
����
����	
�������
�����	����
������
����

��������	
��������������������
�������������������
��
�
��������������
�������������������
�
������

�������	
������	�
��
���	�
����	��

�����
�����

����
������ �!
��"�
#$%�#����!�$!#���
��&�'�&�	&&��()��**�!#

����������	
������
��������������
����������	������������������
����
������
��������������
�������������������� ���!"���##$����!%&!"�'	�������������	'��	��	��	'
(���	�	���)�*��������
���	
�+��������	
��������
�,
�����)

��������

-������()��##$)�.
'�
����/�����������
�*�����/������)�0����
������������������
���)�Di�����
��	
�����������		����������

����������������������	��������������������������
�����������%%)��%���)�������)������123!3""�31�$�3�)

4���� ����� �������� �����
������ ����������� ��� ����������� �����
�� ����
�� �	
�����
��� �
� ���
������� �����'�����	
)� *���� ��5������ �����'��� ����	��� �
�� �		��� �
� ������� �����
� �	� �
����
����� �	
�����
��)�6�� '	���� 	
� 	
�� 	'� ��������	��� �������� �
� ���� ��������	
� �������
�����
'	���������'�����	
)� *��������	�� ���	���������� ������������ �	�����
����	'� ���� ��������	���
+����������������� ���	�)� .
�	����� �	������������
�������	�������� �	��������
��+������� ���
������� �����'���� ���� ��5������
���� +�� '����� ����� �	� �	���� ���� ���������� ����� 	'� ���� ������
�
���������������� '	��)�*���� �������������+����	
�� ����� '	�������� 3� ���������	����� 3��
�
�
����������� ��''���
�� ������ 	'� �
'�
���� ������ ����������� �����
�� �
� ���� ����'�����	
� ��	�������
���������	������'	�������)�*����������+	���''���
�����+��+�����	��
������		��'	���
��	�����	

	'����������������)
�������+�� ���
�	��+������
������
�� ���������	�����+����������	
��� �
'�
�������������������

3��
�	�
����5�����)�*�����5��������������''���
������	���)�.
�	
������������5�������	
���

�	�������	
����7���
����	�������+���������������	���	
���	����������3������������+�������7�)
*�����	�����	'��
��������
�����������
���������������������
������)�6���
��������������������������
�	�
����� �
������
���	'�����	��� '������������������������	
������������	�������	
� ������	'
���7����
���	���
�����	
����+��
��������������	���	
��
���������7�5����)�.
�����	�����������+�
����5������'	�����
���	
	����	���
�����	
����+��
����������	�������

�
����
���	
	����
�
���������)�*�����5��������	����������������������	
�����	���	
��
��+����
���	�����������
�
	��������	���	
)�/�����������	
��	�������	
��	������������
�����3������	
��	����������+����
���������	
�����
������

�
�����7���	���
������������''���)�6��������������������������	����
'	����������������
�����������
��
��	
�����	����	���
�����	
��	�	�	�����	'��������������)
/��	
�����+�����
��
+������
�������������������'�������	'����������	�����+��������	+������

�	��
'	���� ������	���+����� ����������
���� ���+��
����
����	
	�	
������� ��	+�+����� ���
�
�	�
��������	����
�����)�*����'���������
��������������8�������
�	�
�����	�
��������	���
�
����
������	'�������
'	������
�������)�6��
�+���+�����'�	��������
������������
���������
'	���	����
���	��
��������
����	
�+������'�������	�7������9������������
����:��	
���������	��
+������	�����	
���	����	�
����������	'��������	�
������������������)�6�����������	������	
�	'
�������	�
����������
�+������	'����	�
�������	���	
��
����	��������	
����
��''�������������7
+������������	�
���������������
����	�
����+��)�0�������������������	��������	�����7�'	��������

���������	���	
�+�����������������
��������
����	
�+������'�����������
�������+��������������
����5�����������������	��)

�������������������	��������������
���5�������������
���'�
�������	�����+�����	�
�����
�������
���

����������� ���
���	���������	
����������	� �!�"�##$ ��

��������������� ��%&$'()'
�

���� �������

;�(�����-������##$

.//<�!�"!3��!�

./=<�123!3""�31�$�3�
��
&
�
&��&��&����3!##"�$�9����&>>��
)7�)��>���	���?��
@��
&
�
&��&��&����3!##"�$:

To Anne

List of Papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Task Automata: Schedulability, Decidability and Undecidability.

Elena Fersman, Pavel Krcal, Paul Pettersson and Wang Yi. Journal of

Information and Computation, 205(8):1149–1172, 2007.
II R-automata. Parosh Aziz Abdulla, Pavel Krcal and Wang Yi. Techni-

cal Report 2008-016, Uppsala University 2008. A short version of this
paper appeared in CONCUR’08: Proceedings of the 19th International

Conference on Concurrency Theory, volume 5201 of Lecture Notes in

Computer Science, pages 67–81, Springer-Verlag, 2008.
III Sampled Semantics of Timed Automata. Parosh Aziz Abdulla, Pavel

Krcal and Wang Yi. Submitted to Journal of Logical Methods in Com-

puter Science. A preliminary version of this paper appeared in FoS-

SaCS’07: Proceedings of the 10th International Conference on Foun-

dations of Software Science and Computation Structures, volume 4423
of Lecture Notes in Computer Science, pages 2–16, Springer-Verlag,
2007.

IV Communicating Timed Automata: The More Synchronous, the

More Difficult to Verify. Pavel Krcal and Wang Yi. Technical Report
2006-006, Uppsala University 2006. A short version of this paper
appeared in CAV’06: Proceedings of the 18th International Conference

on Computer Aided Verification, volume 4144 of Lecture Notes in

Computer Science, pages 243–257, Springer-Verlag, 2006.

Comments on my Participation:

I I have shown the undecidability result, written most of the proofs and
the undecidability part, and proposed the definition of scheduling poli-
cies.

II I have suggested the model, participated in discussions, proved the re-
sults and written the paper.

III I have formulated the problem, participated in discussions, proved the
results and written the paper.

IV I have participated in discussions, formulated the problems, proved the
results and written the major parts of the paper.

Other Publications

• Universality of R-automata with Value Copying. Parosh Aziz Abdulla,
Pavel Krcal and Wang Yi. In INFINITY’08: Proceedings of the 10th Inter-

national Workshop on Verification of Infinite-State Systems, 2008, to ap-
pear.

• Multi-Processor Schedulability Analysis of Preemptive Real-Time

Tasks with Variable Execution Times. Pavel Krcal, Martin Stigge
and Wang Yi. In FORMATS’07: Proceedings of the 5th International

Conference on Formal Modelling and Analysis of Timed Systems,
volume 4763 of Lecture Notes in Computer Science, pages 274–289,
Springer-Verlag, 2007.

• Sampled Universality of Timed Automata. Parosh Aziz Abdulla, Pavel
Krcal and Wang Yi. In FoSSaCS’07: Proceedings of the 10th International

Conference on Foundations of Software Science and Computation Struc-

tures, volume 4423 of Lecture Notes in Computer Science, pages 2–16,
Springer-Verlag, 2007.

• On Sampled Semantics of Timed Systems. Pavel Krčál and Radek
Pelánek. In FSTTCS’05: Proceedings of the 25th International Conference

on Foundations of Software Technology and Theoretical Computer

Science, volume 3821 of Lecture Notes in Computer Science, pages
310–321, Springer-Verlag, 2005.

• Timed vs. Time-Triggered Automata. Pavel Krcal, Leonid Mokrushin,
P.S. Thiagarajan, and Wang Yi. In CONCUR’04: Proceedings of the 15th

International Conference on Concurrency Theory, volume 3170 of Lecture

Notes in Computer Science, pages 340–354, Springer-Verlag, 2004.
• Decidable and Undecidable Problems in Schedulability Analysis Us-

ing Timed Automata. Pavel Krcal and Wang Yi. In TACAS’04: Proceed-

ings of the 10th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, volume 2988 of Lecture Notes in

Computer Science, pages 236–250, Springer-Verlag, 2004.

Acknowledgements

First and foremost, I would like to thank my supervisor Wang Yi for all his
support, advises, and patience. I am especially grateful for the great deal of
freedom which I enjoyed, combined with encouragement in difficult moments.
Of equal importance for me was the atmosphere of trust which he maintained.

I would like to thank Parosh Abdulla for long discussions, patient listening
to my proof ideas, and his research enthusiasm. I am also grateful to Paul
Pettersson for various discussions and practical help.

I have spent one research month at National University of Singapore. I
thank P.S. Thiagarajan for inviting me there, Shaofa Yang for taking care of
the practical matters, and both of them for the exciting research I could take
part in.

My thanks and gratitude also belong to my undergraduate supervisor Luboš
Brim and other professors from the ParaDiSe laboratory at the Department
of Informatics, Masaryk University Brno, Czechia, who sent me to Sweden
perfectly prepared for graduate studies.

Two of my friends and colleagues, Radek Pelánek and Rafał Somla, sub-
stantially helped me with their direct, open, and precise feedback. I have
learned a lot from Radek by our collaboration during his visit in Uppsala and
numerous discussions in Brno. Rafał never rejected to listen to my ideas and
to take the effort of spotting their weak points.

Many thanks go to past and present members of our lunch group: David
Eklov, Olga Grinchtein, John Håkansson, Leonid Mokrushin, Guan Nan, Sven
Sandberg, Martin Stigge, and Simon Tschirner.

I received a lot of support from my friends in Uppsala who showed signif-
icantly greater interest in, e.g., skating, cooking, hiking, and classical music,
than abstract constructions of theoretical computer science. I really enjoyed
all things which we did together. Even though I cannot name all, I would like
to thank explicitly at least some: Vítek Kříž, Michiel van Lun, Jiří Novák,
Marian Novotný, Pavel Plevka, Josef Seibt, and the past and present members
of the whist group.

I thank Justin Pearson, Jonathan Cederberg, Daniel Ying and Anne Wuttke
for their help. Justin corrected my English in Part I, I am to be blamed for the
remaining mistakes and clumsy expressions. Jonathan translated my summary
to Swedish and Daniel helped me with updating it. Anne drew the clockwork
on the thesis cover.

I owe special thanks to my parents and brothers. Knowing that you are there
made everything easier. Last, but not least, I would like to thank to my fiancée
Anne for all her love.

