that the strings are tiny, so tiny that they can re-
place point particles as the fundamental building blocks of matter.2 The beauty
of the idea is that a string has many vibrational modes, and each such mode
has its definite properties, e.g. mass and spin. If the extent of the string is very
small, these modes will be perceived as different particles. In fact, it suffices
to have one type of string to obtain a whole spectrum of different particles.

We obtain a quantum mechanical description of the string by studying its
worldsheet, i.e. the surface that the string traces out as it moves in spacetime.
This is a generalization of the worldline of a point particle, as illustrated in
figure 1.1. The motion of a classical, relativistic string will be such that the
area of this worldsheet is, in a certain sense, minimized.3

A fruitful way to analyze the quantum motion of the string is to view the
worldsheet as the fundamental geometrical object in the theory, and the world-
sheet coordinates XM as fields living on the worldsheet. We can then de-
scribe the embedding and motion of the string in spacetime in terms of a two-
dimensional field theory. By quantizing the action of this two-dimensional
theory, we obtain a quantum mechanical description of the dynamics of the
vibrating string, and its associated spectrum.

The content of the string spectrum depends on whether the string is closed
or open and how it vibrates. The most interesting state in the closed string
spectrum is a massless state of spin two, which looks just like a graviton.
As we will see in section 2.2, the correct interpretation of this state is in-
deed that it is a graviton, describing fluctuations of the spacetime metric. As

1We will avoid most references to original work in this chapter. Good introductions to string

theory, with extensive reference lists, can be found in [GSWa, GSWb, Pola, Polb, BBS].
2This means that the length of the string is smaller than 10−19 m, or its extent would have been

detected in current particle physics experiments.
3The world-sheet area is measured in Lorentzian spacetime. This is analogous to the classical,

relativistic point particle, whose worldline correspond to a geodesic, i.e. a path of minimal

length, in spacetime.
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Figure 1.1: On the left is a worldline, describing the evolution of a point particle

in spacetime. Here X0 denotes time, XM all spatial directions, and τ parametrizes

the worldline. The classical motion of the point particle minimizes the length of the

worldline. In string theory, point particles are replaced by strings, and worldlines are

replaced by worldsheets. This is shown on the right. We now need two parameters

τ, σ to describe the worldsheet. The classical motion of the string minimizes the area

of the worldsheet.

a consequence, string theory is a quantum theory that contains gravitational
interactions, i.e. a candidate for a theory of quantum gravity.

The identification of string theory as a theory of quantum gravity gives a
natural suggestion for what the string scale should be. General relativity is
expected to be a good description of spacetime down to the Planck length,
lp ∼ 10−35 m, where the quantum nature of gravity supposedly no longer
can be neglected. A natural guess is then that the string length ls is of this
order too. This means that the massive states in the string spectrum will be
extremely heavy, and can thus be neglected for practical purposes.4 Thus, the
interesting states in the string spectrum have zero mass.5

However, the theory that we have formulated, with the spacetime coordi-
nates being the only fields that live on the world-sheet, has a major problem.
The ground states in both the open and closed string spectra turn out to be
tachyons, i.e. have imaginary mass. This signals that the theory is unstable.
Another problem with the theory is that all states in the spectra are bosonic.
There are no states that correspond to the fermionic matter particles of the
standard model.

The two problems can be resolved in the superstring theories, where ex-
tra fermionic fields are introduced on the world-sheet. With these extra fields,

4The string scale could be lower in compactified string theories, as we discuss in chapter 3.
5At this point, the reader might ask herself why string theory would then be interesting for

particle physics. After all, most particles in the standard model have non-zero masses. We

therefore note that the massless states can become massive as a result of symmetry breaking on

a lower energy scale.
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five different, mathematically consistent string theories can be obtained: type
I, type IIA, type IIB, heterotic E8 × E8 and heterotic SO(32). All these the-
ories live in ten dimensions and have a symmetry known as supersymmetry
that relates fermions and bosons. Their spectra contain the graviton, but also
gauge fields and fermions, which means that they could reproduce the stan-
dard model fields.6 We will be interested in the type IIB theory, which we will
describe in some detail in chapter 2.

The five string theories are not independent, but are in fact related to each
other through various dualties. For example, the type IIA and type IIB theo-
ries are related by T-duality; when compactified on circles of radiiR and l2s/R
respectively, they give the same effective theory. Furthermore, yet another the-
ory is included in this web of dualities, namely eleven-dimensional supergrav-
ity. These connections have led to the proposal that the five string theories and
eleven-dimensional supergravity are really different limits of one unique the-
ory. This theory is called M theory, and is supposedly eleven-dimensional.
However, how M theory should be formulated, and what its fundamental con-
stituents are, remains to be discovered.

This concludes our brief introduction to string theory, where we have ar-
gued that string theory is a candidate for quantum gravity. It is probably evi-
dent from the above discussion that string theory is not yet a complete theory,
and many of its aspects are still mysterious to us. One thing that is certain is
that string theories live in ten dimensions. This is rather puzzling, since our
spacetime is four-dimensional. We discuss the resolution of this puzzle in the
next section.

1.1.2 Compactifications: A Landscape of Theories

In the last section we proposed that ten-dimensional string theories are candi-
dates for quantum gravity. Furthermore, they promise to describe the quantum
field theories of the standard model as well. The only crux is that the theories
live in ten dimensions, whereas all observations to date point to us living in a
four-dimensional spacetime.

One method of getting rid of extra dimensions is through compactification.
The idea is that some dimension of spacetime is small and compact. Suppose,
for concreteness, that space is two-dimensional. Now make one of these di-
mensions finite, and identify the ends of this finite dimension. The dimension
then has the topology of a circle, and the space looks like the surface of a
garden hose, i.e. a cylinder. If the length of the hose is much bigger than its
diameter, and we look at the hose from some distance, we would think it were
one-dimensional. A small ant, on the other hand, could walk in both directions
of the surface of the hose, thus experiencing both dimensions.

6This is oversimplified. We will see later in this thesis that string theory also contains many

other objects than strings, i.e. D- and NS-branes. The particle content of the standard model

can be obtained from open strings stretching between intersecting D-branes, see e.g. [CSU01].
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Moreover, if the extra dimension is really small, it would go unnoticed also
by fundamental fields, at least as long as we are interested in their low-energy
behaviour. This will be described in more detail in chapter 3. Therefore, if the
six extra dimensions of string theory are small and compact, we would obtain
an effectively four-dimensional theory.

In contrast to the simple example where we compactify one spatial di-
rection, there are many different ways to compacitfy six dimensions. Six-
dimensional manifolds come in a variety of sizes and shapes. Several parame-
ter fields determine the form of the compactified dimensions. We can construct
stable compactifications by introducing objects known as fluxes and branes,
that yield a potential for the parameter fields. Classically stable solutions then
correspond to the minima of this potential. There is a huge number of such
solutions, corresponding to different choices of manifolds, fluxes and branes.
Some properties of these solutions will be analyzed in this thesis.

After quantizing, each such solution provides a vacuum for a quantum field
theory that describes the four-dimensional, low-energy physics of the theory.
The collection of these vacua is known as the string theory landscape, and is
often thought of as a complicated potential for the many fields that determine
the form of the compactified dimensions. The hope is that at least one of these
vacua will describe the physics of our universe.

Quantum mechanically, there is a small probability that the potential barri-
ers around a minimum are penetrated by a tunnelling field. This implies that
most four-dimensional universes will only be metastable, and decay through
the formation of bubbles of a new vacuum phase. If this decay is sufficiently
slow, the old phase will not be completely replaced, but will coexist with the
new vacuum. In this way, the string theory landscape could give rise to a mul-
tiverse, where different vacua are realized in different regions of spacetime. If
this is correct, it means that our universe is not unique. Other universes exist
as well. Some of these might look like our universe, but most will be radically
different — e.g. expand too fast to allow galaxies to form, contract rapidly or
have an electromagnetic coupling that does not allow stable atoms.

This stringy multiverse might seem like a very contrived way to describe
our world, but it has several benefits. If not all vacua of the landscape are
physically realized, we would have to find an argument that explains why
our particular vacuum is. From what we know now, this seems difficult; as
mentioned above, some properties of our universe are rather atypical in the
landscape. It is therefore statistically improbable that a vacuum with just the
right properties would be the chosen one. On the other hand, if all vacua are
realized, then it is enough that one of these describes our universe. The reason
why we find ourselves in this particular vacuum can then be answered in a
simple way - we can only make observations that are compatible with our
existence.

This kind of anthropic reasoning was first used long before the discovery
of the string theory landscape. At this time, physicists were looking for a

13



principle that would explain why the cosmological constant, which, if posi-
tive would cause the universe to expand acceleratingly, was zero. However,
in [Wei87] it was noted that such a principle was unnecessary. If instead the
underlying physical theory allowed for several universes with different cosmo-
logical constants to form, then we would necessarily live in a universe where
the cosmological constant was very small. This follows from requiring that
galaxies could form, which puts strict limits on the value of the cosmological
constant. Galaxies are necessary for life (at least of our kind), so this gives an
anthropic bound on the cosmological constant. However, there is no need for
it to be zero, and we know now that it is indeed not - its value lies just at the
boundary of the anthropically allowed region.7

We therefore see that the string theory landscape, combined with a mecha-
nism for tunnelling between vacua, gives rise to a multiverse. Some properties
of our universe can then be explained by applying anthropic arguments to this
multiverse. Naturally, we would not want all properties of the universe to be
explained in this way, since this would give us limited ways of testing the
predictions of the underlying theory, i.e. string theory. So far, it seems that
we need an anthropic explanation of the small value of the cosmological con-
stant, whereas other properties could perhaps be understood by statistical and
dynamical arguments based on the properties of the landscape.

1.2 Outline

In addition to the papers I-VI, this thesis contains several chapters that de-
scribe the background material of the papers. As any contemporary research
in string theory, these papers build on a complex network of ideas, theories
and approximations, which can make papers inaccessible for non-experts. The
point of the introductory chapters is to explain the necessary concepts used in
the papers. Furthermore, the aim is also to put them into context, and to dis-
cuss their relevance for the field of string theory.

The outline of the thesis is the following. Chapter 2 contains an introduction
to (supersymmetric) string theories. Emphasis is on the low-energy aspects of
the type II theories. Chapter 3 introduces the technical details of compactifica-
tions (without fluxes) and the resulting four-dimensional theories. In chapter
4 we study black holes in these compactifications, which is the topic of Pa-
per I. We introduce flux compactifications in chapter 5, and also study black

7This kind of reasoning is based on the weak anthropic principle, which is uncommon in physics

and often criticized. A clarification is therefore in order. The weak anthropic principle does not
imply that the universe is tuned in a certain way because its purpose is to allow humans to exist.

The situation is instead very similar to Darwin’s theory of natural selection and the evolution of

species. Just as mutations occur randomly in biology, so are universes created through random

quantum fluctuations. Natural selection implies that only beneficent mutations will persist in a

population, and similarly, only those universes that allow observers will be observed.
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holes in such compactifications, which is further discussed in Paper II. Chap-
ter 6 discusses the topography and dynamics of the string theory landscape,
and provides a background for Paper III and IV. Finally, chapter 7 deals with
some cosmological aspects of the landscape, which is investigated in Papers
V and VI.
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Part I:

String Theory





2. Type II String Theory

In the previous chapter we introduced string theory and its most important
properties. To understand the four-dimensional physics that can be achieved
by string theory compactifications, we must study the theory more thoroughly.
For string theory to provide a satisfactory description of our world, it should
contain both bosons and fermions and be free of instabilities associated with
tachyonic modes. There are several superstring theories that achieve this goal.
One of them is the type IIB superstring theory, which is the focus of this thesis.

The aim of this chapter is to describe the type IIB superstring theory in some
detail. This is a supersymmetric theory with both fermions and bosons, and the
critical dimension is ten. We will start by reminding the reader of the classical
properties of the theory, in particular its description in terms of the world-
sheet action. We then quantize the action, and derive the massless spectrum of
the theory. We discuss how the states in the massless sector behave as fields
in space-time. In particular, as long as we focus on low-energy processes (as
we do in this thesis), the dynamics of the massless sector of the theory is
described by a classical field theory called type IIB supergravity. Finally, we
describe how non-perturbative objects called D-branes arise in the theory, and
what their impact is in the low-energy limit.

This chapter is based on the standard reference books [GSWa, GSWb, Pola,
Polb, BBS]. These books contain thorough treatments of the topics that we
will touch upon here. They also contain a more complete list of references
than we will provide.

2.1 Superstring Theories

2.1.1 The World-Sheet Action

Recall from the preceding chapter that a string moves through space-time in
a way that minimizes the area of its world-sheet. Mathematically, this can be
described by the minimization of the world-sheet action

SP = − 1
4πα′

∫
d2σ
√−hhαβ∂αXM∂βXM , (2.1)

This action is known as the Polyakov action. The string tension is given by
T = 1/2πα′, which also defines the string length ls by l2s = α′. The metric on
the worldsheet is called hαβ , and we have assumed that space-time is flat. The
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fieldsXM describe the embedding of the string into space-time,1 as shown in
figure 1.1. These are all bosonic fields, and action (2.1) describes a bosonic
string theory. We will now describe how it can be modified to accomodate
fermionic degrees of freedom.

The starting point of our derivation is the action (2.1). For ease of pre-
sentation, we follow [GSWa] and use the symmetries of the action to fix a
gauge, before we add the fermions. In particular, the action (2.1) is invariant
under general coordinate transformations (diffeomorphisms) and Weyl rescal-
ings of the world-sheet. We can use these symmetries to fix the world-sheet
metric hαβ to a particular gauge. It is convenient to work in conformal gauge
hαβ = exp(φ)ηαβ , where φ is a function of the world-sheet coordinates. We
then allow a new set of fields ψM to propagate on the world-sheet. The world-
sheet action becomes2

S = − 1
2π

∫
d2σ

(
∂αX

M∂αXM − iψ̄Mρα∂αψM
)
, (2.2)

Here we put 2α′ = 1 for simplicity, since such factors can later be restored by
dimensional analysis. We let σ, τ parametrize the world-sheet, and introduce
the two-dimensional Dirac matrices ρα that obey

{ρα, ρβ} = −2ηαβ . (2.3)

From this action we can derive the equation of motion for the fields:

∂α∂
αXM = 0 , ρα∂αψ

M = 0. (2.4)

Thus ψM obey the two-dimensional Dirac equation, and are world-sheet
fermions that can be required to be real (i.e. Majorana). The equation of
motion for XM is that of a free scalar field propagating on the world-sheet.
In space-time both ψM and XM transform as vectors.

By changing coordinates on the world-sheet to σ± = τ ± σ, one can show
that the solutions to (2.4) split into left- and right-movers on the world-sheet.
Specifically, writing out the world-sheet spinor as (here ± indicate the chiral-
ity of the spinor)

ψM =

(
ψM−
ψM+

)
(2.5)

one can show that the fields ψM− , ∂−XM are right-movers, whereas
ψM+ , ∂+X

M are left-movers. This split into left- and right-movers will be
useful for the construction of the spectrum of the theory.

1We will use M,N to denote ten-dimensional spacetime indices, reserving μ, ν for four-

dimensional spacetime indices.
2In two dimensions, the factors of φ cancel out in

√
hhαβ .
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The world-sheet action (2.2) has several symmetries, that help in analyzing
the theory. It is manifestly invariant under spacetime Poincaré transforma-
tions, and is thus a relativistic theory. It is also invariant under translations
of the world-sheet. Furthermore it is invariant under the global world-sheet
supersymmetry

δXM = ε̄ψM

δψM = −iρα∂αXM ε.
(2.6)

As any supersymmetry, this mixes bosons and fermions. We have introduced
the symmetry parameter ε, which is a constant anticommuting spinor. By us-
ing Noether’s method one can find the conserved currents associated with
these symmetries by allowing the symmetry parameter to be non-constant.
In particular, the classical theory has a conserved supercurrent

Jα =
1
2
ρβραψM∂βX

M (2.7)

associated with local supersymmetry transformations. Similarly, the
conserved current associated with world-sheet coordinate transformations
(τ, σ)→ (τ ′(τ, σ), σ′(τ, σ)) is the world-sheet energy-momentum tensor

Tαβ = ∂αXM∂βXM +
i

4
ψ̄Mρα∂βψM +

i

4
ψ̄Mρβ∂αψM − trace, (2.8)

which decomposes into a boson and fermion part: T = TB + TF .
In fact, the stress-energy tensor and the supercurrent are not only required to

be constant in the classical theory, they must also vanish (Tαβ = Jα = 0). As
mentioned in the beginning of this section, the bosonic part of the action (2.2)
is obtained by gauge-fixing a more symmetric theory, which we will refer to
as the superconformal theory. The two theories can only describe the same
physics if their fields abide by the same restrictions. In the superconformal
theory, the world-sheet metric is a dynamical field, and so is its supersymmet-
ric partner, the gravitino. Thus, there are equations of motion for these fields,
and these set the stress-energy tensor and supercurrent to zero. As a result, we
should impose

T++ = T−− = J+ = J− = 0 (2.9)

as constraints on the gauge-fixed theory discussed here.3

2.1.2 Quantization

So far, we have focused on the classical aspects of the superstring theories.
One of our goals in this chapter is to find the spectrum of the theory. To obtain

3T+− = 0 follows directly from the tracelessness of the stress-energy tensor and need not be

imposed as an extra condition.
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this, the theory must be quantized. We will do this following the canonical
quantization formalism, which has the advantage that it is relatively straight-
forward.4

The classical propagation of the superstring is found by solving the equa-
tions of motion (2.4), subject to the boundary conditions

closed strings: XM (σ, τ) = XM (σ + π, τ),

open strings: ∂σX
M (σ∗, τ) = 0 N,

XM (σ∗, τ) = fMσ∗ (τ) D,

(2.10)

where σ∗ = 0, π and

closed strings: ψM± (0, τ) = ψM± (π, τ) R ,

ψM± (0, τ) = −ψM± (π, τ) NS,

open strings: ψM+ (0, τ) = ψM− (0, τ),

ψM+ (π, τ) = ±ψM− (π, τ) R/NS.

(2.11)

In the last lines we used that the overall relative sign between ψM+ and ψM− is a
matter of convention, and so can be fixed at one of the endpoints. Note that the
scalar fields are periodic on closed strings, as demanded by their interpretation
as the spacetime coordinates of the string. The open string boundary condi-
tions can either be of Dirichlet (D) or Neumann (N) type. The first conditions
fix the string endpoint to some hypersurface given by fM0,π(τ). The second al-

low the endpoint to move, but makes sure that no momentum flows out of it.5

It is also possible to have Neumann boundary conditions in some space-time
directions and Dirichlet conditions in other. Also the fermionic fields have
several consistent boundary conditions, which are known as Ramond (R) and
Neveu–Schwarz (NS) boundary conditions. The boundary conditions couple
the left-and right-moving sectors on the open string, but not on the closed
string.6

The solutions to the classical equations of motion can now be expanded in
modes satisfying the boundary conditions. E.g. for the bosonic fields on an
open string with Neumann conditions:

XMopen = xM + pMτ + i
∑
n�=0

αMn
n
e−inτ cosnσ. (2.12)

4The reader is referred to [GSWa] for a description of various ways of quantizing the string.
5Momentum will flow out of the string endpoint in the case of Dirichlet conditions. Energy-

momentum conservation then implies that this momentum is absorbed by the hypersurface on

which the endpoint is fixed. We will discuss what these hypersurfaces are in section 2.4.
6On the quantum level there is one level-matching condition that couples the left- and right-

movers of the closed string theory, as we will explain below.
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As would be expected, the expansion decomposes the motion of an open string
into a center of mass translation, described by xM and pM , and an infinite set
of possible vibrations with frequency set by an integer n. For open strings
with Dirichlet boundary conditions, the cosine is replaced by a sine. For the
closed string the expansion is

XMclosed = XMR +XML , where

XML (σ+) =
1
2
xM +

1
2
pMσ+ +

i

2

∑
n�=0

αMn
n
e−inσ

+
.

(2.13)

The expansion forXMR (σ−) is identical up to a change of the coefficients αMn
to α̃Mn .

Similarly, the expansion of the ψM± fields on an open string are

ψM± =
1√
2

∑
r

bMr e
−irσ±, (2.14)

where r going over integers (half-integers), in the R (NS) sector. For world-
sheet fermions on closed strings there are similar expansions for left- and
right-movers. This leads to four distinct closed string sectors, corresponding
to different combinations of left- and right-moving fermionic modes: NS-NS,
NS-R, R-NS and R-R. Thus the closed string is just two copies of the open
string, subject to a level matching condition for the zero modes, that we return
to in equation (2.21).

We can quantize the theory by promoting the fields to operators and their
Poisson brackets to commutator relations. For the theory at hand we obtain
the equal-τ (anti)commutators

[XM (σ), ẊN (σ′)] = iπηMNδ(σ − σ′),
{ψMA (σ), ψBN (σ′)} = πηMNδABδ(σ − σ′).

(2.15)

These translate readily into relations for the expansion coefficients:

[αMm , α
N
n ] = mηMNδm+n,

{bMr , bNs } = ηMNδr+s.
(2.16)

For closed strings, a second copy of these relations is added for the tilded
modes.

We now see that the expansion coefficients can be reinterpreted as creation
(n, r < 0) and annihilation (n, r > 0) operators acting on the various sec-
tors of the theory. We define the vacuum in each sector to be the state that is
annihilated by all annihilation operators, i.e.

αMm |0〉 = bMr |0〉 = 0 , ∀m, r > 0 (2.17)
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for the two sectors of the open string. These states are also the states of lowest
mass in the respective sectors.

In the R sector, the vacuum state is degenerate. This follows from
{bMm , bN0 } = 0 for all positive m, implying that bM0 |0〉 are again annihilated
by all positive frequency modes. In the NS sector, however, the half-integer
r �= 0 and the vacuum state is unique. The spectrum of the theory can then be
constructed by acting on the ground state with the creation operators. We are
particularly interested in the massless part of the spectrum, to which we now
turn.

2.1.3 The Massless Spectrum

In the last section we found the vacua and creation operators of the R and
NS sectors. Using this, we can construct the spectrum. However, before we
proceed, we first need to determine whether all states in the Fock space we
construct are physical. The first indication that this is not the case is given
by (2.16) — the ’time-like’ creation modes α0m and b0r create negative norm
states, a.k.a. ghosts.7 To get rid of these oddities, recall that the classical the-
ory is a gauge-fixed version of a superconformal theory. As such, there are
hidden symmetries in the theory, that should be kept on the quantum level.
Particularly, the constraints (2.9) should be imposed in the quantized theory.
Any physical quantity, such as the probability for an initial state to evolve into
a final state, should be invariant under the superconformal symmetries, which
requires

〈Ψi|T±±|Ψf 〉 = 〈Ψi|J±|Ψf 〉 = 0. (2.18)

Using the properties of the two-dimensional world-sheet theory, the non-
trivial conditions are that T±± and J± annihilate physical states. As the fields,
the currents have expansions in modes that are conventionally denoted Lm
for T±±, and Gr for J± (with integer (half-integer) r in the R (NS) sector).
The conditions (2.18) are then fulfilled provided that the physical states are
annihilated by the positive-frequency modes

Lm|Ψ〉 = 0 , Gr|Ψ〉 = 0 , r,m > 0. (2.19)

The operators Lm and Gr generate the so-called super-Virasoro algebra, so
this condition identifies a physical state with the highest weight state of a
representation of that algebra.8

In addition we have the zero-mode constraint (L0 − a)|Ψ〉 = 0 and also
G0|Ψ〉 = 0 for the R sector. The first condition turns out to determine the

7I.e. the norm of the state α0
−m|0〉 is negative 〈0|α0

mα
0
−m|0〉 = 〈0|[α0

m, α
0
−m]|0〉 = −m.

8There is much more to say about the super-Virasoro operators Lm, Gr and the algebra that

they generate, but since this will not be needed for the further discussion we will not do so here.

See e.g. [GSWa, Pola, Polb, BBS] for further discussions.
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mass of the state in terms of the oscillator modes as

α′M2 = −α′pμpμ = N − a , where

N =
∞∑
n=1

α−n · αn +
∞∑
r=1

rb−r · br.
(2.20)

The constant a in the zero-mode constraint arises as a normal-ordering ambi-
guity when expressing L0 as a product of the creation and annihilation modes.
It can be shown that the second condition G0|Ψ〉 = 0 is the space-time Dirac
equation. Consequently, since the ground state in the R sector solves this equa-
tion, it must be a space-time fermion.

How can these constraints remove the ghosts of the theory? This ques-
tion can be answered by fixing the space-time metric to the light-cone gauge.
In this gauge, space-time Lorentz invariance is broken by singling out two
light-cone coordinates, say X± = (X0 ± XD−1)/√2 and reparametrizing
the world-sheet so that one of the light-cone coordinates is fixed: X+ =
x+ + P+τ . This puts all oscillators α+m to zero form �= 0. Worldsheet super-
symmetry then implies that ψ+ = 0. The super-Virasoro constraints can then
be solved for the other light-cone modes X−, ψ− in term of Xi, ψi. Using
these relations, one can show that all remaining modes of the fields have posi-
tive norm. After removing the ghosts in this way, we can adjust the space-time
dimension D and the normal-ordering constants a so that space-time Lorentz
invariance is restored. Requiring that the light-cone theory satisfy the usual
Lorentz algebra imposes that D = 10 and aR = 0 or aNS = 1/2 in the R and
NS sectors.9

Using these results and equation (2.20), we immediately see that the ground
state in the NS sector is a tachyon, withM2 = −1/(2α′). The next mass level
is created by the operators bN−1/2 which raise M2 by half a unit: hence we

get a massless state for each M . Remembering that the two light-cone states
are unphysical, these states form an eight-dimensional vector representation
of SO(8). This is as expected for a massless vector particle in ten dimensions,
whose little group is SO(8).

