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Svensk sammanfattning

Auktioner har funnits länge. De första auktionerna anses ha ägt rum omkring
500 år före Kristus men den kanske mest spektakulära var sannolikt den då

praetoriangardet auktionerade ut tronen till det romerska kejsardömet år 193.

I dag används auktioner nästan överallt för försäljning och upphandling av

högst varierande typer av objekt. Auktioner är speciellt lämpliga när man inte

vet eller är osäker på vilket pris man bör sätta på en vara.

Ofta uppstår situationer där ett flertal varor eller kontrakt ska säljas (eller kö-

pas) vid samma tidpunkt. När budgivare värderar specifika grupper av varor

högre än de enskilda varorna, uppstår ett intressant problem eftersom dessa

beroenden mellan varorna påverkar en budgivares vilja att betala. Betrakta

följande enkla exempel: givet ett par skor är det naturligt att båda skorna till-

sammans är mer värda än bara varje sko för sig.

Följaktligen, när man vill sälja många varor vid ett och samma tillfälle till

köpare som har synergier mellan specifika varor, så finns flera sätt att gå till

väga. Även om vi begränsar oss till auktionen som metod finns det fortfarande

ett antal varierande alternativ. Till exempel kan man välja att auktionera ut

varorna en och en efter varandra i något som kallas en sekventiell auktion. Ett

alternativ är att auktionera ut varorna samtidigt i flera parallella auktioner, en

så kallad simultanauktion. Båda dessa alternativ faller under kategorin enkel-

budsauktioner, eftersom vinnaren bestäms per vara. Ett tredje alternativ är att

använda sig av en kombinatorisk auktion, där budgivare tillåts bjuda på paket

av varor. Det är den typen av auktioner som behandlas i denna avhandling.

I en kombinatorisk auktion tillåts alltså budgivare lägga bud på grupper

av varor, så kallade kombinationsbud. Ett kombinationsbud är odelbart,

antingen vinner budgivaren alla varor som specificerats i budet, eller

ingenting. Kombinatoriska auktioner anses ge bra lösningar med avseende

på samhällsekonomisk effektivitet. Det är även den allmänna uppfattningen

att säljaren kan förvänta sig högre intäkt jämfört med traditionella

enkelbudsauktioner, eftersom budgivare med kombinationsbud kan uttrycka
sina preferenser med större precision och säkerhet än de kan med enkelbud

på individuella varor.

Den grundläggande skillnaden mellan traditionella enkelbudsauktioner och

kombinatoriska auktioner finner vi förvisso i budens utseende men framförallt

ligger den stora skillnaden i hur man går tillväga för att bestämma vilka som



vinner. I enkelbudsauktioner är det normalt att den högstbjudande vinner. I
en kombinatorisk auktion måste vi lösa ett svårt optimeringsproblem. Nor-

malt vill vi hitta det pussel av ej kolliderande kombinationsbud som ger högst

intäkt. Detta kan medföra att den som är högstbjudande (på en grupp varor)

kanske ändå inte vinner eftersom det budet eventuellt inte ingår den kombina-

tion av bud med högst totalvärde.

I denna avhandling har vi valt att huvudsakligen studera den vanligt

förekommande kombinatoriska förstaprisauktionen, en kombinatorisk

auktion där budgivarna betalar värdet av det lagda budet ifall de vinner. Att

teoretiskt analysera denna typ av auktion är svårt och väldigt lite har gjorts

tidigare. I avhandlingen diskuteras och undersöks tre grundläggande frågor

som har stor praktisk betydelse för kombinatoriska auktioner.

Till att börja med, eftersom antalet möjliga bud växer exponentiellt med an-

talet varor, så är det i praktiken nödvändigt att begränsa antalet bud som får

läggas. Denna begränsning medför ett allvarligt problem eftersom budgivarna

med stor sannolikhet inte kommer att skicka in de bud som teoretiskt sett

skulle ge den optimala lösningen. Vi belyser hur allvarligt detta problem är

och visar att det kan vara viktigare att använda sig av ett uttrycksfullt men

kompakt budgivningsspråk, än att lösa optimeringsproblemet optimalt.

Vidare, givet en kombinatorisk förstaprisauktion, vilken budgivningsstrategi

ska en budgivare följa? Detta är väl undersökt i många enkelbudsauktioner

men det är fortfarande ett öppet problem för denna typ av kombinatoriska

auktioner. Vi föreslår en heuristik för att hitta jämviktsstrategier och tillhan-

dahåller även tänkbara och rimliga strategier för denna typ av auktion.

Slutligen, lönar det sig att använda en kombinatorisk förstaprisauktion givet

den markant enklare simultanauktionen (med enbart enkelbud)? Vi bevisar,

givet en modell som inkluderar många av de grundläggande egenskaperna

i scenarier med många varor och synergier, att den kombinatoriska

förstaprisauktionen ger högre förväntad intäkt än simultanauktionen. Vi

tillhandahåller övre och undre gränser på den förväntade intäkten i en modell

som jämfört med tidigare arbeten är avsevärt mer generell.
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1. Introduction

This thesis is mainly centered around one simple observation: in

multiple-item auctions where bidders are uncertain about each

other’s preferences, knowing how much and which items to bid

on is hard.

Auctions have been around for a long time. It is generally accepted that the

first auctions took place as early as 500 B.C. Perhaps one of the most spectac-

ular auctions in history occurred in 193 A.D. when the throne to the Roman

Empire was auctioned to the highest bidder by the Praetorian Guard, after

having killed the emperor Pertinax (Edward Gibbon [15]).

Today auctions are ubiquitous and used for selling and procuring items of

highly different nature. For example, auctions are used when trading oil, gas,

timber, mineral rights, radio frequency rights, services contracts, collectibles

of all sorts and much more. There are numerous on-line auction websites, and

auctions have even made their way into the on-line gaming scene.

Considering what defines an auction, a general and open view could be that an

auction is a method of commerce where the auctioneer elicits price informa-

tion from bidders through the submission of bids. A winner is selected based

on an allocation rule which takes into account only the submitted bids, and

the winner pays some amount specified by a payment rule. This view is gen-

eral and allows for a broad variety of formats. Normally, at least in traditional

(standard) auctions, the allocation rule is to award the item to the highest bid-

der1, but this does not have to be the case more generally.

Many auctions concern the selling or procuring of a single item. Throughout

this thesis, auctions that allow only individual bids on single items will be

referred to as single-item auctions. Some of well known single-item auctions

are (Krishna [22]):

• First-price sealed-bid auction – bidders submit their bids in a "sealed en-

velope", highest bidder wins and pays the amount bid.

1In a reverse (or procurement) auction, with one buyer and many sellers, the lowest bid pre-

sented by the sellers wins and is payed by the buyer. The analysis of selling auctions and

procurement auctions is similar.
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• Second-price sealed-bid (Vickrey) auction – bidders submit bids in a
"sealed envelope", highest bidder wins and pays the value of the second

highest bid.

• Open ascending price auction (English auction) – the price is raised with
every new bid and bidders drop out of the auction when they are not will-

ing to bid above the current price. The winner is the last remaining bidder,

and he pays the price of his bid.

All of the above auctions have been thoroughly analyzed, and bidder behavior

has been mapped for many settings. However, there are cases when a seller
has many items that he wishes to sell simultaneously and where buyers have

synergies on certain combinations of items. One such example is the shipping

industry, and another is the spectrum license auctions held world wide.

There are several ways to approach the sale of multiple items, one could be to

auction the items one after the other in a sequential auction. There is also the
option of auctioning the items simultaneously in several parallel auctions, a

simultaneous auction. Yet another way to auction multiple items is by allowing

bidders to submit bids on indivisible bundles of items, which brings us to

combinatorial auctions, our central topic.

This thesis concerns the interdisciplinary field of combinatorial auctions, com-

bining the fields of computer science, operations research and economics. As

such this thesis is limited to specific questions located in the intersection be-

tween these areas.

Analyzing combinatorial auctions is hard and compared to single-item auc-
tions relatively little has been done. Since combinatorial auctions are being

used more and more, there is a need to study them further. In this thesis a

number of fundamental questions with great practical importance are inves-

tigated and discussed. Particularly and in a practical sense we deal with the

following three specific questions.

(i) Combinatorial auctions are computationally hard, but is it always nec-

essary to focus all energy on solving the auction optimally? We provide

evidence that an expressive and compact bidding language can be more

important than finding the optimal solution.

(ii) What strategy for bidding should a bidder use in a first-price combina-

torial auction? We propose a heuristic for finding such strategies and

also present feasible strategies.

(iii) Is a first-price combinatorial auction really worth pursuing compared to

the much simpler simultaneous single-item auction? We prove, through

a model capturing many fundamental properties of multiple-item sce-

narios with synergies, that the first-price combinatorial auction pro-
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duces higher revenue than simultaneous single-item auctions. We pro-
vide bounds on revenue, given a significantly more general model, in

contrast to previous work.

We approach these problems from a computer science background, which al-

lows us to adopt a different mindset to that of traditional economics and auc-

tion theory. The work is partly to be considered practical in the sense that we

investigate the widely used first-price combinatorial auctions, where the bid-

ders pay the actual bids, and not a price determined by some abstract pricing

function.

The thesis is organized as follows. After the introduction, in Chapter 2, combi-

natorial auctions are introduced, then in Chapter 3 a basic game theory back-

ground is covered. In Chapter 4 we discuss the auction game, give examples

and discuss why analysis is hard. Chapter 5 contains summaries of the in-

cluded papers.
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2. Combinatorial Auctions

In this chapter we will cover the basics of combinatorial auctions, such as
basic terminology, valuations and bids, and how to determine the winners. We

conclude by shortly discussing some extensions and present three different

types of combinatorial auctions.

