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ABSTRACT

We present a hybrid level–set–Cahn–Hilliard model for the simulation of two phase flow in micro structures. Our method
combines accurate contact line dynamics in the Cahn–Hilliard equation with the computationally cheaper level set method
in regions where not the full Cahn–Hilliard dynamics are necessary to describe the flow. This is realized by employing
the Cahn–Hilliard model close to rigid boundaries, together with a level set method away from boundaries. We use a
level set formulation with smoothed color function so that the interface representation in both regions is the same. The
combined model is coupled to the incompressible Navier–Stokes equations, where the surface tension acts as a forcing
term, calculated by the stress form in the Cahn–Hilliard model and a continuous surface tension representation for the
level set part. A continuous function is used as a switch between the two models, retaining mass conservation of the
overall method. The gains of the method are twofold — the equations to be solved in the interior are structurally easier
than the Cahn–Hilliard equation and, more importantly, the level set model can accurately model two-phase flow already
at coarser meshes. For oil expulsion by inflowing water we are able to obtain results of comparable quality when using
less elements than with a Cahn–Hilliard model on the whole domain.

1. INTRODUCTION

The phase field model, based on the coupled Cahn–Hilliard–Navier–Stokes equations, is a phenomenological
model for the simulation of the dynamics of two-phase flow [6], [11], [2]. The basic concept of the phase
field model is the representation of two fluid phases by two minima of a double-well potential with a smooth
transition region representing the interface. The form and width of the transition region between the two phases
gives rise to surface tension forces that enter the Navier–Stokes equations, cf. [11]. In the phase field model,
there are two transport mechanisms that move fluid–fluid interfaces. The first one is the advective transport
of the interface by the fluid velocity while the second one is diffusive mass transport. It is very challenging to
numerically solve the coupled Cahn–Hilliard–Navier–Stokes system. Structural difficulties are the non-linearity
of the Cahn–Hilliard equation, the presence of fourth order partial derivatives, and, in addition, the coupling
to the Navier–Stokes equations, a set of equations that already in itself is expensive to treat. Moreover, the
transition region between the two fluids is typically chosen to be very narrow, which implies a rapid change
of the concentration order parameter, whereby steep gradients occur. It is of key importance to sufficiently
resolve the interface region in space since the information in the gradients governs the surface tension force.
High resolution in time is required as well because of a wide range of time scales in the Cahn–Hilliard model.
Even though considerable progress has been made in recent years regarding the efficient numerical simulation
of the phase field model (such as locally refined grids and nonlinear multigrid routines [12]), the performance
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of phase-field based simulation strategies is still rather unsatisfactory. Most of the applications of the model in
the literature (see, e.g., references in [12], [15]) are therefore limited to micro scale calculations.

An established approach for macro scale multiphase flow simulations is the level set method [14]. The
basic concept of level set approaches is to define the interface implicitly as a (zero) level set of a function,
the level set function. The traditional choice for the level set function has been a signed distance function,
where the function modulus describes the distance to the fluid-fluid interface and the sign distinguishes the
fluids. The motion of the interface is achieved by advection of the level set function with local fluid speed.
However, in such a model it is not straightforward to define consistent surface tension forces that enter the
Navier–Stokes equations [7]. In recent years, progress has been made in directly applying level set functions
that mimic smoothed color (indicator) functions, by making use of suited numerical methods that retain steep
gradients and conserve mass [13]. The advantage of this kind of models is the possibility to directly apply a
continuum definition of surface tension [3], such that no indirect force reconstruction is needed. The overall
advantage of level set models, its ease of use, has the price that contact lines at rigid boundaries are difficult to
move correctly. Level set implementations require a sufficient resolution of the interface as well, which can be
accounted for by adaptive mesh refinement. Though, the resolution demands in level set models are less severe
compared to Cahn–Hilliard models.