In the R-sector, the vacuum |0〉R is massless. As mentioned above, it can-
not be uniquely defined, since any state |u〉 = bN0 |0〉R is also a massless
state annihilated by all positive frequency modes αNm, b

N
m. The bN0 operators

obey the ten-dimensional Clifford algebra, and consequently the states |u〉 are
space-time fermions. The smallest ten-dimensional spinor representation is
the real, 16-dimensional Majorana-Weyl spinor, which has definite chirality
Γ11|0〉±R = ±|0〉±R. The Dirac equation further reduces the number of states by
a factor of two. Hence, the R vacuum consists of two eight-dimensional spinor
representations of definite chirality. In fact, all the states in the R sector will be

9These conditions can also be derived in other ways. We will not go into the details here, but

refer to [GSWa, Pola, Polb, BBS].
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sector SO(8) rep. M2

NS- 1 −1/2α′

NS+ 8v 0

R+ 8 0

R- 8′ 0

Table 2.1: The low-energy spectrum of the open superstring. The ground state is tachy-
onic and there are three different massless states. The ± indicate the G-parity of the
states.

space-time fermions, since the raising operators αNn , b
N
n are vectors and raise

the spin of the state by an integer number.
The low-energy spectrum of closed strings can now be obtained by com-

bining the states in the four sectors of the open string spectrum. As men-
tioned above, the right- and left-moving sectors are independent up to the
level matching condition

(L0 − L̃0)|Ψ〉 = 0, (2.21)

where the two operators act on right- and left-moving states respectively. This
condition is a consequence of the periodicity of the closed string. It implies
that physical states are those where equally many left- and right-movers are
excited at each mass level.

The level matching condition cannot be fulfilled by, say, a left-moving NS
tachyon and a rightmoving massless state. Consequently, closed string the-
ories have a tachyonic ground state and a large number of massless states
corresponding to various combinations of the massless R and NS states. As
noted above, the open string states in the R sector are fermions, whereas the
NS states are bosons. It follows that the closed string states in the (NS,NS)
and (R,R) sectors are bosons, whereas states in the (NS,R) or (R,NS) sectors
are fermions.

In summary, we have found a candidate theory for closed and open strings,
that have both bosons and fermions. There is one problem left to solve, namely
to remove the tachyons from the string spectra. It is possible to fix this prob-
lem by truncating the spectrum, a procedure known as the GSO projection
[GSO77]. We therefore define the action of theG-parity operator on a state as

G = Γ11(−1)
∑∞

n=0 b−nbn , R

G = −(−1)
∑∞

r=1/2 b−rbr , NS.
(2.22)

On the massless level, the R states with even G-parity correspond to the pos-
itive chirality states. The ground state of the NS sector has odd G-parity,
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whereas the first excited state has even parity. For the reader’s convenience,
we list the open string modes, with G-parities, in table 2.1.

The GSO projection consists of truncating the spectrum in the following
way. In the NS sector, we keep only the even G-parity states at each mass
level. Thus, the tachyon is removed from the spectrum. In the R sector we can
choose to keep either the state of even or odd G-parity, but not both. In partic-
ular, we can construct a consistent closed string theory by combining the left-
and right-moving sectors as (R+,R-), (NS+,R-), (R+,NS+) and (NS+,NS+).
This is called type IIA string theory and is a non-chiral theory, since both
positive and negative chirality spinors are present in the spectrum.

A chiral theory can be obtained by choosing the same chirality for the left-
and right-moving states, i.e. combining (NS+,NS+), (NS+,R+), (R+,NS+) and
(R+,R+).10 This is the massless spectrum of the type IIB string theory. The
full spectrum is obtained by acting on the massless states with left- and right-
moving creation operators, subject to theG-parity conditions in the respective
theory.

The massive states in the spectrum will be of little interest to us, since these
states are too heavy to be excited in relevant physical processes.11 Instead, it
is the low-energy behaviour of the theory, and hence the massless spectrum
that is of interest to us. We therefore pause to study the states of this spectrum
in more detail.

In type IIB string theory, the states in the (NS+,NS+) are products of two
vector representations 8v⊗ 8v. These 64 bosonic states decompose into a
scalar Φ and two two-tensors: the traceless and symmetric GMN and the an-
tisymmetric BMN . The symmetric mode GMN has spin 2 and therefore have
all the properties of a space-time graviton. We will see in the next section
that this is indeed the right space-time interpretation of this field. The other
two fields are similarly identified with the dilaton and the antisymmetric B-
field. The (NS+,R+) states are products of a vector and a spinor representation
8v⊗ 8′. These 64 fermionic states decompose into a spin-1/2 spinor λ− (the
dilatino) and a spin-3/2 spinor ψ+M (the gravitino). These have opposite chiral-
ities. The same decomposition happens in the (R+,NS+) sector. The (R+,R+)
sector gives us again 64 bosonic states by a product of two spinor represen-
tations 8 ′⊗ 8′ of the same chirality. These decompose into one scalar, C(0),
a differential two-form, C(2), and a four-form C(4). All these fields are gauge

fields.12

10The choice of the R chirality is a matter of convention. Changing chiralities on all R states in

the two theories give us new copies of the same theories.
11Their mass scale is given by the string length, which is expected to be extremely small. Indeed,

since string theory is a theory of quantum gravity, the natural guess is that the string scale is of

the order of the Planck scale.
12Throughout the thesis, differential forms will be used to represent antisymmetric tensor fields.

See e.g. [Polb, Nak] for an introduction to this mathematical concept.
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Type IIA TypeIIB

Sector Fields Sector Fields

(NS+,NS+) Φ, GMN , BMN (NS+,NS+) Φ, GMN , BMN
(NS+,R-) λ−, ψ+M (NS+,R+) λ−, ψ+M
(R+,NS+) λ+, ψ−M (R+,NS+) λ−, ψ+M
(R+,R-) C(1), C(3) (R+,R+) C(0), C(2), C(4)

Table 2.2: The massless spectrum of the the type IIA and IIB string theories. The fields
in the (NS,NS) and (R,R) sectors are spacetime bosons, the fields in the (NS,R) and
(R,NS) sectors are fermions. The ± indicate the G-parity of the states.

Similarly, we can write down the massless fields for the type IIA string.
The (NS+,NS+) and (R+,NS+) sectors are the same as in type IIB, containing
the dilaton, graviton, B-field, negative chirality dilatino and positive chirality
gravitino. In the (NS+,R-) sector we find a positive chirality dilatino and a
negative chirality gravitino, and the tensor product of the opposite chirality
spinors in the (R+,R-) sector combine to a one-form and a three-form gauge
field (C(1) and C(3)).

We have now achieved one of the goals of this chapter, namely to find the
massless states of the type II string theories. This will be the basis for the four-
dimensional theories we will derive from compactifications in the following
chapters. The massless field content of the two theories is summarized in table
2.2. It is worth noticing that the spectra are very similar. In fact, neglecting the
RR gauge fields, the only difference is the choice of parity of the spinors.
This hints at an underlying symmetry between these theories. Interestingly,
this symmetry, which is known as T-duality, will only be manifest after the
theories are compactified. We will return to it in chapter 3.

Note that the number of space-time fermions and bosons match on the
zero mass level, exactly as would be required from space-time supersymme-
try. This is no coincidence. In fact, theories with interacting spin 3

2 particles,
such as the gravitinos, typically require supersymmetry for consistency. Here
we have two gravitinos, and the theory hasN = 2 space-time supersymmetry,
which explains why the theories are called type II. The supersymmetry persists
at all mass levels of the string theory [GSO77] and also non-perturbatively, as
can be shown by using the Green–Schwarz formulation for the superstring
[GS84]. The space-time supersymmetries of the theories are very important,
as we will return to in section 2.3, where we write down the low-energy action
that describe the dynamics of the massless fields.
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2.2 Spacetime Actions

We now move on to the second goal of this chapter, namely the description of
the low-energy dynamics of type II strings in terms of a spacetime action. In
this section, we take a first step towards achieving this goal. We show how con-
sistency conditions of the world-sheet action describing an interacting string
can be interpreted as equations of motion of the fields. It follows that we can
then write down an effective action, whose variation yields the equations of
motion.

The string theories described so far have described the motion of strings in
flat spacetime; the spacetime metric in the world-sheet action (2.2) is trivial.
On the other hand, we have seen that one of the massless states in the su-
perstring spectrum, namely GMN , behaves as a spacetime graviton. Thus, we
expect the string theory gravitons should be related to the metric of spacetime,
as is consistent with the overall picture of strings building up our world. In this
section we summarize how string theory interactions give rise to curved space-
times, and how the low-energy physics arising from the world-sheet analysis
can be described by spacetime actions. We only discuss the spacetime bosons
here, returning to the fermionic fields in the next section.

From the spacetime point of view, a natural guess for an action describing
a bosonic string propagating in a slightly curved spacetime is

S = − 1
2π

∫
Σ
d2σ

(
ηMN + hMN

)
∂αX

M∂αXN . (2.23)

The propagation of a string in such a background is described by the path
integral∫

DXeS =
∫
DX

(
1− 1

2π

∫
Σ
hMN∂αX

M∂αXN +O(h2)
)
eSflat .

(2.24)
Here Sflat is the world-sheet action in flat spacetime.

This is very similar to the path integral of a string that emits gravitonsGMN
as it propagates through flat spacetime. The emission of a graviton corre-
sponds to the splitting of the string world-sheet as shown in figure 2.2. Using
the conformal invariance of string theory, one can show that this split world-
sheet is equivalent to an unsplit world-sheet with a puncture (indicated by a
cross in 2.2). The process of emitting a graviton can mathematically be de-
scribed by the insertion of a vertex operator V (G) in the path integral∫

DX

∫
Σ
V (G)eSflat =

∫
DX

(
1
2π

∫
Σ
GMN∂αX

M∂αXN
)
eSflat .

(2.25)
This is just the leading perturbation of the path integral for a string in slightly
curved spacetime, as we saw above. Taking into account emissions of any
number of gravitons gives the full path integral (2.24). Thus, perturbative
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(a) (b)

Figure 2.1: String interactions are described by the splitting and joining of world-

sheets. A conformal mapping takes the world-sheet in (a) to the world-sheet in (b).

string theory automatically gives the geometry of spacetime, and our inter-
pretation of GMN as a graviton is correct.

We can then describe a string propagating in curved spacetime by an action
where the spacetime metric is given by GMN (X)

S = − 1
2π

∫
d2σGMN (X)∂αXM∂αXN . (2.26)

The action (2.26) is an example of a non-linear sigma model. Since the action
is no longer quadratic in X , it describes an interacting two-dimensional field
theory, in accordance with the discussion above. By expanding the path inte-
gral around a classical solution XM (σ) = xM0 + YM (σ) the kinetic term can
be written

GMN (X)∂αXM∂βXN ≈ [GMN (x0) +GMN,P (x0)Y P + ...]∂αYM∂βY N .
(2.27)

The derivatives of the metric at x0 are related to the radius of curvature in
spacetime Rc, so that the expansion coefficients are in fact

√
α′R−1c . Hence,

the nonlinear interaction terms can be neglected if the spacetime curvature is
small, so that the curvature radius is much larger than the string length.

Similarly, we can now construct non-linear sigma models by allowing non-
trivial background values of the other massless fields. In doing so, we should
be careful to check that the non-linear actions respect the symmetries of the
original theory. For example, requiring that (2.26) is Weyl invariant leads to
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the condition [CMPF85]

0 = βGMN = α′RMN +O(α′2), (2.28)

where βGMN is the beta functional associated with renormalizations of the
spacetime metric. For a Weyl-invariant theory, this must be zero. Note that, to
leading order, this is just Einstein’s vacuum equations. The interacting world-
sheet theory is consistent, provided that Einstein’s vacuum equations are satis-
fied. This shows that string theory really determines the spacetime geometry.

For a more general non-linear sigma model, there will be additions to βGMN
from other fields. We also get more beta functionals, one for each field. It
is now natural to switch perspective, and interpret these conditions as equa-
tions of motion for the spacetime fields. We can then construct a spacetime
action whose variation yields these equations of motion. Thus, up, to certain
corrections, the low-energy dynamics of string theory can be described as a
spacetime field theory.

2.3 Type IIB Supergravity

In the preceding sections it has become clear that, at low energies E � 1/α′,
only the lightest modes of the string theory are excited. Furthermore, the low-
energy physics should be described by an effective spacetime action involving
only these light degrees of freedom. At higher energies, this description is still
useful, provided that corrections are added to the action. These corrections
come from higher derivative terms but also the excitation of e.g. heavier fields
in loops. The low-energy action thereby describes the leading order behaviour
of a string in a double expansion in loop corrections (controlled by the string
coupling gs

13) and derivative corrections (controlled by α′).
Section 2.2 described how low-energy equations of motion can be derived

in string theory. Another very useful trick is to use supersymmetry to find
these equations. For example, the closure of the symmetry algebra requires
that two supersymmetry transformations of a field yield a translation of the
field. Likewise, the supersymmetry transformation of an equation of motion
should be a combination of equations of motion. In this way the equations of
motion for the remaining fields are derived.

Indeed, for type IIB string theory, the large amount of supersymmetry com-
pletely determines the equations of motion and hence the low-energy action. It
must be the same as the action for the massless sector of type IIB supergravity,
whose field content exactly matches the low-energy spectrum of the type IIB
string theory. Similarly, the dynamics in the massless sector of the type IIA
string theory is described by type IIA supergravity.

13The string coupling is not a free parameter in the theory, but is set by the vacuum expectation

value of the dilaton field 〈eΦ〉.
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The bosonic part of the type IIB supergravity action can be written (in the
notation of [Polb])

SIIB = SNS + SRR + SCS ,

SNS =
1

2κ210

∫
d10x(−G)1/2e−2Φ

(
R+ 4∂MΦ∂MΦ− 1

2
|H(3)|2

)
,

SRR = − 1
4κ210

∫
d10x(−G)1/2

(
|F(1)|2 + |F(3)|2 +

1
2
|F̃(5)|2

)
,

SCS = − 1
4κ210

∫
C(4) ∧H(3) ∧ F(3).

(2.29)

This action is written in terms of p-forms, and ∧ denotes the antisymmetric
wedge product of forms. F(p+1) is the RR p + 1-form field strength, or flux,
associated with the p-form gauge field C(p); F(p) = dC(p), where d is the

exterior derivative.14 Similarly, H(3), given by H(3) = dB(2) is the NS three-

form flux. The RR five-form flux F̃(5) is of non-standard form

F̃(5) = dC(4) −
1
2
C(2) ∧H(3) +

1
2
B(2) ∧ F(3). (2.30)

It is easy to see that the fluxes fulfill the Bianchi identities

dF(3) = dH(3) = 0 and dF̃(5) = H(3) ∧ F(3). (2.31)

There is one subtlety with the type IIB action. Taking Hodge dual of a
differential p-form living in D dimensions gives a D − p form15

∗F(p) = F(D−p). (2.32)

Thus, the Hodge dual of the five-form flux F̃(5) is again a five-form flux ∗F̃(5).
However, there is only one four-form gauge field in the theory, so the two field
strengths must actually be equal

∗F̃(5) = F̃(5). (2.33)

This does not arise as a field equation from the variation of SIIB . Indeed,
so far there is no simple covariant action known that yields the self-duality
condition as an equation of motion. However, the equations that are given by
SIIB are consistent with this constraint, so we will proceed with this action,
keeping in mind that the self-duality constraint must be imposed on the level
of the equations of motion.

14The definitions of the wedge product and the exterior derivative can be found in e.g. [Nak].
15The Hodge dual of a p form is defined in e.g. [Nak].
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Note that, by Hodge duality, the type IIB theory could equally well be writ-
ten in terms of the field strengths F̃(5), F(7) and F(9), i.e. the Hodge duals of

F̃(5), F(3), F(1) respectively, or in a ’democratic’ formulation where all field
strengths are included and self-duality constraints are imposed to reduce the
doubling of the degrees of freedom. Although equivalent, different formula-
tions are useful for studies of different aspects of the theory, as discussed in
[BKO+01]. We will mainly use the formulation in terms of F̃(5), F(3), F(1).

It is useful to rewrite SIIB , by defining

τ = ie−Φ + C(0) , GEMN = e−Φ/2GMN
G(3) = F(3) − τH(3).

(2.34)

This Weyl rescaling of metric absorbs some of the dilaton factors in the action,
so that the Ricci scalar term is written as a standard Einstein–Hilbert term.
This is known as going to the Einstein frame, whereas the action (2.29) is
written in the string frame. The field τ is known as the axio-dilaton. The action
can then be written [DG03]

SIIB = SSUGRA + SCS ,

SSUGRA =
1

2κ210

∫
d10x

√
−GE

(
RE − 1

2(Imτ)2
∂Mτ∂

M τ̄

− 1
12(Imτ)

G(3) · Ḡ(3) −
|F̃(5)|2
4 · 5!

)
,

SCS = − 1
8iκ210

∫
1

(Imτ)
C(4) ∧G(3) ∧G(3).

(2.35)

We have now achieved the third goal of this chapter, namely to write down
the spacetime action for the low-energy dynamics of type IIB string theory. Al-
though this is just the bosonic part of the action, it will suffice for our purposes.
The reason for this is that we will only be interested in maximally symmetric
spacetimes (de Sitter, Minkowski or anti de Sitter), which are only possible
if the expectation values of fermionic fields are zero [CHSW85]. These will
be fully N = 2 supersymmetric solutions as long as the supersymmetry vari-
ations of the gravitinos and dilatinos are zero (that the supersymmetry varia-
tions of the bosonic fields are zero follow from the vanishing of the fermionic
fields).

For N = 2 supersymmetry there are two supersymmetry parameters, that
we denote ε1,2. These are Majorana-Weyl spinors, just as the gravitinos and
dilatinos. We label the two gravitinos and dilatinos in the same way, and then
collect fermionic fields in column vectors

ψM =
(
ψ1M
ψ2M

)
, λ =

(
λ1

λ2

)
, ε =

(
ε1

ε2

)
. (2.36)
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The gravitino and dilatino variations are then, in string frame [Gra06]

δψM = ∇M ε− 1
8
/HMPε+

1
16
eΦ

∑
n

/F(n)ΓMPnε

δλ =
(
/∂Φ +

1
8
/HP

)
ε+

1
8
eΦ

∑
n

(−1)n(5− n)/F(n)Pnε
(2.37)

Here we use the democratic formulation of the supergravity of [BKO+01].
We have also introduced the ten-dimensional gamma matrices ΓM , and a slash
denotes contraction with these, e.g. /Fn = 1

n!FP1..PnΓP1..Pn . The 2×2 matrices
P and Pn are P = −σ3, Pn = σ1 for even (n + 1)/2 and Pn = iσ2 for
(n+ 1)/2 odd, where σi are the Pauli matrices.

The vanishing of the gravitino and dilatino variations put important restric-
tions on the supersymmetric solutions of the theory. We will return to these
conditions at various stages of this thesis. In particular, in chapters 3 and 5
we will see how these supersymmetry restrictions help us to choose suitable
compactification manifolds.

2.4 D-branes

So far, we have focused on the perturbative part of the type II string theo-
ries. This resulted in a spectrum of massless fields and an effective action
describing their dynamics. In the rest of this thesis we will be interested in
various solutions to this theory. Some of these solutions will involve non-
perturbative aspects of the theories. In this section we will describe one such
aspect, namely D-branes, which are extended charged objects.

In the last section it was shown that there are several gauge-fields in the
low-energy regime of type II string theories. It is therefore interesting to in-
vestigate if there are also objects that are charged under these fields in the
theories. In the supergravity approximation such charged objects arise as pos-
sible backgrounds, i.e. as solutions to the classical equations of motion derived
from the variation of (2.35). Typically, they are extended in spacetime as we
now explain.

To find the object charged under a (p+1)-form gauge potential, we consider
the integral of the potential over a (p+ 1)-dimensional volume:

Qp

∫
Σ(p+1)

C(p+1). (2.38)

Here Qp is the charge of the object we are looking for. This is very similar to
the action describing the interaction of a particle of electric charge q with a
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potential A in electrodynamics

q

∫
L
A, (2.39)

where L is the world-line of the particle. By analogy, we expect that Σ(p+1)

is the world-volume of the object that is electrically charged under a (p+ 1)-
form potential. It follows that this is an object with p spatial dimensions, and
it is called a p-brane. It has electric charge

Qp =
∫
∗F(p+2) =

∫
∗dC(p+1), (2.40)

where the integral goes over a (D−p−2)-dimensional cycle that links Σ(p+1).
Alternatively, by electric-magnetic duality, the charge can be viewed as the
magnetic charge of a (D − p− 3)-form potential

Qp =
∫
F(D−p−2) =

∫
dC(D−p−3), (2.41)

where F(D−p−2) is the Hodge dual of F(p+2), as above. Consequently, we can
choose to view the brane either as an electrically or a magnetically charged
object, depending on the flux that is present in the formulation of our theory.

It will be important for the rest of this thesis that the brane charges are
quantized, just as the charges of ordinary electromagnetism. This follows by
a generalised form of Dirac’s quantization condition, i.e. by requiring that the
wave function of an electric brane is well-defined in the field of a magnetic
brane.16 In ten dimensions we get the condition

QpQ6−p = 2πn, n ∈ Z, (2.42)

where n = 1 for all branes in superstring theory.
Since the supergravity we are interested in is derived from string theory, it

is crucial to understand how the branes arise in string theory. Recall that the
boundary conditions of open strings can be of either Neumann or Dirichlet
type. As for a classical string, conservation of energy and momentum implies
that Dirichlet boundary conditions are only possible if the string is attached to
another object. These objects can be of any dimension p = 0 . . . 9, where 9−p
is given by the number of dimensions where the string has Dirichlet boundary
conditions.17 It can be shown that these objects are charged under the RR
potential, and that they are in fact the branes described above [Pol95]. From
their relation to Dirichlet boundary conditions, the branes are now known as

16[BBS, Polb] contain explanations of Dirac’s quantization condition and its generalization.
17In fact, p = −1 is also possible, corresponding to an instanton charged under the C0 potential

of type IIB.
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Figure 2.2: D-branes are hypersurfaces on which open strings can end. They are dy-

namical objects whose spacetime fluctuations are described by open strings. The D-

brane interacts with its surroundings via closed strings.

Dp-branes, or D-branes for short (e.g. [Pola, Polb] contain nice introductions
to the topic).

The low-energy behaviour of D-branes can be understood in terms of the
open strings that end on it. Indeed, the open string endpoints that lie on the
D-brane behave as fields in the brane world-volume. Some of these fields de-
scribe the fluctuations of the brane in spacetime. It follows that there should
be an open string action that determines the low-energy dynamics of the D-
brane. We refer to e.g. [Pola, Polb] for the derivation of this action, which will
not be needed in the following. What we do need is that the D-branes have a
tension that scales with the inverse of the string coupling. Since the D-branes
have a tension, they also have a mass, and as such they interact gravitationally
with their surroundings. This interaction can be understood in terms of the
emission of closed strings (i.e. gravitons), and generically deforms spacetime
around the brane.

Thus, we see that the type II string theories, which were derived as closed
string theories in section 2.1, also contain open strings as long as these end
on D-branes. The spectrum of the theory is far more complex than the pertur-
bative analysis would make us believe. Luckily, since the D-brane tension is
proportional to 1/gs, there is a limit where string excitations are light whereas
the D-branes are very massive and can consistently be regarded as fixed back-
grounds. On the other hand, the D-branes are light in the large string coupling
limit, where the string excitations are heavy.18

18This points to S-duality: a duality of the theory between small and large string coupling. We

will not use S-duality in the following, and refer the interested reader to [GSWa, Polb, BBS].
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Recall that, in the supergravity approximation, the branes are just back-
grounds for the perturbation theory. These backgrounds break some of the
symmetry of the original theory. For example, it is easy to see that a D-brane
breaks ten-dimensional Lorentz invariance. It can also be shown that a D-
brane preserves at most half of the original supersymmetry of the theory. D-
branes preserving half of the supersymmetry are so-called BPS objects in the
supergravity theory, whose mass is given by their RR chargeMp = Qp. These
objects are the lightest possible of the given charge in the supergravity spec-
trum, and hence are stable. Since type IIB has even form RR potentials, there
can be stable odd-dimensional D-branes present in the theory. Similarly, type
IIA contain stable even-dimensional D-branes.

For completeness, it should be mentioned that D-branes are not the only
charged, extended objects in string theory. The antisymmetricB-field can also
be viewed as a gauge potential, but in the NS sector of the theory. The asso-
ciated electrically charged object is just the string itself, whereas the magneti-
cally charged object is the NS5-brane. Another charged extended object is the
orientifold plane, which will be introduced in chapter 5.

This concludes our discussion of D-branes and other basic ingredients of
the low-energy dynamics of the type II string theories. In the rest of the thesis,
we will use these results to construct effectively four-dimensional solutions
of the theories. We will see how background configurations of branes and
fluxes yield interesting cosmological solutions with black holes and non-zero
cosmological constants. To see how this can be possible, we now turn to com-
pactifications of string theory.
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Part II:

Compactifications and Black Holes





3. Calabi–Yau Compactifications

The superstring theories, in particular the type II string theories, live
in ten spacetime dimensions. We can use these theories to describe
four-dimensional physics by compactifying six spatial dimension. The
resulting four-dimensional physics will depend on what the compactification
manifold looks like, e.g. how big it is and what topology it has. In this
chapter, we discuss type IIB compactifications on Calabi–Yau manifolds.
Such compactifications yield four-dimensional theories with N = 2
supersymmetry.

We begin this chapter by reviewing the particle spectrum of a compactified
string theory, in particular the massive momentum and wrapping modes. We
then discuss the restrictions that supersymmetry puts on the internal manifold
of a compactification, and how four-dimensional N = 2 supersymmetry re-
stricts the manifold to be Calabi–Yau. After deriving the low-energy spectrum
of the compactified theory, we focus on a subset of these fields, namely the
moduli that describe the size and shape of the Calabi–Yau. The metric for the
moduli space will be important in the following chapters, so we discuss it in
some detail. We end the chapter by a brief discussion on mirror symmetry and
how Calabi–Yau manifolds can be constructed.

3.1 Compactifications of String Theories

As mentioned in the introduction, the idea with compactified theories is that
some dimensions in spacetime are small and compact, and therefore invisible
in practice. A long and thin cylinder, such as the one depicted in Fig. 3.1, has
a compact dimension of radius R. For small R this space will look effectively
one-dimensional for a field of low energy, as we now explain.