2.1 Basic Terminology

In some cases the auctioneer has several items that he wants to put to auc-

tion simultaneously. It may be that bidders have synergies on combinations of

items, that is, they value specific combinations of items higher than the items
separately. When this is the case, combinatorial auctions allow bidders to ex-

press their specific preferences more precisely and with less risk than what

is possible using separate bids on single items. This is achieved by allow-

ing bidders to submit so called combinatorial bids, that is, bids on indivisible

combinations. With a combinatorial bid you are guaranteed to either win all

items specified in the bid on none at all. Table 2.1 illustrates a selling auction

and a possible bidding scenario with three bidders and six items. For example,

Bidder-A is willing to pay 33 if he gets the items 1, 3 and 4.

Bid Item-1 Item-2 Item-3 Item-4 Item-5 Item-6

Bidder-A 33 •A1 •A1 •A1

Bidder-A 23 •A2 •A2

Bidder-A 55 •A3 •A3 •A3

Bidder-B 32 •B1 •B1

Bidder-B 27 •B2 •B2

Bidder-C 29 •C1 •C1

Table 2.1: Example of Combinatorial Bids

An example: consider a company that wants to renegotiate all their shipping

contracts. By using a combinatorial procurement auction (buying auction),

logistics companies can submit bids on combinations of contracts where ship-

ping lanes are close geographically, or perhaps combinations with both di-
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rections on certain or groups of lanes. Since obtaining such lanes will reduce
overhead costs, better prices are possible.

In the field of combinatorial auctions, some of the key areas of study are:

• Computational complexity – the optimization problem of determining

who wins belongs to a particular class of problems that are very hard,

known as NP-hard problems.

• Bidding languages and communication – communicating and representing

a possibly exponential1 number of bids.

• Strategic behavior – how to bid given the private information and assump-

tions about the competitors?

• Mechanism design – designing the rules to achieve a specific outcome or

strategic behavior.

Combinatorial auctions can be used for both selling and buying (procure-

ment). However, we will restrict our discussions to selling auctions, although

some examples may be procurement auctions2.

The literature has yet to converge on a completely standard notation, we there-
fore choose a notation that we hope achieves readability and simplicity, and at

the same time remains complete enough to avoid misunderstanding.

A combinatorial auction is an auction where M heterogeneous indivisible

items are auctioned off simultaneously to N competing bidders. Bidders are
allowed to submit bids on indivisible subsets of items, and the auctioneer de-

cides who wins by selecting the non-conflicting bids that gives him the high-

est revenue. The winning bidders’ payments may or may not be trivially cal-

culated depending on the type of combinatorial auction being used. In Sec-

tion 2.7 three main types of combinatorial auctions will be discussed. It is

also conceivable that multiple units of each item are being sold in a multi-unit

combinatorial auction, however this is outside the scope of this thesis. The

description above is a somewhat simplified compared to some real world im-

plementations, but it does capture the essence of what a combinatorial auction

is.

In the literature it is sometimes assumed that bidders submit bids for all pos-

sible (non-empty) combinations of items, and that at most one of each bid-

der’s bids can win. However, in this thesis bidders are allowed to submit

bids on subsets of their choosing. No constraint is put on the number of bids

1Given items M there are 2|M| −1 possible combinations.
2The analysis of procurement auctions is similar, however some details differ. For example

unless negative bids are allowed, in a procurement auction there is a definite minimum, 0, but

in a selling auction the limit is infinity.
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that can win, and if needed, exclusive OR (XOR)3 constraints may be ex-
pressed through the use of phantom items (phantom items are discussed in

Section 2.4).

For a more complete description, the more common concepts are defined in

the following sections.

2.2 Valuations and Bids

Bidders have valuations, which represent their willingness to pay. In the case

of a single item for sale bidders have only one valuation. In a combinatorial

auction, bidders typically have many valuations corresponding to the various

combinations of interest. It is common to define the valuation as a function as

in the following definition.

Definition 2.2.1 (Valuation). A valuation function v is a function from the

set of (non-empty) subsets of items to the positive reals (including 0), cor-

responding to the value a bidder associates with obtaining a specific set of

items.

Although a bidder’s valuations are defined as a function, they could equiva-

lently be defined simply as a set of values, indeed this will be the preferred

notation in the special case when bidders are interested in a single subset of

items. Definition 2.2.1 above is unspecific when it comes to possible inter-

dependencies between valuations. If, given two disjoint subsets of items S1

and S2, v(S1 ∪ S2) ≥ v(S1)+ v(S2), the valuation is said to be super-additive

and S1 and S2 are complements which simply means that winning the items
of both sets has at least the same if not a higher value. On the other hand if

v(S1 ∪S2) ≤ v(S1)+ v(S2) the valuation is said to be sub-additive and S1 and

S2 are substitutes.

Free disposal is typically assumed either for the auctioneer or the bidders.

When free disposal is assumed on behalf of the bidders this means that given
some set of items S then for all T such that S ⊆ T we have v(T ) ≥ v(S), that

is winning additional items to the ones specified will not decrease the value.

However, since the main idea often is to allow for the possibility that some

items will not be allocated to any bidder, an equivalent approach is to as-

sume free disposal on behalf of the auctioneer, we have chosen the latter view.

Without free disposal finding a feasible allocation of items may not always be

possible. Without free disposal every item must be sold and bidders will not

accept additional items to the ones they explicitly bid on. This creates a possi-

3Given two bids A and B, an exclusive OR (XOR) of the two bids means either A or B but not

both, whereas an OR of the bids means A or B or both.
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bly problematic situation where finding an allocation that includes all items is
necessary. Also, if such an allocation is found it could possibly have a smaller

total value than if some items are allowed to be unallocated. Quite often, the

matter of free disposal is not mentioned at all, but implicitly assumed in the

definition of the allocation problem.

Definition 2.2.1 assumes no inherent structure of the valuation function. In

much of our work valuations have a structure that is dependent on the number

of items and a synergy constant α . For example, the valuation of a set S of

size |S| could be |S| · (x + α) where x is a random value in the interval [0,1]
and α > 0. This is one simple way to describe valuations where larger com-

binations have a greater value, but where both sub-additive and super-additive

valuations can occur. Another (natural) way to describe valuations for com-

binations is to use single-item valuations as a basis and then add or subtract

values to get the combination valuation.

Given that a bidder knows his valuations, he must then decide which com-

binations to bid on and what the values of his bids should be. A bid in a

combinatorial auction constitutes in the simplest case a value associated with

a set of items. In Section 4.2 we consider the strategic aspects of combina-

torial auctions, i.e. how a bidder determines what to bid given a set of items

and a valuation, for now however we will be satisfied with simply accepting

that bidders submit bids. The following straightforward definition of a bid is

chosen.

Definition 2.2.2 (Bid). A bid is a tuple 〈S,b〉, where S ⊆ M is a set of items

and b ∈ R+ is the value of the bid.

Two bids 〈Si,bi〉 and 〈S j,b j〉 are disjoint (or non-conflicting) if and only if

Si ∩S j = /0, that is if they are bids on completely different items.

2.3 Winner Determination

An auctioneer in a combinatorial auction is thus faced with several bidders

each bidding potentially an exponential number of bids. Given these bids,
the auctioneer typically wants to find the revenue maximizing combination

of non-conflicting bids, this problem is known as the winner determination

problem and is generally a hard problem [10].

Definition 2.3.1 (Winner Determination Problem). Given a set of bids B =
{〈S0,b0〉, . . . ,〈Sk,bk〉}, the winner determination problem (WDP) is to find

the subset of disjoint bids such that the sum of values bi is maximized.
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Compared to single-item auctions, where winner determination is trivial, de-
termining winners a combinatorial auction requires solving a hard combina-

torial puzzle. This is one of the fundamental differences between single-item

auctions and combinatorial auctions. The winner determination problem is

an NP-hard4 optimization problem in the general case. However, Rothkopf,

Pekeč and Harstad [48] provide several special cases for which winner de-

termination is tractable. A few examples include: (i) when bids form a tree

structure the optimal solution can be found in less than o(|M|3) time, and (ii)

when bids are limited to geometric structures where items are totally ordered,

then allowing bids only on consecutive items makes the winner determination

problem tractable.

The proof of NP-hardness of the general winner determination problem is

based on a reduction from weighted set packing, a known NP-hard optimiza-

tion problem. Set packing is one of the 21 original NP-complete decision prob-

lems presented by Karp [21]. The optimization version is the maximum set

packing, and weighted set packing is the weighted version of the optimization

problem.

Moreover, Håstad [20] proves that the maximum clique problem cannot be

approximated within a constant factor5 less than n1−ε for any ε > 0 (where n

is the number of nodes in the graph). Based on Håstad’s result Sandholm [50]

provides the relevant analog for the winner determination problem. Thus, for

any fixed ε > 0 there is no polynomial time algorithm that approximates the

winner determination problem within min(l1−ε , |M|1/2−ε ), where l is the num-

ber of bids and |M| is the number of items.

Several authors have noted that the winner determination problem can be for-

mulated as an integer program [45, 39, 58]. An alternative method to solving

the winner determination problem is then to solve the corresponding integer

program. Andersson, Tenhunen and Ygge [1] show that standard commer-

cial optimizers for solving the integer program performs excellently on many
problems. They also note that extending the model and solving more general

problems demands less work than with specialized custom algorithms.

The following useful observation is made. Subsets of items M can be repre-

sented as binary vectors
[
q1, ...,q|M|

]
where q j = 1 if and only if item j is

part of the subset, and q j = 0 otherwise. Thus, bid i can be represented as a

vector of
[
qi1, ...,qi|M|

]
, and a value bi. This observation allows us to clearly

and straightforwardly define an integer program for solving the winner deter-

mination problem.