Sammanfattning på svenska

Datorer inklusive datorkraft som är integrerad i andra produkter kan ses som
maskiner som beräknar svar på våra frågor. Beräkningarna är framgångsrika
i de fall där ett korrekt svar fås inom rimlig tid. Detta innebär att frågan fort-
farande är relevant när svaret returneras. För flertalet frågor kan deadline eller
andra tidsmässiga krav summeras som ju fortare desto bättre, utan att ge några
uttryckliga begränsningar. Det framgår av sammanhanget vad som är kom-
promissen mellan hastighet och andra relevanta mått och man har flertalet
acceptabla valmöjligheter. Det finns även flertalet andra frågor utan utrymme
för sådan flexibilitet. I dessa fall har vi konkreta begränsningar på svarstider
och liknande som en explicit del av problemformuleringen, och vi har att göra
med vad som kallas realtidssystem.

Det faktum att timing är en explicit del av problemformuleringen ger upp-
hov till nya problem, angreppssätt och lösningar i designen av realtidssystem.
Detta faktum kan försvåra arbetet genom ökad komplexitet, men också göra
att man kan använda sig av speciella metoder och verktyg. För detta ändamål
har många tekniker utvecklats såsom schemaläggning, sampling och värsta-
fallet-analys. De har alla gett upphov till en stor mängd forskning med många
viktiga tillämpningar, som alla blivit en oumbärlig del av utvecklingspro-
cessen.

Denna avhandling bidrar till valideringsfasen av utvecklingsprocessen med
tyngdpunkt på valideringen av design och modellering på hög nivå. Inom
det omfattande valideringsområdet fokuserar vi på en av de komplementära
metoderna, nämligen formell verifiering. Dena metod använder datorkraft till
att automatiskt fastställa graden av korrekthet i ett system med matematisk
noggrannhet. För att kunna använda mekaniska processer för att fastställa de-
len av systemet huruvida systemet uppfyller de krav vi ställer, måste vi först
modellera den validerade delen av systemet och kraven på korrekthet som
matematiska objekt. Egenskaper hos det formella språket som vi använder
för att beskriva det verifierade systemet och dess korrekthet är avgörande för
komplexiteten hos verifieringsprocessen.

Denna avhandling behandlar en matematisk formalism som används som
modell för realtidssystem, nämligen tidsautomater. Automatateori introduce-
rar och studerar en av de matematiska modellerna som finns för beräkningar.
Centrala koncept i denna modell är systemtillstånd och ändlig representa-
tion av övergångar mellan tillstånd. Ett tillstånd summerar all information
om tidigare beräkningar som påverkar möjliga framtida utvecklingar av sys-
temet. En ändlig beskrivning av övergångar mellan tillstånd bestämmer auto-

matens funktion. Baserat på tillståndsinformationen bestämmer övergångarna
alla möjliga tillstånd som automaten kan drivas till.

Ett grundläggande exempel av en tillståndsbaserad modell, en ändlig au-

tomat, består av ändligt många tillstånd, och en övergångsrelation som ex-
plicit räknar upp alla möjliga övergångar mellan tillstånd. Strukturen hos en
ändlig automat beskrivs ofta med en riktad graf med märkta kanter, noderna
representerar tillstånd och kanterna övergångar. En ändlig automat accepterar
uttryck som fås geom att länka samman märkningarna på kanterna längs en
väg i grafen, givet att denna väg börjar i ett givet initialtillstånd och slutar i ett
givet accepterande tillstånd.

Tidsautomater utvecklar denna grundläggande modell genom att lägga till
en ändlig uppsättning reellvärda variabler (klockor), som automatiskt mäter
förfluten tid. Varje övergång av en tidsautomat kan specificera lägre och övre
gränser för tillåtna värden hos dessa variabler. Med tidsinformation i klock-
orna, och villkor för övergångar, lämpar sig tidsautomater som modeller för
realtidssystem. Klockor och tidsvillkor gör det möjligt att modellera saker som
deadlines, periodicitet eller generella tidsbegränsningar.

Fokus i denna avhandling ligger på automatiserad verifiering av realtidssys-
tem modellerade som tidsautomater. Vi är intresserade av korrekthetsegen-
skaper som uppkommer i

• schemaläggning: Kommer alla deadlines att hållas?
• sampling: Bevarar samplingsfrekvensen systemets beteende?
• kontroll: Kan buffertar tömmas helt mellan kontrolluppgifter

Denna avhandling behandlar tidsautomater med avseende på bestämning av
denna typ av egenskaper, framförallt logiska gränser för att automatiskt utföra
verifieringen. Till exempel studeras i vilka sammanhang automatisk verifier-
ing över huvud taget är möjlig.

En av hindren som måste överkommas för att syssla med automatisk veri-
fiering, är att kunna hantera oändliga matematiska strukturer i modellen. Även
om tillstånden och övergångsrelationen kan beskrivas ändligt, kan antalet till-
stånd som behöver undersökas för en viss egenskap vara oändligt. Utan att
finna och ta vara på speciella mönster i denna oändliga mängd tillstånd, skulle
all automatisk verifiering vara omöjlig. I vissa fall, kan dessa mönster använ-
das för att etablera metoder för formell verifiering som kan utföras av en dator
och alltid ge ett korrekt svar efter ett ändligt antal steg.

Det finns två olika angreppssätt som öppnar dörren för oändliga strukturer i
tidsautomater. En av möjligheterna är att utöka tidsautomater med ytterligare
oändliga datastrukturer: obegränsade köer. Dessa köer kan fylla olika syften.
Antingen kan de innehålla beräkningar och tillsammans med tidsautomaten
modellera ett realtidssystem med olika uppgifter. Det intressanta problemet
i denna kontext är schemaläggningen. Vi studerar här avgörbarhet och hur
denna påverkas av egenskaper såsom preemption, varierande beräkningstid
för olika uppgifter, och kommunikation mellan tidsautomaten och kön. Kön
kan också användas för asynkron kommunikation mellan tidsautomater som
synkroniserat körs parallellt. Dessa köer innehåller meddelanden från en au-

tomat och väntar på att läsas från av en annan automat. Sådana situationer
uppkommer bland annat i realtidsreglersystem där ett antal parallella pro-
cesser kommunicerar via buffertar. Vi studerar avgörbarheten för nåbarhet-
sanalys under olika topologier.

Den andra möjligheten är att studera en speciell egenskap hos tidsautomater
som gör det möjligt att konstruera dem så att tidsskillnaden mellan händelser
växer monotont men samtidigt är begränsad av en godtyckligt heltal. Detta
kan karakteriseras av obegränsade räknare som håller reda på sådana tillväxter
(ökningar). Om klockorna går i tät tid, spelar dessa ökningar igen roll för de
flesta verifieringsfrågor. När vi går över till en implementation som använder
en fast klockfrekvens (samplad semantik), bevaras endast beteende som svarar
mot en begränsad användning av dessa räknare. Vi beskriver dessa räknare
som en ny typ av registermaskin och bevisar att man effektivt kan avgöra om
räknarna används på ett begränsat sätt. Detta gör att man kan avgöra om det
för en given tidsautomat finns en implementation med fast samplingsfrekvens
som bevarar alla kvalitativa beteenden.

Contents

1 Introduction . 13

2 Technical Background . 21
2.1 Real Time Scheduling . 21

2.2 Sampling of Dense Time . 23
2.3 Channel Systems . 26

3 Results . 29
3.1 Task Automata . 29

3.2 Sampled Semantics of Timed Automata 31
3.3 Communicating Timed Automata . 32

4 Conclusions and Future Work . 35

5 References . 39

Paper I: Task Automata . 47

1 Introduction . 48
2 Timed Automata with Tasks . 50

2.1 Tasks and Scheduling Strategy . 50
2.2 Task Automata . 52

2.3 Operational Semantics . 53
3 Schedulability Analysis . 55

3.1 Schedulability of Task Automata 55
3.2 Decidability and Undecidability Results 57

4 Decidability . 59

4.1 Timed Automata with Subtraction 59
4.2 Preemptive Schedulers as TA with Subtraction 61
4.3 Task Automata without Task Feedback 68

5 Undecidability . 70

6 Conclusions and Related Work . 74
References . 76
7 Appendix . 78

Paper II: R-automata . 83
1 Introduction . 83
2 Preliminaries . 85
3 Universality . 88

3.1 Concepts and Proof Overview . 88

3.2 Construction of the Reduced Factorization Tree 93
3.3 Correctness . 97
3.4 Algorithm . 100

4 Limitedness . 102

5 Büchi Universality . 102
6 Non-emptiness . 104
7 Conclusions . 104
References . 105

Paper III: Sampled Semantics of Timed Automata 109
1 Introduction . 109
2 Preliminaries . 112

2.1 Notation for Clock Differences and Regions 114
3 Results . 115
4 Extended R-automata . 117

4.1 Extensions of R-automata . 117
4.2 Limitedness of Extended R-automata – Copy Operations . 121
4.3 Limiting Maxima in Extended R-automata 127

5 Encoding of Timed Automata to Extended R-automata 129
6 Decidability Proof . 139

6.1 ω-sampling . 140
7 Conclusions . 141
References . 142

Paper IV: Communicating Timed Automata 147
1 Introduction . 147
2 Communicating Timed Automata . 149
3 CTA with One Channel . 151
4 CTA with Two Channels . 164
5 Conclusions . 167
References . 169

12

1. Introduction

Nine-tenths of wisdom consists in being wise in time.

THEODORE ROOSEVELT

The successful applications of computers in the past, leading to their broad
employment, makes us increasingly dependent on their success in various
tasks we delegate to them every day. Let us view computers, including com-
puting power embedded into other devices, as machines which calculate an-
swers to our questions. Here are some examples of such questions:

• What is a feasible schedule for the next university term?
• What is the optimal pressure with which a car should break in a situation

identified by the car sensor readings?
• On which runway should an arriving plane land?
• What is the next video frame to be displayed on the screen?

In all these cases, the computation succeeds if it delivers a correct answer
in time. Timeliness of the result means that the question is still relevant at the
timepoint when we know the answer. There are many questions, exemplified
by our first example, for which the deadline is either flexible or far enough to
leave space for a tradeoff between speed, cost, and other possible factors. The
timing requirements are usually not stated explicitly in such cases and they
can be summarized as "the faster the better".