Let’s say that there is a field living in a d + 1 dimensional spacetime, with
one compact dimension xd:

xd ∼ xd + 2πR, (3.1)

where R is the compactification scale. Suppose for simplicity that the field is
scalar. It then satisfies the equation of motion(

Δ(d+1) −m2
)
Φ = 0, (3.2)
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Figure 3.1: A field propagating on a cylinder will not notice the curled up dimension

x2 at energies smaller than the compactification scale 1/R.

where Δ(d+1) is Laplace–Beltrami operator in d+1 dimensions. Now expand
this field in variable separated solutions

Φ(x0, ..., xd) =
∑
n∈Z

φn(x0, ..., xd−1)ψn(xd). (3.3)

It is then straightforward to show that ψn = exp(inxd/R), which implies that
the equations of motion for φn become∑

n∈Z

(
Δ(d)φn −

(
m2 +

n2

R2

)
φn

)
einx

d/R = 0. (3.4)

Thus, for each n we get a new d-dimensional field φn, of higher and higher
mass. These fields are known as Kaluza–Klein (KK) modes, or momentum
modes. Similar KK expansions can be obtained for spinors and forms, pro-
vided that the internal modes ψn are changed accordingly.

If the size of the compact dimension is small, then the mass n
2

R2 is very
large. At low energies, we can therefore neglect the massive KK modes, and
describe the theory by an effective action that only includes the zero modes
φ0. We will see several examples of such lower dimensional effective actions
in this thesis. Naturally, such actions are only good descriptions at energies
smaller than 1/R or distances larger than R.

In string theory, compact dimensions can also be wound by strings. Conse-
quently, a string propagating in a compact target space has both winding and
momentum modes in the compact dimensions. The mass of a winding mode
is given by

m2
w = w2R

2

l4s
, (3.5)

where w is the number of times that the string wraps the compact dimension,
and ls is the length of the string. For R � ls, the string can easily wind the
compact dimension many times, and the winding modes are light. For large
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radii, it takes a lot of energy to stretch the string enough, and winding modes
are heavy.

In conclusion we see that at large compactification radii, the string theory
is adequately described by the momentum mode expansion, whereas at small
radii, the winding mode expansion is relevant. In fact, letting R → l2s/R ex-
changes the winding and momentum modes. Thus a string theory compact-
ified on a large circle describes exactly the same physics as a string theory
compactified on a small circle. The two different d-dimensional theories are
said to be T-dual. Type IIA and type IIB string theories are examples of T-dual
theories.

For practical purposes of string theory compactifications, one should note
that the string length ls is extremely small. A consistent theory of only mass-
less d-dimensional fields can thus be obtained by taking the compactification
scaleR to be small on macroscopic scales, but still much larger than the string
scale. Such a theory will be described by an effective action, which is correct
up to O(R/ls) corrections.

We now turn to compactifications of type IIB string theory to four dimen-
sions. We restrict the string theory target space to be of the formX×M , where
X is the four-dimensional spacetime, and M is a six-dimensional, compact
manifold. The spacetime coordinates are denoted xμ, and six-dimensional
compact space has coordinates yi. Consequently, the (string frame) metric
has the block-diagonal form

ds210 = GMNdzMdzN = Gμνdxμdxν +Gmndymdyn. (3.6)

To obtain a four-dimensional effective action for the low-energy physics we
insert the block-diagonal metric (3.6) in the type IIB supergravity action (2.35)
on page 33. In this chapter we put the expectation value of all fluxes to zero
(we will return to the case with flux in the next chapter), and study fluctuations
around this background. The effective action is then obtained by expanding the
various terms of the action (2.35) in Kaluza–Klein modes, neglecting massive
modes and integrating over the internal manifold. We return to this in section
3.3.

Before we can perform this dimensional reduction, more information about
the compactification manifold is needed. From now on, we will focus on in-
ternal manifolds that lead to supersymmetric four-dimensional theories. There
are two motivations for this choice. Supersymmetry facilitates computations;
it can protect quantities, meaning that a computation performed at weak cou-
pling can be used to draw conclusions in a strongly coupled regime. Moreover,
from a phenomenological point of view, four-dimensional N = 1 supersym-
metry is an elegant way to unify the couplings of the fundamental forces,
provide dark matter candidates and solve the hierarchy problem among the
fundamental forces. Since the ultimate goal of string theory compactifications
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is to find a description of our world, supersymmetric compactifications seems
to be a good corner to look in.

We will start by constructing compactifications that preserve four-
dimensional N = 2 supersymmetry. These compactifications are of interest
for the black hole compactifications that we will discuss in chapter 4, and
are also interesting as a basis for the discussion of N = 1 solutions, as we
will see in chapter 5. Our discussion of the supersymmetry of compactified
solutions follows [CHSW85].

The purely bosonic solutions of type IIB string theory under study here have
ten-dimensionalN = 2 supersymmetry if the dilatino and gravitino variations
vanish. The relevant conditions were given in equation (2.37), and are repro-
duced here without background fluxes

0 = δψM = ∇M ε , 0 = δλ = (/∂Φ) ε. (3.7)

In order to have four-dimensional N = 2 supersymmetry, we require that the
variations vanish for a ten-dimensional spinor that can be decomposed into
four- and six-dimensional spinors. We therefore restrict our attention to six-
dimensional manifolds where a non-vanishing spinor can be defined. If this is
possible, we can decompose the ten-dimensional spinors as

εA = ξA+ ⊗ η+ + ξA− ⊗ η−, (3.8)

where A = 1, 2 and η+ = (η−)∗ is a Weyl spinor on the internal mani-
fold. Similarly, the four-dimensional supersymmetry parameters are denoted
by ξA− = (ξA+)∗ and are Weyl spinors in spacetime.

With this decomposition, the internal part of the gravitino variation vanishes
if the internal spinor is covariantly constant, ∇mη± = 0 [CHSW85]. This is
a strong condition on the allowed internal manifold; it should not only harbor
a non-vanishing spinor, but this spinor must be covariantly constant. If this
condition is met, there are two four-dimensional supersymmetry parameters,
ξ1, ξ2, and the effective theory has N = 2 supersymmetry.1 In the next sec-
tion we describe the manifolds that fulfill this condition, namely Calabi–Yau
manifolds.

3.2 Calabi–Yau Manifolds

In this section we will show that Calabi–Yau manifolds have a covariantly con-
stant spinor, and can be used for N = 2 compactifications of type IIB string
theory. Calabi–Yau manifolds can be defined in several equivalent ways, and
we discuss their most important properties here. Our focus will be on six-

1We obtain N = 2 supersymmetric solutions to this effective theory if the dilaton is also

covariantly constant, and the four-dimensional spacetime is flat (see [Gra06] for a detailed

discussion).
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dimensional manifolds, that can be used to construct four-dimensional the-
ories from string theory. For more thorough descriptions and derivations we
refer to the vast literature on the subject, e.g. [H+, Gre96, Von05].

In general, it is very hard to explicitly construct the metrics of the com-
pact six-dimensional manifolds needed for string theory compactifications.
One useful feature of Calabi–Yau compactifications is that this is not neces-
sary. Instead, if certain requirements are fulfilled, the manifold is Calabi–Yau
and the metric is Kähler and Ricci flat.2 We will now outline how this comes
about. In the following, it is assumed that the reader has a basic knowledge of
differential geometry, or if not, consults e.g. [Nak] when faced with too many
new concepts.

Calabi–Yau manifolds are complex, i.e. they are even-dimensional
real manifolds, where the real coordinates can be paired in a consistent
way to form complex coordinates. More formally, the manifold has a
complex structure, which is a map on the tangent space of the manifold
J : TpM → TpM that squares to one and fulfills the Nijenhuis condition

J lkJ
k
l = −1 and − J lk∂mJkn + J lk∂nJ

k
m − Jkn∂kJ lm + Jkm∂kJ

l
n = 0. (3.9)

For such manifolds, one can define local complex coordinates wj , w̄j , so that
the transition functions between coordinate patches are holomorphic. Hence
holomorphic quantities can be globally defined on the manifold, and all forms
can be classified as (p, q) forms according to how many holomorphic (p) and
antiholomorphic (q) indices they have.

The metric on a complex manifold has pure and mixed components

G = Gijdwi⊗dwj+Gij̄dwi⊗dw̄j+Gījdw̄i⊗dwj+Gīj̄dw̄i⊗dw̄j (3.10)

with respect to the holomorphic and antiholomorphic basis vectors ∂wi , ∂w̄i of
the complexified tangent space. We are interested in metrics that are Kähler.
Locally, this means that Gij = Gīj̄ = 0, Gij̄ = (Gīj)∗ and moreover

Gij̄ = ∂wi∂w̄jK(w, w̄). (3.11)

Here the Kähler potential K is a function of both holomorphic and antiholo-
morphic coordinates. One can define a Kähler form, which is a real (1,1)-form

J = 2i∂∂̄K = igij̄dw
i ∧ dw̄j . (3.12)

2For Ricci flat manifoldsRij = 0. Consequently, the six-dimensional part of Einstein’s vacuum

equations are automatically satisfied, which makes the manifolds interesting for compactifica-

tions.

45



If this form can be defined globally and is closed dJ = 0, the manifold is
Kähler.3

We would now like to know when the Kähler manifold admits a Ricci flat
metric, and hence is Calabi–Yau. This can be reformulated as a topological
condition on the manifold. A Ricci flat Kähler manifold always has a vanish-
ing first Chern class c1 = 0. The kth Chern class of a manifold is a topological
quantity defined from the expansion

c(M) = 1 +
∑
cj(M) = det(1 +R) = 1 + trR+ ... (3.13)

where R = Rk
lij̄
dwi ∧ dw̄j is the matrix-valued curvature 2-form. The trace

of this form is c1 = trR = Rij̄dw
i ∧ dw̄j . It is easy to see that c1 is zero if

Rij̄ = 0. Conversely, if the manifold is Kähler and has c1 = 0, there exist
a unique Ricci-flat metric for a given Kähler class. That the metric is unique
was proven by Calabi [Cal57], and that it always exists was proven by Yau
[Yau78].

How can we be sure that Calabi–Yau manifolds have a covariantly constant
spinor? To investigate this, we need to study their holonomy groups. Provided
that the manifold is Kähler, the only non-zero components for the Christoffel
symbols have purely holomorphic or antiholomorphic indices. Hence, under
parallel transport around a closed loop, there is no mixing between holomor-
phic and anti-holomorphic indices. This implies that the holonomy group of
the manifold, which would normally be SO(6) for an six-dimensional mani-
fold, is reduced to U(3). If the manifold is also Ricci flat, the U(1) part of the
Levi-Civita connection vanishes as well, and the holonomy is further reduced
to SU(3).

Reduction of the holonomy of the manifold is important for the existence
of covariantly constant spinors. In particular, if the holonomy is reduced to
SU(3), the spinor representation of SO(6) is decomposed as 4 → 3 + 1. The
SU(3) singlet is a spinor that depends trivially on the tangent bundle of the
manifold and is therefore well-defined and non-vanishing. In fact, it can be
shown that the spinor is even covariantly constant [CHSW85]. Consequently
manifolds of SU(3) holonomy can be used for the supersymmetric compacti-
fications discussed in the end of section 3.1.

In conclusion, we have mentioned three equivalent ways of characterizing
Calabi–Yau manifolds. They are Kähler and Ricci flat manifolds, or equiva-
lently manifolds with SU(3) holonomy, or equivalently manifolds with a co-
variantly constant spinor. These different properties will be used in our con-
struction of four-dimensional effective theories below. In contrast, we will
never need the explicit form of the internal metric in our computations.

3The Kähler form is obtained by lowering an index of the complex structure, so we use J to

denote both quantities.
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1

0 0

0 h(1,1) 0

1 h(2,1) h(2,1) 1

0 h(1,1) 0

0 0

1

Table 3.1: The Hodge diamond of a Calabi–Yau three-fold.

Before turning to the moduli space of a Calabi–Yau threefold, we recall
some standard results about its cohomology (longer discussions can be found
in [Nak, Polb]). The Hodge numbers h(p,q) give the dimension of the Dol-
beault cohomology groups H(p,q) of a manifold. On a Calabi–Yau manifold,
they are restricted by Kählerity, Hodge duality, complex conjugation and
SU(3) holonomy. The result is that h(p,0) = h(0,p) = h(p,3) = h(3,p) = 0
for p = 1, 2 and h(3,0) = h(0,3) = h(3,3) = h(0,0) = 1. It follows that, there
are only two unspecified Hodge numbers on a Calabi–Yau manifold. This is
usually presented as the Hodge diamond in table 3.1.

Furthermore, a Calabi–Yau manifold always has a nowhere-vanishing
global harmonic (3,0)-form Ω, which is defined up to rescalings by a
constant. Ω can be written in local coordinates as

Ω = Ωlkj(w)dwl ∧ dwk ∧ dwj . (3.14)

Specifying this form means determining the subspace of H3(M) that is
H(3,0)(M), which is equivalent to choosing the complex structure of the
manifold.

3.3 Four-dimensional N = 2 Supergravity

We now have all the information needed to dimensionally reduce type IIB
string theory on Calabi–Yau threefolds. To derive the field content of the re-
sulting four-dimensional theory we need the KK expansion of the fluctuations
around the expectation values of the type IIB fields, i.e. around the metric
GMN , dilaton Φ, NS potential BMN and RR potentials C(0), C(2), C(4). The
RR expectation values are put to zero. We will denote the fluctuations with
lower case letters. The dynamic fields are then gMN , φ, the RR fluctuations
c, cMN , cMNPQ and the NS fluctuation bMN .4

4The dynamics of the fermionic fields follow from supersymmetry.
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The KK expansion for a form field is similar to the scalar field expan-
sion given in equation (3.3). The Laplacian for forms Δd is a generaliza-
tion of the Laplace–Beltrami operator5, and we use it in the same way. Thus,
a ten-dimensional form field is KK expanded in eigenfunctions to the six-
dimensional Δd. In particular, massless four-dimensional fields are obtained
by expansions in the eigenfunctions with zero eigenvalue, which are called
harmonic forms. There is one harmonic form in every cohomology class of
the manifold. Thus, there are harmonic forms of (0,0), (1,1), (1,2), (0,3) type,
and their duals, on a Calabi–Yau threefold (see section 3.2).

Expanding the ten-dimensional fields in the harmonic (0,0)-form (there is
only one, since h(0,0) = 1) yields the four-dimensional metric gμν , the axio-
dilaton τ = iφ + c and two axions a ∼= bμν and a′ ∼= cμν .

6 Similarly, a
complex spacetime vector are obtained from cμklm = cμΩklm and its complex
conjugate.

The harmonic (1,1)-forms give rise to h1,1 scalars vA from gij̄ , e.g. for a
basis ωA

igij̄ = vA(x)ωAij̄ . (3.15)

Another set of scalars bA, cA, c̃A is obtained by expanding bij̄ , cij̄ , cμνij̄ in

ωA. The (2,1)-forms give rise to h(2,1) complex scalars zI from the pure index
fluctuations gij of the internal metric, expanded in a basis χI as

gij =
i

||Ω||2 z̄
I(x)χ̄Iik̄lΩ

k̄l
j , (3.16)

where ||Ω||2 = 1
3!ΩklmΩ̄klm. Furthermore there are h(2,1) complex vectors

from cμijk̄ = c̃IμχI,ijk̄ and its complex conjugate.
As we argued above the existence of a covariant constant spinor on the

Calabi–Yau implies that the four-dimensional theory can have N = 2 space-
time supersymmetry. It is therefore gratifying that the bosonic fields obtained
here combine into N = 2 supermultiplets as follows. The four-dimensional
metric and the vector cμ give the bosonic fields (graviton and graviphoton)
of the supergravity multiplet. The four scalars φ, c, a and a′ give the univer-
sal hypermultiplet. For each harmonic (1,1)-form, we get four scalars, again
combining to a hypermultiplet. Additionally, for each harmonic (2,1)-form
there is a complex scalar and a vector; the bosonic content of a N = 2 vector
multiplet. Thus, at low energy, the compactified theory is four-dimensional
N = 2 supergravity, with h(1,1) extra hypermultiplets and h(2,1) extra vector
multiplets. The bosonic field content is summarized in table 3.2.

We have now derived the (bosonic part) of the low-energy spectrum of type
IIB string theory compactified on a Calabi–Yau threefold. The next thing to

5Δd = dd† + d†d, see [Nak].
6Using Hodge duality, it is straightforward to show that in four dimensions, the field strength

db(2) can equally well be obtained from a scalar a.
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Multiplet Multiplicity Bosonic fields

Supergravity 1 gμν , cμ

Universal hypermultiplet 1 φ, c, a, a′

Hypermultiplet h1,1 vA, bA, cA, c̃A

Vector multiplet h2,1 zI , c̃Iμ

Table 3.2: Bosonic field content of four-dimensional N = 2 supergravity obtained
from Calabi–Yau compactification of type IIB string theory. The extra hypermultiplets
contain the Kähler moduli of the Calabi–Yau. The vector multiplets contain the com-
plex structure moduli.

investigate is the dynamics of these fields, and what the effective action looks
like. We will be particularly interested in the fields vA and zI , which determine
the fluctuations of the internal manifold. There is no potential for these fields
in the low-energy action, implying that they are moduli. Thus any fluctuation
of these fields give a new solution the compactified theory. The moduli will
be of important for the compactifications of chapters 4-7, so we pause to for a
more detailed study of the metrics for these fields.

3.3.1 Moduli Spaces for Calabi–Yau Threefolds

Recall that the moduli vA, zI correspond to deformations gij̄ , gij of the
Calabi–Yau metric Gmn. As such they parametrize the size and shape of the
three-fold. More concretely, they correspond to the ways one can deform the
metric so that it is still Ricci flat:

Rmn(Gmn + gmn) = 0. (3.17)

It was shown in [CdlO91] that such variations must be eigenmodes of the
Lichnerowicz operator,

Δ̃2
Lgmn = ∇k∇kgmn + 2Rmpnqgpq = λgmn. (3.18)

The zero modes with pure (gij) and mixed (gij̄) indices solve this equation
separately, so there are two types of massless metric fluctuations that span the
moduli space of the Calabi–Yau manifold.

It is easy to see that fluctuations with mixed indices correspond to varia-
tions of the Kähler structure of the manifold. Indeed, the Kähler form can be
expanded as

J = vAωA, (3.19)

where vA are the zero-modes of the mixed index fluctuations. For this rea-
son the h(1,1) fields vA are known as Kähler moduli. Similarly, the fluctua-
tions with pure indices necessarily change the complex structure, since they
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cannot be compensated by a holomorphic coordinate transformation wi →
wi + f i(w). Therefore, the h(2,1)(M) fields zI are called complex structure
moduli.

Since the mixed and pure index deformations solve equation (3.18) sep-
arately, the Calabi–Yau moduli space decomposes (at least locally) into the
Kähler and complex structure moduli spaces

M =MK ×MCS . (3.20)

This decomposition holds also for finite deformations, since in N = 2 su-
pergravity the metric for the scalars in hypermultiplets cannot depend on the
vector multiplets and vice versa (see e.g. [Polb]). We can therefore study the
two moduli spaces independently.

3.3.1.1 The complex structure moduli space
As discussed in the previous section, the moduli become four-dimensional
fields in the compactified theory, and the dimensionally reduced action con-
tains their kinetic terms. These terms are governed by the metrics of the re-
spective moduli space. The geometry of the complex moduli space will play
a prominent role in our discussion of black holes and flux vacua in chapters
4-6. In this section we will introduce several important geometrical features
of this space, namely the Kähler potential, the periods, the prepotential and
the monodromies.

It was shown by [CdlO91] that the metric on complex structure moduli
space is given by

GIJ =
1

2V
∫
Gkj̄Gl̄igklgj̄ī

√
G6d

6y (3.21)

which can be rewritten in terms of three-forms as

GIJ̄ = −
∫
χI ∧ χ̄J̄∫
Ω ∧ Ω̄

. (3.22)

Furthermore, one can show that

∂Ω
∂zI

= kIΩ + χI , (3.23)

so the metric on the complex structure moduli space is in fact
GIJ = ∂I∂JKCS , where the Kähler potential is

KCS = − ln
(
i

∫
Ω ∧ Ω̄

)
. (3.24)

Thus the complex structure moduli space of a Calabi–Yau manifold is a Kähler
manifold.
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Periods and Prepotential
It is useful to rewrite this metric in terms of so-called period integrals of Ω
over three-cycles over the manifold. We choose a basis of the homology group
H3(M), which are N = 2h(2,1) + 2 three-cycles AI , BJ that intersect each
other pair-wise with intersection number one, as specified by an intersection
matrix QIJ = AI ∩BJ .7

The periods of Ω are

ΠI =
∫
AI

Ω = XI , ΠN+1−I =
∫
BI

Ω = FI , (3.25)

and can be thought of as the “holomorphic volume” of the three-cycles. In
terms of the periods, we can rewrite the Kähler potential as

KCS = − ln
(
−iΠ†Q−1Π

)
, (3.26)

where we collect the periods in a N -dimensional period vector

Π(z, z̄) =

⎛
⎜⎜⎜⎜⎝

Π1

Π2

...

ΠN

⎞
⎟⎟⎟⎟⎠ . (3.27)

Furthermore, we can define the dual of the canonical basis on H3(M) by∫
AI

αJ =
∫
BJ

βI = δIJ ,

∫
BI

αJ =
∫
AJ

βI = 0, (3.28)

and expand Ω in this basis: Ω = XIαI + FJβJ .
As we argued at the end of section 3.2, specifying Ω is equivalent to specify-

ing the complex structure. Thus theN = 2h(2,1)+2 expansion modesXI , FJ
should be related to the coordinates zI on the complex structure moduli space
that were defined in that section. However, the dimension of this space is only
h(2,1), so not all expansion modes are good coordinates. We can use equation
(3.23) to write the FJ as

0 =
∫

Ω ∧ ∂Ω
∂XI

⇒ FJ =
1
2
∂J(XIFI) = ∂J(F ). (3.29)

The function F is known as the prepotential, and is holomorphic and homoge-
neous of degree two in XI . The prepotential determines the Kähler potential,
KCS = − ln i

(
X̄IFI −XI F̄I

)
, and hence the metric of the complex struc-

7To avoid a cluttering of indices, we reuse the letters I, J although here they go over the ex-

tended interval 0 . . . h(2,1).
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ture moduli space. Kähler manifolds that have a holomorphic prepotential are
known as special Kähler manifolds.

The XI are in fact good projective coordinates on the complex structure
moduli space, since a rescaling of XI leads to a rescaling of FI and hence
of Ω, which does not affect the complex structure of the Calabi–Yau. In a
particular patch, where, say, X0 �= 0 we have h(2,1) inhomogeneous coordi-
nates zI = (1, XI/X0), matching the number of complex structure moduli
introduced in section 3.2.

Monodromies
Let us now return to the periods ΠI , that give the holomorphic volume of
the three-cycles in the Calabi–Yau. At certain loci in the moduli space where
one modulus is zero, say z1 = 0, the corresponding cycle has shrunken to
zero volume. When this happens the smooth Calabi–Yau threefold turns into
a singular manifold, as we will discuss further in section 3.4.

In fact, even just encircling such a locus, say z1 = 0, in the moduli space af-
fects the three-cycles of the Calabi–Yau. Around this path,A1 is well-defined.
The dual cycle B1 is on the other hand only defined as being the cycle that
intersects A1 once. Therefore, under the transport around z1 = 0, this cycle
might very well transform asB1 → B1+nA1. This is known as a monodromy.
Translated to the periods, this induces a monodromy ΠN → ΠN + nΠ1.

More generally the monodromy transforms the period vector as

Π→M ·Π, (3.30)

where the monodromy matrix M is an integral, symplectic matrix that
preserves the intersection matrix Q. Monodromies are not always related to
shrinking cycles, but arise because the complex structure moduli space of a
Calabi–Yau manifold is usually a quotient of a larger space, known as the
Teichmüller space. We will have more to say about this when we discuss
the topography of the type IIB landscape in chapter 6, in the line of the
discussions of Papers III-V.

The monodromies are very useful in order to derive explicit, local expres-
sions for the metric of the moduli space. The monodromy ΠN → ΠN + nΠ1

around z1 = 0, means that

ΠN = 2πiz1 ln |z1|+ regular terms. (3.31)

Since all other periods must be regular near z1 = 0, it is straightforward to
show that

K(z, z̄) = 2πi|z1|2 ln |z1|+ regular terms. (3.32)

It follows the metric diverges as ln |z1| at the locus z1 = 0, and that the cur-
vature also diverges. This is one example of the possible singularities in the
complex structure moduli space, which we will return to when we discuss
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black holes and geometric transitions. It is worth mentioning that the curva-
ture divergence is rather mild, and that the distance to the singularity is finite
[CGH89].

So far, we have discussed the geometry of the complex structure moduli
space from a purely classical perspective. Could it be that some of the fea-
tures we have derived are altered by quantum mechanical corrections, i.e. the
α′ and loop corrections of string theory? It turns out that this is excluded
by supersymmetry. The expansion parameter of loop corrections is the string
coupling gs =< φ >, the expectation value of the dilaton. This field sits in a
hypermultiplet and, lest supersymmetry is broken, it cannot correct the metric
for the complex structure moduli, which sit in vector multiplets. Similarly, the
expansion parameter for α′ corrections is α′/R2

c , where Rc is the radius of
the Calabi–Yau, i.e. a length scale set by the overall volume. Volume rescal-
ings correspond to a Kähler modulus, i.e. a field in a hypermultiplet. Again,
supersymmetry forbids such corrections to the metric of the complex struc-
ture moduli space. Thus the classical metric for the complex structure moduli
space of type IIB Calabi–Yau compactifications is exact also on a quantum
level.

