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1 Introduction: Motivations, Overview and
Outline

The main purpose of this thesis is to explain the results which are contained

in the papers I, II, III and IV. Also I would like to illustrate which are the

main motivations which pushed my research in such directions, the context

and to give at least the flavor of the incredible “hidden” beauty which is in the

gauge/string dualities.

In order to understand the results and the techniques used in the works, I

will need to introduce certain topics and formalisms as well as some back-

ground material. As this is the typical readership, I have chosen the level of

the presentation such as to address a Ph.D. student who works on String The-

ory, but not necessarily on the AdS/CFT correspondence or on integrability.

My task is to give the reader the possibility to be able to autonomously under-

stand and go through the papers at the end of this thesis. Nevertheless, I will

assume that the reader is familiar with supersymmetric strings, in particular

with type IIB/A superstrings. The order used to illustrate the various subjects

does not strictly reflect how they have been historically developed, but rather

the necessity to follow the contents of the papers closely.

As opening the Russian Matryoshka dolls, I will start from the biggest doll

(the String Theory) to the smallest one (the integrability in AdS/CFT) to illus-

trate, in this introduction, the contents which the thesis is focused on.

With the exception of gravity all the other three fundamental forces which

are present in Nature (electromagnetic, weak and strong nuclear interactions)

are unified in the Standard Model. They are derived from the same first prin-

ciple, which is a (local) symmetry principle: the gauge symmetry. For this

reason, these theories are defined as gauge theories. The Standard Model is

based on the fundamental concept of point-like particles and the interactions

are described in terms of mediators (photons, W± and Z0 bosons and gluons
respectively). I will think of such a model as describing particle physics, as

something distinguished by gravity in the traditional approach. A revolution-

ary point of view is adopted in String Theory. String Theory provides us with

an elegant framework, where all the four interactions are joined together. The

string is a one-dimensional object and its spectrum, namely the collection of

frequencies and masses that the string produces by vibrating, naturally con-

tains the mediator for the gravitational force, the graviton, treating gravity on

1



equal footing with the other fundamental interactions. The concept of replac-

ing the point-particles with an extended fundamental object (the string) can

be generalized: one can construct surfaces of higher dimensions (the branes)

which replace the strings. These also are important building-blocks of String

Theory.

The word “framework” used to define String Theory might seem reductive,

but it is the correct one: String Theory is not a complete and fully understood

theory, but it is more a “structure”, an incredible rich one, where different

types of string theories live1. They are related by dualities, a very special kind
of symmetry which relates two apparently different physical systems. I will

come back on the topic of dualities below. However, all these pluralities of

string theories should be a special limit, or at least they should be contained,

in a more general and yet quite mysterious (including its name!) theory, the

M-theory.

A part from the hope to see the Standard Model emerge from String Theory

one day, there is another way in which the fate of the string is tied to parti-

cle field theories. In 1997, Maldacena conjectured that certain closed super-

strings in a ten-dimensional curved background describe the same physics of
the gauge theory of point-particles in four-dimensions (AdS5/CFT4) (another
smaller Russian shell). In particular, on one side we have the type IIB super-

string on AdS5×S5, and on the other side the supersymmetric N = 4 SU(N)
Yang-Mills theory in four dimensions. The backgrounds where the string lives

(AdS5×S5) is built of a five-dimensional anti-De Sitter space (AdS), a space
with constant negative curvature, times a five-dimensional sphere (S), cf. fig-

ure 1.1. In 2008 Aharony, Bergman, Jafferis and Maldacena proposed the

existence of a further gauge/gravity duality between a theory of M2-branes

(three-dimensional membranes) in eleven dimensions and a certain gauge the-

ory in three dimensions (AdS4/CFT3). The eleven-dimensional M2-theory
can be effectively described by type IIA superstrings when the string cou-

pling constant is very small. For a reason that will be clear later, I will con-

sider only the type IIA as the gravitational dual in the AdS4/CFT3 correspon-
dence, but the reader should keep in mind that this is just a particular regime

of the full correspondence. The background where the type IIA strings live

is a four-dimensional anti-De Sitter space times a six-dimensional projective

space (�P3). Hence, we have seen that the gravity side in the dualities is

associated with the word “AdS”.

What is CFT? They are the initials of Conformal Field Theory. The dual

1The different string theories I am referring here in the Introduction are the type IIA superstring,

the type IIB superstring, the type I superstring, the Heterotic SO(32) string, the Heterotic E8×
E8 string, and finally I should also include the eleven-dimensional supergravity theory. In the

rest of the thesis we will consider only the type IIB superstring, cf. 2 – 6, and the type IIA

superstring in chapter 7.
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Figure 1.1: AdS5×S5. The five-dimensional anti-De Sitter space is represented as a
hyperboloid on the right hand side, while the five-dimensional sphere is drawn on the

left hand side.

gauge theories we are discussing are conformal, namely invariant under con-

formal transformations. Roughly speaking, these transformations rescale dis-

tances by a factor that depends on the positions, but preserving the angles. The

conformal field theories contained in the AdS/CFT dualities, namely N = 4

super Yang-Mills (SYM) in the AdS5/CFT4 case and the supersymmetric
N = 6 Chern-Simons (CS) theory in the AdS4/CFT3 case, are rather difficult
to solve. A general approach to quantum field theory is to compute quantities

such as cross sections, scattering amplitudes and correlation functions. In par-

ticular, for conformal field theories the correlation functions are constrained

by the conformal symmetry2. For a certain class of operators (the conformal

primary operators) their two-point function has a characteristic behavior: in

the configuration space it is an inverse power function of the distance. The

specific behavior, namely the specific power (the so called scaling dimension)

depends on the nature of the operators and of the theory we are considering. It

reflects how this operator transforms under conformal symmetry, in particular

for the scaling dimension it reflects how the conformal primary operator trans-

forms under the action of the dilatation operator. At high energy, when one

starts to include quantum effects, the scaling dimensions acquire corrections,

namely the anomalous dimension3. In conformal field theories, the anomalous

dimension encodes the physical information about the behavior of the opera-

tors under the renormalization process. I will expand this point in chapter 2.

For the moment it is enough to note that collecting the spectrum of the corre-

lation functions, namely the spectrum of the anomalous dimensions, gives an

outstanding insight of the theory. However, in general it is a very hard task to

reach such a knowledge for a quantum field theory.

2Actually this is also true for the scattering amplitudes as it turns out in recent developments,

but we will not focus on these aspects of the conformal field theories.
3In conformal field theories there are special classes of operators, the chiral primary operators,

whose scaling dimension does not receive quantum corrections.
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For this purpose the gauge/string dualities can play a decisive role. Let

me explain why. Both correspondences are strong/weak-coupling dualities:

the strongly coupled gauge theory corresponds to a free non-interacting string

and vice versa fully quantum strings are equivalent to weakly interacting par-

ticles. The two perturbative regimes on the string and on the gauge theory

side do not overlap. Technical difficulties usually prevent to depart from such

regimes. This implies that it is incredibly difficult to compare directly observ-

able computed on the string and on the gauge theory side, and thus to prove

the dualities. However, there is a positive aspect of such a weak/strong cou-

pling duality: in this way it is possible to reach the non-perturbative gauge

theory once we acquire enough knowledge of the classical string theory.

Ironically, we are moving on a circle. In 1968, String Theory has been

developed with the purposes to explain the strong nuclear interactions. Thus

it started as a theory for particle physics. With the advent of the Quantum

Chromo Dynamics (QCD) namely the quantum field theory describing strong

nuclear forces, String Theory was abandoned and only later in 1974 it has been

realized that the theory necessarily contained gravity. The AdS/CFT dualities

give us the possibility to reach a better insight and knowledge of SYM (and

hopefully of the CS theory) by means of String Theory. In this sense, String
Theory is turning back to a particle physics theory. In this scenario the long-

term and ambitious hope is that also QCDmight have a dual string description

which might give us a deeper theoretical understanding of its non-perturbative

regime.

At this point I will mostly refer to the AdS5/CFT4 correspondence, I will
explicitly comment on the new-born duality at the end of the section. On one

side of the correspondence, the AdS5× S5 type IIB string is described by a

quantum two-dimensional σ -model in a very non-trivial background. On the
other side, we have a quantum field theory, the SYM theory, which is also a

rather complicated model. Some simplifications come from considering the

planar limit, namely when in the gauge theory the number of colors N of

the gluons is very large, or equivalently in the string theory when one does

not consider higher-genus world-sheet. In this limit both gauge and string

theories show their integrable structure, which turns out to be an incredible
tool to explore the duality. Let us see what is our next smaller doll.

What does “integrable” mean? We could interpret such a word as “solv-

able” in a first approximation. However, this definition is not precise enough

and slightly unsatisfactory. Integrable theories posses infinitely many (lo-

cal and non-local) conserved charges which allow one to solve completely

the model. Such charges generalize the energy and momentum conservation

which is present in all the physical phenomena as for example the particle scat-

terings. Among all the integrable theories, those which live in two-dimensions

are very special: in this case, the infinite set of charges manifests its presence
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by severely constraining the dynamics of the model through selection rules

and through the factorization. In order to fix the ideas, let me consider the

scattering of n particles in two-dimensions. The above statement means that
for an integrable two-dimensional field theory, a general n-particle scattering
will be reduced to a sequence of two-particle scattering. The set of necessary

information to solve the model is then restricted in a dramatic way: we only

need to solve the two-body problem to have access to the full model! This is

indeed the ultimate power of integrability.

The impressing result (which has been historically the starting point of the

exploit of integrability in the AdS/CFT context) has been the discovery of a

relation between the SYM gauge theory and certain spin chain models. In

2002 Minahan and Zarembo understood that the single trace operators (which

are the only relevant ones in the planar limit) could be represented as spin

chains: each field in the trace becomes a spin in the chain. This is not only

a pictorial representation: the equivalence is concretely extended also to the

dilatation operator whose eigenvalues are the anomalous dimensions and to

the spin chain Hamiltonian. The key-point is that such a spin chain Hamil-

tonian is integrable, “solvable”. On the gravity side, the integrability of the

AdS5×S5 type IIB string has been rigorously proved only at classical level,

which, in general, does not imply that the infinite conserved charges survive

at quantum level. However, the assumption of an exact integrability on both
sides of AdS5/CFT4 has allowed one to reach enormous progresses in test-
ing and in investigating the duality, thanks to the S-matrix program and to the

entire Bethe Ansatz machinery, whose construction relies on such a hypoth-

esis. Nowadays nobody doubts about the existence of integrable structures

underlying the gauge and the gravity side of the AdS5/CFT4 correspondence.
There have been numerous and reliable manifestations, even though indirect.

Despite of such remarkable developments one essentially assumes that the
AdS5× S5 type IIB superstring theory is quantum integrable4. And on gen-

eral ground, proving integrability at quantum level is a very hard task as much

as proving the correspondence itself. For this reason, there have been very

few direct checks of quantum integrability in the string theory side. These are

the main motivations of my works during these years: give some direct and

explicit evidence for the quantum integrability of the AdS superstring.

For the “younger” AdS4/CFT3 duality, valuable results have been already
obtained, cf. chapter 7. It is very natural to ask whether and when it is pos-

sible to expect the existence of similar infinite symmetries also in this case.

Considering the impressing history of the last ten years in AdS5/CFT4, one
would like to reach analogous results also in this second gauge/string dual-

ity. Probably understanding which are the differences between these two du-

4It is correct to say that on the gauge theory side the quantum integrability relies on more robust

basis, cf. chapter 2.
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alities might provide another perspective of how we should think about the

gauge/string dualities and their infinite “hidden” symmetries.

Outline
In chapter 2 I will briefly introduce the AdS5/CFT4 correspondence and the
N = 4 SYM theory. It contains also a description of the symmetry algebra,

psu(2,2|4), which controls the duality. I will also explain the crucial relation
between the anomalous dimension and the spin chain systems as well as the

Bethe Ansatz Equations for a sub-sector of the full psu(2,2|4) algebra.
Chapter 3 is dedicated to two-dimensional integrable field theories, in par-

ticular to some prototypes for our string theory, such as the Principal Chiral

Models and the Coset σ -models. I will explain the definition of integrability
in the first order formalism approach as well as its dynamical implications

for a two-dimensional integrable theory. I will stress the importance of the

distinction between classical and quantum integrability.

In chapter 4 I will review the type IIB string theory on AdS5×S5: starting
from the Green-Schwarz formalism, the Metsaev-Tseytlin formulation of the

theory based on a coset approach and finally its classical integrability.

In chapter 5 it is presented an alternative formulation of the type IIB AdS5×
S5 superstring based on the Berkovits formalism, also called Pure Spinor for-

malism, and I will focus on its relation with integrability topics. At the end of

the chapter I will summarize the results of the paper I and IV in this context.

In chapter 6 I will come back to the Green-Schwarz formalism and discuss

some important limits of the AdS5×S5 string theory such as the plane wave
limit (also called BMN limit) and the near-flat-space limit. I will sketch the

construction of the world-sheet scattering matrix and present the Arutyunov-

Frolov-Staudacher dressing phase. Finally, I will illustrate the contents of

paper II.

Chapter 7 is entirely based on the AdS4/CFT3 duality. I will retrace certain
fundamental results of the AdS5/CFT4 correspondence in the new context,

with a special attention to the near-BMN corrections of string theory. Hence,

I will outline the contents of paper III.

At the end of the thesis the papers I,II, III and IV are reprinted.
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2 The AdS5/CFT4 duality

The first part of this chapter is an introduction to the AdS5/CFT4 correspon-
dence, based on the original works, which are cited in the main text, and

on the following reviews [142, 7, 79]. For the introductory part dedicated

to the N = 4 SYM and to the Coordinate Bethe Ansatz, I mainly refer to

Minahan’s review [154], Plefka’s review [166] and Faddeev’s review [89], to

the lectures given by Zarembo at Newton Institute (2007) [197], by Klose at

Eötvös Superstring Workshop (2007) [129] and by N. Dorey at RTN Winter

School (2008) [80]. Finally, I find very useful also the Ph.D. theses written by

Beisert [48] and Okamura [162].

2.1 Introduction

The AdS5/CFT4 correspondence states a duality between a certain string the-
ory, living in an anti-De Sitter space (AdS) times a sphere, and a conformal

field theory (CFT) [141, 116, 193]. I will use equivalent words: “duality”,

“correspondence” and “conjecture”, to stress the different aspects of the rela-

tion between AdS5 and CFT4. With duality we mean that these two apparently

completely different systems (the gauge and the string theory) describe the

same physics. The same observables can be computed starting from the string

or from the gauge theory side. It is a correspondence in the sense that it is

possible to fix a precise dictionary which “translates” the physical quantities

on the two sides. Finally, it is essentially a conjecture, for reasons that will be

clear at the end of section, even if nowadays an enormous quantity of data and

checks are available.

More specifically, the Maldacena correspondence [141, 116, 193] conjec-

tures an exact duality between the type IIB superstring theory on the curved

space AdS5×S5 and N = 4 super Yang-Mills (SYM) theory on the flat four-

dimensional space �3,1 with gauge group SU(N). In order to briefly illustrate
the content of the duality, we will start by recalling all the parameters which

are present in both theories.

The geometrical background in which the string lives is supported by a self-

dual Ramond-Ramond (RR) five-form F5. In particular, the flux through the
sphere is quantized, namely it is an integer N, multiple of the unit flux. Both
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the sphere and the anti-de Sitter space have the same radius R:

ds2IIB = R2ds2AdS5 +R2ds2S5 (2.1)

where ds2AdS5 and ds2S5 are the unit metric in AdS5 and S5 respectively. The

string coupling constant is gs and the effective string tension is T = R2
2πα ′ with

α ′ = l2s . The string theory side thus has two parameters
1: T , gs.

On the other side, SYM is a gauge theory with gauge group SU(N), thus N
is the number of colors. The theory is maximally supersymmetric, namely it

contains the maximal number of global supersymmetries which are allowed in

four dimensions (N = 4) [100, 72]. Another important aspect is that SYM is

scale invariant at classical and quantum level, which means that the coupling

constant gYM is not renormalized [183, 178, 145, 120, 71]. The theory con-

tains two parameters, i.e. N and gYM. One can introduce the ’t Hooft coupling
constant λ = g2YMN. Notice that λ is a continuos parameter. Summarizing,

the gauge theory side has two parameters, we choose λ and N.
The correspondence states an identification between the coupling constants

in the two theories, i.e.

g2YM = 4πgs T =

√
λ

2π
(2.2)

(or in terms of λ : gs = λ
4πN ), and between the observables, i.e. between the

string energy and the scaling dimension for local operators:

E(λ ,N) = Δ(λ ,N) . (2.3)

The conjecture is valid2 for any value of the coupling constant λ and for any

value of N. We can consider certain limits of the full general AdS5/CFT4
duality, which are simpler to be treated but still extremely interesting.

Let us consider the limit where N is very large and λ is kept fixed, namely

gYM→ 0 [187]. In this limit, N is a continuos parameter and the gauge theory

admits a 1
N -expansion. In the large N regime (also called the ’t Hooft limit)

of the SYM theory only the planar diagrams survive, namely all the Feynman

diagrams whose topology is a sphere. The corresponding gravity dual is a

1It might seem that also N is an independent parameter in the string theory contest. Actually it is

related to the target space radius R by R4 = 4πgsNα ′2. This relation follows from supergravity

arguments. In particular R is the radius of the D3-brane solutions and α ′ the Planck length and
the identity gives the threshold for the validity of the supergravity approximation (gsN � 1).
2This is the conjecture statement in its strongest version. However, there are weaker versions:

e.g. it might be considered to hold only in the large N limit (N → ∞) and for finite values
of λ , namely without considering gs corrections to the string theory, or even weaker, without

α ′ corrections (i.e. large N and λ limits). In this thesis we will always assume the strongest

version, namely that the AdS/CFT correspondence is valid for any value of the string coupling

constant gs and of the color number N.

8



free string propagating in a non-trivial background (AdS5×S5). The string is
non-interacting since now gs → 0 and the tension T is kept fixed, cf. eq. (2.2).

Notice that even though we are suppressing the gs-corrections, so that the

string is a free string on a curved background, it is still described by a non-

linear sigmamodel whose target-space geometry is AdS5×S5. This is a highly
non-trivial quantum field theory: the string can have quantum fluctuations

which are described by an α ′-expansion.
Furthermore, we can also vary the smooth parameter λ between the strong-

coupling regime (λ � 1) and the weak-coupling regime (λ � 1). In the first

case the gauge theory is strongly coupled, while the gravity dual can be effec-

tively described by type IIB supergravity. Indeed, the radius of the background

is very large (R = λ 1
4 ls), thus the string is in a classical regime (T � 1).

Conversely, when λ takes very small values (λ � 1), the gauge theory can

be treated with a perturbative analysis, while the background where the string

lives is highly curved. The string is still free, but now the quantum effects

become important (i.e. T � 1).

For what we have learned above, the Maldacena duality is also called a

weak/strong-coupling correspondence. This is an incredibly powerful fea-

ture, since it allows one to reach strong coupling regimes through perturbative

computations in the dual description. At the same time, proving such a cor-

respondence becomes an extremely ambitious task, simply because it is hard

to directly compare the relevant quantities. For a summary about the different

regimes and parameters we refer the reader to the table 2.1.

We will only deal with the planar AdS/CFT, since it is in this regime that
both theories have integrable structures. In particular, we are interested in the

strong coupling regime (λ � 1), since the string theory side is reachable per-

turbatively ( 1√
λ
expansion) in the large ’t Hooft coupling limit (cf. table 2.1).

The present work is mainly devoted to this sector.

If the two theories are dual, then they should have the same symmetries.

This is the theme of the next section, after a more detailed introduction to

N = 4 SYM theory.

2.2 N = 4 super Yang-Mills theory in 4d

As already mentioned, the N = 4 super Yang-Mills theory in four dimen-

sions [100, 72] is a maximally supersymmetric and superconformal gauge

theory. The theory is scale invariant at classical and quantum level and the

β -function is believed to vanish to all orders in perturbation theory as well
as non perturbatively [183, 178, 145, 120, 71]. The action can be derived by

dimensional reduction from the correspondingN = 1 SU(N) gauge theory in
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Gauge theory String theory

Yang Mills Coupling gYM String coupling gs

Number of colors N String tension T ≡ R2
2πα ′

’t Hooft coupling λ ≡ g2YMN AdS5×S5 radius R
AdS5/CFT4

gs = g2YM
4π

T =
√

λ
2π

’t Hooft limit

N → ∞ λ = fixed gs → 0 T = fixed

planar limit non-interacting string

Strong Coupling

N → ∞ λ � 1 gs → 0 T � 1

classical supergravity

Weak coupling

N → ∞ λ � 1 gs → 0 T � 1

perturbative SYM

Table 2.1: Summary of the contents and parameters involved in AdS5/CFT4 duality.
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ten dimensions:

LY M =
1

g210
Tr
(− 1

2
FMNFMN + iψ̄ΓMDMψ

)
. (2.4)

DM the covariant derivative, DM = ∂M− iAM, where AM is the gauge field with

M the SO(9,1) Lorentz index, M = 0,1, ...,9, and FMN the corresponding field

strength, which is given by FMN = ∂MAN − ∂NAM − i[AM,AN ]. The matter

content ψ is a ten-dimensional Majorana-Weyl spinor. The gauge group is

SU(N) and the fields AM and ψ transform in the adjoint representation of

SU(N).
By dimensionally reducing the action (2.4), the ten-dimensional Lorentz

group SO(9,1) is broken to SO(3,1)× SO(6), where the first group is the
Lorentz group in four dimensions and the second one remains as a residual

global symmetry (R-symmetry). Correspondingly, the Lorentz index splits in
two sets: M = (μ, I), where μ = 0,1,2,3 and I = 1, ...,6. We need to require
that the fields do not depend on the transverse coordinates I. Hence, the gauge
field AM gives rise to a set of six scalars φI and to four gauge fields Aμ . Also

the fermions split in two sets of four complex Weyl fermions ψa,α and ψ̄ ā,α̇

in four dimensions, where a = 1, ...,4 is an SO(6) ∼= SU(4) spinor index and
α, α̇ = 1,2 are both SU(2) indices.
The final action for N = 4 SYM in four dimensions is

LY M =
1

g2YM
Tr
(− 1

2
FμνFμν−(DμφI)2+

1

2
[φI,φJ]2+iψ̄ΓμDμψ +ψ̄ΓI[φI,ψ]

)
.

(2.5)

2.3 The algebra

We have already stressed that the theory has a SU(N) gauge symmetry, thus
the gauge fields are su(N)-valued, and they also carry an index i = 1, ...,N2−
1, which is not explicit in the formulas above.

The conformal group in four dimensions is3 SO(4,2)∼= SU(2,2). The gen-
erators for the conformal algebra so(4,2) are the Lorentz transformation gen-
erators, which consist of three boosts and three rotationsMμν , the four transla-

tion generators Pμ , coming from the Poincaré symmetry, the four special con-

formal transformation generators Kμ and the dilatation generator D. Hence in
total we have fifteen generators.

The theory is also invariant under the R-symmetry, which plays the role of

an internal flavor symmetry which can rotate the supercharges and the scalar

fields. The R-symmetry group is SO(6)∼= SU(4) and it is spanned by fifteen
generators, RIJ .