The other examples require much faster response times. The sensor view
of the car situation changes in order of milliseconds and the responsiveness of
the control computer should correspond to the reaction time of a human driver.
Decisions about allocating airport runways have to come in order of min-
utes taking into account both a pre-designed schedule and unexpected events
caused by, e.g., weather or human interaction. The last example requires a
refresh frequency sufficient to create an illusion of a smooth movement for
human viewers. In all these cases, timing constraints given as, e.g., concrete
bounds on response times or values of deadlines become an explicit part of
the setting. If this is the case then we are dealing with real time systems.

For the second and the third question, a single failure to deliver an answer
in time might have serious unwanted consequences. A violation of the con-
straints is not acceptable under any circumstances. In contrast to this, a miss-
ing frame in the last example causes a drop in the perceived quality of picture
which, if not occurring too often, can be tolerated for most applications. The
constraints could be then weakened by conditions like one out of five consecu-
tive task instances can miss its deadline or at least 90% of deadlines have to be

13

met. In this thesis we deal with systems containing the first type of constraints
– hard real time systems.

The fact that timing constraints become an explicit part of the setting gives
rise to new problems, approaches, and solutions in the design of real-time sys-
tems. On the one hand, timing constraints add to the complexity of the system
design. On the other hand, explicit statement of these constraints allows us
to employ specific methods and tools. To this end, many concepts and areas
have been established, e.g., scheduling, sampling, worst case execution time
analysis. Each of them has spawned a huge body of research with numerous
applications, which have become an indispensable part of the development
process.

Development of real-time systems consists, as for other computer systems,
of problem analysis, design of a solution, implementation, and validation.
These phases are not strictly separate, they might more or less overlap, in-
terfere, repeat at different places during the development. This thesis con-
tributes to the validation phase of the development process with the emphasis
on the validation of high-level designs and models. Within the broad area of
validation, we focus on one of the complementary methods, namely formal

verification. This method applies computer power to automatically establish
correctness of the system model with mathematical rigor.

The unreachable (or even false) ideal of formal verification is to check
whether the produced system functions correctly under all circumstances. It is
not possible to achieve this goal for three reasons. In order to be able to apply
formal verification

• the system has to be specified as a mathematical object; the produced sys-
tem is often a physical object (or an executable),

• the system correctness has to be specified in a mathematical form; this is
mostly not possible, we can express only some partial aspects of correct-
ness, and

• we need to model the environment (all circumstances) in mathematical
terms as well, e.g., as a set of possible input values.

Therefore, we first have to model the validated part of the system together
with the environment in which it is supposed to function and the requirements
as mathematical objects. Only then is it possible to apply mechanical pro-
cedures to determine whether the system satisfies the requirements. In spite
of these restrictions, formal verification helps to discover corner case bugs,
increase understanding of the problem, and remove ambiguities in the spec-
ification. Properties of the formal languages which we use to describe the
verified systems and their correctness strongly determine not only the extend
to which we have to abstract away from the details of the system, but also the
complexity of the automated verification procedure.

This thesis deals with a mathematical formalism serving as a model of real-
time systems – timed automata. Automata theory introduces and studies one
of the mathematical models of computation. A central concept of this model is
the explicit notion of a system (automaton) state and a finite representation of

14

the transitions between the states. A state of an automaton summarizes all in-
formation about the past computation which affects possible future evolutions
of the system. A finite description of transitions between the states determines
the operational possibilities of an automaton. Based on the state information,
transitions prescribe all possible actions, which in turn might change the au-
tomaton state.

A basic instance of a state-based model, a finite automaton, consists of
finitely many reachable states and a transition relation which explicitly enu-
merates all possible transitions. The structure of a finite automaton is often
represented by a finite directed graph with edges labeled by letters, where
nodes correspond to states and edges to transitions. A finite automaton ac-
cepts words obtained by concatenating the edge labels along paths in its cor-
responding graph, provided that these paths start in a designated initial node
and satisfy a given accepting condition, for example, end up in one of the
designated accepting nodes.

Since timed automata occupy a prominent position in this work, we de-
scribe this model in more detail in the next paragraphs. After this, we discuss
their basic properties, the background in which they were developed, and their
impact on the area of real time systems.

Timed automata were introduced in the seminal papers [6, 7] as an exten-
sion of finite automata. Syntactically, we add a finite set of real valued vari-
ables (clocks), which automatically measure passage of time. Each transition
of a timed automaton can specify lower and upper bounds on time delays in
terms of these variables. These constraints, called guards, compare individual
clock variables to natural numbers, i.e., they are conjunctions of inequalities
of the form x �� c, where x is a clock, c is a natural number (including zero),
and �� is one of the relations <,≤,≥,>. A transition also specifies a (possibly
empty) set of clocks which are reset to zero. Figure 1.1 depicts a sample timed
automaton.

Semantically, a timed automaton can at each timepoint choose from two
types of moves. It can delay in the current state for some amount of time. The
values of all clocks then increase by this amount. Alternatively, it can instan-
taneously take a transition, provided that the clock values satisfy the transition
guard. This transition also resets the indicated clocks as its side-effect. Clocks
assume values from a given time domain. Semantic states are then pairs (l,ν),
where l is a state of timed automaton and ν is a function mapping clocks to
values from the time domain. From now on, we distinguish the states of an au-
tomaton and the semantic states by calling the former locations and the latter
states.

For example, if the automaton in Figure 1.1 is in the location l1 and the
values of the clocks x,y are 1.7,0.93, respectively, then it can only delay, since
the clock valuation does not satisfy the guard on any outgoing transition. After
waiting for 0.3 time units, the guard x≥ 2 becomes enabled and the automaton
can either take the corresponding transition or decide to keep waiting. If it
takes this transition, it moves to the location l2 and resets the clock y to 0.

15

l0 l1

l2

a,x≤ 1,y := 0

b,x≥ 2,y := 0

a,x≤ 2∧ x≥ 2,x := 0

b,y > 3,y := 0

a,x > 2,x := 0

Figure 1.1: An example timed automaton with states l0, l1, l2 and clocks x,y. The state

l0 is initial and the states l1, l2 are accepting. The labels on transitions denote the letter,

the clock guard, and the reset. For instance, the transition from l0 to l2 is labeled by

a,x ≤ 2∧ x≥ 2,x := 0, where a is the letter, the constraint x ≤ 2∧ x≥ 2 is the guard

(often abbreviated by x = 2), and the clock x is reset along this transition.

Timed automata accept timed words, i.e., words where each letter is
accompanied by a timestamp – a reading of the (global) time at which
the corresponding transition was taken. An example of a timed word is
(a,0.4)(b,0.972)(a,5.13)(c,6.74), where a,b,c are letters and the numbers
0.4,0.972,5.13,6.74 are timestamps. A timed word is either accepted or
rejected depending on whether the transition sequence (a run) satisfies a
given accepting condition. The most common accepting conditions are either
reaching an accepting location at the end of the run [37] in case of finite
words or standard Büchi acceptance conditions [7] for infinite words. For
example, the timed automaton in Figure 1.1 accepts the finite timed word
(a,0.4)(b,1.756)(a,2.1)(a,4.2).

Sometimes, we are interested only in qualitative behaviors of a timed au-
tomaton – we omit the timing information. This corresponds to the untimed
language consisting of letter sequences, i.e., the set of words obtained from
timed words by projecting out the timestamps.

The most commonly considered time domain is the set of non-negative real
numbers. It is also used in this thesis and the semantics is then referred to as
dense time semantics. Replacing real numbers by the set of non-negative ra-
tional numbers would allow for a finite representation of each semantics state,
which means that the set of states would be countable, while retaining density
of time. Real and rational semantics differ only in very subtle points and none
of the results presented here would change with rational numbers as the time
domain. When we restrict time delays to multiples of a fixed rational number,
we talk about sampled semantics. The reduction of dense time behaviors to
discrete ones by choosing an appropriate value of the smallest time step is
called sampling.

With timing information in clocks and timing constraints on the transitions
between the states, timed automata serve as a model for real-time systems.

16

Clocks and timing constraints allow us to model many concepts involving
explicit timing information, such as deadlines, periods, timeouts, or interval
time bounds in general.

The main focus of this work is on automated verification of real-time sys-
tems modeled by timed automata.1 We are interested in correctness properties
from

• scheduling: Will all deadlines be met?
• sampling: Are there sampling rates preserving all qualitative behaviors?
• control: Can buffer underflows occur between control tasks?

This thesis studies timed automata with respect to determining validity of
such properties, mainly the logical limits of performing the analysis automati-
cally, i.e., determining in which settings formal verification is or is not possible
for fundamental logical reasons.

One of the obstacles to a successful automated verification are infinite struc-
tures in the mathematical model. Even if the states and the transition relation
admit a finite representation, the number of states which need to be analyzed
in order to establish validity of the correctness properties might be infinite.
Without discovering and utilizing specific patterns in this infinite amount of
states, any automated verification would be impossible. In some cases, one
can make use of these patterns and devise procedures for formal verification
which can be executed by computers and always give a correct answer after
finitely many steps.

The most prominent source of infinity in timed automata is the set of clock
valuations, which is even uncountable when considering real numbers as the
time domain. Therefore, the set of (semantics) states is infinite or even un-
countable. This fact leads to most of the negative results concerning automata
properties, formal verification of timed automata in particular. If we consider
timed languages then the alphabet is infinite. Also, the automata can exhibit
unrealistic so called Zeno-behaviors when there are infinitely many discrete
events happening within a bounded amount of time. The other source of in-
finity considered in this work is unbounded queues added as an extension to
timed automata.

One of the most important properties of timed automata, exemplifying a
successful analysis of infinite state spaces, is decidability of the language
emptiness problem [7]. The decision procedure groups the reachable states
into finitely many finitely represented classes and visits each of them at most
once. All states within one class can be inspected by analyzing a finite repre-
sentation of this class.

On the negative side, the language universality problem is undecidable for
timed automata and as a consequence, also the language inclusion problem
is undecidable. This means that timed automata cannot serve as both the cor-
rectness specification language and the system description language when we

1Other aims of such remodeling of problems from established areas by timed automata might

be a new view on these areas and a better understanding of modeling capabilities and limits of

timed automata.

17

want to verify automatically that a system satisfies its specification. The class
of languages accepted by timed automata is also not closed under comple-
ment, which has strong consequences for instance for logical characterizations
of this class.