4For more about the theory of NP-completeness, see [13]. A simplified explanation: we could

say that for problems that are NP-complete (or NP-hard, depending on the formulation) there

are no known efficient algorithms that solve all instances of a that problem. By efficient we

mean that the running time of the algorithm is a polynomial function of the size of the input.
5Unless ZPP=NP. ZPP=Zero error Probabilistic Polynomial time.
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Definition 2.3.2 (Integer Program for Winner Determination).

maximize
xi

k

∑
i=1

bixi such that for each 1 ≤ j ≤ |M|,
k

∑
i=1

qi jxi ≤ 1

where:

k is the number of bids.

bi is the constant value of bid i, as in Definition 2.2.2.

xi binary variable such that xi = 1 if and only if bid i wins.

qi j is a binary constant denoting membership of item j in bid i.

The optimization problem is to find the optimal allocation of values {0,1} to

variables xi such that the sum of bid-values is maximized while at the same

time maintaining the constraint that each item j can be allocated to at most

one bid. This definition implicitly assumes some form of free disposal since

there is a possibility that some items may be left unassigned.

Closely related to the winner determination formulation is the concept of so-

cial welfare and efficiency. An auction that allocates items to the bidders that

value them the most is said to be efficient. Assuming that bidders bid their

true values for all subsets where they have a value greater than zero, then the

optimal solution to the winner determination problem is the efficient solution.

Economic efficiency and revenue are the two main goals which an auctioneer

may want to maximize, typically there is a trade-off between the two. Com-

panies or individuals normally want to maximize revenue, whereas in govern-

ment held procurement auctions or the sale of public goods, efficiency may be

the primary objective.

2.4 Bidding Language

It may not be feasible for bidders to submit bids for every combination of

items, therefore a bidding language that describe how bids may be expressed

is of practical importance.

The definition of the winner determination problem implicitly describes a bid-

ding language, in Definition 2.3.1 the OR bidding language is implicit. The

same definition could also handle XOR constraints if phantom items (see be-

low) are introduced.

As an example of why efficient bidding languages are needed, consider a per-

fectly feasible auction with 30 items and 20 bidders. Assume that a bid can

somehow be represented completely with 4 bytes and that bidders have valu-

ations for all combinations. To express every possible bid, each bidder must

communicate approximately 4 ·230 = 4GB of data, although somewhat large,

it is not inconceivable. However, if some form of decision must be made when
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calculating valuations and bids, for example performing some relatively time
consuming database lookups and/or performing non-trivial calculations then

the time required to create all bids will be a severe problem. Assuming an

average time of 1/4 of a second for each combination, the time required for

generating all the bids will be at least 8.5 years. Even if the average time re-

quired per combination is 10 milliseconds, it will still take more than four

months. Leaving the bidder side problem, there is (currently) no efficient way

to handle more than 21 ·109 bids in any solver. It is clear that restricting bids

and employing more efficient representation through an appropriate bidding

language is crucial.

Nissan [39] collects, formalizes and analyzes several bidding languages from

the literature, for example the OR language, which corresponds to the one dis-

cussed so far, but also the XOR language, and combinations thereof. The most

notable language is the OR∗, which is the OR bidding language with phantom

items. By introducing phantom items that hold no intrinsic value to anyone,

it is possible to express XOR constraints on general collections of bids. The

bids that contain the same phantom item are necessarily mutually exclusive.

For example, to express that the bids 〈{1,2,3},23〉 and 〈{4,5},13〉 are mu-

tually exclusive simply add a phantom item p0 to both bids, 〈{1,2,3, p0},23〉
and 〈{4,5, p0},13〉. Since the phantom item p0, like any ordinary item, can be

allocated at most once, only one of the bids can win.

Many other languages are conceivable, for example min-bundles which

are discussed in Paper-I. Min-bundles compactly expresses bids on all

combinations of the specified items as long as the size is at least equal to the
provided minimum constraint. For example, the min-bundle 〈2,{a,b,c}〉
expresses bids on the following sets: {{a,b,c},{a,b},{a,c},{b,c}}.

Submitting several min-bundles means that more than one min-bundle can

win, which represents an OR of min-bundles.

2.5 Single-minded Bidders

We know that solving the winner determination problem is generally NP-hard,
but what happens if we introduce the limitation that a bidder is interested in

only one combination of items? Unfortunately the winner determination prob-

lem remains NP-hard even under such a drastic limitation. Also, approximat-

ing the optimally efficient allocation within a factor better than |M|1/2−ε is

NP-hard (proposition 11.6 in [40]).

Definition 2.5.1 (Single-minded). Bidder i, with valuation function vi, is

single-minded if for one specific subset S∗ ⊆ M there exists a value v∗i ∈ R
such that vi(S

∗) = v∗i and vi(S
′) = 0 for all other subsets S′ �= S.
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A single-minded bidder submits one combinatorial bid 〈S∗i ,v∗i 〉. If we relax the
definition of single-mindedness to account for free disposal on the behalf of

bidders, then vi(S) = vi(S
∗) = v∗i for all sets S such that S∗ ⊆ S.

Definition 2.5.2 (Weakly single-minded). Bidder i is weakly single-minded

if for one specific subset S ⊆ M he has:

(i) For each item s ∈ S, a valuation vi({s}) ≥ 0.

(ii) For the entire set S, a valuation vi(S) > ∑s∈S vi({s}).
(iii) For every subset T ⊂ S, vi(T ) = ∑t∈T vi({t}).
(iv) For all other subsets S′ ⊆ M, vi(S

′) = 0.

A weakly single-minded bidder is single-minded in the sense that he is inter-

ested only in a specific group of items and that he receives a synergy when

winning the entire combination. The difference from strict single-mindedness

is that he is allowed to have a valuation for each individual item in the com-

bination. This form of single-mindedness represents a fairly natural setting

where each item in the set has a value, however where attaining the entire

set is worth something extra. The results in Paper-III are based on this more

relaxed version of single-minded bidders.

Given single-minded bidders it is possible to construct a tractable greedy algo-

rithm that achieves a
√|M| approximation of the optimal efficiency. Lehman,

O’Callaghan and Shoam [25] propose the following algorithm which is incen-

tive compatible, that is, it is optimal for each bidder to bid his true valuation.

Each bid 〈S∗i ,v∗i 〉 is given a rank v∗i /
√|S∗i |, and all bids are ordered according

to rank. Let B1, . . . ,BN be the ordering such that B1 corresponds to the bid with

highest rank and so on. The solution is constructed by greedily selecting bids

that are disjoint starting with the highest ranking bid B1. Losing bidders pay

zero and each winning bidder pays the minimum amount that was required

for him to be selected into the solution. Let j > i be the index of the first bid

after Bi such that for each index k < i, Bk ∩B j = /0 and Bi ∩B j �= /0, then the

payment for bid i is

pi =

⎧⎨
⎩

0 if no such Bj exists
v∗j√|S∗j |

·√|S∗i | otherwise

It is easy to see that with only one item for sale, this corresponds to the stan-

dard second-price single-item auction.

Mu’alem and Nisan [31] consider a model with single-minded bidders where

the desired subset of each bidder (but not the valuation) is known by the mech-

anism. They provide a variety of polynomial mechanisms based on this as-

sumption and also provide a truthful mechanism which guarantees an ε
√|M|
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approximation. Ledyard [24] constructs the optimal combinatorial auction un-
der a similar assumption where the auctioneer knows the desired subsets.

2.6 Real World Application

Up till now winner determination has been mentioned only in the simple set-

ting where the auctioneer wants to find the revenue maximizing collection of

non-conflicting bids. However, both the auctioneer and the bidders may have

additional constraints and business rules that must be satisfied. Therefore, the
concept of winner determination sometimes needs to be expanded to handle

the specific business rules and constraints that the auctioneer specifies.

These extensions may be needed in many practical settings, but for the re-

mainder of this thesis, the original definitions will be enough, in fact in some

cases even simpler models will be used.

There are many examples of combinatorial auctions for practical use.

Rassenti, Smith and Bulfin [45] present a sealed-bid combinatorial

auction for the allocation of airport time slots. In estate auctions, simple

combinatorial auctions have been used for decades. Combinatorial auctions
for radio spectrum rights were conducted in both the United States and

Nigeria. Recently in the United Kingdom, combinatorial auctions based

largely on the clock-proxy auction (Ausubel, Cramton and Milgrom [4]) have

been proposed.

Some examples of first-price combinatorial auctions.

• Government construction projects (Bernheim and Whinston [6])

• School bus contracts around Manchester (Letchford [26])

• School meal contracts in Chile (Epstein et al. [12])

• Bus routes in London (Cantillon and Pesendorfer [7])

2.7 Types of Combinatorial Auctions

There are several types of combinatorial auctions. Although they all share the

winner determination complexity they possess different properties that distin-
guishes them from each other in important ways. We will take a quick look at

three different yet representative auctions, starting with the most straightfor-

ward.

27



• In the first-price sealed-bid combinatorial auction bidders submit their bids
in a one-shot fashion (in a "sealed envelope"), without knowledge of each

other’s bids. The price payed by the winners is the amount of their winning

bids. This is the most straightforward of all the combinatorial auctions. How-

ever, there are two problems that stand out: (i) the optimal bidder behavior

is an open problem; (ii) because of the one-shot nature of the auction, the

auctioneers faces a potential problem with the sheer number of bids that the

bidders might submit. When bidders have expensive (computationally or mon-

etarily) valuation problems, submitting a large number of bids is a problem

also on this end.

On the other hand, some desirable properties carry over from the single-item

case, such as resistance to both collusive behavior (Robinson [47]) and bid-

signaling, i.e. using bids to signal agreements not to bid on each others com-

binations. Also, sealed-bid auctions in general, including combinatorial auc-

tions, encourage participation (Pekeč and Rothkopf [44]). The first-price com-

binatorial auction is one of the more transparent combinatorial auctions. The

rules are fairly simple and each bidder can trivially verify their payment in the

event of winning, a property that may be considered important by bidders.