3The symbol ∼= means that the two groups are locally isomorphic.
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The supersymmetry charges Qa
α , Q̄āα̇ , which transform under R-symmetry

in the four-dimensional representations of SU(4) (4 and 4̄ respectively), com-
mute with the Poincaré generators Pμ . They do not commute with the special

conformal transformation generator Kμ . However, their commutation rela-

tions give rise to a new set of supercharges. We denote this new set of su-

percharges with Sā
α and S̄aα̇ . They transform in the 4̄ and 4 representation of

SU(4). Thus we have in total 32 real fermionic generators.
The SO(4,2)×SO(6) bosonic symmetry groups and the supersymmetries

merge in a unique superconformal group SU(2,2|4). Actually, due to the van-
ishing of central charge for SYM, the final symmetry group is PSU(2,2|4),
where P denotes the fact that we are removing ad hoc the identity generators
which can appear in the commutators. Notice that inn supersymmetric theo-

ries usually the anticommutators between the supercharges Q and S give an

operator which commute with all the rest, the so called central charge.
The relevant relations are[

D ,Pμ
]
=−iPμ

[
D ,Kμ

]
= iKμ

[
Pμ , Kν

]
= 2i(Mμν −ημνD)[

Mμν , Pλ
]
= i(ηλνPμ −ημλ Pν)

[
Mμν , Kλ

]
= i(ηλνKμ −ημλ Kν)[

Mμν ,Mλρ
]
=−iημλ Mνρ + cycl. perm.{

Qa
α , Q̄

b̄
α̇

}
= γμ

αα̇δ ab̄Pμ

{
Sā

α , S̄
b
α̇

}
= γμ

αα̇δ ābKμ

[D ,Qa
α ] =− i

2
Qa

α
[
D , Q̄ā

α̇
]
=− i

2
Q̄ā

α̇[
D ,Sā

α
]
=

i
2

Sā
α

[
D , S̄aα̇]=

i
2

S̄aα̇

[Kμ , Qa
α ] = σ μ

αα̇εα̇β̇ S̄a
β̇

[
Kμ , Q̄ā

α̇
]
= σ μ

αα̇εαβ Sā
β[

Pμ , Sā
α
]
= (σμ)αα̇εα̇β̇ Q̄ā

β̇

[
Pμ , S̄a

α̇
]
= (σμ)αα̇εαβ Qa

β

[Mμν , Qa
α ] = iσ μν

αβ εβγQa
γ

[
Mμν , Q̄ā

α̇
]
= iσ μν

α̇β̇
εβ̇ γ̇Q̄ā

γ̇[
Mμν , Sā

α
]
= iσ μν

αβ εβγSā
γ

[
Mμν , S̄a

α̇
]
= iσ μν

α̇β̇
εβ̇ γ̇ S̄a

γ̇{
Qa

α ,Sb̄
β

}
=−iεαβ (σ IJ)ab̄RIJ +σ μν

αβ δ ab̄Mμν − εαβ δ ab̄D{
Q̄ā

α̇ , S̄b
β̇

}
=−iεα̇β̇ (σ IJ)ābRIJ +σ μν

α̇β̇
δ ābMμν − εα̇β̇ δ ābD . (2.6)

The matrices σ μ
αα̇ and (σ IJ)ab̄ are the Dirac 2×2 and 4×4 matrices, respec-

tively.
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Matrix realization
It is natural to reorganize the su(2,2|4) generators as 8×8 super-matrices:

M =

(
Pμ , Kμ , Lμν , D Qαa, S̄α̇a

Sā
α , Q̄ā

α̇ RIJ

)
. (2.7)

On the diagonal blocks we have the generators for two bosonic sub-sectors,

su(2,2) and su(4), while on the off-diagonal blocks we have the fermionic
generators. The super-algebra is realized by two conditions which naturally

generalize the su(n,m) algebra. First, the super-trace4 of the matrix (2.8)

vanishes. Second it satisfies a reality condition

HM†−MH = 0 (2.9)

where

H =

(
γ5 0

0 1

)
. (2.10)

The matrix 4× 4 γ5 appears in the above condition because γ5 realizes the
Hermitian conjugation in the SU(2,2)∼= SO(4,2) sector.
Actually, we want to consider the psu(2,2|4) algebra. The 8×8 su(2,2|4)

identity matrix trivially satisfies both properties of tracelessness and of Her-

micity. This means that even though such a matrix is not among our set of

initial generators of the su(2,2|4) algebra, at some point it will appear as a
product of some commutators. This is analogous to what we have discussed

above, where the anticommutator between Q and S might have a term pro-

portional to the unit matrix. In the SYM, the central charge is zero, thus we

would like to remove the unit matrix. We therefore mod out the u(1) factor
ad hoc. This is indeed the meaning of the p in psu(2,2|4). Note that such an
algebra cannot be realized in terms of matrices.

The total rank for the PSU(2,2|4) supergroup is 7. The unitary representa-
tion is labelled by the quantum numbers for the bosonic subgroup. This means

that the fields of N = 4 SYM, or better, local gauge invariant operators, and

the states of the AdS5×S5 string are characterized by 6 charges, which are
the Casimirs of the group:

(Δ = E, S1, S2, J1, J2, J3 ) . (2.11)

4For any super-matrix

M =

(
A X
Y B

)
(2.8)

where the block-diagonal are even matrices and off-block elements are odd, the super-trace is

defined as STrM = TrA−TrB.
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The equality for the first charge is really the expression of the AdS/CFT cor-

respondence. Let us see in more detail what these quantum numbers are.

Coming from the SU(2,2) sector, since SO(1,1)× SO(3,1) ⊂ SO(4,2), we
have the dilatation operator eigenvalue Δ (or the string energy E), which can

take continuos values, and the two spin eigenvalues S1, S2, which can have
half-integer values, and which are the charges related to the Lorentz rotations

in SO(3,1). Notice that Δ and E depend on the coupling constant λ , cf. (2.3).
The other sector SU(4)∼= SO(6) contributes with the “spins” J1, J2, J3, which
characterize how the scalars can be rotated.

The string side
The isometry group of AdS5× S5 is SO(4,2)×SO(6), which is nothing but
the bosonic sector of PSU(2,2, |4). Thus on the string side the bosonic sym-
metries are realized as isometries of the background where the string lives.

The superstring also contains fermionic degrees of freedom which will mix

the two bosonic sectors corresponding to AdS5 and S5. The string spectrum is

labelled by the charges (2.11). In principle one can also have winding num-

bers to characterize the string state, in addition to (2.11). The string energy

E is the charge corresponding to time translation in AdS5, while S1, S2 cor-
respond to the Cartan generators of rotations in AdS5. The last three charges

corresponds to Cartan generators for S5 rotations, since the five-dimensional
sphere can be embedded in �6, so we have three planes the rotations.

2.4 Anomalous dimension and spin chains

In a conformal field theory the correlation functions between local gauge in-

variant operators contain all the dynamical information. There is a special

class of local operators, the conformal primary operators, whose correlators
are fixed by conformal symmetry. In particular, these are the operators anni-

hilated by the special conformal generators K and by the supercharges S, i.e.
KO = 0 and SO = 0. Thus, representations corresponding to primary opera-

tors are classified by how the dilatation operator D and the Lorentz transfor-

mation generators M act on O , i.e. by the 3-tuplet (Δ,S1,S2):

DO = ΔO . (2.12)

where Δ is the scaling dimension, namely the dilatation operator eigenvalues.

Since the special conformal transformation generator K lowers the dimension

by 1 and the supercharge S by 1
2
, cf. (2.6), in a unitary field theory the pri-

mary operators correspond to those operators with lowest dimension. They

are also called highest-weight states. All the other operators in the same mul-

tiplet can be obtained by applying iteratively the translation operator P and
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the supercharges Q (descendant conformal operators).
The correlation functions of primary operators are highly restricted by the

invariance under conformal transformations, and they are of the form:

〈Om(x)On(y)〉=
Cδmn

|x− y|2Δ . (2.13)

In the scaling dimension there are actually two contributions:

Δ = Δ0+ γ . (2.14)

Δ0 is the classical dimension and γ is the so called anomalous dimension. It
is in general a non-trivial function of the coupling constant λ . It appears once
one starts to consider quantum corrections, since in general the correlators

will receive quantum corrections from their free field theory values.

When we move from the classical to the quantum field theory we also need

to face also the problem of renormalization. In general in quantum field theory

the renormalization is multiplicative. The operators are redefined by a field

strength function Z according to

Om = Zn
mOn,0 (2.15)

where the subscript 0 denotes the bare operator, and Z depends on the physical

scale μ (typically Z ∼ μγ ). As an example, we can consider the correlators

in eq. (2.13). Applying the Callan-Symanzik equation, recalling that the β -
function vanishes and defining the so called mixing matrix Γ as

Γk
m = ∑

n
(Z−1)n

m
∂Zk

n

∂ logμ
, (2.16)

we see that when the operator Γ acts on a basis {Om}, then the corresponding
eigenvalues are indeed the anomalous dimensions γm:

ΓOm = γmOm . (2.17)

Γ is the quantum correction to the scaling operator D, i.e. D = D0+Γ.

2.4.1 The Coordinate Bethe Ansatz for the su(2) sector

In this section I will sketch the Coordinate Bethe Ansatz, also called Asymp-
totic Bethe Equations (ABE), for the bosonic closed SU(2) sub-sector, as the
title suggested, in order to get the feeling of why such techniques are so im-

portant. I will not write down the all-loop PSU(2,2|4) Bethe equations, since
we will not use them in the works. However, they are the basic connection

between integrability, SYM theory, spin chain and the S-matrix. For this rea-

son, I have anyway decided to dedicate a section to explain how they work. In
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paper III we have compared certain string energies with the Bethe equations.

This is done in the AdS4/CFT3, but the principles are the same. In particular,
we have only worked in a SU(2)×SU(2) sector.
As pointed out in the previous section, a lot of the relevant physical infor-

mation are contained in the anomalous dimension of a certain class of gauge

invariant operators. The fact that the operators are gauge invariant means that

we have to contract the SU(N) indices. This can be done taking the trace.
In general, we can have multi-trace operators. However, in the planar limit

(N→∞) the gauge invariant operators which survive are the single trace ones.
Thus from now on, we are only dealing with single trace local operators (and

with their anomalous dimension).

The incredible upshot of this section will be that the mixing matrix (2.16)

is the Hamiltonian of an integrable (1+1) dimensional spin-chain! There are
two important points in the last sentence. First, it means that the eigenval-

ues of the mixing matrix are the eigenvalues of a spin-chain Hamiltonian,

namely the corresponding anomalous dimensions are nothing but the solutions
of the Schrödinger equation of certain spin-chain Hamiltonians. I cannot say
whether it is easier to compute γ , or to solve some quantummechanical system

such as an one-dimensional spin-chain. But here it enters the second keyword

used: integrable. The spin system has an infinite set of conserved charges,

all commuting with the Hamiltonian (which is just one of the charges), which

allows us to solve the model itself. In concrete terms, this means that we can

compute the energies of the spin chain, namely the anomalous dimension (of

a certain class) of N = 4 SYM operators! Here the advantage is not purely

conceptual but also practical: we can exploit and/or export in a string theory

contest some methods and techniques usually used in the condensed matter

physics for example. And this is what we will see in a moment.

We have just claimed that the anomalous dimensions (for a certain class

of operators) can be computed via spin chain picture. We have to make this

statement more precise. In particular, we need to specify when and how it is

true. In order to illustrate how integrability enters in the gauge-theory side,

and its amazing implications, I have chosen to review the simplest exam-

ple: the closed bosonic SU(2) sub-sector of SO(6). Historically, the con-

nection between SYM gauge theory and spin chain was discovered by Mi-

nahan and Zarembo for the scalar SO(6) sector of the planar PSU(2,2|4)
group [158].This has been the starting point for all the integrability machinery

in AdS/CFT.

The scalar fields φI with I = 1, . . . ,6 can be rearranged in a complex basis.
For example, we can write

Z = φ1+ iφ2 W = φ3+ iφ4 Y = φ5+ iφ6 . (2.18)

The three complex fields Z,W and Y generate SU(4). The SU(2) subgroup is
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Figure 2.1: Example of a spin chain. The “up” arrow represents the field Z, while the
down spin is represented by the fieldW .

constructed by considering two of the three complex scalars. For example, we

can take the fields Z and W . We are considering gauge invariant operator of

the type

O(x) = Tr(WZWWZWWWWZZWW )|x + . . . , (2.19)

where the dots indicate permutations of the fields and the subscript on the

right hand side stresses the fact that these are all fields evaluated in the point

x. If one identifies the fields in the following way

Z =↑ W =↓ , (2.20)

then the operator O in (2.19) can be represented by a spin chain. In particular,

for the operator (2.19) O is the spin chain in figure 2.1. If we have L fields

sitting in the trace of the operator O , it means that we are considering a spin
chain of length L, with L sites. Each site has assigned a spin, up or down,

according to the identification (2.20).

At one-loop the dilation operator for gauge invariant local operators which

are su(2) multiplets can be identified with the Hamiltonian of a Heisenberg
spin chain, also denoted as a XXX1

2

spin chain. Note that this is a quantum

mechanics system.

The identification between the Heisenberg spin chain Hamiltonian and the

SU(2) one-loop dilatation operator can be seen by an explicit computation of
such an operator [158]. In particular, one has that

Γ(1) =
λ
8π2

L

∑
l=1

Hl,l+1 (2.21)
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where Hl,l+1 is the operator acting on the sites l and l +1, explicitly

H =
λ
8π2

L

∑
l=1

Hl,l+1 =
λ
8π2

L

∑
l=1

(Il,l+1−Pl,l+1)

=
λ

16π2

L

∑
l=1

(
Il,l+1−−→σ l ·−→σ l+1

)
, (2.22)

where Pl,l+1 = 1
2
(Il,l+1+

−→σ l ·−→σ l+1) is the permutation operator. The one-loop
order is mirrored by the fact that the Hamiltonian only acts on the sites which

are nearest neighbors. The identity operator Il,l+1 leaves the spins invariant,

while the permutation operator Pl,l+1 exchanges the two spins.

We want to compute the spectrum. This means that we want to solve the

Schrödinger equation H|Ψ〉 = E|Ψ〉. |Ψ〉 will be some operators of the type
(2.19), and the energy will give us the one-loop anomalous dimension for such

operator. The standard approach would require us to list all the 2L states and

then, after evaluating the Hamiltonian on such a basis, we should diagonalize

it. This is doable for a very short spin chain, not in general for any value L.
The brute force here does not help, and indeed there are smarter ways as the

one found by Bethe in 1931 [67].

One-magnon sector
Let us choose a vacuum of the type

|0〉 ≡ | ↑↑ . . . ↑↑ . . . ↑〉 (2.23)

and consider an infinite long spin chain, i.e. L→∞. The vacuum has all spins

up and it is annihilated by the Hamiltonian (2.22). The choice of the vacuum

breaks the initial SU(2) symmetry to a U(1) symmetry. Consider now the

state with one excitation, namely with an impurity in the spin chain:

|x〉 ≡ | ↑↑ . . . ↑ ↓︸︷︷︸
x

↑ . . . ↑〉 . (2.24)

The excitation, called a magnon, is sitting in the site x of the spin chain. The
wave function is

|Ψ〉=
∞

∑
x=−∞

Ψ(x)|x〉 . (2.25)

By computing the action of the Hamiltonian H on |Ψ〉, one obtains

H|Ψ〉 =
∞

∑
x=−∞

Ψ(x)(|x〉− |x+1〉− |x−1〉)

=
∞

∑
x=−∞

(2Ψ(x)−Ψ(x+1)−Ψ(x+1)) |x〉 . (2.26)

18



Let us make an ansatz for the wave-function. Choosing

Ψ(x) = eipx p ∈� , (2.27)

then the Schrödinger equation for the one-impurity state reads

H|Ψ〉=
∞

∑
x=−∞

eipx (2− eipx− e−ipx) |x〉 . (2.28)

This means that the energy for the one magnon state is

E(p) =
λ
8π2

(
2− eip− e−ip)=

λ
2π2

sin2
p
2
. (2.29)

This is nothing but a plane wave along the spin chain.

The spin chain is a discrete system. There is a well defined length scale,

which is given by the lattice size, and the momentum is confined in a region

of definite length, typically the interval [−π,π] (the first Brillouin zone). An
infinite chain might be obtained by considering a chain of length L and assume

periodicity. Thus we need to impose a periodic boundary condition on the

magnon wave function, which means

Ψ(x+L) = Ψ(x) ⇒ eipL = 1 ⇒ pn =
2πn

L
n ∈ � . (2.30)

These are the Coordinate Bethe Equations for the one-magnon sector5. They
are the periodicity conditions of the spin chain.

Leaving the spin chain picture, and going back to the gauge theory, the

operator O in (2.19) is not only periodic but cyclic (due to the trace). For the

single magnon this implies that the excited spin must be symmetrized over all

the sites of the chain. Thus the total energy vanishes6. Indeed, operators of

the kind

O = Tr(. . .ZZZWZZ . . .) (2.31)

are chiral primary operators: their dimension is protected and one can see that

the cyclicity of the trace means that the total momentum vanishes, which is

another way of saying that the energy is zero, cf. (2.29).

Thus there is no operator in SYM that corresponds to the single magnon

state. This is actually true for all sectors, since it follows from the cyclicity of

the trace.

5In condensed matter physics they are usually called Bethe-Yang equations.
6This is equivalent to impose Ψ(x) = Ψ(x+1), which gives eip = 1.
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Two-magnon sectors
Consider now a state with two excitations, namely two spins down:

|x < y〉= |↑ . . . ↑ ↓︸︷︷︸
x

↑ . . . ↑↑ ↓︸︷︷︸
y

↑ . . .〉 ,

|Ψ〉=
∞

∑
x<y=−∞

Ψ(x,y)|x < y〉 . (2.32)

The Hamiltonian (2.22) is short-ranged, thus when x + 1 < y it proceeds as
before for the single magnon state, just that in this case the energy E would

be the sum of two magnon dispersion relations. The problem starts when

x + 1 = y, namely in the contact terms. In this case the Scrödinger equation
for the wave-function gives

2Ψ(x,x+1)−Ψ(x−1,x+1)−Ψ(x,x+2) = 0 . (2.33)

It is clear that a wave function given by a simple sum of the two single magnon

states as in (2.27) does not diagonalize the Hamiltonian (2.22), but “almost”.

Using the following ansatz7

Ψ(x,y) = eipx+iqy−i δ
2 + eiqx+ipy+i δ

2 x < y , (2.34)

and imposing that it diagonalizes the Hamiltonian, one finds the value for the

phase shift δ that solves the equation, namely

eiδ (p,q) =−1−2eiq + eip+iq

1−2eip + eiq+ıp =−cot p/2− cotq/2−2i
cot p/2− cotq/2+2i

. (2.35)

For this phase shift the total energy is just the sum of two single magnon

dispersion relations (trivially the ansatz (2.34) with the phase shift given by

(2.35) solves the case with x + 1 < y). What does this phase shift repre-

sent? This is the shift experienced by the magnon once it passes through the

other excitation, namely when it scatters a magnon of momentum q. Hence
S(p,q)≡ eiδ (p,q) is nothing but the corresponding scattering-matrix.
We still have to impose the periodic boundary conditions on the wave func-

tions8:

Ψ(0,y) = Ψ(L,y) , (2.36)

which, after substituting the phase shift (2.35) in (2.34), gives

eipL = e−iδ (p,q) = eiδ (q,p) = S(q, p) eiqL = eiδ (p,q) = S(p,q) . (2.37)

7For the case with x > y it is sufficient to exchange the role of x and y.
8The wave function is symmetric with respect to x, y.
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Again, these are the Coordinate Bethe equations for the su(2) sector with two
magnons.

Finally, we need to impose the cyclicity condition, i.e. p + q = 0, which

means that the Bethe equations (2.37) are solved for

p =
2πn
L−1 =−q . (2.38)

The energy becomes

E = E(p)+E(q) =
λ
π2

sin2
(

πn
L−1

)
. (2.39)

Maybe the reader is more familiar to the Bethe Equations expressed in terms

of the rapidities, also called Bethe roots9, namely introducing

uk =
1

2
cot

pk

2
(2.40)

and using p =−q, the phase shift reads

eiδ (u,−u) = S(u,−u) =−u− i
2

u+ i
2

. (2.41)

K magnon sectors
The results of the previous section can be generalized to any number of magnons

K (with K < L). The Bethe Equations for general K are

eipkL =
K

∏
j �=k

e−iδ (pk,p j) =
K

∏
j �=k

S(p j, pk) . (2.42)

The energy is a sum of K single particle energies

E =
K

∑
k=1

Ek =
λ
2π2

K

∑
k=1

sin2
pk

2
, (2.43)

and the cyclicity condition is

K

∏
k=1

eipkL = 1 . (2.44)

9In chapter 3 the rapidity is denoted with the greek letter θ . Although the notation might seem
confusing it is the standard one used in literature.
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In terms of the rapidities (2.40) all these conditions take the maybe more com-

mon form of

1=

(
uk + i

2

uk− i
2

)L K

∏
j=1,k �= j

u j−uk + i
u j−uk− i

(Bethe Equations)

E =
K

∑
k=1

(
i

uk + i
2

− i
uk− i

2

)
(energy)

1=
K

∏
k=1

uk + i
2

uk− i
2

(cyclicity) . (2.45)

What have we achieved? The remarkable point is that the Hamiltonian of a

(1+1)-dimensional spin chain has been diagonalized by means of the 2-body
S-matrix S(p,q), cf. (2.42). Indeed, in order to know the spectrum of K
magnons, where K is arbitrary, we only need to solve the Bethe equations and

to compute the two-body S-matrix. The K-body problem is then reduced to

a 2-body problem, which is an incredible achievement. This does not hap-

pen in general. The underlying notion that we are using here is that each
magnon goes around the spin chain and scatters only with one magnon each
time. This is possible only for integrable spin chains, or in general for inte-
grable models10. I will come back more extensively on this: the next chapter
3 is dedicated to the many possible meanings of the world “integrability”!

Here we have shown in details the SU(2) sub-sector for the fields in the
spin 1

2
representation. However, this can be generalized to other representa-

tions for the same group, or to other groups (e.g SU(N)) and also to higher
loops. What is really interesting for us, in an AdS/CFT perspective, is that

the Asymptotic Bethe Equations (ABE), which is another name for the Co-
ordinate Bethe equations, for the full (planar) PSU(2,2|4) group have been
written down. This has been done by Beisert and Staudacher [54].

At the beginning of the section we explained that the Bethe equations are

called “asymptotic”. “Asymptotic” since the Bethe procedure captures the

correct behavior of the anomalous dimension only up to λ L order for a chain

of length L. After this order, wrapping effects have to be taken into account.
They reflect the fact that the chain has a finite size. At the order n in per-

turbation theory, the spin chain Hamiltonian involves interaction up to n + 1

sites: Hl,l+1,...,l+n. If the spin chain has total length L = n + 1, then it is

clear that there might be interactions that go over all the spin chain, namely

10There are indeed further assumptions about integrability. We are indeed assuming that the only

kind of scattering is elastic, that there is no magnon produced in such scatterings and that the

initial and final momenta are the same. We have already used these hypothesizes in equation

(2.34) for the two-magnon sector.
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they wrap the chain11. At this point the ABE are no longer valid. In order

to compute these finite-size effects, one might proceed with different tech-

niques as the Lüscher corrections [139, 138]12, the Thermodynamic Bethe

Ansatz (TBA) [11], cf. [21, 20, 109, 69] for very recent results, and the Y-

system [110]. These topics currently are one of the main area of research in

the contest of integrability and AdS/CFT, however in this thesis we will not

face the problem of finite-size effects13.

The explicit one-loop PSU(2,2|4) spin-chain Hamiltonian has been derived
by Beisert in [46]. This means that the expression of the one-loop dilatation

operator for the N = 4 SYM is known. Increasing the loop order usually

makes things (and thus also the dilatation operator) sensibly more compli-

cated, cf. e.g. [41]. Moreover, we do not really need the explicit expression

of the Hamiltonian, once one has the Bethe equations. Indeed, nowadays we

have from the one-loop [53] to the all loop Asymptotic Bethe equations for
the planar PSU(2,2|4) [54]14.

11I will come back on the wrapping effects in chapter 6.
12For generalizations and applications of Lüscher formulas for the computations of finite-size

effects we refer the reader to the papers [123, 29, 28]. The four loop anomalous dimension for

the Konishi operator computed in [29] has been positively checked against the gauge theory

perturbative computation of [90].
13The wording “finite-size effect‘” should not be confused with what we will illustrate in chapter

7 and with the contents of paper III, cf. the discussion in chapter 7.
14 Certainly, they look more complicated than the ones written in (2.42). The phase shift becomes

a matrix, since the excitations also get flavor indices (the Bethe Ansatz equations are “nested”).

Each rapidity (called a Bethe root) gets an extra index corresponding to the level and for each
level we can have a different number of excitations for the particular root. Thus one now has

different levels and consequently the Bethe equations are written for each level.
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3 Classical vs. Quantum Integrability

The superstring theory on AdS5×S5 can be described by a very special two-
dimensional field theory. Indeed, such a theory shows an infinite symmetry

algebra. Before discussing such an algebra for the specific case of the super-

string we will review other integrable (1+ 1) field theories, their conserved
(local and non-local) charges and finally stress the difference between inte-

grability at classical and quantum level.

The discovery of an infinite set of conserved charges in two-dimensional

classical σ models is due to Pohlmeyer [167] and Lüscher and Pohlmeyer [140].

A different derivation of the tower of conserved charges has been given by

Brezin et al. in [70]. A very useful review is Eichenherr’s paper [82].

3.1 Principal Chiral Model

As a prototype to start our discussion with, we consider the so-called Principal

Chiral Model (PCM). The following presentation is mostly based on [86]. The

PCM is defined by the following Lagrangian:

L =
1

γ2
Tr
(
∂μg

−1∂ μg
)
, (3.1)

where g is a group valued map, g : Σ→G with Σ a two-dimensional manifold
and G a Lie group. In particular Σ is parameterized by σ μ = (τ,σ). We can
think to Σ as the string world-sheet. γ is a dimensionless coupling constant,
the model is conformally invariant. The model (3.1) possesses a GL ×GR

global symmetry (simply due to the trace cyclicity) which corresponds to left

and right multiplication by a constant matrix, i.e. GL×GR : g→ g0L gg−10R .

