
ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

86

Jan Henry Nyström

Analysing Fault Tolerance for
ERLANG Applications

Dissertation presented at Uppsala University to be publicly examined in Sal 2446, Polacks-
backen, Uppsala, Wednesday, June 3, 2009 at 13:00 for the degree of Doctor of Philosophy.
The examination will be conducted in English.

Abstract
Nyström, J H. 2009. Analysing Fault Tolerance for ERLANG Applications. Acta Universita-
tis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 86.
178 pp. Uppsala. ISBN 978-91-554-7532-1.

ERLANG is a concurrent functional language, well suited for distributed, highly concurrent
and fault tolerant software. An important part of ERLANG is its support for failure recovery.
Fault tolerance is provided by organising the processes of an ERLANG application into tree
structures. In these structures, parent processes monitor failures of their children and are
responsible for their restart. Libraries support the creation of such structures during system
initialisation.
 A technique to automatically analyse that the process structure of an ERLANG application
from the source code is presented. The analysis exposes shortcomings in the fault tolerance
properties of the application. First, the process structure is extracted through static analysis of
the initialisation code of the application. Thereafter, analysis of the process structure checks
two important properties of the fault handling mechanism: 1) that it will recover from any
process failure, 2) that it will not hide persistent errors.
 The technique has been implemented in a tool, and applied it to several OTP library appli-
cations and to a subsystem of a commercial system the AXD 301 ATM switch.
 The static analysis of the ERLANG source code is achieved through symbolic evaluation.
The evaluation is performed according to an abstraction of ERLANG’s actual semantics. The
actual semantics is formalised for a nontrivial part of the language and it is proven that the
abstraction of the semantics simulates the actual semantics.

Keywords: formal methods, symbolic evaluation, fault tolerance, erlang

Jan Henry Nyström, Division of Computer Systems, Box 337, Uppsala University,
SE-751 05 Uppsala, Sweden

© Jan Henry Nyström 2009

ISSN 1104-2516
ISBN 978-91-554-7532-1

urn:nbn:se:uu:diva-101975 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-101975)

Printed in Sweden by Universitetstryckeriet, Uppsala 2009.

Distributor: Uppsala University Library, Box 510, SE-751 20 Uppsala
www.uu.se, acta@ub.uu.se

to my family and friends, they know who they are

Contents

1 Introduction . 1

1.1 Background . 1

1.2 Problem . 3

1.3 Fault Tolerance . 4

1.3.1 Fault Models . 6

1.3.2 Model of Distributed Computation 8

1.3.3 Erlang’s Computational and Fault Model 8

1.4 ERLANG . 9

1.5 In this thesis . 10

1.6 Contributions . 11

1.7 Related work . 11

1.7.1 Model extraction . 11

1.7.2 Analysis of ERLANG . 12

1.7.3 Semantics . 15

1.8 Overview . 16

1.9 Publications by the Author . 17

2 ERLANG . 19

2.1 History and Usage . 19

2.1.1 History . 19

2.1.2 Usage . 20

2.1.3 Alternative ERLANG Implementations 21

2.2 Basic Language . 21

2.2.1 Data Types . 22

2.2.2 Matching . 24

2.2.3 Modules . 24

2.2.4 Functions . 25

2.2.5 Conditionals . 27

2.2.6 Variable Scopes . 27

2.2.7 List Comprehensions . 28

2.2.8 Exceptions . 29

2.3 Concurrency, Distribution and Fault Detection 30

2.3.1 Communication . 30

2.3.2 Process Handling . 30

2.3.3 Failure Detection . 31

2.4 Behaviours . 31

2.4.1 Application . 32

2.4.2 Supervisor . 33

2.4.3 Generic Event Handler . 34

2.4.4 Generic Finite State Machine . 34

2.4.5 Generic Server . 34

2.4.6 Supervisor Bridge . 35

3 Analysis of Failure Recovery . 37

3.1 Supervision structures . 37

3.1.1 The Extracted Supervision Structure 38

3.2 The Effect of Failures on the Supervision Structure 39

3.3 Essential Properties . 43

3.3.1 Analysis of the Repair Property . 43

3.3.2 Analysis of the Non Concealment Property 45

3.4 Design Conventions . 47

3.5 Adherence to Specification . 48

4 Semantics . 49

4.1 Overview . 49

4.2 Core Erlang . 51

4.2.1 Modules . 52

4.2.2 Expressions . 53

4.2.3 Normal Form . 59

4.3 Formal Semantics . 60

4.3.1 Global Context and Resources . 60

4.3.2 Abstract Machine . 62

4.3.3 Dynamic Behaviour . 63

4.4 Domains . 63

4.5 Auxiliary Functions . 67

4.6 Transition Rules . 71

4.6.1 Normal Termination . 71

4.6.2 Variables and Literals . 72

4.6.3 Compound Expressions . 72

4.6.4 Funs . 73

4.6.5 Binding Expressions . 73

4.6.6 Sequencing Expressions . 74

4.6.7 Conditional Expressions . 74

4.6.8 Function Expressions . 75

4.6.9 Exception . 83

4.6.10 Exception Handling . 84

4.6.11 Message Retrieval . 85

5 Abstract Semantics . 89

5.1 Abstract Semantics . 89

5.2 Auxiliary Functions . 90

5.3 Approximation of Function Calls . 91

5.4 Conditional Expressions . 91

5.5 Function Expressions . 92

5.5.1 Apply . 92
5.5.2 Call . 92

5.6 Message Retrieval . 93
5.7 Relation between the Abstract and Concrete Configuration 94

5.7.1 Abstraction relation . 94
5.8 Proof of Simulation . 99

5.8.1 Lemmas . 100
5.9 Transition Rules . 103

5.9.1 Stuttering . 103
5.9.2 Normal Termination . 104
5.9.3 Simple Expressions . 104
5.9.4 Compound Expressions . 105
5.9.5 Funs . 106
5.9.6 Binding Expressions . 107
5.9.7 Sequencing Expressions . 108
5.9.8 Conditional Expressions . 109
5.9.9 Function Expressions . 111
5.9.10 Exception . 117
5.9.11 Exception Handling . 119
5.9.12 Message Retrieval . 121

6 Process Structure Extraction . 127
6.1 Background . 127
6.2 From Abstract Semantics to Extraction 127
6.3 Extraction Parameters . 136

6.3.1 Setup . 136
6.3.2 Evaluation Depth . 136
6.3.3 Global State . 137
6.3.4 Exception Handling . 139

6.4 Limitations . 140
7 Experiments . 141

7.1 Setup . 141
7.2 Results and Conclusions . 142
7.3 Extended Example: Os_mon . 145

8 Thesis Summary . 149
8.1 Summary . 149
8.2 Conclusions . 150
8.3 Further Work . 151

Acknowledgements . 153
Bibliography . 155

1. Introduction

This introductory chapter presents the background, goals and contributions of
this thesis as well as a description of the design decisions made along the way
towards achieving the goals. Finally, an overview of the thesis is given.

1.1 Background

The increasingly pervasive dependence on computers in modern society
makes it is increasingly important that these systems are dependable. Not
only do we wish that the highly critical systems, such as flight control
systems and control software for (nuclear) power plants [Rushby 1994],
behave dependably but also other systems where great monetary value is at
stake.
An example of systems that are not highly critical, yet it is important that

they are dependable, are telecommunication systems. Such systems are ex-
pected to provide continuous service around the clock, year in and year out.
Telecommunication systems, such as telephone switches, are in many cases
expected to have less than half a minute of down time in a year [Kuhn 1997],
even including time for upgrades and service.
By a dependable system is meant a system that we can depend on to behave

in an appropriate manner, both during normal circumstances and when some
form of fault has occurred, either in the software or the hardware. The no-
tion of dependability may also include that the system behaves appropriately
even under workloads exceeding the largest workload the system can handle,
perhaps with downgraded performance.
Four means of achieving dependability are fault prevention, fault tolerance,

fault removal and fault forecasting [Laprie 1995]. The notion of fault pre-
vention is closely connected to general system engineering. Fault forecasting
deals with the evaluation of the system by predicting the likelihood of a failure
and its effect.
Fault tolerance involves three stages, first the system must detect that there

is an error, whereupon it must diagnose the cause of the error in order to per-
form the correct error recovery. The different types of error recovery that can
be performed are: backward recoverywhere the system is restored to an earlier
error free state; forward recoverywhere the erroneous state is transformed into
a new error free state, from which the system can continue to operate (though

1

the continued operation may be degraded in a mode); compensationwhere the
erroneous state contains enough redundancy to calculate an error free state.
The purpose of fault removal is to minimise the number of remaining

errors in the design and realisation of the system, by verification of
properties derived from the specification, called verification conditions
in [Cheheyl et al. 1981]. Should the properties not hold, the reason
is diagnosed and the system is corrected. After the system has been
corrected, regression verification is performed to ensure that the correction
did not break any previously verified properties. The verification may
either be a verification in the sense used in the field of formal methods
[Rushby 1994, Clarke and Wing 1996], or a validation through code
inspection [Mills et al. 1987] and testing [Beizer 1990]. In the case of formal
verification, this constitutes proof of partial program correctness that can
either be performed on the actual system or a model of the system.
These four methods can be combined to create dependable system as fol-

lows. Through adhering to good software engineering principles we ensure
fault prevention. To further minimise the possible errors in the construction
of the system we verify the system against its specification according to fault
removal. To ensure that the verification conditions, derived from the specifi-
cation and used in fault removal are sufficient, we use fault forecasting to de-
termine how likely and damaging errors are. In the firm conviction that faults
may yet occur, if nothing else through hardware failure, we use fault tolerance
to handle the faults occurring during system operation.
One might say that constructing a dependable system is an iterative process,

since to ensure that the system is fault tolerant we have to add error detection,
diagnosis and recovery to the system. This fault handling subsystem must in
turn be fault tolerant. In order to simplify the design of fault tolerant software,
as well as perform fault prevention and fault removal, it is desirable to have
libraries supporting the implementation of fault tolerance. Of course, there
remains the task of ensuring that the libraries are fault tolerant and that the
library facilities are properly used.

ERLANG is a language which has been designed to facilitate
the implementation of distributed and fault tolerant software. The
language has been used successfully in several commercial applications
[Blau et al. 1999, Mullaparthi 2005, Stenman 2006] which place rigorous
demands on dependability, in that they must have the high availability
normally demanded of telecommunication applications. ERLANG, which
is concurrent as well as distributed, supports error detection through
an exception construct and the ability to link processes. These links are
bidirectional: should one of the linked processes fail, the other process
linked to it will be informed. The diagnosis and recovery from an error is
supported by system libraries realising design patterns common in concurrent
distributed systems.

2

To perform fault removal on an ERLANG system one can, and indeed
should, always use testing and statistical testing [Thévenod-Fosse et al. 1995]
to measure the success of the fault removal. However, testing the fault
tolerance aspects of the system is always tricky and testers have to depend
on some form of fault injection [Powell et al. 1995]. Should the system be
distributed the matters are even worse, since testing in a distributed system
[Schütz 1995] is difficult and resource intensive.
A complementary technique to testing the system is the use of formal anal-

ysis of the fault tolerance properties of the system, such as whether the system
will recover from a failure in one of its processes. When trying to analyse
the system it is preferable, on two accounts, to analyse a model of the sys-
tem as opposed to the source code of the system. The analysis can be clearer
since the majority of the system not dealing with the fault handling can be
abstracted away, and it helps to keep the analysis tractable. For large systems
it is impracticable and error prone to construct a model by hand. On the other
hand is it hard to automatically extract a model of something as intricate as a
large distributed system. In the case of ERLANG, there is a natural solution to
these problems: the model of the libraries supporting fault handling are man-
ually constructed, and the model extraction of the remainder of the system is
performed automatically. The effort of modelling the supporting libraries by
hand, amortised over all the different systems analysed, is quite acceptable.

1.2 Problem
The main problem we address in this thesis is:

Given a specific implementation of an ERLANG application, automatically de-

termine the fault tolerance properties of that application.

To succeed with this task we are confronted with a number of questions:

Which fault model should the analysis consider in the context of ERLANG

applications, i.e, what type of faults should it be able to handle, and what
should handling entail?
Which properties concerning fault tolerance in ERLANG applications are
of interest? An example property is: if there is a persistent fault, how many
times does the system try to recover before failing.
Which fault tolerance properties of an ERLANG application can be auto-
matically determined? The assumptions we make about the system struc-
ture and design will greatly influence what properties we can determine. It
is therefore vital that it is clearly stated what assumptions are made, and to
motivate the choice in view of the alternative sets of assumptions that could
be made.

3

What is the appropriate formal model to use when reasoning about ER-
LANG applications? The ERLANG application executes in a concurrent and
possibly distributed environment. The application can itself consist of a
number of processes which can be spread over several ERLANG-nodes. In
order to be able to reason formally about an ERLANG application we must
have a formal model of its environment.
We have to decide what type of formal semantics to use as a model of ER-
LANG and its environment. The choice of semantics will determine what
precision we can attain, and how hard it will be to reason about the correct-
ness of our analysis.
What analysis techniques should be used to determine the fault tolerance
properties of ERLANG applications? The possible techniques have different
properties with respect to the computational resources they require, as well
as their difference in strengths when it comes to showing properties.
How should the fault tolerance properties of an ERLANG application best
be presented? In order for the results of the analyses to be of use they have
to be presented in a clear way, so that a user of the analysis results can
understand why the application has this property. It likewise important to
present the places where the analysis can not determine what the properties
are, so that even partial results have a potential use.

In this thesis I present techniques to extract the fault tolerance model of an
ERLANG system automatically, as well as manually constructed model of the
supporting libraries. I will further formulate relevant fault handling properties
and present an automated analysis of the fault handling models, with example
applications to commercial distributed dependable systems.
We will continue by presenting an outline of the areas we will touch on in

order to answer these questions. First we will look at fault tolerance, explain-
ing the basic concepts and establishing the terminology used in this thesis.
Then the ERLANG language with supported libraries and design principles are
positioned within the field of fault tolerance. The chapter ends with a detailed
listing of the contributions made by the author in this thesis.

1.3 Fault Tolerance

The aspect of dependability examined in this thesis is the behaviour of the
system when some fault has occurred, known as fault tolerance. What is the
appropriate response to a fault differs between systems and what type of fault
has actually occurred. Let us begin by looking at some examples of the differ-
ent approaches used to provide fault tolerance:

The simplest form of fault treatment is to simply stop the system, but few
industrial or embedded systems can allow the system to stop.
In order to allow a graceful degradation [Herlihy and Wing 1991],
one may let unaffected parts of the system continue once the affected

4

parts are stopped. To actually determine what other parts of a system
are affected by a fault in one component or subsystem is a lively
research topic in its own right, see [Sampath et al. 1995]. This
can be helped by grouping functionality into components together
with error detection mechanisms forming self-checking component
[Yau and Cheung 1975, Laprie et al. 1990], which enables clearly defined
error containment areas [Siewiorik and Swartz 1982].
In some systems one can not allow the system to continue after a fault, but
the system, or what it controls, must be left in a safe state. This is called
fail-safe fault tolerance [Gärtner 1999]. An example of such a system is
the Ariane 5 ground control system [Dega 1996], which could handle the
failure of one component but stopped in a safe state when two components
failed. The term fail-safe is also used differently in [Laprie et al. 1990],
where it denotes a system where only benign faults may occur.
The Ariane 5 ground control system, also exhibits an example of redun-
dancy, where there are two or more components to perform the same task.
When one of the components suffers a fault it is simply stopped and it is up
to the remaining components to perform the task. Ideally the fault should
not be detectable by an outside observer.
The redundant parts may be different physical objects, such as chips or
computers, or software entities, such as databases or sub-systems. The re-
dundant parts may even be the design or algorithm implemented, where if
a fault is detected one changes to a different implementation, possibly even
an earlier version of the same part. This change may impair the perfor-
mance of the system, and we have yet again a case of graceful degradation.
The use of redundant components can also be used to achieve detection of
errors where all the components perform the assigned task and their results
are compared for discrepancies (using comparators and voters). Another
form of organisation of redundant components is the method of fail-stop
processors [Schlichting and Schneider 1983] where components that de-
tect internal faults simply stop in a way detectable from the outside, i.e.,
by the other fail-stop processors and the higher system levels. One com-
monly used example of this use of redundancy is N-version programming
[Aviziensis 1985].
An interesting notion is that of self-stabilising [Schneider 1993a,
Dijkstra 1974] systems which recover from any perturbations of their
internal state although the error persists until the correct internal state
has been restored. This would mean that the system can handle any
transient fault. It is however hard to construct or indeed verify such a
system [Theel and Gärtner 1998]. One implementation of a self-stabilising
algorithm in a commercial system is the SunSCALR framework for fault
tolerance and load balancing, as described by [Singhai et al. 1998].

I will proceed to define some of the basic terminology and the fault model we
will assume together with the computational model.

5

The most basic notion is that of a fault pertaining to the lowest form of
abstraction, e.g., a memory cell that always returns the value 0 [Jalote 1994]
or a division by zero. The fault may lead to an error which is an incorrect
internal state of the system, which in turn may lead to a failure. A failure is
the state where the system fails to fulfil its specification.
We will in this thesis use slightly different terminology, fault has the usual

meaning but an error is when the system, or any of its components, fails to
fulfil its specification. A failure occurs when a process terminates abnormally,
and when the root process of a supervision structure fails we will say that the
supervision structure fails. The reason for this choice of terminology is that it
conforms to the terminology prevalent in the ERLANG community.
Fault tolerance contains two necessary parts, error detection and recovery,

even if it is a moot point whether the decision just to fail constitutes error
recovery. There are three distinct forms of recovery [Laprie 1995]:

Backward recovery where the system is restored to an earlier error free state,
which may necessitate that check point states are saved. This recovery
method has the advantage that we know that, if the detection works cor-
rectly, there exists an error free previous state and we need not diagnose
the error. The disadvantage is that we may lose information added since
the last check point.

Forward recovery where the erroneous state is transformed into a new error
free state, this does not require check points but it is likely that diagnosis
of the error is necessary is to determine how to perform the state trans-
formation. Removing one of the redundant components in N-version
programming is an example of forward recovery.

Compensation where the erroneous state contains enough redundancy to cal-
culate an error free state. There is one application of compensation that
actually deviates from the normal detection and recovery scenario, fault
masking where the recovery action is performed in each step without
any detection. In systems where state is complex the cost of fault mask-
ing would probably be prohibitive.

It is easy to assume that the three forms of recovery are mutually exclusive, but
in fact they can easily be combined in any fashion. One can imagine a system
that will rely on compensation if there is enough redundancy to restore the
state, then if that fails resorts to forward recovery unless the diagnosis fails, in
which case it performs backward recovery.

1.3.1 Fault Models

There is a number of hierarchical taxonomies for fault models in which tech-
niques for fault handling are organised according to the end result of the sys-
tem [Schneider 1993b, Cristian 1991], common ones are:

6

crash fault model where the entire system simply stops;

fail-stop fault model which behaves in the same manner as crash fault model
but the stopping of a subsystem is visible to the other parts of the sys-
tem;

Byzantine fault model where the subsystem may behave in any way, includ-
ing malevolently.

In [Gärtner 1999] is proposed an alternative way of classifying fault tolerance
into four different forms, where the discriminating factor is which type
of properties the system preserves. The categories of properties follow
[Lamport 1977] those of safety and liveness. Informally, a safety property
states that nothing bad will happen, and a liveness property states that
something good will happen eventually.
The four forms of fault tolerance proposed by [Gärtner 1999], obtained

by dividing them depending on what type of properties they preserve after
a fault, are presented in Table 1.1. The masking fault tolerance, where we
have progress in the system and the system never violates its specification, is
the desired form. The masking fault handling, which is totally transparent to
an external observer, is of course the hardest to achieve. The easiest form is
of course none where no type of properties are preserved and is not so much
fault tolerant as fault intolerant. The two intermediate forms are of more inter-
est; fail safe fault tolerance was mentioned already in Section 1.1, and is quite
common in safety critical systems where breaking the specification is much
more serious than stopping altogether.

live not live

safe masking fail safe

not safe non-masking none

Table 1.1: Gärtner’s four forms of fault tolerance

The final form of fault tolerance, non-masking, where the system, after violat-
ing the safety properties during fault handling, returns to normal execution is
for us the most interesting, although it is claimed in [Gärtner 1999] that:

For a long time nonmasking fault tolerance has been the “ugly duckling” in

the field, as application scenarios for this type of fault tolerance are not readily

visible (some are given by [Arora et al. 1996] and by [Singhai et al. 1998]).

I would like to differ on this point, there is a large class of soft real time
systems performing a large number of similar tasks, where it is more impor-
tant that the vast majority are handled correctly and in time, but where a few
tasks may fail completely. An example of such an area is telephone switching

7

where one talks about the telecommunication four nines, i.e., 99.99% avail-
ability of the systems. These systems must be up and running continuously,
and must serve the vast majority of calls correctly, but the call in ten million
that fails, may do so completely, as long as it does not disturb the handling of
the 9’999’999 other calls. Another area for which this holds most of the time
is internet services, where we may be annoyed upon failing to load a page, but
the unavailability of the server may prove disastrous to the provider.

1.3.2 Model of Distributed Computation

To be able to reason about fault tolerance properties of a concurrent, or in-
deed distributed, system one has to specify the computational model used.
The computational model will have direct impact on the level of error detec-
tion that is possible.
Some of the aspects are: network topology, atomicity of actions, commu-

nication primitives available and how the individual processes are modelled.
One important aspect is their notion of real time, i.e., if there exist any real
time bounds on execution, message transmission and process response time.
If no assumptions are made concerning real time bounds the models are

called asynchronous [Schneider 1993b, Lamport and Lynch 1990]. The asyn-
chronous model is the weakest, i.e., that every system can be modelled as
asynchronous or as [Schneider 1993b] also calls them: non-assumption. The
result is that if you can show something using an asynchronous model it will
hold under any other consistent assumptions. Its has been argued that the
asynchronousmodel should also be good practise [Chandra and Toueg 1996],
since for many real systems it is extremely difficult to state any assump-
tions concerning real time behaviour. There is however a price for using this
model, it is not possible to detect a crashed process in an asynchronousmodel
[Chandy and Misra 1986].
There are of course models between the synchronous, where all bounds are

known, and the asynchronous where no bounds are known, these models are
known as partially synchronous [Lynch 1996, Dolev et al. 1987].

1.3.3 Erlang’s Computational and Fault Model

In the case of ERLANG, fault tolerance when a failure is reached is clearly non-
masking and can be categorised as the fail-stop fault model. This is hardly sur-
prising, as ERLANG was developed to implement telecommunication systems,
and as I have argued, non-masking fault tolerance is suited to these systems.
The form of error recovery, or rather failure recovery, advocated by the ER-

LANG documentation is a form of backward recovery. The reset to an earlier
state is performed by shutting down all the affected processes and restarting
them, resetting them to the initial state with the exception of data stored in per-
sistent storage such as the distributed database Mnesia [Mattsson et al. 1999].

8

When it comes to computational model, ERLANG has no fixed topology and
the only objects for which atomicity is implemented are the messages which
are received whole and in the same order as sent when originating from the
same sender. The communication primitives consist of asynchronous point-
to-point message passing.
The issue of synchrony is less easily decided, the obvious option is the asyn-

chronous model, but that is however inappropriate since the ERLANG way of
fault tolerance relies on the ability to determine that a process has crashed. The
underlying ERLANG runtime system relies on a heart-beat mechanism to de-
tect that another node can no longer be reached, so the appropriate synchrony
is the partially synchronous model where there is a definite upper bound on
the time before a process is notified that a linked process has failed.

1.4 ERLANG

ERLANG is a concurrent functional language, especially tailored for
distributed and fault tolerant software, e.g., in telecommunication
applications [Armstrong et al. 1996, Armstrong 2007].
Prominent features of ERLANG include support for light-weight processes,

asynchronous message passing, and fault handling as integral parts of the
language. The Open Telecom Platform (OTP) [Torstendahl 1997] provides a
number of libraries which support program design patterns that commonly
occur in concurrent distributed software. Examples of such patterns, called
“behaviours” in OTP, are event handlers, generic servers, and finite state ma-
chines.
The ERLANG language supports implementation of failure recovery by a

mechanism in which links can be created between processes. When a process
fails, all processes linked to it are notified, and can react either by failing them-
selves (thereby informing other linked processes), or by initiating a recovery
action such as restarting a copy of the failed process.
The supervisor behaviour in OTP is used to program processes which mon-

itor a set of children. Using links, a supervisor is notified about failures of
its children, and can then restart new copies of failed children, possibly af-
ter some cleanup operations. The “best practice” when designing ERLANG

systems is to organise all processes of the ERLANG system into supervision
structures, i.e., trees of processes in which parent processes supervise their
children [Armstrong 2003, Armstrong 2007].
The failure recovery mechanisms in ERLANG and OTP can be seen as a way

to catch exceptions caused by some anomalous condition in a process: this
makes it possible to write clear code for each process, which is not obscured
by defensive code. When using such a style of programming, it is important
to ascertain that the global process structure of the system is set up in such a
way that it recovers from arbitrary process failures. This can be done by ex-

9

tracting the process structure, and thereafter inspecting it to analyse the effect
of any particular process failure, saying which processes will be affected and
determining whether the process structure will be restored after recovery.
Currently, to obtain the process structure of an application, one must rely

on external documentation or manual inspection of the source code. How-
ever, it is nontrivial to extract the process structure from source code since an
ERLANG program is structured according to modules and functions, whereas
process creation and communication may occur anywhere in the code, and
since the created process structure is not unique; it may depend on the system
environment and configuration parameters.

1.5 In this thesis

In this thesis, we present a technique for automatically detecting deficiencies
in the failure recovery mechanism of ERLANG applications which are due to
improperly designed supervision structures. The technique is structured into
two phases.

The set of possible process structures is extracted by static analysis of the
source code. More precisely, we extract an overapproximation of the set
of possible static parts of process structures by symbolically executing the
initialisation code of the application. By “the static part” we mean the pro-
cesses started when the application is started and which are to remain run-
ning (possibly restarted to handle failures) until the application terminates.
The extraction assumes that the OTP libraries are used in the recommended
way to set up the process structure; otherwise the precision will be poor.
Each extracted process tree is analysed to determine the effect of process
failures. We present a technique to determine the effect of a particular pro-
cess failure on the entire process structure, which shows which processes
will be terminated and restarted and whether the structure itself is restored
to the situation before the failure.

In addition to providing sufficient information for analysis, the extracted pro-
cess structure is also of independent interest; it can be presented to the de-
signer for visual inspection, with the possibility to choose different views de-
pending on the information sought. As an example, the parts of the application
that are affected by an abnormal process termination can be visualised.
I have implemented the techniques in this thesis in a tool, which extracts

sets of possible process static structures from source code, and which auto-
matically checks the effects of a process failure in each process structure. The
tool can also check that principles for the construction of “good” supervi-
sion structures are followed. If the principles are not followed strictly, the tool
can check the effects of process failures; this is useful when analysing legacy
code applications, which may not have been designed using current design

10

principles. We have applied the tool to several OTP-library applications and a
subsystem of the AXD 301 ATM switch [Blau et al. 1999].

1.6 Contributions

The main contributions of this thesis are the following:

A detailed presentation of fault tolerance methods advocated by the OTP
documentation to be employed in ERLANG applications.
A formulation of the key properties, regarding fault tolerance, of ERLANG

applications, together with techniques for automated assessment of these
properties.
An automated method to extract the static part of the supervision structure
from the source code of an ERLANG application, using symbolic execution.
An operational semantics for the sequential part of CORE ERLANG, based
on the semantics of [Carlsson 2001].
A tool implementing the extraction and analysis of ERLANG applications.
Application of the tool to non-trivial commercial applications.

1.7 Related work

We have not found any report of work that performs the same type of analysis
as ours. This could partly be due to the fact that there are few other languages
where failure recovery on the process level is supported by language and li-
brary primitives in the same way as in ERLANG.
Analogous to our extraction of process structures is the extraction of call-

graphs of a program in inter-procedural program analysis (e.g., by Agrawal
in [Agrawal 2000]). There is a relationship, since an argument to a process
creation statement in ERLANG should be the function executed initially by
the created function. A complication in ERLANG is that this function may be
computed in arbitrary ways, making it hard to obtain precision in the analysis.
Our aim is also to some extent related to the area of fault analysis, where

one is also interested in the potential effects of faults in a system component
(e.g., Sampath et al. in [Sampath et al. 1995]). However, most work in this
area assumes that suitable models of system components are given (e.g., as
state machines), and does not address the extraction of these models from
source code.

1.7.1 Model extraction

The extraction of analysable models (e.g., finite state machines) of concurrent
system from source code has recently attracted much attention in the model
checking community. The aim is to extract control skeletons from source code.

11

C
Holzmann extracts Promela models from C with threads in the tools FeaVer
[Holzmann and Smith 2000] and AX [Holzmann 2000], This method relies
on user defined abstractions, i.e. deciding what procedures and variables are
unimportant, and consequently if the user definitions are incorrect executions
that violates the properties under investigation might not be found.

Java and Concurrent ML
An approach similar to Holzmann’s, which does not rely on user definitions,
is applied by Corbett for JAVA [Gosling et al. 1996] in the Bandera project
[Corbett 2000] where shape analysis is used to determine what variables are
only accessible from one thread. A method for the derivation of a finite-state
control skeleton from Concurrent ML [Reppy 1993] programmes, abstracting
values to their types, is presented in [Nielson et al. 1998].

ERLANG

Arts and Earle has investigated translation of ERLANG programs into
μCRL [Blom et al. 2001] models which can be model checked by the
CÆSAR/ALDÉBARAN [Fernandez et al. 2000] tool set. Properties to proved
are specified in alternation free modal μ-calculus and checked against
state spaces generated by the μCRL tool set [Wouters 2001]. A problem
of translating ERLANG into μCRL is that ERLANG requires process
fairness, whereas the parallel composition of μCRL lacks this notion. The
fairness assumptions of ERLANG must be explicitly stated in the correctness
properties. In [Arts and Earle 2001] they investigate a simplified version of a
resource locking mechanism in the AXD 301 ATM switch [Blau et al. 1999].
This has been continued in [Arts et al. 2004a, Arts et al. 2004b].
In [Leucker and Noll 2001] Leucker and Noll has continued this work and

has implemented a prototype distributed model checker and proposes to em-
ploy the ELAN [Borovanský et al. 1998] environment for specifying and pro-
totyping deduction systems as the next step. When using ELAN, they would
have to specify the syntax and semantics of ERLANG in terms of abstract data
types and term rewriting rules similar to that of [Noll 2001]. The use of rewrit-
ing rules enables them to to develop higher level specifications in the same
way as in [Arts and Noll 2001]. The ELAN work is presented in [Noll 2003,
Amiranashvili 2002]. This work with rewriting logics has been continued us-
ing the Maude system [Clavel et al. 2003] in [Neuhäußer and Noll 2007].

1.7.2 Analysis of ERLANG

The analysis of ERLANG programs has received increased attention in the last
years. This can be seen in the steadily increasing number of papers on the
subject.

12

Static Type Analysis
The first attempts made to analyse ERLANG was to derive type information. It
has been the approach with the largest practical impact with the Dialyzer tool
[Lindahl and Sagonas 2004] included in the OTP release.
In [Lindgren 1996] is developed a soft-typing system for ERLANG, where

types are not declared but derived from the code. The constraint solver used
was however deemed to be unsuitable for ERLANG. That was followed by
a paper [Marlow and Wadler 1997] describing another soft-typing scheme, in
which however not all legal ERLANG programs could be typed.
A third soft-typing scheme was presented in [Nyström 2003], where the

type inference is based on data flow with optional user annotations, the in-
tention being that the user would annotate all the interfaces, and warnings
generated for all possible type clashes. The main drawback of this system is
that it tends to generate too many false positives.
A slightly different approach is followed in [Lindahl and Sagonas 2004]

where a data flow analysis is applied to the virtual machine byte code
to derive the possible values of the live variables at each program point.
This type information enables the tool to find: places that would raise
exceptions, unreachable branches, and dead code. The work has be extended
in [Lindahl and Sagonas 2006] to generate success typings. The success
typings, unlike the other soft-typing schemata already described, allows for
compositional bottom up type inference which has been shown to scale well
in practice.
To provide the necessary information to provide optimisations using a new

heap structure and allocation strategy, a variant of escape analysis is presented
in [Carlsson et al. 2006].

Abstract Interpretation
Huch has developed an approach for the formal verification of ERLANG pro-
grammes using abstract interpretation and model checking. In [Huch 1999]
an ERLANG system is viewed as a set of expression evaluations in the context
of the identity of the processes executing the expressions and their message
queues. The abstraction consists of truncating the terms in the expression at
a predefined depth. It is mentioned in the paper how one could tailor the in-
terpretation so that for selected terms the terms are either kept as they are or
truncated at a greater depth. The language used to specify the desired proper-
ties is a linear temporal logic [Manna and Pnueli 1992], expressive enough to
state most interesting properties.
The interpretation can only handle tail recursive programs and does not han-

dle exceptions, links, nor process termination. This work has been extended in
[Huch 2001] where he handles non tail recursive calls, through a technique of
jumps which makes his approach much more realistic for real life programs.
The work has been further extended in [Huch 2003], where a technique to au-
tomatically generate an abstracted finite graph representation of the possible

13

evaluations of a process. This graph is used to model check properties of the
program.
A factor that hinders this method, in its current cast, from handling realistic

applications is that the model checking does not scale to: dozen of processes
and over 50’000 lines of source code of the AXD 301 subsystem analysed in
Chapter 7.