• An iterative combinatorial auction is a combinatorial auction that executes

in multiple rounds. This class of combinatorial auctions is designed to address

settings when bidders have hard or costly valuation problems. If a bidder must

solve for example a potentially hard scheduling problem when determining

each valuation, then calculating all or perhaps just some of the 2|M| −1 valu-

ations even for a small number of items may not be feasible. The purpose of
the multiple round construction is to guide bidders so that they evaluate valu-

ations only for presumably meaningful combinations. Bidders are guided by

feedback in each round with regards to prices and allocations. A natural draw-

back with the iterative nature is that winner determination must be solved in

each round. Another issue of a strategic nature is that bidders may choose not

to participate until the last round of the auction, in this case the purpose is

lost completely. Iterative auctions are also sensitive to both bid signaling and

collusive behavior. Iterative combinatorial auctions include the AUSM [5],

iBundle [42, 43] and AkBA[59], and others [3, 2].

• The most famous combinatorial auction is probably the Vickrey-Clarke-

Groves (VCG) mechanism which corresponds to a second-price version of

a combinatorial auction. This auction is widely used as a baseline for compar-

isons throughout the literature. The VCG stems from the work of Vickrey [54],

Clarke [9] and Groves [16] and has a number of desirable properties, but also

some very undesirable properties. The VCG for the sale of M heterogeneous

items to N bidders requires that each bidder i bids (truthfully) for every subset

of items, even for subsets that he believes unlikely to win. Omitting bids may

affect the payments by the other bidders.
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Determining winners is done by selecting the value maximizing allocation of
disjoint bids, that is, solving the winner determination problem where bidders

bid their true valuations. The VCG payments are calculated as follows. Let V ∗
be the total value of the optimal allocation, and for each bidder i let V ∗

−i be the

total value of the optimal allocation when bidder i does not participate. Let

Vi be the value of bidder i’s winning subset. Losing bidders pay zero and the

payment made by each winning bidder is pi = Vi − (V ∗ −V ∗
−i). The payment

calculations are not trivial, the winner determination problem must be solved

anew for each payment calculation.

An important advantage of the VCG is that the optimal bidding strategy for

each bidder is to bid the true values regardless of the behavior of the other

bidders. This means bidders do not have to spend resources and time devis-

ing strategies. Despite this nice property, the VCG suffers from some serious

problems (unless valuations are limited to substitues, see Cramton, Shoham

and Steinberg [10] for more details).

• Low or even zero revenues can occur.

• Sensitive to collusion and multiple bidding identities.

• Non-monotone: increasing bids may lead to lower revenues.

Much work has been done regarding the Vickrey-Clarke-Groves mechanism,

however this is outside the scope of this thesis, see Milgrom [29], Krishna [22]

for more details on the VCG, and Rothkopf [49] for more details on the prob-

lems of the VCG. Attempts have been made to boost revenue in the VCG, see
for example Likhodedov and Sandholm [27].

The following is an example of the VCG with 2 bidders and two items.

item 1 item 2 item 1 & 2

Bidder 1 10 5 15

Bidder 2 1 6 12

Clearly the optimal allocation has a value of 16, assigning item 1 to bidder 1

and item 2 to bidder 2. The optimal solution without bidder 1 is 12 and the

optimal solution without bidder 2 is 15. We thus have:

V ∗ = 16 V ∗
−1 = 12 V1 = 10

V ∗
−2 = 15 V2 = 6

The payments by bidder 1 and 2 are:

p1 = V1 − (V ∗ −V ∗
−1) = 10− (16−12) = 6 ,

p2 = V2 − (V ∗ −V ∗
−2) = 6− (16−15) = 5
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and the auctioneer receives p1 + p2 = 11. Now, consider the same example
as above, but where bidder 2 instead of bidding 6 for item 2, bids 10. Now

the optimal allocation has a total value of 20. The new payments will be 10−
(10 + 10− 12) = 2 for bidder 1, and for bidder 2, 10− (10 + 10− 15) = 5.

The result of bidder 2 submitting a higher bid illustrates the non-monotonicity

problem, the new revenue, 7, is lower compared to before.
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3. Game Theory

3.1 Introduction

So far we have not mentioned anything regarding the strategic problems that
bidders face when bidding in an auction. Game theory is is an important tool

in the theory of auctions, it is used to analyze the strategic behavior of bidders,

and to analyze equilibrium outcomes in different auctions to obtain a measure

of efficiency and revenue.

Game theory has been heavily influenced by the works of von Neumann [55],
von Neumann and Morgenstern [56], Nash [36, 35, 34, 37, 38], and given

the type of games that we are concerned with here, perhaps most notably by

Harsanyi [17, 18, 19] for his contribution to the theory of Bayesian games. In

this section a brief introduction will be provided, for a more complete intro-

duction see for example Myerson [33] and Osborne and Rubinstein [41]. We

begin by looking at a well known yet informative example.

Prisoner’s Dilemma (Osborne and Rubinstein [41])

Two suspects in a crime are put into separate cells. If they both confess, each

will be sentenced to three years in prison. If only one of them confesses, he will

be freed and used as a witness against the other, who will receive a sentence of

four years. If neither confesses, they will both be convicted of a minor offense

and spend one year in prison.

This situation can be modeled as a strategic game where each player (suspect)

has two (pure) strategies {Silent,Confess}. Let a pair (s1,s2) correspond to

the strategies chosen by player 1 and player 2 respectively. Each player has

a preference for all pairs of strategies. Specifically for player 1, the strategy

pairs ordered from best to worst are:

(Confess,Silent)�1 (Silent,Silent)�1 (Confess,Confess)�1 (Silent,Confess) ,

that is, player 1 prefers the scenario where he chooses Confess and player 2

chooses Silent over when they both choose Silent, and so on. The correspond-

ing preference ordering for player 2 is:

(Silent,Confess)�2 (Silent,Silent)�2 (Confess,Confess)�2 (Confess,Silent) .
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Given the preferences of the players, we can now assign values to each
preference such that the order is maintained. A function that does this is

called a payoff (or utility) function. Let u1 be the payoff function of player 1

and u2 that of player 2. The following simple assignments maintain the

preference order for player 1, u1(Confess,Silent) = 3, u1(Silent,Silent) = 2,

u1(Confess,Confess) = 1, u1(Silent,Confess) = 0, and for player 2,

u2(Silent,Confess) = 3, u2(Silent,Silent) = 2, u2(Confess,Confess) = 1,

u2(Confess,Silent) = 0. We can favorably represent this in a table as in

Table 3.1, with payoffs as pairs (u1,u2).

Player 2

Silent Confess

Player 1
Silent (2,2) (0,3)

Confess (3,0) (1,1)

Table 3.1: A representation of a strategic game in Normal-form

Writing the set {Yi}N for short when meaning {Y1, ...,YN}, then a strategic

game can be defined as follows.

Definition 3.1.1 (Strategic game). The tuple
(
N,{Ci}N ,{ui}N

)
is a strategic

game with N players. Each player i has a set of strategies Ci, and a payoff

function ui : C → R, where C = C1 ×·· ·×CN .

The game is actually defined on a preference relation, however when a payoff

function is used to represent the relation then Definition 3.1.1 will be used.

A strategic game is said to be finite when, as in the case with the Prisoner’s

dilemma, the set C is finite and otherwise infinite.

Now, what should the suspects do? Game theory assumes that players are
rational. This means that players are aware of their alternatives and chooses

the best option at hand, that is, each player wants to choose a strategy that

gives the maximal payoff given the strategies of the other players.

Consider the rational player 1, if player 2 chooses Silent then player 1 should
choose Confess, this will give him a payoff of 3, the best possible outcome. If

player 2 chooses Confess, then player 1 should still choose Confess, because

if player 1 were to chose Silent, then he will get a payoff of 0 which is less

than the payoff from choosing Confess. The same reasoning also applies to

player 2, which means that both players should choose Confess, landing them

solidly in prison for three dreadful years each. This may seem strange con-

sidering that if they both choose Silent then they will spend only one year in

prison. The reason for this is the rational behavior, it is not rational of player 1

to assume that player 2 will be benevolent and choose Silent when he can gain

by choosing Confess.
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Thus, each player will chose the pure strategy Confess, and there is no incen-
tive for any of the players to deviate from this choice. We call this concept

an equilibrium, a steady state in the game. In some sense this is the solution

to the Prisoner’s dilemma. Game theory offers different solution concepts that

are sensible and stable in some way. The solution to the Prisoner’s dilemma

constitutes a dominant strategy equilibrium, where dominant refers to the fact

that the optimal strategy is to choose Confess, no matter what the strategy of

the other player may be. Solutions, if they exist, for different games do not

always have this dominant property. Furthermore, strategies do not have to be

pure, the alternative to a pure strategy is a mixed strategy consisting of a set of

pure strategies each associated with a probability of being chosen.

3.2 Bayesian Games

The Prisoner’s dilemma is a useful example as it introduces many of the ba-

sic concepts in a concise way. However, there are certainly scenarios when

players would have private information not known to the other players. For

example, it is certainly conceivable in auctions. When this is the case we are

faced with a game of incomplete information. We distinguish between the fol-

lowing, incomplete information is when some of the parameters necessary for

game theoretic analysis are missing, the opposite is a complete information

game where every player knows all parameters, this precludes the existence

any private information. A game of imperfect information is when some play-
ers may be uninformed about some or all of the moves (actions taken) made

by other players, and perfect information means that all moves have been ob-

served by all players.