3.3.1.2 The Kähler moduli space
The geometry of the Kähler moduli space will not be as important for the
rest of the thesis as the complex structure moduli space, but there are some
properties we need to derive. In particular, we will need the Kähler potential
for this space, which is important for flux compactifications.8

Recall that the complex structure metric can be expressed in terms of the
holomorphic three-form of the Calabi–Yau. Analogously, we write the Kähler
moduli space metric in terms of differential forms, in particular the complexi-
fied Kähler form B+ iJ . A natural metric on the space of deformations of the
complexified form is [CdlO91]

ds2K =
1

2V
∫
Gkj̄Gil̄

(
gkl̄gjī + bkl̄bjī

)√
G6d

6y =
1

2V
∫
τ ∧ ∗σ, (3.33)

where the deformations have been rewritten in terms of the real (1,1)-forms τ
and σ. The volume of the Calabi–Yau can be expressed as a cubic integral of
J

V =
1
3!
κ(J, J, J) , where κ(ξ, σ, τ) =

∫
ξ ∧ σ ∧ τ. (3.34)

8The Kähler moduli are part of aN = 2 hypermultiplet, which also includes three other scalar

fields. The geometry for the space of scalar fields of such a hypermultiplet is quaternionic

Kähler [BW83, HKLR87]. Since the focus of this thesis is really N = 1 truncations of this

theory (to be described in chapter 5), we will not describe the quaternionic Kähler space, but

rather the geometry of the space spanned by the complexified Kähler moduli bA + ivA per se.
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Furthermore, one can show that [Str85]

∗σ = −J ∧ σ +
κ(σ, J, J)
κ(J, J, J)

J ∧ J, (3.35)

which leads to the metric

G(σ, τ) = −3
(
κ(σ, τ, J)
κ(J, J, J)

− 3
2
κ(σ, J, J)κ(τ, J, J)

κ2(J, J, J)

)
. (3.36)

Expanding B + iJ = (bA + ivA)ωA = ṽAωA, where A = 1...h1,1, one can
show that

GAB̄ = − ∂

∂ṽA
∂

∂ṽB̄
2 lnκ(J, J, J), (3.37)

where ṽB̄ = (ṽB)∗. Thus there is a Kähler potential KK = −2 lnκ(J, J, J)
for the metric on the complexified Kähler moduli space. By a Kähler transfor-
mation,K can equally well be written as [CdlO91]

KK(ṽ, ¯̃v) = −2 ln i
(
ṽĀGA − ṽAḠĀ

)
(3.38)

where

G =
1
3!
κ(eA, eB, eC)ṽAṽB ṽC

ṽ0
(3.39)

is a holomorphic prepotential, and as usual GA = ∂AG. An extra coordinate
ṽ0 has been introduced in order for G to be homogeneous of order two.

There are some restrictions on the Kähler moduli space. Naturally, the vol-
umes of all 2p-cycles in the manifold (including the overall volume) must be
positive: ∫

Σ2p

Jp =
∫
Σ2p

J ∧ ... ∧ J > 0. (3.40)

Furthermore the metric on the Calabi–Yau must be positive definite. One can
show (see e.g. [Gre96, Von05]) that this restricts the allowed Kähler classes
to form a cone. The positivity requirements fail to hold at the boundary of the
cone, where cycles may shrink to zero volume, and the Calabi–Yau manifold
becomes singular.

In contrast to the complex structure moduli space, supersymmetry does not
protect the Kähler moduli space geometry from quantum corrections. Indeed,
we saw above that both α′ and loop corrections depend on hypermultiplet
fields, which can mix with other hypermultiplets. It follows that the Kähler
moduli space geometry of a type IIB compactification is corrected by both
effects.
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IIA IIB

Vector multiplet h(1,1) (Kähler) h(2,1) (Complex structure)

Hypermultiplet h(2,1) (Complex structure) h(1,1) (Kähler)

Table 3.3: The moduli of a Calabi–Yau compactification group into mirrored N = 2
multiplets in type IIA and IIB compactifications. In addition, both theories contain the
supergravity multiplet and universal hypermultiplet.

3.4 Mirror Symmetry

The discussion so far has hidden a crucial part of type IIB compactifications
on Calabi–Yau manifolds, namely its relation to type IIA compactifications
on such manifolds. This is indeed a very important manifestation of the con-
nections between the various versions of string theory and deserves comment.
To understand it, we first repeat the discussion of section 3.3 for type IIA
compactifications.

As we saw in chapter 2.1.2, the type IIA and type IIB theories differ in
the RR sector. Thus the bosonic fields that differ are the RR form potentials,
which for type IIA are CM and CMNP . In a type IIA Calabi–Yau compact-
ification, the fluctuations yield h(1,1) vectors (from cμij̄) and h(2,1) complex
scalars (from ckij̄). These combine with the Kähler and complex structure

moduli of the internal manifold, and form h(1,1) vector multiplets and h(2,1)

hypermultiplets. There is also a spacetime vector cμ, which fits into the su-
pergravity multiplet, plus the universal hypermultiplet which is the same as
in type IIB. The result is a four-dimensional N = 2 supergravity with h(2,1)

extra hypermultiplets and h(1,1) vector multiplets, in correspondence with the
type IIB compactifications. This is shown in table 3.3.

Suppose now that there is a Calabi–Yau manifold M with Hodge numbers
h(1,1) = K and h(2,1) = L. One may wonder if there exists a manifold for
which the Hodge diamond 3.1 is mirrored. This would be a new Calabi–Yau
manifold W with h(1,1) = L and h(2,1) = K. Provided that the two Calabi–
Yau manifolds exist, we can compactify type IIA on M and type IIB on W
and obtain four-dimensionalN = 2 supergravities with identical field content.
This does not necessarily imply that the full four-dimensional theories are the
same, but this can indeed happen. If this is true, then we say that the manifold
W is the mirror of the manifoldM , and that the two dual theories are related
by mirror symmetry.

To motivate that this is the case, recall that the supergravity theories are low-
energy approximations of non-linear sigma models. Calabi–Yau compactifica-
tions are thereby non-linear sigma models whose target space is restricted to
be of the form X ×M , where M is a Calabi–Yau manifold. For such target
manifolds, the supersymmetry of the non-linear sigma model is enhanced to
(NL, NR) = (2, 2) [Gre96]. A lot is known of these highly supersymmetric
field theories. In particular, there is a mapping between two sets of operators
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of these theories and the (1,1) and (2,1) forms on the Calabi–Yau target space.
This is suggestive if we want to understand mirror symmetry, which inter-
change the number of (1,1) and (2,1) forms on the manifold. Thus, we should
look for isomorphisms between the field theories that interchanges the two
sets of operators. It can be shown that such maps exist [GP90, CdlOGP91].

The discussion so far has been rather abstract, so we pause to discuss an
example, following [CdlOGP91] (see also [H+]). The Quintic and the Mirror
Quintic are Calabi–Yau manifolds related by mirror symmetry. The Quintic
is, as the name suggests, defined as the zero set of a quintic polynomial in
P4. A general quintic polynomial has 126 coefficients, but invariance under
linear coordinate transformations can be used to set 25 of these to zero. The
remaining 101 coordinates are the complex structure moduli of the Quintic.
Furthermore, the Quintic inherits the Kähler class of the surrounding space,
and has a one-dimensional Kähler moduli space.9

The Mirror Quintic has mirrored Hodge numbers, i.e. h(1,1) = 101 and
h(2,1) = 1. This manifold can be constructed from a one-parameter subfamily
of quintic hypersurfaces

p =
5∑
k=1

x5k − 5ψ
5∏
k=1

xk = 0, (3.41)

where xk are homogeneous coordinates on P4 and ψ is the parameter. These
hypersurfaces are invariant under a Z

3
5 symmetry group. The Mirror Quintic is

identified with the family of manifolds that is obtained by taking the quotient
of each quintic hypersurface in the one-parameter submanifold by Z

3
5. In ad-

dition, one further step is needed; the quotiented manifolds have singularities
coming from the fixed points of the Z5 actions. These singularities must be
resolved, and this introduces the 100 new Kähler moduli [CdlOGP91]. Fur-
thermore, it was shown [CdlOGP91] that z = ψ5 is the complex structure
modulus of the Mirror Quintic. In this paper the periods and prepotential of the
complex structure moduli space were also computed. The matching between
this prepotential and the prepotential of the Kähler moduli space of the Quin-
tic, which is required by mirror symmetry, is also checked in [CdlOGP91]
(see also [GP90]). We will use the Mirror Quintic for numerical examples in
Papers III-V.

Finally, we should mention how Calabi–Yau manifolds and their mirrors
can be constructed more generically. Note that the Quintic is constructed
as a hyperplane in the projective space P4. In this way, the Quintic Kähler
class was inherited from the surrounding space, and the complex structure
was parametrized by the constants in the defining equation. More generally,
a Calabi–Yau can be constructed as a complete intersection of a set of hy-

9The Kähler modulus on CP4 just sets the radius of this space. In general, the Kähler forms

for CP4 and the Quintic are not the same (since the Quintic should be Calabi–Yau and hence

Ricci-flat), but they lay in the same Kähler class.
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persurfaces in a toric variety, which can be thought of as a generalization of
a projective space. Just as above, the hypersurface is a solution to a polyno-
mial equation, whose coefficients become the complex structure moduli of
the Calabi–Yau. This can be formalized in the framework of toric geometry,
where the toric varieties and polynomial equations are described in terms of
polytopes in integral lattices. In particular, these polytopes give a recipe for the
construction of mirror manifolds, as described in [Bat94]. Good introductions
to this subject can be found in [H+, Gre96].

3.5 Summary

In this chapter, we have seen how type IIB string theory can be compactified
on Calabi–Yau three-folds. Putting all background fluxes to zero, we showed
that, at low energy, the compactified theory is four-dimensionalN = 2 super-
gravity, with h(1,1) extra hypermultiplets and h(2,1) extra vector multiplets.

The four-dimensional action for the type IIB low-energy theory can be ob-
tained by dimensional reduction of the ten-dimensional theory. Using the fluc-
tuations defined above it is

SN=2
eff =

M2
p

2

∫
d4x
√−g4

(
R(4) + GIJ̄∂μzI∂μz̄J + GAB̄∂μṽA∂μṽB̄ + ....

)
(3.42)

where
M2
p

2
=

(2π)6α′3V
2κ210

. (3.43)

Here V = 1
(2π)6α′3

∫ √
G6d

6y is the volume of the internal manifold, mea-

sured in units of the string length ls ∼
√
α′. The terms that are omitted in

SN=2
eff include RR fluctuations, axio-dilaton dependent terms and mixings be-

tween the geometric moduli and these fields. The full action can be seen in
e.g. [A+96, GL04]; it is rather complicated and will not be written out here.

Local N = 2 supersymmetry protects the complex structure moduli met-
ric GIJ̄ from quantum corrections in type IIB compactifications. On the other
hand, the metric GAB̄ on Kähler moduli space receives both α′ and gs correc-
tions. This asymmetry is somewhat resolved by mirror symmetry, that equates
the effective supergravities obtained from type IIB and IIA compactifications
on mirror Calabi–Yau threefolds. Thus, it is enough to study the complex
structure moduli spaces of two mirror manifolds to understand the moduli
space and low-energy physics of a compactification. Note however, that the
complex structure moduli metric of type IIA compactifications is affected by
gs corrections.
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Finally, recall that the Calabi–Yau moduli are massless fields, which is
problematic from a phenomenological point of view. Such fields would give
rise to unobserved fifth forces in the four-dimensional theory. Furthermore,
the compactifications discussed here are inherently unstable to changes of the
size and shape of the internal manifold. In chapter 5, we show how these
problems are resolved by allowing supersymmetry-breaking background flux
configurations.
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4. Black Holes in Calabi–Yau
Compactifications

As our first example of interesting compactifications we will study
four-dimensional black hole spacetimes that arise in Calabi–Yau string
compactifications with D-branes. An intriguing feature of these models is that
the various D-brane configurations give us a way of probing the microstates
of black holes. This leads to a microscopic derivation of the black hole
entropy.

The focus of this chapter is on the macroscopic properties of a set of su-
persymmetric black holes. We will see that their electromagnetic charges are
determined by the number of times a brane wraps around certain cycles of the
three-fold. The black holes are BPS solutions of four-dimensional N = 2 su-
pergravity, and we discuss how the attractor mechanism determines their mass
and entropy in terms of the charges. We then turn to the connections between
black hole supergravity, topological string theory and matrix models, and how
some properties of the black hole can be computed using these relations. This
connects to Paper I, where correspondences between the free energies of a
black hole and a matrix model are studied.

4.1 Black Hole Thermodynamics

We start our discussion by recapitulating some generic properties that black
holes have, irrespective of supersymmetry. In simple words, a classical black
hole is a region in spacetime from which nothing can escape. More concretely,
it is an asymptotically flat spacetime that contains a region that is not in the
past light-cone of future time-like infinity. Black holes have a mass (M ) and
can in addition carry electromagnetic charges and angular momentum. These
quantities completely characterize the black hole. In the following we will
study black holes with zero angular momentum, and we will collect the elec-
tromagnetic charges in a vector Q. An introduction to black holes in string
theory is given in [BBS], and a more detailed discussion can be found in e.g.
[Moh01].
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For spherically symmetric black holes with M2 ≥ Q2, the horizon area is
determined by the charges and the mass:1

A = 4π(M +
√
M2 −Q2)2. (4.1)

Solutions with smaller mass lack a horizon, and thereby have naked singulari-
ties. Since these are forbidden by the cosmic censorship conjecture, it follows
that the lightest black hole of a given charge has massM2 = Q2. Such black
holes are called extremal.

As matter falls into the black hole, the entropy of the black hole surround-
ings is reduced. Hence black holes must have an entropy, lest the second law of
thermodynamics would be violated. The entropy is given by the Bekenstein–
Hawking area law [Bek73, Bek74, Haw75]

SBH =
A

4
. (4.2)

This is a very large entropy, several orders of magnitude larger than that of an
ordinary star of the same mass [Moh01].

Furthermore, a semiclassical analysis shows that black holes emit ther-
mal radiation [Haw75]. This implies that black holes have a temperature: the
Hawking temperature. Since black holes radiate, they will eventually evapo-
rate. The exception to this rule are extremal black holes, which are stable and
have zero temperature.

In statistical mechanics, the entropy of a state is determined by the number
of microstates that yield the macroscopic properties of that state, i.e.

Smicro = log [N(M,Q)] . (4.3)

Yet, classically all the mass of the black hole is squeezed into a singularity and
there is only one microstate. This is in obvious conflict with the large entropy
in equation (4.2). One of the most important tasks of a theory of quantum
gravity is to explain the black hole microstates.

String theory does provide an interpretation of the microstates of e.g. four-
dimensional black holes. In string theory compactifications, four-dimensional
spacetimes are effective solutions of an underlying higher-dimensional theory.
What appears to be a featureless singularity in four dimensions is resolved to
a ten-dimensional configuration, or even to several different configurations
with the same four-dimensional properties. This could explain the internal
structure of the effective black hole. We will now discuss the construction of
such solutions, and various ways of calculating their entropy. In the following,
we will focus on supersymmetric black holes.

1In this chapter, we use units where Newton’s constant GN = 1. All areas, lengths and masses

are measured in Planck units.
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Figure 4.1: Two D-branes in a compactification with six compact dimensions (de-

picted as a genus two Riemann surface) and a three-dimensional non-compact space

(depicted as a flat surface). A D3-brane (solid line) wraps an internal three-cycle and

is point-like in space. A D5-brane (dashed line) wraps an internal two-cycle twice and

is space-filling. Due to the limited dimensionality of this sheet of paper, both two- and

three-cycles are depicted as one-cycles.

4.2 Compactifications with D-branes

Recall that in supergravity, D-branes are solitonic degrees of freedom, that
yield new backgrounds for the perturbative theory. It is possible to construct
such backgrounds also when some of the dimensions are compact. As usual,
we focus on type IIB compactifications, which can have stable background
solutions including odd-dimensional D-branes. In chapter 3 we studied com-
pactifications to maximally symmetric four-dimensional spacetimes, but we
could equally well look for solutions with less symmetries, e.g. the black hole
spacetimes of interest here.

In a compactification, a brane can either be wrapped around some compact
dimensions, or stretched out in spacetime. It can also have some directions
in compact and some in non-compact dimensions. As a result, different four-
dimensional configurations are possible; black holes, cosmic strings, domain
walls or completely space-filling branes. An example of a compactified D-
brane configuration is depicted in figure 4.2. The D3-brane in this example
would appear as a black hole in four-dimensional spacetime.

As in the preceding chapter, the solutions of interest have a block-diagonal
metric

ds210 = ds2BH + ds2CY , (4.4)

but here the four-dimensional metric is a black hole metric. We choose in-
ternal manifolds that are Calabi–Yau three-folds, which have non-trivial two-
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and three-cycles (see section 3.2). As discussed in the last chapter, type IIB
Calabi–Yau compactifications result in four-dimensional N = 2 supergravity
coupled to h(1,1) + 1 hypermultiplets and h(2,1) vector multiplets. The black
hole solutions are constructed by D3-branes wrapping three-cycles and do not
depend on the hypermultiplets, which are therefore omitted from the follow-
ing discussion.

In general, compactifications with branes do not preserve any supersymme-
try, but by choosing the wrapped cycle carefully, some supersymmetry can be
kept. In particular, if the cycle is a so-called special Lagrangian three-cycle,
then one can show that the resulting configuration is BPS [BBS95] (for this
reason, such cycles are also known as supersymmetric cycles). Thus, half the
supersymmetry is preserved, i.e. N = 2 is broken to N = 1. Special La-
grangian cycles are volume minimizing within their homology class, and we
will see below that this means that the mass of a BPS black hole is minimized.

It might seem strange to use a N = 2 formulation for the effective four-
dimensional theory when the branes preserve at most half of the supersymme-
try. Note, however, that the physics far away from the brane, i.e. far away from
the black hole, is described by the closed string sector and hence has N = 2
supersymmetry. Furthermore, the full supersymmetry is also restored at the
horizon of the black hole by the attractor mechanism [FKS95, Str96, FK96],
as we will outline below. Thus, the BPS solution acts as a soliton interpolating
between two maximally supersymmetric vacua.

Recall from section 2.4 that D-branes carry RR charge. In particular, D3-
branes are sources of the self-dual five form field strength F̃(5). For a D3-brane
wrapped around a cycle C, this translates to being charged under the gravipho-
ton and h(2,1) other gauge fields in the four-dimensional N = 2 supergravity.
The four-dimensional electric (qI ) and magnetic (pI ) charges of a wrapped
D3-brane are2∫

S2×AI

F̃(5) ∼ pI ,

∫
S2×BI

F̃(5) ∼ qI , pI , qI ∈ Z. (4.5)

Here S2 denotes a two-sphere in the non-compact space that encloses the
black hole and AI , BJ is the symplectic basis of three-cycles introduced on
page 51.3 The charges can be encoded in the wrapped cycle C = pJBJ −
qIA

I , from which it can be seen that they have an interpretation as wrapping
numbers of symplectic three-cycles. Alternatively, we can use the Poincaré
dual three-form Γ = (pIαI + qIβI) ∈ H3(M,Z) to encode the charges.

2The constant of proportionality in these equations is
(
(2π)2α′

)2
. For notational simplicity, we

neglect factors of π and α′ in this chapter.
3Which three-cycle we choose to call electric and magnetic is a matter of taste. The impor-

tant thing is that there will be one four-dimensional gauge field for each pair of cycles in the

symplectic basis. Electromagnetic duality in four dimensions then follows from the invariance

under symplectic transformations of the basis.
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In N = 2 supergravity, the central charge of Γ is defined as4

Z(Γ) =
∫
M

Γ ∧ Ω =
∫
C
Ω. (4.6)

It is convenient to rewrite this using the special geometry of the complex struc-
ture moduli space. In terms of the prepotential F and projective coordinates
XI of equation (3.25) on page 51 we have

Z(Γ) =
∑
I

(∫
AI

Γ
∫
BI

Ω−
∫
BI

Γ
∫
AI

Ω
)

=
(
pIFI − qIXI

)
, (4.7)

where FI = ∂XIF . From this we see that the central charge of a black hole
solution depends on the periods, e.g. the holomorphic volumes, of the wrapped
cycles, and thus the complex structure moduli of the Calabi–Yau threefold.
By studying the supersymmetry algebra, one can now show that the mass of a
wrapped brane state is bounded from below by the central charge,

M ≥ |Z|, (4.8)

with equality for BPS states (see e.g. [Soh85]). Note the similarity of this ex-
pression with the extremality condition for black holes,M2 ≥ Q2. Identifying
the central charge with the charge vector Q, we see that BPS black holes are
extremal.

4.2.1 The Attractor Mechanism

The attractor mechanism can be understood from the following observation.
Branes are tensionful objects, and so will try to contract any cycle they wrap.
The (holomorphic) volume of a three-cycle is given by its period, which are
functions of the complex structure moduli in type IIB compactifications. It
follows that a wrapped brane creates a potential for the moduli specifying the
size of the wrapped cycles, i.e. the complex structure moduli. The moduli are
attracted to the minimum of this potential.

This can be made more precise. We write the four-dimensional black hole
metric in the form

ds2BH = −e2U(r)dt2 + e−2U(r)
(
dr2 +R2(r)dΩ2

2

)
, (4.9)

where r is a radial coordinate and the black hole horizon is located at r = 0.
We assume that spacetime is asymptotically flat, i.e. U → 0 and R → r
as r → ∞. By dimensional reduction, it can be shown that the five-form
field strength gives rise to a potential term R−4Vbh(z) for the moduli in the

4Theories with extended supersymmetry can have central charges, i.e. operators that commute

with all other operators in the supersymmetry algebra. See [Soh85] for more details on extended

supersymmetry and central charges.
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four-dimensional effective action (see e.g. Paper II). This potential term arises
from the five-form flux term in the ten-dimensional action (2.35), and can be
expressed in terms of the charge three-form Γ as

Vbh =
∫
M

Γ ∧ ∗6Γ, (4.10)

where ∗6 is the Hodge star operator in the internal manifoldM . Furthermore,
Γ is harmonic, as a consequence of the equation of motion for the five-form
flux. Hence, it can be expanded in a basis of harmonic three-forms onM , and
the potential can be rewritten as [Den00]

Vbh (z) = eK
(
GIJ̄DIZDJ̄Z + |Z|2

)
. (4.11)

Here DIZ = ∂IZ + Z∂IK and G is the complex structure moduli
space metric derived from the complex structure Kähler potential
K = − ln i

(
X̄IFI −XI F̄I

)
. This potential was first derived in [FGK97]

and is of standard N = 2 form.5

Using the metric ansatz (4.9) and the potential, one can derive BPS equa-
tions for the four-dimensional theory (see e.g. [Den00])

dU

dσ
= eU |Z|

dzI

dσ
= eUGIJ̄DJ̄ |Z|,

(4.12)

where we have used the parameter σ = 1/r and assumed that the complex
structure moduli only depend on the distance to the black hole horizon. These
equations also arise as the conditions for the vanishing of the supersymme-
try variations for the gravitinos and dilatinos (equation (2.37)), showing that
supersymmetry is restored when they are satisfied [FKS95, Str96, FK96].6

Assuming that the central charge is non-vanishing at its fixed point, we can
solve the above equation for U in the near-horizon region. The result is that
the near-horizon geometry is AdS2 × S2, the black hole mass saturates the
BPS conditionM = |Z|r=0, and the horizon area is given by [FGK97]

A = 4π|Z|2r=0. (4.13)

5Generically, the potential for scalar fields in N = 2 supersymmetric theories is determined

by a Kähler potential and a superpotential. Consequently, we see that the central charge can be

viewed as a superpotential of the four-dimensionalN = 2 supergravity.
6The attractor equations were originally derived from the vanishing of the supersymmetry vari-

ations. The reformulation in terms of a potential for the moduli is useful conceptually, and

we will use this formulation in Paper II. Furthermore it is necessary for the analysis of non-

supersymmetric attractors, see [GIJT05].
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It follows that the central charge also determines the macroscopic entropy of
the BPS black hole: SBH = π|Z|2r=0.

In addition, by extremizing the potential Vbh (or rather, by puttingDI |Z| =
0 in order to satisfy (4.12)) we fix the complex structure moduli as a function
of the charges on the horizon of the black hole [FKS95]

pI = Re(XI) qI = Re(FI). (4.14)

It is important that the moduli at the horizon, and hence the central charge, are
determined exclusively by the charges. This implies that they are independent
of the asymptotic value of the moduli far away from the black hole. Since we
don’t want the mass or the entropy of the black hole to change under changes
of its remote surroundings, this is very good.

We have now seen that type IIB compactifications with D3-branes yield
four-dimensional extremal black holes, with entropy determined solely by the
black hole charges. These charges are given by the wrapping numbers of the
D3-branes. One could now go on to investigate the microstates of these black
holes, which are different BPS configurations that have the same charges.
In particular, this should give a microscopic derivation of the entropy. Such
analyses have indeed been performed (see [SV96] for a example), and the
macroscopic and microscopic derivations yield the same entropy. Certain non-
supersymmetric black holes have also be analysed in this way [DST07a]. This
analysis requires a microscopic (e.g. open string) treatment of the D-brane
physics that is beyond the scope of this thesis. The interested reader is re-
ferred to e.g. [Moh01] for a review.

4.2.2 Topological Strings and Black Holes

The analysis so far has been performed at the supergravity level. Corrections
to this action are controlled by parameters proportional to the charges, and
can be neglected for large charges. For slightly smaller charges, this is no
longer correct, and the effective action should be changed. In particular, one
should add terms containing more derivatives to the Lagrangian. As discussed
in section 2.2, such corrections arise naturally in string theory. 7

With the addition of higher derivative terms, the Bekenstein–Hawking area
law for the macroscopic entropy must be modified. In N = 2 supergravity
with extra vector multiplets, higher derivative terms imply that the holomor-
phic potential for the vector multiplets is corrected [LCdWM99, LCdWM00,
LCdWKM00]

F (XI , Â) =
∞∑
h=0

Fh(XI)Âh, (4.15)

7In principle, the action is also corrected by hypermultiplet-dependent terms. These are not

fixed at the horizon, and are therefore not expected to contribute to the black hole entropy.
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where F0(XI , Â) is the leading order prepotential used in the last section. Â
is related to the graviphoton field strength and encodes the higher derivative
terms. Using the Noether charge formalism of [Wal93], it can be shown that
the macroscopic entropy for an N = 2 black hole with such corrections is
given by [LCdWM99]

S = π|Z|2 +−256πIm(∂ÂF (X, Â)). (4.16)

The attractor equations (4.14) fix Â, the real part of XI and the corrected FI
at the horizon.