Theorem Proving
The ERLANG Verification Tool(EVT) [Fredlund et al. 2003] is an interactive
proof assistant with an embedding of the language in the proof rules. The
specification logic used [Fredlund 2001] is a first order logic inspired by the
modal μ-calculus [Kozen 1983] and extended with ERLANG-specific features.
The logic is quite powerful, with both least and greatest fix points, allowing
the formalisation of a wide range of behavioural properties. The strength of
the specification language however leaves the verification problem undecid-
able, although normally a considerable parts of a proof can be automatically
produced.
There have been extensions to allow the tool to reason about ERLANG code

on an architectural level, where the specified behaviour of the OTP behaviours
can be characterised by sets of transition rules [Arts and Noll 2001]. This en-
ables the tool to reason about OTP behaviours without having to consider their
concrete implementation.
There are two great differences between this work and my thesis. First that

the proof of properties, using the proof assistant, are very much done by hand
even if most of the tedious details are automated, whereas an analysis by my
tool will performed automatically. When performing an analysis with my tool
one may have to state an initial configuration, such as contents of database ta-
bles, but this constitutes only a small effort. Secondly, with the proof checker
one can prove a wide range of properties, whereas if I were to examine any-
thing else but the fault tolerance aspects of ERLANG, I would have to redesign
the model extraction and the subsequent analysis.

Conditional Term Rewriting Systems
In [Giesl and Arts 2001] it is shown how techniques for analysing termination
of conditional term rewriting systems, can be used to show properties for ER-
LANG programmes. The correctness properties of the query lookup protocol
of the Mnesia distributed database is transformed into a termination problem,
and then it is shown that, using refinement of dependency pairs techniques
[Arts and Giesl 1997], the transformed properties can be proved without man-
ual intervention. The same properties have also been shown to hold using EVT
[Arts and Dam 1999].

14

Model Checking
Wiklander has in [Wiklander 1999] implemented a translation from a finite
state subset of ERLANG to Promela, the specification language of the model
checker SPIN [Holzmann 1991, Holzmann 1997]. The main difficulties were
to translate the dynamic data structures lists and tuples to Promela constructs.
Without a good translation of these basic data structures of ERLANG, it is hard
to translate any program. Another major obstacle was, finding an effective
encoding of ERLANG’s receive statement using Promela’s different style of
message passing.
Another process algebraic model is presented in [Noll and Roy 2005] and

then refined in [Roy et al. 2006]. In these two papers a subset of ERLANG is
translated into asynchronous π-calculus with monadic communication. The
model can be checked using existing tools for π-calculus. The advantage one
gets from using π-calculus as opposed to μCRL used in [Arts et al. 2004a] is
that name passing feature of π-calculus allows the direct representation of the
sending of process ids between processes. The models deal with a subset of
the language and do not handle distribution or concurrency at a level that is
even near what is required to analyse real systems.
A distinctly new approach is examined in [Fredlund and Earle 2006], where

model checking is achieved by running the program being checked in lock step
with an automaton representing a safety property on a new run time system
for ERLANG. The result is a system where everything is ERLANG. The system
was only a prototype with the semantic model not fully completed, lacking el-
ements of the semantics presented in [Claessen and Svensson 2005]. This has
now been extended to support to the entire semantics, including the modeling
of distributed ERLANG as described in [Fredlund and Svensson 2007]. It is
the approach that has most similarities with the techniques used in this thesis.

1.7.3 Semantics

Formal semantics for various subsets of ERLANG have been presented, as well
as rigorous but informal semantics, for the whole language.
A detailed and rigorous account of ERLANG language version 4.7.3 is pre-

sented in [Barklund and Virding 1999], where syntax, semantics and assump-
tions underlying the implementation are explained. There was an earlier sug-
gestion for the development [Barklund 1999] with discussions regarding the
existing semantics of the language.
The Formal Design Techniques group at the Swedish Institute of Computer

Science has defined a succession of formal semantics for subsets of ERLANG

starting with [Dam et al. 1998a, Dam et al. 1998b]. The latest installment of
these semantics is presented in [Fredlund 2001], which is the most complete
formal characterisation of ERLANG today. The semantics is a a layered small
step operational semantics[Plotkin 1981]. The subset of ERLANG contains
most of the language concepts except the notions of modules, distribution and

15

real time. Some parts of the runtime system integral to the language, such as
the possibility to register symbolic names for process identities, are also miss-
ing. This semantics is more comprehensive than mine in that it handles the
concurrency aspects of ERLANG which I do not formally state. On the other
hand I handle modules, all value types and guard functions. The runtime sys-
tem features, such as registering, that I formulate informally are not handled
by Fredlund.
The semantics presented in [Fredlund 2001] has been further expanded in

[Claessen and Svensson 2005], with a layer dealing with the distribution. The
intention is that this will form a basis for future model checkers. This is al-
ready the case where the McErlang, described in [Fredlund and Earle 2006,
Fredlund and Svensson 2007], base its distributed communication on this se-
mantics.
Huch has defined a somewhat different approach for defining semantics in

[Huch 1999], where he relies heavily on contextual information. The result
of this is that he can only compare processes when they are parts of a closed
system. The subset is also much smaller then Fredlund’s.
There is also a definition of the semantics of the sequential fragment of

CORE ERLANG [Carlsson 2001].
The analysis of [Carlsson et al. 2006] is based on a big-step operational se-

mantics that only deals with one process at the time. The state is modelled as
a set of shared terms.

1.8 Overview

The thesis is organised as follows:

Chapter 1: Introduction
The introductory chapter presents the background and a formula-
tion of the questions this thesis tries to address. The chapter then
goes on to briefly present ERLANG and the contributions of this
thesis, and finally a presentation of the related work is given.

Chapter 2: ERLANG

This chapter presents the background of the language, as well as
all the parts of the language relevant to this thesis. A presentation
of the OTP behaviours and their intended use for supervision is
also given.

Chapter 3: Analysis of Failure Recovery Through Supervision Struc-
tures

This chapter presents and motivates the properties to be deter-
mined by the analysis and describes how the analysis is performed
on the supervision structure of an ERLANG application.

16

Chapter 4: Semantics
This chapter presents CORE ERLANG, an intermediate language
used by the OTP ERLANG compiler, and then goes on to give a
semantics for CORE ERLANG.

Chapter 5: Abstract Semantics
This chapter presents an abstraction of the semantics presented in
the previous chapter. This semantics constitutes the basis for the
extraction of the supervision structure of an ERLANG application.

Chapter 6: Process Structure Extraction
This chapter presents the symbolic execution of CORE ERLANG

which is used to extract the supervision structure of an ERLANG

application.

Chapter 7: Experiments
This chapter presents the results of a number of analyses of OTP
library and industrial applications, then a more detailed descrip-
tion of one of the analyses is given.

Chapter 8: Thesis Summary
This chapter summarises the thesis and presents conclusions
drawn from the thesis work and what directions future work can
take.

1.9 Publications by the Author

Of the following publications it is only paper 9. that is directly connected to
this thesis.

1. A Formalization of Service Independent Building Blocks, J. Nyström, B.
Jonsson, Proceedings of the Advanced Intelligent Networks’96 workshop,
ed. T. Margaria, 1996.

2. Creation of Dependent Features, J. Blom, R. Bol, B. Jonsson, J. Nyström,
Proceedings of RadioVetenskap och Kommunikation’96, 1996.

3. A Case Study in Automated Detection of Service Interactions, G. Naeser,
J. Nyström, B. Jonsson, Proceedings of RadioVetenskap och Kommunika-
tion’99, 1999.

4. Building Tools for Creation and Analysis of Telephone Services, G. Naeser,
J. Nyström, B. Jonsson, Proceedings of RadioVetenskap och Kommunika-
tion’99, 1999.

5. On Modelling Feature Interactions in Telecommunications, B. Jonsson,
T. Margaria, G. Naeser, J. Nyström, B. Steffen, Proceedings of the Nordic
Workshop on Programming Theory, eds. B. Victor and W. Yi, 1999.

6. Incremental Requirement Specification for Evolving Systems, B. Jonsson,
T. Margaria, G. Naeser, J. Nyström, B. Steffen, Feature Interactions in

17

Telecommunications and Software Systems VI, eds. M. Calder and E. Mag-
ill, ISO Press, 2000.

7. A formalisation of the ITU-T Intelligent Network standard, J. Nyström,
Licentiate thesis, Department of Information Technology, Uppsala Univer-
sity, Sweden, 2000.

8. Incremental Requirement Specification for Evolving Systems, B. Jonsson,
T. Margaria, G. Naeser, J. Nyström, B. Steffen, Nordic Journal of Comput-
ing, Vol.8, No.1, 2001.

9. Extracting the processes structure of Erlang applications, J. Nyström,
B. Jonsson, Proceedings of the Erlang Workshop in connection with
Principles, Logics, and Implementations of high-level programming
languages(PLI’01), 2001.

10. Evaluating Distributed Functional Languages for Telecommunications
Software, J.H. Nyström, P.W. Trinder, D.J. King, Proceedings of the 2nd

ACM SIGPLAN Erlang Workshop, 2003.
11. Are High-level Languages suitable for Robust Telecoms Software?,

J.H. Nyström, P.W. Trinder, D.J. King, Proceedings of the 24th

International Conference on Computer Safety, Reliability and Security
(SAFECOMP’05), Lecture Notes in Computer Science Vol.3688, 2005.

12. Evaluating High-Level Distributed Language Constructs, J.H. Nyström,
P.W. Trinder, D.J. King, Proceedings of the 12th ACM International Con-
ference on Functional Programming (ICFP), 2007.

13. Priority Messaging made Easy, J.H. Nyström, Proceedings of the 6th ACM
SIGPLAN Erlang Workshop, 2007.

14. High-level Distribution for the Rapid Production of Robust Telecoms Soft-
ware: comparing C++ and Erlang, J.H. Nyström, P.W. Trinder, D.J. King,
Concurrency and Computation: Practice & Experience. Vol.20, Issue 8,
2008.

18

2. ERLANG

In this chapter the ERLANG language is described, together with the OTP
libraries defining behaviours. The chapter begins with a section on the inten-
tions and background of the language, and thereafter describes the language
starting with its sequential parts and ending with its support for distributed
systems. The OTP libraries are described one by one, as well as their intended
use in system design.

2.1 History and Usage

The ERLANG language is primarily intended for the implementation of
telecommunication software, this demanding reliable system with soft real
time properties that can be upgraded while continuing to operate.

2.1.1 History

ERLANG stems from research, within Ericsson, on which language was best
suited for telecommunication applications. The design of ERLANG started in
the late 80’s with an interpreter written in PROLOG [Armstrong et al. 1992a],
that was first presented to the world in 1990 [Armstrong and Virding 1990]1.
Originally the language was a very simple concurrent functional language,
with only those language features deemed necessary for the implementation
of telecommunication applications. Some constructs normally associated with
functional languages, such as functional values (closures), were not present in
the early implementations.
The initial trials within Ericsson were successful [Ödling 1993], but indi-

cated that the language needed to be much more efficient. In order to make
the language more efficient and independent of PROLOG, a new implemen-
tation based on an interpreter written in C [Kernighan and Ritchie 1978] for
an abstract machine JAM (Joe’s Asbtract Machine) [Armstrong et al. 1992b].
The JAM was inspired by WAM [Warren 1983, Aït-Kaci 1990], an abstract
machine for PROLOG [Sterling and Shapiro 1986]. The JAM, in comparison
to WAM, had added primitives for concurrency and exception handling.
Before the release of the commercial version 4.1 in October 1993,

distribution was added as an integral part of language [Wikström 1994].

1For a more detailed history of the language see [Däcker 2000, Armstrong 1997].

19

The development of ERLANG and its supporting libraries continued,
with among other things a distributed real time database named
Amnesia [Nilsson and Wikström 1996], which was renamed as Mnesia
[Mattsson et al. 1999] when it became a product.
With the version 4.4, ERLANG matured a lot and functions were now first

class objects, which could be passed as arguments to functions as well as re-
turned from functions. A syntax for anonymous functions (or lambda expres-
sions as they are often called) had been introduced. Other additions included
records, list comprehensions, macros and the possibility to include files. The
records are only syntactic sugar, which are expanded by a preprocessor stage.
In May 1996 the first prototype version of the Open telecom platform (OTP)

[Torstendahl 1997] was delivered. The OTP system, was designed to sup-
port an open system approach of implementing telecommunication software,
where different technologies, computers, languages, management systems etc.
could cooperate. The OTP system consists of ERLANG with libraries for dis-
tributed application management, release handling, OS resource monitoring,
alarm handling, the distributed database Mnesia, operation and maintenance
interface and HTTP support. An important part is the libraries supporting
common design patterns in telecommunication applications, called behaviours
in OTP terminology.
The work to improve the language has not ceased. In 1992 Hausman started

to work on an implementation that compiled directly to C instead of being in-
terpreted [Hausman 1994], based on the abstract machine BEAM (Bogdan’s
Abstract Machine),2 that replaced JAM in 1999. A multi threaded version of
ERLANG [Hedqvist 1996] was implemented in 1998, and that year the OTP
went Open Source enabling anyone to try new techniques in the context of ER-
LANG. This has now be turned into fully fledged SMP support [Lundin 2008].
Among the later additions to ERLANG is a syntax for manipulating bina-

ries [Nyblom 2000], making it easy to implement protocol stacks and other
low level bit handling software. This has now been extended to handling bit
streams and binary list comprehensions [Gustafsson 2007].

2.1.2 Usage

The showpiece of ERLANG/OTP applications is the control logic of the AXD
301 [Blau et al. 1999] scalable backbone ATM switch, an application con-
sisting of over 500’000 lines of ERLANG code. The system also contains
approximately 280’000 lines of C and small amounts of JAVA code, Wiger
[Wiger 2001] claims that the use of ERLANG instead of C/C++ resulted in a
fourfold increase in productivity without any loss in quality. These findings
has been born out by later studies [Nyström et al. 2008].

2For a survey of different abstract machines see [Diehl et al. 2000].

20

Other successful experiences reported are: the first implementation of
GPRS (General Packet Radio Service), a high speed packet data service for
GSM networks, demonstrated at CeBit 1998 [Granbohm and Wiklund 1999];
and the Intelligent Network Service Creation Environment by [Hinde 2000].
Among later successes can be noted the T-mobile’s sms platform the Third
Party Gateway [Mullaparthi 2005].

ERLANG/OTP has now established itself in many fields outside telecom-
munications as is evident from early adoptions3such as the Mail Robustifier
[Millroth 1999]. More recently ERLANG has been used in: video on demand
and interactive TV [Gonzáles 2007], ad serving platform for online games
[Ippolito 2008], financial services [Stenman 2006], highly scalable distributed
data stores [Schütt et al. 2008]

2.1.3 Alternative ERLANG Implementations

There have been several alternative implementations of ERLANG, the most
notable is High Performance Erlang (HiPE) [Johansson et al. 2000], which na-
tive compiles ERLANG to both the SPARC [SPARC International 1994] and
the x86 [Intel 2002] platforms. The HiPE system uses the OTP ERLANG run-
time system and you can freely combine native compiled code with the byte
compiled code. HiPE has been a part of OTP since the 8th OTP release.
An implementation of ERLANG compiled to C, wholly independent of

OTP, is Gerl [Wong 1998]. The rational for this implementation was to be
able to instrument the implementation with automatic monitoring of the
system for the benefit of the developer. Another implementation is ETOS
[Feely and Larosse 1998, Feely et al. 1999], which compiles ERLANG to
Scheme [Dybvig 1996].
There has been work on changing ERLANG so that it would

provide a secure execution environment for mobile code
[Naeser 1997, Brown and Sahlin 1999]. The reason that they have
focused on ERLANG is that the language supports writing of reliable systems,
which is of great importance for secure mobile code, since many security
attacks exploit weaknesses in fault handling [Dean et al. 1996].

2.2 Basic Language

A brief characterisation of the sequential part of ERLANG is:
strict, call by value with static binding and dynamic typing
[Peyton Jones 1987, Allen 1978]. What this means in more detail will be
presented below.

3More examples earlier ERLANG/OTP applications can be found in [Däcker 2000,

Armstrong 1996].

21

2.2.1 Data Types

The ERLANG language is dynamically typed, meaning that variables and pa-
rameters are not declared to have a specific type, instead the type is determined
dynamically and type errors will be detected during runtime. An example of a
type error is to call the built in function plus with the arguments ’a’ and ’b’
which are atoms. Type errors detected during runtime generate exceptions.
There have been attempts to design a soft type system for ERLANG

[Lindgren 1996, Marlow and Wadler 1997]. In a soft type system type
declarations are optional, and where the type is not declared the type system
tries to infer the type. Unlike in a statically typed language, the code will
compile even if the type system can not determine the types for all variables
and expressions, although if a type error is determined the compilation
generates an error.
The generic name for an ERLANG value of any type is term, and parts of a

term are called subterms.

2.2.1.1 Atomic Data Types
The atomic data types, that are not composed of other data types, are: num-
bers, atoms, process identifiers, ports, references, and the empty list.
Numbers consist of integers or floats. OTP ERLANG may use several com-

puter words to represent large integers (so called bignums) and consequently
can represent ridiculously large integers. The floats have the usual notation.
The usual arithmetic operations are available on numbers as well as conver-
sions between integers and floats.
Atoms are named constants. They are written as any alphanumeric sequence

starting with a lower case letter and terminated by a non alphanumeric charac-
ter. An atom may start with an upper case letter or contain non alphanumeric
characters if it is enclosed in single quotes. Example atoms are: erlang,
first, listSofar or ’$trangeAtom’. The basic operations on atoms
are comparisons and transformation to and from strings.
Process Identifiers can not be manipulated; they can only be converted to

a printing format or compared. They are normally abbreviated pids, as in the
built in function is_pid/1 which tests whether its argument is of the type
process identifier. The pids are created when a new process is spawned.
Ports or port identifiers are identifiers of external processes with which the

ERLANG node can communicate. Port identifiers are similar to pids.
References are unique symbolic constants. References are created using

the built in function make_ref/0, which does not take any arguments and
returns a new unique reference on each call. References can only be compared,
or transformed into a string for output.

22

2.2.1.2 Compound Data Types
Compound data types are made up of parts that may in their turn be either
atomic or compound. ERLANG has the following compound data types: tuples,
lists, functions, and binaries.
Tuples are of form t1 tn where the arity of the tuple is n and t1 tn

are the subterms of the tuple. The subterms of a tuple may be of any type,
including tuple. A tuple has a fixed arity, and there are functions which de-
termine the arity and select subterms of the tuple. Tuples are used much as
records are used in other languages.
Lists are used to store sequences of varying length. A list t1 tn

of length n, composed of the subterms t1 to tn, can also be written as
t1 ti ti 1 tn where the part after the is called the tail of the list.
Normally one distinguishes between the first element of the list and the rest
of the list. A list, like a tuple, may contain data of any type as subterms. It
is correct in ERLANG to construct a “cons” cell (i.e., a head and tail pair)
where the tail is not a list, e.g., 1 bar , but this is not a proper list, and
trying to use the built in function length to calculate its length will result
in an exception. In other words, the result of cons is not always a proper list.
There are built in functions to select elements from a list and a system library
lists with a wide variety of different utility functions on lists.
Strings in ERLANG is not a proper data type on its own, but is implemented

as lists of integers. They however have their own syntax of form " String
", where String is any sequence of alphanumeric characters and escape se-
quences, e.g., n for a newline.
Functions as a data type (or funs as they are usually called) were added to

ERLANG in version 4.4 and have the form

fun(p11, ,pn1) -> b1;
...

(p11, ,pn1) -> bn
end

where the pi j:s are patterns as described below in Section 2.2.2 and the b j:s
are any ERLANG expressions. The fun’s clauses can also have guards as de-
scribed below in Section 2.2.4. Funs can be tested if they are of the type fun,
compared and applied to arguments. An example fun is the identity function
fun(X) -> X end. ERLANG has static binding, which means that any
variable in the body of a fun must either be a formal parameter, bound to a
value within the fun or already be bound in the context in which the fun is
constructed.
Binaries are the latest addition among the compound data types and were

introduced in ERLANG version 5.0. A binary is a sequence of octets, of form
«t1 tn». Each of the segments t1 tn are of form value : size / type -

23

sign - endian - unit : no, where all parts except value is optional. The type
which is either integer, float or binary shows what type the value has. The size
multiplied with the no gives how many bits the segment will occupy, though
the sum of all segment lengths has to be a multiple of eight. The part endian,
which can either be little or big, decides if the most significant octet
comes first or last. Finally the sign, which is either signed or unsigned,
shows if the segment is signed.

2.2.2 Matching

An important part of the language is matching, which is used to compare and
select parts of compound data structures and to determine which clause of
a function, case, or receive expression is applicable. An explicit match is of
form pattern = expression, where pattern is a constant term with possible
occurrences of variables, this construct can be used to construct, e.g., Cons
= [Head |Tail]. A variable is any alphanumeric sequence started by an
upper case letter or ’_’ and terminated by any non alphanumeric character. A
special variable ’_’ is used for parts of a pattern whose value is unimportant;
the anonymous variable ’_’ always remains unbound.
In a match the variables in the pattern will be bound to the correspond-

ing parts of the term resulting from the evaluation of the expression matched
against. For example, in {example, X} = {example, 1} the variable
X will be bound to 1. Should the term not match the pattern, an exception will
be raised. ERLANG allows nonlinear patterns, i.e., patterns where one vari-
able occurs more than once. In a nonlinear pattern all occurrences of a vari-
able must be bound to the same value. For example, the matching {X, X} =
{1, 1} will succeed whereas {X, X} = {1, 2} results in an exception.
This is because the second occurence is considered already bound and it is
treated exactly as variables bound before the match, i.e., as if it was the bound
value itself.
From ERLANG version 4.8 and, on matchings inside patterns are allowed

(or an alias as this special case of matching is also known), so p1 p2 is a
pattern if both p1 and p2 are patterns. In order for an alias to match a term, both
patterns must match the term, e.g., in {X = {1, Y}, Z} = {{1, 2},
3}, the variable X is bound to {1, 2}, and Y and Z to 2 and 3, respectively.

2.2.3 Modules

ERLANG functions are grouped into modules, where each module has a pri-
vate name space for functions. An example module is presented in Figure 2.1,
where two simple functions are defined. The module starts with the declara-
tion of the name of the module, which in this case is example.
Functions that are supposed to be called by other functions outside the

defining module must be declared exported. Export declarations of functions

24

are on the form -export(FunctionList), where FunctionList is a list of
FunctionName/Arity pairs. One must state the arity of a function when declar-
ing exported functions, since in ERLANG two different functions can have
the same name if they have different arity, e.g., reverse in the example
module.

-module(example).
-author(’JanHenryNystrom@gmail.com’).
-export([reverse/1,

sort_reverse/1,
lazy_reverse/1
]).

reverse(List) -> reverse(List, []).

reverse([], Reversed) ->
Reversed;

reverse([H | T], Reversed) ->
reverse(T, [H | Reversed]).

sort_reverse(List) ->
Sorted = lists:sort(List),
reverse(Sorted, []).

lazy_reverse(List) when length(List) < 10 ->
reverse(List);

lazy_reverse(List) ->
List.

Figure 2.1: A example ERLANG module.

When calling a function defined in another module, the module in which
the function is defined must be prepended to the function name, e.g., the
sort function defined in the system library module lists is called as:
lists:sort(List).
A module can also contain definitions of macros, records. These are only

defined in the module where they occur. Function definitions are described in
the next section.

2.2.4 Functions

A function definition consists of a sequence of function clauses separated by
semicolons and terminated by a period. Each function clause is of form Func-
tionName (p1k, . . . , pnk) when Guard -> bk, where FunctionName is the

25

name of the function, the pik:s are patterns and the bk:s is any ERLANG expres-
sion. The guard part when Guard of the clause is optional. When the function
is called, the first clause for which the formal parameter patterns match the ac-
tual arguments, and the guard expression evaluates to true, is evaluated. As
an example, a call to reverse([a, b], []) would result in the second
clause of reverse/2 being evaluated with the variables H, T, Reversed
bound to a, b and [] respectively. If there is no clause for which the actual ar-
guments match the parameter patterns and the guard evaluates to true, then
an exception is raised.

ERLANG is call by value, which means that when a function call is eval-
uated the arguments are evaluated to constant terms before the function is
applied. The order in which the arguments are evaluated is not defined. For
example in the call f(q(r(X)), s(X)), the calls to q, r and s would be
evaluated before the call to f, but it is not known whether q and r are evalu-
ated before s or not. If all the functions in the previous example are side effect
free, the result will not depend on the order of evaluation of the arguments.
The guards in the clauses consist of the keyword when and a comma sepa-

rated sequence of simple tests, all of which have to evaluate to true in order
for the guard to evaluate to true. Simple tests are built in functions such
as type tests and simple arithmetic operations. Should any of the functions
in the test cause an exception, it is caught and the guard evaluates to false,
e.g., when evaluating the call lazy_reverse(horse) the guard in the
first clause would evaluate to false since the built in function length/1
would return an exception caused by the fact that the atom horse is not a
list.
In ERLANG version 4.9 disjunctions in guards were added. In Figure 2.2 is

shown first an example of a disjunction in a guard and thereafter an equivalent
way of writing the same function without disjunctions.

%With disjunction
f(X) when atom(X); number(X); list(X) -> p(X).

%Without disjunction
f(X) when atom(X) -> p(X);
f(X) when number(X) -> p(X);
f(X) when list(X) -> p(X).

Figure 2.2: Example of disjunctions in guards.

The guard expressions were further extended with boolean expressions in
version 4.9, and non-strict versions of and and or, named andalso and
orelese respectively, were added in version 5.1. The non-strict versions do
not evaluate the second argument if the result can be decided after the evalua-
tion of the first argument, e.g., if the first argument to andalso evaluates to

26

false then the call andalso can not evaluate to true and consequently
evaluates to false without evaluating the second argument.
The body of a function clause consists of a comma separated sequence of

expressions which are evaluated sequentially in order, and the returned value
of the function is the value of the last evaluated expression.

2.2.5 Conditionals

The two language constructs used for conditional evaluation is the case and
the if, where the if is really a special case of the case construct.
The case is on the form: case Expression of ClauseSequence end,

where each case clause in the ClauseSequence is of form Pattern whenGuard
-> ClauseBody. The “when Guard” part is, as in function definitions, op-
tional, and the clauses are separated by semicolons. An example case state-
ment is shown in Figure 2.3, together with the equivalent if statement.

case f(X) of Y = f(X),
Y when list(Y) -> true; if
_ -> false list(Y) -> true;

end true -> false
end

Figure 2.3: Case and If statements.

The if statement is just a sequence of clauses with only guard tests, without
the when keywords, preceded by the if keyword and terminated by the end
keyword.
As with function definitions theClauseBody is a comma separated sequence

of expressions that are evaluated in order, with the result of the statement being
the result of the last expression evaluated. Should no clause be selected in the
conditional, an exception will be raised.

2.2.6 Variable Scopes

A variable is defined from the point in the function where it was bound and to
the end of the function. A variable can only be bound by a matching operation,
either explicit matching, parameter pattern or clause pattern. Since ERLANG

is a single assignment language, once the variable is bound it retains that value
throughout the function definition.
For a variable bound in a conditional statement to be well defined in the

following statements in the function, it has to be bound in all clauses of the
conditional statement. In figure Figure 2.4 an the variable Z is unsafe and will
generate a compiler error.

27

case f(X) of
[Y] -> Z = true, used;
[a, b] -> not_used;
_ -> Z = false, used

end,
q(Z)

Figure 2.4: Example of a case with an unsafe variable.

It is a deprecated usage to bind a variable in all clauses of a conditional
and later in the function use that variable, if is preferable to return the value
from the last expression of the conditional clauses instead. In Figure 2.5 a
deprecated use is shown on the left and the preferred usage on the right.

case f(X) of Z = case f(X) of
[Y] -> Z = true, not_used; [Y] -> true;
_ -> Z = false, not_used _ -> false

end, end,
q(Z) q(Z)

Figure 2.5: A deprecated use of variable bindings and the correct alternative.

2.2.7 List Comprehensions

List comprehensions which were added in ERLANG version 4.4, are a succinct
and elegant way of performing filtering and mapping on lists. The general for-
mat of the comprehensions are: [Expression || QualifierSequence], where
the Expression can be any expression and the QualifierSequence consists of
a comma separated sequence of generators and filters. The generators are on
the form Pattern <- Expression where the Expression must evaluate to a list.
The filters are predicates (functions that evaluate to a boolean) or boolean ex-
pressions. The result of a list comprehension is the list of all possible values
of Expression given the bindings generated by the generators for which all the
filters are true. An example list comprehensions is [{X, Y} || X <-
[1,2,3], Y <- [a,b]] which calculates the Cartesian product of the
two lists resulting in [{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}].
For list comprehensions there a few special scoping rules:
All variables occurring in the pattern of a generator are “fresh”’, i.e., the
previous definition of the variable will be shadowed by the one in the gen-
erator pattern.

28

Variables defined previously to the list comprehension may be used any-
where except in the generator patterns, they will of course have the already
defined value.
No bindings made in the list comprehension are visible outside the compre-
hension, e.g, the X and Y variables used in the calculation of the Cartesian
product above will not be available outside the list comprehension.

2.2.8 Exceptions

There are two constructs in the ERLANG language for the handling of excep-
tions, the throw/1 built in function and the catch statement. Exceptions
can be raised either by the ERLANG runtime system caused by, for example
type errors, or as a result of incorrect arguments to a built in function, or us-
ing the throw/1 built in function. An exception alters the flow of control
and breaks out of the current evaluation until it reaches a catch statement or
reaches the process’ initial function call whereupon the process fails.
The value of the exception is the argument to the built in function throw/1

or if it is a runtime error of the form {’EXIT’, Reason }, where the Reason
would typically be that a match failed or that a built in has been called with
the wrong type argument. For example, evaluating a = 1 would result in
the exception {{badmatch, 1},History} being raised, where History is
a truncated list of all function calls that have been made previously in the
evaluation.
A catch statement is on the form: catch Expression, where the result is

either the value of the exception if one is raised during the evaluation of theEx-
pression, or otherwise the value of the Expression. A typical usage of the catch
construct is shown in Figure 2.6, where the call to the function dangerous
may result in an exception being raised, in which case we report the error and
perform some clean up, or a success which is returned.

case catch dangerous(X) of
{’EXIT’, Reason} ->
report_error(Reason),
clean_up();

success -> success
end

Figure 2.6: Example of the catch construct.

29

2.3 Concurrency, Distribution and Fault Detection

The concurrency in ERLANG is explicit whereas the distribution is semitrans-
parent. Processes are created and handled explicitly, but the distribution on
different nodes has to be explicitly handled only when creating nodes, pro-
cesses and connecting nodes. The concurrent process operations, such as the
sending of messages, is handled in the same manner irrespective on which
nodes the involved processes reside, but it is possible to determine from the
pid on which node a particular process resides.

2.3.1 Communication

Communication in ERLANG is asynchronous via message passing. The non-
blocking function !, called as “Pid ! Message”, transmits the message
Message (which may be any ERLANG term) to the mailbox of the process
with process identifier Pid. The receiver’s mailbox preserves the order of
messages sent from the same process.
A process accesses its mailbox through the receive statement, which

matches a number of clauses against the messages in the mailbox queue. The
first message in the queue which matches some clause will be received. If there
is no such message, the receive statement blocks; blocking may be avoided by
an optional timeout clause with a specified waiting time.
The receive statement is of form: receive p1 when guard1 -> body1

; . . . pn when guardn -> bodyn after timeout -> bodyn 1, where the
guard is optional as with function and conditional clauses. The timeout part
of the receive statement may be omitted which has the same effect as giving
infinity as the timeout. Namely that the process will wait until it receives
a message matching one of the clause patterns, however long that may take.

2.3.2 Process Handling

A process is created by calling a function in the spawn family of functions,
with arguments specifying what function and with what arguments the cre-
ated process should execute. Optional arguments determine on which ER-
LANG node the process should be created. The spawn functions return the
process identifier (pid) of the created process.
A process can terminate normally by returning from the last function call,

or abnormally by not catching an exception. We use the term failure to denote
abnormal termination. A process can force another process to terminate nor-
mally or abnormally by calling the built in function exit(Pid, Reason),
where Pid is the pid of the terminated process.
There is also a mechanism for giving names to processes, which can be used

instead of pids. This mechanism is called registration, and is performed by a
call to the built in function register/2 with the name as the first argument

30

and the pid as the second. Only atoms can be used as registered names of a
process, and a process can only have one registered name. The name can be
used instead of the pid in most cases within the ERLANG node, e.g., sending
a message to a process registered as X_server can be made through the
expression X_server!message.

2.3.3 Failure Detection

The basis for failure handling is that links can be created between processes. A
process creates a link by a call to the built in function link/1 with the pid of
the other process as an argument. Alternatively, the spawn_link functions
behave in the same manner as the spawn functions, but also link the parent
and child processes when creating the child. The link between processes can
be destroyed by one of the connected processes by calling the built in function
unlink/1 with the process identity of the linked process as argument.
If a process terminates abnormally, by an uncaught exception, all processes

linked to it will be informed by a special type of message, called a signal.
Unless the boolean process flag trap_exit is true, the signalled process
will also terminate abnormally and its linked processes are informed in the
same way, i.e., the failure spreads. If the process flag trap_exit is true,
the signalled process is not terminated, and may use the received information
to take some recovery action. We will say that a process traps exit when the
process flag trap_exit is true; this is analogous on an interprocess level
to the catching of exceptions on the intraprocess level. Supervisor processes,
described in Section 2.4.2, use this mechanism to monitor termination of their
child processes, and to restart them, possibly after performing some cleaning
up actions.