Harsanyi [17, 18, 19] introduced the notion of Bayesian games, an approach

that deals with the case when players have private information (i.e. a game of
incomplete information) by considering that players have beliefs about other

players’ private information. In a Bayesian game, the uncertainty that some

players have about the private information of other players is modeled as

stochastic variables, taking into account players’ beliefs about the distribution

of these variables. This changes the incomplete structure to a completely spec-

ified structure with stochastic variables and known probability distributions.

Adopting this point of view, the game can be seen as a game with complete

but imperfect information.

A generalization of the strategic game is used to represent games of incom-

plete information. Writing the set {Yi}N for short when meaning {Y1, ...,YN}
and borrowing from Myerson’s definition (Myerson [33]). A game of incom-

plete information (Bayesian game)
(
N,{Ci}N ,{Ti}N ,{pi}N ,{ui}N

)
with N

players, has for each player 1 ≤ i ≤ N a set Ci of actions, a set Ti of types
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representing a players private information, a probability function pi, and a
payoff function ui. Let the set of action profiles be C = C1 ×·· ·×CN , with el-

ements c = (c1, . . . ,cN). Let the set of type profiles be T = T1 ×·· ·×TN , with

elements t = (t1, . . . ,tN). We write T−i for short when we mean the product set

T1 × ·· · ×Ti−1 ×Ti+1 × ·· · ×TN and similarly we write t−i when we mean a

type profile without player i. A pure strategy in a Bayesian game is a function

si : Ti →Ci, that is, action as a function of type. Although mixed strategies are

needed in general, we will limit ourselves to only pure strategies.

The payoff ui(t,c) is a function ui : T ×C → R, that is the payoff that player i

receives when players types are t and players choose actions c. The conditional

probability function pi(t−i|ti) represents player i’s belief of the distribution of

types t−i given that player i’s type is ti. In the case when for every player i,

pi(t−i|ti) = p(t)/pi(ti), where p(t) is the probability that players’ types are t

and pi(ti) is the probability that player i’s type is ti, players beliefs are said to

be consistent with a common prior, this is a very common assumption in many

models. In this case a Bayesian game can be represented by an equivalent

complete but imperfect information game where a special player “nature” or

“chance” is added to make an initial move to decide the type profile t based on

the distribution over T which is considered to be common knowledge amongst
the players. Nature’s move is only partly observed by each player which makes

the game one of imperfect information. This interpretation implies that we

imagine the game beginning at an earlier point in time, before the players

know their private information.

As an example, consider the following simple game:

Two player card game (Myerson [33])

Player 1 and player 2 each put one dollar in the pot. Next player 1 draws a card

from a randomized deck in which half the cards are black and half the cards

are red. After having looked at the card without showing it to player 2, player 1

decides if he want to fold or raise. If player 1 folds, the game ends and he shows

the card to player 2. If the card is black player 2 wins the pot, but if it is red

then player 1 wins the pot. If player 1 instead raises then he adds one dollar to

the pot and now player 2 must decide if he wants to meet or pass. If player 2

passes then the game ends and player 1 wins the pot. If player 2 meets then he

must add another dollar to the pot and the game ends with player 1 showing

the card to player 2. As before, if the card is black then player 2 wins the pot

and if it is red then player 1 wins the pot.

This game can be represented in its extensive form as in Figure 3.1, where

we have added a root node with two edges representing a chance move that

determines the type of player 1, it is the state of the game before player 1

draws his card from the deck. From the root node, two states are reachable

each with probability 0.5. The labels 1.red and 1.black represent player 1’s
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information sets. Player 1 draws either a red or black card from the deck and
this determines his information set. By drawing the card player 1 observes the

move that was made by the player chance.

Figure 3.1: Extensive form representation of a simple card game (Myerson [33])

The label 2.r means that it is player 2’s turn and that he has observed player 1

making the move raise, he does not know if player 1 has a red or black card (he

did not observe the move made by chance), he can therefore not distinguish

from his two states in the game, this is emphasized by the dashed box. The

choice of red, black and r as labels for the different states is has no inherent

meaning and can be chosen arbitrarily. The numbers in parenthesis (u1,u2)
represents the payoffs for each player from that particular outcome.

Changing our perspective slightly by assuming that player 1 draws the card

from the deck and looks at it before the game begins, the game then becomes

a Bayesian game (of incomplete information) with representation N = 2, T1 =
{red,black}, T2 = {r}, C1 = {raise, f old}, and C2 = {meet, pass}. Player 1’s

conditional probability function is p1(r|red) = p1(r|black) = 1 since player 1

has no uncertainty regarding the type of player 2. Player 2 assigns equal prob-

ability that player 1 is of either of his type’s, p2(red|r) = p2(black|r) = 0.5.

The payoff functions depend only on c1, c2 and t1 and are defined in Table 3.2,
where (for completeness) all combinations of actions are displayed.

Player 2

t1 = red meet pass

Player 1
raise (2,-2) (1,-1)

fold (1,-1) (1,-1)

Player 2

t1 = black meet pass

raise (-2,2) (-1,1)

fold (-1,1) (-1,1)

Table 3.2: The payoffs in the two states of the game. Player 1 knows which state the

game is in but player 2 does not.
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3.3 Equilibrium

So far we have mentioned little about steady states or equilibria in games. An

equilibrium in a game, either with mixed or pure strategies, is a desirable prop-

erty. It allows us to say something about the behavior of players and to analyze

outcomes in a more or less predictable manner. In the Prisoner’s dilemma both

criminals will choose the Inform strategy which constitues a dominant strat-

egy equilibrium1. John Nash [35] introduced an equilibrium concept that is

now known as Nash equilibrium which is the most widely used in game the-

ory. A pure strategy Nash equilibrium is when no single player can find an

alternative strategy that gives a higher payoff given the strategies played by

the other players, that is, every player’s strategy is the best response to the

strategies of the other players. Using the same short notation as before, that is,

writing {Yi}N instead of {Y1, ...,YN} then formally,

Definition 3.3.1 (Nash equilibrium). A Nash equilibrium of a strategic game(
N,{Ci}N ,{ui}N

)
, is a strategy profile c∗ = (c∗−i,c∗i ) such that for each player

i it is true that for all strategies ci ∈Ci,

ui(c
∗) ≥ ui((c

∗
−i,ci)) .

In a Bayesian game, a Bayes-Nash equilibrium states that each player chooses

the expected payoff maximizing strategy given the strategies of the other play-

ers and his beliefs of the other players types. The definition is very similar to

the Nash equilibrium, in fact a Bayes-Nash equilibrium is a Nash equilibrium

in the type centric view of a Bayesian game. Instead of players each with

several possible types, the type centric view simply means that each type of

each player is itself regarded as a player. For example, in a Bayesian game

with two players each with two types then in the type centric view there are

four players. In the Nash equilibrium of the type centric Bayesian game, each

(type centric) player is maximizing the expected payoff given the other play-

ers strategies and his own beliefs about their types. Let s(t) be the vector of

strategies (s1(t1),s2(t2), . . . ,sN(tN)) and s−i(t−i) the vector without the ele-
ment si(ti). As before we write{Yi}N instead of {Y1, ...,YN}.

Definition 3.3.2 (Pure Bayesian Nash equilibrium). A pure strategy Bayesian

Nash equilibrium of a Bayesian game
(
N,{Ci}N ,{Ti}N ,{pi}N ,{ui}N

)
, is a

pure strategy profile s∗ = (s∗−i,s∗i ) such that for each player i and types ti ∈ Ti

it is true that for all pure strategies si : Ti →Ci,

∑
t−i∈T−i

p(t−i|ti) ·ui(t,s∗(t)) ≥ ∑
t−i∈T−i

p(t−i|ti) ·ui(t, (s∗−i(t−i),si(ti)) )

1Although, this is not the global payoff-maximum in the game.
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If all players use the same strategy in equilibrium, we call it a symmetric

equilibrium.

With infinite type sets the theory of Bayesian Nash equilibrium can be quite

involved (see for example Myerson [33]). However, in the auction games con-

sidered here when the type sets are compact subsets of the reals, for example
when types are in the interval [0,1], in most cases, the summations in Defini-

tion 3.3.2 can be replaced by integrals.

3.4 Mechanisms

In this section we will briefly and informally introduce the concept of mecha-

nisms. Auctions fit into a more general concept called mechanisms. In an auc-

tion the price is determined by some form of competition amongst bidders and

the winner is selected based completely on the submitted bids. A mechanism
also consists of an allocation rule and a payment rule but is a more general

concept in the sense that no restriction is put on the allocation rule. For exam-

ple, a perfectly feasible allocation rule could be to randomly choose a winner

(this would not be an auction). In mechanism design theory the purpose is

to design the rules of the system (or game) to achieve a specific outcome or

behavior. A mechanism typically constitutes a Bayesian game.

We will not go further into mechanism design theory, however there are two

useful concepts that frequently occur and are worth stating.

Definition 3.4.1 (Incentive Compatible). A mechanism is incentive compati-

ble if the equilibrium strategy is to reveal ones true type.

Similarly, an auction is incentive compatible if bidders achieve the highest

expected payoff in equilibrium by bidding their true valuations. The

second-price sealed-bid single-item auction and its generalization to the

multiple items case are both dominant strategy incentive compatible (see e.g.
the books [22, 29, 10]).

A well known theorem called the Revelation Principle (Myerson [32]) states

the following.

Theorem 3.4.1 (Revelation Principle). Given any mechanism with a Bayesian

Nash equilibrium, there exists an incentive compatible mechanism with the

same allocations and payments.

Proof sketch. Given a mechanism M′ = (a′, p′) with allocation rule a′ and

payment rule p′, and where (s1, . . . ,sN) constitutes a Bayesian Nash equilib-
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rium. Consider the direct revelation mechanism M = (a, p) such that

p(t1, . . . ,tn) = p′(s1(t1), . . . ,sn(tn)) .

x(t1, . . . ,tn) = x′(s1(t1), . . . ,sn(tn)) .