By introducing φI as the imaginary part of XI (XI = pI + iφI ), one
can rewrite the entropy as the Legendre transform of a function FBH(φ, p)
[OSV04]:

SBH(q, p) = FBH(φ, p)− φI ∂
∂φI

FBH(φ, p). (4.17)

It was shown in [OSV04] that FBH can be interpreted as the free energy of
a microcanonical ensemble of magnetic charges pI and a canonical ensemble
for electric charges qI with chemical potentials φI .

The computation of higher genus terms such as the functions Fh, i.e. the
modes of the genus expansion of the prepotential, is often difficult. In this
case however, it was shown by [AGNT94] that the modes are given by ampli-
tudes in topological string theory, Ftop. We will not describe what topological
string theories are here, since that would double the length of this thesis. The
interested reader is instead directed to e.g. [Von05] for a pedagogical intro-
duction to the subject.

To understand why a topological theory might have something to say about
type II compactifications on Calabi–Yau three-folds, we should note that these
theories have an unusual large amount of global world-sheet supersymmetry,
(NL, NR) = (2, 2). The generators of the supersymmetries can be used to
construct topological string theories.8 These topological theories deal with a
subset of the operators that are present in the physical string theory. The so
called topological B-model deals with operators that only depend on the com-
plex structure of the Calabi–Yau. In particular, the genus 0 amplitude of the
B-model topological string computes the prepotential of the complex structure
moduli space of the Calabi–Yau, and the higher genus amplitudes compute the
higher order corrections to the prepotential, Ftop,h ∼ Fh.

Using this connection with the topological string amplitudes, [OSV04] pro-
posed a correspondence between the free energy of a black hole and the real
part of a topological string amplitude:

FBH(φI , pI) = 2ReFtop(tI , gtop), (4.18)

8This is a simplification; in order to define topological string theories the generators need to be

twisted. See [Von05].
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where tI = XI/X0 and gtop is the topological string coupling constant. The
correspondence holds if the topological string and black hole parameters are
identified as

tI =
pI + iφI/π
p0 + iφ0/π

, gtop = ± 4πi
p0 + iφ0/π

. (4.19)

4.2.3 Matrix Models and Black Holes

In Paper I, we use the correspondence between supersymmetric black holes
and topological strings to relate the black hole free energy to the free energy
of a matrix model. Matrix models are quantum mechanical systems that are
related to non-critical two-dimensional string theory, as reviewed in [Kle91].
In particular, a triangulation of the string world-sheet yields a quantum me-
chanical system of N ×N matrices. The model can also be described by the
matrix eigenvalues, that behave like non-interacting, non-relativistic fermions
moving in a potential.

The so-called c = 1 bosonic string is described by the c = 1 matrix model,
whose potential is shown in figure 4.2(a). The fermions fill the energy levels
of the system up to the Fermi surface, μF . The double scaling limit, μF →
0, β = 1/�→∞ with μ = μFβ constant, describes the physics near the local
maximum, as shown in figure 4.2(b). In this limit, the Fermi sea is infinitely
deep. It turns out that this is the relevant limit to take in order to describe a
smooth world-sheet theory.

It is clear from figure 4.2(a) that the c = 1 matrix model is unstable to
tunnelling through the potential barrier. This non-perturbative instability is an
undesired feature. By looking at the double scaling limit, it is clear that there
are two ways of obtaining models that are well-defined perturbatively. One
could fill the Fermi seas on both sides of the potential barrier, or one could
erect an impenetrable wall on the barrier. These models turn out to describe
the two-dimensional, non-critical 0B and 0A superstrings, and are therefore
known as the 0B and 0A matrix models [TT03, D+03]. Figure 4.2(c) shows
the double scaling limit of the 0A matrix model potential, that differs from the
c = 1 potential by a deformation (q2 + 1/4)/x2, where q is a real parameter.

Interestingly, it has been shown that matrix models do not only describe
two-dimensional physics, but also relate to topological strings used in ten-
dimensional string theories. In particular, there are several connections be-
tween topological strings on non-compact Calabi–Yau manifolds and matrix
models, as reviewed in [Mar04]. One example is [GV95], which shows that
the c = 1 matrix model, in the double scaling limit, is equivalent to a theory
of topological strings propagating on the conifold. To reach this conclusion,
one must compactify the matrix model. This is accomplished by going to Eu-
clidean time, which is then compactified with radiusR. This is a standard way
of obtaining a thermodynamical description of the theory. The free energy of

67



(a) (b) (c)

Figure 4.2: Matrix models can be described in terms of a Fermi sea. In the double

scaling limit, focus is on excitations around the Fermi surface, μF . Figure (a) shows

the potential of the c = 1 matrix model, and (b) shows the double scaling limit of this

potential. Figure (c) shows the double scaling limit of the 0A matrix model, which is

non-perturbatively stable.

this system can be computed in the double scaling limit, with result9

Fc=1(μ,R) = −R
2
μ2 ln(μ)− 1

24

(
R+

1
R

)
ln(μ) + ... (4.20)

This expression shows the two first terms in a genus expansion of the string
world-sheet. The omitted higher-order terms are all analytic in μ. We are now
dealing with a compactified theory, which can be T-dualized. Of particular
interest is the self-dual radius Rc=1

SD = 1.
We now turn to the topological strings that should be described by this

matrix model. The topological strings propagate on a conifold, which is a
non-compact cone in C

4, defined by the polynomial

uv − st = 0. (4.21)

This is an example of a singular variety of the type described in section 3.3.1.1,
that can be reached by shrinking one of the three-cycles of a regular Calabi–
Yau three-fold. Conversely, the conifold singularity can be deformed by blow-
ing up a finite size three-cycle, resulting in a regular manifold.10 The equation
for the deformed conifold is

uv − st = μc, (4.22)

9We set α′ = 1 in this expression.
10Somewhat more surprisingly, there is also another way of resolving this singularity, namely by

blowing up a two-cycle. The result is another Calabi–Yau manifold. The process of deforming

and resolving the conifold is discussed in section 6.4. See also [CdlO90] for more details.
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where μc is the (complex) size of the blown up three-cycle. For small μc the
topological string amplitude is given

Ftop(μc) = μ2c ln(μc)− 1
12

ln(μc) + ... (4.23)

This is just the same expression as the free energy of the c = 1 matrix model
in equation (4.20). Consequently it seems that the c = 1 free energy at self-
dual radius is the same as the amplitude of a topological string on the conifold

Fc=1(μ,Rc=1
SD ) = Ftop(μc), (4.24)

which was proven to all orders in [GV95]. The correspondence holds if μ and
μc are identified. Note how the non-compactness of the deformed conifold is
matched by the infinite Fermi sea in the double scaled matrix model.

If we are now interested in the free energy of a black hole on a deformed
conifold, we could use the correspondence (4.18) to compute this in a topo-
logical string theory. Furthermore, we could also use the relation between
topological string theories and matrix models to compute the free energy. Us-
ing equation (4.24) would match the free energy of the black hole to the real
part of the c = 1 free energy.

In doing this, however, it seems more natural to match the free energy the
black hole to the free energy of the matrix model, not just to its real part. This
is accomplished if the topological strings on the conifold are matched with the
0A instead of the c = 1 matrix model, as argued in [DOV04] and Paper I. We
then have the relation

F0A(μ,RASD, q) = 2Re

[
Ftop

(
q + iμ

2

)]
= FBH(φI , pI), (4.25)

which holds to all orders in the perturbative genus expansion, given the proper
identification of parameters (see Paper I). Thus, we relate the 0A matrix model
at self-dual radius to the deformed conifold, with the equation

uv + (μ− iq) = st. (4.26)

Note that the 0A model also has enough real parameters (q, μ) to describe
the complex modulus of the conifold. We thereby get a complete matching of
the number of (real) parameters on the matrix model and topological string
side. Furthermore, recall that the 0A matrix model is non-perturbatively well-
defined. Both these properties are in contrast to the c = 1 model, and point
to that this is the correct identification between the topological theory and the
matrix model.

Paper I elaborates on this correspondence between black holes and ma-
trix models. In particular, it clarifies why compactifications on a non-compact
manifold such as the deformed conifold can be of any relevance for four-
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Figure 4.3: This figure shows how the attractor equations can drive the complex struc-

ture moduli z(r) of a Calabi–Yau three-fold to a conifold locus on the black hole

horizon, irrespective of the asymptotic value of z. It also illustrates how a three-cycle

degenerates at the conifold locus, turning a manifold into a singular variety.

dimensional black holes. The key is to view the deformed conifold as a lo-
cal model for a compact Calabi–Yau. Most compact Calabi–Yau three-folds
have conifold singularities, i.e. locii in complex structure moduli space where
the Calabi–Yau geometry is locally conifold-like. In such manifolds, we can
choose to wrap D3-branes so that the attractor equations drives the moduli
to the conifold point at the horizon of the black hole, as shown in figure 4.3.
There are then universal terms in the black hole free energy that are given by
the deformed conifold, and that are matched by the matrix model computation.

In addition to the universal terms, there will be model-dependent terms that
depend on the geometry of the Calabi–Yau away from the shrinking cycle.
These terms can also be matched on the matrix model side, by regularizing the
matrix model potential. In Paper I (see also Paper II) we compute these terms
for the Mirror Quintic manifold, and show that they are of the same form as
the large terms of a regulated matrix model. Note how going to the conifold
limit in the geometric picture corresponds to taking the double scaling limit
on the matrix model side of the correspondence.

In summary, the principal outcome of Paper I is a clarification of the cor-
respondence between matrix models and topological strings. The correspon-
dence toN = 2 black holes served as a guide to how this matching should be
made, and linked the 0A matrix model at the self-dual radius to the topological
string on the conifold. Furthermore, the 0A matrix model has a geometrical
interpretation also at other radii, and Paper I discusses what the appropriate
geometries to these models should be. In this matching, the holomorphic fac-
torization and genus mixing of the double scaled 0A matrix model are impor-
tant. The result is that, in the double scaling limit, the 0A matrix models are
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all mapped to conifold-like geometries (with the appropriate number of cycles
shrinking simultaneously).

In this chapter, we have studied black holes arising from type IIB compacti-
fications with wrapped branes. We have seen how the attractor mechanism fix
the complex structure moduli of the internal manifold on the horizon of the
black holes. Similar effects arise when fluxes are piercing the internal mani-
fold, as we discuss in the next chapter.
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Part III:

Flux Compactifications and the Landscape





5. Flux Compactifications

The free moduli of the N = 2 compactifications studied in chapter 3 pose
severe problems for phenomenology and should be fixed in realistic models.
In this chapter we show that background values for the RR and NS fluxes
create potentials for some of the moduli. Thus by turning on fluxes, a step is
taken toward realizing stable or metastable string vacua that could describe
four-dimensional universes. The procedure is known as flux compactification,
and is one of the cornerstones of modern string theory phenomenology. We
will focus on flux compactifications of type IIB string theory on conformal
Calabi–Yau manifolds. Several other types of flux compactifications exist, and
are reviewed in e.g. [BBS, Gra06, DK07, Den08].

5.1 Background Fluxes

Recall from section 3.3.1, that the complex structure moduli are determined
by the holomorphic volume of a basis of homologically inequivalent three-
cycles. In the last chapter we saw how the tension of a brane wrapping a cycle
introduced a potential for the cycle volume, and hence the associated complex
structure modulus. In this chapter, we will show how background fluxes lead
to a similar effect.

A manifold with non-trivial p-homology, Hp(M) �= 0, has non-trivial p-
cycles CI . Such a cycle can be pierced by a p-form field strength F(p). By
a generalization of Dirac’s quantization condition for electromagnetism, the
integral of the flux over this cycle must obey∫

CI

F(p) ∼ FI where FI ∈ Z. (5.1)

The flux quanta FI are analogous to the charges of a brane under the asso-
ciated flux.1 Such background fluxes F(p) can be present without sources, as
long as the cycle it threads has non-trivial topology, which is illustrated in
figure 5.1.

Note that the F(p) flux lines are confined to the limited volume of the p-
cycle. Confining flux lines costs energy, so this implies that a potential is

1In the following we will be interested in three-form fluxes, for which
∫

CI
F(3) = (2π)2α′FI .

For notational simplicity we ignore the factors of π and α′.
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Figure 5.1: A manifold with non-trivial topology can be pierced by a constant flux,

even though no sources are present in the manifold. This torus has flux (arrows)

through a one-cycle (solid line).

created for the size of the p-cycle, and thereby the modulus determining its
volume. Thus, in order to fix the complex structure moduli of a IIB compact-
ification, non-zero background values should be allowed for the three-form
fluxes F(3) andH(3). A background configuration is specified by choosing the
integers FI , HI for a basis of Calabi–Yau three-cycles. The potential induced
by the fluxes will be derived by dimensional reduction in section 5.4.

There is one subtlety with this construction. By Gauss’ theorem, the overall
charge on a compact manifold must vanish. The fluxes introduce a charge
in M which must be canceled by other sources. We will show how this is
accomplished by studying the ten-dimensional equations of motion in section
5.1.1.

Note that the Kähler moduli of a type IIB compactification cannot be fixed
by turning on background fluxes. The Kähler moduli are related to the sizes
of two-cycles, or equivalently four-cycles. However, there are no two- or four-
form fluxes present in type IIB spectrum that could pierce these cycles and
create a potential for their size. Instead, subleading corrections to the super-
gravity action must be taken into account to show that these moduli can be
fixed. This will be discussed in chapter 6.

On the other hand, type IIA contains even-form RR fluxes and a three-form
NS flux. This is sufficient to fix all moduli at tree level in certain compacti-
fications. However, for reasons that will be explained in the next chapter, the
vacua thus obtained are less interesting for model building than the admittedly
more contrived type IIB constructions that we start to describe here.

5.1.1 Background Fluxes and Warping

To make sure that the background flux configurations yield four-dimensional
vacua, we must ascertain that this corresponds to a stable ten-dimensional
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solution. Here we present some of the ten-dimensional equations of motion
that restrict the possible configurations. This analysis was first performed by
[GKP02], and further discussed in [DG03].

When background fluxes are included, it turns out that the metric ansatz in
(3.6) is too restrictive. A less restrictive ansatz that still has four-dimensional
Poincaré invariance is possible:

ds210 = e2A(y)G̃μνdxμdxν + e−2A(y)G̃mndymdyn. (5.2)

This is an example of a warped metric. It is characterized by the warp factor,
e2A(y), that multiplies the four-dimensional part of the metric and gives it a de-
pendence on internal coordinates. We will study compactifications where the
internal manifold is a conformal Calabi–Yau threefold, i.e. G̃mn is a Calabi–
Yau metric, e−2A(y)G̃mn is not. The choice of the conformal factor e−2A(y) in
front of the Calabi–Yau metric will be explained in section 5.2.

Type IIB string theory has the low-energy action

SIIB = SSUGRA + SCS + Sloc. (5.3)

Here SCS is a Chern-Simons action for the fluxes and Sloc accounts for
possible sources (e.g. D-branes) that are localized in the compact manifold.
SSUGRA contain the Einstein-Hilbert term and kinetic terms. The various
terms were defined in equation (2.35) on page 33.

Type IIB supergravity has a five-form flux F̃(5), two three-form fluxes,
which can be combined as G(3) = F(3) − τH(3), and a one-form flux F(1).
Four-dimensional Poincaré invariance excludes a background expectation
value for the one-form flux; there are no internal one-cycles since h(1,0) = 0
for conformal Calabi–Yau three-folds. On the other hand, there are plenty
of three-cycles for the three-form fluxes to pierce, allowing quantized
background values FI , HI . The lack of internal five-cycles forbids quantized
background five-form flux. Nevertheless, configurations with non-zero
five-form flux that is sourced by D3-branes and preserve four-dimensional
Poincaré invariance exist. A self-dual ansatz is given by

F̃(5) = (1 + ∗)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (5.4)

where α(y) is a function of internal coordinates (as usual, xμ denote non-
compact coordinates).

The supergravity fields (axio-dilaton and fluxes) and localized sources all
contribute to the stress energy tensor, TMN = TSUGRAMN + T locMN . The ten-
dimensional Einstein equations are, in trace-reversed form

REMN = κ210

(
TMN − 1

8
GMNT

)
, (5.5)
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where E indicates that the Riemann tensor is computed in the Einstein frame
(see equation (3.6)). From the non-compact part of this equation, using the
warped metric ansatz above, follows the condition [GKP02]

∇̃2e4A = e2A
GmnpḠ

mnp

12Imτ
+ e−6A[∂mα∂mα+ ∂me4A∂me4A]

+
κ210
2
e2A(Tmm − Tμμ )loc.

(5.6)

Here a ∇̃2 is the Laplacian in the metric G̃mn.
Integrating this constraint over the compact internal manifold, the total

derivative on the left hand side vanishes. On the right hand side, the flux and
warp terms are positive definite and cannot vanish. Thus the localized sources
must cancel these terms. This can be accomplished by objects with negative
tension [GKP02].2 Luckily, such negative tension objects, called orientifold
planes, exist in string theory. These are related to an orientifold action that
acts both on the world-sheet and the internal manifold. We will return to ori-
entifolds in section 5.2.

Further requirements on the fluxes can be derived from their Bianchi iden-
tities and equations of motion. In particular, for the five-form flux

dF̃(5) = F(3) ∧H(3) + 2κ210T3ρ
loc
3

⇒ 0 =
1

2κ210T3

∫
M
F(3) ∧H(3) +Qloc3 .

(5.7)

Here T3 is the D3-brane tension3 and ρloc3 , Q
loc
3 are the D3 charge density and

total charge from orientifold planes and space-filling D3-branes. It is evident
that non-zero background fluxes require the introduction of objects that soak
up the resulting charge in the compact space.

The tadpole condition (5.7) can be rewritten in terms of α(y). Combined
with (5.6), this leads to the condition

∇̃2(e4A − α) =
e2A

6Imτ
|iG(3) − ∗6G(3)|2 + e−6A|∂(α− e4A)|2

+
κ210
2
e2A[(Tmm − Tμμ )loc − T3ρloc3 ].

(5.8)

For D3-branes and O3 planes it can be shown that (Tmm − Tμμ )loc = T3ρ
loc
3 ,

so the last term vanishes.4 Now, integrate over the internal manifold. Again,

2An alternative is given by Dp-branes with p ≥ 7, since p-branes wrapping a p−3 cycle Σ have

(Tm
m − Tμ

μ )loc = (7− p)Tpδ(Σ) [GKP02]. To maintain four-dimensional Poincaré symmetry,

only p = 7 is allowed.
3In the Einstein frame 2κ210T3 = (2π)−2α′−2.
4For brevity, we focus on O3 planes here. Other possible Poincaré symmetry-preserving con-

figurations include O5, O7 and O9 planes. For a discussion of these see [GL04, Gra06].
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the left-hand side of the equation vanishes. Thus, consistent solutions have
imaginary self-dual three-form flux

iG(3) = ∗6G(3) (5.9)

and satisfy
α = e4A. (5.10)

The last equation shows that the warp factor cannot be zero in configurations
with non-zero five-form flux, which motivates the metric ansatz above.

5.2 Four-dimensional N = 1 Supergravity

Without background fluxes, four-dimensional N = 2 supersymmetry fol-
lowed if the internal manifold allowed a covariantly constant spinor, as dis-
cussed at the end of section 3.1. This is not a sufficient condition when fluxes
are present, since the gravitino and dilatino supersymmetry variations in equa-
tion (2.37) on page 34 contain several flux-dependent terms.

However, to preserve some supersymmetry in four dimensions, the ten-
dimensional supersymmetry parameter must decompose into a four- and six-
dimensional part. Thus, it is still necessary that a nowhere vanishing spinor
can exist on the internal manifold. This is one reason for compactifying on a
conformal Calabi–Yau; a conformal rescaling does not affect the existence of
spinors. What changes is the definition of “conformally constant”; it can be
shown that the rescaled manifold has torsion.5 In fact, by a slight generaliza-
tion of the decomposition ansatz with respect to equation (3.8) one can cate-
gorize the kind of internal manifolds and background fluxes that are allowed
in N = 1 compactifications. We will not go through this general analysis, but
refer to [Gra06] for a review and references. The result of interest to us is that
warped compactifications on conformally Calabi–Yau threefolds have at most
N = 1 supersymmetry. It has been shown [GKP02] thatN = 1 supersymme-
try is preserved if the three-form flux is imaginary self-dual, ∗6G(3) = iG(3),
and primitive, i.e. vanishes when contracted with the Kähler form.

A straightforward way to understand the breaking of supersymmetry is to
study the effect of orientifold planes. As mentioned above, compactifications
with background fluxes require such objects to cancel flux-induced tensions
and charges. Orientifold actions O are combinations of an action Ωp, that re-
verses the orientation of the string world-sheet, a spacetime involution σ6 and
possibly a sign reversal. The involution leaves four-dimensional spacetime

5The torsion tensor is related to the Levi–Civita connection. It measures the failure of closure

of a parallelogram made up of small displacement vectors and their parallel transports (see e.g.

[Nak]).
6This involution should not be confused with the world-sheet coordinate σ.
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(a) (b)

Figure 5.2: An orbifold is obtained when points related by an internal symmetry are

identified. Figure (a) shows the z-plane which has a Z3-symmetry that can be orb-

ifolded. Identifying points related by the action Θz = e2πi/3z yields a cone, shown in

figure (b). Note how the dotted line re2πi/3 is identified with the real axis. The origin

is a fixed point under Θ, and becomes a singularity in the orbifold.

unchanged and orbifolds the compactification three-fold by an internal sym-
metry, i.e. uses the symmetry action to identify parts of the internal space. An
example of an orbifold is shown in figure 5.2. Orientifold planes are the non-
dynamical fixed planes under an orientifold action O. Since four-dimensional
spacetime is invariant under the orientifold actions considered here, the O
planes are space-filling.

For consistency, σ must be isometric and holomorphic on the internal space
[GL04]. Isometry implies that the Kähler form J is preserved by the action:
OJ = J . Holomorphicity guarantees that O is compatible with the complex
structure, and the holomorphic three-form must obey OΩ = ±Ω. The lowest
dimensional O plane compatible with these conditions is an O3 plane, which
is pointlike in the internal space. It has been shown (see [GL04] and references
therein) that the orientifold action leading to O3 planes is7

O = (−1)FLΩpσ∗ , where σ∗Ω = −Ω. (5.11)

Here FL is the spacetime fermion number in the left-moving sector, which is
non-zero for the fields in the RR sector in type IIB. As usual, σ∗ denotes the
pullback of σ to the space of forms.

5.3 Spectrum

We now turn to the low-energy spectrum of flux compactifications. Just as in
chapter 3, we find this by KK expanding the various fields in the harmonic

7This action could equally well lead to O7 planes, see [GL04].
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h
(3,3)
+ = 1

0 0

0 h
(1,1)
+ + h(1,1)− 0

h
(3,0)
− = 1 h

(2,1)
+ + h(2,1)− h

(2,1)
+ + h(2,1)− h

(0,3)
− = 1

0 h
(1,1)
+ + h(1,1)− 0

0 0

h
(0,0)
+ = 1

Table 5.1: The Hodge numbers of an orientifolded Calabi–Yau three-fold decompose
into the dimensions of the eigenspaces of the orientifold action (5.11).

forms of the internal manifold. As we will see below a lot of the work is al-
ready done when it comes to the massless sector. We need only consider which
of the massless N = 2 fields remain in the spectrum after orientifolding.

First, we should however show that the harmonic forms on the conformal
Calabi–Yau are the same as on the original manifold. Given the metric ansatz
(5.2) it is straightforward to show that, for a field Φ

Δ(10)Φ = e−2A(y)Δ̃(4)Φ + e2A(y)Δ̃(6)Φ. (5.12)

where the three Δ are the differential operator for the field on the various
spaces, and a tilde denotes the use of the tilded metrics in the metric ansatz
(5.2). To obtain this result, it is necessary that the metric ansatz is of the form
(5.2), with the conformal factor multiplying the (tilded) Calabi–Yau metric. It
follows that the four-dimensional zero-mass spectrum is once again found by
expansion in the harmonic forms of the internal Calabi–Yau. Thus, the low-
energy effective theory can be found by studying the effect of the orientifold
action (5.11) on the harmonic forms of the Calabi–Yau.

The ten-dimensional type IIB fields Φ, GMN , C(2) are even under the
world-sheet orientation reversal Ωp, whereas B(2), C(0), C(4) are odd.

Furthermore, the NS states are invariant under (−1)FL , while the RR states
change sign. Thus, the massless fields that remain in the truncated theory
result from expansions in harmonic forms with the appropriate σ∗ eigenvalue.

Since σ is compatible with complex structure, harmonic (p, q)-forms
must be either even or odd eigenstates of the action. Consequently, invariant
four-dimensional fields are obtained by Kaluza–Klein expansions of the
ten-dimensional fluctuations in harmonic forms, just as in the N = 2
Calabi–Yau compactifications in section 3.3. The only difference is that
the expansion will be in harmonic forms of definite σ eigenvalue, chosen
so that the ten-dimensional field is invariant under the orientifold action.
This reduces the number of four-dimensional fields. Table 5.1 show how
the Hodge numbers of the conformal Calabi–Yau manifold are divided
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Multiplet Multiplicity Bosonic fields

Supergravity 1 gμν

Universal chiral multiplet 1 φ, c

Chiral multiplet h
(1,1)
− ba, ca

Chiral/linear multiplet h
(1,1)
+ vα, c̃α

Vector multiplet h
(2,1)
+ c̃κμ

Chiral multiplet h
(2,1)
− zk

Table 5.2: Bosonic field content in type IIB compactifications with O3/O7-planes on
a conformal Calabi–Yau threefold. The complex structure moduli zk form a chiral
multiplet and the Kähler moduli vα form a chiral/linear multiplet. Note how the ori-
entifold action in equation (5.11) projects out many of the states in table 3.2.

into eigenspaces of σ∗, where it has been taken into account that the
holomorphicity of σ∗ relates the dimensionality of some of the eigenspaces
[GL04]. For compactifications which only have O3-planes, it can furthermore
be shown that three- and two-forms must be even and odd respectively, i.e.

h
(2,1)
+ = h(1,1)− = 0.
Proceeding as in section 3.3, one can show that the four-dimensional fields

no longer yield the bosonic field content of N = 2 multiplets. For example,
the graviphoton in theN = 2 gravity multiplet (cμklm = cμΩklm) is odd under
the orientifold action, and is projected out. The graviton is even and remains in
the spectrum, giving the bosonic field content of the N = 1 gravity multiplet.
In a similar way the hypermultiplets decompose to chiral/linear multiplets,
and the vector multiplets give rise to N = 1 vector and chiral multiplets. The
total effect is that the N = 2 multiplets decompose into multiplets of four-
dimensional N = 1 supergravity [GL04]. The resulting spectrum is given in
table 5.2.