The conserved Noether currents associated to such symmetries are

jR =−dgg−1 jL = +g−1dg , with g jLg−1 =− jR . (3.2)

These currents are one-forms and they are also called Maurer-Cartan forms

(MC-forms). They are nothing but vielbeins; indeed j(L,R) are g-valued func-

tions and they span the tangent space for any point g(τ,σ) in G. We can then
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write

j = jata = Ea
MdXMta

jR
μ =−∂μgg−1 jL

μ = +g−1∂μg (3.3)

where XM denotes the specific parameterization chosen for the M-dimensional

group manifold G. ta are the generators of the corresponding Lie algebra g,

which obey the standard Lie algebra relations [ta, tb] = f abc.

The Lagrangian (3.1) can be written in terms of the right and left currents,

namely L = − 1
γ2 Tr( jL

μ jμL) = − 1
γ2 Tr( jR

μ jμR). The equations of motion fol-
lowing from (3.1) are nothing but the conservation laws for the right and left

currents:

∂ μ jL
μ = ∂ μ jR

μ = 0 . (3.4)

Moreover, by construction the currents also satisfy the so-calledMaurer-Cartan

identities

∂μ j(R,L)
ν −∂ν j(R,L)

μ +[ j(R,L)
μ , j(R,L)

ν ] = 0 . (3.5)

The equation (3.5) encodes all the information about the algebraic structure of

the model. Also, j(R,L)
μ can be seen as a two-dimensional gauge field. Then,

when one introduces the covariant derivative Dμ = ∂μ +[ j(R,L)
μ , ], the identity

(3.5) can be interpreted as a zero-curvature equation. The covariant derivative

Dμ acts on the elements of the Lie algebra g.

Local and non-local conserved charges in PCM
The PCM has two different sets of conserved charges: the local and the non-

local ones. Both conserved quantities can be obtained from a unique gener-

ating functional, the monodromy matrix. They correspond to an expansion
of the monodromy matrix around different points1, and I will discuss these

aspects more extensively below.

First consider the following charges:

Qa
(0) =

∫ ∞

−∞
ja
τ(σ)dσ

Qa
(1) =

∫ ∞

−∞
ja
σ (σ)dσ − 1

2
f abc

∫ ∞

−∞
dσ jb

τ(σ)
∫ σ

−∞
dσ ′ jc

τ(σ
′) . (3.6)

The first one is local, i.e. it is an integral of local functions, and it is the

global right and left symmetry of the model; while the second one is bi-local.

The Poisson brackets between Qa
(0) and Qa

(1) generate a series of charges, Qa
(n),

which are conserved and which are integrals of non-local functions. Therefore

1There is, indeed, another way of constructing such non-local charges by an iterative procedure,

for more details we refer the reader to the original paper [70].
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the set of charges generated byQa
(0) andQa

(1) are called non-local charges. The

basic idea is that such charges show certain “hidden” symmetries of the two-

dimensional model, not the ones directly seen by dynamical point-particles.

The conservation laws for Qa
(n) follow directly from the equations of motion

(3.4). Note that since the charges Qa
(n) are non-local, they will not commute

in general, and they will not be additive when acting on some generic multi-

particle state. They are fundamental in order to understand the classical and

quantum integrability of the model. In particular when it is possible to ex-

tend such charges to the quantum level, they generate a quantum group called

Yangian, whose structure yields to the factorizability of the S-matrix.

Beside the charges Qa
(n) there are another type of conserved quantities,

which are integrals of local functions of the fields. Such charges are additive

on (asymptotic) multi-particle states and since they commute this puts severe

constraints on the dynamics, as we will discuss in the section 3.3. The basic

idea is that such local charges directly generalize the energy-momentum con-

servation law to higher spin. Indeed, consider the quantities Tr( j(R,L)
± j(R,L)

± ).
From the equations of motion (3.4) and the Maurer-Cartan identities (3.5) it

follows that

∂+Tr
(

j(R,L)
− j(R,L)

−
)

= ∂−Tr
(

j(R,L)
+ j(R,L)

+

)
= 0 . (3.7)

This is nothing but the conservation of the PCM energy-momentum tensor.

Differentiating the action (3.1) with respect to the two-dimensional (world-

sheet) metric gμν one has

Tμν =− 1

2γ2
Tr

(
jμ jν − 1

2
gμν

(
jλ jλ

))
, (3.8)

and in the light-cone coordinates x±= σ±τ it becomes T±±=− 1
2γ2 Tr( j± j±).

In general, we can extend (3.7) by considering a higher m rank tensor, namely

∂+Tr
(
( j(R,L)
− )m

)
= ∂−Tr

(
( j(R,L)

+ )m
)

= 0 . (3.9)

In particular, in order to satisfy the equation (3.9), any higher m-rank tensor
should be associated with the invariant and completely symmetric Casimir

tensor Ca1...amta1 ...tam . Note that, for the case m = 2, the invariant tensor is

simply the trace of two generators, i.e. Cab ∝ δ ab (multiplied by a constant nu-

merical factor which depends on the particular normalization of the algebra).

Then, the conservation laws (3.7) and (3.9) follow, apart from the equations

of motion for the currents, also from the algebraic identities which involve the

products of symmetric tensors Ca1...am and the antisymmetric structure con-
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stant f abc. The corresponding charges are then

qs
± =

∫ ∞

−∞
dσCa1...am ja1± (σ)... jam± (σ) , (3.10)

where s denotes the Lorentz spin, namely s = m− 1.The currents in qs can

be the right or left-invariant ones, they will give the same local conservation

laws.

The Lax pair in PCM
We have seen that we have currents which are conserved and which are flat,

cf. equations (3.4) and (3.5) respectively. At this point, we would like to

construct a flat linear combination of the currents j themselves. This means
that we consider a linear combination with arbitrary coefficients and demand

that it should satisfy the equation (3.5):

aμ = α jμ +βεμν jν such that ∂μaν −∂νaμ +[aμ ,aν ] = 0 . (3.11)

Since the mixed terms with αβ are zero, and the terms with the product εε
gives a factor −1, the solution for the coefficients are obtained from the equa-

tion α2−α−β 2 = 0, explicitly:

β =
1

2
sinhλ α =

1

2
(1± coshλ ) (3.12)

with λ ∈�. This means that there is an entire family of solutions depending
on a parameter λ , the spectral parameter2. The zero-curvature equation for
the connection a encodes all the dynamical informations, such as equations of
motion and Maurer-Cartan identities. Note that in general a is not conserved,
namely it does not satisfy the equations of motion (3.4).

We now explain why we want such connection a. The flatness condition for
a is associated with a two-dimensional differential system. In particular, for
the generic group-valued functionU(τ,σ), the compatibility condition for the
differential equations

∂U
∂τ

= aτ(z)U
∂U
∂σ

= aσ (z)U (3.13)

gives ∂ 2U
∂τ∂σ = ∂ 2U

∂σ∂τ , which corresponds to the zero-curvature equation for the

connection a, (3.11). The system (3.13) is also called the Lax representation,

and for this reason, the two components of the connection a are called the Lax
pair. The system (3.13) is integrable provided that a is flat and the solution for

2The spectral parameter is usually complex in theories with Euclidean signature, this is why it

is called z in the paper IV.

28



U is given by

U(C , z) = Pe−
∫
C a , (3.14)

where P denotes the path-order prescription for the generators contained in a
and C is a path on the world-sheet Σ. For any initial data, or boundary condi-
tion U(τ0,σ0), the system (3.13) has a unique solution given by the operator

(3.14). This Wilson line operator, which defines the parallel transport along

the path C with the connection a, is called the monodromy matrix.
The integrability of the system (3.13) is guaranteed by the fact that the

connection has a zero curvature (3.11), namely that the solution (3.14) is in-

dependent of deformations of the path. Let s parameterize the path C . A small

variation of the contour of integration, σ μ(s)→ σ μ(s)+ δσ μ(s), produces a
variation on the Wilson loop operator according to [169]

δ
δσ μ(s)

U = P

(
Fμν

dσν

ds
e
∫
C a(s)

)
, (3.15)

where Fμν is the field strength for the connection a. It is clear that for a flat
current, i.e. when Fμν = 0, such variation vanishes, namely the Wilson line

operator is invariant under continuos path deformations if the connection is

flat. This is a key point: From the fact that U cannot be deformed, it follows

that it might be the proper generating functional for the conserved charges.

Considering paths C of constant time and looking at small deformations of

the contours in the τ direction, then for a flat connection the Wilson line oper-
ator will be invariant under variations of these particular paths, namely under

deformations in time. Explicitly

Q(λ ) = lim
σ→±∞

U(C0;λ ) = Pe−
∫ ∞
−∞ a|τ0 (3.16)

where it has been stressed that the contour C0 is over surfaces of constant time

τ0 and that σ → ±∞3. Thus, summarizing, the conservation of the charges

Q(z,τ0) is guaranteed by the flatness of a (3.11). One can easily differentiate
U , and assuming that the currents fall down to zero at infinity and that a is flat,
one will get a vanishing time derivative for Q(z,τ0).
The non-local charges which we have discussed above can be obtained as a

Taylor expansion around the zero value of the spectral parameter λ . Around
λ = 0 the expansion of the flat connection a with the minus solution in (3.12)
is

aμ(λ )∼= λ
2

εμν jν − λ 2

4
jμ +O(λ 3) . (3.17)

3Closed strings require a closed loop and the trace in the definition of U. Moreover one needs

to assume a proper behavior for the currents at the boundary σ →±∞.
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Then defining

Q(λ )≡ 1+
∞

∑
n=1

(−1)n

n!
λ nQ(n−1) , (3.18)

one has at the leading order in λ expanding the exponential in (3.16)

Q(0) =
1

2

∫ ∞

−∞
dσ jτ(σ)

Q(1) =
1

2

∫ ∞

−∞
dσ jσ (σ)− 1

4

∫ ∞

−∞
dσ
∫ σ

−∞
dσ ′ jτ(σ) jτ(σ ′) . (3.19)

Apart for an irrelevant numerical factor these charges are the same presented

above in (3.6).

Some concrete examples of the PCM are the models with groupG = SU(N)
and the O(4) ∼ SU(2)× SU(2) model. Most relevant for us is the GS type
IIB superstring in AdS5× S5 in the light-cone gauge with symmetry group
P(SU(2|2)×SU(2|2)). This model will be elaborated on in chapter 6.

3.2 Coset model

We now review some other very special two-dimensional σ -models, namely
those defined on a coset space. The presentation closely follows the paper by

Bena et al. [55].
For a coset space, the map g(τ,σ) takes values in the quotient space G/H.

H is a G-subgroup, called isotropy group or stabilizer since it is required to
leave invariant the G elements. The coset space G/H corresponds to the iden-

tification

g(τ,σ)∼= g(τ,σ)h(τ,σ) , h(τ,σ) ∈ H . (3.20)

In some sense we can say that we have “half” of the global symmetries com-

pared with the PCM of the previous section 3.1: what is now left is only the

invariance under global left multiplication. However, now the subgroup H

plays the important role of gauge group, since each point in every orbit in

the target-space is defined up to a local transformation, i.e. a gauge trans-
formation, which does not contain any further physical information. For this

reason g(τ,σ) is the coset representative. Note that we could have used left-
multiplication in (3.20) to identify different g and then the remaining global
symmetry would have been the right one. The forthcoming arguments then

run analogously, with some an obvious exchange between the left and right

sectors.

It is possible to give a geometric construction for spaces such as �Pn =
SU(n+1)/(U(1)×SU(n)), AdSn =SO(n−1,2)/SO(n−1,1) and Sn =SO(n+
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1)/SO(n). For example, consider the n-dimensional sphere Sn embedded in

�
n+1. Fixing the north-pole (0,0, . . . ,1) we still can have all the rotations in

the n transverse directions, namely SO(n), which leave the north pole fixed
and do not change the points on the sphere Sn.

As already seen in the previous section, we can introduce the one-forms

Jμ = g−1∂μg , (3.21)

or expanded in the Lie algebra g generators ta

Jμ = Ja
μta . (3.22)

We follow the literature and use capital letters Jμ for the left-invariant currents

and vice versa, small letters jμ for the conjugated currents, since now the roles

played by the two kinds of Maurer-Cartan forms are very different. Indeed,

the group G acts on the coset representative as a left multiplication g0, thus
the currents Jμ transform according to

Jμ = g−1∂μg→ (g0g)−1∂μ(g0g) = g−1∂μg , (3.23)

since g0 is constant. Thus the currents are left-invariant, which corresponds to
the action of the global symmetry G. What happens to the MC-forms when we

consider the coset identification? This means that an element g will be multi-
plied by an element of the subgroup H, which now depends on the world-sheet

coordinates σ μ . Replacing g→ gh in J we obtain the following transformation

Jμ → h−1g−1∂μgh+h−1∂μh . (3.24)

The first term transforms covariantly under a local gauge H transformation,

but not the second term. Considering the conjugate currents

jμ =−gJμg−1 =−∂μgg−1 , (3.25)

we see that they transform covariantly under global left-multiplication:

g→ g0 g jμ → g0 jμ g−10 . (3.26)

For this reason it is important to distinguish between the left and right sectors,

since now the two types of currents are not both conserved anymore as it

was in the PCM case (3.4), and they transform in different ways under gauge

transformations. Obviously, we could have started defining the coset space

by a left-multiplication and inverted the role between “small” and “capital”

currents.

The algebra g is split in two sectors with respect to the H-action: g = h+ k,

where k ≡ g/h is the orthogonal complement in g with respect to h. As a
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consequence, also the left-invariant currents undergo the same split, namely

J = K +H , (3.27)

with obvious notation for the various terms. Thus H is really a connection,

a gauge field, while K represents the part of the one-form which transforms

covariantly under gauge transformations, i.e. h−1g−1∂gh in (3.24). Notice

that the current

k =−gKg−1 (3.28)

is gauge invariant. Finally, the current jμ does not have a defined grading,

since the rotation with g and g−1 mixes the two sectors h and g/h, however
one keeps the notation h and k to denote gHg−1 and gKg−1 respectively.
The Lagrangian is as for the PCM (3.1)

L =
1

γ2
Tr
(
∂μg

−1∂ μg
)

=
1

γ2
Tr
(
JμJ

μ)=
1

γ2
Tr
(
jμ j

μ) . (3.29)

Since the two tangent spaces h and k are orthogonal, this leads to the following

expression for the L

L =
1

γ2
Tr
(
HμH

μ +KμK
μ) . (3.30)

The term Tr(A|G/HB|H) vanishes, as it should, since the trace is a bilinear
invariant tensor that respects the structure of the space:

[k,h]⊆ k [h,h]⊆ h . (3.31)

Indeed, the grading g = h+ k means that the generators of one set span the

tangent space labelled by k and the other complementary set generates h, and

there is no generator left. Thus, the trace between any two elements spanning

orthogonal spaces vanishes, since the trace is nothing but a scalar product in

this tangent space.

Since the action (3.30) is gauge invariant, it is clear that one can integrate

out the gauge field H so that the only remaining contribution to the currents

in G/H is

LG/H =
1

γ2
Tr
(
KμK

μ) , (3.32)

which is again manifestly gauge invariant (recall that K is covariant under

local H transformations) and it is naturally defined on the quotient space G/H.
Again it follows from the equations of motion that the left-invariant currents

are conserved; they satisfy the usual identity ∂μJν − ∂νJμ + [Jμ ,Jν ] = 0. As

for the PCM, we can construct the flat linear combination a. However, in the
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coset space we need a further requirement: the space should be symmetric,

namely beyond the standard algebraic structure for a coset space (3.31), we

need also that

[k,k]⊆ h . (3.33)

This is indeed a necessary and sufficient condition for a bosonic coset space

to have a Lax representation [83, 84]. Note that other models can still have a

Lax representation. The AdS5×S5 superstring case is eloquent in this sense:
the bosonic sub-sector, which is strictly the coset AdS5× S5, is a symmetric
space. However, its full supersymmetric generalization is not. The corre-

sponding superstring action is not simply SG/H but there is a further contribu-
tion of the Wess-Zumino-Witten type (WZW) [149] which allows a Lax pair

reformulation [55].

In order to construct a flat connection let us consider the projections of the

Maurer-Cartan identities over h and k. Then ∂μJν −∂νJμ +[Jμ ,Jν ] = 0 gives

∂μHν −∂νHμ +
[
Hμ ,Hν

]
+
[
Kμ ,Kν

]
= 0

∂μKν −∂νKμ +
[
Hμ ,Kν

]
+
[
Kμ ,Hν

]
= 0 . (3.34)

Without the condition (3.33) the commutator
[
Kμ ,Kν

]
would have contributed

to both the differentials, dH and dK 4. Using the following identity

∂μ lν −∂ν lμ =−g(∂μLν −∂νLμ)g−1− [lμ , jν ]− [ jμ , lν ] (3.35)

valid for any current L and its conjugate l =−gLg−1, one has

∂μkν −∂νkμ +2[kμ ,kν ] = 0 . (3.36)

In this way, the flat connection corresponding to a in the PCM is just the

gauge-invariant one-form 2kμ , since it is conserved and it is also flat. Then

the construction for the monodromy matrix follows exactly the PCM model

in section 3.1.

3.3 The magic of (1+1)-dimensional theories

Something special happens for two-dimensional field theories which have an

infinite amount of conserved higher charges. This is mainly due to the fact
that there is only one spatial dimension, and that the charges can be used

to reshuffle the amplitudes in scattering processes. The role of integrability

in constraining the dynamics of the theory was discovered in the late 1970s

and early 1980s by Zamolodchikov and Zamolodchikov [194], Lüscher [137],

4As explained in [55], if k is a sub-algebra, then the commutator
[
Kμ ,Kν

]
sits only in the ∂k

terms.
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Kulish [136], Parke [165] and by Shankar and Witten [181]. In order to illus-

trate this point, we start with a two-dimensional theory with an infinite set

of charges, which are integrals of local functions and which are diagonal in

one-particle states. The charges are of the kind illustrated in Section 3.1. The

section is based on P. Dorey’s review [81] and on the pioneering paper [194].

Let us first introduce some notation and define what we mean by scattering.

We denote the particle state with the wave-function |A(θ)〉, where θ is the

rapidity, which is defined for a massive field theory5 as

p+a = 2maeθa p−a = 2mae−θa . (3.37)

p+ and p− are the momenta in the light-cone coordinates6. Suppose the

asymptotic in-state is composed of m particles. We can then write

|in〉= |Aa1(θ1) . . .Aam(θm)〉 . (3.38)

The hypothesis is that the particles are described by wave packets with an

approximate position for each momentum (for each rapidity) and that all the

interactions are short-ranged (since we are discussing massive field theories)

such that the m-particle state can be approximated by a sum of m single-

particle states (the wave packets are far enough apart to be considered single

particle states). An asymptotic in-state means that sufficiently backwards in

time the m particles do not interact. This imposes a certain ordering in the

state, since the particle which is traveling faster must be on the left in order to

avoid crossing with all other particles, vice versa the slowest particle should

be the first on the right, i.e.

θ1 > θ2 > · · ·> θm for in states . (3.39)

This also implies the reversed ordering for the out-state. Consider as well the
asymptotic state containing n particles, namely n independent wave packets

|out〉= |Ab1(θ1) . . .Abn(θn)〉 . (3.40)

Now the particles should travel without interacting for future times and the

slowest particle should be on the left and the particle moving fastest on the

right, namely in terms of rapidities

θ1 < θ2 < · · ·< θn for out states . (3.41)

The letters a1, . . .am and b1 . . .bn denote any possible set of quantum numbers

characterizing the particles.

5The rapidity can also be introduced for massless theory, but we are indeed interested in massive

field theories.
6The conventions are the same of paper II, namely p± = 1

2 (p0± p1).
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The S-matrix or scattering matrix is by definition the mapping relating the
in and out-states, namely it is defined by

|Aa1(θ1) . . .Aam(θm)〉= Sb1...bn
a1...am

(θ1, . . .θm;θ ′1 . . .θ
′
n)|Ab1(θ

′
1) . . .Abm(θ ′n)〉 ,

(3.42)

where it is intended to sum over the indices b1 . . .bn, and over the out-going

rapidities, which are ordered as explained above. We can also introduce the

Faddeev-Zamolodchikov (ZF) notation [194, 88] and write each asymptotic

state as a sequence of Aa(θ)’s, remembering that they do not commute and
they are ordered in increasing or decreasing rapidity for in or out-state respec-

tively, according to (3.39) and (3.41). Then one can write the state and the

S-matrix element in the following way:

Aa1(θ1) . . .Aam(θm)
Aa1(θ1) . . .Aam(θm) = Sb1...bn

a1...am
(θ1, . . .θm;θ ′1 . . .θ

′
n)Ab1(θ

′
1) . . .Abn(θ

′
n) .
(3.43)

The S-matrix is a unitary operator, namely it should respect the condition (in

operator notation)

S (θ1,θ2) S† (θ2,θ1) = � . (3.44)

In general one also requires that the S-matrix is invariant under parity trans-

formation (in our case the discrete symmetry which flips the spatial coordinate

σ to −σ ), time reversal and charge conjugation. In relativistic quantum field

theories the S-matrix turns out to be invariant also under the crossing sym-
metry, namely the transformation which exchanges one in-coming particle of
momentum pwith an out-going anti-particle of momentum−p, cf. discussion
in section 6.4.

Selection rules
Let us now come back to the local charges qs±. Since they commute with the
momentum operator, for a single particle state we have

qs
±|Aa(θ)〉= ω(s)

a e±sθ |Aa(θ)〉 , (3.45)

where ω(s)
a are the corresponding eigenvalues. For s = 0 and s = 1 we can

think about them as the energy and the momentum. However, we are assuming

that there exists an infinite number of higher rank local conserved charges,

namely we are assuming s > 1. Suppose now we act with the local conserved

charges on the in and out-states. Since the wave packets are well separated

and the charges are integrals of local functions, their action on such states is
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additive, namely

qs|Aa1(θ1) . . .Aam(θm)〉=

=
(

ω(s)
a1 esθ1 + · · ·+ω(s)

am esθm
)
|Aa1(θ1) . . .Aam(θm)〉 . (3.46)

Again, just to understand, for s = 0 the above relation is the energy conserva-

tion condition and for s = 1 the momentum conservation law. Obviously we

can write the expression above (3.46) also for out-going states:

qs|Ab1(θ
′
1) . . .Abm(θ ′m)〉=

(
ω(s)

b1 esθ ′1 + · · ·+ω(s)
bm

esθ ′m
)
|Ab1(θ

′
1) . . .Abm(θ ′m)〉 .

(3.47)

The charges are conserved during the entire scattering process and they are

diagonalized by asymptotic multi-particle states as stated above (3.46) and

(3.47). Then for any m→ n scattering amplitude it must be true that

ω(s)
a1 esθ1 + · · ·+ω(s)

am esθm = ω(s)
b1 esθ ′1 + · · ·+ω(s)

bn
esθ ′n (3.48)

for all the possible infinite values of s. Thus there are s such equations, with
s taking infinitely many values. Hence, the only solution for generic values of
the in-coming momenta is

n = m ω(s)
ai = ω(s)

bi
θi = θ ′i , (3.49)

with i = 1, . . .m. The consequences of the solutions (3.49) are severe for the
dynamics of the system.

• Since n must be equal to m this implies that there cannot be processes

where the number of particles changes, namely the number of particles is

conserved during the scattering and there cannot be particle production.

• The set of in-coming momenta, {pi} must be equal to the set of out-going
momenta {p′i}, or in terms of rapidities {θi}= {θ ′i }.

However, this does not imply that the sets of quantum numbers before and

after the scattering {ai} and {bi} should be the same. They can have dif-

ferent values, namely scatterings which lead to changing flavor are still al-

lowed. There is some subtlety, in the sense that one might find solutions to the

equations (3.48) for specific values of the in-coming momenta and for n �= m.
However these values turn out to not be physical [81]. The scatterings which

are possible and consistent with the infinite set of charges are the elastic pro-

cesses.