It is easy to see that truthfully reporting one’s type is a must, since reporting a

different value z �= t would be the same as the original mechanism M′ report-

ing s(z) �= s(t), but since reporting s(t) is the equilibrium then reporting s(z)
can not be better. The allocation and payments are clearly the same in both

mechanisms.

There are variants of the revelation principle for other types of equilibria, the

proofs are essentially the same. But since we will be concerned mostly with

Bayesian games as implied by many auctions and Bayesian Nash equilibrium,
it seems appropriate to choose the corresponding version.

From the auction perspective, the revelation principle simply means that given

any auction with an equilibrium, there exists an incentive compatible auction

with the same outcome. This theorem is mainly used to motivate studying

direct truthful mechanisms.

It is common that combinatorial auctions are discussed in the context of mech-

anisms, especially when the goal is to design a combinatorial auction with

specific strategic properties such as incentive compatibility. However the fo-

cus in this thesis is mostly on the first-price combinatorial auction, where the
mechanism is already completely determined. Since we are more interested

in considering the strategic options of the bidders, we will keep the auction

perspective instead of the mechanism perspective.
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4. The Auction Game

In this chapter we will look at the single-item auction and go through the equi-
librium analysis of the second-price and first-price single-item auctions. In

Section 4.2 we define the combinatorial auction game and note the important

differences to the single-item case that make the standard tools ineffective.

4.1 Single-Item Auctions

From a game theoretic perspective auctions are typically modeled as infinite

games of incomplete information, that is, Bayesian games with infinite action

sets and types. The players of the game are the bidders, the types correspond
to a bidder’s valuation of the item being auctioned, the actions are the bids

and the strategies determine the bid given a valuation.

We will consider only a specific information environment, the standard inde-

pendent private values model originally introduced by Vickrey [54]. In this
model, bidders’ valuations are independent of other bidders’ valuations and

a valuation is the private information of each bidder. However, bidders have

beliefs about the distributions of other bidders values and these distributions

are common knowledge.

The model considered here will be further limited by assuming that bidders
are symmetric and risk neutral. Here, this means that bidders’ valuations are

identically (but independently) distributed and that bidders want to maximize

their expected profit (see e.g. Krishna [22]). We also assume that bidders are

able and willing to pay up to their valuations. Finally, we only consider sealed-

bid auctions, meaning that bids are privately submitted in a one-shot fashion.

Definition 4.1.1 (Single-item auction game). A sealed-bid single-item auc-

tion constitutes an infinite game of incomplete information with the following

elements.

• N risk-neutral bidders.

• vi ∈ [0,1] is bidder i’s privately known valuation, a realization of a

stochastic variable Xi with independent distribution F and continuous

density f .
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• βi : [0,1] → R+ is the strategy of bidder i.

• Πi : [0,1]×R→ R is the expected payoff of bidder i given his valuation

and bid.

• A payment-rule.

• Bidders submit bids (bi = βi(vi)) in a one-shot fashion.

• The highest bidder wins and pays an amount specified by the payment

rule.

In a first-price auction the payment rule is straightforward, the winner pays

the value of his bid. In a second-price (Vickrey) auction the winner pays the

amount of the second highest bid. However, there are also other types of auc-

tions, for example in an all-pay auction the highest bidder wins but every
bidder pays the amount of their bids.

Relating to the definition of Bayesian game in Section 3.2 the auction can be

written in Bayesian form where the sets of actions areR+, the sets of types are

[0,1], the probability distribution is represented by the cumulative distribution

F with density f and the (expected) payoff functions are Πi.

Given a particular auction, we are interested in finding strategies βi in equi-

librium, that is, strategies that represent some stable state in the sense that

bidders have no incentive to deviate by choosing other strategies. When we

know these equilibrium strategies we can examine the outcome of the auction

in terms of revenue and efficiency. The following two sections illustrate of
how equilibrium strategies can be derived.

4.1.1 Example – Second-Price Auction

In the second-price auction the optimal strategy is to bid one’s true value.

When an auction has this property, it is said to be incentive compatible. A win-

ning bidder in the second-price auction pays the value of the second highest

bid. The expected payment made by a winning bidder is simply the expected

value of the second highest valuation. To see why this is so, consider a bid-
der with valuation v. His view of the other bidders is simply a set of random

variables X2, ...,XN corresponding to their valuations, unknown to bidder 1 but

each independently distributed according to F with density f . Define Y to be

the stochastic variable denoting the maximum of X2, ...,XN , i.e. the highest

order statistic of the N − 1 other bidders, and let G and g be the distribution

function and density. The expected payment by the winning bidder is

G(v) ·E[Y |Y < v],
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that is, the probability of v being the highest valuation times the expected value
of the highest of the other bidders’ valuations, conditional on v being highest.

But since

E[Y |Y < v] =
1

G(v)

∫ v

0
yg(y)dy

then the expected payment is simply E[Y ], that is, the expected value of the

highest of N −1 valuations. In the event that v is not highest, the bidder pays

nothing and the contribution to the expected payment is 0.

We mentioned earlier that the second-price auction is incentive compatible,

this is stated more formally in the following theorem.

Theorem 4.1.1. In a second-price sealed-bid single-item auction with the

standard independent private values model, the pure symmetric (Bayesian

Nash) equilibrium strategies are defined by

β(v) = v .

Proof. A proof by contradiction follows. Assume we bid something other than

v. There are two cases, either bidding less than or greater than v.

Case I: Assume we bid v′ > v, and let a be the highest of the other bids.

i) If a < v < v′ the payoff is the same as bidding v.

ii) If v < a < v′ the payoff from bidding v′ is less than 0.

Case II: Assume we bid v′ < v, and let a be the highest of the other bids.

i) If a < v′ < v the payoff is the same as bidding v.

ii) If v′ < a < v the payoff from bidding v′ is 0.

Therefore, bidding anything other than v may in some cases reduce the ex-

pected payoff but will never increase it. It is therefore optimal to bid v.

As we can see, the second-price auction is incentive compatible and has a

dominant strategy equilibrium.

4.1.2 Example – First-Price Auction

In the first-price auction bidding your true valuation is bidding too much. In-

formally this is easy to see, a bidder who submits a bid equal to his valuation

will receive a payoff of 0, this means he could submit a slightly smaller bid

v−Δ that would have almost the same chance of winning but which would

give an expected payoff greater than 0.
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As an example, we will derive the pure symmetric Bayesian Nash equilibrium
strategy in the first-price sealed-bid auction with N bidders1. As before let b−i

be all elements except bi. Consider bidder i with valuation vi and bid bi. Given

the bids of the other bidders b−i, he receives

payoff =

{
vi −bi if bi > max(b−i)

0 if bi < max(b−i)

If two bidders bid the same amount the item is awarded to either of the bidders

with equal probability. It is common to assume that the equilibrium strategy

β is strictly increasing and differentiable, this allows us to take the inverse

and state the first-order condition. Making this assumption also removes the

separate treatment that would occur if bidders bid identically. Since there is

zero probability that bidders have identically realized valuations their bids will

also be different. In an auction with discrete bids this is not the case.

Some basic properties can be stated before we begin. A bidder with valuation

vi = 0 will never submit a bid bi > 0 and negative bids are not allowed. Sim-

ilarly a bidder will never submit a bid bi > vi since whenever he wins he will

have negative payoff and is thus better of bidding vi or not bidding at all. We

have now established that the bidding strategy must be to bid somewhere in

the interval 0 ≤ β(vi) ≤ vi.

Consider bidder 1, who wins the auction whenever he submits the highest bid.

His view of the other bidders is simply a set of random variables X2, ...,XN cor-

responding to their valuations, unknown to bidder 1 but each independently

distributed according to F with density f . As in the previous section, we de-

fine Y to be the stochastic variable denoting the maximum of X2, ...,XN , i.e.

the highest order statistic of the N − 1 other bidders, and let G and g be the

distribution function and density.

Assume that bidders 2 through N are following the symmetric, strictly increas-

ing and differentiable equilibrium strategy β . Suppressing the bidder subscript

1 and writing b and v instead of b1 and v1, the condition of bidder 1 winning

can thus be stated as b > max j �=1β(Xj), but since β is strictly increasing this

is the same as b > β(max j �=1Xj) = β(Y ), or β−1(b) > Y . The expected payoff

Π of bidder 1 with valuation v bidding b is the probability that his bid is the
highest multiplied by the profit, that is

Π(v,b) = G(β−1(b)) · (v−b) . (4.1)

1This is similar to the derivation in Krishna [22]
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Now, bidder 1 is trying to maximize his expected payoff with respect to bid b

given his valuation v. Since

d

dx
β−1(x) =

1

β ′(β−1(x))

the derivative of the expected payoff is (and setting it equal to zero)

∂

∂b
Π(v,b) =

g(β−1(b))

β ′(β−1(b))
(v−b)−G(β−1(b)) = 0 . (4.2)

Given that we are in a symmetric equilibrium then it must be that b = β(v)
and we can rewrite Equation 4.2 as

g(v)

β ′(v)
(v−β(v))−G(v) = 0

⇔
vg(v) = G(v)β ′(v)+g(v)β(v))

⇔
vg(v) =

d

dv

(
G(v)β(v)

)
. (4.3)

Since β(0) = 0, Equation 4.3 can be re-written as

β(v) =
1

G(v)

∫ v

0
yg(y)dy = E[Y |Y < v] . (4.4)

That is, if β is a pure symmetric equilibrium strategy and given that all other

bidders follow β then β is defined according to Equation 4.3. Although Equa-

tion 4.3 is a payoff maximizing strategy, it remains to be proven that β actually

constitutes a Bayesian-Nash equilibrium, that is, it remains to be proven given

that everyone else is using this strategy that there exists no profitable deviation
for any bidder. The following theorem more formally states the equilibrium

strategy.