Timed automata were introduced in a period when the research commu-
nity developed several other formalisms for real time systems, both from
within the automata theory, based on the notion of state, and from outside
the automata theory. The most prominent state based formalisms of this time
are a timed version of I/O Automata (referred to as Timed I/O Automata
here) [49], Timed Transition Systems [35], Modechart [39], and Timed Petri
Nets [51, 14]. Other formalisms for specification of timed systems include
process algebras [56, 61, 53] and logics, e.g., Duration Calculus [21, 20], Met-
ric Temporal Logic [41], Metric Interval Temporal Logic [8], Timed Propo-
sitional Temporal Logic [9] and Timed Computational Tree Logic [5]. In the
following paragraphs, we present closer the state based formalisms.

Timed I/O Automata operate in dense (real) time. Timing is added to I/O
Automata by "external" timing conditions, i.e., the model is a pair of an I/O
automaton and a set of timing conditions. These conditions specify minimal
and maximal time which can elapse after a given set of states is entered (or a
transition from a given set of transitions is executed) before a given event is
observed (or a given set of states is reached).

Modechart was developed as a specification language with semantics given
by a translation to Real Time Logic [38]. This discrete time model consists of
a hierarchical structure of modes (which resemble states in automata models).
Timing information is incorporated into conditions on the transitions and ex-
pressed by Real Time Logic predicates. These constraints specify minimal and
maximal time which the system can spend in the current mode after entering
it.

Timed Transition Systems form a discrete time computational model. Tran-
sitions between states (which are valuations of system variables) are con-
strained by a lower and upper bound on the time continuously spent in this
state. This means that time is always measured from the moment when the
system enters a state.

Timed Petri Nets extend the popular model of Petri Nets by timing con-
straints and dense time semantics. Each transition is equipped with two ratio-
nal numbers, a lower bound and an upper bound. A transition can be fired if it
has been continuously enabled for at least as many time units as given by the
lower bound and it has to be fired before it has been continuously enabled for
the upper bound time units.

The most significant distinguishing feature for timed automata is the ex-
plicit handling of clocks. The fact that clocks automatically measure passage
of time together with the ability to branch upon the clock values and to reset
clocks to zero allows us to model the timing properties locally and in an imper-
ative way. The automaton resets clocks and measures their values whenever it
is needed (and desirable) without explicitly considering all possible future or
past behaviors.

18

Timed automata induced a considerable body of research. There has been
various verification tools (model checkers) developed for timed automata, the
most prominent being Kronos [62] and Uppaal [46]. These tools contributed
to the research of techniques improving scalability of model checking and
helped in popularization of formal modeling and analysis in the university
education. Timed automata also contributed to research in other areas, such
as logics [59, 24], hybrid systems (timed automata are a clear simple case
of hybrid systems, see e.g., [34]), and scheduling (modeling of schedules by
timed automata [1], modeling of release patterns by timed automata [25]).
Also, many well-established research areas covered real time systems by ex-
tending their concepts for timed automata, exemplified by game theory [23]
and learning [32].

Now we have introduced both the general topic of this thesis, which is the
formal verification of real time systems, and the mathematical model on which
we focus our attention – timed automata. Before we present our results, it will
be necessary to describe the areas of our research in more detail.

19

2. Technical Background

Be not curious in unnecessary matters: for more things are shrewd unto

thee than men understand.

Sir 3:23

This chapter introduces the research areas of this thesis and motivates its con-
tribution. The first two areas, scheduling and sampling, are well-established
within the real-time systems research. The third area, channel systems, has
been mostly studied in connection with communication protocols. Motivated
by real-time control, we combine channel systems with explicit timing and
investigate their properties.

2.1 Real Time Scheduling

Scheduling problems occur when several agents compete for a shared limited
resource. Such limited resources can be processor time, I/O bus time, time
slots on a given radio frequency, but also time for which an expensive tool
such as a microscope, an operation theater, or a lecture room can be used.
Agents, e.g., computation tasks, phone calls, biologists, patients, or teachers
need an exclusive access to the corresponding resources in order to complete
a computation task, a phone call, a scientific experiment, an operation, or a
lecture. The area of scheduling deals with the problem of allocating the shared
resources to the agents while satisfying given criteria. These criteria usually
talk about the time needed to finish the jobs, but they can also take into account
other aspects such as quality of service, or costs.

The most general problem can be stated as a search for a description of a
resource allocation over time, a schedule, such that all given criteria are satis-
fied. As an example, consider creating a schedule for a university department,
where all lecturers have certain requirements on the lecture rooms, lab rooms
with special equipment, lecture times, and so on. Such a schedule is usually
static, i.e., completely known in advance. There can also be dynamic sched-
ules, so called scheduling strategies, which describe a procedure deciding who
should occupy which resource under given circumstances. An example of such
a dynamic schedule is a priority assignment, e.g., the most seriously injured
patients are operated first while the others wait. For an overview of scheduling
algorithms and further references, see [17, 48].

A simpler yet important problem is to check whether the system satisfies
all criteria with a given scheduling strategy – the schedulability analysis prob-
lem. For a dynamic schedule, one has to check that all possible scenarios

21

which might occur during system’s operation satisfy the criteria. When a given
scheduling strategy fails in this test or when there is no scheduling strategy
given, we can also ask whether there is a feasible one at all.

To formulate the schedulability analysis problem in a mathematical form,
one has to consider an abstraction of the whole scheduling setting. In the con-
text of computer systems, the abstraction often consists of a set of computation
tasks, a processor (or several processors), task release patterns, a task queue,
and a scheduling policy in question. The computation tasks are identified by
parameters like a computation time C and a deadline D. Each task τ represents
a piece of executable code which needs Cτ time units of the processor time to
be finished and it should finish earlier than Dτ time units after its release. Pro-
cessors offer a uniform (invariable in time) source of computing power. The
tasks arrive in time according to a given arrival pattern and are inserted into
the task queue at the moment of their arrival, where they wait to be computed.
The scheduling policy decides which task should execute at each timepoint.

In order to analyze schedulability of recurring tasks with hard deadlines,
it is common to consider arrival patterns to be periodic [48]. The periods
then become additional task parameters. To relax from this rather restrictive
scheme, the imprecision of task arrival times is often modeled by a jitter – a
bound on the allowed deviations from the strictly periodic pattern. Classical
results [47] in this setting include the utilization bound for schedulability of
tasks scheduled according to fixed priorities and the optimality of the Earliest
Deadline First scheduling policy for a single processor.

The release patterns characterized by periods and jitters often constitute a
reasonable abstraction of real time systems. However, they do not contain any
state information, which makes modeling of, e.g., sporadic tasks or differ-
ent modes of operation difficult. To overcome this limitation, timed automata
have been suggested as a modeling language for release patterns in [25]. Lo-
cations of a timed automaton contain task identifiers and each time a location
is entered, the corresponding tasks are released. The runs of the automaton
then correspond to concrete evolutions of the system. By this, it is possible
to model sporadic events, different modes of operation, and to incorporate the
influence which the past evolution of a system has on its future (through the
information summarized in states).

The following work [29, 44, 28] analyzed the theoretical properties of
this extension. Scheduling policies considered here are either Fixed Priority
Scheduling or Earliest Deadline First and the focus is on decidability of the
schedulability analysis problem for systems modeled by timed automata with
tasks. The decidability results lead to a prototype implementation and an
experimental evaluation of this approach [11, 12, 27].

We work with a model which incorporates different features from schedul-
ing, namely, preemption, uncertainty in the task execution times, and data de-
pendencies into the timed automata setting. By this we obtain a strong model-
ing formalism with precise mathematical semantics, which should ease formal
modeling for the scheduling community. In the first place, we are concerned
with expressiveness of this new model in terms of basic automata theory.

22

One direction of research aims at establishing the decidability borderline
of the reachability problem for the timed automata based model enriched by
various scheduling features. The infinite structures in this model comprise the
clock valuations induced by timed automata and an unbounded queue for stor-
ing the released tasks. Positive answers to the decidability question essentially
mean that the extended model has a finite representation equivalent with re-
spect to schedulability. This enables application of standard automata based
formal verification techniques directly to the scheduling problems modeled in
our setting, especially to the schedulability analysis problem.

In order to analyze this model, one has to formalize the class of admissible
scheduling policies. The goal is to establish the properties which a scheduling
policy has to satisfy to be suitable for automatic schedulability analysis. We
identify the properties which guarantee that it is sufficient to consider only
task queues of a bounded size and that the density of time cannot be used to
encode and manipulate natural numbers.

Timed automata (or their extensions) have been used in the scheduling set-
ting also in the following works. Synthesis of dynamic state-based schedulers
has been developed in [3]. The synthesized scheduler is represented by a timed
automaton whose runs describe all correct schedules. In [1, 2], runs of timed
and stopwatch automata model feasible schedules for a job-shop scheduling
problem and an algorithm is presented for finding a time optimal one. Other
models, a timed process algebra [45] and Real Time Logic [52], have also
been used to synthesize schedules for hard real time systems.

A similar way of encoding systems with tasks in the timed automata set-
ting has been developed in [50], where the authors identify a subclass of hy-
brid automata for which the language emptiness problem is decidable. They
demonstrate the usefulness of this subclass by modeling the Shortest Job First
scheduling policy.

2.2 Sampling of Dense Time

Dense time semantics allows each delay taken by a timed automaton to be
an arbitrary non-negative real number. This includes also arbitrarily small de-
lays and delays which differ from each other by arbitrarily small values. Even
though the other type of behaviors might occur as a result of impreciseness
such as clock drifts, neither of these behaviors can be enforced by an imple-
mentation operating on a concrete hardware. Each such an implementation
necessarily includes some (hardware) digital clock which determines the least
time delay measurable or enforceable by the system.

This observation motivates sampled semantics of timed automata, which is
a discrete time semantics with the smallest time step fixed to some fraction of
1. In other words, the time delays in a sampled semantics with the smallest
step ε can be only multiples of ε . There are infinitely many different sampled
semantics, but any of them allows fewer behaviors of the system than dense
time semantics. On the other hand, all of the allowed behaviors in a sampled

23

semantics with the smallest time step ε will be preserved in an implementation
on a platform with the clock rate ε (and all fractions of ε).