2.4 Behaviours

OTP behaviours are support libraries used to implement common design
patterns in distributed fault tolerant hardware. I have called this section
behaviours, in the terminology of OTP, as opposed to design pattern
[Gamma et al. 1998] since the definitions of the behaviours lacks the
abstraction of implementation detail and regimented form of presentation to
be called design patterns proper. The behaviours are rather library realisations
supporting design patterns.
A process that is written using OTP behaviours is structured into a

generic part provided in a library module and a callback module written
by the application developer . The process is started with a call to the
Behaviour:start(Module, Args), whereupon a process is created and the
Module’s init function is called with Args to initialise the behaviour. If the
initialisation succeeds, the call returns {ok,Pid} and the process continues

31

with its execution relying on the callback module to define its actions. If the
initialisation fails, the process fails and the call will return error.
There is for most behaviours also a start_link family of functions that

will use spawn_link to create the processes; in fact, for the supervisor be-
haviour there is only the linking version. The start functions also exist in a
version where there is a name argument under which the created processes
is registered. When registering the processes one can choose whether one
wants it registered locally, as described in Section 2.3.2, or globally using the
global module, the latter is a kernel utility module that enables registering
of symbolic names of processes on all ERLANG nodes connected.
There are two exceptions from these principles: the application and generic

event handler behaviours, that do not have a callback module and as a conse-
quence does not call an init function on creation.
An important design pattern in ERLANG/OTP is the supervision structure

which consists of a tree of supervisors monitoring their children through links.
The children processes normally execute one of the OTP behaviours or are
connected to their supervisor via a supervisor_bridge. The supervisor
bridge is a behaviour that allows non behaviour processes to be managed by
supervisor.
The six behaviours application, supervisor,

supervisor_bridge, gen_event, gen_fsm and gen_server will
be described below, each in its own section.

2.4.1 Application

Applications are packagings of system components, and have a number of
resources such as modules, registered names and processes. The processes
can be loaded, started and stopped together and it can be checked that the
needed resources are available when loading the application.
Associated with an application is a resource file which declares the re-

sources needed by the application, such as the names that will be registered
by the application, and which other applications have to be running before the
application is started. One important declaration in the resource file is what
function should be called in order to actually start the application, returning
the {ok,Pid} if successful and error otherwise.
When starting a process with the call application:start(App) a

system process called the application controller will locate the application’s
resource file and determine if the required applications are already started.
Should any of the required applications be missing the call will return error.
If the required applications are present, the application controller will call the
start function declared in the application’s resource file.
An application can be one of three different types: permanent,

transient or temporary. The type decides what happens to the
application when it terminates, in a similar way to the children of a

32

supervisor, see Section 2.4.2. The application controller acts as a supervisor
for applications.

2.4.2 Supervisor

Supervisors are used to structure applications for failure recovery. A super-
visor is a process which has a number of children which it monitors through
links. When a child fails, one or more children are restarted, possibly after first
shutting down one or several children. A child is shut down using the exit/2
built in function with reason shutdown; if the child being shut down is also
a supervisor, this reason tells supervisors to shut down their children before
terminating.
The callback module’s init function determines what children will

be statically started by the supervisor whenever it starts or is restarted.
Note that children of a supervisor can also be added later, but we
will not regard such children as part of the static process structure.
The value returned by the init/1 function should either be of form
{ok,{{RestartStrategy,MaxR,MaxT},[Childspec]}} or ignore
indicating that the supervisor should not start and the result of the call to
supervisor:start_link is ignore. Each Childspec is of form
{Id,{M,F,A},Restart,Shutdown,Type,Modules}, where:

Id is the identity used to refer to the specific child, if for example the function
restart_child is used to restart a child explicitly.

{M,F,A} declares how the child should be started (and restarted). The
function F in moduleM with arguments A is called to start the function,
and should return either {ok, Pid}, ignore, or error. The ok
answer returns the Pid of the spawned child, whereas both ignore
and error indicates that no child has been spawned. On an error
the supervisor shuts down the spawned children and fails, otherwise
the failure to start the child is ignored and the supervisor continues to
start the other children.

Restart indicates to the supervisor how a failure of normal termination of the
child should be dealt with. There are three restart strategies:

permanent: the child is always restarted if it terminates,

transient: it is restarted only if it fails, or

temporary: it is not restarted.

Shutdown is the time in milliseconds allowed for the child to perform its shut-
down before being exited with the untrappable kill reason. The time
allowed can also be either brutal_kill in which case it is exited
with reason kill in the first instance, or the other extreme infinity

33

where the supervisor will simply wait until it receives the message in-
dicating that the child has terminated.

Type is either worker or supervisor, indicating the rôle of the child.
It is only children declared as supervisors that are allowed to have the
Shutdown parameter set to infinity, should this be contravened the
application will fail to start.

Modules should be the modules used by the behaviour. The Modules param-
eter is used by the SASL’s release handler during code replacement.

The precise reaction of the supervisor to the failure of a child, which it should
restart according to the child’s restart strategy, is determined by the supervi-
sor’s RestartStrategy which is either:

one_for_one: only the terminated child is restarted,

one_for_all: all children are shut down and then restarted, or

one_for_rest: all children started after the terminated child are shutdown
and restarted.

There is a limit to the number of times a supervisor will restart its children,
given by two numbers maxR and maxT. If more than maxR restarts are made
within maxT seconds the supervisor fails. This mechanism allows the system
to attempt a more global recovery action if restarting only the children of a
particular supervisor is insufficient.

2.4.3 Generic Event Handler

The generic event handlers are managers for a number of event handlers, each
of which can be added and removed dynamically. The event manager applies
every present event handler, via a call to the callback module, to a received
call or notification.

2.4.4 Generic Finite State Machine

The generic finite state machines are used to write finite state machines, where
the callback module for each state has a function which describes the transi-
tions made on events.

2.4.5 Generic Server

The generic servers provide a simple way of writing the server part of client
server applications, where the gen_server module handles debugging and
termination of the parent.

34

2.4.6 Supervisor Bridge

A supervisor bridge enables a subsystem, not originally intended to be part
of a supervision hierarchy, to be connected to a supervision hierarchy. The
process having the supervisor_bridge behaviour behaves as a bridge
between the supervision tree and the subsystem.

35

3. Analysis of Failure Recovery
Through Supervision Structures

In this chapter I discuss how supervision structures are used in ERLANG

to construct fault tolerant concurrent applications and what properties these
structures must have in order to correctly implement fault tolerance through
failure recovery. I will then investigate how these properties can be violated,
and how the violations can be detected by automatic analysis. I will also
present programming conventions that help to avoid these problems. Finally
is presented how to detect certain violations of the specification expressed in
the application’s resource file.

3.1 Supervision structures

One of the chief methods of building fault tolerant systems in ERLANG/OTP
is using the supervisor behaviour to build supervision structures. These struc-
tures are trees of processes, in which the children are connected to their par-
ents by links. The leaves of the tree are “worker processes” which perform
the actual function of the system, and the non-leaf parts are supervisors that
create and monitor their children.
The monitoring is on the level of process failures, which would be far too

coarse grained in a language less process centric than ERLANG. In ERLANG

the light weight processes make it feasible to have a separate process for each
task. A task can be quite small, such as handling one party in a telephone call.
The objective of the fault handling mechanism of the supervision structure

is to restart the process that has failed. Processes can have interdependencies,
and therefore more than one process may have to be restarted in order for the
system to be able to perform its function. Should the supervision structure
have to restart other processes than the failed one, these processes are first
shut down and are replaced by new processes. The reason that a new process
is created rather than resetting the old one, is that information that the process
had may have become obsolete, e.g., the identities of restarted ports. So the
intention of the supervision structure is to restart the rôle that the process had,
not the process.
A system built according to the design principles of OTP will set up the

supervision structure during the initial start phase, using the OTP behaviours.
Later during the execution of the system there may be a number of processes

37

created to perform specific tasks, that terminate when the task is performed,
These processes will be called dynamic processes as opposed to the static
processes that make up the supervision structure and persist throughout the
operation of the system. In this thesis it is assumed that the systems under
inspection are meant for continuous execution, and it is unlikely that the su-
pervision structure changes other than to accommodate for failures. Example
of such continuously running system is a telephone switch or a web server.

3.1.1 The Extracted Supervision Structure

The supervision structure that the analysis extracts will be a tree of nodes,
each node being a process. In the tree when node B is the direct decendant of
node A, that will denote that node A spawned node B. We will refer to them as
parent and child respectively.
Processes can be linked, which we denote in the structure by a dotted line

between the nodes representing the processes.
With each node in the tree will be associated a number of properties that

the anlysis has determined, with the supervisors having additional properties
that the other nodes do not have. All the nodes have the following properties:

Links: The processes it is linked to.

Trapping exits: Whether the process has the process flag trap_exit set
to true.

Children: Processes it has started.

Side effects: This is the list of all side effects that the processes has per-
formed as part of its initialisation. Examples are interactions with the
ETS tables, setting up links to other processes, or sending messages.

Supervisors have these additional properties:

The Restart Strategy: This determines what actions should be taken
if a child terminates. The four strategies are one_for_one,
all_for_one, rest_for_one, simple_one_for_one.
For the purpose of the analysis there is no difference between the
one_for_one and the simple_one_for_one so they will be
both be denoted as one_for_one.

The maximum Restarts: The maximum number of restarts allowed before
the supervisor restarts, this is an integer.

The maximum Time: The time span in seconds which the maximum num-
ber of restarts should not be exceeded, this is an integer.

Child Specifications: A specification of each child the supervisor starts.
Each children has four properties:

38

{M, F, A}: How the child is started.

Restart: The restart type of the child which specifies in what scenar-
ios the child should be restarted if it terminates. The types are
permanent, transient, and temporary.

Shutdown: The property specifies how long the child may spend shut-
ting down once it has been informed by the supervisor to do so.
This is either one of the atoms infinity, brutal_kill or an
integer larger than zero.

Type: This is either worker or supervisor.

An example supervision structure is shown in Figure 3.1. In the figure su-
pervisors are depicted by rectangles, and all other processes by circles. Solid
arrows indicate parent-child relationships and the dashed lines show links be-
tween processes. Within each process is either a registered name or a process
id of the form <number>. Associated boxes show values of parameters and
flags.

Supervisor X_sup

Supervisor Y_sup

<1>

Parameters:
restart = one_for_rest

maxT = 1000
maxR = 2

Parameters:
restart = one_for_one

maxT = 1000
maxR = 2

<2>

<3>

<4> <5> <6>

Figure 3.1: Supervision structure example.

3.2 The Effect of Failures on the Supervision Structure

The effect of a process failure on the supervision structure can be summarised
as follows:

(1) All processes linked to the failed process are notified by signals. If in Fig-
ure 3.1 the process <2> fails, the supervisor X_sup and process <3> are
informed.

39

(2) The different responses by notified processes:
(a) Any notified process that does not trap exits will fail and the effect

spreads. If in Figure 3.1 the process <3> fails, the process <2> fails.
(b) When a supervisor is informed that a child has failed, it will shut down

some of its other children. What children are shut down depends on the
supervisor’s restart strategy, as described in Section 2.4.2. A supervisor
shuts down the children in the inverse order of their creation and waits
for a child to terminate before shutting down the next. If the child has
restart strategy temporary, then no action is taken. If in Figure 3.1 the
process <1> were to fail, the supervisor X_sup would shut down first
supervisor Y_sup and then process <2>.

(c) If a supervisor is informed that a child has failed, and thereby the al-
lowed maximum rate of failures has been exceeded, then the supervisor
will shut down all its children and fail. If in Figure 3.1 the process <1>
were to fail more than twice during one second, then supervisor X_sup
would fail.

(d) If a supervisor is informed that a process, which is not a child of the
supervisor, has failed the supervisor ignores this. If in Figure 3.1 the
supervisor Y_sup is informed that processes <6> has failed, this will
be ignored.

(3) A shutdown message from the supervisor results in:
(a) Since shutting down is achieved using exit the process will fail and

the effect will spread according to (2a). If in Figure 3.1 the supervisor
X_sup would shut down the process <2>, then the process <3> would
fail.

(b) If a shutdown child is a supervisor this will cause it to shut down its
children in turn, shut downs propagating down the supervision structure.
If in Figure 3.1 then supervisor X_sup would shut down the supervisor
Y_sup, then the supervisor Y_sup would shut down processes <5>
and <4>.

(4) When a supervisor has shut down all the children it is required to shut down
it will restart them, unless it was being shut down itself, in which case it
terminates. If in Figure 3.1 then the supervisor X_sup would have shut
down the supervisor Y_sup because it had been informed that processes
<2> had failed, then it would restart first process <2> and then supervisor
Y_sup.

An informal, but more detailed, presentation of the model of supervisors used
here is found in Figure 3.2. The figure is a state transition graph describing the
different phases of the supervisor with guards, actions and communication on
the edges between the states.
The guards, and all the other actions, are in a pseudo ERLANG syntax, of

form: Guard / Actions. Each guard is either a “receive” from the message
buffer of the form ?{ok, Pid} meaning that there is a message matching

40

Create

Idle

Start

Creating

End

Terminate

Terminating

Terminate := false
/ Create := Children

Actual := reverse(Actual)

?ignore /

Actual := [{C, Pid} | Actual]
?{ok, Pid} /

[] = Marked and (not Terminate) /

?error /
Marked := Actual
Terminate := true

[{M, _} | T] = Marked /
exit(M, shutdown)
Marked := T

[] = Marked and Terminate /

not member(Pid, Actual) /

?{EXIT, Pid, Reason}
member({_,Pid}, Actual) /
Actual := delete({_, Pid}, Actual)
{Marked, Create} := restart(Pid, Reason)

[] = Create /

?{EXIT, Pid, Reason}

?shutdown /
Marked := Actual
Terminate := true

Create := T
create(C)
[C | T] = Create /

?{EXIT, M, R} /

create({Id, {M, F, A}, Restart, Shutdown, Type, Modules}) ->
apply(M,F, A).

restart(Pid, Reason) ->
{Id, MFA, Restart, Shutdown, Type, Modules} =
get_child(Pid, Actual),

case {Restart, Reason, RestartStrategy} of
{temporary, _, _} -> {[], []};
{transient, normal, _} -> {[], []};
{_, _, one_for_one} -> {[{C, Pid}], [C]};
{_, _, one_for_all} -> {Actual, Children};
{_, _, one_for_rest} -> {select_after(Pid, Actual),

select_after(C, Children)}
end.

select_after(X, [X | T]) -> T;
select_after(X, [_ | T]) -> select_after(X, T).

get_child(Pid, Actual) ->
hd([Child || {Pid1, Child} <- Actual, Pid1 == Pid]).

Figure 3.2: The Behaviour Model of the Supervisors.

41

the ERLANG term {ok, Pid} in the message buffer, or a boolean expression
that may contain explicit matches. If more than one guard is satisfied, the one
with the message earliest in the queue is chosen.
In the graph we use global variables that are assigned their value (Create

:= Children), or bound by matches ([C | T] = Create). The vari-
able Children is a list of tuples returned by the supervisor’s init function
(see Section 2.4.2). The variable Create is a list of tuples, on the same for-
mat as Children, describing all the children that remain to be created, and
Actual is a list keeping track of the pids of the created children. Marked is
a list of processes to be shut down, and the Terminate is a boolean variable
that indicates whether the supervisor is shutting down itself.
In the definitions of auxiliary functions, which are written in ERLANG,

the global variables of the graph occur as free variables. The free variable
RestartStrategy in the restart/2 function is the restart strategy of
the supervisor itself.
The supervisor process starts in the Start state and setting all children to

be created goes to the Create state. In the Create state either all children
have been created, whereupon it goes to the Idle, or spawns a child and goes
to the Creating state.
In the Creating state there are three distinct alternatives, the child can

fail in a way that allows continued start of the children, which it indicates
by responding ignore to the supervisor. The child created can also fail
in an intolerable manner indicated by the error message, in which case
the Terminate variable is set to true, the list of processes to be termi-
nated Marked is set to the Actual processes, and the supervisor goes to
the Terminate state. Should the creation of the child go well, indicated by
{ok, Pid}, the pid is noted in the Actual list and the supervisor returns
to the Create state.
From the Terminate state the supervisor will iterate over the list of

Marked processes shutting them down using the exit/2 built in function,
waiting in the Terminating state for each to actually terminate as
determined by the {’EXIT’, Pid, Reason} message. When all the
processes marked have terminated, the supervisor either goes to End if the
Terminate variable is true, or goes to the Create state otherwise.
In the Idle state the supervisor waits for a message indicating that either a

process has failed or for a shutdown message from its parent. If the supervisor
gets the shutdown message it marks all the actual processes for termination
and sets the Terminate variable before going to the Terminate state.
Should the supervisor receive a processes failure notification {’EXIT’,
Pid, Reason} and the process Pid is a child, the supervisor removes
process Pid from the Actual list, and depending on the restart strategy
of the supervisor and child, sets the list for terminate Marked and restarts
Create before going to the Terminate state. Should the failed process

42

Pid not be a child of the supervisor, this message is simply ignored and the
supervisor stays in the Idle state.

3.3 Essential Properties

The primary function of the supervision structures is: that when a process
fails, repair the supervision structure in such a way that normal functionality
can be delivered by the system. This would in the nomenclature of Gärtner (see
Section 1.3.1) be non-masking fault tolerance.
Equally important is that the fault tolerance mechanism does not conceal

a persistent error. If a persistent error is present in a subsystem and the fault
handling, through restarts, were to perform repeated restarts without any re-
striction, then the system would find itself in a livelock. The system would
neither fail nor deliver its intended functionality.
These two properties of repair and non concealment can be formulated

as:

Property P1 (repair): Whenever a process that takes part in the supervision

structure fails, the supervision structure returns to the process structure prior to

the failure after a reasonable delay.

Property P2 (non concealment): When the cause of a failure is not transient or

sufficiently infrequent to let the application function acceptably, only a small

number of recoveries should occur before the supervision structure fails.

Below we present more details on what these two properties entail, with exam-
ples of violations of properties P1 and P2 in the supervision structure shown
in Figure 3.3.

3.3.1 Analysis of the Repair Property

The repair property, or simply P1 for short, implies that in the recovery ac-
tions caused by a failure, (a) each processes that fails is replaced by an equiv-
alent “restarted” process in the structure, and (b) each process replaced by a
restarted process has indeed terminated. We now claim that, in fact, proper-
ties (a) and (b) are sufficient to guarantee property P1, under the two extra
assumptions that (c) a non-supervisor that is linked to a failed process does
not trap exits, and (d) the initialisation of a restarted process creates the same
structure as the process it replaces. Property (c) mirrors the recommendation
that only supervisors trap exit. Property (d) is true if the initialisation of a pro-
cess is not dependent on configuration parameters that change during system
operation; it holds in all but one of the applications that we have analysed as
described in Chapter 7.

43

To show the claim assume that a supervision structure satisfies properties
(a) and (b). We then prove property P1 by structural induction over the su-
pervision structure, starting from its leaves. For a leaf process, the property is
immediate. Consider a non-leaf process p, and assume that the substructures
rooted at the children of p satisfy P1. If p fails, then it will be restarted (by
(a)), and (when reinitialising, by (d)) recreate the entire substructure rooted at
p, thus establishing P1. If p does not fail, then if no child fails, the connec-
tions between p and its children are preserved. If a child fails, then if p is a
supervisor, it will restore its children and its connections to them, otherwise
(by (c)) p must fail, and we are back to the previous case.
The possible violations of property P1 are the following:

case 1: A process is terminated but not restarted, because it is not
connected by a sequence of links to a supervisor, directly or in several
steps, where no intermediate process traps exit.

In Figure 3.3 the process <3> might not be restarted if it fails since
process X_serv traps exit. From the information in the Figure 3.3, we
can not determine if process <3> is restarted since this depends on the
dynamic execution of X_serv.

case 2: A process is restarted without having terminated first, because its
parent is a non-supervisor and it is either not linked to its parent or traps
exit. In Figure 3.3 the process <3> might be restarted without having
terminated if X_serv fails, since it traps exit.

Another reason is if a supervisor has less time to shut down its children,
than the combined shutdown times of the children. In this case, when
time expires for the supervisor all remaining children will be left un-
terminated. In Figure 3.3 processes <1> and <2> have the combined
shutdown time of 4 seconds whereas the supervisor Y_sup has 2 sec-
onds. Even if the <2> were linked to Y_sup, process <1> might not
be terminated when Y_sup is shut down.

Should the supervisor with limited shut down time be deadlocked by a
child the remaining children would remain. In Figure 3.3, when shutting
down Y_sup process <2> will deadlock Y_sup, as described below,
and Y_sup consequently will not shut down <1>.

case 3: A supervisor is deadlocked, when trying to shut down a child which
is not linked to the supervisor, since the supervisor is never informed
that the child has terminated. In Figure 3.3 the supervisor Y_sup is
deadlocked when trying to shut down process <2>.

Another reason for a supervisor to deadlock is that a child with shut
down time infinity that traps exit does not terminate, e.g., a dead-
locked supervisor.

44

Supervisor X_sup

Gen_server

X_serv

restart = permanent

Parent Parameters:
name = ’Y_sup’
start = y_sup:start_link()

shutdown = 2000
type = supervisor

Flags:
trap_exit = true
priority = normal

Flags:
trap_exit = true
priority = normal

<1>
restart = permanent

type = worker

Parent Parameters:

shutdown = 2000 <2>
restart = permanent

type = worker

Parent Parameters:

shutdown = 2000

Supervisor Y_sup

Parameters:

maxT = 3600
maxR = 4
restart = one_for_all

Parameters:
restart = one_for_all

maxT = 1000
maxR = 2

restart = permanent

Parent Parameters:
name = ’X_serv’
start = x_serv:start_link()

shutdown = 2000
type = worker

<3>

Figure 3.3: Faulty supervision structure example.

In order to determine if property P1 is violated by an application our tool
extracts a set of supervision structures as described in Chapter 6, and for each
process records what the effects are of a failure.
The tool will simulate the steps (1) to (4) described earlier in Section 3.3.

As a first step the tool records processes that will fail by following links via
processes that do no trap exit (2a). As a second step, for each supervisor with
a failed child, it records what children are shut down (2d). Which children are
shut down is decided by the supervisor’s parameters, and for each shut down
child we have to repeat steps (3a) followed by (2a) or (2d). As a final step (4),
the children that would be restarted by the supervisor are recorded.
Note that a supervisor can fail for two reasons. First it can have a maximal

restart frequency of 0, and then the steps (2c) and (1) are performed recur-
sively up the supervision structure until reaching a supervisor that does not
fail or until the entire supervision structure has failed. Secondly the number
of restarts can exceed the highest allowed restart frequency; in this case both,
when the supervisor fails (2c) and when it restarts (2d,4), its children must be
recorded.
When all effects of the failure have been applied the tool can determine

if property P1 has been violated by checking that properties (a) and (b) are
satisfied for each process. For example, if a process has failed but not restarted,
then property P1 is violated according to case 1.

3.3.2 Analysis of the Non Concealment Property

First I restate the property of non concealment:

45

Property P2 (non concealment): When the cause of a failure is not transient or

sufficiently infrequent to let the application function acceptably, only a small

number of recoveries should occur before the supervision structure fails.

A supervision structure can violate Property P2 in two ways: (a) a substruc-
ture fails and is restarted too many times before the supervision structure it-
self (represented by its root processes) fails, (b) the supervision structure never
fails although there are an unbounded number of repeated failures in the struc-
ture.
In order to reason about these possible violations, we have to define the

maximum rate of failures (MRF for short) that can occur in a structure be-
fore the structure itself fails. In order to calculate the MRF of the supervision
structure, we have to calculate the MRF of the individual processes in the
structure. The MRF for a process can be calculated from the parameters of the
supervisors higher in the structure, as follows.
The MRF for a process with supervisors s1 sn above in the process

structure, where the supervisors are numbered from the top down is given
by:

MRF Restarts TimeUnit

Restarts
n
∏
i 1

MaxR si 1 1

TimeUnit
n

min
i 1

MaxT si

whereMaxR si is the parameter maxR for the ith supervisor and analogously
for maxT.
The total number of allowed failures (Restarts) is the product of the number

of allowed failures plus one (so that the supervisor fails) for each level of
the supervision structure, except for the highest level where only the allowed
number can occur since otherwise the structure fails.
The minimum time for the failure to occur is bounded by the minimum for

all levels, since a failures does not propagate up a level if the time span in
which they occur exceeds the minimum of any level.
As an example, in Figure 3.3, process <1> has supervisors X_sup, Y_sup

above it, Restarts 2 1 4 1 1 and TimeUnit min 1000 3600
so the MRF is 14 failures in 1000 milliseconds.
In order to determine the MRF for a supervision structure one must take the

maximum MRF for any process taking part in the supervision structure.
Violations of type (a) occur if the MRF of a supervision structure is too

high. The meaning of “too high”, of course, varies from application to appli-
cation. We suggest that a threshold for this number shall be provided for each
application by designers or by company coding principles.

46

Violations of type (b) occur if the structure contains a supervisor for which
the maximum time it takes to restart one child is larger than the least time
between failures needed to cause failure of the supervisor itself.
The maximal time to restart a child is the combined shut down time of

the other children that are shut down and the start times of all the terminated
children. We can only determine the shut down times1, but if this is already
too large (in effect assuming a start time of 0) we are certain that the combined
time to shut down and restart is too large. The least time between failures
needed is simply supervisor parameter maxT divided by maxR.
In Figure 3.3 the shutdown time of Y_sup is 2 seconds but its supervisor

X_sup will fail only if more than 2 restarts are performed within 1 second.
If the shutdown of Y_sup actually takes 2 seconds then, even if the process
X_serv fails immediately upon each restart, the supervisor X_supwill never
fail. This is a typical violation of (b).
When designing an application one wants to determine parameters of the

entire supervision structure as well as over individual processes; restarts and
shutdown times can be calculated automatically. Interesting parameters in-
clude: (a) the maximum restart frequency for any process before the applica-
tion restarts; (b) the largest shutdown time allowed for any process; (c) the
largest shutdown time allowed for the entire application, i.e., the combined
shut down times of all the parts.

3.4 Design Conventions

There exist a number of coding conventions designed to prevent violation
of properties P1 and P2, which catch a subset of these violations. The tool
checks whether the conventions are followed:

All processes should create their children using spawn_link, rather
than spawn, and children should not unlink from their parents. If
a process is started with spawn rather than spawn_link it can fail
before it has time to link to its parent, in which case its parent will not
be informed.

The max restart frequency of intermediate supervisors should be 0
in order to minimise the MRF of leaf processes in the supervision
structure.

Only supervisors should have shutdown time infinity and all non-
supervisor children of supervisors should have shutdown set to a
limited time. This ensures that the supervisor has time to terminate its

1There is an OTP library that allows the designer to set an upper limit on the time it takes to

start and initialise a process, if that was used throughout we could give an upper limit on the

startup time and as a consequence on the restart time as a whole.

47

children and that no child can indefinitely block the shutdowns. This
eliminates one of the causes of violation of property P1 in case 3.

3.5 Adherence to Specification

Each application has an associated resource file which declares resources
needed by the application, such as the names that will be registered by pro-
cesses of the application. The application behavior library module will per-
form certain checks and code/application loading in association with the re-
source file, but it is the responsibility of a user programmed callback module
to actually start and initialise the appropriate processes. The resource file can
thus be viewed as a specification, which should be compared against the pro-
cess structure that is actually created by the user programmed module; there
is no support in OTP for checking that the application’s actual process struc-
ture agrees with the specification. An example is the registered names in the
application’s resource file: should the actual application not register any of
the names, or a registered name not be mentioned, this can be viewed as a
specification violation.
If the analysis cannot find important parts of the specification’s process

structure, this is in many cases a sign that the coding of the application does
not follow the recommended coding style. One example is when initialisation
code is not performed within the init callback-function, as recommended,
but rather in some other function which is executed after init; another ex-
ample is when an OTP behavior process is not registered in the way supported
by OTP, but rather by calling an ERLANG built in function.

48

4. Semantics

In this chapter we present a semantics for CORE ERLANG. The semantics will
be used for the extraction of the supervision structure. The extraction is made
on CORE ERLANG derived from source code of the ERLANG application via
the OTP compiler. After a presentation of the intermediate language CORE

ERLANG, a formal semantics for single processes is given. Chapter 5 presents
an abstract version of the semantics and a proof of abstraction.

4.1 Overview

To make the presentation as accessible as possible we have chosen to first
present the semantics in this chapter, then the abstraction of the semantics
with the proof of abstraction in the following chapter and finally how the ac-
tual extraction can be implemented based on the abstraction is presented in
Chapter 6. In fact we arrived at the final formulation of the semantics, abstrac-
tion and the implementation in the opposite order. This does not mean that
we decided on the semantics after we had the implementation of the process
structure extraction, since the semantics is given by the ERLANG definition
together with the OTP implementation.
We first implemented the symbolic evaluator, and the reason was that it

was vital to strike the correct balance of abstraction in the evaluator to get
tractable evaluation times, whilst retaining sufficient information for further
analysis. After we had implemented an abstraction that suited our purposes
we had to give a definition of the ERLANG semantics that would allow us to
show the abstraction with greatest clarity, while of course being correct. By
correct we mean a conservative overapproximation of the original semantics,
i.e., the actual evaluation should be a member of the set of possible evaluations
the symbolic evaluation computes.
Thus the aim of the semantics is to serve as a basis for the extraction of an

ERLANG application’s supervision structure. The extracted structure will be
used for the analyses of fault handling properties, as described in the previous
chapter. The supervision structures, described in Section 2.4, consist of the
involved processes and their parameters. The structures are setup using the
init functions of the callback modules written to implement the specifics of
the behaviour, together with the general parts from the library modules. For

49

the general library part of the behaviours, manually constructed models are
used.
More specifically, what we want to capture from the setup of the supervi-

sion structure is: what processes are created, what OTP behaviour does the
processes realise and what are its parameters associated with the behaviour,
which processes are linked to each other, and finally what other side effects
have occurred during the setup.
When building a model of the supervision structure of an ERLANG applica-

tion, it would be preferable to fully automate the construction, for reasons of
speed and to minimise the risk of errors. It has however proved to be imprac-
ticable in this case, since the complexity and size of the systems make that
impossible.
To deal with the complexity, which to a great degree stems from the han-

dling of special cases in the behaviours’ initialisation, we have used manually
constructed models of the behaviours’ initialisations. The result of this is that
we get a two part strategy for extracting the supervision structure from an
ERLANG application, first is the automatic part which extracts the setup of
individual processes via their behaviour’s init function, i.e., the code called
in the callback module. The second part is the use of a manually constructed
model of the behaviour’s library source code that builds the supervision struc-
ture from these individual processes.
For this two part extraction strategy to work, we restrict the extraction to the

static parts of the supervision structure that are implemented using behaviours.
This is less of a restriction than it might first appear, since the structures that
provide fault tolerance will most likely be static (except when they are shutting
down and restarting processes in order to repair the system after a failure). If
the system is designed according to OTP design principles the processes will
be implemented using behaviours.
The supervisors in the supervision structure will start their children one af-

ter the other and only start the next child after the previous child has reported
that it has started and initialised successfully, via a message sent to the su-
pervisor. This ordered starting of children and synchronisations between the
children and supervisors, provides a total ordering on the initialisations. Hav-
ing a total ordering of the actions performed in the creation and initialisation
of the supervision structure means that we do not need to explicitly handle the
concurrency, or indeed the possible distribution, of the system. The execution
consists of the initialisation of the supervisor and the successive creation and
initialisation of its children; this is repeated recursively down the supervision
structure.
The two semantics presented below are of the intermediate CORE ERLANG

language with approximations made of the communications with other pro-
cesses that are not part of the behaviours’ library. The semantics are opera-
tional semantics [Plotkin 1981] where each construct is defined through what
changes it makes to the program state, i.e., the construct is seen as an opera-

50

tion on the program state. The first semantics is a concrete semantics of CORE

ERLANG and the second semantics is the abstracted semantics actually used
in the extraction. The abstracted semantics is presented by describing how
it differs from the concrete, in order that it should be clear how the abstract
semantics relates to the concrete.
The operational semantics of [Fredlund 2001, Huch 1999] both describe

ERLANG and in Fredlund’s case it is aimed at proof rather than implementa-
tion of an interpreter and is organised more like a natural semantics although
it is a small step operational semantics.
Other possible alternative types of semantics would be denotational

semantics [Stoy 1977, Schmidt 1986], where a language construct is
given meaning by translation into a mathematical formalism; or axiomatic
semantics [Hoare 1969], where a set of axioms and proof rules over
the syntax of the language provides the definition. More on semantics
for programming languages can be found in in textbooks such as
[Winskel 1993, Nielson and Nielson 1992].

4.2 Core Erlang

CORE ERLANG is an intermediate language that is used internally in the ER-
LANG/OTP compiler. The language was devised with the intent of decoupling
the parsing and preprocessing of the front-end from the code generation of the
back-end of the compiler. The reason for this separation is partly to enable
other implementations but also to make use of optimisation techniques com-
monly used in other functional languages which are hard to implement both
for the rather complex and redundant structure of ERLANG and for the imper-
ative instruction sets of the abstract machines. The optimisation techniques
include algebraic transformations, specialisations, and advanced inlining.
The development of CORE ERLANG has been a cooperation between the

OTP development team at Ericsson and the High Performance Erlang group at
Uppsala University and is described in [Carlsson et al. 2000, Carlsson 2001].
The CORE ERLANG described in this chapter should not be confused
with the core fragments of ERLANG used in [Huch 1999, Huch 2001,
Dam et al. 1998a, Dam et al. 1998b, Arts and Dam 1999] which are truly
fragments of ERLANG as opposed to CORE ERLANG, which is a separate
language into which the whole of ERLANG can be translated.
The CORE ERLANG language bears many similar traits to ERLANG al-

though there are some notable differences, such as the letrec construct
which allows the definition of local (possibly recursive) functions. All the
constructs are described informally in the remainder of this section. The fol-
lowing syntactical conventions will be used: all alphanumeric terminal and
non terminal symbols are identified by their type faces. All non alphanu-

51

meric symbols in the grammars are terminals with the exception of the meta-
character which is quoted when occurring as a terminal grammatical term.