S-matrix factorization
There is another dynamical constraint which makes the two-dimensional inte-

grability a really powerful tool: the factorizability of the S-matrix. Each wave

packet is localized, and we can model it by a gaussian distribution around the
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Figure 3.1: Tree level diagrams for three body scattering 3→ 3.

position xi with momentum pi. Acting on such a state with an operator of the

type e−ıcPs
shifts the phase factor by a function depending on the momentum7:

in particular the position is shifted by δxi = csps−1
i . When the operator acts

on an m-particle state of the type seen before, namely m times a single particle

state, then each localized wave packet is shifted by a different quantity since

such shift depends on the wave packet momentum. Then, since the asymptotic

states are eigenstates for the higher conserved charges and since such charges

commute with the S-matrix, we can use them in order to reshuffle the in and

out-states. Explicitly one can write

〈out|S|in〉= 〈out|eicPs
Se−icPs |in〉 . (3.50)

We can rearrange the wave-packets and make their phase factor change ac-

cording to their momenta. In order to illustrate the ideas, let us consider the

3→ 3 scattering. At tree level we can have three types of diagrams, cf. figure

3.1. The first graph (a) visualizes the scattering of three particles at the same
point, while the remaining two diagrams, (b) and (c), represent a series of
three two-body scatterings. Namely, in the diagram (b), first the particles 2
and 3 meet and collide and then the particle 3 collides further with 1 and then
the particle 2 with 1. Of course we can start with the initial scattering between

1 and 2 and proceed analogously, as in figure 3.1 c). Now, we use the operator

e−icPs
in order to shift the particle positions as in (3.50). However, everything

must respect the macro-causality principle, namely it cannot happen that the

particle 1 goes out before that also the particle 3 participates in the scattering.

7The argument that we are following is from [81], rigorously we should here use the operator

e−icqs as it has been done in [165]. However, since it does not spoil the effectiveness of the

argument and it makes a bit “digestive” from a technical point of view, we adopt the same

technique as in Dorey’s paper [81].

37



Figure 3.2: Factorization of the three-body S-matrix and Yang-Baxter equation.

Otherwise the corresponding amplitude would just vanish8. Namely, nothing

can happen between the slowest in-coming particle and the fastest out-going

particle before that all the in-coming particles have collided. Now the point is

that one can use the higher charges to rearrange the phase shift for the multi

particle state, but indeed the diagrams in figure 3.1 only differ by a phase fac-

tor. This means that we can use the operators Ps in order to move the lines

1, 2, 3 in Fig. 3.1 a, in order to get any of the two other graphs in Fig. 3.1.
Hence all the graphs in figure 3.1 are equal. This implies that the three-body

S-matrix (Fig. 3.1 a) is equal to a sequence of two-body S-matrices (Fig. 3.1

b and c). This is the meaning of the first equality in Fig. 3.2, where what

we have discussed for the tree-level is extended to generic n-loop order. The
second equality in figure 3.2 is called the Yang-Baxter equation. It is really a

non trivial equation, since it fixes the flow of indices that we can have in the

S-matrix elements. This is something special which can happen in two di-

mensions. Indeed, we are using the higher charges to reshuffle the in-coming

particle positions. Hence, if their rapidities differ, they will still meet at some

point in space. This is not true for the four-dimensional case, where there are

still two dimensions where the in-coming particles can completely avoid the

scattering. This is the main reason why an integrable theory in 4 dimensions

only has a trivial S-matrix, which is stated in the Coleman-Mandula theorem
[77]. In one spatial dimension the particles necessary will meet at some point,

and since they run in the same line there is no way to go out9.

8This argument can also be used to show that processes of the type 2→ n are zero in integrable
two-dimensional field theory, since it should always be true that t12 ≤ t23, where 1 and 2 are the
in-coming particles and t12 is the time that occurs for the scattering between 1 and 2, while 3 is
the fastest particle among the out-going ones.
9Parke has proved that the existence of only two higher conserved charges q±s with s > 1 is

sufficient for the arguments presented above [165].
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Let us pause here and summarize the previous paragraph. In any (1+1)-

dimensional theory with infinitely many local conserved charges, any n →
n process can actually be known since the corresponding S-matrix element

is given by a sequence of n two-body S-matrix elements. In many well-

understood theories even if the 2-body S-matrix is computed, it is hopeless

to compute the three-particle S-matrix. But now we are saying that we do not

need it. We can compute any particle number scattering and the correspond-

ing amplitude will be a product of 2→ 2 scattering amplitudes. Thus, any

scattering process involving more than two particles is a sequence of 2 by 2

collisions, which are all elastic and before and after any collision the particles

keep on traveling freely.

Until now we have only discussed the local conserved charges since the

arguments in order to run need to use the fact that these objects are additive

on multi-particle states. However, in [121] Iagolnitzer gave a more general

proof for the S-matrix factorization and for the selection rules. The same is

done in Lüscher’s paper [137] where he proved the relation between non-local

charges and S-matrix factorization for the O(n) sigma model. For simplicity
and for pedagogical reasons we have chosen to use the local charges to simpler

visualize the arguments.

Remarks on paper II
From the discussion above it is clear that we can use the factorization of the

S-matrix and the selection rules (and the Yang Baxter equation) as a defini-

tion for a two-dimensional integrable field theory. It is often really difficult

to explicitly construct the (non-local and local) charges and usually it is more

useful to know the S-matrix elements. This has been studied in paper II, where

we have explicitly verified the factorization of the one-loop S-matrix for the

near-flat-space limit of the type IIB superstring on AdS5×S5. This is equiv-
alent to state the integrability of the model at leading order in perturbation

theory. However, this will be explained in more detail in chapter 6. Here we

only want to stress once more that these dynamical constraints severely re-

strict the motion in the phase space. As example consider the 3→ 3 process.

Any scattering amplitude must respect the energy and the momentum conser-

vation laws. In the light-cone coordinates one has that p−p+ = 4m2. Then p±
can be parameterized as p+ = 2ma and p− = 2m/a and the energy-momentum
conservation laws become

1

a
+
1

b
+
1

c
=
1

d
+
1

e
+
1

f
a+b+ c = d + e+ f (3.51)

where the set (a,b,c) is for the in-coming momenta, which are fixed (it is the
external input which we give when we start to run our collision), while (d,e, f )
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Figure 3.3: Three particle phase space.

is the set of out-going momenta, which are constrained to respect the above

equations (3.51). The equations in (3.51) describe two surfaces. Without

any further conservation law the out-going particles could lie in any point

along the curve described by the intersection of the two equations. However,

since we have a higher charge and we can impose another equation, there are

only six valid points in all the phase space! These points correspond to the
permutations given by the equation {a,b,c}= {d,e, f}, see Fig.3.3. This of

course means that we have completely solved the motion. If we have a 4→ 4

scattering then we need a fourth higher charge to fix univocally the points in

the phase space, and so on. This is the concrete way how the charges manifest

themselves. How to get the extra equation, namely how the higher charges

actually operate on the phase space, will be discussed in chapter 6. There

we also explain why we want to show the quantum integrability of the AdS

superstring.

3.4 Quantum Integrability

Until now the discussion has only been at the classical level. Can we gen-

eralize the arguments above to the corresponding quantum field theory in a

straightforward way? This question is far from trivial: numerous works in

the past years (’70s-’80s) have been devoted to understand when integrability

survives at the quantum level. However, also the answer is far from being

trivial: for the O(n) model all the integrability properties survive after quanti-
zation [137, 101, 87], which is not the case for the �Pn model [1]. Can we say

why? Can we say where and how the troubles are originated? Can we learn

something useful for the type IIB string theory? In this section we will try to

partly answer these questions.
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Quantum non-local charges
Going back to the definition of the non-local charges (3.6), one would like to

implement such definition at the quantum level. The first trouble which one

needs to face is the fact that the currents, and all fields in general, now are

promoted to operators. The first term in (3.6) now contains a product of two

operators. When the two points where the operators are sitting at get closer

and closer the currents can interact and give rise to singularities. In quantum

field theory any product of operators is in general not-well defined. Also, the

second term in (3.6) can get renormalized and in general there will be some

field renormalization coefficient which can be divergent.

In order to have a reliable charge definition, it is necessary to slightly mod-

ify the expression in (3.6) [137]:

Qa
(1) = Z

∫ ∞

−∞
ja
σ (σ)dσ − 1

2
f abc

∫ ∞

−∞
dσ jb

τ(σ)
∫ σ

−∞
dσ ′ jc

τ(σ
′) . (3.52)

The second step is to compute the short-distance expansion for the current

product in (3.52) and see if UV-dangerous terms can come out. This means to

compute the operator product expansion (OPE) for the currents:

ja
μ(x− ε) jb

ν(x+ ε)∼∑
k

Ck
μν(ε)Oab

k (x) , ε → 0 (3.53)

where the sum k denotes the sum over a basis of operators Oab
k . The operators

Oab
k do not depend on the short-distance parameter ε , while the coefficients in

the expansion Ck
μν are functions of the coordinates, and thus of ε . To under-

stand the expression (3.53) one can say that the OPE is a sort of a combined

expansion in Feynman diagrams (we indeed need to compute the divergent

diagrams in the ja jb operator) and a Taylor expansion in ε . The problematic
terms are linearly (i.e. 1

ε ) and logarithmically divergent in ε . For the PCM as

an example, by dimensional analysis and since the currents have conformal

dimension 1, we can expect an expansion of the type

ja
μ(x− ε) jb

ν(x+ ε)∼Cλ ,abc
μν (ε) jc

λ (x)+Dλρ,abc
μν (ε)∂λ jc

ρ(x)+ . . . , (3.54)

where Cλ
μν(ε) behaves as 1

ε , just by dimensional analysis. This gives rise to

possible logarithmic terms once one integrates. In general in order to facilitate

the computation of the OPE one can use the symmetries of the model (for

example, they must respect the O(n) and the CP symmetries for the case of
non-linear σ model studied in [137]). Moreover for the charges (3.52) we

really need the antisymmetric tensor in the Lorentz indices μ,ν .
For the O(n) σ model Lüscher showed that the quantum charges are well-

defined, they are conserved quantummechanically and they force the S-matrix

to factorize [137]. The same is not true for the �Pn model, which was inves-
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tigated by Abdalla et al. in [1]. The �Pn model is classically integrable,

however at quantum level an anomaly appears in the conservation law for the

quantum non-local charges. As before, one needs to study the short-distance

expansion for the currents (3.53) and then plug back the OPE in the quantum

non-local charge (3.52). The term responsible for the anomaly in the �Pn case

is the field strength of the currents, namely a dimension two operators, whose

corresponding coefficient in (3.53) contains logarithmically and linearly di-

vergent terms. (Notice that the supersymmetric �Pn is quantum integrable

[2].)

Can we give some kind of rules, about when or whether we could expect an

anomaly in the charge conservation laws? For symmetric coset models of the

type discussed in section 3.2 this issue has been addressed in [3]. If one would

like to summarize the results of the paper, one could say that the breaking of

integrability at quantum level is related to U(1) factor in the denominator of
the quotient space, a fact which is confirmed by the �Pn example, where the

corresponding field strength gives rise to the anomaly. In some sense in the

O(n) model there is not a great variety of operators Oab
k of dimension 1 and

2 with the proper symmetries required by the model itself in order to be a

candidate for the anomaly10.

Remarks on Papers I and IV
From all this one can understand why it is not so trivial to investigate the quan-

tum integrability for two-dimensional σ model, as for example the superstring

world-sheet theory. Recall that the super-coset AdS5×S5 is not a symmetric
space, thus we cannot extend directly the analysis of [3]. However we can

learn much from the �Pn case and with this example in mind we have started

to investigate the quantum pure spinor superstring in AdS5×S5 in the papers I
and IV. In particular recall the expression for the variation of the monodromy

matrix (3.15), the integrability of the model is strictly related to the tensor

Fμν , cf. chapter 5.

10For a more detailed and complete explanation one should say that for Riemannian symmetric

coset space the anomaly is forbidden when the sub-algebra h is simple, and vice versa it is

originated when the sub-algebra contains non-trivial ideals. Roughly speaking we can say that

the decomposition of the sub-algebra h corresponds to the possible operators Oab
k which are the

basis in the current OPE (3.53).
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4 Green-Schwarz-Metsaev-Tseytlin
superstring

In the next section, I will briefly present the Green-Schwarz (GS) action in flat

space. At the end of the chapter special attention is dedicated to the Green-

Schwarz-Metsaev-Tseytlin (GSMT) action for the AdS5×S5 superstring, and
in particular to its classical integrability. I will focus only on some particular

aspects which I need to emphasize especially in a perspective of a discussion

about pure spinors.

The chapter is mainly based on the textbooks by [103, 34] and also on the

original papers by Green and Schwarz [105, 104] for the first part. For the

second part I will mainly refer to the work by Metsaev and Tseytlin [149] for

the super-coset construction of the action, to the paper by Bena, Polchinski

and Roiban [55] for the classical integrability of the GSMT action and finally

to the reviews written by Zarembo [195] and by Arutyunov and Frolov [19].

4.1 Green-Schwarz action in flat space

In the Green-Schwarz (GS) approach the target space supersymmetries are

manifest and in some sense the superspace coordinates are treated more sym-

metrically with respect to the Ramond-Neveu-Schwarz (RNS) formalism1. In

string theory, the embedding coordinates Xa(τ,σ) map the world-sheet Σ, pa-
rameterized by (τ,σ), into the target space. Now the same concept is gener-

alized to the “fermionic embedding coordinates” θ I(τ,σ). These are spinors
on the target-space and scalars from a world-sheet point of view.

1The RNS formalism is another formulation to describe supersymmetric strings. In this case

the supersymmetries are implemented into the theory by means of fields which are spinors

on the world-sheet and vectors on the target-space. However this approach is not suitable for

describing superstrings supported by Ramond-Ramond fluxes, as it is our favorite AdS5×S5
superstring.
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The GS superstring action in a flat background [104] is

SGS, f lat = Skin+SWZW

=− 1

4πα ′

∫
d2σ

√−hhμν(∂μXa− iθ̄ IΓa∂μθ I)(∂νXa− iθ̄ JΓa∂νθ J)
+

1

2πα ′

∫
d2σεμν(− i∂μXaσ IJ

3 θ̄ IΓa∂νθ J + θ̄ 1Γa∂μθ 1θ̄ 2Γa∂νθ 2
)
.

(4.1)

hμν is the world-sheet metric, Xa are the ten embedding coordinates in the flat

space a = 0, . . . 9 and θ I with I = 1,2 are the two Majorana-Weyl spinors in
ten dimensions2, with σ IJ

3 = diag(1,−1). For the specific case of the type IIB
superstring, the two fermions have the same chirality, vice versa in type IIA

they have opposite chirality, namely

Γ11θ I = θ I with I = 1,2 type IIB

Γ11θ I = (−1)I+1θ 1 with I = 1,2 type IIA , (4.2)

where Γ11 = Γ0Γ1 . . .Γ9 and Γa are the 32× 32 Γ-matrices which satisfy the
SO(9,1) Clifford algebra:

{Γa,Γb}= ηab with ηab = diag(−1,1, . . . ,1) . (4.3)

The action (4.1) is essentially built of two terms. The first contribution Skin
is a σ -model (the term symmetric in the world-sheet indices). The second

line comes from the Wess-Zumino-Witten (WZW) term, i.e. SWZW (the one

antisymmetric in the world-sheet indices). I will give more detail on the two

terms at the end of the section.

An important feature of the GS action (4.1), which is valid also in curved

backgrounds, is the invariance under a local fermionic symmetry, which is

called κ-symmetry [104]. Such a symmetry fixes univocally the coefficient
in front of the WZW term. The κ symmetry allows one to gauge away half

of the fermionic degrees of freedom, leaving only the physical ones. Count-

ing the fermionic degrees of freedom, we start with a Dirac fermion in ten

dimensions, namely with 2D/2 = 32 components. We impose the Majorana-

Weyl condition which removes half of the components, leaving only 16 real

fermionic degrees of freedom. Finally we can use the κ symmetry to reduce

the spinor components further, namely to 8. Recalling that we started with

two supersymmetries (I = 1,2), we have in total 16 real independent fermionic
degrees of freedom3. Furthermore, the action (4.1) is invariant under super-

2I have dropped the spinorial index α .
3The equations of motion, e.g. in the light-cone gauge, remove again half of the spinorial

components, namely the real independent components left are 8.
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Poincaré transformations and world-sheet reparameterizations.

4.2 Type IIB superstring on AdS5×S5: GSMT action
Before getting to the hearth of the discussion about the AdS superstring action,

let me first review certain crucial properties of the psu(2,2|4) algebra. In the
next paragraph I will heavily use the results of the two sections 3.1, 3.2.

More on the algebra
A notably property of the psu(2,2|4) algebra is its inner automorphism4,

defined by a map Ω which decomposes the algebra in four subsets. This

symmetry seems to be ultimately related to the presence of integrable struc-

tures [198]. Explicitly, we have

psu(2,2|4)≡ g = g0+g1+g2+g3 , (4.4)

and the �4-grading is generated by the transformation Ω, where

Ω(M) =−ΣMST Σ−1 . (4.5)

Here M and MST are 8×8 super-matrices and Σ is the following matrix

Σ =

(
J 0

0 J

)
where J =

(
−iσ2 0

0 −iσ2

)
, (4.6)

with σ2 the Pauli matrix. The subsets gk are the eigenspaces with respect to

Ω, namely Ωgk = ikgk. The �4-grading respects the bilinear invariants of the

algebra, namely

[gm,gn] = gm+n mod 4 . (4.7)

From the above relation we can see the reason why the supersymmetric ex-

tension of AdS5×S5 is not a symmetric space, namely [g1,g1] = [g3,g3] = g2,

cf. (3.33) in section 3.2. The bilinear invariants can be naturally represented

by the super-trace in the algebra space, and we have

〈Tm,Tn〉= 0 unless m+n = 0 (mod 4) . (4.8)

In particular, the sub-algebra g0 is the invariant locus of the psu(2,2|4) alge-
bra and it is the algebra for the gauge groupH, which in our case is SO(4,1)×
SO(5). This is a crucial point from the super-coset construction point of view.

g2 contains all the bosonic generators which are left after modding out the

4Such a feature is indeed true for the general algebra psu(n,n|2n) [58], cf. also [180].
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Lorentz generators for so(4,1)×so(5), namely it contains the translation gen-
erators, and it is a ten-dimensional space. Notice that g2 is not a sub-algebra

5.

Finally g1 and g3 are spanned by the fermionic generators, and the two sectors

are related by complex conjugation.

According to the algebra decomposition (4.4), also the currents will respect

the �4-grading. Denoting with Jm ≡ J|gm the projection onto the sub-algebra

gm, then

J = J0+ J2+ J1+ J3 . (4.9)

Notice that J1 and J3 are even since they are contracted with the generators and
that the gauge-invariant currents j mix under the �4-grading. In the language
of the previous chapter J0 is H, cf. section 3.2.

Green-Schwarz-Metsaev-Tseytlin action
Let me first explain the name for this action.

In 1998 Metsaev and Tseytlin constructed the world-sheet action for the

type IIB superstring on AdS5×S5 from a geometrical point of view based on

a super coset approach [149]. They use the Green-Schwarz (GS) formalism

[105, 104], where the target-space supersymmetry is manifest. This is due to

the fact that the background, curved and with Ramond-Ramond (RR) fluxes,

prevents the use of the Ramond-Neveau-Schwarz (RNS) approach, (cf. chap-

ter 5).

Recalling how the anti-De Sitter spaces and the spheres are realized:

AdS5 =
SO(4,2)
SO(4,1)

S5 =
SO(6)
SO(5)

, (4.10)

and that the direct product SO(4,2)×SO(6) is the bosonic sector for the full
PSU(2,2|4), thus the supersymmetric generalization of the above relation is

PSU(2,2|4)
SO(4,1)×SO(5)

= super (AdS5×S5) . (4.11)

In particular, gmaps the string world-sheet Σ into the super-coset PSU(2,2|4)
SO(4,1)×SO(5) .

To be more precise, we should say instead of PSU(2,2|4) its corresponding
universal covering. The left-invariant Maurer-Cartan forms are defined in the

same way as in (3.21):

Jμ = JA
μ T A = g−1∂μg JA

μ = JA
M̂∂μZM̂ , (4.12)

5This �4-grading works the same for the SU(2,2|4) supergroup, thus one might wonder where
the difference is. The point is that the projection P removes the identity matrix in the algebra,

namely the central charge term. Such a factor is sitting in the bosonic subset g2, hence it is

equivalent to consider traceless matrices within this subspace.

46



where A is the psu(2,2|4) algebraic index, T A are the corresponding gener-

ators, which span the four gm as in (4.9), M̂ is the ten-dimensional target-

space index, μ is the world-sheet index and the embedding coordinates are

ZM̂ = (XM,θ α , θ̂ α̂). Recalling the action for the coset model (3.29) and con-
sidering for simplicity only the bosonic sector, then one easily sees that the

one-forms JA
μ are indeed nothing but vielbeins, namely

6

SG/H = −
√

λ
4π

∫
d2σ

√−hhμν STr
(
Jμ Jν

)
|g2 =

= −
√

λ
4π

∫
d2σ

√−hhμν JA
M̂ JB

N̂ ∂μZM̂ ∂νZN̂ STr
(
TATB

)
|g2 =

= −
√

λ
4π

∫
d2σ

√−hhμν ∂μXM ∂νXN (JA
M JB

N gAB
)
|g2 + fermions=

= −
√

λ
4π

∫
d2σ

√−hhμν GMN∂μXM ∂νXN + fermions . (4.13)

As for the bosonic coset model the left-invariant currents Jμ are invariant un-

der global PSU(2,2|4) left multiplication while under the gauge SO(4,1)×
SO(5) transformations they transform as a connection, cf. section 3.2. More-

over, they satisfy the Maurer-Cartan identity ∂μJν −∂νJμ +[Jμ ,Jν ] = 0.

The kinetic term SG/H respects the structure of the bosonic coset model

as discussed in section 3.2. The fermionic currents enter through a Wess-

Zumino-Witten term, namely a closed and exact three form7:

IWZ ∼ κ
∫

M3

d3σ Ω3 (4.14)

with

Ω3 = (J2∧ J1∧ J1− J2∧ J3∧ J3) , (4.15)

where the boundary of M3 is the string world-sheet Σ which we are integrating
over. The form for the WZW term is indeed the only relevant one which is

compatible with the invariance under SO(4,1)×SO(5) gauge transformations
and which has the correct flat space limit. The coefficient κ in the expression

above is fixed by the the local fermionic symmetry which characterizes the

GS formalism. In particular, the values allowed are κ =±1. The exchange of
sign is related to a parity transformation in the world-sheet coordinates and to

6This is indeed an expansion, for example by choosing a specific parameterization on the super-

coset the full action can be expanded in the number of fermions, cf. [149] and [124]. Here it is

meant to illustrate the geometrical meaning of the currents, cf. section 6.2.1, equation (6.11).
7The closure of the WZW term comes from the Maurer-Cartan identity for the left-invariant

currents, while from the fact that the third cohomology group of the superconformal group is

trivial follows the exactness for the WZW term [58, 19].
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an exchange of the two fermionic sectors g1 and g3. Once one integrates such

a three-form (4.15), it gives the antisymmetric term

SWZ =−
√

λ
4π

κ
∫

d2σεμνJμ,1Jν ,3 . (4.16)

Thus the final action is the sum of the two terms (4.13) and (4.16), namely

SGSMT =−
√

λ
4π

∫
d2σ Str

(
γμν Jμ2 Jν2 + κ εμν Jμ1 Jν3

)
, (4.17)

with γμν =
√−hhμν . Summarizing the properties of SGSMT we have that

• the bosonic part of SG/H reproduces the standard bosonic coset model on

AdS5×S5, cf. equation (4.13);
• the full action (4.17) is invariant under global PSU(2,2|4) invariance;
• it is also invariant under local SO(4,1)×SO(5) transformation,
• and under the κ symmetry,

as it has been shown in [149]. Finally, in the flat space limit, namely for

R→ ∞, the above action (4.17) reproduces the GS type IIB superstring in flat

space (4.1). This is indeed how Metsaev and Tseytlin uniquely constrained

their ansatz for the action [149].