The contribution of this work is to combine the phase field method and the level set method to form a
hybrid method, designed for simulations at length scales larger than the ones usually employed in phase field
based models, while still including correct contact line dynamics. The basis of our considerations is the similar
shape of the concentration function in the Cahn–Hilliard model and the smoothed color function in the level
set model. Also the definition of surface tension forces shows close similarities between the models. Though,
the transport mechanisms are more sophisticated for the Cahn–Hilliard equation. For this initiatory study, we
consider flows where the convective mass transport dominates the diffusive mass transport, making the two
models resemble each other even closer. Nevertheless, we keep the different properties of the two models, so
that overall consistency is retained. We account for this difference by a continuous filtering function that acts as
a switch between the models. Close to the boundary, we employ a Cahn–Hilliard model that enables the motion
of contact lines at walls with fluid-specific contact angles. In the interior, we switch to the computationally more
efficient level set model and thereby avoid to resolve the full nonlinear structure in the Cahn–Hilliard equation.
The construction principle of our hybrid method is inspired by approaches used for simulating turbulent flows,
where a Reynolds–averaged Navier–Stokes (RANS) method close to boundaries and large eddy simulations
(LES) in the interior have successfully been coupled to form a promising hybrid method [8].

The outline of this article is as follows. In section 2, we present the constituents to our hybrid model,
the Cahn–Hilliard and the level set model, which we then combine to a hybrid model. Section 3 discusses the
numerical implementation of the model within a finite element environment including adaptive grid refinement.
Section 4 presents a numerical example using the new method, and section 5 finally gives conclusions and
indicates further research directions.

2. DEVELOPING THE HYBRID MODEL

We develop a hybrid level–set–Cahn–Hilliard model that is applicable to two-phase flow involving fluids of
different densities, viscosities, includes the effect of surface tension, allows for external forces such as gravity
and is able to correctly represent moving contact lines. We base the notation on the classical Cahn–Hilliard
notation as used in [2], which we use even for the level set part of the model in the same form.

2.1 Flow equations

The zero level set of a color function c ∈ [−1, 1] is used to describe the interface. In fluid 1, c(x) ≈ 1, and in
fluid 2, c(x) ≈ −1. In the Cahn–Hilliard equation the color function is a measure of the concentration order
parameter, while in the level set region it is a smoothed indicator function. We denote by ρ0

1 and ρ0
2 the densities

and by µ0
1 and µ0

2 the dynamic viscosities of fluids 1 and 2, respectively. Since we want to formulate our model
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in non-dimensionalized form, we define dimensionless parameters

ρ = 1 +
ρδ

2
(c− 1), µ =

1
Re

(
1 +

µδ

2
(c− 1)

)
(1)

that represent the density and viscosity in the two phase model. The variables ρδ = (ρ0
1−ρ0

2)/ρ0
1 and µδ = (µ0

1−
µ0

2)/µ0
1 denote the differences in the material parameters of density and viscosity (assuming that the density of

fluid 1 is larger than of fluid 2), and Re = ρ0
1UcLc/µ

0
1 denotes the Reynolds number of the flow, involving the

characteristic length scale Lc and the characteristic velocity scale Uc [15]. In this work, we consider laminar
flow at small Reynolds number. The governing equations of fluid motion are the incompressible Navier–Stokes
equations in the velocity u and the pressure p,

ρ

(
∂u
∂t

+ u · ∇u
)
−∇(2µ ε(u)) +∇p = ρeg + fst, ∇ · u = 0, (2)

where ε(u) =
(
∇u + (∇u)T

)
/2 denotes the rate of deformation tensor and fst the force due to surface tension,

which will be specified by the models in the subsequent sections. The vector eg denotes the direction of gravity.
The Navier–Stokes equations have to hold within the computational domain Ω in d-dimensional space for all
simulation times t ∈ (0, T ]. The Navier–Stokes equations are completed by a divergence–free initial velocity
field and boundary conditions specified by the application problem.