4.2.1 Modules

As with ERLANG, the grouping unit in CORE ERLANG is the module where
a number of functions are defined. The general format of a CORE ERLANG

module is shown in Figure 4.1. An example CORE ERLANG module is shown
in Figure 4.7, it is the result of compiling the example ERLANG module in
Figure 2.1 into CORE ERLANG.

module :: module atom [fnamee1 fnameek]
attributes [atom1=const1 atoml=constl]
fname1=fun1

...

fnamem=funm
end

f name :: atom/ integer
f un :: fun(var1 var2) -> exprs
var :: VariableName

Figure 4.1: CORE ERLANG module syntax.

A module begins with the atom module followed by the name of the module
and a list consisting of the names of the exported functions. Each function
name (fname) consists of the name of the function and its arity. The meaning
of the following attributes are implementation dependent and they play no rôle
in our analysis; an example attribute is that of the author found in the example
module in Figure 4.7. After the attributes follow the function definitions, if
an exported function is not matched by any definition a compile time error
will occur. Each function definition consists of the function name equated to
a nameless function, or fun as they are called in ERLANG terminology.
The funs in CORE ERLANG only have variables as arguments and one sin-

gle clause; if the originating ERLANG function consisted of more complex
matching expressions or several clauses, this is expressed using a conditional
in the expression body of the fun. The reason for the single clause funs is
that of uniformity, since programs are to be compiled to CORE ERLANG as
opposed to written in ERLANG, there is no reason to have redundant ways of
writing the same code.

52

The variables in CORE ERLANG are alphanumeric sequences starting with
either an uppercase letter or ’_’, unlike ERLANG there is no anonymous vari-
able. All atoms in CORE ERLANG are quoted with single quotes and may con-
tain any alphanumeric and special character except control characters, slash (/
), and the single quote (’).

4.2.2 Expressions

All expressions in CORE ERLANG return a possibly empty sequence of values,
written enclosed in angular brackets of form < value1 valuen >. Expres-
sions return sequences of values instead of only singular values in order to
allow certain optimisations be made at CORE ERLANG level; when a value
sequence consists of one value the brackets may be omitted. The use of an
expression must match the number of values it produces and in constructing
a value sequence out of expressions, these expressions must all produce one
value. Should an expression be the argument of a list or tuple constructor, or
function call it must also result in one value.

exprs :: expr <expr1 exprn>
expr :: var f name f un literal

[exprs1 ’|’ exprs2]
{exprs1 exprsn}
let vars = exprs1 in exprs2
letrec f name1 = f un1 f namen = f unn in exprs
case exprs of clause1 clausen end
apply exprs0(exprs1 exprsn)
call exprsn 1:exprsn 2(exprs1 exprsn)
primop Atom(exprs1 exprsn)
try exprs1 catch (var1 var2) -> exprs2
receive clause1 clausen after exprs1 ->exprs2 end

vars :: var <var1 varn>

Figure 4.2: CORE ERLANG expressions.

The different types of expressions are summarised in Figure 4.2, they con-
sists of variables (of which function names really are only a special case),
funs, constants, data type expressions, binding expressions, conditional ex-
pressions, various types of function calls, exception handling, and message

53

retrieval. All these different types of expressions, not already described, will
be described in more detail below.

4.2.2.1 Constants
There are two types of constants, the atomic constants that are not constructed
out of other constants, and the compound constants that are either lists or
tuples consisting entirely of constant subterms. The atomic constants are: in-
tegers, floats, atoms, and characters. These types are of the same format as in
ERLANG (see Section 2.2.1.1) with the exception of atoms which have been
described above. The characters are merely syntactic sugar for the correspond-
ing integer that encodes the character in question.

const :: literal String [const1 ’|’ constn]
{const1 constn}

literal :: integer float atom Char

Figure 4.3: CORE ERLANG constant literals.

The compound constants are tuples, lists and strings have the same format
as in ERLANG (see Section 2.2.1.2), where string constants are nothing more
then a special syntax for lists consisting of characters.

4.2.2.2 Data Types Expressions
There are two types of data type expressions, used to construct elements of the
compound data types tuples and lists. In all essential parts, these constructs are
like those of ERLANG described in Section 2.2.1.2.

expr :: [exprs1 ’|’ exprs2]
{exprs1 exprsn}

Figure 4.4: CORE ERLANG data type expressions.

4.2.2.3 Binding Expressions
There are two types of binding constructs, first the let construct
which replaces the explicit match of ERLANG (Section 2.2.2), then
there is the letrec construct used to implement the ERLANG list
comprehensions (Section 2.2.7).
A let expression binds the n variables occurring in vars to the n values re-
turned by expression exprs1, in the evaluation of exprs2. The result of the
expression is the values returned by the evaluation of exprs2. Should the num-

54

expr :: let vars = exprs1 in exprs2
letrec fname1 = fun1 fnamen = funn in exprs

Figure 4.5: CORE ERLANG binding expressions.

ber of variables in the vars part differ from the number of values returned by
exprs1 there will be a runtime error. There are two important differences be-
tween the explicit matching of ERLANG and the let construct; the first is
that in a let expression a variable may only occur once in the vars variable
sequence. The second difference is that in CORE ERLANG binding scopes
are nested as in lambda calculus rather than the per function single scope of
ERLANG (Section 2.2.6).
The letrec construct binds function name variables to funs much in the

same way as a function definition, the only difference to a function defini-
tion is that the function name variable is local to the letrec expression. The
bindings of the letrec are available everywhere in the expression, more par-
ticularly they are available in the body of the funs defining the function vari-
ables making it possible to define recursive and mutually recursive local func-
tions. The result of evaluating a letrec expression is the result of evaluating
the exprs part, with the bindings of the function names fname1 fnamen.

4.2.2.4 Conditional Expressions
The only conditional construct in CORE ERLANG is the case construct,
which has several differences to the ERLANG case (Section 2.2.5) although
it is similar in intent. The case evaluates the exprs and matches the clauses
patterns sequence against the resulting values in order to determine the clause
to execute.
The patterns in the clause bind the occurring variables in the same manner as
the let construct, and the same restriction that a variable may not be repeated
is enforced by the compiler. The pattern sequences of the clauses must have
the same number of patterns, which must be the same as the number of values
in the result of the evaluation of the exprs.
The guards of the clauses may only produce a single value (either the atom

true or the atom false) and may not have any side effects. The guards
are a restricted form of expressions that only may consist of variables, con-
stants, constructors, let, function call, and exception handling expressions.
The function call can only be made to a set of predefined functions that are
known to exist and be side effect free, e.g., type tests, comparisons and selec-
tors.

55

expr :: case exprs of clause1 clausen end
clause :: pats when guard -> exprs
pats :: pat <pat1 patn>
pat :: var literal [pat1 ’|’ pat2] {pat1 patn}

var pat
guard :: var literal [guard1 ’|’ guard2]

{guard1 guardn}
let vars = guard1 in guard2
call guardn 1:guardn 2(guard1 guardn)
primop atom(guard1 guardn)
try guard1 catch (var1 var2) -> guard2

Figure 4.6: CORE ERLANG conditional expressions.

4.2.2.5 Function Expressions
There are three different types of function calls in CORE ERLANG: calls to
functions defined in the same module (apply); calls to functions that may be
defined in another module (call); and calls to special implementation depen-
dent functions (primop). Examples of all thre usages are found in Figure 4.8.
The application of a local functions simply consists of evaluating its argu-
ments and then applying the function which exprs0 evaluates to. The calling
of functions defined in other modules is similar although the module in which
the function is defined must also be calculated. In most cases the function as
well as the module are known statically at compile time.
The purpose of the primitive operations (or primops) is to distinguish be-

tween the functions supported directly by the runtime system and the nor-
mal functions. They are defined in a module supplied with the system. The
name of the operation is an atom, e.g., in Figure 4.7 is a call to the primop
match_fail which handles the situation where none of the clauses in the
originating ERLANG case construct would match the values.

4.2.2.6 Exception Handling
Exceptions in CORE ERLANG have two components: a tag and a value. The
tag indicates to what class an exception belongs; the class ’EXIT’ signifies
an exception raised by the runtime system, and the class ’THROW’ signifies
an exception explicitly raised by the programmer. The value of the exception
may be any sequence of one value.
When evaluating the try expression, if exprs1 does not raise an exception
then the result of evaluating exprs1 is the result of the whole try expression.
Should the evaluation of exprs1 cause an exception to be raised then the result

56

module ’example’ [’reverse’/1, ’sort_reverse’/1,
’lazy_reverse’/1]

attributes [’author’ =
[’JanHenryNystrom@gmail.com’]]

’reverse’/1 =
fun (_cor0) -> apply ’reverse’/2 (_cor0, [])

’reverse’/2 =
fun (_cor1, _cor0) ->
case <_cor1, _cor0> of
<[], Reversed> when ’true’ -> Reversed
<[H|T], Reversed> when ’true’ ->
apply ’reverse’/2 (T, [H|Reversed])

<_cor3, _cor2> when ’true’ ->
primop ’match_fail’ ({’function_clause’,

_cor3,
_cor2})

end

’sort_reverse’/1 =
fun (_cor0) ->
let <Sorted> = call ’lists’:’sort’ (_cor0)
in apply ’reverse’/2 (Sorted, [])

’lazy_reverse’/1 =
fun (_cor0) ->
case _cor0 of
<List> when try

let <_cor1> =
call ’erlang’:’length’ (List)

in call ’erlang’:’<’ (_cor1, 10)
catch (T, R) -> ’false’
->

apply ’reverse’/1 (List)
<List> when ’true’ -> List

end
end

Figure 4.7: An example CORE ERLANG module.

57

expr :: apply exprs0(exprs1 exprsn)
call exprsn 1:exprsn 2(exprs1 exprsn)
primop atom(exprs1 exprsn)

Figure 4.8: CORE ERLANG function call expressions.

expr :: try exprs1 catch (var1 var2) -> exprs2

Figure 4.9: CORE ERLANG exception handling expressions.

is what exprs2 evaluates to with var1 bound to the tag of the exception and
var2 to its value.

4.2.2.7 Message Retrieval
The receive construct can be viewed as a case statement looping over
the contents of the process mailbox, where the receive tries to match its
clauses over and over until there is a message present in the mailbox that can
be matched by a clause. The first clause which matches an element in the
mailbox, whose corresponding guard is true, is selected. The expression of
the clause is executed, with bindings provided by the pattern match, and the
matched message in the mailbox is removed from the mailbox.

expr :: receive clause1 clausen after exprs1 ->exprs2 end

Figure 4.10: CORE ERLANG message retrieval expressions.

There is a timeout clause after exprs1 ->exprs2 that might break out of the
“loop” if the time elapsed in the statement is larger than the value of exprs1
milliseconds. Unlike in ERLANG (Section 2.3.1) the timeout clause is not op-
tional, however if exprs1 evaluates to infinity the timeout clause will never
be evaluated. The exprs1 is evaluated first, before any matches are tried in the
receive construct, and should evaluate either to a nonnegative integer or
infinity. The result of the receive statement if the timeout clause is
evaluated, is what exprs2 evaluates to.

4.2.2.8 Syntactic Sugar (do)
A notation for a special application of the let construct has been introduced
in CORE ERLANG, even if it is redundant, due to the great improvement in

58

readability it gives. The construct is do. The usage is that of evaluating an
expression whose result is of no interest, for which merely the side effects
that are sought. First exprs1 is evaluated and then exprs2 is evaluated, with the
result of the statement being what exprs2 evaluates to. The same result can be
achieved by writing let vars = exprs1 in exprs2 where vars does not contain
any variables occurring free in exprs2.

expr :: do exprs1 exprs2

Figure 4.11: CORE ERLANG sequential expressions.

4.2.3 Normal Form

case <first(_cor1), second(3)> of
<’true’, _cor2> when ’true’ ->
’true’

<’false’, _cor2> when ’erlang’:’>’(_cor2, 8) ->
false’

<_cor2, _cor3> when ’true’ ->
’erlang’:’throw’(’error’)

end

let <_cor2, cor3> =
<first(_cor1), let <_cor4> = 3 in second(_cor4)>

in case <_cor2, _cor3> of
<’true’, _cor2> when ’true’ ->
’true’

<’false’, _cor2> when let <_cor3> = 8
in ’erlang’:’>’

(_cor2, _cor3) ->
’false’

<_cor2, _cor3> when ’true’ ->
let <_cor4> = ’error’
in ’erlang’:’throw’(_cor4)

end

Figure 4.12: Example code snippet with the equivalent normalised version.

To simplify the description of the semantics, we assume that the CORE

ERLANG program has been transformed into an equivalent program where

59

each intermediate result has been given a name, similar to the normal form of
[Sabry and Felleisen 1994]. That means that, with the exception of let, the
arguments of each construct must be variables. An example code snippet, to-
gether with its transformed form is shown in Figure 4.12. The transformation
into the normal form is defined in Figure 4.13.

4.3 Formal Semantics

In this section is presented an operational semantics of CORE ERLANG. The
purpose of the semantics is to faithfully mirror the meaning of the language at
the level of detail relevant for the extraction of supervision structures.

4.3.1 Global Context and Resources

An important and involved part of the formal semantics is how we model the
handling of message passing, since we only regard one process in isolation.
Since we model the processes and not the whole of their environment we have
chosen not to explicitly model the stream of incoming messages that have
not been delivered to the process’ message queue. This stream of messages is
modelled by rule (4.38) that may insert any message into the process’ incom-
ing queue. All the transformation rules of the semantics are defined later in
this section. The message queue is modelled as a part of the global state.
The model of message passing gives rise to nondeterminism: since the se-

mantics does not model the time of arrival for a message, it can not be deter-
mined whether the message was delivered before a timeout would occur in a
receive expression. As a consequence of this nondeterminism, the concrete
semantics will abstract over this distinction and include both possible action
sequences.
Another important aspect is side effects. Side effects that may influence the

execution of the process will be recorded in the state of the process, e.g., the
changes made to the ETS tables. We assume that processes not involved in
the same ERLANG application do not change the values recorded in the state.
Note that processes in the same application may well share resources, such as
ETS tables. The node global resources affected by side effects which we will
model are:

The ERLANG term storage, or ETS for short, which is a node local database
of key/value tables accessed via functions in the ets module. The ta-
bles are created, destroyed and updated destructively, acting as node
global variables. The ETS table has privileges that can be used to re-
strict the access to the tables.

Registered names described in Section 2.3.2.

60

A x x

A literal l literal l

A e1 ei
let x1 xi A e1 A ei
in x1 xi

A e1 e2 let x1 x2 A e1 A e2 in x1 x2

A e1 ei
let x1 xi A e1 A ei
in x1 xi

‘

A fun x1 xi e fun x1 xi A e

A let x1 xi e1 ei in e
let x1 xi A e1 A ei in A e

A letrec x f1 e f1 x fi e fi in e
letrec x f1 A e f1 x fi A e fi in A e

A do e1 e2 let x1 x2 A e1 A e2 in do x1 x2

A case e1 ei of clauses end
let x1 xi A e1 A ei
in case x1 xi of A clauses end

A clause clauses A clause A clauses

A p when g -> e p when A g ->A e

A apply e f e1 ei
let x f x1 xi A e f A e1 A ei
in apply x f x1 xi

A call em:e f e1 ei
let xm x f x1 xi A em A e f A e1 A ei
in call xm:x f x1 xi

A primop literal a e1 ei
let x1 xi A e1 A ei
in primop literal a x1 xi

A try e1 catch x1 x2 -> e2
try A e1 catch x1 x2 ->A e2

A receive clauses after et -> ea
let xt A et in receive A clauses after xt ->A ea

Figure 4.13: Transformation of CORE ERLANG into normal form.

61

Mnesia is a distributed real time database implemented in ERLANG using
ETS [Mattsson et al. 1999, Ericsson Utvecklings AB 2000].

The File system must be considered for the type of applications we analyse
since quite often application configuration data are stored in files. If we
chose to include the file system in the state we make the assumption that
the files are not modified by any processes not part of the application
under analysis.

4.3.2 Abstract Machine

The operational semantics is based on an abstract machine model. The ab-
stract machine of the operational semantics has been influenced by Landin’s
SECD-machine [Landin 1964]. The SECD-machine was designed to provide
a semantics, as well as serve as a basis of implementation, of the programming
language Lisp [Allen 1978]. A configuration of the SECD-machines consists
of: a value stack, an environment, a code stack and a stack of system dumps.
We believe that the SECD-machine with its simple configuration and small
step transformations from one configuration to the next makes it easy to un-
derstand the semantics and relate it to the informal semantics of the language
being described.
Since the SECD-machine lacks any notion of input/output or persistent state

(being purely functional) we have added a global state to our abstract machine
in order to represent global resources. The SECD-machine operates on an “as-
sembly” language into which the source languages’ (Lisp) expressions have
been compiled, but since our semantics will act as a basis for implementation
of an analysis rather than of implementing the language itself, we have chosen
to let our machine operate directly on CORE ERLANG-expressions. The final
change is that since our machine operates on CORE ERLANG-expressions we
do not need the system dump, as we will encode this information in the call
stack.
Our abstract machine will be called the concrete abstract machine (CAM)

to distinguish it from the abstract abstract machine (AAM) of the abstract se-
mantics described in Chapter 5.
The CAM’s configuration is a four-tuple s ρ c σ , where:
s — the value stack, which will contain the result of evaluations of ele-
ments on the code stack.
ρ — a context, which keeps track of which environment the CAM is

currently evaluating, as well as all the environments. Each environment is
a mapping from variables to values.
c — A sequence of CORE ERLANG expressions and intermediate expres-
sions to evaluate; we represent this sequence as a stack. The intermediate
expressions represent intermediate sub-evaluations generated by the ma-
chine during the evaluation of expressions.

62

σ — the global state of the system. A system state contains the name of
the module in which the machine is currently evaluating an expression; a
queue of incoming messages; the definitions of modules; and a sequence
of side effects that have occurred.

4.3.3 Dynamic Behaviour

The dynamic behaviour of the CAM is described through a set of transition
rules of form:

4 0 Guard

s ρ c σ
Action

Semantics s ρ c σ

where Shorthand expression

A rule is enabled in a configuration if the configuration matches s ρ c σ
and the Guard is satisfied. If the rule is applied to a configuration in which
it is enabled the resulting configuration is s ρ c σ . In order to make the
rules easier to read it is possible to write where statements. To clarify what
semantics a rule belongs to we have the Semantics subscript to the arrow, in
the CAM’s case an ’c’.

A run of the system is a sequence Γ0

μ1

c
μ i

cΓi, where Γ0 is an initial

configuration and
μ i

c is the ith transition rule used. The observable result of
a run is the sequence of Action labels μ1 μ i generated by the run,
The meaning of the evaluation of an expression is the set of possible se-

quence of Action labels generated by a run of the system. The special action
τ label signifies an internal unobservable action which is not included in the
sequence. Nondeterminism is expressed by more than one rule being enabled
in a given configuration.
In the description of the semantics below, we first present the general prop-

erties of the semantics and thereafter the domains of the configuration. Then
the rules, and auxiliary functions used in them, are presented.

4.4 Domains

The domains used in the concrete and abstract semantics are summarised in
Figure 4.15. Each domain definition is of the form:

form Domain name Domain definition

63

The Domain definition defines the Domain name and the form shows how el-
ements of the domain will be written in the transition rules. For example vari-
ables will be written as x, possibly with a subscript. The addition of a small-
est or largest element to a domain D is denoted D and D respectively. The
smallest element is written as D and the largest as D; the domainD omitted
when it is obvious from the context. The signifies an unknown value, i.e., it
can be any value in the domain. When a domain is constructed from a set of
values augmented with a largest element (such as Value), this largest value
will come into play as a result of approximations in the abstract semantics and
play no rôle in the concrete semantics.
The syntactic objects of expressions and variables in CORE ERLANG are

represented by the syntactic domains in the semantics, the syntactic domains
used are shown in Figure 4.14. The literal constants (of which atoms are

x Var var
a Atom atom a a atom
l Literal literal l l literal
e Exprs exprs
f Fun f

p when g -> e cl Clause clause
p Pattern pats
g Guard guard

Figure 4.14: The syntactic domains of CORE ERLANG used in the concrete semantics

an instance) are denoted by the domains that the syntactic objects represent,
i.e., the syntactic domain of Integers is denoted by the semantic domain of
Z . Elements of the syntactic domain are denoted as literal l (or atom a for
atoms), where l is the written format of the literal, e.g., literal 1 for the integer
1.
The other domains are:
The Value domain consists of literal values, tuples, lists and function clo-
sures.
The Closure domain consists of triples f n m , where

f is a syntactic object in the Fun domain,

n is an environment name and

m is a module name.

The environment name is the name of the environment that provides bind-
ings of the free variables occurring in f and the module name is the module
in which the closure was defined in order that local function calls can be
resolved.

64

The intermediate expressions (AuxExpr) domain consists of an operator
and a sequence of arguments. The arguments can either be values, expres-
sions, environment names, clause lists, code stacks, or input queues. The
expressions are:

def adds bindings from its arguments by constructing a new environ-
ment, which is added to the context.

restore restores a previous environment as the current.

if switches on a boolean value on the value stack.

return returns from a function call.

exception signifies that an exception has occurred.

catch catches exceptions.

rec traverses the input queue of messages.

message generates a receive action label.

approx indicates that a function call has been approximated.

The Module domain consists of maps from atoms and integers to closures,
where the atom is a function name and the integer its arity. In the closure
the environment name is that of the special empty environment called 0.
The Modules domain consists of maps from module names to modules,
where modules names are atoms. This domain intuitively represents the
modules of code loaded into the ERLANG node.
The Queue domain consists of lists of values.
The Effects domain is a list of key/value pairs k v where the pair to the
front of the list is the latest. Each key/value pair represents a side effect
which affects the state of a global resource.
The domain of environments (Env) consists of maps from variables to val-
ues.
The domain of contexts (Context) consists of triples n env k , where n
and k are environment names and env is a map from environment names to
environments. The environment name n is the name of the current environ-
ment, i.e., the environment in which the abstract machine evaluates at the
moment. The environment k is the name of the last allocated environment
name, providing a way of allocating new unique environment names since
the environments names are natural numbers.
We represent stacks using the list syntax of ERLANG.
A machine configuration is either NIL, which signifies that the machine has

stopped, or a four-tuple consisting of the following parts:

Stack — a stack of values that are results of evaluating expressions.

Context — consists of three parts: the first part is the name of the cur-
rent environment; the second part is a mapping of environment names to
environments; and the third part is the last environment name allocated.
By convention, the second part of the context should map the environment
name 0 to the empty environment.

65

Γ s ρ c σ Configuration Stack Context Code

State NIL

v s Stack Value Stack

ρ Context EnvName EnvMap

EnvName

e op c Code

Exprs AuxExpr Code

σ State ModuleName Queue

Modules Effects

EnvMap EnvName Env

Env Var Value

EnvName N

s n m Save Stack EnvName

ModuleName

v Value Literal Tuple List

Closure

v1 vi Tuple Value Tuple

v1 v2 List Value Value

v1 vi Values Value Values

f n M Closure Fun EnvName

ModuleName

op o1 oi AuxExpr AuxOp Args

AuxOp

o1 oi Args Arg Args

Arg Value Exprs EnvName

ClauseList Code Queue

cl cls ClauseList Clause ClauseList

v q Queue Value Queue

ms Modules ModuleName Module

m ModuleName Atom

Module Atom N Closure

vk vv π Effects

Value Value Effects

Figure 4.15: The domains of the concrete and abstract semantics

66

Code — a sequence of CORE ERLANG and intermediate expressions to
be evaluated. The sequence is represented as a stack since we pop the ex-
pression to be evaluated, and then during the evaluation we push more ex-
pressions to be evaluated onto the stack. The first element of the expression
sequence may be the approximation () in the abstract semantics,
when approximating a function call.

State — the global state of the system consists of four parts: the name of
the CORE ERLANG module in which the machine is currently evaluating;
the input queue of messages; the mapping of module names to the modules
definitions; a sequence of side effects that have occurred.

The action labels used in the semantics are:

exit r which signifies that the process has terminated with reason r which
is either fail or normal.

m: f v1 vi which signifies that function f in module m has been called
with arguments v1 vi.

primop f v1 vi which signifies that the primitive operation f has been
called with arguments v1 vi.

receive v which signifies that message v has been removed from the input
queue by a receive statement.

timeout which signifies that a timeout has occurred in a receive state-
ment.

which signifies that an approximation has been made. This label will only
occur in the abstract semantics.

4.5 Auxiliary Functions

These auxiliary functions will be used in both the concrete and abstract seman-
tics and consequently some of them have special cases for approximations that
will never be used in the concrete semantics. E.g., the function must
be defined for the case where the value (or a part of a compound value) is an
approximation.
The following functions all use or manipulate the context part of the

machine configuration. The set function sets the current environment.
The current function returns the name of the current environment. The
update function adds a new environment to the context and sets the new
environment to be the current environment. When ρ is a context, we use ρ x
as a shorthand for env ρ x .

67

: EnvName Context Env

n n env k n env k

:Context EnvName

n env k n

:Env Context Context

map n env k
k 1 env k 1 env n map k 1

Both the bind and bindf functions add a new environment to the context
and sets the new environment to be the current environment. The bindf func-
tions create closures that refer to the environment being defined in order to
enable mutual recursion between functions.

: Vars Values Context Context

x f1 x f n v1 vn ρ
x1 v1 xn vn ρ

: Vars Values Context ModuleName Context

x f1 x f n f1 fn n env k m
x f1 f1 k 1 m xfn fn k 1 m
n env k

The functions , , and are selectors on the global state
of the configuration. The function performs a lookup for a particular
function in the module definitions1. We will for simplicity assume that all
called functions are defined. The _ function changes the module in
the configuration.

1If we were to model ERLANG’s exact behaviour we would have to introduce a special case

when no function matches, and return a predefined library function that handles this. The action

to be taken when an undefined function is called can defined by the user.

68

:State ModuleName

m q ms π m

:State Queue

m q ms π q

:State Effects

m q ms π π

: ModuleName Atom N State Closure

m f i m q ms π ms m f i

_ : ModuleName State State

_ m m q ms π m q ms π

The deliver function places a value at the end of the input queue, unless
the queue is an approximation in which case it returns the state unchanged.
The remove function removes an element from the input queue in the con-
figuration. The delete function removes an element from a queue, unless
the queue is an approximation in which case the approximation is returned.

:Configuration Configuration

m q ms π
m v1 vi v ms π ifq v1 vi
m q ms π otherwise

: Value Configuration Configuration

v v q ms π v v q ms π

: Value Queue Queue

v q
ifq

q ifq v q v v
v remove v q ifq v q v v

The publish and read functions deal with the side effects. All side effects
that change the global state are modelled using publish, and all calls exam-
ining the global state are modelled using read. The publish function adds
a key/value pair to the list of side effects, whereas the read function looks
up the associated value of a particular key. To be able to consider the order
of side effects (e.g., when one side effects cancel an earlier effect) the read
function takes a second key that may not occur before the first key in order for
the lookup to succeed. After a key that contains an approximation has been

69

published the function becomes an identity function and all calls to
return .

: Value Value Configuration Configuration

k v m q ms π
m q ms π ifπ k1 v1 π _ k1
m q ms k v π otherwise

: Value Value Effects Value

k1 k2 π
if _ k1 _ k2

fail ifπ
ifπ k3 v π _ k3

fail ifπ k2 v π
ok v ifπ k1 v π

k1 k2 π ifπ k3 v π
k1 k3 k2 k3 _ k3

The match function takes a pattern and a value and tries to match them. If
successful the result is an environment containing the bindings generated by
the match. If unsuccessful the result is an enviroment that contains the el-
ement. Since will match any value, a match against a value containing
a successful match will not be conclusive but an unsuccessful will be conclu-
sive. This means that when we get an inconclusive match we only know that
the match may succeed.
There are two important aspects to note: First is that the match in CORE

ERLANG is linear as opposed to ERLANG. Secondly, that in the concrete se-
mantics the approximation will never occur, it is included in the definition
because it will be needed for the abstract semantics.

70

: Pattern Value Env

p v
x v if p x
x v p1 v if p x p1

if p literal v1
v1 v v

p1 v1 p2 v2 if p p1 p2
v v1 v2

p1 p2 if p p1 p2 v
p1 v1 pi vi if p p1 pi

v v1 vi
p1 pi if p p1 pi

v
p1 v1 pi vi if p p1 pi

v v1 vi
p1 pi if p p1 pi

v
otherwise

The _ function examines its argument to see if it is or contains
if it is a compound value.

_ :Value true false

_ v
true ifv
false ifv literal l

_ v1 _ v2 ifv v1 v2
_ v1 _ vi ifv v1 vi
_ v1 _ vi ifv v1 vi

false ifv f n m

4.6 Transition Rules

4.6.1 Normal Termination

An ERLANG process can either terminate normally or abnormally, as de-
scribed in Section 2.3.2. This rule states that the process terminates normally,

71

if the code stack is empty. The rule results in the NIL configuration, issuing
the exit(normal) action.

4 1 s ρ σ
exit normal

cNIL

4.6.2 Variables and Literals

When evaluating a variable, the value to which the variable is bound is placed
on the value stack. A literal that is evaluated is simply placed directly on the
value stack.

4 2 s ρ x c σ
τ

c ρ x s ρ c σ

4 3 s ρ literal l c σ
τ

c l s ρ c σ

4.6.3 Compound Expressions

Compound expressions are evaluated by placing the compound data structure
on the value stack, with the variables replaced by their values. Note that since
we have the “A-normal” form all subexpressions are variables.

4 4 s ρ x1 xi c σ
τ

c ρ x1 ρ xi s ρ c σ

4 5 s ρ x1 x2 c σ
τ

c ρ x1 ρ x2 s ρ c σ

4 6 s ρ x1 xi c σ
τ

c ρ x1 ρ xi s ρ c σ

72

4.6.4 Funs

The evaluation of a fun results in a closure, consisting of the function defini-
tion, the current environment and module, being placed on the value stack.

4 7 s ρ fun x1 xi e c σ
τ

c v s ρ c σ

where n ρ
m σ
v fun x1 xn e n m

4.6.5 Binding Expressions

A let expression is evaluated by transforming it into a sequence of expres-
sions and intermediate expressions placed on the code stack. This sequence
contains first the expressions to which the variables are to be bound, followed
by the intermediate expression def that binds the variables to the values of
these expressions. Thereafter follows the body e of the let expression, fol-
lowed by the intermediate expression restore which restores the current
environment to its value before the evaluation of the let expression.

4 8 s ρ let x1 xi e1 ei in e c σ
τ

c
s ρ e1 ei x1 xi e n c σ

where n ρ

The def intermediate, which takes the sequence of variables to be bound as
argument, binds its arguments to the i first values on the value stack.

4 9 vi v1 s ρ x1 xi c σ
τ

c s ρ c σ

where ρ x1 xi v1 vi ρ

The restore intermediate takes the name of an environment as argument
and sets the current environment to the argument environment name. It is used
to restore a previous environment, thus “forgetting” later bindings.

4 10 s ρ n c σ
τ

c s ρ c σ

where ρ n ρ

A letrec expressions is similar to a let expression, but takes funs as argu-
ments. It is evaluated by creating a new environment where the variables are

73

bound to the closures of the funs, and replacing the letrec expression by its
body e followed by the restore.

4 11 s ρ letrec x f1 e f1 x fi e fi in e c σ
τ

c
s ρ e n c σ

where n ρ
m σ
ρ x f1 x fi e f1 e fi ρ m

4.6.6 Sequencing Expressions

The sequencing expressions simply places the value, to which the second ar-
gument x2 is bound, on the value stack. The value to which the first variable
x1 is bound is simply ignored.

4 12 s ρ do x1 x2 c σ
τ

c ρ x2 s ρ c σ

4.6.7 Conditional Expressions

The conditional case expression is somewhat complex to handle since the
choice of clause depends both on that the pattern match and that the guard
evaluates to ’true’. Guards are handled using an intermediate if expres-
sion.
The first case rule (4.13), deals with the case when the first clause of the

case expression matches the value sequence to which the variable sequence
x1 xi is bound (i.e, is not a member in the environment returned
by the match). The match results in a new context. The case expression is
replaced on the code stack by the guard g, followed by an intermediate if
expression. The true branch of the if intermediate contains the body e of the
clause followed by a restore intermediate to restore the environment to
that prior to evaluation of the case expression. The false branch consists of
the restore intermediate followed by the case expression without the first
clause.

74

4 13
p ρ x1 ρ xi

s ρ case x1 xi of clause clauses end c σ
τ

c
s ρ g c1 c2 c σ

where p when g -> e clause
ρ p ρ x1 ρ xi ρ
n ρ
c1 e n
c2 n case x1 xi of clauses end

The second case rule (4.14), deals with the case where the first clause does
not match the value sequence to which the variable sequence x1 xi
is bound. The result is the evaluation of case expression without the first
clause. The case where no more clauses remain need not be handled, since
in a well formed case expression the patterns of the clauses must be
exhaustive. This can easily be achieved by adding a last clause of form:
xi 1 when ’true’ -> ei 1, where ei 1 could for example raise an
exception.

4 14
p ρ x1 ρ xi

s ρ case x1 xi of clause clauses end c σ
τ

c
s ρ case x1 xi of clauses end c σ

where p when g -> e clause

The if intermediate is evaluated by replacing the if intermediate either with
its 1st or 2nd argument on the code stack. The top element is popped from the
value stack and if it is true then the 1st argument replaces the if, and if it is
false then the 2nd argument replaces the if.