The classical equations of motion
In oder to fix the ideas, let us consider the complex world-sheet coordinates8

z, z̄ given by
z = σ1+ iσ2 z̄ = σ1− iσ2 . (4.18)

For the conventions and more detail we refer the reader to appendix 10.1. The

GSMT action (4.17) becomes in the new coordinates

SGSMT =

√
λ

2π

∫
d2z STr

(
J2J̄2− κ

2
(J1J̄3− J̄1J3)

)
. (4.19)

In order to derive the equations of motion, one can consider an infinitesimal

variation ξ of the PSU(2,2|4) coset representative g, namely

g = gξ δg−1 =−ξ g−1, (4.20)

where ξ = ∑3
i=1 ξi and ξi ∈ gi. This implies that small variations for the cur-

rents J = g−1dg satisfy

δξ Ji = ∂ξi +[J,ξ ]i δξ J̄i = ∂̄ ξi +[J̄,ξ ]i
δJ0 = [J,ξ ]0 δ J̄0 = [J̄,ξ ]0 . (4.21)

8I will use the same normalization and convention as in [168].
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Plugging such variations (4.21) in the GSMT action (4.19) and using the

Maurer-Cartan identities, one obtains the following equations of motion:

DJ̄2+
1

2
(1+κ)[J1, J̄1]+

1

2
(1−κ)[J3, J̄3] = 0

D̄J2+
1

2
(1−κ)[J̄1,J1]+

1

2
(1+κ)[J̄3,J3] = 0

(1−κ)[J2, J̄1]− (1+κ)[J1, J̄2] = 0

(1−κ)[J3, J̄2]− (1+κ)[J2, J̄3] = 0 , (4.22)

where the covariant derivatives are defined as

D = ∂ +[J0, ] D̄ = ∂̄ +[J̄0, ] . (4.23)

It is clear that the choices κ =±1 are special values, which definitely sim-
plify the above equations. As an example, for κ = 1 the equations of mo-

tion (4.22) become

DJ̄2+[J1, J̄1] = 0 D̄J2+[J̄3,J3] = 0

[J1, J̄2] = 0 [J2, J̄3] = 0 . (4.24)

These equations should be compared with the ones that will be derived in

Berkovits formalism in chapter 5, cf. eq. (5.53).

4.3 Classical integrability for the GSMT superstring ac-
tion

The integrability of the AdS5×S5 world-sheet action has been proven at clas-
sical level in [144] for the bosonic sector and in [55] for the full supersym-

metric model by constructing the Lax pair, as I will review in this section.

The string integrable structure has been showed also in the work [125] and

in [126, 39, 40, 173], which are mostly based on the algebraic curve tech-

niques9.

In order to have a generating functional10 for the (local and non-local)

charges and prove that the type IIB superstring in AdS5× S5 is classically
integrable, we would like to generalize the construction of the flat connec-

tion for the PCM and coset models discussed in section (3.1) and (3.2). Here

we also have the contribution from the fermionic currents, however the argu-

ments run absolutely in the same way [78, 55]. Again we can take a linear

9I refer the reader to Zarembo’s review [195] for more detail on this topic.
10For closed strings, the path in the world-sheet is a closed loop.
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combination of the gauge invariant currents, namely

aμ = α j2,μ +βεμν jν
2 + γ kμ +δ k′μ (4.25)

where kμ = j1,μ + j3,μ and k′μ = j1,μ− j3,μ , using the notation of [55]. Impos-
ing the zero curvature equation

∂μaν −∂νaμ +[aμ ,aν ] = 0 , (4.26)

one obtains a system of equations (there are exactly six equations for four un-

knowns, one also needs to use the equations of motion and the Maurer-Cartan

identity rewritten for the gauge invariant currents). The solutions, which give

two one-parameter families of flat connections, are [55]

α =−2sinh2λ β =∓2sinhλ coshλ
γ = 1± coshλ δ = sinhλ . (4.27)

Thus, remarkably, the classical GSMT superstring action admits a Lax rep-

resentation, showing its classical integrability. Expanding the coefficients for

λ = 0 at the leading order, one obtains exactly the Noether currents for the

global PSU(2,2|4) symmetry [126], namely
aμ = 2λ εμν jν

2 +λ k′μ . (4.28)

In order to deduce the flat connection one uses the equations of motion and the

algebraic identities, but one does not need to fix the κ symmetry. However,

it has been shown in [19] that integrability forces the coefficient in front of

the WZW term to be fixed to the same values which are allowed by the κ-
symmetry (κ = ±1). This means that the word-sheet action, in order to have
the infinite set of conserved charges, should also be κ symmetric and vice

versa11. We will come back to the integrability of classical superstring in

the discussion for the Pure Spinor formulation of the type IIB superstring in

AdS5×S5 in chapter 5, and there we will discuss the extension to the quantum
theory using the Berkovits formalism.

11Indeed rescaling the WZW term the higher symmetries and the κ-invariance are broken, (not
for the special value σ →−σ which corresponds to the world-sheet parity).
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5 The Pure Spinor AdS5×S
5
superstring

5.1 Motivations

One of the main advantage of the Green-Schwarz formalism is that the target-

space supersymmetries are manifest. However, already for the type IIB super-

string in flat space, we encounter serious difficulties once we try to quantize

the theory. Recalling the kinetic term Sint in the GS action SGS, f lat in the flat

ten-dimensional space in (4.1), one sees that the kinetic term for the fermions

is degenerate:

∂μXaθ̄ JΓa∂μθ J . (5.1)

Indeed, when ∂μXM = 0 it simply vanishes. Moreover computing the canoni-

cal momenta for the spinors

ρK ≡ δL

δ θ̇ K
, (5.2)

one obtains a complicated and non-linear function of all the phase-space vari-

ables. According to the Dirac classification, the canonical momenta are pri-

mary constraints, which can be of first or second class. We can say that in

the latter case the momenta have a non-vanishing bracket with the constraints

themselves. When the first and second class of constraints are coupled, one

needs to disentangle them and quantize the system introducing the so called

Dirac brackets as the new anticommutation relations. In the GS superstring,

the two classes of constraints cannot be separated in a covariant way. A way

of bypassing the problem is to fixe the light-cone gauge and quantize the su-

perstring action in this gauge1. The light-cone quantization allows one to

compute the string spectrum leaving only the physical degrees of freedom,

and it is very helpful for example in computing the string energies, cf. chapter

6. However, it is not completely satisfactory: one would really like to have a

covariant quantization for the string action2.

1This is true for the GS formalism in general, namely for the GS superstring action in a flat and

curved space, cf. [103, 34].
2There is actually another alternative approach based on the so called Pohlmeyer reduction.

The idea is to reduce the string world-sheet action to an equivalent action containing only the

physical degrees of freedom, with equivalent integrable structures and with a manifest two-

dimensional Lorentz invariance. We refer the reader to the original paper by Grigoriev and

51



These are the main motivations in order to have a formalism with manifest

space-time supersymmetries and a full covariant formulation which allows

one to quantize the superstring action keeping the ten-dimensional Lorentz

symmetry manifest.

These two aspects are joint in the formalism proposed by Berkovits in [59],

extending and completing a previous idea of Siegel [182]: the target-space

supersymmetry is manifest and the ten-dimensional Lorentz covariance is also

manifest and present in all the stages of the theory. Obviously there is a price

to pay. In order to have a standard fermionic kinetic terms, certain ghost fields

have to be introduced (the pure spinors), as well as their conjugate momenta.
The non-physical degrees of freedom introduced in the theory in this way are

later removed through a BRST operator Q.

Outline
In this chapter I would like to review some basic notions and concepts about

the Pure Spinor (PS) formalism, in order to understand the works I and IV. I

will focus on the type IIB superstring action and on the role of the pure spinors

in the context of integrability. Thus, the next chapter will not be an exhaustive

introduction to the pure spinor formalism. For this we refer the reader to the

ICTP lectures given by Berkovits in 2000 [60].

In the first part, I will discuss some basic features of the pure spinors and

of their space. Then I will formulate the PS action for open strings in flat

space. The generalization to closed strings is straightforward, since basically

one “squares” the ghost fields. I will mainly refer to the original work by

Berkovits [59], to the lectures given by Berkovits [60] and Oz [163].

The second essential step is the formulation of the superstring action in

curved backgrounds. I will focus on the AdS5×S5 type IIB action, since this

is the relevant case for the AdS5/CFT4 correspondence.
At this point, in the context of integrability, we need to discuss the key

features of the superstring action. In order, we will see the gauge and BRST

invariance of the action at classical [61] and quantum [62] level. Notice that

these properties are fundamental to guarantee the consistency of the action

also at quantum level. Hence, we will review the classically integrability of

the PS type IIB action [192] and the explicit construction of the BRST non-

local charges [61]. Indeed, it turns out that the higher conserved charges have

to be BRST invariant. The same steps should be repeated at quantum level. In

particular, I will summarize the results of [62] for the BRST invariance of the

quantum non-local charges and I will discuss the finiteness of the monodromy

matrix at the quantum leading order [152].

Tseytlin [107] and to the work by Mikhailov and Schafer-Nameki [153] and references therein

for more detail.
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Finally, the last section is dedicated to the papers I and IV, where I have

showed the finiteness of the charges, the absence of anomaly in the variation

of the monodromy matrix and the operator algebra at the leading order in

perturbation theory.

5.2 The Berkovits formalism: basic review

The pure spinors are world-sheet ghosts λ α which carry a space-time spinor

index but they are commuting objects, which are constrained to satisfy the

following condition (the pure spinor constraint):

λ αγ̂a
αβ λ β = 0 , (5.3)

where γ̂a are 16× 16 SO(9,1) gamma matrices in the Majorana-Weyl repre-
sentation, a = 0,1, . . . ,9. Hence the pure spinors are complex Weyl spinors,
however the conjugate λ̄α never appears in the theory. The canonical mo-

menta to λ α are the ghost fields ωα . The system (ωα ,λ α) is analogue to the
(β ,γ) system in string theory, however now the conformal weight is (1,0) and

the fields are not free. Their ghost number is (−1,1).
From the condition (5.3) it follows that the actual independent components

in λ are 11 and not 16 as one would naively expect. The number of exact

degrees of freedom is really important, as we will see, thus we would like

to spend some time to explain how to count them. I will essentially follow

the paper [177]. For simplicity, we can Wick-rotate SO(9,1) to SO(10). The
space where the pure spinors live is singular in the origin, since the constraint

(5.3) is degenerate at the point λ = 0 (as well its variation). It is indeed a

cone, and removing the singularities we can describe the space as a
SO(10)
U(5)

coset.We can break the SO(10) description to U(5), according to SO(10)→
SU(5)×U(1). The U(5) gamma matrices are

γ̂a =
γ̂a + iγ̂a+1

2
with a = 1, ...,5

γ̂a =
γ̂a− iγ̂a+1

2
with a = 1, ...,5 . (5.4)

We can interpret γ̂a as a raising operator and γ̂a as a lowering operator. They

satisfy the u(5)-algebra, namely

{γ̂a, γ̂b}= {γ̂a, γ̂b}= 0 {γ̂a, γ̂b}= δ a
b . (5.5)

Let us define the ground state uα
+ as the state annihilated by all the lowering

operators, i.e. γauα
+ = 0 for a = 1, ...,5. Then, acting with the U(5) γ-matrices

we can obtain the complete basis of the U(5) spinors. In particular, acting
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with an odd number of γ-matrices leads to a change of the chirality (since the
spinor index will be a lower one, i.e. an antichiral spinor). Hence, the basis

for the spinor λ α is

uα
+ (uab)α ≡

(
γaγbu+

)α
uα

a = εabcde

(
γbγcγdγeu+

)α
(5.6)

and any chiral U(5) spinor can be written as

λ α = λ+uα
+ +λab(uab)α +λ auα

a . (5.7)

Notice that λ+ is a U(5) singlet, λab transforms in the 1̄0 antisymmetric rep-
resentation of U(5) and λ a in the 5 one. For an antichiral spinor we have

ωα = ω+ũ+
α +ωa(γau+)α +ωab(uab)α , (5.8)

with (uab)α = εabcde(γcγdγeu+)α and ũ+
α = εabcde(γaγbγcγdγeu+)α . At this

point, one can readily decompose the ten equations (5.3) in the U(5) basis and
obtain 3

λγaλ = λ+λ a +
1

8
εabcdeλbcλde = 0

λγaλ = λ bλab = 0 , (5.10)

with a = 1, . . . ,5. Hence, fixing λ+ �= 0, the first equation of (5.10) is solved

for λ a = −1
8
(λ+)−1εabcdeλbcλde, which automatically solves also the second

equation. Thus λ α is a function of eleven complex parameters, namely λ+

and λab. Hence the final parameterization for λ is

λ+ = es λab = uab λ a =
1

8
e−sεabcdeubcude . (5.11)

The fact that the vector λ a is redundant in this description, namely the sec-

ond equation in eq. (5.10) is identically satisfied (for some constant λ+ non-

vanishing), implies that the corresponding antichiral spinor ωa is defined up

to gauge transformation, i.e. δωa ∼ ηaλ+, with ηa the gauge parameter. As a

consequence, it can be directly set to zero, and choose4

ω+ = e−s∂ t ωab = vab ωa = 0 . (5.12)

3In order to decompose the constraints (5.3) some useful identities are

u+γ1γ2γ3γ4γ5u+ = 1 u+γaγbγcu+ = u+γau+ = 0 . (5.9)

4We should introduce a normal order constant in ω , cf. e.g. [60] and [177]. However the issues
about the normal ordering can be ignored here, because we are only interested in the OPE’s

involving the ghost Lorentz currents N.

54



Some properties are better shown in the U(5) basis, where the ghost fields
are free. In particular, it is easier to understand better the origin of the “cor-

rection” term in the OPE (5.16) between the pure spinor and its conjugate

field.

The ghosts are maps from the two-dimensional world-sheet to the target-

space, which is the ten-dimensional flat space in this case. In terms of the

free U(5) components, the ghost action in a flat background in the conformal
gauge is

SG =
1

πα ′

∫
d2z
(
∂ t∂̄ s− 1

2
vab∂̄uab

)
. (5.13)

Hence, the OPE’s can be directly read from the above action:

t(z1)s(z2)∼ log(z1− z2)

vab(z1)ucd(z2)∼
δ [a

c δ b]
d

z1− z2
. (5.14)

However, in the covariant ten-dimensional SO(10) notation, the pure spinor
action in flat space is

SG =
1

πα ′

∫
d2zωα∂̄λ α . (5.15)

The two actions (5.13) and (5.15) are equivalent, in the sense that they de-

scribe the pure spinors and the conjugate fields in a flat space (even though

in different notations), but the latter contains also the non-physical degrees of

freedom.

Without breaking the SO(10) covariance, the OPE is

ωα(z1)λ β (z2)∼ δ β
α

z1− z2
− 1

2
γ̂β+

a e−s (γ̂aλ )α

z1− z2
. (5.16)

As before, the + index is the 1 spinor component in the U(5) notation. The
second term in eq. (5.16) takes care of the fact that, due to the PS condition

(5.3), ω is defined only up to gauge transformations

δωα = Λa(γ̂aλ )α . (5.17)

This is exactly the same statement above the expressions (5.12) in the SO(10)
notation. Alternatively, we can say that the second term in (5.16) assures that

the PS constraint remains valid also when we consider the OPE between ω
and the condition (5.3) itself.

Since ωα is defined only up to gauge transformations (5.17), it means that it

can appear only in gauge invariant combinations, as for example the Lorentz
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ghost currents

Nab =
1

2
ω γ̂abλ . (5.18)

One can see that the second term in eq. (5.16) does not contribute to the OPE

between N and λ due to the identity λ γ̂abγ̂cλ = 0:

Nab(z1)λ α ∼ 1

2
(γ̂ab)α

β
λ β

z1− z2
. (5.19)

Hence, for certain purposes we can forget the second term in equation (5.16)5.

The ghost Lorentz currents satisfy the following OPE

Nab(z1)Ncd(z2)∼

∼ ηc[bNa]d(z2)−ηd[bNa]c(z2)
z1− z2

−3ηadηbc−ηacηbd

(z1− z2)2
, (5.20)

The OPE’s for the Lorentz currents and for λ are manifestly covariant. They

are most easily computed in the U(5) formalism, where all the fields are free.
Indeed, decomposing Nab in (N,Na

b ,N
ab,Nab) and using the free field OPE’s

(5.14), one can compute the expression (5.20), cf. [177] for explicit computa-

tions.

The fact that the pure spinors have 11 degrees of freedom is essential, be-

cause it is what one needs in order to cancel the conformal anomaly. Let us

consider the kinetic term for the GS action in flat space. In the conformal

gauge, the world-sheet metric is flat. In the z, z̄ coordinates z, z̄, cf. appendix
10.1, the kinetic term of (4.1) becomes

S =
1

πα ′

∫
d2z
(1
2

∂Xa∂̄Xa +ρα∂̄θ α) , (5.21)

where ρα is the canonical momentum6

ρα =
i
2

∂Xa(θ̄ γ̂a)α + θ̄ γ̂a∂θ(θ̄ γ̂a)α . (5.22)

In the flat ten-dimensional Minkowski space the PS action is given by eq.

(5.21) and eq. (5.15). By computing the central charge, the contribution from

the matter sector is cM = 10− 32 = −22, from the bosonic and fermionic

sector respectively. Thus, the ghosts should contribute to the central charge

with cG = +22, in order to cancel the conformal anomaly. Indeed, the ghost

5This is not true in general in perturbative computations at quantum level, such as the computa-

tion of the one-loop β -function [191]. There the PS nature plays a crucial role.
6The fermions are Majorana-Weyl spinors in ten dimensions, thus I can directly use the 16×16
Dirac matrices γ̂a instead of the 32×32 Γa matrices.
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stress-energy tensor is

TG =
1

2
vab∂uab +∂ t∂ s+∂ 2s (5.23)

and the OPE gives

TG(z1)TG(z2)∼ dim�M

(z1− z2)4
, (5.24)

where M is the manifold where the pure spinors live, i.e. their degrees of

freedom. Eventually, the corresponding central charge is cG = 2dim�M =
+22.
For completeness, let me write the ghost number operator

JG = ωαλ α . (5.25)

BRST operator
One can define a BRST-like operator7 as

Q =
∮

λ αdα , (5.26)

where dα is the fermionic constraint

dα = ρα − i
2

∂Xa(θ̄ γ̂a)α − θ̄ γ̂a∂θ(θ̄ γ̂a)α . (5.27)

Q has ghost number 1, thus the physical string states are the elements which

are in the cohomology of Q and have ghost number 18. Q is guaranteed to be

nilpotent by the PS constraint (5.3), since

Q2 = λ αλ β{dα ,dβ} ∼ λ γ̂aλ = 0 . (5.28)

In the GS formulation the superstring action was invariant under κ-symmetry.
This symmetry is no longer present and its role is replaced by the BRST sym-

metry. I will come back on this point when the pure spinor action in curved

background will be discussed.

Until now we have discussed the open string action in flat space. We want to

deal with closed strings, which means to double the system described above.

Namely, we will have two sets of ghosts (ωα ,λ α) and (ω̂α̂ , λ̂ α̂) with con-
straints

λ γ̂aλ = 0 , λ̂ γ̂aλ̂ = 0 . (5.29)

7The name BRST means Becchi-Rouet-Stora-Tyutin [32, 33, 190].
8The BRST cohomology of the nilpotent operator Q (5.26) is the space of all equivalent states

|v〉 which are closed and exact, namely which satisfy Q|v〉= 0 and which differ by a null state

|v〉= |v′〉+Q|u〉 for some state |u〉.
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They are left and right -moving bosonic spinors, with conformal weight (1,0)

and (-1,0). They are described by the following action in a flat background

SG =
1

πα ′

∫
d2z
(
ωα∂̄λ α + ω̂α̂∂ λ̂ α̂) , (5.30)

and they give rise to two BRST operators as well

Q =
∮

λ αdα Q̄ =
∮

λ̂ α̂ d̂α̂ . (5.31)

Essentially, all the arguments presented above run in the same way.

5.3 Type IIB superstring on AdS5×S5: PS action
We now present the action describing a type IIB superstring on AdS5×S5. We
will use the fact that psu(2,2|4) possesses a �4-grading.
Matter content
For the matter sector I will follow the discussion of [58] for the AdS2× S2
case. In the four-dimensional case the ghosts do not play an important role,

since they are scalars. We can adapt that discussion to the full ten-dimensional

space, keeping in mind that now at the end we have to add also the ghost fields.

In the matter content we have two contributions. The first term is the sigma

model action on the super-coset, which is PSU(2,2|4)/(SO(4,1)× SO(5)),
namely

SG/H =
1

2γ2

∫
d2zSTr(JG/H)2 . (5.32)

1/γ2 is the coupling constant, that we will fix at the end. In section 3.2 we have
explained how to construct the above action. However, the main difference

with the bosonic GSMT action (4.13) is that nowwe also include the fermionic

currents. Explicitly, (5.32) contains
√−hhμν STr

(
J2μJ2ν + J1μJ3ν + J3μJ1ν

)
. (5.33)

The action (5.32) is invariant under gauge H-transformations and under the

global G-symmetry. Hence, it is naturally defined on the coset space G/H.
However, this is not sufficient to guarantee a conformal theory9. For this

reason it is necessary to introduce a topological term, such as the WZW term,

which is a gauge invariant three-form. As for the GS action, it should be

closed and d-exact. Writing

Ω3 = dSTr
(
J1∧ J3

)
(5.34)

9Here, the world “conformal” is referred only to the matter sector.
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one obtains

SWZ =
k
2γ2

∫
d2zSTr

(
J1∧ J3

)
. (5.35)

The WZW term in (5.35) is exactly the same which is in the GSMT action,

cf. (4.17). However, here the level k is fixed by requiring the superconformal
invariance of the action. The k values which are allowed are ±1

2
[65]. Recall

that the coefficient in front of the WZW term is fixed by the κ-symmetry in
the GS formalism. In the PS approach the term J1J3 in (5.32) breaks such a
symmetry, but on the other hand it gives the possibility to have a kinetic term

for the fermions, (thus to construct a fermionic propagator in the standard way

and proceed with a perturbative covariant quantization). Indeed, at the leading

order one has:

J1μJ3ν ∼ ∂μθ 1
L ∂νθ 3

R . (5.36)

Thus the total matter contribution for the PS in the conformal gauge10 is

SM = SG/H +SWZ =
1

2γ2

∫
d2zStr

(
J2J̄2+

3

2
J3J̄1+

1

2
J̄3J1
)
. (5.37)

Note that this action corresponds to the choice k = 1
2
and that a change in the

sign of the WZW term coefficient leads to exchange J1 and J3. The one-loop
beta function for the purely matter sector (i.e. AdS2×S2) has been computed
in [58] and showed explicitly that the renormalization of the coupling con-

stant is proportional to (2k2− 1
2
), namely k and γ are not renormalized at first

quantum order for k =±1
2
. Actually it is believed that it is true to all orders in

perturbation theory, [65].

Ghost content
In order to present the ghost content for the type IIB action in AdS5×S5, let
me rewrite the pure spinor conjugate momenta and the constraints in a more

suitable and elegant form11. We have two types of spinors (they are actually

the same since we are discussing type IIB strings, however I will keep distinct

the indices for left and right-moving), i.e. λ α , λ̂ α̂ . Then we will have

λ1 = λ αTα , λ3 = λ̂ α̂Tα̂ , (5.38)

where Tα and Tα̂ are the g1 and g3 generators respectively. We are in the

AdS5× S5 background, thus the two fermionic sector can talk to each other.
Namely, there exists a matrix γ01234 in the AdS directions which couples the

10In the conformal gauge the world-sheet metric is flat, cf. appendix 10.1.
11Note that I have used a different notation in paper IV, where the indices α and α̇ denotes

elements in g3 and g1 respectively. Note also that there the two sub-algebras g1 and g3 are

exchanged with respect to the previous paper I.
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two indices α , α̂ . This is nothing but the 5-form Ramond-Ramond flux. We

can use such a matrix in order to rewrite the conjugate fields ω as chiral

spinors:

ω3+ = ωα(γ01234)αα̂Tα̂ ω1− = ω̂α̂(γ01234)α̂αTα , (5.39)

where the ± in ω are meant to stress the conformal weight of the conjugate

fields. At this point we can rewrite the ghost Lorentz currents as

N0 =−{ω3+,λ1} N̄0 =−{ω1−,λ3} , (5.40)

and one can check using the structure constants for the psu(2,2|4) algebra
given in appendix of paper I, that is indeed the same definition of (5.18). The

pure spinor constraints (5.29) become

{λ1, λ1}= 0 {λ3, λ3}= 0 , (5.41)

or analogously

[λ1,N0] = 0 [λ3, N̄0] = 0 . (5.42)

The pure spinor carries a spinor index, hence, under Lorentz transforma-

tions, they vary according to

δΛλ1 = [λ1,Λ] δΛω3+ = [ω3+,Λ]
δΛλ3 = [λ3,Λ] δΛω1− = [ω1−,Λ] , (5.43)

where Λ is a gauge parameter. This implies that the Lorentz ghost currents

transform in the following way under local SO(4,1)×SO(5) transformations:

δΛN0 = [N0,Λ] δΛN̄0 = [N̄0,Λ] . (5.44)

In order to write down the PS action in the AdS background, we need to

covariantize the ghost action (5.30). Our gauge field is J0, then introducing
the covariant derivatives

D = ∂ +[J0 , ] D̄ = ∂̄ +[J̄0 , ] , (5.45)

one can rewrite the terms ω∂λ as ωDλ . Explicitly:

ω3+D̄λ1 = ω3+∂̄ λ1+ω3+[J̄0,λ1] = ω3+∂̄ λ1−ω3+[λ1, J̄0] =
= ω3+∂̄ λ1−{ω3+,λ1}J̄0 = ω3+∂̄ λ1+N0J̄0 . (5.46)

The same is true for the other term: ω1−Dλ3 = ω1−∂λ3+ N̄0J0. Note that λ1,3
and ω1,3 are anticommuting objects, since the components λ α , λ̂ α̂ and ωα , ω̂α̂

commute and they are contracted with the fermionic generators Tα ,Tα̂ (vice

versa the currents J1 ,J3 are commuting objects). The pure spinors are local
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object (they live on the tangent space), thus they transform non-trivially under

local tangent space Lorentz rotations. For this reason, they can couple to the

gauge field (J0, J̄0) and to the constant target-space curvature tensor through
their currents.