2.2 Cahn–Hilliard model

The convective Cahn–Hilliard equation describes the motion of a function c under the velocity field u and is
given by

∂c

∂t
+∇ · (uc)− 1

Pe
∇ ·
(
b(c)
ρ
∇w
)

= 0,

−ρw +
1
ε

Φ′(c)− ε∆c = 0,

(3)

where the Péclet number Pe specifies the amount of diffusive mass transport in the Cahn–Hilliard equation, the
mobility function is b(c) = (max(1 − c2, 0))2, w represents a modified chemical potential, ε is a measure of
the interface width of the order O(ε), and Φ(c) = (1− c2)2/4 denotes the double well potential. The operator
′ denotes the derivative with respect to c. The function c is a concentration measure — the fraction of fluid 1 of
the total volume is given by (1 + c)/2 and the fraction of fluid 2 is (1− c)/2. The second equation in (3) is the
equation of the chemical potential and balances the double well potential with the diffusion in c. The smaller ε
is, the narrower the interface will be represented in the model. For computational convenience, we have chosen
to define a modified chemical potential w by w = w̃ρ based on the true Cahn–Hilliard potential w̃ as used in
[2], [11]. The Cahn–Hilliard equation was orgininally proposed as one equation in c only [4], but in order for
the numerical discretization with H1 conforming finite elements [5] to be applicable, we use the mixed form,
see section 3.1. Note that system (3) conserves mass [12].

The Cahn–Hilliard equation is a space-time dependent system to hold in Ω× (0, T ] and needs to be closed
by appropriate boundary conditions. Following the reasoning in [15], we want to be able to prescribe oblique
static contact angles to the chemical potential. The conditions for achieving this are

n · ∇w = 0, n · ∇c = −kg′(c), (4)

where n denotes the unit outer normal on the domain boundary ∂Ω, k is the so-called wetting coefficient and
g(c) = c(3 − c2)/4 denotes a local surface energy, see [11] and [15] for details. The wetting parameter k
controls the static contact angle θe at wall boundaries through k = cos(θe).

The force fst due to surface tension in the phase field model, here in stress form [12], is defined by

fst =
ρ

Ca
w∇c+

ρδ

Ca
1− c2

4
∇w, (5)

where the capillary number Ca = 2
√

2µ0
1Uc/3σ defines the ratio between viscous and tension forces, specified

through the equilibrium surface tension σ of a plane interface, cf. [15].
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2.3 Conservative level set model

The level set formulation we are going to use closely resembles the method developed in [13], where a smoothed
color function is used as the level set function. This interpretation has the advantage that the concentration
variable c in the Cahn–Hilliard model is nothing else but a special smoothed color function [11]. Starting from
an initial profile c, the motion of the color level set function obeys a basic convection equation,

∂c

∂t
+∇ · (uc) = 0. (6)

It is well-known, though, that any plain numerical method for advancing this profile in time will eventually
distort the profile, either by oscillations or smearing. This already happens for the conventional level set for-
mulations with a signed distance function (having well-behaved gradients), and is even more important for
the color function where the profile rapidly switches from −1 to 1. For example, transition regions of a mov-
ing droplet will be advanced differently at upwind and downwind sides, respectively. In order to prevent such
undesired behavior, a problem-adapted stabilization technique has been developed [13]. The idea is to employ
stabilization that can restore the profile shape without (substantially) moving the interface. Since we use a
formulation of c in [−1, 1] compared to the interval [0, 1] used in [13], we select the modified stabilization
procedure

∂c

∂t
+∇ · n(1− c2)−∇ · n(η∇ · nc) = 0, (7)

where the normal n = ∇c/|∇c| points perpendicular to the gradient and η = O(h) is a diffusion parameter
of the order of the mesh size h that brings in diffusion in normal direction. The compressive flux, the second
term in (7), is constructed in a way that information from regions with c < 0 will be transported towards the
interface. In practice, this means that a value of −1 is transported towards the interface until it is compensated
by the normal diffusion. The same mechanism is acting in regions where c > 0. The steady state of (7) is a
regular profile as desired. This procedure also provides a suitable initial field when only interface points are
specified. The stabilization (7) is mass-conservative [13].