4 15 ’true’ s ρ c1 ci c c σ
τ

c
s ρ c1 ci c σ

4 16 ’false’ s ρ c c1 ci c σ
τ

c
s ρ c1 ci c σ

4.6.8 Function Expressions

There are three different types of functions expressions: apply expressions
are local function calls within the same module, call expressions which are

75

calls to functions that may be defined in another module, primop calls which
are typically generated by the compiler to handle implementation dependent
aspects. We will also use the primop calls when modelling exceptions and
side effects.
Evaluation of a function expression generates a visible action. The apply

only constitutes a special case of the more general call. An intermediate
expression is used to restore the value stack, environment and current
module to that prior to the evaluation of the function expression.

4.6.8.1 Apply
The first apply rule (4.17) deals with case where the function name variable
x f is bound to an atom. The defining closure fun x1 xi e 0 m
of the function is looked up in the current module. The 0 environment name in
the closure indicates that the empty environment should be used. The apply
is transformed into the body e of the closure followed by the intermedi-
ate that takes three parameters, the previous stack s, the current environment
name n and the module name m. In the new configuration in which the body
will be evaluated, the value stack is empty and an environment (where the
formal parameters x1 xi are bound to the values of the actual parameters
x1 xi) is added to the context.
The second apply rule (4.18) deals with case where the function name

variable x f is bound to a closure fun x1 xi e n m . The rule is
the same as the first apply rule with the important exception that the binding
of the formal parameters to the actual parameters should be added to the envi-
ronment n given by the closure, as opposed to the special empty environment
of rule (4.17).

4 17
ρ x f Atom

s ρ apply x f x1 xi c σ
μ

c
ρ e c σ

where n ρ
m σ

fun x1 xi e 0 m m ρ x f i σ
ρ x1 xi ρ x1 ρ xi 0 ρ
μ m : ρ x f ρ x1 ρ xi

76

4 18
ρ x f fun x1 xi e n m

s ρ apply x f x1 xi c σ
μ

c
ρ e c σ

where n ρ
m σ
ρ x1 xi ρ x1 ρ xi n ρ
μ m : ρ x f ρ x1 ρ xi

The third apply rule (4.19), deals with case where the function name variable
x f is not bound to an atom or a closure. In this case an exception is raised by
transforming the apply into a primop call which raises an exception, in a
new context where the argument variable is bound to badarg. We have to
insert a intermediate to restore the environment.
The condition in the guard of the rule that x f should not be bound to Value,

is only relevant in the abstract semantics since it can never be bound to Value

in the concrete semantics. The reason we include the condition in the concrete
semantics is that then we can used the same rule in the abstract semantics.

4 19
ρ x f Atom Closure Value

s ρ apply x f x1 xi c σ
μ

c
ρ primop atom ’raise’ x s n m c σ

where n ρ
m σ
ρ x ’badarg’ ρ
μ m : ρ x f ρ x1 ρ xi

The has three parameters the previous stack s, the current environment
name n and the module name m. Before the evaluation of the interme-
diate, the value stack should only contain one value. The value on the stack is
the return value of the function from which we are currently returning. This
value should be placed on top of the restored stack. The current environment
name and module name are restored to those retrieved from the save.

4 20 v ρ s n m c σ
τ

c v s ρ c σ

where ρ n ρ
σ _ m σ

77

4.6.8.2 Call
For the call expressions there are a number of the built in functions that
have to be handled in a special way, first are those that can only be modelled
as special call expression rules. These calls we will refer to as the domain
SpecialCall which contain triplets m f i of module name m, function name
f and function arity i. Among these functions we present example rules for the
erlang:apply/3 and erlang:throw/1 functions, but there are several
more, they are all listed in Table 4.1.
Another category of built in functions are those that contain side effects,

we model them by writing special abstract version CORE ERLANG modules
using the primop calls ’read’ and ’publish’. An example of a built
in function modelled in CORE ERLANG is the erlang:unregister/1
function which is depicted in Figure 4.16, the registering of processes is de-
scribed in Section 2.3.2. The modules that contain functions that need to be
modelled in this ways are split into two tables: first is Table 4.2 where is listed
all the modules for which we have an abstract version, the second Table 4.3
containing all the applications that have modules we should write an abstract
version for but not had the time to write.

’unregister’/1 =
fun(Name) ->
case primop ’read’ ({’register’, Name},

{’unregister’, Name})
of
<{’ok’, _cor0}> when

call ’erlang’:’pid’(_cor0) ->
primop ’publish’ ({’unregister’, Name},

’false’)
<fail> when ’true’ ->
primop ’raise’ (’badarg’)

end

Figure 4.16:Model of erlang:unregister/3 in CORE ERLANG.

The first and second call expression rules, deal with a call to the built in
function erlang:apply. The first rule is the case where the arguments to
the call have the correct type and the second is the case where the types are
incorrect and a badarg exception is raised.
The first rule (4.21) transforms the call expression into a call expres-

sion of the arguments where the fresh variables x1 xi are bound to the el-
ements of third argument’s value. A intermediate is inserted to restore
the environment after the evaluation of the call.
The second call rule (4.22) transforms the call expression into

a primop expression raising an exception in a new context where the

78

Tests:

is_atom/1 is_binary/1 is_float/1

is_fun/1 is_integer/1 is_list/1

is_pid/1 is_port/1 is_ref/1

is_tuple/1

Conversions:

atom_to_list/1 binary_to_float/1 binary_to_list/1

binary_to_list/3 binary_to_term float/1

float_to_list/1 fun_to_list/1 integer_to_list/1

list_to_atom/1 list_to_binary/1 list_to_float/1

list_to_integer/1 list_to_pid/1 list_to_tuple/1

pid_to_list/1 port_to_list/1 ref_to_list/1

term_to_binary/1 term_to_binary/2 tuple_to_list/1

Other:

apply/2 apply/3 exit/1

exit/2 fault/1 fault/2

halt/0 halt/1 throw/1

Table 4.1: Functions in Module Erlang for which we have to have special transition
rules.

application code disk_log erlang

error_logger ets file gen_event

gen_fsm gen_server global init

mnesia net_kernel proc_lib supervisor

supervisor_bridge timer sysApp sysSupervisor

Table 4.2: Modules for which there is an abstract version.

79

SASL mnemosyne mnesia obdc

os_mon megaco snmp CosEvent

CosTransActions CosNotification CosTime IC

Orber ASN1 GS COMET

inets ssl crypto appmon

dbg int toolbar

Table 4.3: Unsupported applications.

argument variable is bound to badarg. Also in this case we have to insert a
intermediate to restore the environment.

4 21

ρ xm ’erlang’ ρ x f ’apply’

ρ x1 Atom ρ x1 Atom ρ x3 List

s ρ call xm:x f x1 x2 x3 c σ
μ

c
ρ call x1:x2 x1 xi s n m c σ

where n ρ
m σ
v1 vi ρ x3

ρ x1 xi v1 vi ρ
μ ρ xm :ρ x f ρ x1 ρ x2 ρ x3

4 22

ρ xm ’erlang’ ρ x f ’apply’

ρ x1 Atom ρ x1 Atom ρ x3 List

s ρ call xm:x f x1 x2 x3 c σ
μ

c
ρ primop atom ’raise’ x s n m c σ

where n ρ
m σ
ρ x ’badarg’ ρ
μ ρ xm :ρ x f ρ x1 ρ x2 ρ x3

The third call expression rule (4.23) handles a call to the built in function
erlang:throw which is transforms into the primop expression throw
which raises an exception.

80

4 23
ρ xm ’erlang’ ρ x f ’throw’

s ρ call xm:x f x c σ
ρ xm :ρ x f ρ x

c
ρ primop throw x s n m c σ

where n ρ
m σ

The fourth call expression rule (4.24), is the general rule for those func-
tion calls that does not have to be specially treated. The rule is similar to
rule (4.17), with the exception that we have to set the current module to the
value of the module variable xm, since the called function may reside in an-
other module.

4 24
m Atom f Atom m f i SpecialCalls

s ρ call xm:x f x1 xi c σ
μ

c
ρ e s n m c σ

where m f ρ xm ρ x f

n ρ
m σ
σ _ m σ

fun x1 xi e 0 m m f i σ
ρ x1 xi ρ x1 ρ xi 0 ρ
μ m: f ρ x1 ρ xi

The fifth call expression rule (4.25), deals with the case where the module
name variable m or the function name variable x f is not bound to an atom. The
rule is similar to rule (4.19).

4 25
ρ xm ρ x f Atom Value

s ρ call mf :x f x1 xi c σ
μ

c
ρ primop atom ’raise’ x s n m c σ

where n ρ
m σ
ρ x ’badarg’ ρ
μ ρ xm : ρ x f ρ x1 ρ xi

81

4.6.8.3 PrimOp
The primop expressions are used for implementation dependant aspects, and
the intention is that they should only be generated by the compiler. Here we
have chosen to use primop calls to model the raising of exceptions, both
by the runtime system and as a result of calls to throw/1. The handling of
global resources such as registered names are also modelled using the two
primops read and publish.
The first and second primop expressions rules (4.26. 4.27), deal with the

raise and throw primitive operations. The evaluation of primop expres-
sions raise and throw are transformed into the intermediate,
with the arguments type and value. The type is in the case of raise ’EXIT’
and in the case of throw ’THROW’. The value stack is replaced by an empty
value stack. The handling of the exception intermediate is described in
Section 4.6.9 and Section 4.6.10.

4 26 s ρ primop atom ’raise’ x c σ
μ

c
ρ ’EXIT’ ρ x c σ

where μ primop raise ρ x

4 27 s ρ primop atom ’throw’ x c σ
μ

c
ρ ’THROW’ ρ x c σ

where μ primop throw ρ x

The third primop expressions rule (4.28), deals with the examining side ef-
fects, i.e., side effects that examines some global resources in the ERLANG

node. The evaluation of the primop expression results in a value v being
pushed on the value stack, where the value is determined by the function
applied to the accumulated side effects in the global state.

4 28 s ρ primop atom ’read’ x1 x2 c σ
μ

c
v s ρ c σ

where v ρ x1 ρ x2 σ
μ primop ’read’ ρ x1 ρ x2

The fourth primop expression rule (4.29), deals with side effects that change
the global resources in the ERLANG node. The evaluation of the primop
expression results in the addition of the key/value pair x1 x2 to the side effects
and pushes true on the value stack.

82

4 29 s ρ primop atom ’publish’ x1 x2 c σ
μ

c
’true’ s ρ c σ

where σ ρ x1 ρ x2 σ
μ primop publish ρ x1 ρ x2

The fifth and sixth primop expression rules, handle the gen-
eral cases which can be used to define further implementa-
tion dependant constructs, by defining the auxiliary function

: Atom Values State Value State . The first rule (4.29)
handles the case where the function returns successfully and the value
returned is pushed on the value stack and the a new state is used. The second
rule (4.30) deals with the case when the call fails and the primop
call is transformed into a primop raise call.

4 30
a ’raise’ ’throw’ ’read’ ’publish’ v

s ρ primop atom a x1 xi c σ
μ

c
v s ρ c σ

where v σ a ρ x1 ρ xi σ
μ primop a ρ x1 ρ xi

4 31
a ’raise’ ’throw’ ’read’ ’publish’ v

s ρ primop atom a x1 xi c σ
μ

c
s ρ primop atom ’raise’ x c σ

where v σ a ρ x1 ρ xi σ
n ρ
ρ x ’badarg’ ρ
μ primop a ρ x1 ρ xi

4.6.9 Exception

The intermediate will simply remove expressions and intermediate
from the code stack until it reaches an enclosing catch or the code stack is
empty.
The first intermediate expression rule (4.32), is when the topmost

element on the code stack is an intermediate and the following el-

83

ement is not a catch or a return intermediate, in which case the element
following the intermediate is removed from the code stack.

4 32
c1 x1 x2 e s n m s n m

ρ v1 v2 c1 c σ
τ

c
ρ v1 v2 c σ

The second intermediate expression rule (4.33), handles the case
where the element after the is a intermediate, then the return
resets the context and state, but the stack remains empty and the
intermediate remains on the code stack.
The third intermediate expression rule (4.34), handles the case

where the code stack is empty, in which case the process terminates abnor-
mally and the action exit(fail) is issued with the resulting NIL configu-
ration.

4 33 ρ v1 v2 s n m c σ
τ

c
ρ v1 v2 c σ

where ρ n ρ
σ _ m σ

4 34 ρ v1 v2 σ
exit fail

cNIL

4.6.10 Exception Handling

The first try-catch expression rule transform the expression into the ex-
pression to be protected e1, followed by the and intermediate
expressions. The purpose of the intermediate is to restore the envi-
ronment previous to the evaluation of the intermediate, since the
intermediate may create bindings.
The intermediate needs the value stack s, current environment name

n and module name m as parameters in the same manner as the inter-
mediate.

4 35 s ρ try e1 catch x1 x2 -> e2 c σ
τ

c
s ρ e1 x1 x2 e2 s n m n c σ

where n ρ
m σ

84

The first intermediate expression rule (4.36), handles the case where
intermediate expressions is topmost in the code stack, the intermediate

is simply removed.

4 36 s ρ x1 x2 e s1 n m c σ
τ

c s ρ c σ

The second intermediate expression rule(4.37), handles the case where
intermediate is topmost followed by a intermediate, then the

two intermediates are transformed the expression e from the intermedi-
ates.
The configuration is restored to the one previous to the evaluation of the

try-catch expression and with the variables x1 and x2 bound to the type
and value of the exception.

4 37 ρ v1 v2 x1 x2 e s n m c σ
τ

c
s ρ e c σ

where ρ x1 x2 v1 v2 n ρ
σ _ m σ

4.6.11 Message Retrieval

The rules for deliver and receive expressions and for intermedi-
ate expressions, deal with the message retrieval from the input queue and the
delivery of messages to the message queue from the input stream. In order
to correctly model the complex selection of a clause to match in a receive
expression we use the intermediate expressions and .
The first delivery rule simply delivers a message from the stream to the

queue and is always applicable (provided there are some message still left
in the input stream). This rule is the only source of nondeterminism in the
concrete semantics.

4 38 s ρ c σ
τ

c s ρ c σ

The first receive expression rule, transforms the receive into a in-
termediate expression that has the input queue as an argument (actually two
copies, where one acts as a scratch copy) to make the receive expression
atomic. The clauses of the receive expression are converted into a list of
clauses.

85

4 39 s ρ receive clauses after xt -> et end c σ
τ

c
s ρ q q cls xt et c σ

where q σ
clause1 clausei clauses
cls clause1 clausei

The four intermediate expression rules has the combined effect that they
will receive the first message to match a clause, all of whose predecessor fail
to match any clause. If no clause match the after clause body is evaluated
provided the timeout is not infinity.
The first intermediate expression rule (4.40), deals with the interme-

diate when the first element in the queue v matches the first clause’s pattern.
The match results in a new context, and the intermediate is transformed
into the guard g followed by an intermediate expression. The true branch
of the intermediate contains the intermediate, the body e of the

intermediate followed by a intermediate. The false branch of the
intermediate contains a intermediate and the intermediate without
the first queue element q .

4 40
p v

s ρ v q q cls xt et c σ
τ

c
s ρ g c1 c2 c σ

where p when g -> e cls cls
ρ p v ρ
n ρ
c1 v e n
c2 n q q cls xt et

The second intermediate expression rule(4.41), deals with the interme-
diate when the first element v in the queue does not match the first clause’s
pattern. The intermediate is transformed into a intermediate without
the value v in the queue.

4 41
match p v

s ρ v q q cls xt et c σ
τ

c
s ρ q q cls xt et c σ

86

The third intermediate expression rule (4.42), deals with the interme-
diate when queue is empty. The intermediate is transformed into a
intermediate without the first clause, and the queue restored to q.

4 42 s ρ q cl cls xt et c σ
τ

c
s ρ q q cls xt et c σ

The fourth intermediate expression rule (4.43), deals with the interme-
diate when queue is empty, there are no more clauses and the timeout xt is not
infinity. The intermediate transforms into the timeout body et . This
evaluation results in the action timeout.

4 43
ρ xt ’infinity’

s ρ q q xt et c x σ
timeout

c s ρ et c σ

The first intermediate expression rule removes the intermediate and
issues the action receive v .

4 44 s ρ v c σ
receive v

c s ρ c v σ

This concludes the concrete semantics, where we have defined the domains
and transformation rules for the concrete abstract machine.

87

5. Abstract Semantics

In this chapter we present a semantics for CORE ERLANG that is an abstraction
of the semantics presented in the previous chapter. The semantics is described
in terms of how it differs from the concrete semantics of the previous chapter.

5.1 Abstract Semantics

The purpose of the abstract semantics is to act as a bridge between the con-
crete semantics and the approximations we have to do in order to make the
extraction of supervision structures feasible. The abstract semantics must be a
safe abstraction of the concrete semantics.
The concrete semantics is formulated in a manner close to an implemen-

tation in order that it should be easy to see that it captures ERLANG appro-
priately. The approximations are presented as a more abstract semantics with
altered rules, which can formally be proved to abstract the concrete semantics.
In this way we can be confident that the approximations we make are safe, in
the sense that we will consider all possible behaviours of the application for
which we extract the supervision structure.
In order to make the evaluation of a CORE ERLANG expression in the se-

mantics tractable and to ensure termination, we have imposed two important
restrictions: (1) the input stream is unknown and hence the message queue; (2)
nested calls may be evaluated only up to a max call depth. A further source
of approximations are unknown libraries or code that does not yet exist. This
will limit the precision of our evaluation.
As a consequence of these restrictions we must introduce an approximation

of all possible values, which we shall denote . However in ERLANG it does
not suffice to approximate the values. We must also be to be to handle the
situation when we do not now whether a value or an exception is the result.
This we have chosen to represent by explicitly adding the unknown exception,
denoted as exception .
A safe approximation of receive expressions must consider all the

clauses of the expression, including the timeout rule. Cutting off the
evaluation at a certain call depth means that the result of the last call and its
potential side effects must be approximated.
The approximation of side effects is handled by “publishing” a side effect

with the key in the key/value pair modelling a side effect. Note that from

89

this point on all side effects must be approximated, e.g., the result of a lookup
in an ETS table is not known if there have been changes to the table that
have been approximated. The definition of the function ensures that if
a side effect with a key containing is present, the result of the call is the
approximation .
This gives rise to three distinct sources of nondeterminism1 in the abstract

semantics: all clauses of a receive expression must be considered; approx-
imations within values switched over by a case expression necessitates the
examination of all clauses that could have matched; and finally indirectly that
all calls that produce side effects, after a function call has been approximated,
generate new approximations.
In the presentation below all rules of the concrete semantics are included

unless they have been replaced, in which case this is stated in the description
of the replacing rule.
The added rules are:

Approximation of Function Calls (5.1) – (5.3)

Conditional Expressions (5.5) – (5.6)

Function Expressions (5.7) – (5.8)

The changed rules are:

Conditional Expressions (4.14) by (5.4)

Message Retrieval (4.38), (4.40) – (4.43) by (5.9) – (5.12) respectively.

5.2 Auxiliary Functions

The function takes a pattern and an environment and replaces all occur-
rences of variables in the pattern with their values as given by the environment.

: Pattern Env Value

p ρ
ρ x if p x
ρ x if p x p1
v if p literal v

p1 ρ p2 ρ if p p1 p2
p1 ρ pi ρ if p p1 pi
p1 ρ pi ρ if p p1 pi

1Nondeterminism is here used in the sense that more than one rule can be enabled in a machine

configuration.

90

5.3 Approximation of Function Calls

These are the rules added to handle the case when a function call has been
approximated and consequently the topmost element of the code stack is the
approx intermediate. Either because the maximum number of nested calls
has been exceeded, or the code for the function is not available.
All three approximation rules are applicable when the first element on the

code stack is an approximation, they are all applicable at the same time.
The first approximation rule (5.1) states that the machine may remain in

the same configuration and do nothing. This allows the abstract set of rules
to simulate the concrete set of rules when they are evaluating expressions that
the abstract set of rules have approximated.
The second approximation rule (5.2), results in the intermediate ex-

pression being removed from the code stack and the approximated value
being placed on top of the value stack. This simulates the application of a
function call resulting in a value.
The third approximation rule (5.3), results in the intermediate ex-

pression being replaced on the code stack by an intermediate ex-
pression with the type and value arguments both being . This intermediate
denotes the exception of unknown type and value.

5 1 s ρ c σ a s ρ c σ

5 2 s ρ c σ
τ

a s ρ c σ

5 3 s ρ c σ
τ

a ρ c σ

5.4 Conditional Expressions

In order to handle the presence of approximations in the value that is switched
on by a case expression, the second concrete case expression rule (4.14)
must be modified to examine all the possible outcomes. The modified rule
is applicable both when the first clause does not match the value sequence
to which the variable sequence x1 xi is bound, and when the value se-
quence contains an approximation. The rule (5.4) replaces rule (4.14).

5 4
p v1 vi _ v1 vi

s ρ case x1 xi of clause clauses end c σ
τ

a
s ρ case x1 xi of clauses end c σ

where p when g -> e clause
v1 vi ρ x1 ρ xi

91

The intermediate is nondeterministic if the topmost value of the value stack
is , since we do not know whether the guard would have evaluated to true
or false.

5 5 s ρ c1 ci c c σ
τ

a s ρ c1 ci c σ

5 6 s ρ c c1 ci c σ
τ

a s ρ c1 ci c σ

5.5 Function Expressions

For function expressions the abstract semantics differs from the concrete in
two respects. First the function or module in which it resides may be unknown.
Secondly we have imposed a maximum call depth, since we do not know what
this depth is (in the general case) the following rule of approximation of an
apply expression is always applicable. Note that if the function or module
in which it resides is unknown this is the only applicable rule. Furthermore it
can be choosen anytime rules rule (4.17), rule (4.18) are applicable.

5.5.1 Apply

The first apply expression rule deals with the case where either the function
is unknown or the maximum call depth is reached; then the call is transformed
into an intermediate expression, and the “unknown” side effect is pub-
lished.

5 7 s ρ apply x f x1 xi c σ a
s ρ c σ

where σ σ

5.5.2 Call

The first call expression rule deals with the case where either module or
function is unknown or the maximum depth is reached, where the call is trans-
formed into a intermediate. rule (5.8) is analogous to rule (5.7) for
call expressions.

92

5 8 s ρ call xm:x f x1 xi c σ a
s ρ c σ

where σ σ

5.6 Message Retrieval

The handling of the receive expression and intermediate expression is
simpler in the abstract semantics where we do not consider any explicit mes-
sage queue or input stream, instead all clauses are investigated. The patterns of
a clause are matched against the approximation, and the timeout clause is in-
vestigated unless the timeout is set to infinity. In all the rules the message
queues are replaced by an approximation.
The first rule replaces rule (4.40) and is always applicable since we

do not know what the elements in the message queue are, and then the first
clause’s pattern might match the first element. We have to replace the variables
in the pattern so that it can serve as an argument for the intermediate.
Otherwise the rule is identical to the concrete rule.

5 9 s ρ cls xt et c σ
τ

a s ρ g c1 c2 c σ

where p when g -> e cls cls
ρ p ρ
n ρ
p p p
c1 p e n
c2 n cls xt et

The second rule, replaces rule (4.41) and is always applicable since we
do not know what the elements in the message are, and then the first clause’s
pattern might not match the first element. Since the queues are approximated
the configuration is not changed, this rule is included to make the simulation
of the concrete rules simpler to understand.

5 10 s ρ cls xt et c σ
τ

a
s ρ cls xt et c σ

93

The third rule, replaces rule (4.42) and is always applicable since we do
not know what the elements in the message are, and then the queue might be
empty.

5 11 s ρ cl cls xt et c σ
τ

a
s ρ cls xt et c σ

The fourth rule, replaces rule (4.43) and it deals with the intermediate
when the queue is empty, there are no more clauses and the timeout xt is not
infinity.

5 12
ρ xt ’infinity’

s ρ xt et c x σ
timeout

a s ρ et c σ

5.7 Relation between the Abstract and Concrete
Configuration

In this section we will show that the abstract semantics is an abstraction of
the concrete semantics, in the sense that the abstract semantics simulates the
concrete semantics.
We want to show that for each possible sequence of transitions of the con-

crete semantics the abstract semantics can perform a simulating sequence of
transitions that results in a state that abstracts the state resulting from the con-
crete sequence of transitions. To show this we want to show that the concrete
semantics is monotonic, and for each transition rule in the concrete semantics
that if the rule changes a configuration Γc

1 to configuration Γc
2, and Γa

1 is an
abstraction of Γc

1, then there is a rule in the abstract semantics that will trans-
form Γa

1 into some Γa
2 that abstracts Γc

2. The reason is that this means that any
transition by a rule in the concrete semantics can be simulated by itself.
We will first present and define what we mean by saying that a configuration

abstracts another and then continue to show the simulation property.

5.7.1 Abstraction relation

We will in this section define, explain and motivate the abstraction relation
used. The abstraction relation is denoted by .
For all variables over parts of the configurations we will add superscripts

c and a to denote that they belong to the concrete or abstract configuration
respectively.

94

The abstraction relation is binary for the topmost domains, but quaternary
for some domains. The reason for the quaternary relation is that for domains
that have elements that can contain variables, the abstraction relation must
be defined in relation to the contexts. The quaternary relation is denoted
ϕa

ρa ρc ψc where ϕa abstracts ψc when the variables in ϕa are replaced
by values in the current environment in ρa and correspondingly for ψc.
We will now define the relations for each domain, bottom up starting with

the values.

5.7.1.1 Value
A literal value is abstracted by itself.

l ρa ρc l

All values are abstracted by the value domain’s top element.

ρa ρc vc

A function closure is abstracted if the function and module are identical and
the environment references is abstracted. Environment references abstract if
the environments they reference abstract. How environments abstract is de-
scribed in the next subsection.

f a na ma
ρa ρc f c nc mc f a f c

ρa na ρc nc

ma mc

A list, tuple or sequence of values are abstracted if they contain the same
number of elements and all the elements abstract pairwise.

va1 vai ρa ρc vc1 vci va1 ρa ρc vc1 vai ρa ρc vci

va1 vai ρa ρc vc1 vci va1 ρa ρc vc1 vai ρa ρc vci

va1 vai ρa ρc vc1 vci va1 ρa ρc vc1 vai ρa ρc vci

5.7.1.2 Env
An environment is abstracted if it for all variables, in the domain, they are
mapped to values that are abstracted.

enva envc xc dom envc enva xc envc xc

95

5.7.1.3 Value Stack
The empty value stack is abstracted by itself.

ρa ρc

A nonempty value stack is abstracted if the top element is abstracted and the
remainder of the stack is abstracted.

va sa ρa ρc va sa va ρa ρc vc

sat ρa ρc sct

5.7.1.4 Context
A context is abstracted when the application of the context to the current en-
vironment name is abstracted.

na envmapa ka nc envmapc kc

na envmapa ka na nc envmapc kc nc

A context applied to environment name is the environment mapped to that
name in the context’s environment map.

ρ n1 envmap n1
where ρ n envmap k

5.7.1.5 Code Stack
The empty code stack is abstracted by itself.

ρa ρc

The nonempty code stack is abstracted if the top element are either identical
or abstract and the remainder of the stack is abstracted.

ca1 ca ρa ρc cc1 cc
ca1 cc1
ca1 ρa ρc cc1

ca ρa ρc cc

96

The and intermediate expressions are abstracted if the
arguments of the expressions are abstracted.

va ρa ρc vc va ρa ρc vc

va1 va2 ρa ρc vc1 vc2 va1 ρa ρc vc1
va2 ρa ρc vc2

The intermediate expression is abstracted if the name of the environ-
ment which is restored is abstracted in the current context.

na ρa ρc nc ρa na ρc nc

The intermediate expression is abstracted if the stack is abstracted, the
returned environment is abstracted and the module is identical.

sa na ma
ρa ρc sc nc mc sa ρa ρc sc

ρa na ρc nc

ma mc

The intermediate expression is abstracted if the stack is abstracted, the
returned environment is abstracted and the module is identical.

x1 x2 e sa na ma
ρa ρc x1 x2 e sc nc mc

sa ρa ρc sc

ρa na ρc nc

ma mc

The intermediate expression is abstracted if the queue arguments in the ab-
stract intermediate is approximated with . The queue arguments may be
approximated since the abstract semantics does not model the input queues. If
the more abstract code stacks element is a intermediate which queue argu-
ments are not approximated, then it the queues to be identical to the abstracted
intermediate

cls xt et ρa ρc qc1 qc2 cls xt et

5.7.1.6 Effects
The empty sequence of effects is abstracted by itself.

ρa ρc

97

A sequence of effects that has a first element that has the domain top element
as key is abstracted when the rest of the abstract sequence of effects abstracts
a suffix of the concrete sequence of effects.

va2 πa
t ρa ρc πc

πc
1 πc

i πc πc
1 πc

i πc
t πa

t ρa ρc πc
t

A sequence of effects that does not have a first element that has the domain
top element as key is abstracted when the first key and value pair va1 va2 is
abstracted and the remainder of the sequence is abstracted.

va1 va2 πa
t ρa ρc vc1 vc2 πc

t va1
va1 ρa ρc vc1
va2 ρa ρc vc2
πa
t ρa ρc πc

t

5.7.1.7 State
A state is abstracted when the abstract state’s queue is either or identical
to the concrete, the current module and modules identical and the effects ab-
stracted.

ma qa msa πa
ρa ρc mc qc msc πc ma mc

qa

qa qc

msa msc

πa
ρa ρc πc

5.7.1.8 Configuration
The empty configuration NIL is abstracted by itself.

NIL NIL

There are three cases of abstraction for the nonempty configuration. First if
the first element of the abstract code stack is not the intermediate, then
the configuration abstracts if the stacks, environments, code stacks and states
abstract.

98

sa ρa ca1 ca σa sc ρc cc σ c ca1
sa ρa ρc sc

ρa ρc

ca1 ca ρa ρc cc

σa
ρa ρc σ c

Secondly if the first element of the abstract code stack is the intermedi-
ate and the concrete code stack has the intermediate then the configura-
tion is abstracted if either the returned stack and environment are abstracted,
the remaining code stacks is abstracted and the resulting state is abstracted.
This is the case where the return matches the return from the actual call that
has been approximated. Or the concrete configuration without the top most

intermediate is abstracted by the abstracted configuration. This is the
case where the abstract semantics stutter.

sa ρa ca σa sc ρc sc1 nc mc cc σ c

ρc
1 nc ρc

mc
1 σ c

1 _ σ c mc

sa ρa ρc
1
sc1

ρa ρc
1

ca ρa ρc
1
cc

σa
ρa ρc

1
σ c
1

sa ρa ca σa sc1 ρc cc σ c

Finally if the first element of the abstract code stack is the intermediate
and the concrete code stack does not have the intermediate then the
configuration is abstracted if the concrete without the top most element is
abstracted.

sa ρa ca σa sc ρc cc1 cc σ c

cc1 sc1 nc mc

sa ρa ca σa sc ρc cc σ c

5.8 Proof of Simulation

We will prove the simulation by showing for each concrete rule that it can
be simulated by rules from the abstract semantics. When proving that a rule
can be simulated we will assume that the abstract configuration abstracts the

99

concrete configuration, and proceed to show that after the application of the
rules the abstraction is preserved.
The parts of the configurations will be superscripted with a for abstract and

c for concrete, e.g., sa sc stating that the abstracts value stack abstract the
concrete value stack.
For each of the rules in the concrete semantics we will show three parts:

Monotonicity That the rule is monotonic.

Simulation Which rules are used to simulate the rule (in many cases the rule
itself).

Approximation That the simulation holds if we use a rule that introduces an
abstraction.

But first we will establish a few useful lemmas that we will use througout the
proof.

5.8.1 Lemmas

We start by proving a few lemmas that will simplify the following proof of
simulation:

Lemma 1

ρa ρc Context

ρa ρc x dom envc ρa x ρc x
where ρc nc envmapc kc

envc ρc nc

Proof: Follows directly from the definitions of the abstraction relations. �

Lemma 2

ρa ρc Context p Pattern v Value

envc p v ρa ρc p enva ρa ρc v
where ρc nc envmapc kc

envc ρc nc

ρa na envmapa ka

enva ρa na

Proof: By induction over the structure of p.

100

Induction Hypothesis If p1 pi is of nesting depth no greater than j and
p is either x p1, p1 p2 , p1 pi or p1 pi then envc

p v ρa ρc p enva ρa ρc v

If p is x From the definitions of the functions we have that
x v envc x v which means by the definition of

ρa ρc we have that if enva ρa ρc envc then enva x ρa ρa v but
then x enva x ρa ρa v.

If p is literal v From the definitions of the functions we have that
literal v v which means literal v v but

that abstract v.

If p is p1 p2 From the definitions of the functions we have that
if ρa p1 p2 v1 v2 then p1 p2 ρa

p1 ρa p2 ρa . From the induction hypothesis it
follwos that p1 ρa p2 ρa

ρa ρc v1 v2 .

If p is p1 pi Analogous to the cons case.

If p is p1 pi Analogous to the cons case.

�

Lemma 3

ρa ρc Context ρa ρc ρa ρa ρc ρc

Proof: Follows directly from the definitions of the abstraction relations. �

Lemma 4

σa σ c State ρa ρc Context

σa
ρa ρc σ c σa σ c

Proof: Follows directly from the definitions of the abstraction relations. �

Lemma 5

ρa ρc Context ca1 cai cc1 cci Code

ρa ρc ca1 sa ρa ρc sc ma mc cc1 cai cci
ca1 cai sa na ma ca ρa ρc cc1 cci sc nc mc cc

where na ρa

nc ρc

101

Proof: From Lemma 3 we have that ρa ρa ρc ρc

and if ρa na then from the previous and the definition of over
code we have that sa na sm ca ρa ρc sc nc mc cc .
If now ca1 ρa ρc cc1 cai ρa ρc cci , it follows from the defi-
nition of over code that ca1 cai sa na ma ca ρa ρc

cc1 cci sc nc mc cc . �

Lemma 6

sa sc Stack ρa ρc Context ca cc Code

cc1 cci Exprs AuxExprs

σa σ c State nc1 EnvName mc
1 ModuleName

sa ρa ca σa sc ρc cci cc1 cc σ c

cc1 cci sc nc1 mc
1 /0

sa ρa ca σa sc ρc cc σ c

Proof: By induction over i.