Theorem 4.1.2. In a first-price sealed-bid single-item auction with the stan-

dard independent private values model, the pure symmetric Bayesian Nash

equilibrium strategy is

β(v) =
1

G(v)

∫ v

0
yg(y)dy = E[Y |Y < v]

where Y is the stochastic variable denoting the maximum of N − 1 indepen-

dently and identically drawn valuations, with distribution G and density g.
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Proof. Assume that all bidders except one are following the continuous and
strictly increasing strategy β as stated in Equation 4.4, this implies that among

these bidders the bidder with the highest valuation will also make the highest

bid, we want to show that a bidder cannot profit from deviating.

We have assumed that one bidder deviates from using the strategy β . This
bidder has valuation v but he bids some value b �= β(v). Since β is strictly

increasing and continuous there exists a value w such that b = β(w). We pro-

ceed by showing that given a valuation v bidding anything other than β(v)
will not result in a higher expected payoff.

The expected payoff from bidding b = β(w) is

Π(v,β(w)) = G(w)(v−β(w))

= vG(w)−G(w)
1

G(w)

∫ w

0
xg(x)dx

= vG(w)−
(

wG(w)
∣∣∣w
0
−

∫ w

0
G(x)dx

)

= G(w)(v−w)+
∫ w

0
G(x)dx

The expected payoff from bidding β(v) is derived similarly and is

Π(v,β(v)) =
∫ v

0
G(x)dx .

The difference in expected payoff is therefore

Π(v,β(v))−Π(v,β(w)) =
∫ v

0
G(x)dx−

(
G(w)(v−w)+

∫ w

0
G(x)dx

)

= G(w)(w− v)+
∫ v

w
G(x)dx ≥ 0 .

This is true both for v > w and w > v. To see why, consider the cases.

Case I (v > w):

G(w)(w− v)+

∫ v

w
G(x)dx ≥ 0 ⇔

∫ v

w
G(x)dx ≥ G(w)(v−w) ,

which is true since the r.h.s. is the under approximation of the integral.

Case II (w > v):

G(w)(w− v)+
∫ v

w
G(x)dx ≥ 0 ⇔ G(w)(w− v) ≥

∫ w

v
G(x)dx ,

which is true since the l.h.s. is the over approximation of the integral.
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Theorem 4.1.2 applies to the general distribution, however, it might be illustra-
tive go give a more concrete example. Consider the case when valuations are

distributed uniformly over [0,1]. The symmetric equilibrium strategy in the

first-price auction is then to bid a constant fraction of the private valuation.

Specifically

β(v) =
N −1

N
· v

where N is the number of bidders.

Auctions such as the first-price single-item auction and similar can, with vari-

ations to the model, be analyzed with the techniques used here.

The expected payment and subsequently the expected revenues of the first-

price and second-price auctions are the same. More generally the revenue

equivalence theorem (originally due to Myerson [32], and Riley and Samuel-

son [46]) states: given the standard private values model with independently

and identically distributed valuations, and where bidders are risk neutral, any

symmetric and increasing equilibrium of any single-item auction where the

highest bidder wins, gives the same expected revenue to the seller, as long as

the expected payment by a bidder with valuation 0, is 0. The proof of this can
be found in any standard book on auction theory, see for example Krishna [22]

or Milgrom [29].

Myerson [32] formulated and solved the optimal (single-item) auction design

problem. He considered not a specific auction format but a general mechanism
description, answering the question given all possible auction formats, which

mechanism the auctioneer should choose to maximize his revenue. Concur-

rently Riley and Samuelson [46] looked at essentially the same problem.

4.2 Combinatorial Auction Game

Analysis of the first-price combinatorial auction is different from the single-

item case because of the winner determination problem. In a single-item auc-

tion a simple parsing of all the bids will reveal the highest bidder. In a com-
binatorial auction the problem of determining winners is far from trivial, a

bidder may be the highest bidder and still not be part of the globally optimal

allocation. The hardness of the allocation problem has serious implications on

what can be done in terms of game theoretic analysis in the first-price setting.

In this section we will extend Definition 4.1.1 of the single-item case to in-

clude valuations as functions as defined in Definition 2.2.1. In the most general

case, a bidder has one valuation for each possible combination of items.
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Definition 4.2.1 (Combinatorial auction game). The sealed-bid first-price
combinatorial auction constitutes an infinite game of incomplete information

with the following elements.

• N risk-neutral bidders.

• For each bidder i, and for all non-empty subsets S ⊆ M.

• vi(S) ∈ R+, is the privately known valuation function that defines the

private realization of the valuation of the items S.

• βi(S,vi) ∈ R+ is the strategy that determines the bid value for a set of

items.

• Bi = {〈S,b〉 : ∀S ⊆ M,S �= /0,such that b = βi(S,vi)} is the set of all

bids by bidder i.

• Πi(Bi,vi) ∈ R is the expected payoff given all bids and the valuation

function.

The valuation function is intentionally left unspecified since valuations may

be modeled in various ways. For example, the valuation could be defined as

an independently drawn value for each subset of items, this is probably the
most general model. Another model, as mentioned in Section 2.2, imposes a

structure on the valuation; a subset S has value |S| · (x + α) where x is inde-

pendently drawn and α is a public synergy2. In the single-item case the model

is straightforward, valuations are independently distributed according to some

distribution F . In the combinatorial auction it is only natural that valuations

can be modeled in many ways. Most of our work assumes some form of struc-

ture in the valuation function.

4.2.1 Analyzing the First-Price Combinatorial Auction

Before we can even attempt a similar analysis as we did in the single-item case

we would need to know the probability of winning given our bids Bi. In the

single-item auction, knowing that the strategy is strictly increasing and dif-

ferentiable together with the distribution is enough to know the probability of

winning given a valuation. This is enough since winning means being highest.

However, the corresponding probability function is not trivially determined in

the combinatorial auction. Knowing the distribution of valuations, assuming

that strategies are increasing, is not enough to construct a useful expression for

the probability of winning. The expression describing this probability would

have to cover all possible combinations of outcomes, which means that even

if we managed to write it down it would still be impractical to evaluate much

less use it in our analysis.

2Krishna [23] also uses a public synergy α .
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Unfortunately we are stuck before we can begin, we cannot even determine
one of the most fundamental parts needed for the analysis.

When bidders are single-minded the game resembles that of the single-item

case only in the sense that the valuation is a single random variable and a

bidder’s set of bids contains one element, however we are still faced with an
NP-hard winner determination problem. In this model the strategy determines

the bid value as before, and the expected payoff, Π(b,v), is defined for the

one bid b and valuation v. Unfortunately, as in the unrestricted case, we still

don’t have any useful expression for the probability of winning, except for

very small problems with very few bidders and bids. On the other hand the

model is sufficiently simple to allow some form of estimation of the probabil-

ity function, this line of reasoning is pursued in Paper-II.

In summary, game theoretic analysis in the first-price sealed-bid combinato-

rial auction is a hard problem, and standard techniques for analysis simply are

not practical. In Paper-III we approach this problem from a different angle,

by deriving bounds on the achievable revenue in pure symmetric (Bayesian

Nash) equilibrium, instead of focusing on the actual equilibrium strategies.

Miltersen and Santillan [30] prove the existence of pure strategy Bayesian

Nash equilibrium in the first-price sealed-bid combinatorial auction in the

same model as we study in Paper-III, that is, with synergy-bidders bidding

one bid on a combination of items and with single-bidders each bidding on a

single item. In a complete information setting where bidders are completely

informed, Bernheim and Whinston [6] provide an equilibrium analysis of a

first-price menu-auction.

4.3 Finite Game – Discrete Strategies

When analyzing auctions the focus is mostly on the format and the informa-

tional structure with no restrictions on bids. In reality on the other hand, the

monetary system implies a discrete action space. Quite often in iterative auc-

tions there is also a minimum bid increment rule.

In the single-item setting, Chwe [8], Yu [60], David et al. [11], and Mathews

and Sengupta [28], have studied several discrete auctions, we only mention

this briefly as this thread of research is outside the scope of this thesis.

Studying the finite combinatorial auction game with discrete strategies, we are

faced with a search problem where the evaluation of every strategy profile is

a possibly intractable problem, since the winner determination problem must

be solved to evaluate the payoff. Also, unless we severely limit the strategy

space, representing the game in normal form becomes a problem since the

size is exponential in the number of bidders. If the strategy-space is of size s
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and there are N bidders then the normal form matrix is of size sN . Some work
in this area try to alleviate the representation issue by using heuristics such

as best-response dynamics, local search and genetic algorithms for searching

and evaluating only part of the payoff-matrix, see for example Sureka [51],

and Sureka and Wurman [53, 52]. In the case of a discrete strategy space,

even if equilibrium strategies are found, the resulting strategies may be far

from the actually sought strategies in the infinite game case, depending on the

coarseness of the discretization.
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5. Summaries of Included Papers

In this chapter we present a short summary of each paper and some reflections
about the work. Each paper in essence deals with the hard problem of bidding

although the perspective is different in each work.

1. In Paper-I we look at the bid limitation problem. When there is a con-

straint on the number of bids a bidder may place, choosing which bids to

submit is hard and important. We argue that expressiveness in bidding

may in some cases be more important than finding optimal allocations

of items.

2. In Paper-II we consider the question of what to bid given a valuation. We

propose a heuristic for the hard problem of finding equilibrium strate-

gies in the first-price combinatorial auction.

3. Paper-III concerns the aggregate perspective of bidding. We analyze the

question of revenue in the first-price combinatorial auction compared

to simple simultaneous single-item auctions and provide bounds on the

achievable revenue.

4. Paper-IV empirically extends the results from Paper-III in the case when

the number of bidders is small, and also tightening the upper bound on

the expected revenue in one-shot simultaneous single-item auctions.