The force due to surface tension, finally, is given by the diffuse interface approach introduced in [3], which
can be directly applied in this context, yielding

fst =
2

We
κ∇c, (8)

where We = ρU2
c Lc/ρ is the non-dimensional Weber number measuring the surface tension force, and the

curvature of the interface is κ = −∇ · n = −∇ · (∇c/|∇c|). The factor 2 in (8) accounts for the different
definition of c as compared to [3].

2.4 Combination of the two models

As been emphasized by the common notation in sections 2.2 and 2.3, there is a close relation between the
Cahn–Hilliard equation and the above level set method with continuum surface tension force. It was already
pointed out in [11] that the interface representation in the phase field model actually is a continuum surface
tension model with appropriate scaling. Since we want to be able to exploit the similarities irrespective such
a scaling, we follow an equation coupling technique as used in [8] to account for the different terms in the
two models (3) and (6). We start by defining a function α(x) that is constant 1 close to rigid boundaries and
constant 0 far away from them. In the transition region, we let α(x) = r((xi − s1)/s2), where the function
r(y) = y2(y − 2)2 implements a continuous switch from 0 to 1 in the interval [0, 1], s1 denotes the starting
position of the switch in coordinate direction i, and s2 is the width of the transition region. See figure 1 for a
schematic one-dimensional representation of the function α(x). With this at hand, let

M = α(x)M1 + (1− α(x))M2, (9)

withM1/2 representing Cahn–Hilliard and level set model, respectively, andM their combination.

The filtering framework (10) will now be applied to combine system (3) with the system formed by (6)
together with the equation for the curvature, κ = −∇ · (∇c/|∇c|), to give one model for the dynamics of the
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α(x)
��	

Cahn–Hilliard
model

conservative level
set model

� - -�s1 s2

← boundary (fixed wall) ← interior→

Figure 1: Schematic illustration of the switch function α(x) in one dimension.

interface. We use the pair of variables (c, w) to denote the concentration and chemical potential in the Cahn–
Hilliard region and the concentration and curvature times density in the level set region. We shall call w pseudo
potential in the following. The hybrid model for the interface advection reads

∂c

∂t
+∇ · (uc)− 1

Pe
∇ ·
(
α
b(c)
ρ
∇w
)

= 0,

−ρw +
α

ε
Φ′(c)− ε∇ · (α∇c)−∇ ·

(
(1− α)

∇c
|∇c|

)
= 0.

(10)

We can use the boundary conditions (4) for this combined system because the Cahn–Hilliard model is applied
in boundary regions and needs therefore to be fed with boundary data. System (10) needs to hold on the domain
Ω for all times t. The definition of the surface tension force according to the model (9) is

fst = α

(
ρ

Ca
w∇c+

ρδ

Ca
1− c2

4
∇w
)

+ (1− α)
(

1
We

w∇c
)
. (11)

The density in the definition of the level set force has been absorbed into the compound variable w.

3. NUMERICAL IMPLEMENTATION

Multiphase flow situations generally occur in rather complicated geometries. Moreover, the use of adaptive
meshes should be possible. Hence, we base our implementation of the hybrid method derived in section on the
framework of finite elements.

3.1 Discretization

We need to solve the coupled system of the Navier–Stokes equation (2) and the hybrid level–set–Cahn–Hilliard
system (10). This is a system of nonlinear partial differential equations in d-dimensional space and time, totaling
in d + 3 coupled equations. The time derivatives in u and c are discretized using a BDF-2 time integration
scheme (backward differentiation formula [9]), that is a numerical method suited for stiff equations as the
ones at hand. The method is fully implicit, so we have to perform a nonlinear iteration. During this iteration,
we solve the Navier–Stokes equations first with c and w from the previous iteration inserted into (11), which
updates u and p, see section 3.1.1. The updated velocity will then be used for the solution of system (10), see
section 3.1.2. This process is started for some prediction (un0 , p

n
0 , c

n
0 , w

n
0 ), where n denotes the time step and

the subscript 0 the iteration index. The prediction is obtained by extrapolation using the time stepping scheme.
The solution process represents a nonlinear Gauss–Seidel iteration in the 2 × 2 block system of (u, p) and
(c, w), respectively.
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3.1.1 Navier–Stokes equations