Induction Hypothesis

sa sc Stack ρa ρc Context ca cc Code

cc1 cci Exprs AuxExprs

σa σ c State nc1 EnvName mc
1 ModuleName

sa ρa ca σa sc ρc cci cc1 cc σ c

cc1 cci 1 sc nc1 mc
1 /0

sa ρa ca σa sc ρc cc σ c

If i is 0 We have to show that sa ρa ca σa sc ρc cc σ c

sa ρa ca σa sc ρc cc σ c but that holds trivially.

If i is larger than zero We can assume that sa ρa ca σa

sc ρc cci cc1 cc σ c and cc1 cci sc nc1 mc
1 /0.

But then it follows from the definition of abstraction over configura-
tions that sa ρa ca σa sc ρc cci 1 cc1 cc σ c and
cc1 cci 1 sc nc1 mc

1 /0, but then using the induction
hypothesis we can show that the lemma holds.

�

102

Lemma 7

sa sc Stack ρa ρc Context ca cc Code

cc1 cci Exprs AuxExprs

σa σ c State nc1 EnvName mc
1 ModuleName

sa ρa ca σa sc ρc cc σ c

cc1 cci sc nc1 mc
1 /0

sa ρa ca σa sc ρc cci cc1 cc σ c

Proof: By induction over i.

Induction Hypothesis

sa sc Stack ρa ρc Context ca cc Code

cc1 cci Exprs AuxExprs

σa σ c State nc1 EnvName mc
1 ModuleName

sa ρa ca σa sc ρc cc σ c

cc1 cci 1 sc nc1 mc
1 /0

sa ρa ca σa sc ρc cci 1 cc1 cc σ c

If i is 0 We have to show that sa ρa ca σa sc ρc cc σ c

sa ρa ca σa sc ρc cc σ c but that holds trivially.

If i is larger than zero We can assume that sa ρa ca σa

sc ρc cc σ c and cc1 cci 1 sc nc1 mc
1 /0, then from

the induction hypothesis we have that sa ρa ca σa

sc ρc cci 1 cc1 cc σ c . But from the definition of abstraction
over configurations and that cci sc nc1 mc

1 we can conclude
that sa ρa ca σa sc ρc cci cc1 cc σ c .

�

5.9 Transition Rules

5.9.1 Stuttering

It follows trivially from Lemma 6 and Lemma 7 that for all rules (4.1) to
(4.44), with the exception of (4.20), that when ca cat the rule
can be simulated by rule (5.1). We show how rule (4.20) is simulated in this
case in Section 5.9.9.5.

5 1 sa ρa ca σa τ
a sa ρa ca σa

103

5.9.2 Normal Termination

4 1 s ρ σ
exit normal

cNIL

Monotonicity
Rule (4.1) is trivially monotonic.

Simulation
Rule (4.1) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
It follows from the definition of over the code stack that: if the abstraction
relation holds the code stack of the abstract state is , and consequently can
not be approximated.

5.9.3 Simple Expressions

5.9.3.1 Variable

4 2 s ρ x c σ
τ

c ρ x s ρ c σ

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.2) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.2) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.3.2 Literal

4 3 s ρ literal l c σ
τ

c l s ρ c σ

104

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.3) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.3) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.4 Compound Expressions

5.9.4.1 Tuples

4 4 s ρ x1 xi c σ
τ

c ρ x1 ρ xi s ρ c σ

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.4) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.4) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.4.2 Lists

4 5 s ρ x1 x2 c σ
τ

c ρ x1 ρ x2 s ρ c σ

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.5) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

105

Approximation
In the case where the rule (4.5) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.4.3 Values

4 6 s ρ x1 xi c σ
τ

c ρ x1 ρ xi s ρ c σ

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.6) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.6) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.5 Funs

4 7 s ρ fun x1 xi e c σ
τ

c v s ρ c σ

where n ρ
m σ
v fun x1 xn e n m

Monotonicity
That the rule is monotonic follows from Lemma 3 and Lemma 4 and the defi-
nition of over configuration, values, code and value stacks.

Simulation
Rule (4.7) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.7) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

106

5.9.6 Binding Expressions

5.9.6.1 Let

4 8 s ρ let x1 xi e1 ei in e c σ
τ

c
s ρ e1 ei x1 xi e n c σ

where nc ρc

Monotonicity
That the rule is monotonic follows from Lemma 5 and the definition of over
configuration and code stack.

Simulation
Rule (4.8) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.8) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.6.2 The intermediate

4 9 vi v1 s ρ x1 xi c σ
τ

c s ρ1 c σ

where ρ1 x1 xi v1 vi ρ

Monotonicity
That the rule is monotonic follows from that is monotonic and the defi-
nition of over configurations and contexts.

Simulation
Rule (4.9) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.9) is approximated by rule (5.1) it follows from
Lemma 6 and that is monotonic that abstraction is preserved.

5.9.6.3 The intermediate

4 10 s ρ n c σ
τ

c s ρ1 c σ

where ρ1 n ρ

107

Monotonicity
That the rule is monotonic follows from the definition of and the definition
of over configurations, contexts and code stacks.

Simulation
Rule (4.10) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.10) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.6.4 LetRec

4 11 s ρ letrec x f1 e f1 x fi e fi in e c σ
τ

c
s ρ1 e n c σ

where n ρ
m σ
ρ1 x f1 x fi e f1 e fi ρ m

Monotonicity
That the rule is monotonic follows from that the functions ,
and are monotonic and the definition of over configurations, contexts
and code stacks.

Simulation
Rule (4.11) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.11) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 and that the functions , and are
monotonic that abstraction is preserved.

5.9.7 Sequencing Expressions

4 12 s ρ do x1 x2 c σ
τ

c ρ x2 s ρ c σ

108

Monotonicity
That the rule is monotonic follows from Lemma 1 and the definition of over
configuration, values, code and value stacks.

Simulation
Rule (4.12) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.12) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.8 Conditional Expressions

5.9.8.1 First clause matches
4 13

p ρ x1 ρ xi

s ρ case x1 xi of clause clauses end c σ
τ

c
s ρ1 g c1 c2 c σ

where p when g -> e clause
ρ1 p ρ x1 ρ xi ρ
n ρ
c1 e n
c2 n case x1 xi of clauses end

Monotonicity
That the rule is monotonic follows from that the functions , and

are monotonic and the definition of over configurations, contexts and
code stacks.

Simulation
Rule (4.13) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.13) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 and that the functions , and are
monotonic that abstraction is preserved.

109

5.9.8.2 First clause does not match
4 14

p ρ x1 ρ xi

s ρ case x1 xi of clause clauses end c σ
τ

c
s ρ case x1 xi of clauses end c σ

where p when g -> e clause

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configurations and code stacks.

Simulation
Rule (4.14) is simulated by rule (5.4), and monotonicity ensures that the sim-
ulation preserves abstraction since the only difference is that rule (5.4) is ap-
plicable in more configurations.

5 4
p v1 vi _ v1 vi

s ρ case x1 xi of clause clauses end c σ
τ

a
s ρ case x1 xi of clauses end c σ

where p when g -> e clause
v1 vi ρ x1 ρ xi

Approximation
In the case where the rule (4.14) is approximated by rule (5.1) it follows from
Lemma 6 that abstraction is preserved.

5.9.8.3 The intermediate
We will show monotonicity and simulation for the first rule rule (4.15), the
proof for the second rule (4.16) is analogous.

4 15 ’true’ s ρ c1 ci c0 c σ
τ

c
s ρ c1 ci c σ

Monotonicity
That the rule is monotonic follows from the definition of over configura-
tions, value and code stacks.

110

Simulation
Rule (4.15) is simulated by itself or by rule (5.5). In the case where it is sim-
ulated by itself it follows from monotonicity that the simulation preserves
abstraction as does the case where the rule (4.15) is simulated by rule (5.5)
since they have identical right hand sides.

5 5 s ρ c1 ci c c σ
τ

a s ρ c1 ci c σ

Approximation
In the case where the rule (4.15) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.9 Function Expressions

5.9.9.1 Apply
For the concrete rules there are three type of values that the variable x f can
be bound to: an atom, a closure, any other value (except approximation since
they cannot occur in the concrete semantics). These three cases are handled by
the three application rules of the concrete semantics: rule (4.17), rule (4.18)
and rule (4.19). In the abstract semantics there exist a fourth case where the
variable x f is bound to an approximation, this is handled by rule (5.7). The
rule (5.7) is also the rule responsible for abstracting a function call and we
show that any of the rules: rule (4.17), rule (4.18), and rule (4.19) can be
simulated by rule (5.7).

5.9.9.2 Application of an atom

4 17
ρ x f Atom

s ρ apply x f x1 xi c σ
μ

c
ρ e s n m c σ

where n ρ
m σ

fun x1 xi e 0 mc m ρ x f i σ
ρ x1 xi ρ x1 ρ xi 0 ρ
μ m : ρ x f ρ x1 ρ xi

111

Monotonicity
That the rule is monotonic follows from that the functions , ,

, , and are monotonic, and the definition of over configurations,
contexts, value and code stacks.

Simulation
Rule (4.17) is simulated by itself or by rule (5.7). In the case where it is sim-
ulated by itself it follows from monotonicity that the simulation preserves
abstraction. In the case where the rule (4.17) is simulated by rule (5.7) follows
by Lemma 6 and the definition of over configurations.

5 7 s ρ apply x f x1 xi c σ a
s ρ c σ1

where σ1 σ

Approximation
In the case where the rule (4.17) is approximated by rule (5.1) it follows from
the definition of over configurations and Lemma 7 that abstraction is pre-
served.

5.9.9.3 Application of a Closure
Without the requirement concerning the func function the proof is identical
to that of rule (4.17).

4 18
ρ x f fun x1 xi e n m

s ρ apply x f x1 xi c σ
μ

c
ρ e s n m c σ

where n ρ
m σ
ρ x1 xi ρ x1 ρ xi n ρ
μ m : ρ x f ρ x1 ρ xi

112

5.9.9.4 Application type mismatch
The proof is analogous to that of rule (4.17).

4 19
ρ x f Atom Closure Value

s ρ apply x f x1 xi c σ
μ

c
ρ primop atom ’raise’ x s n m c σ

where n ρ
m σ
d1 s n m
ρ x ’badarg’ ρ
μ m : ρ x f ρ x1 ρ xi

5.9.9.5 The intermediate

4 20 v ρ s n m c σ
τ

c v s ρ c σ

where ρ n ρ
σ _ m σ

Monotonicity
That the rule is monotonic follows from that the functions and _
are monotonic, and the definition of over configurations, contexts, states,
value and code stacks.

Simulation
Rule (4.20) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
The approximation of the concrete rule for the intermediate rule (4.20)
requires two abstract rules, rule (5.1) and rule (5.2). The two abstract rules
correspond to two possible situations when a call in the concrete semantics
has been approximated. The two situations are:

The return approximated is one belonging to a call at a deeper call level (or
in other words a nested call) than that of the approximated call. This case
is approximated by rule (5.1).
The return approximated is a normal return that corresponds to the approx-
imated call. This case is approximated by rule (5.2).

In the case where the return simulated is one belonging to a call at a deeper
call level than that of the approximated call it is approximated by rule (5.1).

113

It follows from the monotonicity of the functions and _ , and the
definition of over configurations, that abstraction is preserved.

5 1 s ρ c σ
τ

a s ρ c σ

In the case where the return simulated is a normal return that corresponds to
the approximated call it is approximated by rule (5.2). Then follows from that
the functions and _ are monotonic, and the definition of over
configurations, values, states, contexts, value and code stacks, that abstraction
is preserved.

5 2 s ρ c σ
τ

a s ρ c σ

5.9.9.6 Call
The proof for rule (4.21), rule (4.22), rule (4.23) and rule (4.24) follows from
the proof of rule (4.17) and the proof for rule (4.25) follows from the proof
of rule (4.19). That the proofs for the apply and call rules should resemble (or
rather follow trivially from) stems from the fact that the construct is
merely a special case of the construct.

5.9.9.7 Raise

4 26 s ρ primop atom ’raise’ x c σ
μ

c
ρ ’EXIT’ ρ x c σ

where μ primop raise ρ x

Monotonicity
That the rule is monotonic follows from definition of over configuration and
value and code stacks.

Simulation
Rule (4.26) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.26) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 that abstraction is preserved.

114

5.9.9.8 Throw
The proof is analogous to that of rule (4.26)

4 27 s ρ primop atom ’throw’ x c σ
μ

c
ρ ’THROW’ ρ x c σ

where μ primop throw ρ x

5.9.9.9 Read
In order for the read and publish rules to preserve abstraction the functions

and must preserve abstraction. This is achieved by be-
coming an identity operation once a key/value pair has been published where
the key contains an approximation, and that once such a pair has been pub-
lished all read operations will result in an approximation.

4 28 s ρ primop atom ’read’ x1 x2 c σ
μ

c
v s ρ c σ

where v ρ x1 ρ x2 σ
μ primop ’read’ ρ x1 ρ x2

Monotonicity
That the rule is monotonic follows from that the functions and
are monotonic and the definition of over configuration and value and code
stacks.

Simulation
Rule (4.28) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.28) is approximated by rule (5.1) it follows from
Lemma 6 and that the functions and are monotonic that abstrac-
tion is preserved.

5.9.9.10 Publish

4 29 s ρ primop atom ’publish’ x1 x2 c σ
μ

c
’true’ s ρ c σ1

where σ1 ρ x1 ρ x2 σ
μ primop publish ρ x1 ρ x2

115

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configuration and value and code stacks.

Simulation
Rule (4.29) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.29) is approximated by rule (5.1) it follows from
Lemma 6 and that the function is monotonic that abstraction is pre-
served.

5.9.9.11 General PrimOp Rules
For the two general primop rules it is necessary to show that each definition
of the function that is used is monotonic.

4 30
a ’raise’ ’throw’ ’read’ ’publish’ v

s ρ primop atom a x1 xi c σ
μ

c
v s ρ c σ

where v σ a ρ x1 ρ xi σ
μ primop a ρ x1 ρ xi

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configuration, states and value and code stacks.

Simulation
Rule (4.30) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.30) is approximated by rule (5.1) it follows from
Lemma 6 and that the function is monotonic that abstraction is pre-
served.

116

4 31
a ’raise’ ’throw’ ’read’ ’publish’ v

s ρ primop atom a x1 xi c σ
μ

c
s ρ primop atom ’raise’ x c σ

where v σ a ρ x1 ρ xi σ
n ρ
ρ x ’badarg’ ρ
μ primop a ρ x1 ρ xi

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configuration and value and code stacks.

Simulation
Rule (4.31) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.31) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 and that the function is monotonic that ab-
straction is preserved.

5.9.10 Exception

4 32
c1 x1 x2 e s n m

ρ v1 v2 c1 c σ
τ

c
ρ v1 v2 c σ

Monotonicity
That the rule is monotonic follows from the definition of over configuration
and code stack.

Simulation
Rule (4.32) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

117

Approximation
In the case where the rule (4.32) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.10.1 Return

4 33 ρ v1 v2 s n m c σ
τ

c
ρ v1 v2 c σ

where ρ n ρ
σ _ m σ

Monotonicity
That the rule is monotonic follows from the definition of over configuration
and code stacks.

Simulation
Rule (4.33) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
The approximation of the concrete rule for the intermediate
rule (4.33) requires two abstract rules, rule (5.1) and rule (5.3). The two
abstract rules correspond to two possible situations when a call in the
concrete semantics has been approximated. The two situations are:

The return approximated is one belonging to a call at a deeper call level (or
in other words a nested call) than that of the approximated call. This case
is approximated by rule (5.1).
The return approximated is the return that corresponds to the approximated
call. This case is approximated by rule (5.3).

In the case where the return simulated is one belonging to a call at a deeper
call level than that of the approximated ‘call it is approximated by rule (5.1).
Then follows from that the functions and _ are monotonic, and
the definition of over configurations that abstraction is preserved.

5 1 s ρ c σ
τ

a s ρ c σ

In the case where the return simulated is the return that corresponds to the
approximated call it is approximated by rule (5.3). Then follows from that
the functions and _ are monotonic, and the definition of over
configurations, values, states, contexts, value and code stacks, that abstraction

118

is preserved.

5 3 s ρ c σ
τ

a ρ c σ

5.9.10.2 Abnormal termination

4 34 s ρ v1 v2 σ
exit fail

cNIL

Monotonicity
Rule (4.1) is trivially monotonic.

Simulation
Rule (4.34) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
It follows from the definition of over the code stack that: if the abstraction
relation holds the code stack of the abstract state is , and consequently can
not be approximated.

5.9.11 Exception Handling

5.9.11.1 Try–Catch

4 35 s ρ try e1 catch x1 x2 -> e2 c σ
τ

c
ρ e1 x1 x2 e2 s n m c σ

where n ρ
m σ

Monotonicity
That the rule is monotonic follows from Lemma 5, that the functions
and are monotonic, and the definition of over configurations, value
and code stacks.

Simulation
Rule (4.35) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

119

Approximation
In the case where the rule (4.35) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7, that the functions and are mono-
tonic and the definition of over configurations, value and code stacks that
abstraction is preserved.

5.9.11.2 The intermediate: normal execution

4 36 s ρ x1 x2 e s1 n m c σ
τ

c s ρ c σ

Monotonicity
That the rule is monotonic follows from the definition of over configurations
and code stack.

Simulation
Rule (4.36) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.36) is approximated by rule (5.1) it follows from
the definition of over configurations and code stack that abstraction is pre-
served.

5.9.11.3 The intermediate: exception

4 37 ρ v1 v2 x1 x2 e s n m c σ
τ

c
s ρ e c σ

where ρ x1 x2 v1 v2 n ρ
σ _ m σ

Monotonicity
That the rule is monotonic follows from the definition of over configurations
and value and code stacks.

Simulation
Rule (4.37) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

120

Approximation
In the case where the rule (4.37) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 and the definition of over configurations and value
and code stacks that abstraction is preserved.

5.9.12 Message Retrieval

5.9.12.1 Message delivery

4 38 s ρ c σ
τ

c s ρ c σ

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configurations and states.

Simulation
Rule (4.38) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.38) is approximated by rule (5.1) it follows from
that the function is monotonic and the definition of over configura-
tions and states that abstraction is preserved.

5.9.12.2 Transformation from receive to intermediate

4 39 s ρ receive clauses after xt -> et end c σ
τ

c
s ρ q q cls xt et c σ

where q σ
clause1 clausei clauses
cls clause1 clausei

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configurations and code stack.

Simulation
Rule (4.39) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

121

Approximation
In the case where the rule (4.39) is approximated by rule (5.1) it follows
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.12.3 The intermediate: first message in queue match

4 40
p v

s ρ v q1 q cls xt et c σ
τ

c
s ρ1 g c1 c2 c σ

where p when g -> e cls cls
ρ1 p v ρ
n ρ
c1 v e n
c2 n q1 q cls xt et

Monotonicity
That the rule is monotonic follows from that the functions , and

are monotonic and the definition of over configurations, contexts
and code stack.

Simulation
Rule (4.40) is simulated by rule (5.9), the‘ Lemma 2 and that the functions

, and are monotonic and from the definition of over
configurations, contexts and code stack ensures that the simulation preserves
abstraction.

5 9 s ρ cls xt et c σ
τ

a s ρ1 g c1 c2 c σ

where p when g -> e cls cls
ρ1 p ρ
n ρ
p1 p p
c1 p1 e n
c2 n cls xt et

122

Approximation
In the case where the rule (4.40) is approximated by rule (5.1) it follows from
Lemma 6 and Lemma 7 and that the function is monotonic that abstrac-
tion is preserved.

5.9.12.4 The intermediate: first message in queue does not match

4 41
match p v

s ρ v q1 q cls xt et c σ
τ

c
s ρ q1 q cls xt et c σ

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configurations and code stack.

Simulation
Rule (4.41) is simulated by rule (5.10) and the definition of over configura-
tions and code stack ensures that the simulation preserves abstraction.

5 10 s ρ cls xt et c σ
τ

a
s ρ cls xt et c σ

Approximation
In the case where the rule (4.41) is approximated by rule (5.1) it follows
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.12.5 The intermediate: all elements in the queue has been
matched against the first clause

4 42 s ρ q cl cls xt et c σ
τ

c
s ρ q q cls xt et c σ

Monotonicity
That the rule is monotonic follows from the definition of over configurations
and code stack.

Simulation
Rule (4.42) is simulated by rule (5.11) and the definition of over configura-
tions and code stack ensures that the simulation preserves abstraction.

123

5 11 s ρ cl cls xt et c σ
τ

a
s ρ cls xt et c σ

Approximation
In the case where the rule (4.42) is approximated by rule (5.1) it follows
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.12.6 The intermediate: all elements in the queue has been
matched against all clauses

4 43
ρ xt ’infinity’

s ρ q xt et c σ
timeout

c s ρ et c σ

Monotonicity
That the rule is monotonic follows from the definition of over configurations
and code stack.

Simulation
Rule (4.43) is simulated by rule (5.12) and the definition of over configura-
tions and code stack ensures that the simulation preserves abstraction.

5 12
ρ xt ’infinity’

s ρ xt et c x σ
timeout

a s ρ et c σ

Approximation
In the case where the rule (4.43) is approximated by rule (5.1) it follows
Lemma 6 and Lemma 7 that abstraction is preserved.

5.9.12.7 The intermediate

4 44 s ρ v c σ
receive v

c
s ρ c v σ

Monotonicity
That the rule is monotonic follows from that the function is monotonic
and the definition of over configurations, states and code stack.

124

Simulation
Rule (4.44) is simulated by itself and monotonicity ensures that the simulation
preserves abstraction.

Approximation
In the case where the rule (4.44) is approximated by rule (5.1) it follows
Lemma 6 and that the function is monotonic that abstraction is pre-
served.

This concludes the abstract semantics. We have defined the abstract semantics
in terms of how it differs from the concrete semantics and shown that it cam
simulate the concrete semantics.

125

6. Process Structure Extraction

In this chapter we will describe how the generic technique of extracting the
supervision structure from the source code, as given by the abstract seman-
tics presented in Chapter 5, has been realised in the tool. The tool employs a
symbolic evaluator, and we show how this evaluator is devised based on the
abstract semantics. We will then detail some of the parameters of the tool that
may be used to guide the extraction in order to make the extraction tractable.
Finally we discuss the limitations of the implementation.

6.1 Background

The extraction of, or analysis of, the process structure described in this
chapter was preceded by an incomplete and unsound version presented in
[Nyström and Jonsson 2001]. This first attempt was a prototype intended
to investigate if the extracted process structure could be precise enough for
further analysis; encouraged by the initial results we decided to continue and
devise a sound method of extracting an overapproximation of the process
structure.
In order to arrive at a sound analysis we had to base it on a formal under-

standing of the language and its supporting runtime system, this is formally
described in Chapter 4 with an abstraction to achieve the desired approxima-
tion as described in Chapter 5.

6.2 From Abstract Semantics to Extraction

We have not implemented the abstract machine defined in Chapter 5. Instead
we have implemented a symbolic recursive descent evaluator based on that
abstract machine. The ease with which one implements a recursive descent
evaluator in a functional language gives rise to a number of differences be-
tween the evaluator and the abstract machine:

For each of the CORE ERLANG constructs, our implementation contains
one function that embodies all the rules of the abstract machine that de-
scribes this construct.
The value and code stacks of the abstract machine are implicitly repre-
sented by the call stack of the evaluator. The dump is represented explicitly

127

using intermediates on the code stack in the semantics, this is also implic-
itly represented by call stack of the evaluator.
Our evaluator does not assume that the programme has be transformed into
normal form, but explicitly evaluates all subexpressions. The reason that
we assume a normal form in the abstract machine is simply to make the
rules clearer by removing unimportant details whenever possible, which of
course is not necessary in an implementation.
The evaluator has to deal explicitly with the nondeterminism caused by
approximations, this is handled by letting the evaluation return sets of val-
ues and states rather than a single value and state as one would otherwise
expect.
The evaluator will represent an exception as a special value returned rather
than an object on the code stack, since the evaluator implicitly represents
the abstract machine’s code stack by the call stack.

The relation between the abstract machine and the evaluator can be clarified
by the following examples, where we discuss first the let construct and then
the handling of the apply and try-catch constructs.
In the abstract machine the let construct is described by the following

three rules:

4 8 s ρ let x1 xi e1 ei in e c σ
τ

c
s ρ e1 ei x1 xi e n c σ

where n ρ

4 9 vi v1 s ρ x1 xi c σ
τ

c s ρ c σ

where ρ x1 xi v1 vi ρ

4 10 s ρ n c σ
τ

c s ρ c σ

where ρ n ρ

Rule (4.8) transforms the let expression into the expressions to bind and
the two intermediates and interspaced with the body of the let
expression. The def Rule (4.9) takes the result of the expressions to be bound
from the value stack and constructs a new context with the added bindings.
The restore Rule (4.10) restores the context to the one that was previous to
the evaluation of the let, thus “undoing” the additional bindings performed
by the intermediate.

128

The corresponding function in the evaluator is described by the pseudo code
in Figure 6.1 which realises the Rules (4.8) – (4.10) as follows: the func-
tion eval_let evaluates the subexpressions Expressions by a call to the
function eval_exprs, which evaluates lists of expressions, this corresponds
to pushing the expressions onto the code stack in the abstract semantics. The
result Values of evaluating the expressions are bound to the variables Vars
to create a new evaluation context Cntxt1, this corresponds to the def in-
termediate. The body Expr of the let expression is finally evaluated in the
new context and the new state State1 returned by the call to eval_exprs.

eval_let(Vars, Expressions, Expr, State, Cntxt) ->
{Values, State1} =
eval_exprs(Expressions, State, Cntxt),

Cntxt1 = bind(Vars, Values, Cntxt),
eval(Expr, State1, Cntxt1).

Figure 6.1: Psuedo Code for Extraction of Let Expression: Step One

In the eval_let function the state and context of the abstract machine ’s
configuration is represented explicitly, while the value stack, code stack and
dump are represented implicitly.

The value stack is represented by the return values of the evaluating func-
tions as can be seen by the call to eval_exprs which will return a list of
values Values that are the result of evaluating a list of expressions.
The code stack is implicitly represented by the call stack of ERLANG where
the addition of subexpressions and intermediate expressions to the code
stack are represented by the sequencing within the evaluating functions. It
is because of the implicit representation that the evaluating functions have
to return not only the value resulting from the evaluation, but also the new
state generated.

The context will however not be returned by the evaluating functions since
new bindings can only be added to subexpressions and is only visible to
those subexpressions and subsequent subexpressions. Since bindings prop-
agate only in calls to evaluate subexpressions we do not have to have any
functionality corresponding to the intermediate. The evaluation con-
text consists of the variable bindings and the parameters of the evaluation
described in Section 6.3.
In the evaluator we also have to take into account the nondeterministic na-

ture of the semantics we are using. As a consequence, the evaluating functions
cannot simply return value state tuples but have to return sets of such tu-
ples corresponding to the possible different results of the evaluation. We have
modified the pseudo code for let in Figure 6.2 to account for the nonde-
terminism, where eval_exprs returns a set of value state tuples. The

129

binding and subsequent evaluation of the let body have to be performed for
each member of the value state set and the resulting sets united.1

eval_let(Vars, Expressions, Expr, State, Cntxt) ->
ValueStateSet =
eval_exprs(Expressions, State, Cntxt),

union(fun({Values, State1}) ->
Cntxt1 = bind(Vars, Values, Cntxt),
eval(Expr, State1, Cntxt1)

end,
ValueStateSet).

Figure 6.2: Pseudo Code for Extraction of Let Expression: with nondeterminism

We have so far ignored exceptions. In Figure 6.3 we have added handling of
exceptions to the evaluation of let expressions. In the evaluator the excep-
tions are represented as values specially marked as exceptions. This because
we do not have an explicit code stack as in the abstract machine. When the
eval_let encounters an exception it does not construct a new context or
evaluate the body of the let, but simply includes exception among the re-
turned values. It should be noted that this is only exception in one of the pos-
sible evaluations and as a consequence no other members in the set are in any
way affected. We present further examples of how exceptions are handled in
the try-catch example below.
To show how the evaluator works when the implict dump would be used in the
abstract machine we will exemplify with some of the rules handling apply:

4 17
ρ x f Atom

s ρ apply x f x1 xi c σ
μ

c
ρ e c σ

where n ρ
m σ

fun x1 xi e 0 m m ρ x f i σ
ρ x1 xi ρ x1 ρ xi 0 ρ
μ m : ρ x f ρ x1 ρ xi

This is the main rule, where the function argument of apply is an atom nam-
ing the called function. The function is looked up and a new environment is
constructed to bind the formal parameters to the actual parameters. The body

1The union construct takes a function as its first argument and applies it to all the elements

making the union of all the results. In the pseudo code, the sets are implemented using lists (the

operator ++ is append on lists in ERLANG).

130

eval_let(Vars, Expressions, Expr, State, Cntxt) ->
ValueStateSet =
eval_exprs(Expressions, State, Cntxt),

union(fun({Values, State1}) ->
case is_exception(Values) of
true -> set(Values, State1);
false ->
Cntxt1 = bind(Vars, Values, Cntxt),
eval(Expr, State1, Cntxt1)

end
end,
ValueStateSet).

set(Value, State) -> [{Value, State}].

Figure 6.3: Psuedo Code for Extraction of Let Expression: with exceptions

of the function is pushed on top of the code stack and followed by a
intermediate, that contains the necessary information necessary to restore the
state after the call.

5 7 s ρ apply x f x1 xi c σ a
s ρ c σ

where σ σ

This rule deals with the case where the called function is unknown or the
evaluation has been cutoff at this point. An intermediate is placed on
the stack and the approximation is published.

4 20 v ρ s n m c σ
τ

c v s ρ c σ

where ρ n ρ
σ _ m σ

This rule handles the return from a function call, the elements on the value
stack are placed at the top of the restored stack and the environment and cur-
rent module are restored to their values prior to the call.

5 2 s ρ c σ
τ

a s ρ c σ

131

This rule mirrors the concrete return rule in the case where the call has been
approximated. An approximated value is placed on the value stack.

5 3 s ρ c σ
τ

a ρ c σ

This is similar to the previous rule but this mirrors the concrete case where
an exception has occurred.
In Figure 6.4 we can see the pseudo code corresponding to these rules. We
have for simplicity omitted the handling of multiple results and exceptions
from the pseudo code, but the complete pseudo code can be found in Fig-
ure 6.6. The evaluation is performed as follows:

The defining fun of that function is looked up in the current module as
given by the context.
In the lookup_function Name expression is evaluated, this can either
be an atom or a fun (we have omitted the fun case for the sake of clarity)
or it can result in the top element signifying an approximation. The call to
evaluate the Name expression can not cause an exception. If the top ele-
ment was returned, it is returned as the result of the lookup, otherwise the
ensure_loaded function tries to lookup the function in the definition of
the module. If the lookup in the module definition fails an approximation
is made an the top element returned; a typical reason for the lookup to fail
is that the module has not been written yet. If the lookup in the module
definition succeeds the fun is returned.
The actual parameters are evaluated. This could cause an exception, how
that is handled can be seen in Figure 6.6.
The supposed fun is examined to see whether it is a call to be approximated
using is_top which returns true if the fun is the top element. If so, we
approximate the call by returning the top element and the state State1
as resulting from the evaluation of the actual parameters. If the fun is not
the top element it is a tuple of {Formal, Body} of the formal param-
eters and the body of the function; the body of the function is evaluated
in the context where the formal parameters have been bound to the actual
parameters.

In the final example we look at how the try-catch construct is handled in
order to understand how exceptions work in the evaluator.

4 35 s ρ try e1 catch x1 x2 -> e2 c σ
τ

c
s ρ e1 x1 x2 e2 s n m n c σ

where n ρ
m σ

132

eval_apply(Name, Arity, Args, State, Cntxt) ->
Module = module(Cntxt),
{Fun, State1} =
lookup_function(Module,Name,Arity,State,Cntxt),

{Actual, State2} =
eval_exprs(Args, State1, Cntxt),

case is_top(Fun) of
true -> {top, State2};
false ->
{Formal, Body} = Fun,
Cntxt1 = bind(Formal, Actual, Cntxt),
eval(Body, State2, Cntxt1)

end.

lookup_function(Module,Name,Arity,State,Cntxt) ->
{Name, State1} = eval(Name, State, Cntxt),
case is_top(Name) of
true -> {top, State1};
false ->
case code:ensure_loaded(Module, Name) of
error -> {top, State1};
{ok, Fun} -> {Fun, State1}

end,
end.

Figure 6.4: Psuedo Code for Extraction of Apply Expression

133

The main rule that places the expression to be caught on the code stack fol-
lowed by the catch and restore intermediates, they contain the information
necessary to restore state should an exception by caught by the catch interme-
diate.

4 36 s ρ x1 x2 e s1 n m c σ
τ

c s ρ c σ

This rule handles the case where evaluation has reached a catch intermediate
without having caused an exception, it is simply removed from the code stack.