5.1 Paper-I: An Auction Mechanism for Polynomial-
time Execution with Combinatorial Constraints

Since it is typically not feasible to submit all possible combinations of bids,

the auctioneer will most likely need to limit the number of bids that a bid-

der may submit. This phenomenon we refer to as the bid limitation problem.

This is an important problem since if bidders submits the "wrong" bids then

the resulting allocation will be inefficient. The following example illustrates

this problem clearly. Given two bidders and two items c1 and c2. The bidders

valuations are as follows.
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c1 c2 c1 & c2

Bidder 1 100 40 140

Bidder 2 80 80 160

Now, assume that bidders are limited to submitting at most one bid each. Sup-

pose that bidder 1 and bidder 2 both submit one bid each on the combination

〈c1,c2〉. Given these two bids, the solution to the winner determination prob-

lem is to assign both items to one of the bidders, the highest bidder. However,

the optimally efficient solution, when there are no restrictions on the number

of bids that may be submitted, is to award item c1 to bidder 1 and item c2 to

bidder 2. This is a fairly trivial example where submitting all possible bids

could very well be allowed, for larger auctions this would not be possible and

with many items, the probability that a bidder chooses the optimal subset of

bids is very low.

With this work three main problems with combinatorial auctions are

addressed, (i) bid limitation, (ii) protocol transparency and (iii) algorithmic

efficiency. We present a polynomial time algorithm that accepts bids termed

min-bundles. A min-bundle is a bundle of single-bids associated with a

minimum constraint on the least number of bids that must win for the bundle

to be valid. When we have a set of several min-bundles, they constitutes

an OR of min-bundles. This language is especially useful when it is more

important for a bidder to get a specific number of items than a specific set of
items.

We show trough simulation that the impact of the bid limitation problem is se-

vere, in fact, given a standard combinatorial auction where the number of bids

are limited we can statistically achieve more efficient allocations even when

using a polynomial time allocation algorithm in conjunction with a more ex-
pressive bidding language. More specifically we compare the economic effi-

ciency of a standard combinatorial auction accepting the OR bidding language

as described in Chapter 2, but with a limitation on the number of bids, to the

economic efficiency of an auction using a polynomial time algorithm for de-

termining winners together with a more compact bidding language. We show

empirically that the there are instances when focusing on a more compact

bidding language is more important than actually solving the winner determi-

nation problem optimally.

Another main issue is that of transparency. Solving the winner determina-

tion problem optimally is not trivial. In fact, the algorithms used to solve this

problem are somewhat complicated and to any non-specialist the winner de-

termination algorithms are truly a black box. It may be important for bidders

to understand how a solution is arrived at in a transparent way, we address this

issue by describing a fairly simple protocol for assigning winners.
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The final problem is that of the general intractability of solving the winner
determination problem optimally. The protocol we provide can be executed in

polynomial time which may be significant from a predictability viewpoint.

The rest of the paper deals with the experimental evaluation of our winner

determination protocol using software agents that act as bidders with natural
behavior in the context of an iterative auction. The economic efficiency is

measured as an average over several trials.

A comment: to highlight the severeness of the bid limitation problem, we

compare our polynomial protocol to a standard one-shot first-price combina-

torial auction. In fact to make the situation more favorable for the standard
combinatorial auction we assume that bidders in that auction bid their true

valuations, and we also provide a simple and natural iterative version of the

standard combinatorial auction to sell unallocated items. This proposed itera-

tive combinatorial auction should be viewed simply as a fair benchmark and

not as a serious candidate for an iterative combinatorial auction.

5.2 Paper-II: Discovering Equilibrium Strategies for a
Combinatorial First Price Auction

This work deals with the problem of finding pure (Bayesian Nash) equilibrium

strategies in the first-price sealed-bid combinatorial auction, an open and hard
problem. We consider the infinite game of incomplete information.

The strategy problem is studied in a symmetric model, where valuations are

independently drawn from identical distributions, and specifically for two set-

tings: (i) bidders submit bids on all combinations, and (ii) bidders have a

synergy on one random combination and bid individual single-bids on the
remaining items.

Since analytically determining equilibrium strategies is hard, we approach the

problem from a less strict viewpoint by designing a heuristic which uses model

fitting and best response dynamics. Vorobeychik, Wellman and Singh [57] em-

ploy learning of payoff functions in infinite games, our approach is different
in the sense that instead of focusing on the payoff function, we instead sam-

ple the probability that a bid of a certain value will be part of the winning

allocation given the bidders current strategy sets. The advantage of our ap-

proach is that we can calculate the best response strategy analytically which

significantly reduces execution time.

Consider a particular bidder. In setting (i) he submits one bid for every combi-

nation of items and every bid he submits will affect the probability of his other

bids winning. The interactions between bids are fundamentally hard to predict
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since he essentially needs to predict the solution of the NP-hard optimization
problem. In setting (ii), he bids one combination bid and single-bids on the

remaining items, in this setting the interactions are less significant since the

values of the combinatorial bids are high compared to single-bids.

In order to create a tractable search problem the simplifying assumption is
made that each bid submitted by one and the same bidder is in fact indepen-

dent of the other bids, thus disregarding the interactions. This allows us to

separately find a strategy for each combination size. In essence this view is

equivalent to considering one bidder to be a set of single-minded bidders.

At the core of our heuristic is the probability function P(·), the probability of
a bid of a certain size and value winning. Given a combination size, (i) we

sample P(·) for a finite set of evenly distributed bid values (given the current

strategy set of all bidders), and (ii) use the sample data to regress a model

function P(·).
At our disposal are several model functions that can be adapted to the proba-
bility sample data. Each model has been chosen beforehand such that we can

express the best-response strategy β in closed form by maximizing the ex-

pected payoff P(β(v))(v−β(v)). Thus, given the parameter values provided

by regression of the probability models, we have predefined closed form ex-

pressions for the best response strategies.

With this method of finding the best response strategy in place, we use stan-

dard best reply dynamics to iterate the procedure until the system reaches a

(within tolerance) fixed point. The idea is quite simple, and when the search

converges we are in pure symmetric equilibrium. Best reply dynamics is un-

fortunately not guaranteed to converge, however during all the experiments

non-convergence was never a significant problem.

5.3 Paper-III: A New Analysis of Revenue in the
Combinatorial and Simultaneous Auction

In this work we examine the fundamental relationship between the one-shot
simultaneous single-item auctions and the one-shot first-price combinatorial

auction with regards to revenue. It is commonly believed that using a combi-

natorial auction will generate higher revenue than selling items individually

since bidders are able to more precisely and with no risk state their prefer-

ences. Although this is an important topic, until now no proofs has been pre-

sented that actually confirm the revenue superiority of combinatorial auctions.

In fact, the only known theoretical analysis (by Krishna and Rosenthal [23],

and Albano, Germano and Lovo [14]) has been done for the case of two items
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for sale and indicates the opposite; the combinatorial auction gives a lower
revenue.

The case with only two items is however very far from most real cases. In

real-world combinatorial auctions we may have many items and bidders with

synergies on independently and seemingly randomly selected combinations
of items. Bidders are also faced with an incomplete information setting and

the winner determination problem is complicated, meaning more than one

combination can win and that some items may be allocated to single bids.

Striving to analyze scenarios that depict reality as closely as possible, we study

a model where there are two types of bidders, (i) single-bidders interested in
one single item, and (ii) synergy-bidders that are interested in one specific

though randomly selected combination of items. Miltersen and Santillan [30],

has proven the existence of a pure Bayesian Nash equilibrium in the same

model. In this work, we construct bounds on the achievable revenue in both

auctions given a pure symmetric equilibrium. We show that asymptotically

as the number of bidders approaches infinity, the combinatorial auction is

revenue superior to the simultaneous auction. We also provide parameterized

bounds on revenue and provide, for many cases, the required parameters such

that the combinatorial auction achieves a higher revenue than the simultaneous

auction.

Although the model we study is specific, it is still vastly more general than any

other model for which similar results have been attempted. We have chosen a

model with only uniform distributions since this is a common distribution in

examples in the literature. This could be considered a limitation, however, it

should not be viewed as particularly serious since the question of distribution

is not our main point1. The most important property of our results is that they

are achieved for a model with many bidders and many items, with random

combinations of more than two items. The analysis of complicated situations

such as these require approaches that differ from the common methods of anal-
ysis in auction theory. In this work we present the first step towards analyzing

these complex settings.

5.4 Paper-IV: Combinatorial and Simultaneous
Auction: A Pragmatic Approach to Tighter Bounds on
Expected Revenue

This work examines the revenue bounds on combinatorial and simultaneous

auctions from pragmatic viewpoint. In our previous work (Paper-III), due to

1A generalization to other continuous distributions is likely to be possible.
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proof-technical reasons, the number of bidders are relatively high. In this work
we look at the expected revenue in the first price combinatorial auction in a

setting where the number of bidders is small and show empirically, based on

experiments, that the expected revenue of the combinatorial auction exceeds

that of the simultaneous auction also with a small number of bidders. Further-

more, given few bidders a tightening of the upper bound on the simultaneous

auction is also possible.

We make the observation that Lemma 5.5 from Paper-III allows us to simplify

the experimental model by replacing the single-bidders with a fixed low bid,

thus allowing us to use the search heuristic from Paper-II. Since we are under-

cutting the single-bid, this is a reasonable compromise. The search heuristic is

used for finding pure symmetric equilibrium strategies for the synergy-bidders

in the first-price sealed-bid combinatorial auction. Given these strategies, we

are then able to sample the expected revenue of the combinatorial auction. Our

results are empirical, however they offer strong indications that the expected

revenue superiority of the combinatorial auction, to the simultaneous auction,

holds also in the case of a small number of bidders. This suggests that the

results in Paper-III hold more generally than theoretically proven.
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