To characterize the relation between dense time semantics (giving us a set
of dense timed words) and sampled semantics (giving us a set of sampled
timed words), we restrict ourselves to qualitative behaviors of the automata.
This means that we consider only untimed words. The untimed word obtained
from a timed word w = (a1,r1) . . . (ak,rk) is the sequence of letters a1 . . .ak.

By considering only qualitative behaviors (untimed languages) we lose the
explicit timing information, but many important properties, including implicit
timing, are preserved. For instance, if we know that the letter b cannot appear
later than 5 time units after an occurrence of the letter a in the dense time
model and then there is an untimed word accepted by this automaton where a

is followed by b then we know that there is a run where b comes within 5 time
units after a.

The goal of studying sampled semantics of timed automata is to contribute
to the discussion about using dense and discrete time in formal verification.
Dense time semantics provides us with a very convenient feature. In the mod-
eling and verification phase, we do not have to consider a concrete sampling
rate of the implementation. Clock comparisons do not depend on it as we as-
sume that all constants are multiples of any admissible smallest time step.
One can see dense time semantics as including all (infinitely many) sampled
semantics and arbitrarily choosing a sampling rate before every delay move
of the timed automaton.

We investigate the relation between dense time semantics and discrete time
semantics by studying whether and in which way can the dense time model
exhibit behaviors without a corresponding counterpart in sampled semantics.
By this we should be able to detect whether all qualitative system behaviors
observed in dense time are preserved by some implementation with a suitably
chosen fixed sampling rate or whether some behaviors will be lost regardless
of the clock frequency.

We consider the following formulation of the sampling problem: decide
whether there is a smallest time step ε such that the untimed language ac-
cepted by a given timed automaton is the same in both the dense time seman-
tics and the sampled semantics with ε . If we consider untimed words as an
identification of qualitative behaviors then the problem could be rephrased as
follows: is there an ε such that all qualitative behaviors of a given timed au-
tomaton in the dense time semantics are preserved by an implementation with
the time step ε?

It has been observed before [13, 26] that there are timed automata which
cannot be sampled without losing untimed behaviors. This observation relies
on a peculiar property of the dense time semantics of timed automata – the
ability of enforcing behaviors where time distances between events monoton-
ically grow while being bounded by some integer. The cause of such behaviors
is the ability of timed automata to specify that an event happens strictly earlier
or later than a timepoint marking an integral distance from some other event.
This is possible because of the strict inequalities < and > in the automata

24

guards. Closed timed automata, i.e., timed automata with only ≤,≥ inequal-
ities in the clock guards, can be always sampled with the sampling rate 1.
Closed timed automata posses one important property. They are closed under

digitization ([54], Property 8). This property has been defined in [36] and it is
connected to our problem in the following sense: if the timed language of a
timed automaton is closed under digitization then all (untimed) behaviors of
this timed automaton are preserved with ε equal to 1.

Studying this problem can be seen as an investigation of the nature of the be-
havior loss during sampling caused by strict inequalities. Timed automata can
enforce growth of the distances between the fractional parts of clock values.
This corresponds to a special way of counting, namely counting how many
times did some distance grow in the current run. Timed automata then posses
some type of unbounded counters, which cannot influence the decisions in the
computation, but which can block a computation in presence of sampling. The
bigger the counter values are, the finer sampling rate one needs to preserve the
runs. Characteristics of these counters closely resembles and extends distance
automata of Hashiguchi [33] and newer work [58, 40, 15, 22].

The problem of asking for a sampling rate which satisfies given desirable
properties has been studied in [13, 26]. Both of these works also observe that
there are timed automata (with strict inequalities in guards) for which there is
no sampling rate preserving all qualitative behaviors. In [13], the authors iden-
tify subclasses of timed automata (or, digital circuits which can be translated
to timed automata) such that there is always an ε which preserves qualitative
behaviors. The problem of deciding whether there is a sampling rate which
would ensure the language non-emptiness is studied in [26] with a negative
answer (Theorem 3). However, the definition of sampled semantics, moti-
vated by the control setting, differs from that of ours in that the automaton
is obliged to take a discrete transition after every time tick. The undecidability
proof makes full use of this difference. Based on this work, the problem of
determining whether there is a sampling rate such that the infinite word lan-
guage of a given timed automaton is non-empty with our definition of sampled
semantics has been wrongly classified as undecidable in [10]. Later work [43]
presented a decision procedure for this problem.

Digitization of timed languages has been studied in [36]. This work iden-
tifies properties of systems and specifications which allow us to transfer the
verification results obtained for the discrete time to the dense time setting.
Digitization takes into account timing properties more explicitly, while in our
setting the stress is on the qualitative behaviors (untimed language). Another
different approach to discretization has been developed in [31]. The discretiza-
tion scheme suggested there preserves all qualitative behaviors for the price
of skewing the time passage.

Implementability of systems modeled by timed automata on a digital hard-
ware has been studied in [60, 42, 4]. The papers [60, 42] propose a new se-
mantics of timed automata with which one can implement a given system on
a sufficiently fast platform. On the other hand, [4] suggests a methodology
in which the hardware platform is modeled by timed automata in order to al-

25

low checking whether the system satisfies the required properties on the given
platform.

2.3 Channel Systems

Channel systems, sometimes also referred to as communicating finite state ma-

chines, essentially consist of a finite set of finite automata (indexed by natural
numbers) with a special alphabet. Letters consist of three parts: an automaton
index, a symbol distinguishing sending and receiving operations, and a mes-
sage chosen out of a finite set of possible messages. We adopt the standard
notation demonstrated by the letters 4!a and 3?b, which say that message a is
sent to the automaton with index 4 and that message b is received from the
automaton with index 3, respectively. There is also an additional letter ε in
the alphabet, which denotes that the automaton neither sends nor reads any
message.

The operation of these machines assumes that the automata are connected
by unbounded directed channels following the first-in-first-out policy. Mes-
sages sent by one automaton to another one are inserted into the corresponding
channel, where they stay until they are read. An automaton can read messages
which are at the head of incoming channels by taking a transition labeled
by the corresponding letter. If a label on some transition does not match the
channel content then this transition is blocked. In this respect, the content of
channels partially1 determines the automata behavior.

Channels are assumed to be perfect, i.e., there are no losses, insertions, or
modifications. When we say, e.g., that a channel system has one channel we
mean that only one channel is used. We assume that there can also be chan-
nels from an automaton to itself, e.g., a channel system with one automaton
whose transitions are labeled only by 1!a and 1?a for all messages a. Given
two automata A1,A2, we denote the channels between them by c1,2 and c2,1.
To specify a channel system, we list the automata and the channels in one
tuple. For example, (A1,A2,A3,c1,1,c1,3,c2,3) describes a system with three
automata, where the first one has a channel leading back to itself and both the
first and the second one have a channel for sending messages to the third one.

There are many properties of channel machines which one would like to
check automatically in order to verify the correctness of the system behavior.
Here we list some of them.

• Reachability – is there a run of a given system which reaches a concrete
control state together with given channel contents?

• Deadlock – is there a reachable state where all automata can just receive
and all channels are empty?

• Boundedness – is the set of all reachable states finite?

The first work [16] studying decidability of these problems showed that
the general model is Turing complete, by showing that systems of the form

1It cannot resolve non-determinism in choosing writing operations and ε transitions.

26

(A1,c1,1) can simulate computations of a given Turing machine. Intuitively,
the channel contains a tape content together with a machine control state.
The automaton A1 reads the tape content in windows of finite size from the
channel. According to the window and the control unit of the Turing machine
it computes the next window and directly writes it symbol by symbol back
to the channel. As a consequence, none of the problems mentioned above is
decidable for general channel systems.

Further work focused on subclasses of channel machines and strengthened
the undecidability results. Two identical “daisy” automata with one channel
in each direction can simulate a given Turing machine [30]. Surprisingly, also
two automata connected by two channels going in the same direction can sim-
ulate Initial Post’s Correspondence Problem (reachability of a given control
state with empty channels can be reduced to this problem [55]). Intuitively,
to simulate a Turing machine on such a system, one sends configurations of a
Turing machine computation into both of them. The computations are shifted
by one configuration, so that the receiving machine can check whether all
moves have been done correctly.

To sum up the undecidability results, two channels are enough to simulate a
Turing machine and one channel suffices under the condition that the receiver
can pass a finite amount of information to the sender, e.g., by using shared
states (in the extreme case, when the sender and the receiver are the same
automaton).

To present the decidability results, we need two more technical definitions.
A channel machine (A1,A2,c1,2,c2,1) is half-duplex if in all reachable states
at most one channel is nonempty. This property is already mentioned in [55],
but further studied in [18]. A channel machine is cyclic if it is of the form
(A1, . . . ,An,c1,2,c2,3, . . . ,cn,1).

Stability is decidable for cyclic channel machines with one of the channels
bounded [55]. It follows from the fact (often used in other decidability results)
that for a cyclic channel machine, one can rearrange each infinite computation
so that only one arbitrarily chosen channel is not bounded by 1. To achieve
this, we need to assign priorities to the finite automata in an appropriate way.

In [18], the authors show that reachability, boundedness, and other proper-
ties are decidable for half-duplex systems. Moreover, it is decidable for a chan-
nel system whether it is half-duplex. Since systems of the form (A1,A2,c1,2)
are a special case of half-duplex systems, reachability and boundedness are
decidable for them. If we talk about a language accepted by such a system,
e.g., words written into the channel, then this language is regular.

All of the above mentioned works assume that the automata work asyn-
chronously. This assumption comes from the domain of interest – communi-
cation protocols. Protocols for communication between machines with high
computation speed connected by channels with long and unpredictable com-
munication times can often be faithfully modeled by an asynchronous system.
However, for real time control systems with several processes communicat-
ing through buffers, the asynchrony assumption is not plausible, because the
buffers can deliver messages almost instantly and the processes do not idle

27

when having relevant input. Also, both timing of process computations as
well as communication patterns play a crucial role in the system correctness.

Therefore, we study channel systems in the synchronous setting. One pos-
sibility to bring in synchrony is to require that all automata take transitions si-
multaneously and in the same pace. This gives rise to discrete time automata.
One more step leads to the dense time, where the communicating machines
are timed automata. For this model, we obtain the synchrony for free, because
the clocks evolve by definition in the same pace for all automata involved in
the system.