The right and left-moving sectors are mixed, once we write the ghost fields

as in (5.38) and in (5.39). Indeed, also the Cartan metric mixes the two sectors.

It is defined in terms of the bilinear invariant STr, in particular the elements of

such metric are:

STr(TaTb) = ηab STr(T[ab]T[cd]) = η[ab][cd]

STr(TαTβ̂ ) = ηαβ̂ STr(Tα̂Tβ ) = ηα̂β , (5.47)

where {T[ab], Ta, Tα , Tα̂ } span {g0, g2, g1, g3 } respectively. An explicit rep-
resentation for the Cartan metric is given in the appendix of the paper I (note

that ηαβ̂ is proportional to the matrix γ01234). It strictly depends on the nor-
malization of the structure constants of psu(2,2|4) and of the super-trace, cf.
paper I. In paper IV the expressions (5.47) are called C.
Finally the PS action for the AdS5×S5 string is

SG =
1

γ

∫
STr
(
ω3+∂̄ λ1+N0J̄0+ω1−∂λ3+ N̄0J0−N0N̄0

)
. (5.48)

The coefficient in front of the coupling between matter and ghost currents,

i.e. N0J̄0 and N̄0J0, is fixed by requiring the gauge invariance of the ghost
action (5.48). The action (5.48) must be gauge invariant in order to make

sense in this coset construction. Further, note that the term N0N̄0 in (5.48) is

automatically gauge invariant under the transformations (5.44). The coupling

with the space-time connection gives rise to mixed matter-ghost terms (J0N̄0

and J̄0N0).

Summary
Let me summarize the complete action for the type IIB superstring living on

AdS5×S5 in the pure spinor formalism [59, 63, 191]:

S = SG +SM =

=
1

γ2

∫
d2zStr

(1
2

J2J̄2+
3

4
J3J̄1+

1

4
J̄3J1+ω3+∂̄ λ1+N0J̄0

+ω1−∂λ3+ N̄0J0−N0N̄0

)
. (5.49)

The coupling constant12 is

1

γ2
=

√
λ

4π
=

R2

4πα ′
. (5.50)

12Note also the different normalization of the PS action between papers I and IV.
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Note the non-perturbative parity symmetry of the action which exchanges

z↔ z̄ θ ↔ θ̂ g1↔ g3 . (5.51)

The classical equations of motion
Recall the MC-current definition in terms of the super-coset representative:

J = g−1dg with g ∈ PSU(2,2|4)
SO(4,1)×SO(5)

. (5.52)

We have already seen how to derive the equations of motion in chapter 4 for

the GSMT string, cf. section 4.2. We need to consider a small variation ξ
of g, i.e. δg = gξ , δg−1 = −ξ g−1, which gives for the currents the expres-
sions (4.21). Plugging the variations for the left-invariant currents (4.21) in

the action (5.49) and using the Maurer-Cartan identities ∂ J̄− ∂̄J +[J, J̄] = 0,

provides the following equations of motion for the matter currents

D̄J2 = [J3, J̄3]+ [N, J̄2]− [J2, N̄0]
DJ̄2 =−[J1, J̄1]+ [N, J̄2]− [J2, N̄0]
D̄J3 = [N, J̄3]− [J3, N̄0]
DJ̄3 =−[J1, J̄2]− [J2, J̄1]+ [N, J̄3]− [J3, N̄0]
D̄J1 = [J3, J̄2]+ [J2, J̄3]+ [N, J̄1]− [J1, N̄0]
DJ̄1 = [N, J̄1]− [J1, N̄0] . (5.53)

By considering a small perturbation for the ghost fields δλ , δω leads to the

equations of motion for the ghost sector:

D̄λ1− [N̄0,λ1] = 0 D̄ω3+− [N̄0,ω3+] = 0

Dλ3− [N0,λ3] = 0 Dω1−− [N0,ω1−] = 0 . (5.54)

From the definition of the Lorentz ghost currents (5.40) and from the above

equations it follows

D̄N0+[N0, N̄0] = 0 DN̄0+[N̄0,N0] = 0 . (5.55)

In the contest of integrability, a crucial role is played by the BRST operator.

Thus the final part of this section is devoted to the BRST transformations, the

BRST invariance of the action at classical and quantum level. The section is

mainly based on the works [61, 62] and on the talk given by A. Mikhailov at

the Kavli institute [151].

In the curved AdS5×S5 background the BRST operator is
Q = QL +QR =

∮
STr
(
λ1J3+λ3J̄1

)
, (5.56)

namely it is made by a right and a left-moving BRST operator, QL = λ1J3
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and QR = λ3J̄1. The two operators QL and QR are nilpotent thanks to the pure

spinor constraints (5.41). However Q is nilpotent only up to gauge transfor-

mations. This will be shown by explicit computation in the next section, but

first we have to introduce how the ghost and matter elements are modified by

Q.

BRST transformations
The BRST operator Q acts by right-multiplication on the coset representative

g(x,θ , θ̂) [61], and the infinitesimal BRST transformations for g are

εQ(g) = g
(
ελ1+ ελ3

)
εQ(g−1) =−(ελ1+ ελ3

)
g−1 , (5.57)

where ε is an anticommuting parameter introduced for convenience, since λ1
and λ3 are anticommuting bosons. For the matter currents it implies

ε Q(Jm) = δm+3,0∂ (ελ1)+ [Jm+3 , ε λ1 ]+δm+1,0∂ (ελ3)+ [Jm+1 ,ε λ3 ]
ε Q(J̄m) = δm+3,0∂̄ (ελ1)+ [Jm+3 , ε λ1 ]+δm+1,0∂̄ (ελ3)+ [ J̄m+1 ,ε λ3 ] ,

(5.58)

where we have used the definitions of the MC-currents, the relations (5.57)

and then the projection on gm, with m = 0, . . . ,3.
The ghost fields transform under BRST transformations according to [61]

εQ(λ1) = εQ(λ3) = 0 εQ(ω3+) =−J3ε εQ(ω1−) =−J̄1ε . (5.59)

From these relations, one obtains the BRST transformations for the ghost cur-

rents13, i.e.

εQ(N0) = [J3, ε λ1 ] εQ(N̄0) = [ J̄1, ε λ3 ] . (5.60)

As mentioned above, the BRST operator must be nilpotent. Using the PS

constraints (5.41), one can check that

Q2(g) =−g{λ1,λ3} . (5.61)

{λ1,λ3} belongs to the g0 sub-algebra, i.e. SO(4,1)×SO(5), and thus it pa-
rameterizes a gauge transformation. As an example, computing the squared

13The ghost current BRST transformations can be computed recalling the OPE’s reported at the

beginning of the chapter, cf. (5.19).
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BRST transformation for J214, one gets

Q2(J2) =− [{λ1,λ3} ,J2] . (5.63)

With the same procedure one can compute

Q2(N0) =−{λ1,Dλ3− [N0,λ3]}− [N0,{λ1,λ3}]
Q2(N̄0) =−{λ3, D̄λ1− [N̄0,λ1]}− [N̄0,{λ1,λ3}] . (5.64)

I will not list all the squared BRST transformations for the matter currents.

The important point is already clear: the BRST operator is nilpotent up to

classical equations of motion and up to gauge transformations parameterized

by {λ1,λ3} [62]. This is consistent because all the action is invariant under
transformations generated by SO(4,1)×SO(5).

The classical BRST and gauge invariance
• The action is BRST invariant at classical level. In particular this can be

easily shown by applying the BRST transformations (5.58 – 5.60) to the

action (5.49). Then the BRST variation coming from the purely matter

sector is

δQSm ≡ εQ(Sm) = STr
(
J̄1D(ελ3)+ J3D̄(ελ1)

)
(5.65)

which is exactly canceled by the BRST variation of the ghost sector

δQSg ≡ εQ(Sg) =−STr(J̄1D(ελ3)+ J3D̄(ελ1)
)
. (5.66)

• As already discussed the action is classically gauge invariant, by construc-

tion for the matter sector and by covariantization for the ghost sector.

The quantum gauge and BRST invariance
We need to consider if these properties survive at quantum level. We want to

discuss quantum integrability for type IIB string on AdS5×S5, thus we need
to consider whether the quantum PS superstring action is consistent. The

statements in [62] and [61] are that

• The PS action (5.49) is gauge invariant at quantum level;

• The PS action (5.49) is BRST invariant at quantum level.

It is worth giving some detail on how this has been shown in [62], because

we will use the same kind of argument in paper IV. I will discuss the gauge

14 We have used the pure spinors constraints (5.41) as well as the Jacobi identity{[
J,λ1(3)

]
,λ1(3)

}
−
{[

λ1(3),J
]
,λ1(3)

}
+
[{

λ1(3),λ1(3)
}
,J
]

= 0 (5.62)

which implies that
{[

λ1(3),J
]
,λ1(3)

}
vanishes.
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invariance first and then the BRST invariance.

If there is an anomaly at quantum level, namely if the gauge invariance is

broken quantum mechanically it means that there exists a local operator which

generates such anomaly. This operator should be local, since the anomaly

comes from the short distance behavior of some operator that quantum me-

chanically becomes ill-defined, cf. section 3.4. Hence, one can proceed with

an engineering construction of such generic operator. Since it is local, it

should vanish for global transformations; since it is responsible for the gauge

symmetry breaking, it should be in the sub-algebra g0. Then the ansatz is [62]

δΛS = STr
(
αN0∂̄Λ+ ᾱN̄0∂Λ+β J0∂̄Λ+ β̄ J̄0∂Λ

)
(5.67)

where
(
α, ᾱ,β , β̄

)
are some arbitrary coefficients and Λ parameterizes the

SO(4,1)×SO(5) gauge transformations. Proposing a possible counter-term
[62] such as

Sc =−STr
(

αN0+J̄0−+ ᾱN0−J0+ +
1

2
(β + β̄ )J0J̄0

)
(5.68)

is possible to cancel partially the anomaly, and the remaining terms, namely

δΛ (S +Sc) =
1

2

(
β − β̄

)
STr
(
J0∂̄Λ− J̄0∂Λ

)
(5.69)

vanish due to the non-perturbative symmetry which exchanges right and left-

moving and bar and unbar coordinates in the world-sheet, cf. (5.51), and

which, in this case, constraints to have β = β̄ .
The quantum BRST invariance of the action (5.49) has been shown in [62],

and the arguments proceed analogously. One constructs an ansatz for the

anomalous local operator. In order to relate the terms and thus to reduce the

possible linear combination, one can use the classical equations of motion

and the Maurer Cartan identities. However, one needs to keep in mind that the

anomalous terms should be a gauge invariant local ghost number 1 operator.

Again, local is due to the short-distance behavior of the operators, gauge in-

variant since the gauge and BRST transformation commute and finally ghost

number 1 since it is a variation generated by the BRST operator. The required

properties restrict the possibilities for the coefficients in the linear combina-

tion. In this way it is possible to find a local counter-term which exactly

cancels the variation. Thus the quantum effective action is BRST invariant.

There are some points to notice. First, the use of the classical equations of

motion and the fact that the BRST operator, as well as the BRST transforma-

tions, are always the classical one. Second, since the BRST variation of the

effective action can be written as a BRST variation of suitable counter-terms,

this means that the BRST cohomology of gauge invariant local ghost-number
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1 operators is trivial, namely they can always be written as a BRST varia-

tion of some suitable operator. In this way the BRST transformation of the

total action, given by the effective quantum terms plus the counter-terms, is

zero [61, 62].

This was at the first order in perturbation theory. However the arguments

can be extended by induction at any order in perturbation theory [62]. The

basic idea is that if one has proved that the effective action is BRST invariant

up to order hn, then a possible anomaly would be generated by a local oper-

ator of the same type before. Using the fact that the BRST cohomology for

such operators is trivial, proves the BRST invariance up to hn+1 order, and

thus one can go on by induction. Let me stress that we concretely use the

classical BRST operator, the classical equations of motion and Maurer-Cartan

identities15.

The quantum conformal invariance
The action (5.49) is conformal invariant at quantum level. By means of the

background field method (cf. section 5.6) this has been shown to one loop in

perturbation theory [191] and by cohomology arguments to all orders [62]16.

5.4 Classical integrability of the AdS5 ×S5 PS super-
string action

The classical integrability has been proved by Vallilo in [192] by using the

same approach of Bena et al. for the GSMT action [55]. I will spend some

words on this since it is a fundamental result. In the second part, I will review

how the same Lax pair has been found by Berkovits requiring that the higher

charges should be BRST invariant [61]. The integrability at classical level

of the pure spinor action in generic AdSn×Sn backgrounds has been studied

in [4].

Recall from chapter 3 that the existence of a flat connection a, namely a
connection whose field strength identically vanishes, allows us to construct a

not-deformable Wilson-like operator (the monodromy matrix). Its path inde-

pendence assures the conservation of the corresponding charges. Hence, one

15 In this reasoning there is indeed some caveat. I will try to explain briefly remanding the reader

to [62] for more detailed explanations. The argument works if there are no conserved currents of

ghost number 2. Such currents indeed can spoil the nilpotency of Q, since Q has ghost number

1, thus Q2 has ghost number 2 and the existence of some charges of ghost number 2 would

in principle generate an anomaly in the nilpotency of the quantum operator Q. However such

currents are not present [62], implying that Q remains nilpotent at quantum level.
16The quantum conformal invariance of the pure spinor superstring has been showed also for

generic curved backgrounds and for the heterotic string [76, 35].
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would like to extend the analysis of Bena et al. to the PS formulation of the

AdS5×S5 action.
The zero-curvature equations in the z, z̄ coordinates reads

∂ ā− ∂̄a+[a, ā] = 0 . (5.70)

However it is simpler to work with the left-invariant currents, since they have

a well-defined grading. Using A = −g−1ag, the flatness condition (5.70) be-
comes

∂ Ā− ∂̄A+
[
A, Ā
]
+
[
J, Ā
]
+[A, J̄] = 0 , (5.71)

where J are the MC-currents J = J0+∑3
i=1 Ji.

The natural ansatz for A is the linear combination involving all the possible
currents

A = αJ2+βJ1+ γJ3+δN0 , Ā = ᾱ J̄2+ β̄ J̄1+ γ̄ J̄3+ δ̄ N̄0 . (5.72)

Notice that now also the Lorentz ghost currents participate to the proposed Lax

pair. Further, now no antisymmetric combination of the fermionic currents

enter, as it was for the GS formulation. The fermionic currents are treated on

equal footing with the bosonic ones.

Plugging the ansatz (5.72) in the condition (5.71) and using the equations

of motion (5.53) and (5.55), one obtains for the coefficients the following

solutions

α = μ−1 β =±μ3/2−1 γ =±μ
1
2 −1

ᾱ = μ−1−1 β̄ =±μ−
1
2 −1 γ̄ =±μ−3/2−1

δ =
1

2
(1−μ2) δ̄ =

1

2
(μ2−1) . (5.73)

As it was noted by Vallilo [192], the system admits the same solution if we

exclude the ghost contributions. Thus, at classical level, the two sectors, mat-

ter and ghost, are completely decoupled. This is not true at quantum level, as

it can be seen in [191, 152] or in paper IV.

The construction of the BRST charges
The same result (5.73) has been found by Berkovits using a different proce-

dure. Let me sketch this point since it sheds some light, especially in the re-

lations between the non-local charges and the BRST operator. As it is clearly

explained in [61], such charges since are symmetries of the string and can map

physical states to physical states, they should necessarily respect the symme-

tries of the theory, namely they should be BRST invariant (and it follows for

the GS formalism that there the conserved non-local charges should be κ-
symmetric).
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The explicit construction of the charges for the type IIB superstring in

AdS5× S5 is based in three steps [61]. First, we search for a gauge invari-
ant current a, such that

Q(a) = ∂σ Λ+[a,Λ] (5.74)

for some Λ.Then, the charges given by

P
(

e−
∫ ∞
−∞ dσa(σ)

)
(5.75)

are BRST invariant, since a satisfies (5.74). In order to construct a concretely,
one makes an ansatz writing the most general linear combination in terms of

all the currents (matter and ghost currents), i.e.

a =−g
(
δN0+βJ1+αJ2+ γJ3+ δ̄ N̄0+ β̄ J̄1+ ᾱ J̄2+ γ̄ J̄3

)
g−1 . (5.76)

Note that J0 and J̄0 are not included in the list, since we want a gauge invari-
ant object, for the same reason a is written as a rotation of the left-invariant
currents, recall chapter 3. First we act with the BRST operator Q on a (5.76),
and then we impose that Q(a) obtained in this way satisfies (5.74) where Λ is

Λ = g
(
bλ1+ b̄λ3

)
g−1 . (5.77)

These constraints fix the coefficients only to certain values. The specific solu-

tions are the same as those found by Vallilo (5.73). Moreover, the remaining

coefficients b and b̄ are

b =±μ
1
2 −1 b̄ =±μ−

1
2 −1 . (5.78)

The expansion around the value μ = 1 gives back the first global charge.

Namely, for the matter sector is

q∼= (μ−1)
∫

dσ j +O(μ2) = (μ−1)
∫

dσ
(
1

2
j1+ j2+

3

2
j3

)
+O(μ2) ,

(5.79)

with j =−gJg−1.
This is the explicit construction of the charges. However, their existence is

related to the fact that the classical BRST cohomology does not contain ghost

number 2 states, namely that such states can always be written as BRST varia-

tion of certain operators. This is indeed the ultimate condition that guarantees

the existence of the higher charges. For more detail we refer the reader to

appendix 10.2.
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5.5 Quantum integrability of the AdS5 ×S5 PS super-
string action

The arguments presented in the previous section are classical. One needs to

implement such arguments at quantum level. This has been done in [62] at any

order in perturbation theory. The argument runs essentially as before. Sup-

pose that we have certain BRST invariant charges at order hn in perturbation

theory, then Q̃(k̃C) = hn+1ΩC +O(hn+2), where Q̃ is the BRST operator that

generates the classical BRST transformations and their quantum corrections,

while ΩC is some generic integrated local ghost number 1 operator. Since the

BRST cohomology is trivial for such operatorsΩC, namely for local integrated

ghost number 1 operators [61, 62], then it can be always written as a BRST

variation of something, namely it can be written as ΩC = Q(
∫ ∞
−∞ dσΣc(σ)),

which means that k̃c−hn+1 ∫ ∞
−∞ dσΣc(σ) is BRST invariant up to order hn+1.

Finiteness of the monodromy matrix at the leading order
We have discussed until now about the existence of non-local charges and their

BRST invariance at quantum level. Nevertheless, this does not tell us whether

such quantities remain well defined quantum mechanically! Are these charges

finite?

The question is very far from being trivial, since there are examples in

which the bilocal charges are not finite and they need to be regularized, cf.

section 3.4. In the pure spinor approach, the question has been initially in-

vestigated by A. Mikhailov and S. Schafer-Nameki [152]. Indeed what they

have explicitly shown is that the monodromy matrix is well-defined at the

leading order in perturbation theory: it does not get renormalized and all the

divergences that can pop-up cancel. They have found different types of di-

vergences, namely divergences that go like 1
ε (linear divergences) and loga-

rithmical divergences (logε). In a perturbative quantum field theory, the first

ones depend on the regularization scheme adopted, while the second ones are

independent on the scheme and must be cancelled, also in order to have a con-

sistent quantum conformal invariance. Indeed, suppose to have two contours

C and C ′ related by a conformal transformation, namely C ′ = λC . Then
the monodromy matrices along the two paths have divergences that should be

regularized. The independence on the contour and hence the conformal in-

variance of the monodromy matrices implies that Ωreg[C ] = Ωreg[C ′]. On the
other side one has that Ωreg[C ] = limε→0 (Ωε [C ]+Cε [C ]) and by definition
Ωε [C ] = Ωλε [C ′]. This forces to have then limε→0Cε [C ] = limε→0Cλε [C ′]
which is not true for the case of logarithmic divergences [152].

69



5.6 Quantum Integrability: Papers I and IV

We go on following the issue about the finiteness of the conserved charges.

We have already explained in chapter 3 that the independence on the contour

for the monodromy matrix Ω is equivalent to the conservation of the charges.

Thus our goal is to move at quantum level and check that the independence

on the contour and the zero-curvature equation still yield.

How do we proceed? In the first part we show that there cannot exist an

anomaly in the deformation of the contour for the monodromy matrix. This

is done by using techniques analogous to the ones explained in Berkovits’

papers. In the second part we explicitly compute the field strength (5.82)

and show that all the logarithmic divergent terms disappear to first order in

perturbation theory.

5.6.1 Absence of anomaly: Paper IV

Before starting to explain the results and the strategy of paper IV, I will sum-

marize some of the basic “ingredients" presented in the previous part of the

chapter.

We use a slightly different parameterization for the one-parameter family of

flat connections with respect to the one presented in [192], cf. (5.73). Indeed

the sign and the factor of 1
2
are changed in the interaction termNN̄, thus calling

the spectral parameter z = μ , the Lax pair becomes17

J (z) = J0+ zJ2+ z
1
2 J1+ z

3
2 J3+(z2−1)N

J̄ (z) = J̄0+
1

z
J̄2+

1

z
3
2

J̄1+
1

z
1
2

J̄3+(
1

z2
−1)N̄ . (5.80)

From the BRST transformations for the currents (5.58) and (5.60), we can

read how the Lax pair vary under the Q action:

εQ(J ) = ∂
(

z−
1
2 ελ3+ z

1
2 ελ1

)
+[J , z−

1
2 ελ3+ z

1
2 ελ1]

εQ(J̄ ) = ∂̄
(

z−
1
2 ελ3+ z

1
2 ελ1

)
+[J̄ , z−

1
2 ελ3+ z

1
2 ελ1] , (5.81)

where notice that z−
1
2 ελ3 + z

1
2 ελ1 is nothing but what we have called Λ in

(5.77). The field strength is

F (1,1)(z)≡ ∂J̄ −∂J +
[
J , J̄

]
(5.82)

and it satisfies

εQ
(
F (1,1)(z)

)
=
[
F (1,1)(z),z

1
2λ1+ z−

1
2λ3
]
. (5.83)

17Note that in Vallilo’s notation J is given by J +A.
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Using the equations of motion (5.53 - 5.55) as well the Maurer Cartan iden-

tities, one can easily show that indeed the Lax pair with components J and

J̄ given above do satisfy the zero-curvature equation at classical level, i.e.

that the field strength vanishes

F (1,1)(z) = 0 . (5.84)

Let us now investigate the relation between the monodromy matrix and the

world-sheet path (3.15), which I rewrite here for convenience:

δ
δxμ(s)

Ω = P
(
Fμν ẋbe

∮
C J (s)

)
. (5.85)

Fix a point along the path C and consider an infinitesimal deformation on

C , i.e. xa(s) → xμ(s) + δxμ(s). Since the deformation is really small, the
“disturbance” in this ε path is represented by some operators O sitting on

it. At higher and higher energies these operators can interact and produce

divergences which spoil the contour independence of the monodromy matrix.

Let us try to engineering construct O and then we will see that such an

operator cannot indeed exist. O should be

1. local, since as explained we are worried about the short-distance behavior

of the currents which are operators and could produce UV divergences;

2. gauge invariant;

3. by dimensional analysis it is expected to have conformal dimension (1,1),

this can be seen already in (5.85);

4. we have also seen that the charges are BRST invariant, namely that the

Wilson loop is BRST invariant classically and quantum mechanically. This

implies that O should transform according to

εQ(O(1,1)) =
[
O(1,1), z

1
2 λ1+ z−

1
2 λ3
]
, (5.86)

which corresponds to ask for the BRST closure of O;
5. finally the operator should have ghost number zero, which follows from the

equation (5.85).

At this point we can write the most general linear combination satisfying the

properties from 1) to 5). Notice that the BRST closure (5.86) implies that

the matter currents J1 and J̄3 are not present in the possible list, because their
BRST transformations (5.58) contain derivatives of ghosts which cannot be

reabsorbed by the equations of motion. Moreover the point 2) leads to exclude

the gauge currents J0 and J̄0. The ansatz for the operator O(1,1) has been given
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in paper IV. We report here the ansatz for completeness,

O(1,1)(z) = A2+,2−(z)[J2, J̄2]+A1+,3−(z)[J1, J̄3]+A2+,3−(z)[J2, J̄3]
+ A1+,2−(z)[J1, J̄2]+A0+,2−(z)[N0, J̄2]+A2+,0−(z)[J2, N̄0]
+ A1+,0−(z)[J1, N̄0]+A0+,3−(z)[N0, J̄3]+A0+,0−(z)[N0, N̄0] .