We choose to solve the Navier–Stokes equations in a coupled way, i.e., we solve for velocity and pressure
simultaneously at each step of the nonlinear iteration. Compared to decoupled solution methods, this strategy
allows for larger time steps without having any numerical inbalances between pressure and velocity, at the price
of considerably higher workload per step. For the discretization in space, we use a finite element discretization.
For the saddle-point structure of the Navier–Stokes system, the interpolation spaces for velocity and pressure
need to satisfy a stability condition in order to constitute a stable discrete system, the so-called inf–sup (LBB)
condition, cf. [5]. To fulfill this condition, we choose the inf–sup stable Taylor–Hood element pair, i.e., quadratic
basis functions for the velocity and linear basis functions for the pressure. The nonlinear convective term is
accounted for by a Picard iteration. The resulting time-discretized and linearized finite element formulation of
the Navier–Stokes system reads:
Find (uni , p

n
i ) at time level n and nonlinear iteration i, such that(
φk, ρi−1

3uni
2∆t

)
Ω

+
(
φk, ρi−1uni−1 · ∇uni

)
Ω

+ (∇φk, 2µi−1ε(uni ))Ω − (∇φk, p
n
i )Ω

+ (ψl,∇ · uni )Ω =
(

φk, ρi−1

(
2un−1

∆t
− un−2

2∆t

))
Ω

+ (φk, ρi−1eg + fst,i−1)Ω

(12)

holds for all finite element basis functions (φk, ψl) in the respective finite-dimensional test function spaces. As
indicated by the index i − 1, the surface tension force is evaluated with values (ci−1, wi−1) according to (11).
The same linearization is applied to density and viscosity using relation (1). The term ∆t denotes the time step
size and (·, ·)Ω is the standard L2 inner product on Ω. The solution functions for velocity and pressure are linear
combinations of the finite element basis functions

uni =
∑
k

φkuk, pni =
∑
l

ψlpl, (13)

where the parameters uk, pl are nodal degrees of freedom. Some of them may be fixed by boundary conditions.

3.1.2 Level–Set–Cahn–Hilliard system

We use the updated velocity for calculating (cni , w
n
i ) by the level–set–Cahn–Hilliard model (10) and use a

fixed point iteration to linearize the nonlinear bulk energy and the normal to c. The nonlinear parameters in the
diffusive term of the concentration equation are evaluated at the previous iteration. The spatial part is discretized
using linear finite elements for both the concentration and the pseudo potential. Since the first equation of
system (10) is a convection-dominated equation, a straight-forward finite element discretization of the equation
would introduce spurious oscillations around the steep gradient of c [5]. In order to avoid this, we stabilize
the equation with a streamline upwind Petrov–Galerkin (SUPG) approach [5]. The SUPG stabilization method
introduces an additional term (uni ·∇χk, τstabr(cni ))Ω with the residual r(cni ) = 3cni /(2∆t)−uni ·cni −2cn−1−
cn−2 and stabilization parameter τstab = O(h) as given in [5]. Note that r is the true residual also for the Cahn–
Hilliard region, since the second derivative of the linear basis functions is zero. Moreover, the calculation of
curvature in the level set region is stabilized by an extra diffusion term −(1 − α)h∇2w for an element size of
h according to [13], which avoids oscillations in w. The resulting (time-discretized and linearized) system is:
Find (cni , w

n
i ) at time level n and nonlinear iteration i, such that(
χk,

3cni
2∆t

)
Ω

− (u · ∇χk, cni − τstabr(cni ))Ω +
(
∇χk,

αb(cni−1)
Peρi−1

∇wni
)

Ω

− (ϑl, ρi−1w
n
i )Ω

+ (∇ϑl, αε∇cni )Ω =
(
χk,

(
2cn−1

∆t
− cn−2

2∆t

))
Ω

−
(
ϑl,

α

ε
Φ′(cni−1)