There is one caveat in the above construction, that we must consider be-
fore proceeding. The analysis of the low-energy spectrum performed above
is perfectly all right as long as the warp factor e2A is constant. Suppose that
the warp factor instead varies. This does not affect the massless solutions to
(5.12), but it changes the mass of massive Kaluza–Klein modes

Δ̃(4)φn(x) = −e4AM2
nφn(x). (5.13)

Since the KK expansion is not in mass eigenstates, the effective low-energy
theory becomes complicated. Different fields should be included in the theory
depending on the location on the internal manifold.
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In the following, we will study large-volume compactifications where warp-
ing is constant [GKP02].8 Thus, all massive KK modes will be neglected. An-
other interesting approach is to use eigenfunctions of the Laplacian on the
warped internal manifold for KK compactifications. These are mass eigen-
states in the warped compactification. However, the four-dimensional field
theory obtained from such compactifications is more involved (i.e. the poten-
tial is harder to find). We refer to [DT08, STUD08, DST07b, FTUD08] for a
thorough discussion of these issues.

5.4 Action

The action for the four-dimensional theory is obtained by dimensional reduc-
tion of the ten-dimensional type IIB supergravity action given in equation
(2.35), just as in the N = 2 case. In this section we show that the action
is determined by a Kähler potential K and a holomorphic superpotential W ,
as expected for four-dimensional N = 1 supergravity.

The low-energy scalar fields consist of the complex structure moduli zk, the
complexified Kähler moduli, ρα = ivα+ c̃α, and the axio-dilaton, c+ iφ. The
kinetic terms for these fields are given by

GUV̄ ∂μΥU∂μῩV , (5.14)

where Υ collectively denotes the different fields. The field space is Kähler,
GUV̄ = ∂U∂V̄K, and factorizes at leading order.9 Thus the Kähler potential
K is given by the sum

K = KCS(z, z̄) +Kdil(τ, τ̄) +KK(ρ, ρ̄). (5.15)

HereKCS = − ln
(
i
∫

Ω ∧ Ω̄
)
, as derived in section 3.3.1, and

Kdil = − ln (i(τ − τ̄)) (5.16)

is straightforwardly derived by dimensional reduction.
The Kähler potential for the Kähler moduli is still given by

KK = −2 lnκ(J, J, J) = −2 lnV , as in section 3.3.1. With more than
one Kähler modulus, one has to change coordinates on the moduli space
before the metric is explicitly Kähler. This has been studied in some
detail in [BBHL02, GL04]. If there is instead only one Kähler modulus,

8To understand why this is the case, consider the scaling of the various terms of equation (5.8)

on page 78 under volume rescalings of the internal metric G̃mn → λ2G̃mn. The terms involv-

ing A scale as λ−2 whereas the flux term scale as λ−6, yielding A = 1 + O(λ−4). It follows

that A is constant when λ is large.
9As in theN = 2 case, the Kähler and complex structure moduli do not mix when the warping

is constant. There are however metric mixings between Kähler moduli and the axio-dilaton, as

discussed in chapter 6.
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parameterizing the overall volume of the Calabi–Yau, the Kähler potential
can explicitly be written as

KK = −3 ln (i(ρ− ρ̄)) . (5.17)

There are several corrections to KK , that are subleading at large volume and
small string coupling. These will be discussed in chapter 6.

In addition to the kinetic terms for the fields in the low-energy spectrum,
the action contains the four-dimensional Einstein-Hilbert term and a potential
term. This potential arises from the background fluxes F(3) andH(3),

10 which
satisfy the ten-dimensional equations of motion and Bianchi identities:

dG(3) = 0 d ∗G(3) = 0. (5.18)

We saw above that four-dimensional Poincaré invariance only allows back-
ground three-form flux in the internal manifold. Equation (5.18) then requires
the three-form flux to be harmonic. This implies that background fluxes can
be expanded in a basis of harmonic three-forms. For the large-volume com-
pactifications of interest here, these are just the harmonic three-forms of the
Calabi–Yau.

Since the ten dimensional integrals depend on the compactification volume
through the metric determinant, the following ansatz for the ten-dimensional
metric is useful

ds210 = e−6uĜμνdxμdxν + e2uĜmndymdyn. (5.19)

For notational simplicity, we omit possible warp factors, that would anyway
be constant in the large volume limit. The parameter u sets the internal vol-
ume scale, V = exp(6u). Keeping in mind that the Calabi–Yau volume is
set by a Kähler modulus, we promote u to a four-dimensional field. We must
then rescale the four-dimensional metric in order to decouple u from the four-
dimensional Einstein–Hilbert term.

Inserting this metric and the harmonic expansion of the flux in the ten-
dimensional action (2.35) leads to a potential term in the four-dimensional
action

V =
1

V2(Imτ)
∫

Ω ∧ Ω̄

[ ∫
G(3) ∧ Ω̄

∫
Ḡ(3) ∧ Ω

+Gkl̄
∫
G(3) ∧ χk

∫
Ḡ(3) ∧ χ̄l̄.

] (5.20)

where it has been used that V and τ are independent of internal coordinates.

10If warping is non-constant, there will be contributions to the potential term also from the five-

form flux and the Ricci scalar, which are related to the three-form flux by the ten-dimensional

equations of motion. See [GKP02, DG03] for a discussion.
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Defining the Gukov–Vafa–Witten superpotential [GVW00]

W =
∫

Ω ∧G(3) (5.21)

and using the Kähler potential in equation (5.15), allows us to rewrite the
potential in the standard N = 1 form11

V = eK
(
GUV̄DUWDV̄W − 3|W |2

)
, (5.22)

where DUW = ∂UW + W∂UK. This potential has supersymmetric min-
ima when all DUW = 0. Note that the superpotential depends on complex
structure moduli and the axio-dilaton, but is independent of all Kähler mod-
uli. Furthermore, as long as h(1,1) = 1 it is straightforward to show that
Gρρ̄KρKρ̄ = 3, which implies that

Gρρ̄DρWDρ̄W − 3|W |2 = 0. (5.23)

This identifies the low-energy theory as so-called no-scale models [CFKN83,
ELNT84].12 The no-scale condition (5.23) holds also for compactifications
with more than one Kähler modulus, as shown in [GL04].

The no-scale property implies that the potential V is positive semi-definite,
with minima when V = 0. These minima can, but need not be supersymmet-
ric. SinceDαW ∼W , this might be non-zero for some α, even if V = 0. The
supersymmetry breaking scale is then set by the value of the superpotential in
the minimum. In addition the potential can have minima at non-zero values of
V , which are necessarily supersymmetry breaking. Note that neither of these
minima fix the Kähler moduli, which only enter in an overall scale of the po-
tential. These moduli can only be stabilized by non-classical corrections, as
we discuss in the next chapter.

On the other hand, the potential V will generically fix all the complex struc-
ture moduli and the axio-dilaton in a given compactification. To see this note
that

∂τV = ∂kV = 0 (5.24)

are h(2,1) + 1 equations for h(2,1) + 1 variables for each choice of flux. Of
course, since we derived these expressions from the supergravity approxima-
tion, which is valid at large volume and small coupling, not all such vacua need
be consistent. In particular, we have to check that the axio-dilaton is fixed so
that the string coupling is small. Even with this extra constraint, finding vacua
is not very difficult.

11See e.g. [GGRS83, Soh85] for a discussion of four-dimensional N = 1 supersymmetry and

supergravity.
12The name ’no-scale’ was introduced in [ELNT84] to emphasize that the supersymmetry break-

ing scale is not put in by hand in these models, but arise from the dimensional reduction.
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Rewriting the superpotential in terms of the flux quanta and the periods

W =
∫

Ω ∧G(3) ≡ (F − τH) ·Π (5.25)

it follows that V = 0 if

DkW = 0↔ (F − τH) ·DkΠ = 0 and

DτW = 0↔ (F − τ̄H) ·Π = 0,
(5.26)

where the last equality is a consequence of the simple Kähler potential (5.16)
for the axio-dilaton τ . These equations can be interpreted geometrically; given
a choice of integral flux F,H , a potential is created that forces complex struc-
ture moduli to a point where the (3,0) and (1,2) parts of the flux vanish, leaving
an imaginary self-dual G(3). Supersymmetric minima are furthermore possi-
ble ifW = 0, i.e. G(3) is a (2,1)-form.

Summarizing, the four-dimensional effective field theory obtained by com-
pactifying type IIB string theory on a conformal Calabi–Yau manifold, in the
presence of background three-form fluxes and O3-planes, yields an N = 1
supergravity. The action is (after restoring factors of α′ and π)

Sfluxeff =
M2
p

2

∫
d4x
√−g4

(
R(4) + Gkl̄∂μzk∂μz̄l + Gαβ̄∂μρα∂μρ̄β

+Gτ τ̄∂μτ∂μτ − 1
(2π)2α′

V
)
,

(5.27)

where G is given by the Kähler potentials in equation (5.15), and V is given
by the Kähler and superpotential as specified in equation (5.22). The four-
dimensional Planck mass is given by

M2
p

2
=

(2π)6α′3 < V >
2κ210

, (5.28)

where < V > is the expectation value of the compactification volume. In
addition, there can be local sources, i.e. space-filling D3-branes, present. Such
sources would add a second term to the action, describing the low-energy
action of the open strings propagating on the brane.

Once the complex structure moduli and axio-dilaton are fixed at a minimum
of the potential V , they decouple from the low-energy four-dimensional the-
ory. The potential term turns intro a cosmological constant, whose value is be
zero when the minimum preserves N = 1 supersymmetry.
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5.5 Black Holes in Flux Compactifications

We have now seen that both background fluxes and wrapped D3-branes intro-
duce potentials for the complex structure moduli in IIB Calabi–Yau compact-
ifications. A general compactification could include both fluxes and branes,
and it is interesting to investigate how such combinations behave. This is the
topic of Paper II, where the influence of a black hole on the stability of a flux
compactification is estimated.

Recall that there is a crucial difference between the black hole and flux po-
tentials; the black hole fix the moduli at the horizon of the black hole, leaving
free moduli at infinity. The flux potential, on the other hand, exists at all points
in spacetime, and hence the moduli are massive also at infinity. It is therefore
expected that the influence from the black hole could only be important near
the horizon of the black hole.

Since the effective four dimensional physics is determined by the value of
the moduli, it would be very interesting if the black hole did have a substan-
tial impact on the fixing of the moduli. The near-horizon region would then
correspond to another string theory vacuum than the faraway region, as dis-
cussed in Paper II and [GSS06]. Moreover, the formation of a black hole that
couples to fixed background fields in a vacuum, could, under certain assump-
tions, catalyze the nucleation of an expanding vacuum bubble in the vicinity
of the black hole [GSS06]. This suggests that matter contracting to form black
holes could even foster the creation of new universes.

We will study a flux compactification with additional D3-branes wrapped
around internal three-cycles. Such a configuration will typically result in a
non-supersymmetric four-dimensional black hole solution. Solutions with
N = 1 and N = 2 supersymmetry could also be constructed, but our focus
will be on the general case. The black hole is charged under the self-dual
five-form field strength, which gives rise to a vector field for each pair
of non-trivial three-cycles. Table 5.2 shows the gauge fields that remain
after orientifolding the four-dimensional theory, as is required to cancel
flux-induced tadpoles.

A compactification with both branes and fluxes is necessarily complicated,
as the different sources might couple to each other and also back-react on
the geometry. There are also topological restrictions that limit the combined
brane and flux configuration. In particular, the number of cycles admitting
stable wrapped D3-branes is reduced by the Freed–Witten anomaly [FW99].
This renders the problem difficult to solve in detail. The interest here is how-
ever to investigate under which conditions the black hole attractor mechanism
could possibly overcome a potential induced by fluxes. A qualitative answer to
this question is obtained by studying a black hole immersed in a background
potential induced by fluxes.
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For a generic compactification we then obtain an effective four-dimensional
potential (see Paper II)

Spot = − 1
2κ210

∫
dVol4

(
1

R(r)4
Vbh (z) + Vf (z)

)
, (5.29)

where R(r) measures the radial distance to the black hole center (see (4.9) on
page 63).13 The black hole potential Vbh arises from the five-form flux term in
the ten-dimensional type IIB supergravity action, and is quadratic in the black
hole charges q. The flux potential Vf is given by the three-form flux and is
quadratic in the flux quanta, Q.

Note the black hole potential is suppressed by a factor of R−4, and obtains
its largest value at the horizon, R = RBH . It is clear that this term will be
subdominant, at least for macroscopic black holes. The radius of the black
hole horizon is bounded from below by the charges, with RBH ∼ q for ex-
tremal black holes. Since the potentials are proportional to the square of the
corresponding flux quanta Q and charge q, the effect of the black hole is sup-
pressed by a numerical factor ∼ 1/(Q2q2). Thus for large black hole charges,
and reasonable flux quanta, the effect of the black hole potential is clearly
subdominant all the way in to the horizon.14

However, these generic arguments do not exclude that the different func-
tional forms of the potentials, or appropriately chosen charges and flux quanta,
could make the black hole potential significant in the near-horizon region. This
was investigated in Paper II, under the assumption that the black hole and flux
potentials can be expressed in terms of superpotentials and Kähler potentials,
as derived in sections 4.2.1 and 5.4. This assumption immediately implies
that the functional forms of the two potentials are very similar, which closes
one of the above loopholes. Moreover, Paper II contains an explicit example
where the requirements for the displacement of a minimum is analyzed. The
result of this analysis is indeed, that very small black hole charges or certain
fine-tuned flux can change the location of the minimum in a noticeable way.15

So, although the general result is that flux compactifications are stable against
the introduction of wrapped D3-branes, choosing the fluxes and charges care-
fully might result in a destabilization. Note however, that it is unclear if such
fine-tunings are possible in a more realistic setting, where the topological re-
strictions on the solution are taken into account.

13From the supergravity analysis we have thatR is measured in terms ofMp. Moreover, the flux

quantization conditions sets the scale of Vbh ∼ (α′)4 and Vf ∼ (α′)2.
14This is in contrast with the analysis of [GSS06], where the background potential is not re-

stricted to be a flux potential, which e.g. implies that the scale of the potential is a free parame-

ter. Here, the scales are given by flux quantization as mentioned in the previous footnote.
15This conclusion depends also on the size of the extra dimensions. For very large extra di-

mensions, the black hole potential could compete with the potential induced by fluxes even for

larger black holes.
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An interesting question left open in Paper II is how the stability and macro-
scopic properties of the black hole are affected by the surrounding flux poten-
tial. For example, one would expect the black hole entropy to depend both on
the charges and on the flux quanta of the surroundings, since the moduli are
now fixed by the fluxes. This has been confirmed by [LBO07] for a supersym-
metric flux/brane configuration. Furthermore, [LBO07] finds that these black
holes are unstable and can decay to spacetime localized flux configurations. It
is possible that similar instabilities can appear for non-supersymmetric black
holes in flux configurations.

In summary, the conclusion of Paper II is that only certain fine-tuned black
holes could destabilize flux vacua. We now leave the discussion of black holes
in supergravity compactifications. In the following chapters we will instead
study flux compactifications, and the flux-induced potential, in more detail.
Our focus will also in the following be on the stability of flux vacua.
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6. The Type IIB Landscape

In this chapter we introduce the string theory landscape, i.e. the collection of
metastable string theory vacua. The different vacua represent low-energy ef-
fective field theories of different dimensionality, geometry and field content.
Of particular interest is the effective potential that fixes the moduli, whose
minimal value determines the cosmological constant of the effective space-
time.

Our focus will be on four-dimensional vacua arising from type IIB com-
pactifications. One reason for our interest in type IIB is that de Sitter vacua
can be constructed in this way, and de Sitter vacua are interesting from a cos-
mological perspective, as we discuss in chapter 7. Furthermore, the special
geometry of the complex structure moduli space gives us a powerful tool to
study not only the vacua, but also the topography of this part of the landscape.
This is the topic of Papers III and IV.

6.1 Stabilizing Kähler Moduli

In the previous chapter we saw how background three-form fluxes can fix the
complex structure moduli and axio-dilaton, but not the Kähler moduli, of a
type IIB compactification. The reason for this is that the flux-induced potential
is of N = 1 no-scale type. Nevertheless, we should recall that the superpo-
tential and Kähler potential have been derived from the type IIB supergravity
action (2.35) on page 33. This is a low-energy approximation of string theory
valid at weak coupling and large volume. We saw in chapter 2 that the action
receives corrections from subleading terms both in the α′ and gs expansions.
As a result, both the superpotentialW and the Kähler potential have quantum
corrections.

The superpotential is not renormalised at any order in perturbation
theory and is thus protected from perturbative corrections [BEQ06].
Non-perturbative corrections, on the other hand, are possible. These arise
either from instantonic D3-branes [Wit96] or gaugino condensations on
stacks of D7-branes [KKLT03]. In both cases, the corrections are of the form

Wnp =
∑
α

Aα(z, τ)eiaαρα , (6.1)
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where the constants aα and the functions Aα depend on the type of correction
and the geometry of the compactification manifold. As in the previous chap-
ters, z denotes complex structure moduli, ρ denote Kähler moduli and τ is the
axio-dilaton.

The Kähler potential receives perturbative corrections, which introduce a
dependence of the axio-dilaton in the metric for Kähler moduli space. To first
order, the corrected Kähler potential is

K = KCS(z, z̄) +Kdil(τ, τ̄) +Kα
′
K (ρ, ρ̄, τ, τ̄)

Kα
′
K = −2 ln

[
e−3φ0/2V +

ξ

2

(−i(τ − τ̄)
2

)−3/2]
,

(6.2)

where ξ is proportional to the Euler number of the compactification manifold,
and φ0 is the vacuum expectation value for the dilaton [BBHL02]. The Kähler
potentials KCS and Kdil were discussed in section 5.4. Equation (6.2) only
includes the leading order α′ correction. In principle, gs corrections should
also be taken into account, but they are smaller than the α′ corrections at large
volume [BHK06, BHP07].

Assuming that the three-form fluxes first stabilize the complex structure
moduli, one can then use the above effects to stabilize also the Kähler mod-
uli.1 As long as the tree level superpotential is small in the minimum, the
corrections to the Kähler potential yield negligible contributions to the poten-
tial. This is used in the KKLT model [KKLT03], where Minkowski or anti
de Sitter vacua are constructed at a reasonably large compactification vol-
ume, using only the non-perturbative corrections Wnp. These vacua can be
uplifted by space-filling anti-D3-branes [KKLT03] and/or non-zero F-terms
(i.e. DiW �= 0 for some zi) [SS04] to create (non-supersymmetric) de Sitter
vacua.

For more generic values of the tree level superpotential, both (6.1) and (6.2)
are important. It was shown in [BBCQ05] that by utilizing these corrections,
Kähler moduli can be fixed at exponentially large compactification volume.2

These vacua are non-supersymmetric and result in four-dimensional anti de
Sitter spacetimes. As in the KKLT model, anti-D3-branes can be added to
uplift the minima to yield a positive cosmological constant. 3

1This two-step fixing of moduli simplifies the analysis considerably. Given a large separation in

energy scales between the tree-level potential and corrections, the fixing of Kähler moduli will

not affect the flux-fixed fields considerably. Scenarios without this separation are also possible.

See [Dim08] for a categorization of different possibilities and [BMP08] for a discussion of the

two-step assumption in from a phenomenological point of view.
2The volume is very large when measured in string units. Compared to more mundane length

scales, the compactified dimensions are still very small. Thus there is no clash with particle

physics experiments.
3One cannot use F-terms to uplift these vacua, since their absence is used to prove the existence

of a minimum.
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6.2 Predictions and Statistics of the Landscape

By combining the flux-induced potential with the quantum corrections dis-
cussed in the previous section, we see that a large number of four-dimensional
vacua can be constructed. Indeed, a generic Calabi–Yau has Euler number
around 100 and thus something of the order of 100 three-cycles that can
pierced by flux. Each such cycle can have up to 10 units of flux through
it, without (necessarily) being in conflict with the tadpole condition (5.7).
We thus have in the order of 10100 possible flux configuration on a generic
Calabi–Yau, and the simplicity of the stabilization conditions (5.24) implies
that most such configurations yield some vacuum. Taking all possible Calabi–
Yau manifolds into account increases this number. Furthermore, the inclusion
of branes in the compactifications adds a large open string sector to the land-
scape, thereby increasing the number of vacua. In addition, we can construct
vacua using other string theories as a starting point.4

The large number of possible vacua is of course a drawback for those who
would like string theory to be a theory of everything that gives unique four-
dimensional predictions. One could wonder if any four-dimensional predic-
tions could be derived from such a landscape. It is therefore important to note
that the landscape does not allow everything. On quite general grounds one
can look for conditions that need to be fulfilled by the effective theories that
arise in the landscape. Such conditions set the boundaries to the surrounding
swampland of field theories that do not have a quantum gravity completion
[Vaf05, OV07].

From another point of view, the proliferation of vacua has the benefit that it
can naturally accommodate fine-tuned parameters that we observe. The prime
example of this is the cosmological constant, which has been measured to
be approximately Λ ∼ 10−120M4

p , which is about 120 orders of magnitude
smaller than would be expected by naive dimensional reasoning. As men-
tioned above, in the landscape, the cosmological constant is determined by
the potential value in a vacuum. Given more than 10120 vacua, the probabil-
ity that at least one of these vacua has the right cosmological constant is no
longer so small. Furthermore, in a landscape of vacua, one can use anthropic
reasoning to argue that it is likely that we observe such a fine-tuned value, as
discussed in the introduction to this thesis.

The many string vacua also allow a statistical reasoning about whether cer-
tain properties are more common than others in the landscape. For example,
one could scan the vacua to see what the typical scales are for the cosmological
constant and the supersymmetry breaking scales. Such statistical surveys have
been undertaken in the type IIB landscape, see e.g. [DD04, Dou03, DD05]. It

4Some of these will be related to the type IIB constructions discussed here by mirror sym-

metry or other dualities. Nevertheless, there are e.g. several type IIA compactifications that

are mapped to large coupling, small volume type IIB constructions by mirror symmetry. Such

vacua are not accounted for here.
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is also interesting to investigate conditional probabilities, i.e. statistical distri-
butions in a subsection of the landscape that fulfills some predefined require-
ments [AD06]. The conclusions from this type of surveys are interesting since
they can lead to a definition of “stringy naturalness” (see e.g. [DK07] for a
discussion). Thus, we learn about the structure of the underlying theory. On
the other hand, if we are interested in the statistical distribution of vacua in a
cosmological setting, we also need to take the stability of various vacua into
account. We will return to this question in chapter 7.

6.3 Dynamics and Topography

Given that there is a vacuum in the landscape with the properties of our uni-
verse, one can wonder if the rest of the landscape is of any relevance. Maybe it
is just superfluous information about physics we could never measure? There
are several indications that this is not the case. For example, a popular way of
explaining the homogeneity and isotropy of our universe is assuming that it
has gone through a period of inflation (i.e. rapid expansion) [Gut81]. A slowly
rolling scalar field could be the source of such an expansion. This could pos-
sibly happen in the string theory landscape, e.g. if there is an almost flat di-
rection in the potential for the moduli near our vacuum in the landscape. Slow
roll inflation could then be obtained by a modulus rolling in this direction.
There could also be other features of the landscape that result in inflation, and
we will return to this in the next chapter. For now we note that, to investigate
if inflation occurs, we need to study the potential also away from the vacua.

Another interesting aspect of the existence of other vacua is that they could
allow us to study the history of our universe before its nucleation. In the land-
scape this is just a question of stability. The vacua are just local minima in a
very complicated potential, and as such can be unstable to quantum mechan-
ical tunneling to other minima. To estimate the stability of minima, we need
to investigate the topography of the landscape, i.e. the distances and barriers
between minima. Topographic properties are also of relevance for statistical
discussions, especially if there could be dynamical principles in the landscape
that make certain vacuum properties more likely. This is discussed further in
Paper III, to which we also refer for further references.

A problem with topographic studies of the landscape is that these properties
tend to be model dependent. Therefore, we should aim for a simplified model
that captures the general topographic features. Such a model can be found by
restricting our attention to the flux-induced potential in type IIB compactifica-
tions. This sector is sufficiently complex (it is multidimensional and involves
fluxes) to be interesting, but simple enough to obtain results. In doing this, we
neglect the crucial fixing of Kähler moduli, which is of course equally impor-
tant as the fixing of complex structure moduli. We should therefore view this
simplification as a first step toward a better understanding of the topography
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of the landscape. If we find any interesting structure at this level, we should in-
vestigate if the structure persists after adding quantum corrections. We return
to this discussion in the end of this section.

A topographic question that is relatively easy to answer regards how vacua
are distributed in the complex structure moduli space. We only need to solve
the equations (5.24). Thus it seems straightforward to determine the distance
between vacua, and, assuming that potential barriers are of similar scales, one
would suppose that vacua in regions with many vacua are more prone to de-
cay than those situated in more sparsely populated regions. This might sound
plausible, but there is one very important caveat in the above reasoning. The
potential is a function on a parameter space that is a combination of quantized
flux directions and continuous moduli directions. Two minima that are close
in moduli space might have different flux configurations, and therefore lie far
apart in flux space. Furthermore, there is usually not a continuous potential
barrier between the two, which makes transitions between vacua difficult to
handle.