(5.87)

The coefficients A are arbitrary functions of the spectral parameter z and they
are of order h, using Berkovits terminology. All the other possible terms are
related by classical equations of motion and Maurer-Cartan identities.

We have to impose the relation (5.86) to O(1,1)(z). This is indeed the most
strict requirement on O(1,1)(z) and from this constraint eventually follows the

non-existence of such operator O(1,1)(z): The system of equations for the un-

knowns A admits only the trivial solution.

Since we have proven that there are no operator obeying to the properties 1.-

5, this excludes the possibility to have an anomaly in the contour deformation

of the quantum monodromy matrix.

Actually by using Berkovits arguments and by recalling that the non-local

charges have been proven to be BRST invariant to all orders in perturbation

theory, we can extend the validity of our argument to any n-loop order (hn).

In some sense order by order in the quantum theory the BRST symmetry

fixes the contour in such a way that any small deformation in the path will not

produce any anomaly in the monodromy matrix. This is because is really the

constraint (5.86) to rule out the possibility to have an anomaly. This is quite

different from the case of quantum �Pn models [1], where there is no such a

“constraining” symmetry that prevents the model from an anomaly.

Finiteness of the monodromy matrix to all orders
Finally, let us to comment about another implication. The authors of [152]

have argued that the independence of the contour for the monodromy matrix

leads necessarily to the cancellation of the logarithmically divergent terms

in the quantum monodromy matrix. Consequently the arguments presented

in paper IV indicate that since the monodromy remain independent of the

contour to all order in perturbation theory then it is also finite, or better, it is

free from logarithmic divergences to all loops.

5.6.2 The operator algebra: Papers I and IV

Our aim in this Section is to show and to explain how to proceed with explicit

one-loop computations in the pure spinor formalism. In particular we want to

explain how we have computed the current OPE’s and the field strength (5.82)

and showed that F is free from logarithmic divergent terms.
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The operator algebra has been derived in paper I and IV at the leading order.

I will explain at the end of the section the differences in the two papers. Let

me first concentrate on the technique used to compute the operator algebra,

which is the same in both papers.

Since the world-sheet currents are not holomorphic or anti-holomorphic,

it is not possible to derive the OPE’s by symmetry considerations. They

have to be computed perturbatively. The OPE results show indeed the non-

holomorphicity of the currents but also that the �4-grading of the psu(2,2|4)
algebra is preserved.

Let me sketch the procedure. The method used is the background field

method [58, 191], which means that the fields are expanding around a classical

solution. The quantum fluctuations around the classical background interact

and give rise to new effective interactions.

1. We write each field Φ as

Φ = Φcl +Φq . (5.88)

In particular, the group-valued map g is expanded in quantum fluctuations

X around a classical solution g̃, namely

g = g̃eγX , with X ∈ g/g0 , (5.89)

where γ is the parameter of the expansion, namely the (inverse of the) cou-
pling constant in front of the action in (5.49). This means that we are

considering the limit

R→ ∞ , or equivalently γ → 0 . (5.90)

The gauge invariance of the (super) coset space can be used to fix the fluc-

tuations in g/g0. Hence from the definition of the currents J = g−1dg one
can compute their expansion in terms of the fields X , i.e.

Ji = J̃i + γ
(
∂Xi +[J̃,X ]i

)
+

γ2

2

(
[∂X ,X ]i +

[[
J̃,X
]
,X
]

i

)
+O(γ3)

J0 = J̃0+ γ
[
J̃,X
]
0
+

γ2

2

(
[∂X ,X ]0+

[
[J̃,X ],X

]
0

)
+O(γ3) (5.91)

where the subscript i denotes the projection into gi and its values are i =
1,2,3. J̃ is the classical current, i.e. J̃ = g̃−1dg̃. The analogous expansion
(5.91) holds for the bar components of the currents, with the obvious sub-

stitutions ∂ → ∂̄ and J̃ → ¯̃J. The same method can be applied to the ghost
fields [191, 76, 35],

ω3+ → ω̃3+ + γ ω3+ λ1→ λ̃1+ γ λ1
ω1− → ω̃1−+ γ ω1− λ3→ λ̃3+ γ λ3 (5.92)
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which means that the Lorentz ghost currents transform according to the

following expressions

N = Ñ + γ N(1) + γ2N(2)

N̄ = ˜̄N + γ N̄(1) + γ2 N̄(2) , (5.93)

with

N(1) =−{ω3+, λ̃1}−{ω̃3+,λ1} N(2) =−{ω3+,λ1}
N̄(1) =−{ω1−, λ̃3}−{ω̃1−,λ3} N̄(2) =−{ω1−,λ3} . (5.94)

2. We plug (5.91) and (5.93) in the action (5.49), we obtain an effective ac-

tion18, which gives us the new Feynman diagrams. What is really interest-

ing are the terms quadratic in the quantum fluctuations, Φq, since they will

give us the diagrams which correct the two-point functions.

3. We compute the effective propagators (or two-point functions) according

to

(A+V1+V2)−1 =
= A−1− (A−1V1A−1)+(A−1V1A−1V1A−1)− (A−1V2A−1)+ . . . ,

(5.95)

where A represents the kinetic operator A∼ 1
2π ∂ ∂̄ . V1 represents the three-

leg vertices with interaction term of the type J ·∂ , and V2 contains the four-
leg diagrams with interaction of the type J J. Notice that by dimensional
analysis V1 has conformal weight 1, while V2 has conformal weight 2, this
is why we truncate the expansion to these operators.

4. Finally, it is possible to compute the current OPE’s contracting the quan-

tum fluctuations Φq with the propagators of the previous point (5.95). In

particular for the matter currents the OPE’s up to order γ2 ∼ 1
R2 are

JA(x) J̄B(y) ∼= 〈JA(x) J̄B(y)〉+ γ2
(〈∂XA(x)∂̄XB(y)〉+ 〈∂XA(x)[ ˜̄J,X ]B(y)〉

+ 〈[J̃,X ]A(x)∂̄XB(y)〉+ 〈[J̃,X ]A(x)[ ˜̄J,X ]B(y)〉)+ ... , (5.96)

where A is a psu(2,2|4) index.
18We will not rewrite the effective action, since it has been listed in paper IV. In particular the

terms are indicated with SM;β + SM;2 for the purely matter sector and SGM;β + SGM;2 + SGM;3

for the mixed ghost-matter sector and finally SG;2 for the purely ghost sector. The contribution

to the effective action denoted with the letter β denotes the ones computed also by Vallilo [191]

for the β -function, while all the other ones have been computed for the first time in paper IV.
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Operator algebra: Paper I vs. Paper IV
The paper I contains the OPE’s of the matter current at leading order 1

R2 and up

to linear term in the currents, namely a uniqueV1-like insertion in the quantum
propagators (5.95). Such tree-level results were then confirmed in [152]. A

very similar problem was faced in [68] by using a Hamiltonian approach. In

paper IV the OPE’s are for matter and ghost currents, still at the leading order

in perturbation theory, i.e. 1
R2 , but they contain up to contributions quadratic

in the currents (up to V2-like insertion or the “square” of V1-vertices).
If we allow ourselves to keep up to dimension-2 operators in the OPE’s, as

in paper IV, then at order 1
R2 the ghosts and the matter are coupled and they

give rise to the following OPE’s

N(x)J̄i(y)∼=− 1

R2

(
〈{ω3+, λ̃1}(x)∂̄Xi(y)〉+ 〈{ω̃3+,λ1}(x)∂̄Xi(y)〉

)
+ . . .

N̄(x)Ji(y)∼=− 1

R2

(
〈{ω1−, λ̃3}(x)∂Xi(y)〉+ 〈{ω̃1−,λ3}(x)∂Xi(y)〉

)
+ . . .

(5.97)

N(x)N̄(y) ∼= 1

R2
(〈{ω3+, λ̃1}(x){ω1−, λ̃3}(y)〉

+ 〈{ω3+, λ̃1}(x){ω̃1−,λ3}(y)〉+ 〈{ω̃3+,λ1}(x){ω1−, λ̃3}(y)〉
+ 〈{ω̃3+, λ̃1}(x){ω̃1−,λ3}(y)〉

)
+ . . . . (5.98)

All the OPE results are listed in Appendix C of the paper IV, thus I will not

rewrite them here.

Moreover at this order 1
R2 the currents can get renormalized, namely there

are loop-diagrams that can contribute. In particular looking at expansion

(5.91) one sees that the corrections at order 1
R2 contain two quantum fields X

which can be contracted. Since they are on the same point, this will give rise

to one-loop diagrams, such as tadpoles or self-energy diagrams. Explicitly:

1

R2
〈J(2)(x)〉=

1

2R2
〈[∂X ,X ] (x)〉+ 1

2R2
〈[[J̃,X] ,X](x)〉 (5.99)

This is true only for the currents in g2.The currents in fermionic subalgebras

cannot contribute just because one would have a fermionic and bosonic index

contracted together.

5.6.3 The field strength: Paper IV

As discussed in paper IV, looking at the expression (5.85) the field strength

is our prototype of operator O . However in (5.87) we mod out the redun-
dancy coming from the equations of motion and the Maurer Cartan identities.

This means that there might be operators which classically vanish on-shell
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and which satisfy all the requirements 1. - 5. Obviously, how it can be readily

seen, the field strength (5.82) has all these features. For this reason we have

also explicitly computed the field strength at one-loop showing that all the

logarithmic divergences cancel. However, we have not showed the complete

vanishing of the field strength, namely that the finite terms also cancel, due to

technical difficulties.

Once we have expanded the left-invariant currents in 1
R2 , cf. (5.91)–(5.93),

the Lax pair J (5.80) and the field strength F (5.82) will be also expanded

consequently:

J → J̃ + γJ (1) + γ2J (2) +O(γ3) (5.100)

F → F̃ + γF (1) + γ2F (2) +O(γ3) . (5.101)

Notice that J̃ is the classical flat connection, which means that F̃ = 0.

What we have verified is that at order 1
R2 the variation of the monodromy

matrix is free from logarithmic divergences, namely that F (2) is finite19.

19However in principle I should consider also terms coming from the interactions (OPE’s) be-

tween the field strength and the connections in the path ordered exponential. Indeed expanding

F and J as above we have terms as for example

∼ 1

R
F (1)

(
1

R

∫
J (1) +

1

R

∫
J (1)

∫
J̃

)
+

1

R2
F (2)

∫
J̃ J̃ . (5.102)

The first term vanishes due to the equations of motion, one can directly check this. The second

term would be non-zero only ifF (2) could have terms of conformal weight zero (since we want

only up to conformal weight 2 operators), which is not the case due to the antisymmetry of the

field strength.
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6 AdS/CFT as a 2d particle model and the
near-flat-space limit

6.1 Introduction

The integrable structures found on both sides of the correspondence allow

one to treat the planar AdS/CFT as a two-dimensional particle model. On the

gauge theory side, this is due to the correspondence between theN = 4 SYM

theory and the one-dimensional spin chain, in particular it follows from the

identification between the dilatation operator and the spin chain Hamiltonian,

cf. chapter 2. We can treat the scatterings of the impurities in the spin-chain

as collisions among (1+1) dimensional particles and consider the S-matrix for

describing all the relevant kinematical observables. In particular, the integra-

bility of the model ensures that each magnon only scatters with another one

each time (S-matrix factorization).

What about the string theory side? There we have a two-dimensional world-

sheet description for closed strings in AdS backgrounds. We need to identify

which are the elementary excitations of the world-sheet which correspond to
the spin chain magnons. In this sense the full GSMT formulation might seem

hopeless: keeping all the symmetries for the AdS superstring does not help to

find the spectral information. However in the (generalized) light-cone gauge

the world-sheet theory describes only the physical degrees of freedom of the

AdS superstring. And it is in this way that it is possible to interpret the world-

sheet excitations as two-dimensional particles.

Having a theory which describes particles in (1+1) dimensions and which

might be integrable, means that we can know all the spectrum through the S-

matrix, cf. chapter 2 and 3. In particular, even without an exact knowledge

of the dilatation operator, the (asymptotic) spectrum can be encoded in the

Coordinate Bethe Equations, which in turn can be derived from the S-matrix.

Naturally this should be true on both sides of the AdS/CFT duality and in fact

it turns out that it is the same S-matrix which describes (asymptotically) the

collisions of magnons along the (infinitely long) spin-chain and of world-sheet

excitations (in an infinite volume).

Historically on the gauge theory side, the S-matrix was initially discussed

by Staudacher in [184]. Beisert explained how it is determined by the un-

broken symmetries of the model up to an abelian overall phase in [50, 49].

On the string theory side, it was initially discussed by Arutyunov, Frolov and
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Staudacher in [23], by Klose and Zarembo in [128] and by Roiban, Tirziu

and Tseytlin in [170]. Further fundamental works in this direction are the

paper by Klose, McLoughlin, Roiban and Zarembo [130], where the world-

sheet S-matrix is computed to tree level and the papers by Arutyunov, Frolov

and Zamaklar [24] where the S-matrix has been rewritten in a string basis

and by Arutyunov, Frolov, Plefka and Zamaklar [22] where the symmetries

are discussed on the string theory side. Actually, we will use the S-matrix

in the near flat space limit (NFS) which was computed to one-loop by Klose

and Zarembo in [131] and to two-loops by Klose, McLoughlin, Minahan and

Zarembo in [127].

There is a key-point in the discussion above. Such a “S-matrix-program”

assumes (quantum) integrability: the kinematical information is obtained by
means of the two-body S-matrix. As explained in the previous chapter 5, prov-
ing rigorously the quantum integrability for the type IIB superstring is an in-

credible hard task probably as much as proving the gauge/string correspon-

dence. But now, after chapter 3, we know that in two-dimensional field the-

ories the higher conserved charges leave dynamical constraints (particle pro-

duction, elastic scattering, factorization of the S-matrix) which can be tested.
This is the strategy of the paper II: show that all these properties hold up to

one-loop for the type IIB superstring in AdS5×S5.
We should be more precise. First point to discuss is that, even fixing the

light-cone gauge, the σ -model described by Metsaev and Tseytlin in [149] is
still prohibitive or at least very complicated. For this reason we use for the

explicit computation the so-called near flat space limit, introduced in 2006
by Maldacena and Swanson [143]. We will explain the features of the model

in this limit and the corresponding S-matrix. We will also introduce, even if

briefly, the light-cone gauge and the BMN limit [57], since we will reuse these

notions in chapter 7 discussing the “new” gauge/gravity duality. Notice also

that we are discussing the S-matrix and the spectrum in the infinite volume

limit.

A second point to stress. We should not be confused about which kind of

S-matrix we are discussing. As mentioned at the beginning, we are describing

the superstring in AdS spaces from a world-sheet point of view. Indeed we
have always discussed the integrability of the world-sheet action. The com-

plete kinematical and dynamical information is contained in this very special

two-dimensional quantum field theory. In the light-cone gauge the excita-

tions, which are left after gauge-fixing, are only the physical ones. These are

massive excitations in the string world-sheet. Thus when we talk about and de-
scribe the S-matrix on the string theory side, we really mean the world-sheet
S-matrix, and not the target-space S-matrix. It is really the S-matrix which

describes the scattering of these particle excitations on the string world-sheet.
On the gauge theory side, it is the same, namely we are dealing with the
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internal S-matrix, using the expression of Staudacher in [184]. This means
that we are considering the scattering of magnons, namely the fundamental

excitations in the spin chain picture. This should be not confused with the

external S-matrix, namely the scattering matrix associated with the collisions

of gluons in four dimensional space-time.

6.2 Light-cone gauge, BMN limit and decompactifica-
tion limit

In this section, we explain more concretely what wemean by a two-dimensional

particle model from the string theory point of view, introducing the general-

ized light-cone gauge, the decompactification limit and the fields. The BMN

limit is introduced more for completeness. The section is based on the orig-

inal papers cited on the main text, on the review written by Arutyunov and

Frolov [19] and on Swanson’s Ph.D. thesis [186].

6.2.1 Light-cone gauge

In the GS formalism in order to treat the AdS superstring we need to break the

(super) Lorentz covariance by imposing the light-cone gauge. The procedure

which I am going to illustrate, is manly based on the works [75, 16, 17, 19].

We introduce the AdS5×S5 metric in the global coordinates

ds2 =−Gtt(z)dt2+Gzz(z)dz2︸ ︷︷ ︸
AdS5

+Gϕϕ(y)dϕ2+Gyy(y)dy2︸ ︷︷ ︸
S5

, (6.1)

with

Gtt(z) =

(
1+ z2

4

1− z2
4

)2

, Gzz(z) =
1(

1− z2
4

)2 ,

Gϕϕ(y) =

(
1− y2

4

1+ y2
4

)2

, Gyy(y) =
1(

1+ y2
4

)2 . (6.2)

In AdS5, the coordinates zi are the four transverse directions and t is the global
time; in S5, yi′ are the four transverse coordinates and ϕ is the angle along one

of the big circle of the 5-sphere. The corresponding embedding coordinates,

the world-sheet fields, are denoted by

T, Zi︸ ︷︷ ︸
AdS5

, φ , Yi′︸ ︷︷ ︸
S5

with i , i′ = 1,2,3,4 . (6.3)
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One can introduce the light-cone coordinates which mix the two U(1) di-
rections, in particular to keep the discussion more general we can use the

following parameterization

X+ = (1−a)T +aφ X− = φ −T , (6.4)

where a is a real number defined between 0 ≤ a ≤ 1. The typical values for

a are a = 1
2
, which is called the uniform gauge, and a = 0 which is called

the temporal gauge1. There are some simplifications for the different gauge
choices, in particular in the paper IV in the context of the AdS4/CFT3 we
make use of the temporal gauge, cf. chapter 7. Here we will assume the

uniform light-cone gauge, which corresponds to the most symmetric choice

and has remarkable simplifications in the S-matrix computations.

The conjugate momenta are defined by pM = δL
δ ẋM . Hence inverting the rela-

tions (6.4), T = X+−aX− and φ = X+ +(1−a)X−, the light-cone momenta
are

p+ ≡ δL

δ Ẋ+ = pφ + pT p− ≡ δL

δ Ẋ−
=−apT +(1−a)pφ . (6.5)

In the light-cone gauge the target space time (in light-cone coordinates) is

identified with the world-sheet time coordinate2 and the conjugate momentum

to the field X− is kept constant, namely

X+
!︷︸︸︷
= τ p−

!︷︸︸︷
= constant(≡C) . (6.6)

Notice that this means that the total space-time momentum in the light-cone

coordinates is

P− =
1

2πα ′

∫ π

−π
dσ p− =

C
α ′

P− =
1

2πα ′

∫ π

−π
dσ p− =

1

2πα ′

∫ π

−π
dσ
(−apT +(1−a)pφ

)
= aE +(1−a)J . (6.7)

The first line in (6.7) says that the total space-time light-cone momentum P−
measures the world-sheet circumference, which we have chosen to parameter-

ize with−π ≤σ ≤ π . However, we could have integrated between the interval
[−s,s] after rescaling the world-sheet coordinate σ , and nothing would have
changed in the first line, a part from the appearance of the constant 2s. Thus
P− is related to the string length. Notice that we have set R = 1, but it can be

1Note that names for the different gauge choices are not globally valid.
2This is rigorously true only if the winding number is zero, the number of times that the closed
string winds along the one-sphere parameterized by the angle φ . In our case we are always
discussing closed strings with vanishing winding number.
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Figure 6.1: The world-sheet for closed strings.

easily restored by multiplying the results in (6.7) by R2.
Let us now comment on the second line in (6.7). By definition, P− is related

to the U(1) charges which are the energy, conjugated to the global time in
AdS, and the angular momentum J, conjugated to the angle for the S5-equator.
Since this is important, let me stress that we have

E =− 1

2πα ′

∫ π

−π
dσ pT J =

1

2πα ′

∫ π

−π
dσ pφ . (6.8)

Notice that for the temporal gauge (a = 0) the total space-time light-cone mo-

mentum P− is the angular momentum J. Finally for P+ we have

P+ =
1

2πα ′

∫ π

−π
dσ p+ =

1

2πα ′

∫ π

−π
dσ
(

pφ + pT
)

= J−E . (6.9)

Even though we have fixed the light-cone gauge, there is still some choice

left: there is still the reparameterization invariance for the world-sheet coor-

dinates. Closed strings are parameterized by τ which can take any real values
and by σ which takes values in the S1 circle, since by definition the string is
closed. Then topologically the closed string world-sheet is a cylinder, cf. fig-

ure 6.1. In particular, this implies that when we shift the coordinate σ along

the circle in the figure 6.1 by a constant, the physics we are describing should

not change. In other words the total momentum along the word-sheet spatial

direction (namely the operator which generates the translation in σ ) should
vanish. This is the so-called level matching condition: the total world-sheet
momentum should vanish. Physical closed strings must be level-matched.

The reparameterization invariance with respect to the world-sheet coordinates

is encoded in the Virasoro constraints. Namely we have to impose that the

energy-momentum tensor for the superstring world-sheet vanishes:

Tμν ≡ Sμν − 1
2
γμνγλρSλρ

!︷︸︸︷
= 0 , (6.10)

where the definition for Sμν comes from recalling that the GSMT AdS super-
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string world-sheet Lagrangian is L = Lkin +LWZW , cf. section 4.2, i.e.

Lkin = −1
2
γμνSμν =−1

2
γμν STr

(
JμJν

)
|g2

= −1
2
γμνS(0 f )

μν − 1
2
γμνS(2 f )

μν + . . .

LWZ = L
(2 f )
WZ + . . . . (6.11)

We have expanded in the inverse powers of the string tension ( 1√
λ
) and for

each loop in the number of fermions. The string world-sheet metric is γμν

with determinant −1 and defined by γμν =
√−hhμν .

We can concentrate on the bosonic sector for simplicity. In this case Sμν is

simply given by S(0 f )
μν = ∂μXM∂νXNGMN and the Virasoro constraints read as

T bos
μν = ∂μXM∂νXNGMN− 1

2
γμνγλρ∂λ XM∂ρXNGMN = 0 . (6.12)

Since we will use these results also in the next chapter 7, I will now make

some digression. One can define the conjugate momenta as

pM =−γτμGMN∂μXN (6.13)

which is only another way of rewriting the functional derivative δL
δ ẊN for the

bosonic sector. Then one has

ẊM =− 1

γττ GMN pN− γτσ

γττ XM ′ , (6.14)

where the world-sheet metric basically plays the role of a Lagrange multiplier

as it can be seen also rewriting the Hamiltonian and the Lagrangian, i.e.

L = − 1

2γττ GMN pM pN +
1

2γττ GMNXM ′XN ′

H = pMẊM−L =− 1

2γττ

(
GMN pM pN +GMNXM ′XN ′

)
− γτσ

γττ pMXM ′ .

(6.15)

Thus the Virasoro constraints just become

GMN pM pN +GMNXM ′XN ′ = 0 pMXM ′ = 0 . (6.16)

The standard procedure is to solve the second Virasoro constraints in (6.16)

in order to find X−′ and substitute it back in the first constraint GMN pM pN +
GMNXM ′XN ′ = 0. In particular one finds

pMXM ′ = p−X−′+ pIXI ′ = 0→ X−′ =− 1
C

pIXI ′ (6.17)
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with the index I = 1, . . . ,8 labeling the transverse directions, i.e. I = (i, i′).
Thus X−′ is a function of the physical transverse fields, which are periodic in
σ . Indeed, in the light-cone gauge, X−′ measures the density of the variation
of the fields along the σ direction, namely it measures the world-sheet mo-

mentum density. Then, once one integrates the second constraint in (6.16), we

recognize in it the level-matching condition.

Plugging back the solution for X−′ in the first constraint in (6.16), one ob-
tains a quadratic equation for p+, that can be solved by

Hlc =−p+ , (6.18)

where Hlc is the light-cone world-sheet Hamiltonian density. Again p+ is

now only a function of the transverse coordinates and momenta, once that all

the gauges are imposed and the constraints are solved. The equation (6.18)

tells us that the time evolution in the world-sheet coincides with the time-

evolution in the target space as it should be, since we have chosen to identify

the two time coordinates X+ and τ . The world-sheet Hamiltonian is then

H =
1

2πα ′

∫ π

−π
dσHlc . (6.19)

In particular since the Hamiltonian density does not depend on constants re-

lated to gauge choices, it does not depend on P−. The length of the circum-
ference P−, (or the angular momentum J in the temporal gauge), enters only
trough the interval of integration in (6.19). This implies that in fact one can

rescale the boundary of integration by π → πP−/
√

λ , (or by π → πJ/
√

λ in

the temporal gauge). The equation (6.18) has also another important conse-

quence. Rewriting p+ from the equation (6.5), as a consistency condition one

has

H =
1

2πα ′

∫ π

−π
Hlc =− 1

2πα ′

∫ π

−π
p+ =− 1

2πα ′

∫ π

−π

(
pT + pφ

)
= E− J ,

(6.20)

where we used the definitions for the U(1) charges in (6.8).