)
Ω

−
(
∇ϑl,

(1− α)∇cni−1

|∇cni−1|

)
Ω

−
(
ϑl, kg

′(cni−1)
)
∂Ω,wall

(14)

for all finite element test functions (χk, ϑl). The finite element approximations cni and wni are, as in (13), given
by a linear combination of linear basis functions.
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3.1.3 Reinitialization

The level set part of the domain is still subject to the problems discussed in section 2.3, i.e., distortion of the
profile. Therefore, we perform a reinitialization procedure according to (7) in the level set part each fifth time
step. This procedure means finding a steady state. Since the numerical distortion of the profile can be expected
to be little after a few steps only, the steady state of (7) is usually reached in two to three time steps. In order to
prevent spurious oscillations close to the interface, we combine the procedure with a step of a diffusive equation
in the beginning of the reinitialization. Since we close this equation with Neumann boundary conditions, the
masses in both fluids remain unchanged. In order to give the level set interface region a similar shape as the
Cahn–Hilliard part, we choose the diffusion parameter η = max(3ε/2, h), where the additional h aims at
keeping the reinitialization procedure free from oscillations.

3.1.4 Spurious currents

The continuum surface approach used in our model is subject to spurious velocity currents in situations where
capillary effects dominate (e.g. in situations without external sources), an effect that is caused by numerical
imbalances between the surface tension force fst and the pressure gradient, as explained e.g. in [10]. So far, we
have not made any additional attempt to prevent this situation in our model, but we plan to do so in the future.

3.1.5 Code details

We implemented systems (12) and (14) in deal.II, an open source C++ finite element library collection, based
on quadrilateral elements [1]. The equations are used to construct large sparse linear equation systems, which,
for the time being, are solved with an ILU preconditioned GMRES method (Navier–Stokes) and with a direct
solve (level–set–Cahn–Hilliard system), respectively. The computational costs for this procedure are moderate.
For example, a mesh with 8,192 finite elements in 2D results in 66,306 degrees of freedom for velocity and
8,385 degrees of freedom for pressure, concentration and pseudo potential, respectively. On a 2.4 GHz AMD
Opteron system, one time step consisting of three nonlinear iterations of such a system is executed in 15–20
seconds when running the program in serial (single-threaded). Most of the time is spent for the solution of
linear systems, so additional benefits can be expected by the use of better linear algebra routines, which we
intend to do in the future, such as the algorithm presented in [12].

3.2 Adaptive mesh refinement

As mentioned in the introduction, an efficient realization of the above equations relies in an accurate resolution
of the interface. In the Cahn–Hilliard region, more than 98 percent of the surface tension is induced in the
region c ∈ [−0.9, 0.9] [11], which implies that an accurate representation of the interface is necessary. On the
other hand, the dynamics in the rest of the domain are usually rather uninteresting. Therefore, we implement
an adaptive mesh strategy in order to better resolve the interface region without increasing the numerical costs
too much. Based on the concentration function c, we construct the error indicator

γ(x) =
1
ε

(1− c2(x)), (15)

which reaches its maximum at c = 0 and is almost zero in regions far away from the interface. We calculate
the L2 norm of γ on each cell. If ‖γ‖cell ≥ 0.7, we mask a cell for refinement in the next step. On the contrary,
we coarsen regions where all child cells satisfy ‖γ‖cell ≤ 0.35. The definition of the cell-wise L2 norm already
accounts for different element lengths.

We complete our adaptivity implementation by a complementary control of the maximum refinement level.
Since the curvature in the level set model is less sensitive than the Cahn–Hilliard potential, we can reduce the
highest refinement level by one in the level set region, without any considerable effect on the surface tension.
Since we do not want to reset the mesh in every time step, we let the finest resolved region consist of about 20
elements so that it is possible to perform up to 20 time steps without remeshing. Besides that, we do not let the
mesh get too coarse far away from the interface in order to maintain a certain accuracy in the Navier–Stokes
solution there as well. The hanging nodes, occurring for the adaptively refined structured meshes we use, are
eliminated by deal.II library functions, ensuring consistency of the mesh refinement [1].
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Figure 2: Results with the hybrid model at t = 1, including the adaptive grid structure close to the lower
boundary (right). To the left, the whole interface is shown. The black line shows the interface position (zero
level set), the blue and red color represent the two fluid phases. Note the finer mesh in the Cahn–Hilliard region
close to the boundary.