The main result of Paper III is the identification of series of continuously
connected minima in the flux-induced potential on the complex structure mod-
uli space. Recall that the potential and the metric on this space are determined
by a superpotential W and a Kähler potential KCS . Moreover, we have seen
in section 3.3.1 that these quantities can be expressed in terms of the periods

W = (F − τH) ·Π , KCS = − ln(iΠ†Q−1Π). (6.3)

Now, we should recall from section 3.3.1 that the complex structure mod-
uli space is a fundamental domain of a larger Teichmüller space. As such its
topology can be rather complex. In particular, the periods are not single-valued
on the complex structure moduli space, but suffer from monodromies around
singular points. The monodromy transformations correspond to the transitions
between different fundamental domains in Teichmüller space. A nice descrip-
tion of these concepts can be found, for the example of the Mirror Quintic,
in the seminal paper [CdlOGP91]. A simplified discussion that illustrates the
general idea by studying the torus is given in Paper V.

The astute reader might now worry that the monodromies in section 3.3.1
were derived in the complex structure moduli space of N = 2 compactifica-
tions, and might not prevail inN = 1 compactifications. This is a subtle point,
which we can handle as follows. Recall from chapter 5 that supersymmetry is
broken by orientifold planes, which are necessary to cancel flux-induced tad-
poles. Orientifolding projects out some of the periods, thereby reducing the
size of the complex structure moduli space. Nonetheless, in the generic case,
we expect that the singular points and monodromies are not all projected out
from the resulting moduli space. In the following, we will therefore assume
that there are monodromies in the orientifolded moduli space. When we study
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explicit examples, we will tacitly assume that these are the moduli spaces ob-
tained after orientifolding.

As discussed in section 3.3.1 the monodromies transform the
N -dimensional period vector as

Π→M ·Π, (6.4)

where the monodromy matrix M is an integral,N×N symplectic matrix. The
monodromy matrices form a subgroup of the symplectic group Sp(N,Z). This
guarantees that M preserves the intersection matrix Q, and leaves the Kähler
KCS potential invariant. Hence the geometry of the different fundamental do-
mains are the same.

The superpotential, on the other hand, transforms as

W = (F − τH) ·M ·Π. (6.5)

Consequently, the superpotential in the new fundamental domain is different
from the superpotential in the old fundamental domain. The superpotential is
continuous across the borders between fundamental domains. Hence, if the
potential has minima in the two domains, there will be a continuous potential
barrier between the two. Now we see the difference to the naive inter-minima
distance discussed above. The distance between the minima has to be mea-
sured on the full Teichmüller space.

Note now that we would obtain the same transformed superpotential if we
remained in the fundamental domain, but let the vectors of flux quanta trans-
form instead. Clearly, substituting

(F − τH)→ (F − τH) ·M (6.6)

into W , would yield the same transformed superpotential (6.5). Thus we can
continuously connect minima with different fluxes on the same fundamental
domain. The minima lie on different sheets of a multiple-valued potential, of
the type shown in figure 6.1. The distance between the minima is the length
of the curved path that takes us from one minimum on the first sheet, around
a singular point and across a branch cut to the second minimum on the next
sheet.

In Paper III, the analytical properties of these sequences of minima are stud-
ied in more detail, and several examples are found by numerical studies of the
Mirror Quintic. A generic question that is addressed regards the length of these
series, in particular if they are finite or not. This is worth investigating, since it
could have implications on the dynamics on the landscape. The question can
be reformulated as a requirement on the monodromy group, as discussed in
Papers III and IV. In general, infinite series of minima are possible if the mon-
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Figure 6.1: A flux-induced potential on the complex structure moduli space of the

Mirror Quintic. The figure shows two sheets of the potential that are continuously

connected across the real z axis. There is a minimum on each sheet.

odromy group is a subgroup of finite index in the symplectic group.5 Whether
this is the case is an unresolved mathematical problem, also for the simple
example of the Mirror Quintic.

In discussions of finiteness, it is important to remember that the minima we
consider here need not be vacua in the full string theory. As argued above,
we need to check that Kähler moduli can be fixed. This can be problematic.
The series will typically contain some minima with non-zero F-terms, which
are problematic in the BBCQ fixing of Kähler moduli. Furthermore, since the
superpotential changes along the series, it will generically leave the region
where KKLT stabilization works. Thus, even if we would find infinite series
of minima, they might yield long, but not infinite, series of vacua. Neverthe-
less, the fact that vacua are connected is already interesting. In addition, these

5The index is a measure on how ’big’ the subgroup is in comparison with the full group. More

technically, it is the number of left cosets associated with the subgroup in the full group. See

Paper III for further discussions.
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(a) (b) (c)

Figure 6.2: The conifold (b) is a cone with base S2 × S3. It is a singular variety that

can be “desingularized” in two ways: (a) by blowing up a two-cycle (resolving) or (c)

by blowing up a three-cycle (deforming).

sequences serve as nice toy models for cosmological discussions, as we return
to in the next chapter.

In conclusion, by utilizing monodromy transformations, we can find con-
tinuous potential barriers between minima in the flux-induced potential in
type IIB compactifications. It is likely that similar results hold for type IIA
compactifications, although this has not yet been investigated. Note however,
that monodromies cannot connect all minima in the complex structure moduli
space. Monodromy matrices are symplectic, and can only connect a restricted
set of flux configurations. Naturally, one wonders if there are ways of ex-
tending the moduli space to connect more minima. This leads us to consider
geometric transitions, and is the topic of the next section and Paper IV.

6.4 Geometric Transitions

The simplest example of geometric transitions connects the deformed and re-
solved conifolds. We therefore return to the conifold, that was introduced in
chapter 4 as the solution to a quartic equation (4.21) in C

4. The conifold is a
non-compact singular variety, which has the form of a cone with base S2×S3.
We also noted that the conifold is the singular limit of the deformed conifold,
which is a non-compact Calabi–Yau manifold. By shrinking a three-cycle in
the deformed conifold, i.e. by moving in its complex structure moduli space,
we reach the conifold. This is illustrated in figure 6.2.

In addition, there is another way to smoothen the conifold singularity, which
leads to a different Calabi–Yau manifold, called the resolved conifold. By
shrinking a two-cycle in the resolved conifold, i.e. by moving in its Kähler
moduli space, we reach the conifold. Again, figure 6.2 illustrates the two man-
ifolds.

From this we conclude that the moduli spaces of the deformed and the
resolved conifolds are connected. Furthermore, it has been shown that the
conifold locus, i.e. the point in moduli space where the cycle vanishes, is
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at finite distance from points describing smooth manifolds [CGH89]. This
is non-trivial since the metric on moduli space has a curvature singularity at
the conifold locus (see section 3.3.1). The finite distance implies that transi-
tions between the deformed and resolved conifolds can occur (see [CdlO90]
for details).

However, before we continue, we should motivate why such a transition
could actually make sense. We just noted that there is a field space curva-
ture singularity at the conifold point. Consequently, the low-energy effective
field theory is singular (recall that the kinetic term for the moduli is given by
this diverging metric). We can no longer describe the transition by classical
geometry alone.

The solution of the problem is that string theory perceives the transition dif-
ferently. Recall from chapter 4 that three-branes wrapped around three-cycles
correspond to four-dimensional black holes. The masses of these black holes
are given by the periods of the wrapped cycles, and go to zero at the conifold
point. This implies that there are new light fields at this point. These must
be included in the low-energy effective action. Doing so results in a smooth
effective field theory [Str95]. Concretely, by incorrectly integrating out these
light states from the smooth action, one obtains a singular theory that exactly
matches that of the conifold [Str95].

Conifold transitions, or more general geometric transitions where several
cycles shrink, arise also in the moduli space of compact Calabi–Yau mani-
folds. It is important to note that the topology of the internal manifold changes
in a geometric transition. Thus, geometric transitions result in a web of con-
nected, distinct Calabi–Yau manifolds [GMS95].6

As an example, it has been shown [CGH90, GMS95] that by shrinking
three-cycles in the Quintic M(1,101), which has Hodge numbers h(1,1) = 1
and h(2,1) = 101, a singular variety is obtained. This variety can be resolved
by blowing up two-cycles, resulting in a manifoldM(2,86), with Hodge num-

bers h(1,1) = 2 and h(2,1) = 86. The change in Hodge numbers implies that
we have to shrink 16 three-cycles in 15 different homology classes and blow
up one two-cycle in the process.

Both the QuinticM(1,101) and the manifoldM(2,86) have mirror manifolds.

These are the Mirror QuinticM(101,1) and the manifoldM(86,2) respectively.7

Thus, it is to be expected that there is a geometric transition between the mir-
rored manifolds as well. Concretely, by shrinking three-cycles inM(86,2), and
then blowing up two-cycles, we expect to reach the moduli space of the Mirror

6That all Calabi–Yau threefolds are connected by geometric transitions is knows as Reid’s fan-

tasy [Rei87], and has yet to be proven.
7Recall from chapter 3 that mirroring a manifold implies that the Hodge numbers are inter-

changed.
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Quintic. Paper IV shows that this is indeed the case. By using toric geometry8

the periods and monodromies of theM(86,2) are constructed, and it is explic-
itly shown how the complex structure moduli space of the Mirror Quintic is
embedded in that ofM(86,2).

Let us now return to the landscape, and the effects geometric transitions has
on its topography. The web of Calabi–Yau manifolds is very attractive from
this perspective, since it unites distinct moduli spaces into one connected land-
scape. Consequently, it is expected that vacua on different moduli spaces can
be connected, and the evolution in the landscape would no longer be limited
to a particular Calabi–Yau compactification.

This idea is studied in more detail in Paper IV. In particular, it is investi-
gated if the larger monodromy group on the moduli space of M(86,2) can be
used to construct continuous paths between the minima in type IIB compact-
ifications on the Mirror Quintic. These paths would go through the geometric
transition locus, encircle a singular point of the moduli space ofM(86,2), and
then return to the Mirror Quintic slice of the moduli space. Although these
paths are generically much longer than paths remaining in the Mirror Quintic
moduli space, it is still interesting that they exist, as we now explain.

The larger monodromy group allows to connect more minima on the Mir-
ror Quintic. In particular, Paper IV shows that infinite series of minima can
be constructed. As noted above, such series may very well be cut off at some
finite length, when the Kähler moduli fixing is taken into account. Nonethe-
less, this length might be long, and hence provide an interesting topographic
setting for dynamical studies.

Paper IV also discusses the effect that background fluxes have on the ge-
ometric transitions. Concretely, if there is flux through the cycles involved
in the transition, we have to worry about charge and flux conservation. For
example, if there is three-form flux through the shrinking cycle before the
transition, there should be flux present also after the transition. But since the
flux-lines are now cut open, there must be sources for the flux. This can be
obtained by wrapping space-filling five-branes on the blown-up two-cycles.
How this type of transitions should be treated is still an open question. Similar
reasoning can be applied to the cases with flux through the torn cycle that in-
tersects the shrinking cycle, or if there is flux through both. We refer to Paper
IV for a detailed discussion on the various possibilities, and references to the
literature.

Different flux configurations also lead to different scalar potentials. For gen-
eral flux configurations, the potential diverges at the conifold locus. Conse-
quently, there is a large barrier between minima. In the absence of flux through
the shrinking cycle, the potential instead tends to zero on the conifold locus

8Toric geometry is a mathematical framework for the construction of Calabi–Yau manifolds.

We will not describe it here, but refer to chapter 2 in Paper IV for the necessary concepts.

Introductions to the subject can also be found in e.g. [H+, Gre96].
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(see Paper III for a derivation). These different scenarios will certainly affect
the transition between minima, as is argued in Paper IV.

In summary, we have argued that monodromy transformations yield series
of continuously connected minima in the flux-induced potential. In the next
chapter, we will use these sequences of minima in studies of landscape dy-
namics. In particular, the model provides generic inter-minima distances and
potential barriers, that can be used for studies of the stability of minima. Fur-
thermore, we investigate the cosmological properties of the model, in particu-
lar if any kind of inflation occurs.
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7. Landscape Cosmology

We now turn to cosmological aspects of the string theory landscape. In any
model with several vacua, we should expect that quantum mechanical tun-
nelling mediates transitions between vacua. Applied to the string theory land-
scape, this means that many vacua (in particular all de Sitter vacua) are only
metastable when quantum mechanical effects are taken into account. Conse-
quently, there is a slow migration between the vacua of the landscape. If our
universe is described by one of these vacua, its creation could be understood
as a mere transition from another vacuum. Similarly, we should expect that the
universe will eventually tunnel to another phase. Needless to say, it is very in-
teresting to estimate the probability for these processes, i.e. how stable various
vacua are.

Just as in the preceding chapter, we view the string theory landscape as
an effective field theory (coupled to gravity), with moduli fields trapped in
minima of a complicated potential. We can then use well-known methods from
quantum field theory to calculate the stability of minima. This analysis is used
in Papers V and VI for the de Sitter and Minkowski vacua of the type IIB
model landscape introduced in the last chapter.

7.1 Tunnelling Between Vacua

We start this chapter by recalling various mechanisms of tunnelling. As noted
above, the moduli-fixing potential of string theory has many meta-stable false
vacua. If such a vacuum is accessed, it gives rise to, say, a four-dimensional
spacetime of a given geometry. The decay of such a spacetime proceeds by the
nucleation of a bubble of a lower energy phase. After the transition, spacetime
consists of three regions: a true vacuum region inside the bubble, a bubble
wall of some thickness and a surrounding false vacuum region.

It will often be energetically favourable for the new vacuum bubble to grow,
thus converting more and more of spacetime into the less energetic phase.1 It
follows that, even though the bubble nucleation is a localized process, the

1Since the potential energy is lower in the true vacuum, there is a gain in energy when the false

vacuum is replaced. On the other hand, the bubble wall has tension, and its potential energy

grows with its size. The energy cost associated with the growing wall depends on the tension

and the geometry of spacetime [CDL80].
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subsequent growth of the bubble can create very large patches of the new
phase, perhaps even substituting the false vacuum completely.

7.1.1 Instantons in the Flux Potential

There are two properties of the string theory vacuum that must be under-
stood in order to compute tunnelling probabilities. The first is the quantum
behaviour of the moduli fields. This quantifies how a field can tunnel through
a potential barrier. The second important feature is how the gravitational prop-
erties of de Sitter spacetime affect the fields. It can be shown that this also
results in a migration between vacua. We will discuss the two processes in
turn.

For ease of presentation, our description will focus on a theory with only
one field. The action is

S =
M2
p

2

∫
d4x
√−g

(
R− 1

2
∂μφ∂

μφ− V (φ)
)
, (7.1)

where V (φ) is a potential with two minima; one false, high-energy minimum
and one true minimum of lower energy. An example potential V (φ) is shown
in figure 7.1. We will mainly focus on positive definite potentials, that are
similar to the no-scale potential induced by fluxes in type IIB string theory.

The Coleman–DeLuccia Instanton
To calculate the transition probability out of a vacuum in quantum field theory,
we should compute the path integral over all paths that take us to the other side
of the potential barriers surrounding the vacuum. Clearly, this is a formidable
task — even for the simple potential of figure 7.1 there are infinitely many
paths in field space that take us from one vacuum to the next. However, as
found by Coleman and collaborators [CC77, CDL80, CGM78, Col77], there is
a considerable simplification in the semiclassical limit, where it can be shown
that one path dominates the transition. This path goes between the basins of
attraction of the two vacua and extremizes the Euclidean action.2 We find the
path by solving the Euclidean equations of motion, subject to the appropriate
boundary conditions, i.e. that the field starts and ends its Euclidean evolution
with zero velocity in the basins of attraction of the two minima.

The solution to the Euclidean equations of motion is a field and metric
configuration known as an instanton. The Euclidean action SI of the instanton
determines the probability for the tunnelling process by [Col77]

Γ = Ae−(SI−SBG)/� [1 +O(�)] . (7.2)

2The Euclidean action is the analytic continuation of the standard action to imaginary time. It

is not bounded from below, and we should therefore look for its saddle points, not its minima,

to find instantons [CGM78].
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Figure 7.1: This figure shows a potential V (φ) with one false minimum, at φF , and

one true vacuum, at φT . There is also a local maximum at φHM , which is relevant for

the Hawking–Moss instanton. The two dots represent the endpoints of an Coleman–

DeLuccia instanton, that mediates transitions between the minima. For theories with

gravity, tunnelling is possible in both directions.

Here SBG is a background term, given by the Euclidean action of the vacuum
that we tunnel from. Interestingly, in a theory with gravity, tunnelling is al-
lowed in both directions between the true and false vacua [LW87], although
the downwards transition to the true vacuum is more probable.3 In the fol-
lowing, we will not discuss the prefactor A, which encodes the first quantum
corrections to the rate. We will also set � to one and focus on transitions from
the false to the true vacuum. We will refer to this solution as the Coleman–
DeLuccia instanton

The Euclidean equations of motion are the equations of a scalar field cou-
pled to a dynamical metric. For general metrics, they are prohibitively difficult
to solve. On the other hand, it is tempting to assume that bubble spacetimes
which preserve a lot of symmetry give the highest transition probabilities, and
this has also been proved in flat spacetimes [CGM78]. There is no proof that
this is the case when spacetime is curved, but we will assume so in the fol-
lowing. If this assumption is false, the instantons computed here will only put
a lower bound on the transition rate.

3The relative probability for the processes is determined by the difference in background terms

in the true and false vacua SBG[φT/F ] ∼ 1/V (φT/F ) [LW87].
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With this assumption, there are limits where the problem can be solved
analytically. One example of this is the thin wall limit. Here, the bubble wall,
defined as the region in spacetime where the field φ changes its value from
φi ≈ φF to φf ≈ φT (cf. figure 7.1), is very thin in comparison with the
radius at which the bubble is nucleated.

In the thin wall limit, one can calculate the transition probability exactly.
The tension of the bubble wall, σ, is defined by

σ =
∫ φT

φF

dφ
√

2 (V0(φ)− V0(φF )). (7.3)

Here V0 is a function that is identical to V except in the vicinity of φF , where
the potential is deformed such that V0(φT ) = V0(φF ) and dV0/dφ(φT,F ) =
0 [CDL80]. Using this, one can show that, in the regime where gravitational
effects are small

SI − SBG =
27π2σ4

2 (V (φF )− V (φT ))3
. (7.4)

The gravitational corrections to the thin wall actions have also been computed
[Par83]. The simplicity of the thin wall formula (7.4) renders it very useful
for estimating the transition rates between vacua. We will return to discuss its
relevance for the landscape, and in particular our type IIB landscape model
introduced in chapter 6. Outside the thin wall limit, one can use numerical
methods to compute the instantons, as discussed in Paper V.

The Hawking–Moss Instanton
The endpoints of a Coleman–DeLuccia instanton are represented by red dots
in figure 7.1. For field theories coupled to gravity, the location of these end-
points can be anywhere along the barrier sides. In fact, the endpoints could
even merge at the top of the potential, since this is also a solution to the
Euclidean equations of motion. For concreteness we reproduce these equa-
tions here, for the O(4) invariant case with Euclidean metric ds2E = d2χ +
r2(χ)dΩ2

3:

ṙ2 = 1 + ε2r2
(

1
2
φ̇2 − V

)
,

φ̈+
3ṙ
r
φ̇ =

∂V

∂φ
.

(7.5)

Here a dot denotes differentiation with respect to the Euclidean time χ, and ε
is a numerical constant. These equations can clearly be solved when the field
sits at one of the extrema of the potential. The solution when the field sits at
the maximum is known as the Hawking–Moss instanton [HM82].
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When the moduli reach the maximum of the potential (at φ = φHM ) they
can subsequently roll to either of the two vacua, thus mediating a transition
between the vacua. The action for the process is given by

SI − SBG =
8π2

3ε2

(
− 1
V (φHM )

+
1

V (φF )

)
. (7.6)

One possible interpretation of the Hawking–Moss instanton relies on the
stochastic behaviour of a field in de Sitter spacetime [Sta86]. Since de Sitter
vacua have a temperature [GH77], there can be a thermal excitation of the
moduli, allowing them to random walk up the potential V .

The spacetime realization of this process is that the field in a horizon-sized
patch fluctuates to the local maximum of the potential, and subsequently re-
laxes to the true vacuum. The process divides spacetime into a horizon-sized
bubble surrounded by a false vacuum region. There is no sharp bubble wall,
describing the transition of the field from the false to the true vacuum value.
On the contrary, most of the bubble is ’wall-like’ since the field has not set-
tled into one the true vacuum. In this way, one can view the Hawking–Moss
instanton as an extremely thick-walled limit of the Coleman–deLuccia instan-
ton.

Depending on the shape of the potential and the strength of the gravita-
tional effects, either the Hawking–Moss or the Coleman–DeLuccia instan-
ton dominates the decay. Loosely speaking, if the potential barrier is low and
wide, stochastic effects could easily lift the field to the local maximum, and
the Hawking–Moss instanton dominates. On the other hand, if the potential
barrier is narrow and high, tunnelling through the barrier will be easier. The
transition probability is then given by the Coleman–DeLuccia instanton.4

Instantons in a Model Landscape
We now turn to the construction of instantons in the sequences of minima of
the type IIB no-scale potential discussed in chapter 6. This analysis is per-
formed in Paper V, to which we refer for details. In this paper, the generic
topographic features of the series are quantified. Simple scaling arguments
imply that the potential barriers are broad, and therefore that most instantons
are thick-walled. This is also confirmed in the example of the Mirror Quintic,
where some instantons are constructed numerically.

An important part of the construction of instantons in this toy landscape,
and the landscape as a whole, is that the field space is multidimensional. Thus,
we should look for saddle points to the Euclidean action describing several
scalar fields coupled to gravity. Furthermore, the geometry of the field space
is, as we discussed in chapters 3 and 5, rather complicated (e.g. it is not flat).
The multidimensionality and non-trivial geometry imply that it is even more
difficult to find the instanton path that connects two vacua, e.g. because we

4A quantitative formulation of these conditions can be found in [HW05], see also Paper V.
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now have to check all possible directions in field space. Several paths that
yield finite probabilities for tunnelling are possible, although it is plausible
that one instanton will give the dominant contribution.

How can we find the dominant instanton? Checking all possible paths for
instantons is clearly impossible, so we need a method for finding the path
that is most relevant. In this analysis, there is one very useful analogue for
the instanton problem. As first noted in [Col77], the field equation in (7.5) is
equivalent to the equation of motion for a particle moving in the upside-down
potential −V , subject to a friction force proportional to ṙ/r. Similarly, for
a multidimensional landscape, we obtain the equations of motion for several
coupled particles, moving in the upside-down potential under friction.

In Paper V, this analogue results in a method for constructing (approximate)
instantons. It is observed that most directions of the upside-down potential do
not allow instanton paths, e.g. because of steep slopes that kick the particle
away to infinity instead of allowing it to come to rest near the new vacuum.5

Taking these restrictions into account, suggests that instanton paths will follow
e.g. ridges in the upside-down potential. It also points to the importance of sad-
dle points in the potential, since these can harbor Hawking–Moss instantons.
The main result is that there will be a family of effectively one-dimensional
instantons (i.e. one field tunnels while the others remain close to their min-
ima) associated with such saddle points. Some numerical examples of such
instantons are also computed in Paper V. The instantons are thick-walled, as
expected, and the actions for the Coleman–DeLuccia and Hawking–Moss in-
stantons are of the same order of magnitude. However, since the transition
probability depends exponentially on the action, it is clear that the Coleman–
DeLuccia instanton will be the dominant decay mode. In the large volume
limit, the transition rates are exponentially suppressed.

7.1.2 Domain Walls and Branes

In addition to the expanding bubbles described in the last section, we could
also imagine spacetimes where two vacuum phases are separated by a static
domain wall. For example, supersymmetric vacua are stable against vacuum
decay [DT77, Wit81, Hul83], but can coexist if separated by a BPS domain
wall (see [CS97] for a review). These BPS walls correspond to Coleman–
DeLuccia bubbles of infinite radius [CGR93], and the stability of the vacua
can be understood from the fact that it takes infinite energy to nucleate a bub-
ble of infinite radius.

In string theory compactifications with background fluxes, it is natural to
interpret the BPS domain walls as BPS configurations of D- or NS-branes
[GVW00]. As reviewed in section 2.4 D5(NS5)-branes are charged under
RR(NS) three-form fluxes. Type IIB supersymmetric vacua with different flux

5This reasoning is inspired by Coleman’s undershoot/overshoot analysis of one-dimensional

instantons, see [Col77].
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configurations can then be separated by five-brane domain walls, constructed
from branes that wrap special Lagrangian three-cycles of the internal mani-
fold (see section 2.4). The two non-compact directions of the five-brane yield
a static BPS domain wall, whose tension is determined by the change in super-
potential between the vacua [GVW00]. This is very similar to the mass of the
BPS black holes, discussed in chapter 4, which is determined by the central
charge/superpotential of N = 2 supergravity.

The BPS domain walls are interesting for several reasons. Four-dimensional
domain wall spacetimes can be constructed by BPS domain walls between
Minkowski and anti de Sitter vacua [CDG+06, CGR93, CS97]. Furthermore,
near-BPS domain walls can be used to estimate the stability of vacua with a
small breaking of supersymmetry [CDG+06]. For example, in the type IIB
flux landscape, there are vacua where supersymmetry is only broken by the
subleading effects stabilizing Kähler moduli. The stability of these vacua can
be estimated by this kind of analysis, as further discussed in Paper V.

In addition, the bubble walls constructed in Paper V separate vacua with
different fluxes as well, so it is natural to interpret them as configurations of
five-branes with badly broken supersymmetry. An indication that this might be
the case is that the scale of the tension for the BPS domain and bubble walls
are similar. A problem with this interpretation is, however, that the bubble
walls in the model can be very thick, and it is not immediately clear how
this should be interpreted in terms of the brane configurations. This is further
discussed in Paper V.