4 37 ρ v1 v2 x1 x2 e s n m c σ
τ

c
s ρ e c σ

where ρ x1 x2 v1 v2 n ρ
σ _ m σ

This rule handles the case where evaluation has reached a catch intermediate
when an exception has been raised. An environment where the type and reason
for the exception are bound are created and the the body of the try-catch
is evaluated in that environment.
In Figure 6.5 we can see the pseudo code corresponding to these rules. We
have for the sake of simplicity omitted the handling of multiple results from
the pseudo code, but the complete pseudo code can be found in Figure 6.7.
The expression to be caught is first evaluated, and if it results in an exception
a new context binding the try-catch variables to the type and value of the
exception is constructed before the body of the try-catch is evaluated. If
the expression to be caught does not result in an exception, the result is simply
returned.

eval_try(E1, [X1, X2], E2, State, Cntxt) ->
{Value, State1} = eval(E1, State, Cntxt),
case is_exception(Value) of
true -> {T, V} = Value,

Cntxt1 = bind([X1, X2], [T, V], Cntxt),
eval(E2, State1, Cntxt1);

false -> {Value, State1}
end.

Figure 6.5: Psuedo Code for Extraction of Try Expression

134

eval_apply(Name,Arity,Formal,Args,State,Cntxt) ->
Module = module(Cntxt),
SetofFunState =
lookup_function(Module,Name,Arity,State,Cntxt),

union(
fun({Fun, State1} ->
SetofActualState =
eval_exprs(Args, State1, Cntxt),

union(fun({Actual, State2}) ->
case {is_exception(Actual),

is_top(Fun)} of
{true, _} -> set(Actual, State2);
{false, true} ->
State3 = publish(top, State2),
union(set(top, State2),

set(mkexception(top),
State3));

_ ->
{Formal, Body} = Fun,
Cntxt1 =
bind(Formal,Actual,Cntxt),

eval(Body, State2, Cntxt1)
end,

SetofActualState)
end,

SetofFunState).

lookup_function(Module,Name,Arity,State,Cntxt) ->
SetofNameState = eval(Name, State, Cntxt),
union(fun({Name, State1} ->

case is_top(Name) of
true -> set(top, State1);
false ->
case code:ensure_loaded(Module,

Name) of
error -> set(top, State1);
{ok, Fun} -> set(Fun, State1)

end
end,

SetofNameState).

Figure 6.6: Complete Psuedo Code for Extraction of Apply Expression

135

eval_try(E1, [X1, X2], E2, State, Cntxt) ->
SetofValueState = eval(E1, State, Cntxt),
union(fun({Value, State1}) ->

case is_exception(Value) of
true -> {T, V} = Value,

Cntxt1 =
bind([X1, X2],[T, V],Cntxt),

eval(E2, State1, Cntxt1);
false -> set(Value, State1)

end
end,
SetofValueState).

Figure 6.7: Complete Psuedo Code for Extraction of Try Expression

6.3 Extraction Parameters

To be able to deal with realistic code we have to be able to specify a number of
parameters of the extraction. There are four distinct types of parameters: first
the static setup of the evaluation providing parts of the environment; second
to what maximal depth should the evaluator descend abstracting subsequent
subexpressions; third how and what parts of the global state should be ab-
stracted over; and fourth at what detail exceptions are dealt with.

6.3.1 Setup

There are a number of static parameters that have to be defined when calling
the evaluator, these are presently:

Path which directs where, and in which order, directories are searched for
the source code of modules.
Inclusion Directories which directs where, and in which order, directories
are searched for included files.
Node is the name of the ERLANG-node in which the extracting evaluator
is perceived as executing. The name of the ERLANG-node may, and indeed
does in some of the analysed applications, influence the behaviour of the
application.

6.3.2 Evaluation Depth

In order to ensure that the evaluation terminates we have to set a maximum
evaluation depth, i.e., the maximum number of recursive calls to the evaluator
without a return. When the maximum evaluator depth is exceeded the function
calls are abstracted.

136

This parameter can be tweaked to get the correct level of approximation,
however it should be used with caution since should the parts abstracted have
impact on the supervision structure the result may be too inexact. It can also
paradoxically be the case that a higher maximum evaluation depth may result
in a shorter execution time than a lesser maximum evaluation depth, because
the higher maximum evaluation depth can provide higher precision and thus
fewer alternatives may have to be investigated.
There is also a simple cycle detection mechanism that is either used or not.

The cycle detection mechanism will record each recursive function call with
its parameters; should two calls to the same function have the same parameters
the second call is abstracted. That the same function is called with the same
parameters does not have to mean that we have a cycle in the execution since
the global state of the process may have changed. Conversely we can not do
without a maximum evaluation depth when using the cycle detection since
we may have infinite evaluations without cycles in the presence of potentially
infinitely growing data, e.g., integers.

6.3.3 Global State

It is important for the precision of the extraction how we abstract the global
state of an ERLANG-node. There are two obvious ways to deal with each part
of the global state; either abstract it entirely by letting calls to functions that
access this part return the top element, or emulate its state completely. There
are also intermediate solutions, where a part of the global state is emulated
to some level of precision. Our evaluator allows all parts of the global state
to be abstracted away. We have also implemented emulation of some parts of
the run-time system to various degrees of precision. Below, we describe these
facilities in more detail.

6.3.3.1 Registry
The registration of names to processes, either locally within an ERLANG-node
or globally, has been described in Section 2.3.2 and Section 2.4 respectively.
It may be of great help to emulate fully the registration of names since if the
registration of a process is performed in the initialisation of a process and all
further references to this process is via this name, it is easy to conclude what
process is referred to in communications and other actions requiring a process
identity. On the other hand, if the identity of a process is supplied in another
manner, such as messages or from ETS tables, it is likely that the analysis will
fail to determine what process is affected by the action.
The registration of processes is either emulated in full or wholly abstracted,

with the possibility to have processes not started by the application itself pre-
registered by the evaluator, such as processes in the more important OTP li-
braries.

137

6.3.3.2 ERLANG Term Storage
The ERLANG Term Storage (ETS) is used both to store persistent data on an
ERLANG-node basis or as a second means of communication between pro-
cesses. The tables have associated access rights private, protected and
public, with the meaning:

A private table can only be manipulated and examined by the process
that created it.
A protected table can only be manipulated by the process that created
it, but all process can examine it.
A public table can be manipulated and examined by all processes, and it
has to be explicitly destroyed in order to vanish, unlike the other two types
of tables which will vanish if the creating process is terminated.

The persistent nature of the public tables makes them popular in fault toler-
ant applications since they enable the storage of configuration and other data
relevant to a specific rôle in an application in a manner that will survive the
restart of the process performing this rôle. The problem with public tables
is that they can be in an inconsistent state after a process failure and that one
is tempted to to use the tables for communication and thus breaking the en-
capsulation of data intended by the table.
Our evaluator provides several levels of precision for the emulation of ETS

tables:
Full emulation of ETS tables, taking an unknown environment into consid-
eration. This implies that all access to public tables results in abstraction,
since we do not know whether some process, that may not even be part of
the application, has modified the tables.
Full emulation of ETS tables, under a closed world assumption, that the
tables created by the application only be modified by process in the appli-
cation during the initialisation part of process until the initialisation of the
application is completed.

Our handling of ETS tables has one more special feature namely,
the special handling of the public table ac_tab used by the
application_master process that is part of the runtime system. The
ac_tab table contains information about the loaded and running application
on an ERLANG-node. This table should not be directly accessed, but only
used by the functions in the application module; however for historical
reasons it is examined directly in some code. We have therefore fully
emulated the application module’s format and handling of the ac_tab
table, but the ac_tab table is private so that even without the closed
world assumption we can use the same framework as for the other tables.
The ETS tables can either be wholly abstracted, emulated under a closed

world assumption, or fully emulated. There is the possibility to have
protected or public tables already created and initialised at the start of
simulation, and the ac_tab table is always present.

138

6.3.3.3 Mnesia
Mnesia is a distributed database that has a large number of configurations. For
our purposes most of these options are not important, such as if a database
table is stored in primary or secondary memory. Dealing with Mnesia is anal-
ogous to the simulation of ETS except on details where the manipulation and
examination functions and internal formats differ. Unlike with ETS, for Mne-
sia we only support wholly abstracted or fully emulated evaluation.

6.3.3.4 File System
The file system is extensively used for configuration data and logging of var-
ious forms, which makes it important to emulate the file system in order to
improve the precision of the extraction. The file system can either be wholly
abstracted or fully emulated, with the possibility of configuring the file system
with directories and files before the evaluation.

6.3.4 Exception Handling

Since we are dealing with a language where the advocated means of deal-
ing with errors is to throw exceptions rather than writing defensive code, it
is essential that we handle the propagation of exceptions correctly. There is
however a problem of scalability with the combination of exceptions and ab-
straction. For many of the language constructs and built in functions we have
to consider the case where an exception is raised when one of the compo-
nents or arguments contain an abstraction, and this exception must also be
abstracted. This gives rise to an exponential growth in the number of possible
results since the construct or call will result in either a normal value or an
exception.
In order that we may at least partially address the problem of exceptions

we allow the user decide how to deal with exceptions. There are three distinct
strategies and one further abstraction that can be made orthogonally to these:

The first strategy is to keep all exceptions and hope that the growth in pos-
sible evaluation is not intractable.
The second strategy is to ignore all exceptions that will not be caught by
any outer catch; the rationale for this is that we are only interested in the
fault handling behaviour that actually results in starting the application.
The third strategy is to ignore all exceptions. This is an unsound approach
but can be useful in cases where the second strategy is intractable and we
would like to see the supervision structures merely to have a presentation
of the application, although we can not base any analysis on the extracted
model. Unfortunately even this choice does not guarantee that we will ex-
tract a supervision structure since in some cases exceptions are used for
other than error handling, thus exceptions ignored contains vital informa-
tion to derive the supervision structure.

139

Further means of reducing the number of different evaluations is to abstract
the exceptions themselves, i.e., exceptions with unknown type and value. In
the evaluator it can be chosen how many different exceptions will be evaluated
before they are all approximated by an abstract exception.

6.4 Limitations

Currently, our implementation of the evaluator can handle applications that
are syntactically correct, i.e., those that pass through the initial phases of the
compiler which produces CORE ERLANG. Applications can be analysed even
if only parts of the source code are available; missing parts are handled in the
same manner as calls to functions in unsupported library modules.
The most noticeable limitation is that when many unsupported library calls

are made, the number of possible executions becomes intractable. This is the
case both for the OTP application mnesia[Ericsson Utvecklings AB 2000,
Mattsson et al. 1999] and for the first tries to analyse applications from the
real life system AXD 301[Blau et al. 1999]. Precision can be improved by
supporting more OTP libraries and simulating a larger part of the ERLANG

runtime system, as has been done in order to analyse the AXD 301 applica-
tions.
Another limitation is that we can effectively analyse only applications that

have been designed according to the suggestions of the OTP documentation
and using the OTP library behaviours. This includes the restriction that the es-
sential parts of the supervision structure should be set up by the initialisation
code. This is a way to encourage use of standard coding idioms. It is in gen-
eral intractable to analyse automatically the behaviour of arbitrarily structured
code.

140

7. Experiments

In this chapter we will present the experiments that have been conducted with
the tool on a number of applications. First is detailed the general setup and
configuration of the experiments, then in the following sections the results are
presented, and finally one experiment is singled out and described in detail.

7.1 Setup

In the experiments we have applied the tool to several OTP-library applica-
tions and a subsystem of the AXD 301 ATM switch. We will briefly describe
the OTP-library applications; complete description of these applications are
to be found in the OTP documentation [Ericsson Utvecklings AB 2000]:

os_mon This application monitors the resources of the underlying operating
system, namely CPU, RAM-memory and disk usage.

mnemosyne The Mnemosyne application is a query interface to the
distributed database Mnesia, which is part of the OTP-libraries.
Mnemosyne is an extension of the ERLANG language, i.e., queries are
written embedded in ERLANG code.

sasl The System Architecture Support Libraries application, SASL, pro-
vides support for alarm and release handling

megaco The Megaco application is a framework for building applications
on top of the Megaco/H.248 protocol.

inets Inets is a container for Internet clients and servers. Currently, a HTTP
server and a FTP client have been incorporated in Inets.

crypto The Crypto application provides message digests MD5 and SHA,
and CBC-DES encryption and decryption. The purpose of this applica-
tion is to provide message digest and DES encryption for SMNPv3.

The OTP applications do not require any special configuration of the tool; they
were all complete stand-alone applications with the source code to be found
in the path of the ERLANG runtime system.
The other applications are part of the runtime configuration management

subsystem of the AXD 301 ATM switch [Blau et al. 1999] as well as generic

141

applications extending the behaviours of OTP for use in the AXD 301. Access
to this proprietary software was kindly granted by Ericsson for use in this work
in order that the experiments would be performed on product quality software
of the complexity expected in telecommunication systems. The applications
are described only briefly below:

rcm The main application of the runtime configuration manager, including
the rcmInit, rcmKernel, rcmUtilities and rcmNtp.

rcmInit Initialization application for runtime configuration manager. This
is the application that is started first, it starts the rcmLocker application,
creates mnesia and ETS tables, etc.

rcmKernel The kernel application of the runtime configuration manager,
with children like the rcmInit application.

rcmUtilities
Provides a number Utility processes for the runtime configuration man-
ager.

rcmNtp This application is responsible for the supervision of the Network
Time Protocol server.

sys1 Loading application for the generic applications extending the be-
haviours of OTP used in the AXD 301.

sysCmd AXD system utility processes that wrap ETS and Mnesia tables for
enhanced upgrade support.

Since the AXD 301 applications analysed only constitute a subsystem, we had
to configure the tool with additional code source paths and initialise various
ETS andMnesia tables that would normally contain configuration information
used by the applications. We had to seed the ETS and Mnesia tables with con-
figuration information describing on which processors a particular subsystem
is running, and the filename of log files.
The experiments were performed on a 450MHz Pentium III with 256MB

memory.

7.2 Results and Conclusions

The results of the experiments are summarised in Table 7.1, with the excep-
tion of mnemosyne, megaco and inets which are trivial. From this table
of results and the source code of the applications we can draw conclusions
regarding a number of important issues:

142

Code size The code sizes of the various applications analysed to determine
if we can analyse production size applications, and runtimes of the ap-
plications.

Language constructs The language constructs and libraries used by the ac-
tual applications to see howmuch of the potential language we can anal-
yse.

Incomplete source code Incomplete source code resulting from either ap-
plications at an early stage of development or where the whole system
is too large to be completely analysed,

Precision The precision of the analysis to see how likely the analysis is to
find potential problems.

It should be noted that initialisation is normally only a small part of the appli-
cation. As an example, in the AXD 301 subsystem consisting of 57’310 lines
of source code at most 1’068 out of these in 118 functions were executed in
order to analyse one of its applications.

Code size
For larger applications our tool can symbolically execute in the order of 1000
lines of source code per second. The execution time seems to grow exponen-
tially with the number of different process trees generated by the analysis, thus
it is important for larger applications to have as high precision as possible in
order to be able to analyse the application in reasonable time. One strategy
that may be adopted when the system is too large to be analysed is to analyse
subsystems independently, although for some of the subsystems, in actuality
dependent on other subsystems for the configuration, the lacking information
can cause loss of precision.

Language constructs
Inspecting the source code of the OTP and AXD 301 subsystem applications,
we can conclude that they use all CORE ERLANG language constructs and a
great many of the OTP libraries. This result gives us reason to believe that we
can analyse most applications under the limitations detailed in Section 6.4.

Incomplete source code
When analysing the AXD 301 subsystem parts of the code were missing, as
was the remainder of the system. The tool could analyse all the applications
after initialisation of configuration tables, with some increase of approxima-
tions made.

Precision
For all OTP applications we have traced an execution of the application, and
compared the process tree created with the trees created by our analysis. For

143

Name Time #Trees #Lines #Executed #Total

OTP:

os_mon 8.0s 200 260 620 2’588

sasl 1.1s 2 291 312 9’467

crypto 0.3s 1 52 65 337

AXD 301:

rcm 180s 1’674 822 306’176 19’250

rcmInit 5.4s 1 650 5’320 3’744

rcmKernel 582s 3’708 1’068 570’976 16’272

rcmUtilities 1.7s 1 140 164 62

rcmNtp 1.9s 3 89 93 2’583

sys1 28.2s 8 897 58’395 33’227

sysCmd 0.2s 1 9 9 1’359

Table 7.1: Analysis Statistics

In the table:
Time = runtime of the analysis,
#Trees = number of process trees extracted,
#Lines = number of different source code lines used by initialisation,
#Executed = total number of lines executed, e.g, if some line is executed
7 times, this is counted as 7 lines

#Total = total number of lines in the entire application.

The rcm application only contain 63 lines of source code, however it
includes the applications rcmKernel, rcmUtilities and rcmNtp, and
together with them it makes a total of 19’250 lines.

144

all applications the tree generated by tracing an execution of the application
was matched by one of the trees generated by our analysis.
For the AXD 301 applications we could not execute the incomplete subsys-

tem. We have, however, shown the results to the senior engineers within the
AXD 301 that provided us with the subsystem; they confirm that the analysis
results correspond to the actual system.
The large number of trees generated by three of the applications (os_mon,

rcm and rcmKernel) all arise from polling performed in the initialisation
and results in a number of trees only differing in the number of sends and
receives performed. If we ignore the number of differing send and receives
only a few trees remain; in the case of os_mon only two out of the 200 trees
would remain.

7.3 Extended Example: Os_mon
To illustrate the results of our analysis we will use the result of applying the
tool to the OTP application os_mon, that monitors the underlying operat-
ing system for disk, memory and CPU usage. Snapshots from the tool after
analysing os_mon is shown in Figure 7.1.

Figure 7.1: Creation tree for the OTP application os_monwith expanded information

nodes.

The os_mon application running on a Linux system will have seven pro-
cesses and one external port. Below we describe each process in the order of
creation.

os_mon The application master process registered as os_mon.

os_mon_sup The supervisor of the processes that monitor the operating sys-
tem resources; this process is registered as os_mon_sup. From its pa-

145

rameters one can see that it will allow at most 4 restarts per hour, and
the restart strategy is one_for_one.

disksup The generic server registered as disksup is responsible for
monitoring the disk usage. From the supervisor’s parameters associated
with this process we can see that it will be started by a call to
disksup:start_link(), its restart strategy is permanent, it
will be given 2000 milliseconds to shut down; and the type worker.

During initialisation disksup will start an external port which com-
municates with an external process which actually monitors the disk
usage.

<0.5.7> This process, which is a supervisor bridge without a registered
name, starts process <0.6.7> of which the analysis can not
determine anything. Inspection of the source code reveals that the
process <0.6.7>, that this process will dynamically be registered as
memsup_helper, which memsup communicates with.

The reason that we do not know of the registration of
memsup_helper process is, that instead of the usual method of
letting the parent register it during its initialisation phase, it registers
itself.

We could, when perusing the actual code, not determine any reason why
the common design principles of ERLANG/OTP were not used. Since
this process is in actuality started in much the same manner as the other
children of the supervisor, our conclusion is that it is legacy code.

memsup The generic server registered as memsup, with process id
<0.7.7>, is responsible for monitoring the memory usage of the
ERLANG-node. In this case we have highlighted the sequence of
actions that the process will perform:

process_flag(<0.7.7>, trap_exit, true)
process_flag(<0.7.7>, priority, low)
monitor(process, Term)
memsup_helper!{<0.7.7>, collect_proc}
receive {collected_proc, Term}
memsup_helper!{<0.7.7>, collect_sys}
receive {collected_sys, Term}
send_after(60000, <0.7.7>, time_to_collect)
demonitor(Term)

The two first actions set process flags, followed by the monitoring of an
unknown process. After these initial setups, the process will communi-
cate with the registered process memsup_helper, sending and receiv-
ing twice. After these calls and responses it uses a built in fuction that

146

will send the message time_to_collect after 60’000 milliseconds.
Finally it demonitors, i.e., removes the monitor, from an unknown pro-
cess. Using monitors is an alterative to links for monitoring processes
terminations.

The monitor built in function enables a process to monitor various
aspects in the ERLANG-node, getting messages from the runtime system
when something happens which affects the process.

cpu_sup The generic server registered as cpu_sup is responsible for moni-
toring the cpu usage of the system.

When analysing the os_mon application our tool generated 200 different
trees, depending on approximations as mentioned in Chapter 6. The great
multiplicity comes from a receive statement where the memsup process ei-
ther gets information back from the memsup_helper process or a timeout
occurs, this is repeated 10 times giving rise to 100 different trees. The final
step from 100 trees to 200 is taken by a previous process, namely the anony-
mous <0.5.7>, that may fail during initialisation, but in such a manner that
the remaining processes can be started. The tree presented here is the sim-
plest where no retransmissions due to timeouts have to be performed, and the
process <0.5.7> initialises successfully.
The automatic check performed by the tool for each tree shows that

os_mon respects properties P1 and P2 provided that process <0.6.7>
behaves correctly. This clearly indicates that in order to be confident in the
failure recovery we need to examine <0.6.7>.

147

8. Thesis Summary

In this chapter we first summarise the achievements of this thesis and then
present our conclusions that we have drawn from this work. We end the chap-
ter with a description of how we intend to continue this work after the thesis.

8.1 Summary

In this thesis, we have presented a technique for automatically detecting de-
ficiencies in the failure recovery mechanism of ERLANG applications, which
are due to improperly designed supervision structures. The technique is struc-
tured into two distinct parts.
The first part consists of extracting the set of possible supervision structures

by static analysis of the source code. The extracted set of possible supervision
structures is a safe overapproximation of the static parts of supervision struc-
tures, extracted by symbolically executing the initialisation code of the appli-
cation. By “the static part” we mean the processes started when the application
is started and which are to remain running (possibly restarted to handle fail-
ures) until the application terminates. In the extraction we have assumed that
the OTP libraries are used in the recommended way to set up the supervision
structure, otherwise the precision becomes poor.
In order to ensure that the symbolic execution used to extract the super-

vision structure was correct and formally sound, we had to devise an opera-
tional semantics of the sequential part of CORE ERLANG that also dealt with
the imperative side-effect mechanisms provided by the runtime system. Hav-
ing devised an operational semantics we then devised an abstract version of
the semantics that made the analysis tractable when analysing fault tolerance;
we based the symbolic execution on this abstract operational semantics. The
abstract semantics was shown to abstract the semantics in a precise way.
To evaluate the techniques we have implemented a tool, which automati-

cally extracts sets of possible static supervision structures from source code
and then can check the effects of a process failure in each supervision struc-
ture.
The tool can also perform several “sanity checks” to ensure that principles

for the construction of good supervision structures are followed. If the princi-
ples are not followed strictly, the tool can check the effects of process failures;

149

this is useful when analysing legacy code applications, which may not have
been designed using current design principles.
The second part of the technique involves analysing the effect of process

failures on each of the extracted supervision structures, which entails
analysing the effect of a particular process failure on the entire supervision
structure. In order to be able to perform this analysis we have constructed a
model of the supervisor’s behaviour.
When formalising the properties we want to check we had two conflicting

considerations: on the first hand the properties had to capture the essential
aspects of fault tolerance of ERLANG applications; on the second hand the
properties had to be possible to analyse with the precision provided by the
extracted supervision structures.
The two essential properties we check are those of “repair” and “non con-

cealment”, which states that as system should be repaired with the restart of
terminated processes and that a permanent error should not be concealed by
the fault tolerance mechanism.
To be able to fulfil these main objectives we have also had to address a

number of related issues. In order to be able to construct and explain our
model of supervisor’s behaviour we have had to make a detailed presentation
of the fault tolerance mechanisms provided by the OTP libraries.
We have implemented a graphical tool that visualises the extracted supervi-

sion structure. This visualisation of the supervision structure can be presented
to the designer for inspection with the possibility to choose different views de-
pending on the information sought. As an example, the parts of the application
that are affected by an abnormal process termination can be visualised.
In order to evaluate the abilities of the tool we have applied it to several

OTP-library applications and a subsystem of the AXD 301 ATM switch. The
visualisation was used to verify with the designers that the captured supervi-
sion structure was correctly captured.

8.2 Conclusions

In the view of the applications we have been able to analyse, we can con-
clude that using a combination of automatic model extraction for finding the
structuring of the application and manually constructed models for the more
elaborate runtime behaviour of library processes we can determine important
aspects of the applications fault handling mechanisms. This shows that highly
relevant properties of real life code can be determined for fault tolerance prop-
erties using a small amount of manual modelling.
The essential properties of the fault tolerance as well as the sanity checks

can be fully automated. This together with the automated extraction of process
structures can be developed into a push-button tool for checking important
aspects of ERLANG programs from the source code.

150

The automatically extracted models of the applications can also be used by
designers to understand the effects that fault tolerance mechanisms will have
on their design, by providing simulations of the effects a fault will have on the
application.
During the development of the tool we have noticed how important the cor-

rect level of abstraction is for keeping the model extraction and subsequent
analysis tractable; this forces us to conclude that in some cases it will not
suffice to add new manually constructed models of relevant libraries, but we
would have to modify the model extraction to change what parts of the sym-
bolic execution will be abstracted over.
We have indeed implemented such choices in the tool where in some cases

the user can choose which side effects should be exactly modelled and which
should be abstracted. In our tool the user controls whether ot not ets, mnesia
and the registration of processes is modeled. If for example ets is used in a
system analysed, but not included in the model, that leads to less precision in
the result but we may still get all the possible supervision structures.

8.3 Further Work

There are two different and equally important courses that we will pursue in
the continuation of this work; the first course of actions are to improve the
quality of the current work, the second course is to extend the scope of what
is addressed both in part of the source code covered but also in the context it
is used.
As a driving force, and as a measure of success, in improving the techniques

and tools we will try to analyse an increasing part of the Ericsson AXD 301
ATM switch as well as try to find applications from other sources to analyse.
We will, in a similar manner as we have with the symbolic execution, con-
vert the manually constructed model of the supervisor’s behaviour to a formal
model in some suitable formalism. The aim of formally presenting the model
is both to present it in a clear disambiguated way, but also to enable the use of
existing model checking tools such as SPIN[Holzmann 1997] to automate the
checking of the fault tolerance properties.
To verify techniques in practise the actual runs of the analysed application

could be checked against the possible traces generated by the symbolic exe-
cution. The objective would be to ensure that every actual run (there could be
several different depending on system parameters) is abstracted by at least one
of the runs generated by the symbolic execution.
To be able to navigate the possibly large number of extracted supervision

structures we will have to define some order on the structures so that the set
of structures can be easily navigated. The order of structures would have to
reflect the regularities the construction of similar yet different supervision

151

structures, such as the number of retries needed before establishing contact
between two subsystems.
When trying to extend our work the most important is how to find infor-

mation beyond the predefined OTP behaviours and in the dynamic part of the
applications. We intend to first investigate the approach of combining the sym-
bolic execution of CORE ERLANG terms with finite state methods, where the
dynamic parts are approximated by finite models extracted from the code.
Having a framework for showing and simulating the extracted supervision

structures as well as showing properties of the structures, we can go the other
way and let the designer specify the system in the same framework where it
can be simulated and checked. The application can then be validated against
the traces of the implementation and the extracted supervision structure can
be compared to the specified.
In the furthest extension of this work we would like to use the manually

constructed formal models of behaviours as a basis for discussion of how these
might be improved and extended, with the ability to model check the model
used to ensure that the new behaviours have the intended properties.

152

Acknowledgements

First and foremost I would like to thank the man of infinite patience: my super-
visor Bengt Jonsson. He has over all these years served as an inspiration. My
co-supervisor Sven-Olof Nyström has proved an invaluable help, especially
during the last frantic part of this thesis creation.
Over the many years of writing this thesis I have had great support and

much encouragement from my collegues at Uppsala University, Heriot-Watt
University and now finally at Erlang Training and Consulting. You have all
made my task so much easier. In particular my previous and current bosses
Phil Trinder, Francesco Cesarini and Marcus Taylor.
A number of my friends and collegues have helped with feedback on my

research and comments on the thesis, they are in no particular order: Gustaf
Naeser, Kostis Sagonas, Martin Leucker, Richard Carlsson, Arnold Pears,
Justin Pearson, Ulf Wiger, Thomas Arts and Greg Michaelson.
And finally I would like to thank my friends and family for never loosing

faith in me.

153

Bibliography

[Agrawal 2000] AGRAWAL, G. 2000. Demand-Driven Construction of Call
Graphs. In Proceedings of the 9th International Conference on Com-
piler Construction (CC’00) , Volume 1781 of Lecture Notes in Com-
puter Science. Springer-Verlag, 125–140. {11}

[Allen 1978] ALLEN, J. 1978. Anatomy of Lisp. McGraw–Hill Computer
Science Series, Feigenbaum, E.A. and Hamming, R.W., Editors.
McGraw–Hill. {21, 62}

[Amiranashvili 2002] AMIRANASHVILI, V. 2002. A Rewriting Logic For-
malization of Core Erlang Semantics. Master’s thesis, Aachen Uni-
versity of Technology, Germany. {12}

[Armstrong 1996] ARMSTRONG, J. 1996. Erlang – A Survey of the Lan-
guage and its Industrial Applications. In Proceedings of the
9th International Symposium on Industrial Applications of Pro-
log (INAP’96), Hino, 16–18. {21}

[Armstrong 1997] ARMSTRONG, J. 1997. The Development of Erlang. In
Proceedings of the 2nd International Conference on Functional Pro-
gramming (ICFP’97) , Volume 32 of ACMSIGPLANNotices. ACM
Press, 106–203. {19}

[Armstrong 2003] ARMSTRONG, J. 2003. Making reliable distributed sys-
tems in the presence of software errors. PhD thesis, Department
of Microelectronics and Information Technology, Royal Institute of
Technology, Sweden. {9}

[Armstrong 2007] ARMSTRONG, J. 2007. Programming Erlang – Software
for a Concurrent World . Pragmatic Programmer. {9}

[Armstrong and Virding 1990] ARMSTRONG, J. AND VIRDING, R. 1990.
Erlang - An Experimental Thelephony Programming Language. In
Proceedings of the 13th International Switching Symposium, Stock-
holm. {19}

[Armstrong et al. 1992a] ARMSTRONG, J., VIRDING, R., AND

WILLIAMS, M. 1992. Use of Prolog for Developing a new
Programming Language. In Proceedings of the 1st International

155

Conference on the Practical Application of Prolog (PAP’92),
London. Association for Logic Programming. {19}

[Armstrong et al. 1992b] ARMSTRONG, J., DÄCKER, B., VIRDING, R.,
AND WILLIAMS, M. 1992. Implementing a Functional Language
for Highly Parallel Real-Time Applications. In Proceedings of the
Software Engineering for Telecommunication Switching Systems,
Florence. {19}

[Armstrong et al. 1996] ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C.,
AND WILLIAMS, M. 1996. Concurrent Programming in ERLANG,
2nd edition. Prentice Hall. {9}

[Arora et al. 1996] ARORA, A., GOUDA, M., AND VARGHESE, G. 1996.
Constraint satisfaction as a Basis for Designing Nonmasking Fault-
Tolerance. Journal of High Speed Networks 5 , 3, 293–306. {7}

[Arts and Dam 1999] ARTS, T. AND DAM, M. 1999. Verifying a Distributed
Database Lookup Manager Written in Erlang. In FM’99–Formal
Methods, Volume I, Proceedings of the 1st World Congress on For-
mal Methods in the Development of Computing Systems (FM’99) ,
Wing, J.M., Woodcock, J., and Davies, J., Editors. Volume 1708 of
Lecture Notes in Computer Science. Springer-Verlag, 682–700. {14,
51}

[Arts and Earle 2001] ARTS, T. AND EARLE, C.B. 2001. Development of
a Verified ERLANG Program for Resource Locking. In Proceedings
of the 6th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’01), Paris. {12}

[Arts and Giesl 1997] ARTS, T. AND GIESL, J. 1997. Automatically Proven
Termination where Simplification Orderings Fail. In Proceedings of
TAPSOFT: 7th International Joint Conference on Theory and Prac-
tise of Software Development, Volume 1214 of Lecture Notes in
Computer Science. Springer-Verlag. {14}

[Arts and Noll 2001] ARTS, T. AND NOLL, T. 2001. Verifying Generic Er-
lang Client-Server Implementations. In Proceedings of the 12th

International Workshop on the Implementation of Functional Lan-
guages (IFL’00) , Volume 2011 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 37–52. {12, 14}

[Arts et al. 2004a] ARTS, T., EARLE, C., , AND DERRICK, J. 2004. Deve-
olpment of a Verified Erlang Program for Resource Locking. Inter-
national Journal on Software Tools for Technology Transfer 5 , 2–3
(March), 205–220. {12, 15}

156

[Arts et al. 2004b] ARTS, T., EARLE, C., , AND PENAS, J. 2004. Translating
Erlang to μCRL. In In Proceedings of the International Conference
on Application of Concurrency to System Design (ACSD2004) .
{12}

[Aviziensis 1985] AVIZIENSIS, A. 1985. The N-version Approach to Fault-
Tolerant Systems. IEEE Transactions on Software Engineering 11,
12, 1491–1501. {5}

[Aït-Kaci 1990] AÏT-KACI, H. 1990. The WAM: A (Real) Tutorial . Digital
Press. {19}

[Barklund 1999] BARKLUND, J. 1999. Specification of the STANDARD ER-
LANG programming language, Final draft (0.6). Ericsson, Computer
Science Laboratory. {15}

[Barklund and Virding 1999] BARKLUND, J. AND VIRD-
ING, R. 1999. ERLANG 4.7.3 Reference Manual,
Draft (0.7). Ericsson, Computer Science Laboratory,
http://www.erlang.org/download/erl_spec47.ps.gz.
{15}

[Beizer 1990] BEIZER, B. 1990. Software Testing Techniques, 2nd edition.
Van Norstrand Reinhold. {2}

[Blau et al. 1999] BLAU, S., ROOTH, J., AXELL, J., HELLSTRAND, F.,
BUHRGARD, M., WESTIN, T., AND WICKLUND, G. 1999. AXD
301: A new generation ATM switching system. Computer Net-
works 31 , 6, 559–582. {2, 11, 12, 20, 140, 141}