An objective of this research is to develop a model for real-time systems
communicating through channels such that one does not have to specify any
bound on the channel size at the modeling and verification time. We propose to
combine timed automata and channel machines in order to achieve this goal.
By this we bring together two concepts which often render automated anal-
ysis logically impossible – unbounded queues and dense time. Each of these
features contributes to the infinite amount of reachable states. The state space
contains all possible message sequences in the channels and all clock valua-
tions. We investigate possibilities and limits of verification of timed automata
communicating through unbounded channels, which is also, according to our
best knowledge, the first attempt to study channel systems with unbounded
channels in the synchronous setting. This research also brings insight into
what amount of information can be implicitly exchanged between machines
by a common knowledge of global time.

Synchronous channel machines were studied in [19], where each channel
cell is a finite automaton with a transition function taking into account also the
content of the cell on the left. Such systems can recognize languages accepted
by linear time bounded alternating Turing machines.

28

3. Results

People love chopping wood. In this activity one immediately sees results.

ALBERT EINSTEIN

Contributions of this thesis span over all three areas described above. First,
we analyze possibilities of modeling various scheduling concepts using timed
automata. Next, we study the relation of dense and discrete time in transi-
tion from dense time to sampled semantics of timed automata. The goal is
to determine a sampling rate preserving all qualitative behaviors or present a
witness of the fact that there is no such sampling rate. Finally, we investigate
expressive power of a model combining synchronization by dense time and
communication through unbounded channels.

3.1 Task Automata

This work aims at better understanding of task automata – an automata based
model for real time systems where tasks compete for a scarce resource. The
contribution is twofold. First, we characterize a class of scheduling properties
for which schedulability analysis is possible. Secondly, we show a limit of
extending the setting with scheduling features by proving that a combination
of three natural features modeled in task automata turns the system Turing
complete.

A task automaton, introduced in [25], is a collection of task types and a
timed automaton modeling task release patterns. Each task type is character-
ized by its name, the best case computing time B, the worst case computing
time W , and a relative deadline D. The timed automaton in question contains
an additional labeling function which assigns task types to locations.

To define behaviors of a task automaton, we need a mechanism which picks
one of the waiting tasks to be executed – a task queue and a scheduling policy.
We assume that the released tasks wait in a queue and the first one is executed.
A scheduling policy takes care of newly arrived tasks. It is a function which
takes a list of tasks (a task queue) and a task type as arguments and returns
a task queue. There are important constraints on the scheduling functions we
consider; we discuss them below.

We describe the semantics of a task automaton with a scheduling policy as
follows. Whenever the automaton enters a location, an instance of the corre-
sponding task type is released. At this moment, the scheduling policy updates
the current task queue with the released task type (in fact, it inserts this task
instance at some position in the task queue). The system contains one proces-

29

sor where the first task in the queue runs. A task instance may be removed
from the queue when it has been processed for at least B time units and it has
to be removed from the queue when it has been processed for W time units.

The schedulability analysis problem is to decide for a task automaton and
a scheduling policy whether there is a run of this system where some task
instance misses its deadline, i.e., it stays in the queue for more than D time
units. If it is not the case, i.e., all tasks meet their deadlines, we say that the
task automaton is schedulable with the particular scheduling policy. A task
automaton is schedulable if there is a scheduling policy such that it is schedu-
lable with this policy.

We identify three features of real time systems with tasks, used and modeled
in task automata setting in [29, 44, 28].

• Preemption – scheduling policies can insert the new task instance at the
head of the queue, preempting the currently running task.

• Variable execution time – some task types can have B �=W , allowing differ-
ent non-deterministically chosen computation times for different instances
of the same task.

• Feedback – the task automaton contains a special clock which is reset each
time a task finishes. By this, the automaton can adjust task releases depend-
ing on the task finishing times.

The first contribution of this thesis is a characterization of a class of
scheduling policies such that the schedulability analysis problem becomes
decidable for task automata with fixed computation times (B = W for all task
types; preemption and feedback are allowed) or without preemption (variable
computation times and feedback are allowed). It remains an open question
whether schedulability analysis with a given scheduling policy is decidable
for variable computation times and preemptive scheduling policies when
feedback is not allowed. The decidability proof reduces the schedulability
analysis problem in several non-trivial steps to the reachability problem of
timed automata.

The first condition on the scheduling policies required by our definition is
that a scheduling policy only inserts new task instances at some position in
the current task queue. Especially, it cannot change the order of, add, or re-
move other task instances. Moreover, this definition requires existence of a
computable function which for each size of the task queue gives a timed au-
tomaton of a special form deciding at which position is the new task instance
inserted.

Our second contribution shows that when the system uses all three features,
i.e., preemption, variable execution times, and feedback, it can simulate a two
counter machine. This holds for most of the reasonable scheduling policies,
including Fixed Priority Scheduling, Earliest Deadline First, and Shortest Job
First. The proof encodes counters of a two counter machine into clock values
of the task automaton in a similar way as in [34]. Due to the high expressive
power, there is no algorithm determining whether a system is schedulable with
these scheduling policies.

30

3.2 Sampled Semantics of Timed Automata

Let L(A) and Lε(A) denote the set of accepted untimed words (qualitative
behaviors) of a timed automaton A in dense time semantics and sampled se-
mantics with time step ε , respectively. The problem of our interest is whether
for a given timed automaton A there is a sampling rate ε such that the corre-
sponding sampled semantics contains all accepted qualitative behaviors, i.e.,
Lε(A) = L(A).

We call this problem the sampling problem and we show that it is decidable.
The proof requires a new type of counter automata which gives an insight into
the dense time behaviors of timed automata, but also constitutes a contribution
in its own right.

First we point out an observation which makes this problem non-trivial:
timed automata can enforce the clock value differences to increase or decrease
while being strictly bounded by 1 or 0, respectively. Figure 3.1 shows such a
timed automaton. If 0 < a < b < 1 are the values of x,y in the location l0 and
c,d are the values of x,y when the automaton enters the location l0 again after
reading ab then b−a < d−c. If such a fragment is repeated n times, the clock
difference has to increase n times. In the dense time semantics, the increases
can be arbitrarily small and thus their sum can be bounded by 1. In a sampled
semantics with the clock rate ε , the sum of the increases is greater than or
equal to n · ε .

���������	
������l0

a,y=1,y:=0

���������	l1

b,1>y∧x>1,x:=0

��

Figure 3.1: A timed automaton which does not preserve qualitative behaviors in sam-

pled semantics. It enforces the difference between clock values to grow. If the values

of x,y are 0.1,0.6, respectively, in the location l0 then the difference between the clock

values in the location l0 after reading ab will be strictly greater than 0.5. This example

is adapted from [10].

The ability of timed automata to enforce growth or decrease of the clock
differences (e.g., b−a < d−c in the previous example) is not strong enough to
specify how much should the clock difference grow or decrease. This feature
is investigated and utilized in our result.

To solve the sampling problem, we have to analyze the effects on the clock
differences along all possible accepting runs. If there is a sequence of (un-
timed) words for which accepting runs enforce more and more difference in-
creases then there is no sampling rate preserving all of them. Figure 3.1 depicts
such a timed automaton. Each string of the form (ab)k for some natural num-
ber k is accepted in the dense time semantics but for each ε there is a natural
number k such that (ab)k is not accepted in the ε-sampled semantics. This is

31

because the loop enforces an increase in the difference between clocks x and
y. At the beginning, the values of both clocks are equal (their difference is
zero), but after the first loop (reading ab), the value of x is zero and the value
of y is greater than zero (and smaller than 1). After each next loop, the differ-
ence between the clocks has to grow by a strictly positive amount, while both
clocks stay smaller than 1 (in the initial location). Violating this requirement
will lead to a deadlock, i.e., to a situation when no further letter may be read.

A timed automaton then possesses a special type of memory – a counter for
each pair of clocks recording the information about how many times did the
difference between the fractional parts of these clocks have to grow during the
current run. To analyze the nature of this memory, we propose a new model of
counter automata – Extended R-Automata (ERA). An extended R-automaton
is a finite automaton with a finite number of counters which assume natural
numbers as their values. The operations on the counters include an increment,
a reset to zero, a copy, and a restricted operation of taking maxima of the
counter values. The property of interest for ERA is whether there is a bound
such that all words accepted by ERA can also be accepted by a run along
which no counter exceeds the bound. Deciding whether there is such a bound
is known as the limitedness problem in the literature [33].

We show that the sampling problem for timed automata can be reduced to
the limitedness problem for ERA. This reduction simulates each update of
clock values by a corresponding operation on the counters as to record the
number of the increases/decreases of the clock value differences. The correct-
ness proof then implies that the available counter operations are sufficient to
capture the effects which timed automata can have on clock value differences.

Decidability proof for the limitedness problem for ERA is split into sev-
eral steps. First, we deal with a subclass of ERA, called R-automata, which
can only increment or reset the counters. We present an algorithm decid-
ing whether a given R-automaton is limited and prove its correctness. This
proof utilizes a deep result from semigroup theory – factorization forest the-

orem [57]. In the next two steps we extend R-automata with the copy and
maximum operations and reduce the limitedness problem for the extensions
to limitedness of the original R-automata. The reduction for the operation of
taking maxima requires special restrictions on when the maximum operation
can be used. It is an open question whether limitedness is decidable for ERA
with unrestricted maxima.

3.3 Communicating Timed Automata

Inspired by control systems where several real-time processes communicate
via buffers, we define synchronous channel systems by assuming that the com-
municating machines (modeling the processes) are timed automata. The labels
on the timed automata transitions encode sending or receiving messages to
or from the unbounded channels or idle waiting (the label ε). Moreover, the
transitions are labeled by clock guards and clock resets as for standard timed

32

automata. All clocks in the whole system run in the same pace, but each timed
automaton can access (test and reset) only its own clocks.

Processes in real time control systems are designed not to stay idle in a sit-
uation when they have a relevant input. This is reflected by the following se-
mantic feature. We require that timed automata read messages from the chan-
nels in an urgent manner – the reading automaton is not allowed to take an
ε transition (which models staying idle) if there is a message in an incoming
channel for which it has an enabled reading transition.