4. COMPUTATIONAL EXAMPLE

We test our method on a two phase flow problem in a channel. We perform the calculations in dimensionless
units, with channel dimensions [−2, 2] × [−1, 1]. We assume fixed walls in y-direction with zero Dirichlet
(no-slip) conditions on the velocity in the Navier–Stokes system and open boundaries at x = ±2. We consider
parameters that are typical for water and oil for flows at length scales of a few millimeters with a Reynolds
number Re = 1, ρδ = 0.27, µδ = −0.0023, and we neglect the effects of gravity. In the level–set–Cahn–
Hilliard system, we choose Pe = 100, Ca = 20, Fr = 200, set the interface thickness ε = 0.01 and use a
contact angle of 40 degrees between the wall and the interface, measured from the water side (k = 0.77). We
choose s1 = 0.85, s2 = 0.1 as parameters for the level–set–Cahn–Hilliard switch, meaning that the Cahn–
Hilliard region is 0.15 units thick, and the transition occurs in another 0.1 units, compare also Fig. 1. The
element size of the discretization ranges from 0.06 units to 0.004 units, see Fig. 2 for a representation of the
adaptive mesh structure. The time step is chosen to be 0.0066. We stop the nonlinear iteration as soon as the
error is reduced by a factor of 103, which is usually achieved after two to three nonlinear iterations.

The example represents an inflow-driven oil expulsion from the channel. As a boundary condition, we
prescribe a quadratic inflow data on the left. On the right end of the channel, zero Neumann data is applied on
the Navier–Stokes system. We start from a zero velocity profile at t = 0 with the interface located at x = 0
and a contact line at the static contact angle. The inflow velocity is then successively increased, with the peak
velocity at the channel center obeying u1 = sin(πt/2) until t = 1 is reached. Then, we keep the velocity at a
value of 1. Figs. 2 and 3 show results for this configuration at t = 1 and t = 1.4. In the two pictures, the number
of elements is 16,500 and 20,000, respectively. In comparison to a Cahn–Hilliard model on the whole domain
(employing about 30,000 elements), our model shows accurate results. Even the prediction of the contact line
motion at the lower boundary is quite accurate — it deviates by about 4% from the high resolved Cahn–Hilliard
equation. The results for this problem show an asymmetry in the interface position with respect to the channel
center, an effect that we want to study further in the future.

5. CONCLUSIONS

A hybrid method that combines the advantageous features of level set methods and the phase field model has
been presented. The method is implemented using a finite element method and is shown to give good results
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Figure 3: Interface position and some velocity values at t = 1.4. To the left, the inflow is depicted. The velocity
close to the interface shows a similar profile, but is slightly unsymmetric (with respect to the channel center) at
this stage of the simulation.

for the simulation of two-phase flow in a channel. Using the information of the phase field method close
to boundaries, we have been able to reproduce correct contact line dynamics (as for the phase field model),
combined with the ease of a level set approach in the interior where only surface tension forces are active.
A numerical study on a inflow-driven channel flow shows good results. Considerable savings of the method
can be achieved by solving simpler equations and by using coarser grids. However, we observed some minor
deviations in the contact angle for the hybrid method compared to the full Cahn–Hilliard model, which we have
to analyze quantitatively in the future.

We intend to continue the development of this method and to test it on other examples like contact-line
driven flows as well as other material combinations besides the water–oil example considered in this report.
Regarding the algorithm’s efficiency, we want to improve the solution of the arising linear equation systems
for both the Navier–Stokes system and the hybrid level–set–Cahn–Hilliard system. Moreover, we plan to use
projection schemes for cheaper Navier–Stokes solutions of large 3D problems and to improve the adaptive
mesh control, possibly by using different grids for the Navier–Stokes part and the interface representation part.
We aim also at including the reinitialization procedure for the level set formulation directly in the model, which
makes the global model more compact.
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