[Blom et al. 2001] BLOM, S., FOKKINK, W., GROOTE, J.F., VAN

LANGEVELDE, I., LISSER, B., AND VAN DEN POL, J. 2001.
μCRL: A Toolset for Analysing Algebraic Specifications. In
Proceedings of the 13th International Conference on Computer
Aided Verification (CAV’01) , Volume 2102 of Lecture Notes in
Computer Science. Springer-Verlag, 250–254. {12}

[Borovanský et al. 1998] BOROVANSKÝ, P., KIRCHNER, C., KIRCH-
NER, H., P. E. MOREAU, AND RINGEISEN, C. 1998. An Overview
of ELAN. In Proceedings of the International Workshop on
Rewriting Logic and its Applications, Volume 15 of Electronic
Notes in Theoretical Computer Science. Elsevier Science. {12}

[Brown and Sahlin 1999] BROWN, L. AND SAHLIN, D. 1999. Extending
Erlang for Safe Mobile Code Execution. In Proceedings of the 2nd

International Conference on Information and Communication Secu-
rity (ICICS’99) , Volume 1726 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 39–53. {21}

157

[Carlsson 2001] CARLSSON, R. 2001. An Introduction to Core Erlang. In
Proceedings of PLI’01 Erlang Workshop, Florence, Italy, Septem-
ber. {11, 16, 51}

[Carlsson et al. 2000] CARLSSON, R., GUSTAVSSON, B., JOHANSSON, E.,
LINDGREN, T., NYSTRÖM, S.-O., PETTERSSON, M., AND VIRD-
ING, R. 2000. Core ERLANG 1.0 language specification. Techni-
cal report 2000-03, Department of Information Technology, Uppsala
University, Sweden. {51}

[Carlsson et al. 2006] CARLSSON, R., SAGONAS, K., AND WILHELMS-
SON, J. 2006. Message analysis for concurrent programs using mes-
sage passing. ACM Transactions on Programming Languages and
Systems (TOPLAS) 28, 4 (July), 715–746. {13, 16}

[Chandra and Toueg 1996] CHANDRA, J. AND TOUEG, S. 1996. Unreliable
Failure Detectors for Reliable Distributed Systems. Journal of the
ACM 43, 2, 225–267. {8}

[Chandy and Misra 1986] CHANDY, K.M. AND MISRA, J. 1986. How Pro-
cesses Learn. Distributed Computing 1, 1, 40–52. {8}

[Cheheyl et al. 1981] CHEHEYL, M.H., GASSER, M., HUFF, G.A., AND

MILLER, J.K. 1981. Verifying Security. ACM Computing Surveys
13 , 3, 279–339. {2}

[Claessen and Svensson 2005] CLAESSEN, K. AND SVENSSON, H. 2005. A
Semantics for Distributed Erlang. In In Proceedings of the ACM
SIGPLAN 2005 Erlang Workshop, Tallinn, Estonia. {15, 16}

[Clarke and Wing 1996] CLARKE, E.M. AND WING, J.M. 1996. Formal
Methods: State of the Art and Future Directions. ACM Computing
Surveys 28 , 4, 626–643. {2}

[Clavel et al. 2003] CLAVEL, MANUEL, DURÁN, FRANCISCO,
EKER, STEVEN, LINCOLN, PATRICK, MARTÍ-OLIET, NAR-
CISO, MESEGUER, JOSÉ, AND TALCOTT, CAROLYN. 2003. The
Maude 2.0 System. In Rewriting Techniques and Applications
(RTA 2003) , Number 2706 in Lecture Notes in Computer Science.
Springer-Verlag, 76–87. {12}

[Corbett 2000] CORBETT, J.C. 2000. Using Shape Analysis to Reduce
Finite-State Models of Concurrent JAVA Programs. ACM Transac-
tions on Software Engineering and Methodology 9, 1, 51–93. {12}

[Cristian 1991] CRISTIAN, F. 1991. Understanding Fault-Tolerant and Dis-
tributed Systems. Communications of the ACM 34, 2, 56–78. {6}

158

[Dam et al. 1998a] DAM, M., FREDLUND, L.-Å., AND GUROV, D. 1998.
Compositional Verification of Erlang Programmes. In Proceedings
of the 3rd International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’98), Amsterdam. CWI. {15, 51}

[Dam et al. 1998b] DAM, M., FREDLUND, L.-Å., AND GUROV, D. 1998.
Toward Parametric Verification of Open Distributed systema. In Re-
vised Lectures of the International Symposium “Compositionality:
the Significant Difference” (COMPOS’97) , Volume 1536 of Lecture
Notes in Computer Science. Springer-Verlag, 150–185. {15, 51}

[Dean et al. 1996] DEAN, D., FELTEN, E.W., AND WALLACH, D.S. 1996.
Java Security: From HotJava to Netscape and Beyond. In Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Com-
puter Society Press. {21}

[Dega 1996] DEGA, J.-L. 1996. The Redundancy Mechanisms of the Ariane
5 Operational Control Center. In Proceedings of the 26th IEEE Sym-
posium on Fault Tolerant Computing Systems (FTCS-26) , IEEE
Computer Society. IEEE Computer Society Press, 382–386. {5}

[Diehl et al. 2000] DIEHL, S., HARTEL, P., AND SESTOFT, P. 2000. Ab-
stract machines for programming language implementation. Future
Generation Computer Systems 16, 7, 739–751. {20}

[Dijkstra 1974] DIJKSTRA, E.W. 1974. Self-stabilizing Systems in Spite of
Distributed Control. Communications of the ACM 17, 11, 643–644.
{5}

[Dolev et al. 1987] DOLEV, D., DWORK, C., AND STOCKMEYER, L. 1987.
On the Minimal Synchronism Needed for Distributed Consensus.
Journal of the ACM 34, 1, 77–97. {8}

[Dybvig 1996] DYBVIG, R.K. 1996. The Scheme Programming Language:
ANSI Scheme. Prentice-Hall. {21}

[Däcker 2000] DÄCKER, B. 2000. Concurrent Functional Programming for
Telecommunications: A Case Study of Technology Introduction. Li-
centiate thesis, Computer Communication System Laboratory, De-
partment Of Teleinformatics, Royal Institute of Technology, Swe-
den. {19, 21}

[Ericsson Utvecklings AB 2000] ERICSSON UTVECKLINGS AB. 2000.
OTP Documentation. {62, 140, 141}

159

[Feely and Larosse 1998] FEELY, M. AND LAROSSE, M. 1998. Compiling
Erlang to Scheme. In Principles of Declarative Programming, Pro-
ceedings of the 10th International Conference on Programming Lan-
guages, Implementations, Logics and Programs (PLILP’98) , Vol-
ume 1490 of Lecture Notes in Computer Science. Springer-Verlag,
300–318. {21}

[Feely et al. 1999] FEELY, M., PICHÉ, P., BEAULIEU, S., LAROSSE, M.,
AND LATENDRESSE, M. 1999. Status Report on the ETOS Erlang
to Scheme Compiler. In Proceedings of the 5th International ER-
LANG/OTP Users Conference (EUC’99) . Ericsson Utvecklings AB.
{21}

[Fernandez et al. 2000] FERNANDEZ, J.-C., GARAVEL, H., KERBRAT, A.,
MOUNIER, L., MATEESCU, R., AND SIGHIREANU, M. 2000.
CADP: A Protocol Validation and Verification Toolbox. In Pro-
ceedings of the 8th International Conference on Computer Aided
Verification (CAV’96) , Volume 1102 of Lecture Notes in Computer
Science. Springer-Verlag, 437–440. {12}

[Fredlund 2001] FREDLUND, L.-Å. 2001. A Framework for Reasoning
About ERLANG Code. PhD thesis, Department of Microelectronics
and Information Technology, Royal Institute of Technology, Swe-
den. {14, 15, 16, 51}

[Fredlund and Earle 2006] FREDLUND, L.-Å. AND EARLE, C. B. 2006.
Model Checking Erlang Programs: The Functional Approach. In In
Proceedings of the ACM SIGPLAN 2006 Erlang Workshop, Port-
land, USA. {15, 16}

[Fredlund and Svensson 2007] FREDLUND, L.-Å. AND SVENSSON, H.
2007. McErlang: AModel Checker for a Distributed Functional Pro-
gramming Language. In Proceedings of the ICFP ’07 conference,
Volume 42 of ACM SIGPLAN Notices. ACM Press, 125–136. {15,
16}

[Fredlund et al. 2003] FREDLUND, L.-Å., GUROV, D., NOLL, T.,
DAM, M., ARTS, T., AND CHUGUNOV, G. 2003. A verifica-
tion tool for ERLANG. International Journal on Software Tools for
Technology Transfer 4 , 4, 405–420. {14}

[Gamma et al. 1998] GAMMA, E., HELM, R., JOHNSON, R., AND VLIS-
SIDES, J. 1998. Design Patterns. Addison-Wesley Professional
Computing Series. Addison-Wesley. {31}

[Giesl and Arts 2001] GIESL, J. AND ARTS, T. 2001. Verification of Erlang
Processes by Dependency Pairs. Journal of Applicable Algebra in
Engineering, Communication and Computing 12, 1, 39–72. {14}

160

[Gonzáles 2007] GONZÁLES, S. R. 2007. Erlang Developments in Lamb-
daStream. In Proceedings of the 13th International ERLANG/OTP
Users Conference (EUC’07) . Ericsson Utveckling AB. {21}

[Gosling et al. 1996] GOSLING, J., JOY, B., AND STEELE, G. 1996. The
Java Language Specification. Addison-Wesley. {12}

[Granbohm and Wiklund 1999] GRANBOHM, H. AND WIKLUND, J. 1999.
GPRS - General Packet Radio Service. No 2, Ericsson Review. {21}

[Gustafsson 2007] GUSTAFSSON, P. 2007. How to program efficiently with
Binaries and Bit Strings. In Proceedings of the 13th International
ERLANG/OTP Users Conference (EUC’07) . Ericsson Utveckling
AB. {20}

[Gärtner 1999] GÄRTNER, F.C. 1999. Fundamentals of Fault-Tolerant Dis-
tributed Computing in Asynchronous Environmnets. ACMComput-
ing Surveys 31, 1, 1–26. {5, 7}

[Hausman 1994] HAUSMAN, B. 1994. Turbo Erlang: Approaching the Speed
of C. In Implementation of Logic Programming Systems, Tick, E.
and Succi, G., Editors. Kluwer Academic Press, 119–135. {20}

[Hedqvist 1996] HEDQVIST, P. 1996. A Parallel and Multi-threaded Erlang
Implementation. Master’s thesis, Computing Science Department,
Uppsala University, Sweden. {20}

[Herlihy and Wing 1991] HERLIHY, M.P. AND WING, J.M. 1991. Specify-
ing Graceful Degradation. IEEE Transactions on Parallel Distributed
Systems 2, 1, 93–104. {4}

[Hinde 2000] HINDE, S. 2000. Use of ERLANG/OTP as a Service Creation
Tool for In Services. In Proceedings of the 6th International ER-
LANG/OTP Users Conference (EUC’00) . Ericsson Utvecklings AB.
{21}

[Hoare 1969] HOARE, C.A.R. 1969. An Axoimatic Basis for Computer Pro-
gramming. Communications of the ACM 12, 576–580. {51}

[Holzmann 1991] HOLZMANN, G.J. 1991. Design and Validation of Com-
puter Protocol . Prentice-Hall International. {15}

[Holzmann 1997] HOLZMANN, G.J. 1997. The Model Checker SPIN. IEEE
Transactions on Software Engineering 23, 279–295. {15, 151}

[Holzmann 2000] HOLZMANN, G.J. 2000. Logic Verification of ANSI-C
Code with SPIN. In Proceedings of the 7th International Interna-
tional SPINWorkshop (SPIN’00) , Volume 1885 of Lecture Notes in
Computer Science. Springer-Verlag, 131–148. {12}

161

[Holzmann and Smith 2000] HOLZMANN, G.J. AND SMITH, M.H. 2000.
Automating software feature verification. Bell Labs Technical Jour-
nal 5 , 2, 72–87. {12}

[Huch 1999] HUCH, F. 1999. Verification of ERLANG Programs using Ab-
stract Interpretation and Model Checking. In Proceedings of the 4th

International Conference on Functional Programming (ICFP’99) ,
Volume 34 of ACM SIGPLAN Notices. ACM Press, 261–272. {13,
16, 51}

[Huch 2001] HUCH, F. 2001. Model Checking ERLANG Programs –
Abstracting the Context-Free Structure. In Proceedings of the
10th International Workshop on Functional and Logic Program-
ming (WFLP’01) . {13, 51}

[Huch 2003] HUCH, F. 2003. Model Checking Erlang Programs – LTL-
Propositions and Abstract Interpretation. In Proceedings of the 12th

International Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP’03) . {13}

[Intel 2002] INTEL, CORP. 2002. IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1: Basic Architecture. Intel Corporation,
http://www.intel.com/products/processor/manuals/.
{21}

[Ippolito 2008] IPPOLITO, B. 2008. Ad Serving in Erlang. In Proceedings of
the 14th International ERLANG/OTP Users Conference (EUC’08) .
Ericsson Utveckling AB. {21}

[Jalote 1994] JALOTE, P. 1994. Fault Tolerance in Distributed Systems.
Prentice Hall. {6}

[Johansson et al. 2000] JOHANSSON, E., PETTERSON, M., AND SAGO-
NAS, K. 2000. HIPE: A High Performance Erlang System. In Pro-
ceedings of the International Conference on Principles and Practises
of Delcarative Programmong(PPDP’00) , ACM SIGPLAN Notices,
32–43. {21}

[Kernighan and Ritchie 1978] KERNIGHAN, B.W. AND RITCHIE, D.M.
1978. The C Programming Language. Prentice-Hall. {19}

[Kozen 1983] KOZEN, D. 1983. Results on the Propositional μ-Calculus.
Theoretical Computer Science 27, 333–354. {14}

[Kuhn 1997] KUHN, D.R. 1997. Sources of Failure in the Public Switched
Telephone Network. IEEE Computer 30 , 4, 31–36. {1}

162

[Lamport 1977] LAMPORT, L. 1977. Proving the Correctness of Multipro-
cess Programmes. IEEE Transactions on Software Engineering 3,
2, 125–143. {7}

[Lamport and Lynch 1990] LAMPORT, L. AND LYNCH, N. 1990. Dis-
tributed Computing: Models and Methods. In Handbook of The-
oretical Computer Science (Vol. B): Formal Models and Semantics,
van Leeuwen, J., Editor. MIT Press, 1157–1199. {8}

[Landin 1964] LANDIN, P.J. 1964. The mechanical evaluation of expres-
sions. Computer Journal 6 , 308–320. {62}

[Laprie 1995] LAPRIE, J.-C. 1995. Dependability - Its Attributes, Impair-
ments and Means. In Predictability Dependable Computing Sys-
tems, Randell, R., Laprie, J.-C., Kopetz, H., and Littlewood, B., Ed-
itors. Basic Research Series. Springer-Verlag, 3–24. {1, 6}

[Laprie et al. 1990] LAPRIE, J.-C., ARLAT, J., BÉOUNES, C., AND KA-
NOUN, K. 1990. Definition and analysis of Hardware-and-Software
Fault-Tolerant Architectures. IEEE Computer 23 , 7, 39–51. {5}

[Leucker and Noll 2001] LEUCKER, M. AND NOLL, T. 2001. A Distributed
Model Checking Tool Tailored Erlang. In Proceedings of PLI’01
Erlang Workshop, Florence, Italy, September. {12}

[Lindahl and Sagonas 2004] LINDAHL, TOBIAS AND SAGONAS, KON-
STANTINOS. 2004. Detecting Software Defects in Telecom Ap-
plications Through Lightweight Static Analysis: A War Story. In
Programming Languages and Systems: Proceedings of the Second
Asian Symposium (APLAS’04) , Volume 3302 of LNCS. Springer,
91–106. {13}

[Lindahl and Sagonas 2006] LINDAHL, TOBIAS AND SAGONAS, KON-
STANTINOS. 2006. Practical Subtype Inference Based on Success
Typings. In In Proceedings of the Eight ACM SIGPLAN Interna-
tional Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP’06) . ACM Press, 167–178. {13}

[Lindgren 1996] LINDGREN, A. 1996. A Prototype of a Soft Type System for
Erlang. Master’s thesis, Computing Science Department, Uppsala
University, Sweden. {13, 22}

[Lundin 2008] LUNDIN, K. 2008. Inside the Erlang VM, focusing on SMP.
In Proceedings of the 14th International ERLANG/OTP Users Con-
ference (EUC’08) . Ericsson Utveckling AB. {20}

[Lynch 1996] LYNCH, N. 1996. Distributed Algorithms. Morgan Kaufmann.
{8}

163

[Manna and Pnueli 1992] MANNA, Z. AND PNUELI, A. 1992. The Temporal
Logic of Reactive and Concurrent Systems, 2nd edition. Springer-
Verlag. {13}

[Marlow and Wadler 1997] MARLOW, S. AND WADLER, P. 1997. A prac-
tical subtyping system for Erlang. In Proceedings of the 2nd In-
ternational Conference on Functional Programming (ICFP’97) , Vol-
ume 32 of ACM SIGPLANNotices. ACM Press, 136–149. {13, 22}

[Mattsson et al. 1999] MATTSSON, H., NILSSON, H., AND WIK-
STRÖMM, C. 1999. Mnesia - A Distributed Robust DBMS
for Telecommunications Applications. In Proceedings of the
1st International Workshop on Practical Aspects of Declarative
Languages (PADL’99) , Volume 1551 of Lecture Notes in Computer
Science. Springer-Verlag, 152–163. {8, 20, 62, 140}

[Millroth 1999] MILLROTH, H. 1999. Mail Robustifier Product based on
Erlang/OTP. In Proceedings of the 5th International ERLANG/OTP
Users Conference (EUC’99) . Ericsson Utveckling AB. {21}

[Mills et al. 1987] MILLS, H.D., DYER, M., AND LINGER, R. 1987. Clean-
room Software Engineering. IEEE Software 4 , 5, 19–25. {2}

[Mullaparthi 2005] MULLAPARTHI, C. 2005. Third Party Gateway. In
Proceedings of the 11th International ERLANG/OTP Users Confer-
ence (EUC’05) . Ericsson Utveckling AB. {2, 21}

[Naeser 1997] NAESER, G. 1997. Your First Introduction to SafeErlang.
Master’s thesis, Computing Science Department, Uppsala Univer-
sity, Sweden. {21}

[Neuhäußer and Noll 2007] NEUHÄUSSER, M. AND NOLL, T. 2007. Ab-
straction and Model Checking of CORE ERLANG Programs in
MAUDE. In Proceedings of the 6th International Workshop on
Rewriting Logic and its Applications (WRLA 2006) , Volume 176 of
Electronic Notes in Theoretical Computer Science, 147–163. {12}

[Nielson and Nielson 1992] NIELSON, H. AND NIELSON, F. 1992. Seman-
tics with Application. Wiley and Sons. {51}

[Nielson et al. 1998] NIELSON, H. R., AMTOFT, T., AND NIELSON, F.
1998. Behaviour Analysis and Safety Conditions: A Case Study
in CML. In Proceedings of the 1st International Conference on Fun-
demantal Approaches to Software Engineering (FASE’98) , Volume
1382 of Lecture Notes in Computer Science. Springer-Verlag, 255–
269. {12}

164

[Nilsson and Wikström 1996] NILSSON, H. AND WIKSTRÖM, C. 1996.
Mnesia - An Indutrial DBMS with Transactions, Distribution and a
Logical Query Language. In Proceedings of the International Sym-
posium on Co-operative Database Systems for Advanced Applica-
tions, Kyoto. {20}

[Noll 2001] NOLL, T. 2001. A Rewriting Logic Implementation of Erlang.
In Proceedings of the 1st International Workshop on Language De-
scriptions, Tools and Applications (ETAPS/LDTA’01) , Volume 44
of Electronic Notes in Theoretical Computer Science. Elsevier Sci-
ence. {12}

[Noll 2003] NOLL, T. 2003. Term Rewriting Models of Concurrency: Foun-
dation and Applications. Habilitation thesis, Aachen University of
Technology, Germany. {12}

[Noll and Roy 2005] NOLL, T. AND ROY, C.K. 2005. Modeling Erlang in
the π-calculus. In In Proceedings of the ACM SIGPLAN 2005 Er-
lang Workshop, Tallinn, Estonia. {15}

[Nyblom 2000] NYBLOM, P. 2000. The Bit Syntax – The Released Version.
In Proceedings of the 6th International ERLANG/OTP Users Confer-
ence (EUC’00) . Ericsson Utvecklings AB. {20}

[Nyström and Jonsson 2001] NYSTRÖM, J. AND JONSSON, B. 2001. Ex-
tracting the Process Structure of Erlang Applications. In Proceed-
ings of PLI’01 Erlang Workshop, Florence, Italy, September. {127}

[Nyström 2003] NYSTRÖM, S.-O. 2003. A soft-typing system for Erlang.
In In Proceedings of the ACM SIGPLAN 2003 Erlang Workshop,
Uppsala, Sweden. {13}

[Nyström et al. 2008] NYSTRÖM, J.H., TRINDER, P.W., AND KING, D.J.
2008. High-level Distribution for the Rapid Production of Robust
Telecoms Software: comparing C++ and Erlang. Concurrency and
Computation: Practice & Experience 20, 8, 941–968. {20}

[Peyton Jones 1987] PEYTON JONES, S.L. 1987. The Implementation of
Functional Programming Languages. Prentice-Hall International
Series in Computer Science, Haore, C.A.R., Editor. Prentice-Hall
International. {21}

[Plotkin 1981] PLOTKIN, G.D. 1981. A Structural Approach to Operational
Semantics. Technical report DAIMI FN–19, Aarhus University,
Denmark. {15, 50}

165

[Powell et al. 1995] POWELL, D., MARTINS, E., ARLAT, J., AND

CROUZET, Y. 1995. Estimators for Fault-Tolerance Coverage
Evaluation. In Predictability Dependable Computing Systems,
Randell, R., Laprie, J.-C., Kopetz, H., and Littlewood, B., Editors.
Basic Research Series. Springer-Verlag, 347–366. {3}

[Reppy 1993] REPPY, J.H. 1993. Concurrent ML: Design, Application and
Semantics. In Functional Programming, Concurrency, Simulation
and Automated Reasoning, Lauer, P.E., Editor. Volume 693 of Lec-
ture Notes in Computer Science. Springer-Verlag, 165–198. {12}

[Roy et al. 2006] ROY, C.K., NOLL, T., ROY, B., AND CORDY, J.R. 2006.
Towards automatic verification of Erlang programs by π-calculus
translation. In In Proceedings of the ACM SIGPLAN 2006 Erlang
Workshop, Portland, USA. {15}

[Rushby 1994] RUSHBY, J. 1994. Critical System Properties: Survey and
Taxonomy. Reliability Engineering and System Safety 43, 2, 189–
219. {1, 2}

[SPARC International 1994] SPARC INTERNATIONAL, INC. 1994. The
SPARC Architecture Manual (Version 9) . Prentice-Hall. {21}

[Sabry and Felleisen 1994] SABRY, A. AND FELLEISEN, M. 1994. Is
Continuation-Passing USEFUL for Data Flow Analysis? In Pro-
ceedings of the International Conference on Programming Language
Design and Implementation (PLDI’94) . ACM Press, 1–12. {60}

[Sampath et al. 1995] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S.,
SINNAMOHIDEEN, K., AND TEKENEKEKZIS, D. 1995. Diagnos-
ability of Discrete-Event Systems. IEEE Transactions on Automatic
Control 40 , 9, 1555–1575. {5, 11}

[Schlichting and Schneider 1983] SCHLICHTING, R.D. AND SCHNEI-
DER, F.B. 1983. Fail Stop Processors: An Approach to Designing
Fault-Tolerant Computing Systems. ACM Transactions on
Computer Systems 1, 3, 222–238. {5}

[Schmidt 1986] SCHMIDT, D. A. 1986. Denotational Semantics: A Method-
ology for Language Development. Wm. C. Brown Publishers. {51}

[Schneider 1993a] SCHNEIDER, M. 1993. Self-stabilization. ACM Com-
puter Surveys 25 , 1, 46–67. {5}

[Schneider 1993b] SCHNEIDER, F.B. 1993. What Good are Models and
What Models are Good? In Distributed Systems, Mullender, S., Ed-
itor. Addison-Wesley Longman Publications, 17–26. {6, 8}

166

[Schütt et al. 2008] SCHÜTT, T., SCHINTKE, F., AND REINEFELD, A. 2008.
Scalaris: Reliable Transactional P2P Key/Value Store. In In Pro-
ceedings of the ACM SIGPLAN 2005 Erlang Workshop, Victoria,
British Columbia, Canada. {21}

[Schütz 1995] SCHÜTZ, W. 1995. Testing Distributed Real-Time Systems:
An Overview. In Predictability Dependable Computing Systems,
Randell, R., Laprie, J.-C., Kopetz, H., and Littlewood, B., Editors.
Basic Research Series. Springer-Verlag, 284–297. {3}

[Siewiorik and Swartz 1982] SIEWIORIK, D.P. AND SWARTZ, R.S. 1982.
The Theory and Practice of Reliable System Design. Digital Press.
{5}

[Singhai et al. 1998] SINGHAI, A., LIM, S.B., AND RADIA, S.R. 1998.
The SunSCALR Framework for Internet Servers. In Proceedings
of the 28th IEEE Symposium on Fault Tolerant Computing Sys-
tems (FTCS-28) , IEEE Computer Society. IEEE Computer Society
Press, 108–117. {5, 7}

[Stenman 2006] STENMAN, E. 2006. Betting on FP (and winning?). In
Proceedings of the 13th International ERLANG/OTP Users Confer-
ence (EUC’06) . Ericsson Utveckling AB. {2, 21}

[Sterling and Shapiro 1986] STERLING, S. AND SHAPIRO, E. 1986. The Art
of Prolog: Advanced Programming Techniques. MIT Press. {19}

[Stoy 1977] STOY, J.E. 1977. Denotational Semantics: The Scott-Strachy
approach to Programming Language Theory. MIT Press. {51}

[Theel and Gärtner 1998] THEEL, O. AND GÄRTNER, F.C. 1998. On Prov-
ing the Stability of Distributed Algorithms: Self-stabilization vs.
Control Theory. In Proceedings of the International Computers Con-
ference on System, Signals, Control (SSCC’98) , 58–66. {5}

[Thévenod-Fosse et al. 1995] THÉVENOD-FOSSE, P., WAESELYNCK, H.,
AND CROUZET, Y. 1995. Software Statistical Testing. In Pre-
dictability Dependable Computing Systems, Randell, R., Laprie, J.-
C., Kopetz, H., and Littlewood, B., Editors. Basic Research Series.
Springer-Verlag, 253–272. {3}

[Torstendahl 1997] TORSTENDAHL, S. 1997. Open Telecom Platform. No
1, Ericsson Review. {9, 20}

[Warren 1983] WARREN, D.H.D. 1983. An Abstract Prolog Instruction Set.
Technical report SRI Technical Note 309, SRI International, Menlo
Park, USA. {19}

167

[Wiger 2001] WIGER, U. 2001. Four-fold Increase in Productivity and Qual-
ity. In Proceedings of the International Workshop Formal Design of
Safety Critical Embedded Systems (FemSYS’01) . {20}

[Wiklander 1999] WIKLANDER, C. 1999. Verification of Erlang Pro-
grammes using Spin. Technical report, Department Of Teleinfor-
matics, Royal Institute of Technology, Sweden. {15}

[Wikström 1994] WIKSTRÖM, C. 1994. Distributed Programming in Erlang.
In Proceedings of the 1st International Symposium on Parallel Sym-
bolic Computation, Linz. {19}

[Winskel 1993] WINSKEL, G. 1993. The Formal Semantics of Programming
Languages: An Introduction. MIT Press. {51}

[Wong 1998] WONG, G. 1998. Compiling Erlang via C. Technical report
SERC–0079, Software Engineering Research Centre, Royal Mel-
bourne Institute of Technology, Australia. {21}

[Wouters 2001] WOUTERS, A.G. 2001. Manual for the μCRL toolset (ver-
sion 2.07). Technical report To appear???, CWI, Amsterdam. {12}

[Yau and Cheung 1975] YAU, S.S. AND CHEUNG, R.C. 1975. Design of
Self-Checking Software. In Proceedings of the International Confer-
ence on Reliable Software. IEEE Computer Society Press, 450–457.
{5}

[Ödling 1993] ÖDLING, K. 1993. New Technology for Prototyping New Ser-
vices. No 2, Ericsson Review. {19}

168

1–11: 1970–1975
12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and by thermo-

graphy. 1975.
13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zeylanica Willd.,

and Chara haitensis Turpin. 1976.
14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolarization Tech-

nique. 1976.
15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposition of Azo-

ethane and Propionyl Peroxide. 1976.
16. Lennart Källströmer: The significance of biotin and certain monosaccharides for the growth

of Aspergillus niger on rhamnose medium at elevated temperature. 1977.
17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Adenohypophysis.

1978.
18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash Photolysis of

L-tryptophan. 1978.
19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with Special Refer-

ence to the Effect of Size and Shape of Solute and Solvent Molecules. 1978.
20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization of Some

Aromatic Schiff Bases in Solution. 1979.
21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and its Appli-

cation in a Study of Conformational Changes in Bovine Serum Albumin. 1985.
22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering. 1988.
24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation. Study of their

decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications with Case

Studies in the South and East China Sea and Fennoscandia. 1989.
26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the Fennolora

Profile. 1989.
27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection. 1989.
29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experimental Results

on even Selenium Nuclei. 1989.
30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some Aspects of

Fracturing in the Crystalline Rock of the Siljan Ring Area, Central Sweden. 1990.
31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model. 1990.
32. Kjell Janson: Experimental investigations of the proton and deuteron structure functions.

1991.
33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight Spherical

Nuclei. 1991.
35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local Optimisation

Methods. 1992.
36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions. 1992.
37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield with Time.

1993.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science

Editor: The Dean of the Faculty of Science

	Abstract
	1. Introduction
	1.1 Background
	1.2 Problem
	1.3 Fault Tolerance
	1.3.1 Fault Models
	1.3.2 Model of Distributed Computation
	1.3.3 Erlang’s Computational and Fault Model

	1.4 ERLANG
	1.5 In this thesis
	1.6 Contributions
	1.7 Related work
	1.7.1 Model extraction
	1.7.2 Analysis of ERLANG
	1.7.3 Semantics

	1.8 Overview
	1.9 Publications by the Author

	2. ERLANG
	2.1 History and Usage
	2.1.1 History
	2.1.2 Usage
	2.1.3 Alternative ERLANG Implementations

	2.2 Basic Language
	2.2.1 Data Types
	2.2.2 Matching
	2.2.3 Modules
	2.2.4 Functions
	2.2.5 Conditionals
	2.2.6 Variable Scopes
	2.2.7 List Comprehensions
	2.2.8 Exceptions

	2.3 Concurrency, Distribution and Fault Detection
	2.3.1 Communication
	2.3.2 Process Handling
	2.3.3 Failure Detection

	2.4 Behaviours
	2.4.1 Application
	2.4.2 Supervisor
	2.4.3 Generic Event Handler
	2.4.4 Generic Finite State Machine
	2.4.5 Generic Server
	2.4.6 Supervisor Bridge

	3. Analysis of Failure Recovery Through Supervision Structures
	3.1 Supervision structures
	3.1.1 The Extracted Supervision Structure

	3.2 The Effect of Failures on the Supervision Structure
	3.3 Essential Properties
	3.3.1 Analysis of the Repair Property
	3.3.2 Analysis of the Non Concealment Property

	3.4 Design Conventions
	3.5 Adherence to Specification

	4. Semantics
	4.1 Overview
	4.2 Core Erlang
	4.2.1 Modules
	4.2.2 Expressions
	4.2.3 Normal Form

	4.3 Formal Semantics
	4.3.1 Global Context and Resources
	4.3.2 Abstract Machine
	4.3.3 Dynamic Behaviour

	4.4 Domains
	4.5 Auxiliary Functions
	4.6 Transition Rules
	4.6.1 Normal Termination
	4.6.2 Variables and Literals
	4.6.3 Compound Expressions
	4.6.4 Funs
	4.6.5 Binding Expressions
	4.6.6 Sequencing Expressions
	4.6.7 Conditional Expressions
	4.6.8 Function Expressions
	4.6.9 Exception
	4.6.10 Exception Handling
	4.6.11 Message Retrieval

	5. Abstract Semantics
	5.1 Abstract Semantics
	5.2 Auxiliary Functions
	5.3 Approximation of Function Calls
	5.4 Conditional Expressions
	5.5 Function Expressions
	5.5.1 Apply
	5.5.2 Call

	5.6 Message Retrieval
	5.7 Relation between the Abstract and Concrete Configuration
	5.7.1 Abstraction relation

	5.8 Proof of Simulation
	5.8.1 Lemmas

	5.9 Transition Rules
	5.9.1 Stuttering
	5.9.2 Normal Termination
	5.9.3 Simple Expressions
	5.9.4 Compound Expressions
	5.9.5 Funs
	5.9.6 Binding Expressions
	5.9.7 Sequencing Expressions
	5.9.8 Conditional Expressions
	5.9.9 Function Expressions
	5.9.10 Exception
	5.9.11 Exception Handling
	5.9.12 Message Retrieval

	6. Process Structure Extraction
	6.1 Background
	6.2 From Abstract Semantics to Extraction
	6.3 Extraction Parameters
	6.3.1 Setup
	6.3.2 Evaluation Depth
	6.3.3 Global State
	6.3.4 Exception Handling

	6.4 Limitations

	7. Experiments
	7.1 Setup
	7.2 Results and Conclusions
	7.3 Extended Example: Os_mon

	8. Thesis Summary
	8.1 Summary
	8.2 Conclusions
	8.3 Further Work

	Acknowledgements
	Bibliography