We study decidability of reachability problems for this model on two sim-
ple topologies. First, we investigate the system with two timed automata con-
nected by one channel of the form (A1,A2,c1,2). We show that the reachability
problem is decidable. To be able to talk about the expressive power of these
systems, we define the accepted language as the set of words constructed by
concatenating the transmitted messages along runs which bring all automata
to an accepting state. We show that the expressive power of this topology
grows from regular languages in the asynchronous setting to one-counter lan-
guages in the synchronous (timed) setting. This holds true even if we consider
this model with discrete time semantics. Without the urgency assumption, this
model also accepts some non-regular languages.

The proof utilizes two techniques, reordering from [55] and clock difference
relations from [43] to handle the dense time. Informally, each computation can
be reordered so that there is always at most one message in the channel or the
messages are not read anymore. In contrast to the asynchronous setting, this
reordering requires desynchronization of the two timed automata. To keep
track of the desynchronization, we need an integral counter and a special data
structure – clock difference relations – to handle the dense time aspects.

Secondly, we show that the linear topology with three timed automata con-
nected by two channels in one direction can simulate Turing machines. This
result strongly contrasts with the asynchronous case, where such a topology
accepts only regular languages. The urgency assumption is crucial here, but
the expressive power does not depend on the density of time. In other words,
such a topology can simulate Turing machines even with discrete time.

The fact that our results hold also for discrete time demonstrates that the
unbounded channels add an independent degree of infinity and dense time
does not increase the expressive power for timed channel systems.

33

4. Conclusions and Future Work

If you wish to advance into the infinite, explore the finite in all directions.

JOHANN WOLFGANG von GOETHE

This thesis investigates infinite structures which arise in mathematical models
of real time systems. Understanding properties of these structures is crucial for
designing procedures for automated verification of these models. The mathe-
matical formalism we have studied – timed automata – operates in dense time.
As a consequence, there are infinitely many reachable states for all non-trivial
models. We have also introduced and investigated other sources of infinity,
namely unbounded queues and sampling. Our work contributes to three dif-
ferent areas of real time systems.

Schedulability Analysis of Task Automata.

The theory of timed automata proves to be a promising tool for modeling
and analysis of scheduling problems. It allows to specify release patterns of
sporadic events or various modes of operation of a real-time system. It also
brings all formal verification results and technology to be readily used. Earlier
work [29, 28] has shown that schedulability analysis is decidable for task au-
tomata with the Earliest Deadline First and Fixed Priority scheduling policies.

As our first contribution, we formulate criteria on scheduling policies such
that it is possible to perform automated schedulability analysis. These criteria
are very general and accommodate many standard scheduling policies. The
second contribution in the area of scheduling shows that a combination of
very natural features (preemption, variable computation times, feedback at
task finishing times) together with dense time makes task automata Turing
complete. As a consequence, we have to give up hope for fully automated
verification. On the positive side, we have determined interesting and non-
trivial combinations of features which allow for schedulability analysis (both
with and without a given scheduling policy). In short, we can decide whether
there is a scheduling policy guaranteeing no deadline misses for a system if
one of the above mentioned features is not used.

The remaining open problem in our setting is decidability of schedulability
analysis for task automata with variable computation times and preemption,
but no feedback from the task queue back to the automaton. Also, there have
not been many results shown for the case of several processors, each having
an independent task queue.

35

Sampling Dense Time Behaviors of Timed Automata.

We have investigated the problem of sampling dense time behaviors with a
fixed sampling rate. As has been observed earlier [13, 26], there are timed
automata for which no sampling rate exits to cover all qualitative (untimed)
behaviors. We have shown that it is decidable whether a given timed automa-
ton can be sampled while preserving all qualitative behaviors.

Timed automata with dense time semantics can enforce behaviors where
time distances between events monotonically grow while being bounded by
some integer. Such behaviors fully exploit density of time. Reachability anal-
ysis, which utilizes the region abstraction for timed automata state space ob-
scures this fact by disregarding any information related to runs. In the first
step, we have characterized the ability of enforcing these behaviors by a new
type of counter automata – Extended R-automata (ERA). Whenever an event
happens strictly earlier or later than at an integral distance from some other
event, the difference between the corresponding clocks grows. Counters in
ERA record how many times did the differences grow along the current run.
The bigger the counter values are, the finer sampling is needed to accommo-
date all increases along a corresponding run in sampled semantics. We have
established and proved this correspondence formally.

In the second step, we have presented a decision procedure which deter-
mines whether there is a bound on the counters of an ERA such that all words
accepted without any bound are accepted also when the counters are bounded.
By this, we obtain a decision procedure for the question whether a given timed
automaton can be sampled without losing any qualitative behaviors. This re-
sult also extends the previous results on limitedness of counter automata.

In spite of this positive outcome, our results show a high degree of complex-
ity present in dense time behaviors enforced by strict inequalities. Therefore,
when we require from our model that it can be turned into a sampled imple-
mentation, we have to consider usage of strict inequalities with a great care.
It is questionable whether the modeling advantages of strict inequalities out-
weigh the costs of sampling analysis.

To increase understanding of the relation between dense time models and
sampled implementations, we propose to study dense time formalisms which
allows us to disregard a concrete sampling rate at modeling time (i.e., some
systems may need finer sampling rate than others) and always allows for sam-
pling. Are there such formalisms? If yes, what are their properties?

Counter automata earned their importance by being a simple yet power-
ful extension of finite automata. Further investigation of R-automata proper-
ties would develop tools for understanding the nature of cyclic behaviors in
finite state systems. For instance, decidability of limitedness for alternating
R-automata is an open problem. An alternating R-automaton might contain
states for which computations continuing to all successors have to use the
counters in a bounded way.

36

Communicating Timed Automata.

Channel systems were extensively investigated earlier in an asynchronous set-
ting, where individual machines could infer timing information about other
machines only from the received messages. In this thesis, we have shown that
time synchronization, i.e., common knowledge of global time, makes channel
systems more expressive and by this also more difficult to verify. Interestingly,
dense time does not contribute to the qualitative (untimed) expressive power
as all results can be obtained even with synchronization on integer timepoints
(discrete time) only.

Classical results for channel machines show that giving a finite feedback
from the receiver to the sender makes this model Turing complete. Finiteness
of the feedback means that the receiver can repeatedly send binary informa-
tion, which is received instantaneously. We have shown that the amount of
information exchanged between the automata implicitly by running in a syn-
chronous setting is smaller than what can be achieved by a finite feedback.
This allowed us to develop a procedure which answers several verification
questions such as reachability and boundedness for channel systems with the
simplest non-trivial topology – one sender and one receiver. On the other hand,
unidirectional communication between three timed automata increases the ex-
pressive power to recursively enumerable languages.

The analysis of hard real-time control systems where several computational
processes communicate through buffers poses a challenge for real-time ver-
ification. A plausible solution requires development of the theoretical back-
ground as well as implementation of scalable methods for analysis of synchro-
nized channel systems. The initial attempt to tackle this problem presented
here is only a first step on this way and leaves many questions open.

The fact that the negative results from asynchronous setting transfer to
timed setting means that there are only two other topologies left for which
the expressiveness is not known. The first one contains three automata, two
senders and one receiver listening to both of them. The other one consists of
one sender and two receivers, where the sender transmits to both listeners.
More decidability results may be obtained if we restrict ourselves to messages
of one type and study cyclic topologies. Another direction is to determine the
exact role of the urgent reading for the expressive power of communicating
timed automata.

37

5. References

[1] Y. Abdeddaïm and O. Maler. Job-shop scheduling using timed automata. In

CAV’01: Proceedings of the 13th International Conference on Computer Aided

Verification, volume 2102 of Lecture Notes in Computer Science, pages 478–

492. Springer-Verlag, 2001.

[2] Y. Abdeddaïm and O. Maler. Preemptive job-shop scheduling using stopwatch

automata. In TACAS’02: Proceedings of the 8th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, volume

2280 of Lecture Notes in Computer Science, pages 113–126. Springer-Verlag,

2002.

[3] K. Altisen, G. Gössler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A

framework for scheduler synthesis. In RTSS’99: Proceedings of the 20th IEEE

Real-Time Systems Symposium, pages 154–163. IEEE Computer Society Press,

1999.

[4] K. Altisen and S. Tripakis. Implementation of timed automata: An issue of

semantics or modeling? In FORMATS’05: Proceedings of the 3rd International

Conference on Formal Modelling and Analysis of Timed Systems, volume 3829

of Lecture Notes in Computer Science, pages 273–288. Springer-Verlag, 2005.

[5] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Jour-

nal of Information and Computation, 104(1):2–34, 1993.

[6] R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP’90:

Proceedings of the 17th International Colloquium on Automata, Language and

Programming, volume 443 of Lecture Notes in Computer Science, pages 322–

335. Springer-Verlag, 1990.

[7] R. Alur and D. L. Dill. A theory of timed automata. Journal of Theoretical

Computer Science, 126(2):183–235, 1994.

[8] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 43(1):116–146, 1996.

[9] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,

41(1):181–204, 1994.

[10] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In

SFM-RT’04: Proceedings of the 4th International School on Formal Methods for

the Design of Computer, Communication and Software Systems: Real Time, vol-

ume 3185 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag,

2004.

39

[11] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES: a tool

for schedulability analysis and code generation of real-time systems. In FOR-

MATS’03: Proceedings of the 1st International Workshop on Formal Modelling

and Analysis of Timed Systems, number 2791 in Lecture Notes in Computer

Science, pages 60–72. Springer-Verlag, 2004.

[12] T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun. Code synthesis for

timed automata. Nordic Journal of Computing, 9(4):269–300, 2002.

[13] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed au-

tomata and digital circuits. In CONCUR’98: Proceedings of the 9th Interna-

tional Conference on Concurrency Theory, volume 1466 of Lecture Notes in

Computer Science, pages 470–484. Springer-Verlag, 1998.

[14] B. Berthomieu and M. Diaz. Modeling and verification of timed dependent

systems using timed petri nets. IEEE Transactions on Software Engineering,

17(3):259–273, 1991.

[15] M. Bojańczyk and T. Colcombet. Bounds in omega-regularity. In LICS’06:

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science,

pages 285–296. IEEE Computer Society Press, 2006.

[16] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal

of the ACM, 30(2):323–342, 1983.

[17] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Kluwer Academic Publishers, 1997.

[18] G. Cécé and A. Finkel. Verification of programs with half-duplex communica-

tion. Journal of Information and Computation, 202(2):166–190, 2005.