Alternatively, one can try to construct the bubble walls directly from five-
branes, as proposed in [FMRSW01, BP00, FLW03]. The transition from one
vacuum to another is then interpreted as the nucleation of a charged brane bub-
ble. The process is similar to the neutralization of an electromagnetic field by
the creation of electron-positron-pairs. Specifically, a non-zero background
four-form flux in four dimensions can be shielded by the nucleation of a
charged membrane [BT88]. In string theory the charged membrane can be
identified with the non-compact part of a wrapped five-brane, as suggested in
[FMRSW01, BP00, FLW03]. The transition probability can then be estimated
using equation (7.2). This process is natural from a string theory perspective,
but it is not completely clear how to embed it in a supergravity picture, as
discussed in e.g. [dA06, dA07].

7.2 Inflation

As mentioned in the last chapter, inflation provides a neat explanation for the
homogeneity and isotropy of our universe.6 There are different ways of ob-
taining inflation, the simplest being to provide the universe with a positive

6Inflation also solves the flatness and monopole problems and provides seeds for structure for-

mation. See [Gut04, LR99] for reviews on inflation and inflationary models.
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cosmological constant. Any spacetime with a positive cosmological constant
inflates, i.e. expands at an exponential rate exp(Ht). Here the Hubble param-
eter H is given by the cosmological constant Λ as H ∝ √Λ. Thus, the false
vacua discussed above, that have positive Λ = V (φF ), are inflating.

We mentioned above that the true vacuum bubble that is created as the field
tunnels out of the false vacuum, will grow and might eventually replace the
false vacuum phase. This conclusion must be revised in light of the expansion
of the resulting spacetimes. Recall that the vacuum energy is decreased as the
field tunnels down to the true vacuum. Consequently, the Hubble parameter
of the true vacuum will be smaller than the false vacuum, and the false vac-
uum spacetime grows faster than the true vacuum spacetime. It seems that a
complete transition can never occur.

What might change this picture is taking several tunnelling events into ac-
count. As the false vacuum phase expands, new true vacuum bubbles can form.
Since all these bubbles grow, they might eventually cover the whole false-
vacuum phase. After a little thought, one can convince oneself that this will
happen if the decay rate is larger than the expansion rate, as measured by the
false vacuum Hubble parameter.7 If this condition is satisfied, the bubbles will
expand, overlap and percolate, thus replacing the false vacuum completely.

If instead the decay rate is smaller than the expansion rate, a part of the
false vacuum phase prevails. It continues to inflate and produce new true
vacuum bubbles. In a more complicated potential with many different vacua
where gravitational effects also allow ’upward’ transitions, tunnelling gradu-
ally populates more and more vacua. This process is known as eternal inflation
[Lin86b, Lin86a, Vil83], and results in a fractal multiverse composed of bub-
bles within bubbles, as shown in figure 7.2.8 Since the process goes on forever,
all vacua of the potential are eventually realized and the dependence on initial
conditions is washed away.

Eternal inflation is very interesting from the point of view of the landscape.
In section 6.2 of the preceding chapter we discussed that the vastness of the
string theory landscape allows statistical and anthropic reasoning about the
physical properties of our world. There is one important underlying assump-
tion for this reasoning, namely that the various vacua are actually realized. To
achieve this, a mechanism that populates the vacua of the landscape is needed.
As we saw in the preceding paragraph, eternal inflation provides such a mech-
anism.

7To make this conclusion more precise one should compare the physical volumes of the false

and true vacuum phases [TWW92]. This comparison shows that a false vacuum region remains

if the decay probability per physical time and volume is small compared toH4
F .

8Note that inflation is only eternal on a global scale. Locally, tunnelling and the subsequent

relaxation of the field to the true vacuum will end inflation, and possibly produce the initial

conditions for a Big Bang scenario. See [Agu07, Gut07, Win08] for introductions to eternal

inflation.
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Figure 7.2: The vacua in the string theory landscape could result in a multiverse com-

posed of metastable bubble universes. The bubbles correspond to different vacua, and

have different four-dimensional physics. The arrows indicate that the bubbles are ex-

panding.

As showed in Paper V, and mentioned in the previous section, the transition
probabilities between the minima in the monodromy sequences are typically
exponentially suppressed. In particular, the tunnelling rate is much smaller
than the expansion rate of the false vacuum. Therefore, the landscape model
leads to eternal inflation, and a multiverse where the various minima are re-
alized in different spatiotemporal regions. The implications and limitations of
this conclusion is further discussed in Paper V.

Although generic transitions in the monodromy sequences are slow, there
might be regions in this toy landscape where faster transitions are allowed. For
example, in Paper V it is argued that series of minima near a conifold locus,
can be closer to each other than minima in generic series. It could thus be the
case that a transition between minima near the conifold results in percolation
and a total transition to the new phase.

This implies, as noted in Paper III and thoroughly investigated in [CD08b],
that certain monodromy sequences could provide settings for chain inflation
[FLS06, FS05, CD08b]. Chain inflation is a model where the inflationary ex-
pansion of the universe is sourced by a scalar field tunnelling through a series
consecutive vacua. Since the field gets temporarily stuck in every vacuum,
the transition down the potential is slow, giving the universe enough time to
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inflate. On the other hand, if the downwards tunnelling is not too slow, per-
colation will occur at every step of the chain. Long chains of vacua make
a balancing of these conditions possible, and the result is a homogeneneous
universe (given by the state at the bottom of the chain of vacua).

As emphasized in [FLS06] the fast downward transition implies that chain
inflation is a dynamical model that selects a particular final state.9 This is very
different from the eternal inflation scenario, where several states coexist at
once. However, if a landscape, such as the monodromy landscape discussed
in Papers III-V, allows both slow and fast transitions, it is plausible that chain
inflation does not completely remove the multiverse. The conclusions depend
on where in the landscape the cosmological evolution starts. If it starts at the
top of a suitable chain, chain inflation might produce a homogeneous uni-
verse. For any other initial condition, eternal inflating phases will be present.
Chain inflation can occur locally, whereas the global evolution is determined
by eternal inflation, and hence results in a multiverse.

Before we leave this discussion of inflation in landscape models,10 which
might have seemed rather academic to the reader, we note that there could ac-
tually be observational ways of separating between eternal and chain inflation.
If our universe is described by a vacuum in the string landscape, both eternal
and chain inflation could give rise to observable cosmological signatures. As
an example, it is plausible that the bubbles in an eternally inflating multiverse
collide. If our universe has undergone such a collision, there might be imprints
of it left in the cosmic background radiation [AJS07, AJ07].11 Similarly, if the
universe is the result of a chain inflation cascade, there will be extra sources
for cosmological perturbations (in addition to the quantum fluctuations that
are always present) [CD08b]. This might yield other detectable signals in the
cosmic background radiation [CD08a].

7.2.1 An Obstacle for Tunnelling

So far we have shown that the monodromy model for the landscape harbors
instantons mediating transitions between vacua, allows statistical reasoning
based on eternal inflation, and possibly also chain inflation. It is interesting
to see if these features prevail in the sector fixed by fluxes in the type IIB
landscape. To investigate if this is the case, we need to consider both open
string moduli, associated with D-branes, and Kähler moduli. In the real string
theory landscape, all these moduli are present, and we need to account for

9This has been debated, since fast downward tunnelling does not necessarily exclude upwards

transitions or other less probable transitions out of the chain. Such transitions could lead to

eternally inflating scenarios.
10We have only mentioned some of the many aspects of inflation in the landscape. See e.g.

[MS08, Dan05] for more complete treatments.
11This is a topic under current research, see e.g. [AJT08, FKNS09].
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their dynamics under a tunnelling that changes the flux configuration of the
vacuum.

In this section we will discuss the Kähler moduli. As noted above, the clas-
sical potential induced by background fluxes (see equation (5.20) on page 84)
does not fix the Kähler moduli. Note however, that the potential scales with
the compactification volume V . Since the volume is determined by the Käh-
ler moduli, it is clear that these moduli will be affected by tunnelling events
when the flux, and thereby the potential, changes. Therefore, to find instantons
in the type IIB landscape, we must consider the transition of a coupled system
of complex and Kähler moduli in the quantum corrected potential12 defined
on the total moduli space.13

This problem is investigated in Paper VI, which focuses on the transition
between different flux configurations. These vacua are connected by a bar-
rier in complex moduli space, possibly generated by a monodromy.14 Now, as
the complex structure moduli tunnel out of the false vacuum, the potential for
the Kähler volume modulus changes, and it starts rolling. Importantly, since
this is an instanton process, the volume modulus moves according to its Eu-
clidean equations of motion, and rolls in the upside-down potential. As shown
in Paper VI, the upside-down potential is unbounded from below, leading to
an ever-increasing kinetic energy of the volume modulus. Thus, not only will
the instanton destabilize the volume modulus, thereby not connecting the two
vacua, it will also result in a curvature singularity.15

In fact, this is very similar to the dilatonic domain wall spacetimes studied
in supergravity theories by Cvetic and collaborators [CS95, CY95]. These are
theories where one field is dilatonic, i.e. it is light and couples to the other
fields of the theory, thereby modulating the strength by which these other
fields are fixed. As shown by these authors, domain wall spacetimes with dila-
tonic fields will be singular. This holds for the domain walls associated with
tunnelling bubbles, but also for spacetimes with static domain walls. Thus the
spacetime configuration that a tunnelling bubble would relax to, i.e. two reg-
ular vacuum regions separated by a domain wall, does not exist. What might
be possible is a configuration where there is a singularity in the region on one
side of the wall.

Paper VI also discusses possible tunings of the potential that could result in
regular instantons and domain walls, and concludes that there could be regions

12The corrections to the classical potential were discussed in section 6.1.
13Recall that the monodromy model already is multidimensional, and the inclusion of Kähler

moduli just adds more directions to the field space of this model. Thus, nothing conceptual

changes when the Kähler moduli are added. Instantons are still found by solving the Euclidean

equations of motion, as described above and in Paper V.
14We could also consider domain walls associated to the nucleation of a D-brane. What is im-

portant for the conclusions is the tension of the spacetime wall between the two phases, which

is roughly the same in both pictures.
15Whether these singular instantons have infinite actions, and thereby remove one decay channel

out of the false vacuum is still an open question. See Paper VI for a further discussion.
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in the type IIB landscape where tunnelling proceeds according to the above
mechanisms. Although such regions would be exceptional, they would be very
interesting to study. Another interesting possibility is to relax the symmetries
of the four-dimensional spacetimes. The construction of instantons and space-
times that preserve less symmetry is very difficult, but might be necessary to
understand the mechanism that populates the string landscape.

To conclude we note that the disparate scales fixing the complex structure
moduli and the Kähler moduli pose a severe problem for the population of the
type IIB landscape. Recall that the vastness of the landscape is a consequence
of the many different flux configurations. Moreover, important features of the
vacua, such as their cosmological constant, are primarily determined by the
fluxes. Thus, to move between most vacua, flux-changing transitions are nec-
essary.16 Although the required processes can be found and understood in toy
models, they are prohibitively difficult to embed in the full landscape. Whether
this is an artifact of the approximate methods we use remains to be shown.
Indeed, the problems found here might give clues to how a more stringy de-
scription of the landscape could be constructed.

16Note that, even though the low-energy transitions associated with Kähler or open string moduli

are under better control, they could never change the flux-fixed properties of a vacuum.
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8. Epilogue

In this thesis, we have studied some aspects of the rich field of research that
is string theory. Our attention has been focused on different types of four-
dimensional effective field theories, that arise as compactified, low-energy ap-
proximations to the theory. These effective field theories, or supergravities,
describe universes that are similar, but often simpler, than our own.

We have seen that by adding branes to the supergravity solution, four-
dimensional black holes can be described. Some properties of these black
holes can be computed using topological string theories and matrix mod-
els, and we have studied this correspondence in some detail. Furthermore, we
have studied how stable and metastable theories are obtained by compactified
supergravities with background fluxes. This results in the string theory land-
scape, which is to a large extent uncharted territory. By investigating the effect
of period monodromies we started to draw a map of a corner of this landscape.
This map showed that there are long sequences of minima, connected by con-
tinuous potential barriers. These series can also include minima in the moduli
spaces of different compactification manifolds, indicating that the cosmolog-
ical evolution of a universe could include topological transitions of the extra
dimensions. The monodromies also helped us investigate the stability of the
vacua in this part of the landscape through the construction of semi-classical
instantons. These instantons compute the probability for transitions between
various vacua in the landscape. We further connected this discussion of tran-
sitions to eternal inflation and the multiverse.

During the course of these investigations, we have learned more about string
theory, but new questions have also emerged. String theory is still far from
being complete, and many new discoveries and surprises lie ahead, before
we know if it provides a useful description of our world. In the forthcoming
years, input from cosmological observations and particle physics experiments
will hopefully provide tests of the theory, and certainly serve as inspiration for
further theoretical investigations.
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Summary in Swedish
Aspekter på kompaktifieringar av strängteori

Vad är egentligen poängen med strängteori? Jo, som med all grundforskning
i fysik så är motivet för forskning inom strängteori att vi vill hitta en bättre
beskrivning av världen. Denna beskrivning, eller modell, ska kunna förklara
våra observationer, och helst vara baserad på så enkla principer som möjligt,
så att vi kan förstå den.

Vi har idag väl testade teorier som beskriver nästan allt i världen. Med hjälp
av stora partikelacceleratorer och detektorer tränger vi djupare in i mikrokos-
mos, och undersöker de partiklar som bygger upp materien, och de krafter som
påverkar dessa. Våra observationer beskrivs mycket väl av kvantmekaniska
teorier1 vilka sammanfattas i Standardmodellen2 för partikelfysik.

Vidare låter avancerade teleskop oss se längre och längre ut i världsrymden,
och därmed kartlägga de stjärnor, galaxer och svarta hål3 som finns därute.
Dessa observationer kan vi förklara med hjälp av Einsteins allmänna rela-
tivitetsteori, som beskriver gravitionen genom att göra tiden och rummet till
dynamiska objekt, som kröks av sitt materieinnehåll. Med den allmänna rela-
tivitetsteorin kan vi till och med förstå hur vårt universum har utvecklats över
årmiljarderna sen Big Bang.

Vi har alltså jättebra teorier som beskriver såväl de små, lätta och snab-
ba partiklarna i mikrokosmos, som de stora, tunga objekten i makrokosmos.
Behöver vi något mer? Ja, det visar sig faktiskt att vårt universum också in-
nehåller objekt som är både små och tunga, även om vi inte kan återskapa
dessa objekt i experiment som vi kan göra här på jorden. I de svarta hål som
finns idag och vid tiden för Big Bang trängs en enorm mängd materia i en
mycket liten rymd. För att beskriva detta krävs en teori som tar hänsyn både
till rumtidens dynamik och kvantmekaniska effekter.

Det är här strängarna kommer in i bilden.

1Dessa teorier kallas kvantfältteorier och beskriver materia och krafter med hjälp av fält. Fälten

följer kvantmekanikens lagar och excitationer i fälten ser ut som punktformiga partiklar. En

viktig egenskap hos teorierna är att krafter beskrivs som ett utbyte av partiklar.
2Standardmodellen beskriver hur kvarkar, elektroner och andra partiklar växelverkar via tre

fundamentala krafter: den elektromagnetiska, den svaga och den starka kärnkraften.
3Svarta hål är regioner med enormt stark gravitation som bildas då riktigt tunga stjärnor dör.
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Figur: Grundidén i strängteori är att de till synes punktformiga partiklar som bygger

upp vår värld egentligen är endimensionella strängar. Strängarna är dock så små att vi

inte kan se deras utsträckning.

Strängteori och dess kompaktifieringar

Idén bakom strängteorin är väldigt enkel. I de kvantmekaniska teorierna ser
vi partiklar som punktformiga, d.v.s. utan någon som helst utsträckning. Vad
händer om de här partiklarna egentligen är små strängar, som visas i figuren
ovan? Jo, till skillnad från den punktformiga partikeln kan en endimensionell
sträng svänga och vibrera. Om nu strängen är pytteliten, så kommer vi inte
kunna se att strängen har en längd och att den vibrerar. I stället kommer vi
uppfatta strängen som en punktformig partikel med vissa egenskaper. Dessa
egenskaper bestäms av hur strängen svänger, precis som olika svängningar
hos en gitarrsträng ger upphov till olika toner. En typ av sträng som svänger
på en massa olika sätt kan på så sätt ge upphov till alla partiklar vi hittills har
hittat (och många, många fler som vi inte har hittat ännu).

Förbluffande nog, så fungerar det här enkla idén väldigt bra. Bland alla par-
tiklar som strängen ger upphov till finns en som har precis de egenskaper som
krävs för att beskriva gravitationen på ett kvantmekaniskt sätt. Det visar sig
också att om vi studerar hur strängteorin beter sig vid låga energier, så repro-
ducerar den Einsteins relativitetsteori. Från en kvantmekanisk beskrivning av
en sträng får vi de lagar som beskriver dynamiken hos hela universum!

För att också reproducera partikelfysikens Standardmodell från strängte-
ori, så måste man studera strängarna lite närmare. Detta leder till en hel del
överaskningar. För det första så visar det sig att strängteori inte bara innehåller
strängar, utan även objekt som kallas bran.4 Vidare så måste teorin också vara
supersymmetrisk för att kunna beskriva materiepartiklar. Supersymmetri är
inte något som vi har observerat i världen, men det är möjligt att en sån
symmetri finns vid riktigt höga energier. Det finns fem supersymmetriska
strängteorier som är matematiskt välfungerande. De fem teorierna är dock
inte oberoende av varandra, utan verkar i viss mån vara olika beskrivningar av
samma sak.5

4Bran är objekt av olika dimensioner som är laddade under fält som finns i strängteori (precis

som en elektron är laddad under det elektromagnetiska fältet). Namnet bran kommer från ordet

membran, som betecknar ett tvådimensionellt objekt.
5Lite mer precist, så är de fem strängteorierna länkade till varandra via olika dualiteter. Detta

medför att man tror att strängteorierna bara är approximationer till en mer fundamental teori,

som man kallar M-teori. Vad denna fundamentala teori är för något är lika okänt som orsaken

till att den kallas just M-teori.
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Den mest intressanta aspekten är dock att strängteorin faktiskt ger en förut-
sägelse för hur många dimensioner världen har. Detta är en stor skillnad mot
exempelvis relativitetsteorin, som fungerar lika bra i vilken dimension som
helst. Tyvärr är det här inte bara intressant, utan också problematiskt. För att
strängteorin ska vara matematiskt välfungerande, måste rumtiden nämligen
vara tiodimensionell.6

Detta är ju en anledning så god som någon att kasta bort teorin, eftersom
alla våra observationer tyder på att vårt universum har tre rumsdimensioner
(upp/ned, bak/fram, höger/vänster) och en tidsdimension. Fler dimensioner
kan vi knappt tänka oss. Men under fysikens utveckling har vi fått lära oss
att acceptera ett antal otänkbara fenomen, och vi vill därför inte dra några
förhastade slutsatser. En tiodimensionell teori skulle ju kunna beskriva vår
värld, om vi bara kunde förklara hur de extra dimensionerna blir osynliga för
oss. Vi behöver alltså ett sätt att gömma dimensioner, och ett sånt sätt är att
helt enkelt rulla ihop dem.7

Denna process kallas kompaktifiering och kan förstås på följande sätt.
Pappret som den här texten är skriven på har två dimensioner, upp/ned och
höger/vänster. En myra som kryper på pappret har alltså två dimensioner
att röra sig i. Vi kan nu rulla ihop pappret, så att det bildar en cylinder.
Den hoprullade dimensionen blir då som en cirkel och om myran springer i
denna riktning så kommer den så småningom tillbaka till den punkt där den
började. Detta är vad som menas med en kompakt dimension. Rullar vi ihop
pappret riktigt hårt blir den kompakta dimensionen mycket liten. Till slut
blir den så liten att myran efter ett enda myrsteg i den kompakta riktningen
direkt kommer tillbaka till startpunkten. Det är som om pappret vore en
endimensionell linje som myran balanserar på.

På samma sätt kan man tänka sig att en tiodimensionell teori, såsom
strängteori, kan användas för att beskriva vår värld. Vi rullar ihop sex av
de tio dimensionerna riktigt hårt. Om vi antar att de extra dimensionerna är
mycket mindre än ett myrsteg så kommer de inte märkas av så värst mycket
i mikrokosmos heller, åtminstone inte så länge vi tittar på lågenergetiska
processer.8

Vi ser alltså att en kompaktifierad tiodimensionell strängteori kan beskriva
ett fyrdimensionellt universum som vårt eget. Men den kan beskriva så mycket
mer än det! Sex dimensioner kan kompaktifieras på en mängd olika sätt, som

6M-teorin, som binder samman de olika strängteorierna, kräver dock en dimension till, så att

det blir elva dimensioner totalt. Detta är också den högsta dimension där supersymmetri och

relativitetsteori kan kombineras.
7Ett annat populärt alternativ är att tänka sig att vår värld beskrivs av ett tredimensionellt bran i

en högredimensionell rymd. Om vi sitter fast på branet kan de extra dimensionerna vara riktigt

stora utan att vi märker dem.
8Det som blir skillnaden är att en teori med extra dimensioner ger upphov till nya, tunga par-

tiklar, som skulle kunna detekteras vid höga energier. Varje fundamental partikel i teorin kan

nämligen snurra runt den kompakta dimensionen. Rörelseenrgin hos den snurrande partikeln

tolkas som en massa i den lägredimensionella teorin.
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svarar mot rum av olika former och storlekar. I de här rummen kan det också
finnas bran och så kallade flöden.9 Varje sådan uppsättning av bran och flöden
har en viss potentiell energi, och de extra dimensionerna kommer vrida och
vända på sig så att denna energi blir så liten som möjligt, precis som en kula
på ett lutande plan kommer rulla nedåt för att minimera sin potentiella energi.

Vi kan tänka oss den här potentiella energin som ett landskap, med många
berg och dalar. Varje dal i landskapet svarar mot en ny fyrdimensionell modell,
som beskriver ett nytt universum med nya fysikaliska lagar. Även egenskaper-
na hos själva den fyrdimensionella rumtiden kan skilja mellan de kompakti-
fierade teorierna i de olika dalarna. Till skillnad från de landskap vi är vana
vid, har strängteorins landskap många fler dimensioner10 men fysiken funger-
ar på samma sätt: liksom kulan på det lutande planet, kommer en kompakti-
fierad teori rulla ner mot dalarna i landskapet. Vilken av alla dessa dalar som
svarar mot vårt universum är än så länge en öppen fråga. Den stora mängden
dalar gör oss dock hoppfulla om att minst en av dem kommer att beskriva vår
värld.

Det visar sig också att även de teorier i landskapet som inte beskriver vårt
universum är av intresse. Från kvantmekaniken har vi nämligen lärt oss att po-
tentialbarriärer inte är omöjliga att överbrygga eller tunnla igenom. Det finns
alltså en liten chans att ett universum som finns i en dal strängteorilandskapet,
tunnlar igenom ett bergsmassiv och rullar ut i en annan dal, där den fyrdimen-
sionella fysiken ser annorlunda ut. För en invånare i detta universum skulle
detta vara ganska obehagligt — helt plötsligt skulle till exempel alla atomer
kunna bli instabila, därför att den elektromagnetiska kraftens styrka är annor-
lunda i den nya dalen. Det är därför intressant att undersöka hur en sån här
tunnlingsprocess skulle se ut, och hur ofta den sker.

För det första kan man konstatera att ett helt universum inte skulle tunnla
samtidigt. Istället skulle en liten bubbla bildas någonstans. Den här bubblan
skulle utvidga sig, men den behöver inte helt ersätta det gamla universumet.11

Inuti bubblan finns dock ett helt nytt universum, som kan expandera och så
småningom kanske fyllas av stjärnor och galaxer. Själva tunnlingen skulle
i det nya universumet faktiskt kunna vara ganska likt en Big Bang. Genom
att noggrannt studera det landskap som strängteorins kompaktifieringar ger
upphov till, kan vi alltså hoppas lära oss mer om vårt universums födelse, och
kanske till och med vad som föregick vår värld.

9Vi använder ordet flöde för att beteckna högredimensionella generaliseringar av elektromag-

netiska fält, det vill säga sådana fält som skapas kring en magnet eller en antenn.
10Antalet dimensioner hos landskapet ges av antalet parametrar som behövs för att beskriva

formen på de extra dimensionerna. I en två-dimensionell analogi kan vi beskriva formen av

ett klot med en parameter — klotets diameter. Formen av en torus, till exempel en cykelslang,

beskrivs av två parametrar — slangens diameter och tjocklek.
11Huruvida detta gör att invånarna i det gamla universumet kan pusta ut, avgörs av ifall de bor

tillräckligt långt från den region där bubblan bildas.
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Här är vi nu. Bygget av strängteorin är långt ifrån färdigt, och en del skulle
nog hävda att teorin alltmer börjar likna ett kråkslott, om än stående på en
stabil och enkel grund. För att undersöka vad som faktiskt är relevant i teorin,
och vad vi behöver för att beskriva vår värld, räcker det inte med ord. Vi måste
använda den kraftfulla matematiska formalism som är teorins stomme. Med
hjälp av denna kan vi undersöka olika aspekter av teorin, och om de verkar
rimliga.

Denna avhandling handlar just om olika aspekter av strängteorins
kompaktifieringar, och de fyrdimensionella teorier vi får därifrån. Mer
specifikt studeras kompaktifieringar av den så kallade typ IIB-strängteorin,
eller snarare av denna teoris approximation vid låga energier, som kallas typ
IIB-supergravitation. Vi undersöker hur kompaktifierade bran ger upphov till
fyrdimensionella svarta hål i artikel I, och hur vissa egenskaper hos dessa
svarta hål kan beräknas. I artikel II kontrollerar vi om sådana svarta hål gör
kompaktifieringar med flöden instabila, och på så sätt skulle kunna skynda
på skapandet av nya universa. Artiklarna III och IV kartlägger en specifik
del av strängteorilandskapet och upptäcker långa serier av sammanlänkade
dalar. Detta används sen i artikel V och VI för att beräkna sannolikheten för
tunnling i denna region, och huruvida ett multiversum kan skapas.

Gemensamt för alla dessa artiklar är att de ger upphov till minst lika många
frågor som svar. Strängteorin, och dess landskap, är fortfarande fullt av out-
forskade områden. För varje ny expedition in i den outforskade terrängen får
vi lite mer information. Allt detta ingår sedan i den beskrivning strängteori ger
av världen.
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