[19] J. H. Chang, O. H. Ibarra, and A. Vergis. On the power of one-way communica-

tion. Journal of the ACM, 35(3):697–726, 1988.

[20] Z. Chaochen. Duration calculus, a logical approach to real-time systems.

In AMAST’98: Proceedings of the 7th International Conference on Algebraic

Methodology and Software Technology, volume 1548 of Lecture Notes in Com-

puter Science, pages 1–7. Springer-Verlag, 1999.

[21] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of duration. Informa-

tion Processing Letters, 40(5):269–276, 1991.

[22] T. Colcombet and C. Löding. The nesting-depth of disjunctive μ-calculus for

tree languages and the limitedness problem. In CSL’08: Proceedings of the 17th

EACSL Annual Conference on Computer Science Logic, volume 5213 of Lecture

Notes in Computer Science, pages 416–430. Springer-Verlag, 2008.

[23] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The

element of surprise in timed games. In CONCUR’03: Proceedings of the 14th In-

ternational Conference on Concurrency Theory, volume 2761 of Lecture Notes

in Computer Science, pages 144–158. Springer-Verlag, 2003.

40

[24] D. D’Souza. A logical characterisation of event recording automata. In

FTRTFT’00: Proceedings of the 6th International Symposium on Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, volume 1926 of Lecture Notes

in Computer Science, pages 240–251. Springer-Verlag, 2000.

[25] C. Ericsson, A. Wall, and W. Yi. Timed automata as task models for event-

driven systems. In RTCSA’99: Proceedings of the 6th International Workshop

on Real-Time Computing and Applications Symposium. IEEE Computer Society

Press, 1999.

[26] T. A. Henzinger F. Cassez and J.-F. Raskin. A comparison of control problems

for timed and hybrid systems. In HSCC’02: Proceedings of the 5th Interna-

tional Workshop on Hybrid Systems: Computation and Control, volume 2289 of

Lecture Notes in Computer Science, pages 134–148. Springer-Verlag, 2002.

[27] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis us-

ing two clocks. In TACAS’03: Proceedings of the 9th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, number

2619 in Lecture Notes in Computer Science, pages 224–239. Springer-Verlag,

2003.

[28] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis of

fixed-priority systems using timed automata. Journal of Theoretical Computer

Science, 354:301–317, 2006.

[29] E. Fersman and W. Yi. A generic approach to schedulability analysis of real-

time tasks. Nordic Journal of Computing, 11(2):129–147, 2004.

[30] A. Finkel and P. McKenzie. Verifying identical communicating processes is un-

decidable. Journal of Theoretical Computer Science, 174(1-2):217–230, 1997.

[31] A. Göllü, A. Puri, and P. Varaiya. Discretization of timed automata. In CDC’94:

Proceedings of the 33rd IEEE Conference on Decision and Control, pages 957–

958, 1994.

[32] O. Grinchtein. Learning of Timed Systems. PhD thesis, Uppsala University,

Department of Information Technology, 2008.

[33] K. Hashiguchi. Limitedness theorem on finite automata with distance functions.

Journal of Computer and System Sciences, 24(2):233–244, 1982.

[34] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata? Journal of Computer and System Sciences, 57(1):94–124,

1998.

[35] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies

for real-time systems. In POPL’91: Proceedings of the 18th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 353–366,

New York, NY, USA, 1991. ACM Press.

[36] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

ICALP’92: Proceedings of the 19th International Colloquium on Algorithms

Languages and Programming, volume 623 of Lecture Notes in Computer Sci-

ence, pages 545–558. Springer-Verlag, 1992.

41

[37] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-

ing for real-time systems. Journal of Information and Computation, 111(2):193–

244, 1994.

[38] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time

systems. IEEE Transactions on Software Engineering, 12(9):890–904, 1986.

[39] F. Jahanian and A. K. Mok. Modechart: A specification language for real-time

systems. IEEE Transactions on Software Engineering, 20(12):933–947, 1994.

[40] D. Kirsten. Distance desert automata and the star height problem. Informatique

Theorique et Applications, 39(3):455–509, 2005.

[41] R. Koymans. Specifying real-time properties with metric temporal logic. Real

Time Systems, 2(4):255–299, 1990.

[42] P. Krčál, L. Mokrushin, P. S. Thiagarajan, and W. Yi. Timed vs. time triggered

automata. In CONCUR’04: Proceedings of the 15th International Conference

on Concurrency Theory, volume 3170 of Lecture Notes in Computer Science,

pages 340–354. Springer-Verlag, 2004.

[43] P. Krčál and R. Pelánek. On sampled semantics of timed systems. In

FSTTCS’05: Proceedings of the 14th International Conference on Foundations

of Software Technology and Theoretical Computer Science, volume 3821 of Lec-

ture Notes in Computer Science, pages 310–321. Springer-Verlag, 2005.

[44] P. Krčál and W. Yi. Decidable and undecidable problems in schedulability

analysis using timed automata. In TACAS’04: Proceedings of the 10th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis

of Systems, volume 2988 of Lecture Notes in Computer Science, pages 236–250.

Springer-Verlag, 2004.

[45] H.-H. Kwak, I. Lee, A. Philippou, J.-Y. Choi, and O. Sokolsky. Symbolic

schedulability analysis of real-time systems. In RTSS’98: Proceedings of the

19th IEEE Real-Time Systems Symposium, pages 409–418. IEEE Computer So-

ciety Press, 1998.

[46] K. G. Larsen, P. Petterson, and W. Yi. UPPAAL in a nutshell. Journal on Software

Tools for Technology Transfer, 1(1-2):134–152, 1997.

[47] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[48] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[49] N. Lynch and H. Attiya. Using mappings to prove timing properties. In

PODC’90: Proceedings of the 9th annual ACM symposium on Principles of

distributed computing, pages 265–280. ACM Press, 1990.

[50] J. McManis and P. Varaiya. Suspension automata: A decidable class of hybrid

automata. In CAV’94: Proceedings of the 6th International Conference on Com-

puter Aided Verification, volume 818 of Lecture Notes in Computer Science,

pages 105–117. Springer-Verlag, 1994.

42

[51] P. Merlin and D. Farber. Recoverability of communication protocols–

implications of a theoretical study. IEEE Transactions on Communications,

24(9):1036–1043, 1976.

[52] A. K. Mok, D.-C. Tsou, and R. C. M. de Rooij. The MSP.RTL real-time sched-

uler synthesis tool. In RTSS’96: Proceedings of the 17th IEEE Real-Time Sys-

tems Symposium, pages 118–128. IEEE Computer Society Press, 1996.

[53] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and

application. Journal of Information and Computation, 114(1):131–178, 1994.

[54] J. Ouaknine and J. Worrell. Universality and language inclusion for open and

closed timed automata. In HSCC’03: Proceedings of the 6th International Work-

shop on Hybrid Systems: Computation and Control, volume 2623 of Lecture

Notes in Computer Science, pages 375–388. Springer-Verlag, 2003.

[55] J. K. Pachl. Reachability problems for communicating finite state machines.

Technical Report CS-82-12, Department of Computer Science, University of

Waterloo, Waterloo, Ontario, Canada, May 1982.

[56] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential

processes. Journal of Theoretical Computer Science, 58(1-3):249–261, 1988.

[57] I. Simon. Factorization forests of finite height. Journal of Theoretical Computer

Science, 72(1):65–94, 1990.

[58] I. Simon. On semigroups of matrices over the tropical semiring. Informatique

Theorique et Applications, 28(3-4):277–294, 1994.

[59] T. Wilke. Specifying timed state sequences in powerful decidable logics and

timed automata. In FTRTFT’94: Proceedings of the 3rd on Formal Techniques

in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Com-

puter Science, pages 694–715. Springer-Verlag, 1994.

[60] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed

models to timed implementations. In HSCC’04 : Proceedings of the 7th Inter-

national Workshop on Hybrid Systems: Computation and Control, volume 2993

of Lecture Notes in Computer Science, pages 296–310. Springer-Verlag, 2004.

[61] W. Yi. CCS + time = an interleaving model for real time systems. In ICALP’91:

Proceedings of the 18th International Colloquium on Automata, Language and

Programming, volume 510 of Lecture Notes in Computer Science, pages 217–

228. Springer-Verlag, 1991.

[62] S. Yovine. Kronos: a verification tool for real-time systems. Journal on Software

Tools for Technology Transfer, 1(1-2):123–133, 1997.

43

���)
+��(����)���
+,�)-�	����
��������	
��������������������
�������������������
��
�
��������������
�������������������
�
������

����.�&
�/	
0)�
.�
�/	
1)�-��
.�
���	��	
)��
�	�/�.-.2�

�
�.��.�)-
����	��)��.�
��.�
�/	
1)�-��
.�
���	��	
)��
�	�/�.-.2�3
+,,�)-)
+��(�����3
��
�)--�
)
���)��
.�
)
��'	�
.�
,),	��4
�
�	5
�.,�	�
.�
�/	
�.�,-	�	
����	��)��.�
)�	
6	,�
)�
�)7.�
�5	���/
�	�)��/
-�'�)��	�3
5/�-	
�/	
���)��
)-.�	
��
������'�	�
���	��)��.�)--�
�/�.2/
�/	
�	��	�
0�2��)-
�.�,�	/	���(
���)��	�
.�
+,,�)-)
0���	��)��.��
��.�
�/	
1)�-��
.�
���	��	
)��
�	�/�.-.2�4
8���.�
�.
9)�)��3
 **�3
�/	
�	��	�
5)�
,'-��/	�
��	�
�/	
���-	
:�.�,�	/	���(
���)��	�
.�
+,,�)-)
0���	��)��.��
��.�
�/	
1)�-��
.�
���	��	
)��
�	�/�.-.2�;4<

0�����'��.�&
,'-��)��.��44�	
��&�'�&�	&&��()��**�!#

����
����	
�������
�����	����
������
����

	Abstract
	List of Papers
	Comments on my Participation:
	Other Publications

	Acknowledgements
	Sammanfattning på svenska
	1. Introduction
	2. Technical Background
	2.1 Real Time Scheduling
	2.2 Sampling of Dense Time
	2.3 Channel Systems

	3. Results
	3.1 Task Automata
	3.2 Sampled Semantics of Timed Automata
	3.3 Communicating Timed Automata

	4. Conclusions and Future Work
	5. References