6.2.2 Decompactification limit

We have seen that we can rescale the interval of integration in σ by a factor

depending on the total light-cone momentum P−. Consider now the limit

P− → ∞ . (6.21)

This means that the world-sheet action is an integral between −∞ and +∞,
namely for the spatial world-sheet coordinate it means σ ∈�. Equivalently,
we can say that instead of considering closed strings we are discussing open

strings, whose world-sheet has the topology of a plane.
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Why would one like to consider such a limit? The point is that in this de-
compactification limit the world-sheet becomes an infinite plane and it makes
sense to introduce asymptotic states (as the ones we discussed in chapter 3,

section 3.3) and the S-matrix for the world-sheet excitations.

It is worth noticing that on the gauge-theory side the decompactification

limit corresponds to gauge-invariant operators with very large R-charge (J).

6.2.3 The fields

After gauge-fixing the type IIB Lagrangian, we are left with 8 bosonic and

8 fermionic degrees of freedom. The bosons correspond to the transverse

directions in AdS5×S5, as we discussed in section 6.2.1. The initial symmetry
PSU(2,2|4) is broken by the gauge-choice. In particular for the bosonic sector
we have killed the directions T and φ in favor of Y and Z. Thus the manifest
bosonic symmetries left are

SO(4,2)×SO(6)→ SO(4)×SO(4) . (6.22)

The light-cone gauge preserves the SO(4)×SO(4) symmetry. However in the
BMN limit, the unbroken symmetry group is enhanced to SO(8), but not in
the NFS limit, where the quartic interactions break SO(8) into two copies of
SO(4), cf. sections 6.2.4 and 6.3, respectively. The indices i, i′, with i, i′ =
1,2,3,4 carried by the fields Z and Y respectively can be rewritten in terms of

spinorial indices thanks to the Pauli matrices [130], namely each group SO(4)
can be decomposed as two copies of SU(2):

SO(4)∼ (SU(2)×SU(2))/�2 . (6.23)

Notice that one SO(4) comes from the AdS isometry. It represents what is left

from the conformal group after gauge-fixing. The second SO(4) comes from
the sphere isometry, corresponding to what is left from the R-symmetry. Thus

the two copies of SU(2) contained in SO(4,2) are the Lorentz symmetry group
while the other two SU(2)’s contained in SO(6) describe the flavor symmetry
of the model.

In terms of the fields this means that the embedding coordinates can be

rewritten as bi-spinors

Zαα̇ = (σi)αα̇Zi Yaȧ = (σi′)aȧY i′ , (6.24)

where the σ matrices are σi = σi′ =
(
�, ı−→σ ) and the indices are a = 1,2,

ȧ = 1̇, 2̇, α = 3,4, α̇ = 3̇, 4̇. The fermions mix between the two different

sectors:

Ψaα̇ ϒα ȧ , (6.25)
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and one can rewrite all the fields as a 4×4 matrix(
Yaȧ Ψaα̇

ϒα ȧ Zαα̇

)
. (6.26)

The fields transform in the bifundamental (2|2)2 representation of PSU(2|2)L×
PSU(2|2)R. The left and right group act along the columns and the rows of the

matrix (6.26) respectively. Notice that in the matrix notation above, the first

block diagonal corresponds to S5.

Finally, the two (2|2) indices can be rearranged in the super-indices A =
(a,α) and Ȧ = (ȧ, α̇), where a, ȧ are even and α, α̇ are odd.

6.2.4 BMN limit

This section is based on the original paper [57], but also on the other funda-

mental work [115]. The name “BMN” stays for the authors of [57]: Beren-

stein, Maldacena and Nastase. I will refer to such a limit also as plane-wave
limit. The reason why BMN and plane-wave limit are synonyms I hope it will

be clear at the end of the section. The plane wave limit of the AdS5×S5 type
IIB superstring action was found in [148] by Metsaev and in [150] by Metsaev

and Tseytlin.

The AdS5×S5 metric in global coordinates can be rewritten as
ds2 = R2

(−dt2 cosh2ρ +dρ2+ sinh2ρdΩ2
3

+ dφ 2 cos2 θ +dθ 2+ sin2 θdΩ′23
)
, (6.27)

where the explicit dependence in the radius R is restored 3. The metric is the

same as in (6.1) after transforming the coordinates according to

coshρ =
1+ z2

4

1− z2
4

cosθ =
1+ y2

4

1− y2
4

. (6.28)

We will deal with an infinitely boosted string along the S5 equator parame-

terized by φ . Such a string carries a very large angular momentum J. One can
treat it semi-classically and consider small fluctuations around the classical

null geodesic of the point-like string which is described by ρ = θ = 0. By

dimensional analysis one has that J ∼ R2, thus it is equivalent to consider the
large radius limit (R→ ∞) of the AdS5×S5 background (Penrose limit).
3Recall the relation T = R2

2πα ′ =
√

λ
2π , namely

R2

α ′ =
√

λ , cf. chapter 1. In the previous section
we set R = 1 while now we set α ′ = 1.
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It is useful to rescale the coordinates for the choice a = 0 according to

t → x+ ϕ → x+ +
x−

R2
zi → zi

R
yi′ → yi′

R
. (6.29)

Notice that X+ is dimensionless, X− has length dimension 2 while the trans-
verse coordinates have dimension 1. Plugging back the coordinate transfor-

mations (6.29) in the metric (6.27) and taking the large R limit one obtains

ds2 ∼= 2dx+dx−+dz2+dy2− (z2+ y2
)
(dx+)2+O(1/R2) . (6.30)

This is the Penrose limit of AdS5×S5 space, which is equivalent to the plane
wave geometry seen by a very fast particle.

The Ramond-Ramond (RR) flux survives the Penrose limit, thus we need

to impose the light-cone gauge in order to study the fate of our string:

X+ = τ p− = constant . (6.31)

Notice that after the rescaling (6.29) the U(1) charge corresponding to the
angular momentum J gets also rescaled by a factor R2, namely now we have

P− =
J

R2
P+ = J−E . (6.32)

The limit we are considering is

R→ ∞ J → ∞ P− = f ixed E− J = f ixed , (6.33)

and we will neglect all the terms of order O(1/R2). Notice that λ
J2 ∼ R4

J2 and

P− plays the role of an effective parameter. For example, recalling that at the
leading order the bosonic Lagrangian is L =−1

2
S(0 f )

μν =−1
2
∂μXM∂νXNGMN

and plugging in GMN the plane-wave metric (6.30), one obtains at the leading

order

LB,BMN = 1
2

4

∑
i=1

{
(Z′i)2+(Zi)2− (Żi)2

}

+ 1
2

4

∑
i′=1

{
(Y ′i

′
)2+(Y i′)2− (Ẏ i′)2

}
,

HB,BMN = 1
2

4

∑
i=1

{
(Z′i)2+(Zi)2

}
+ 1

2

4

∑
i′=1

{
(Y ′i

′
)2+(Y i′)2

}
. (6.34)

We have distinguished between Y and Z coordinates just to make contact with

the notation used in the previous section, but indeed they should be treated on

equal footing. The above Hamiltonian describes a free system of 8 bosonic

massive fields. It is straightforward to introduce the fermions, in particular at
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the leading order we will have only bilinear fermionic terms (L
(2 f )

kin ). After

gauge-fixing the local fermionic κ symmetry, only the SO(8) spinors survive
and they also acquire mass from the RR flux (the term is contained in the

covariant derivative).

After expanding in Fourier modes the bosonic (and the fermionic) fields,

the quantized Hamiltonian

HB,pp =
∞

∑
n=−∞

ωn

8

∑
I=1

(aI
n)
†(aI

n) (6.35)

describes 8 different kinds of free oscillators, completely decoupled and with

unit mass4.

The BMN dispersion relation is relativistic, namely

ω2
n = 1+ k2 = 1+

(
n

α ′P−

)2
= 1+

(
nR2

α ′J

)2
, (6.36)

which is valid for fermions and bosons. Notice that since the theory is free the

S-matrix is trivially the identity.

Let us consider the first non trivial case5, namely a string state where only

two level-matched oscillators are excited, i.e. (aI
n)
† (aI−n)

†|0〉. The corre-

sponding energy is

2ωn = 2

√
1+
(

nR2

α ′J

)2
� 2+

(
nR2

α ′J

)2
+O
( λ

J2
)
. (6.37)

It is possible to consider the same limit also on the gauge theory side. The

corresponding spin chain carries operators with an infinite R-charge (J) and
the dispersion relation computed gives the same result (6.36). In section 2.4.1,

we have analyzed the dispersion relation for an operator such as

Tr
(
ZL−KW K) . (6.38)

In the particular case where K = 2, we have computed EK=2 = λ
π2 sin

2
( πn

L−1
)

where the quantized momentum for the magnons is ±p = ± 2πn
L−1 . L is the

spin chain length and the R-charge is J = L−K. Let us consider the small
momentum limit p→ 0, or equivalently the large L limit, then

EK=2 ∼= λn2

L2
∼=
(

R2n
α ′J

)2
, (6.39)

4Since the 8 modes have the same dispersion relation and they are not really distinguished,

we have recollected all together. If one includes the fermions then it is a free (8|8) harmonic
oscillator systems.
5One level-matched oscillator, e.g. (aI−n)

†|0〉, implies n = 0 and thus zero energy.
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where we have made all the factors explicit to facilitate the comparison with

the formula (6.36), namely R4

α ′2J2
= λ

J2 , and we are using the fact that J∼ L→∞
while K ∼ O(1). Indeed the two dispersion relations match exactly, recalling
that now the scaling dimension is Δ = J +2+ γ and the string energy is E =
Δ− J, where J is just the bare scaling dimension. Thus, EK=2 gives the first
λ
J2 correction to the string energy E and to the anomalous dimension Δ− J.
Hence, the plane-wave string is dual to a single trace operator with infinite

R-charge6.

The BMN scaling
Notice that on the string side the BMN limit means λ →∞ and J→∞, but the
ratio λ ′ ≡ λ

J2 is kept fixed. One might wonder what happens if we consider λ ′
as a small effective parameter. This is the so-called BMN scaling, where an

expansion in λ ′ gives the sub-leading terms to the dispersion relation:

E = J + J

[(
∞

∑
l=0

a(l)
1

Jl

)
λ ′+

(
∞

∑
l=0

a(l)
2

Jl

)
λ ′2+ . . .

]
. (6.40)

Notice that it is a joint expansion7 in λ ′ and 1
J .

The coefficient a(l)
n gives the n-th term in the λ ′ expansion at l loop order

in the string σ model, i.e. ( 1√
λ
)l−1, with n = 1,2, . . . and l = 0,1,2, . . . . The

relation (6.40) was initially understood by Frolov and Tseytlin in [94] and

there are many examples in literature, mostly due to Frolov and Tseytlin8,

where for strings with very large (multi)-spins their energy scales according

to (6.40). I refer the reader to Tseytlin’s review [188] and references therein.

On the gauge theory side, it is also possible to organize the scaling dimen-

sion in the same kind of expansion, where here λ � 1, J→∞ and the ratio λ ′
is small, namely

Δ = J + J

[(
∞

∑
l=0

c(l)
1

Jl

)
λ ′+

(
∞

∑
l=0

c(l)
2

Jl

)
λ ′2+ . . .

]
. (6.41)

Here, the l loop term in the coefficients c(l)
n corresponds to terms of order λ l .

The BMN scaling opens the possibility of a direct comparison between

6We should really match the I directions of the oscillators (aI
n)
† with the operators of (6.38),

namely we should match the other quantum numbers to identify operators and oscillators.
7 In section 7.6, in the context of AdS4/CFT3, I will come back on the BMN scaling and on the

near BMN strings, namely on those string configurations close to the plane wave (BMN) limit,

where 1
J corrections are taken into account.

8A partial list of the fundamental works on spinning strings at classical and one-loop level

is [93, 94, 95, 96, 97, 115, 14, 15, 164, 174]. These are different configurations with respect

to those considered in this thesis, we will only consider expansions around the BMN geodesic.

For more detailed references we refer the reader to Tseytlin’s review [188].
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gauge and string theory, since it offers a window where the two perturbative

regimes overlap. Hence the proposal is that the two series of coefficients in

(6.40) and (6.41) should match:

a(l)
n

?︷︸︸︷
= c(l)

n with n = 1,2, . . . and l = 0,1, . . . . (6.42)

The computations of the near-BMN and Frolov-Tseytlin strings [125, 134]

showed an agreement with the gauge theory predictions [114, 172, 43, 38,

85, 45, 91, 118, 37, 176, 108, 175] up to one and two-loop order, cf. also

the works [25, 26] where the matching was verified also for the infinite com-

muting conserved charges. However, at three loops the proposed equality

(6.42) breaks down: The explicit three-loop computation of the near BMN

strings [74, 75, 73], i.e. a(1)
3 , and of the spinning strings [26] showed a mis-

match with the gauge theory predictions coming from the Bethe ansatz [179,

176, 44], (“three loop discrepancy”).

The physical reason for such a disagreement, as initially pointed out by

Serban and Staudacher [179] and then by Beisert, Dippel and Staudacher [36],

is that we are really comparing two different perturbative regions, where the

order of the limits, which have been used to construct the expressions (6.40)

and (6.41), matters. On the string theory side, one firstly sends J→∞ and then

expands in small λ ′, vice versa, on the gauge theory side the first step is the
perturbative expansion in small λ and secondly in the large R-charge J. The
two limits do not commute and thus the results for the string energy and for the

anomalous dimension coefficients, i.e. a(l)
n and c(l)

n , will not necessarily match.

In particular, the gauge theory perturbative computation neglects wrapping

effects, as discussed at the end of section 2.4.1. Thus, one should re-sum

the corresponding Feynman diagrams (namely the series in λ ,J) in order to
correctly compare the two BMN scalings (6.40) and (6.41). I will come back

on the three-loop disagreement in section 6.4.1.

6.3 Near flat space limit

The curved background (AdS5 × S5) as well as the RR fluxes give rise to

interactions in the world-sheet. The spectrum that we want to compute is the

spectrum in the presence of such intricate effects. In order to perform concrete

computations we need some simplifications.

In 2006 Maldacena and Swanson proposed an interesting truncation of the

AdS superstring action [143]. The remarkable feature of such a model, (Near

flat space model, NFS) is that even though more treatable than the original

MT action, it is still capable of containing interesting physics. In particular

we will see that it interpolates between two regimes as the BMN limit and the
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Figure 6.2: Near Flat Space limit. It interpolates between the plane wave regime

and the giant magnon regime. The diagram shows the energy as a function of the

momentum. In the plane wave limit the momentum p scales as ∼ λ−
1
2 , in the NFS

region p∼ λ−
1
4 and finally in the giant magnon regime p is a constant (an angle).

giant magnon regime.

The region we are discussing is the strong coupling region, namely the re-

gion where the ’t Hooft coupling is very large, i.e. λ → ∞. The momentum
p of the single excitation (magnon)9, can be chosen to scale in different ways
and this will give different regimes. In particular, scaling p as

√
λ , when

λ � 1 one obtains the BMN limit, where the theory is a free massive (8|8) the-
ory and the S-matrix is trivial, cf. section 6.2.4. Keeping p fixed to some con-

stant value (it can take periodic values), the regime covered is dominated by

the giant magnon [119], which is a solitonic solution of the two-dimensional
world-sheet theory. In this region the theory is highly interacting. The scal-

ing considered by Maldacena and Swanson is something in between these two

regions, namely p scales as λ−1/4.
The magnon dispersion relation is10

E(λ , p) =

√
1+

λ
π2

sin2
p
2
. (6.43)

Introducing g and rescaling the momenta as

g2 ≡ λ
8π2

p
√

g√
2
≡ k , (6.44)

in the strong coupling limit (λ � 1) one obtains the following expansion for

9Notice that now p is the conjugate momentum to the world-sheet coordinates, since it is the

momentum carried by the magnons. This p should not be confused with the space-time light-
cone momenta of the previous section 6.2.
10See section 6.4.
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the energy

E(λ , p)∼
√
2gk− 1√

2g

(
k3

6
− 1

2k

)
+ . . . . (6.45)

The first term is the free energy in the plane wave limit, where the particles

have an ultra-relativistic dispersion relation. The other two terms are the ones

which characterize the near flat space limit and they correspond to keeping

up to the second order term in the expansion of the sine function in (6.43).

Namely now we are keeping the sub-leading corrections in the momentum

dependence of E. This is really the region corresponding to the near flat space
limit, cf. figure 6.2. The dispersion relation is not relativistic, not in the exact

sense, and it represents some deviation from the Fermi surface. The velocity

v = dE
dk turns out to depend on the momentum k and the scattering between

two excitations carrying different momenta will be non-trivial11. Notice that

for the giant magnon the dispersion relation12 reads E ∼
√

λ
π sin p

2
.

The NFS action
The form for the near flat space Lagrangian used here and in the paper II is the

one presented in [131], where the world-sheet coordinates and the fermions

are rescaled by

σ± → γ±
1
2mσ± ψ± → γ∓

1
4 m−

1
2ψ± , (6.46)

where γ (half inverse string tension) is a power-counting parameter

γ =
π√
λ
. (6.47)

Indeed the MS action in [143] does not depend anymore on any dimensionless

or dimensional parameter. The embedding coordinates are also rescaled by 1
2

in order to bring the action in the canonical form for the kinetic and mass

terms. Finally, after the rescaling (6.46), the ψ+ fermions are integrated out

since they only enter quadratically in the action, for more details we refer the

reader to the appendix contained in paper II. Hence the final version for the

11At the leading order the velocity is just the speed of light, namely v∼√2g, with g→ ∞.
12The momentum in the giant magnon regime takes values between 0 and 2π , since it is inter-
preted as the angle where the open string endpoints sit in the S5 equator.
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near flat space model is

LNFS =
1

2
(∂Y )2− m2

2
Y 2+

1

2
(∂Z)2− m2

2
Z2+

i
2

ψ
∂ 2+m2

∂−
ψ

+ γ
(
Y 2−Z2

)
[(∂−Y )2+(∂−Z)2]+ iγ

(
Y 2−Z2

)
ψ∂−ψ

+ iγψ
(

∂−Y i′Γi′ +∂−ZiΓi
)(

Y j′Γ j′ −Z jΓ j
)

ψ

− γ
24

(
ψΓi′ j′ψψΓi′ j′ψ−ψΓi jψψΓi jψ

)
, (6.48)

where ψ are only the ψ− components of the original spinors.
Let us summarize and stress once more what the NFS truncation concretely

implies. We are considering the following rescaling for the world-sheet exci-

tation momenta

p±λ±
1
4 = fixed (6.49)

which implies that

p+ → 0 p− → ∞ , when λ → ∞ . (6.50)

Hence the NFS limit is a decoupling limit, which factorizes the left and right

moving sectors of the AdS string by suppressing the right-moving modes. Fur-

ther, notice that the truncation breaks the two-dimensional Lorentz invariance

of the action.

The NFS model inherits the symmetry of the original GSMT superstring

in the light-cone gauge, i.e. P(SU(2|2)×SU(2|2)). However, as mentioned
at the beginning, the quartic interactions break SO(8) to SO(4)×SO(4), as
it can be seen in the Lagrangian (6.48), where there is a relative sign for the

interactions with four bosonic fields.

The NFS model has been useful most in the simplification of the S-matrix,

such as for example, to test the dressing phase at two loops [127] or to verify

the factorization of the S-matrix (paper II). The key point is that the interac-

tions which appear in (6.48) are at most quartic interactions, and in this sense

they make our life easier.

6.4 The world-sheet S-matrix in the NFS limit

In chapter 3 we have presented the S-matrix as a unitary operator mapping

asymptotic in and out states. In chapter 2 we have introduced the Coordinate

Bethe Equations for the Heisenberg spin chain, written in terms of the phase

shift. Naturally the phase shifts are nothing but the S-matrix elements for the

Heisenberg model. Now it is time to recollect the two pictures. We have al-

ready explained that there is one S-matrix for the planar asymptotic AdS/CFT.
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In a certain sense the derivation of the S-matrix gives a theoretical background

for the Bethe Ansatz equations.

We want to discuss the S-matrix for the full (asymptotic) PSU(2,2|4)model.
We are going to skip many details and this presentation is far from being a

rigorous derivation, for which we refer the reader to the original papers [50,

130, 24, 22]. Nevertheless we want to make some comments and illustrate

the results, mostly in order to understand the results of the paper II. Since the

explicit expression for the NFS S-matrix is already contained in paper II, we

will avoid to rewrite it.

S-matrix symmetries
First we need to discuss which are the symmetries of the S-matrix. On the

gauge theory side, the initial global symmetry is broken by the choice of the

spin chain vacuum. The unbroken symmetry left is P(SU(2|2)×SU(2|2)),
whose corresponding algebra is psu(2|2)⊕ psu(2|2) ��. The two copies

of psu(2|2) share the same central extension C (this is the meaning of the

symbol�) which is nothing but the energy. Considering only one sector of the

full psu(2|2)⊕psu(2|2)��, the fields transform in the (2|2) bifundamental
representation13. However, in this representation the algebra requires a central

charge with semi-integer values ±1
2
[50]. This cannot be, since we know

that the dispersion relation depends continuously on the coupling constant

(λ ), as for example, it can be seen in the BMN limit, cf. section 6.2.4. The

apparent contradiction is solved by introducing two other central charges such

that the enlarged algebra14 becomes psu(2|2)��
3, or extensively psu(2|2)⊕

psu(2|2)��
3. The new central chargesP and K are unphysical and they play

the role of a momentum and its complex conjugated. “Unphysical” means that

they should vanish on physical gauge invariant states. It might seem that they

have been introduced ad hoc but indeed they are responsible for changing

the length of the spin chain by removing or adding a background field in the

chain [50]. For this reason the spin chain is said to be dynamical: its length is

not fixed15.

Focusing on one sector, the psu(2|2)��
3 algebra is spanned by the SU(2)×

SU(2) generators Lα
β and Ra

b and by the supercharges Q
α

a, S
b
β through the

13We have shown that on the string theory side the fields form a (2|2)2 super-multiplet of the
psu(2|2)⊕psu(2|2)�� super-algebra. Obviously, the same happens on the gauge theory side,

even though we did not show it explicitly.
14Such centrally extended algebra is indeed unique [50].
15Cf. the interesting paper [47] by the same author on dynamical spin chain for the subsector

su(2|3).

93



following relations

[Ra
b ,J

c ] = δ c
b Ja− 1

2
δ a

b Jc
[
Lα

β ,J
γ
]

= δ γ
β Jα − 1

2
δ α

β Jγ{
Qα

a ,S
b
β

}
= δ b

a Lα
β +δ α

β Rb
a + 1

2
Cδ b

a δ α
β{

Qα
a ,Q

β
b

}
= εαβ εab P

{
Sa

α ,Sb
β

}
= εαβ εab K , (6.51)

where Jγ and Jc are generic generators and C,P, K are the central extensions

corresponding to the energy and the momenta respectively. The same relations

hold for the other psu(2|2) sector just replacing undotted with dotted indices.
One of the main result is the derivation of the central charges, in particular of

the dispersion relation

C =
√
1+8g2 sin2

p
2
, (6.52)

where the coupling constant16 is

g2 =
λ
8π2

. (6.53)

The dispersion relation (6.52) has been conjectured by Beisert, Dippel and

Staudacher in [36], but Beisert showed that its specific functional dependence

is constrained by the symmetry algebra, even though in order to determine the

dependence on the coupling constant g2 one needs to use the BMN limit, for

example [50].

Under the full symmetry algebra psu(2|2)⊕ psu(2|2) ��
3 the two-body

S-matrix undergoes a group factorization, namely we can rewrite the total

scattering operator as

S = SPSU(2|2)⊗SPSU(2|2) . (6.54)

S is an operator which acts on the vector space given by the tensor product of
single particle vector spaces, explicating the indices we can write

S : Va⊗Vb→ Va⊗Vb

|ΦAȦ(a)ΦBḂ(b)〉 → |ΦCĊ(a)ΦDḊ(b)〉SCĊDḊ
AȦBḂ (a,b) , (6.55)

where the a,b are the particle momenta. Thus the group factorization leads to
the expression

SCĊDḊ
AȦBḂ (a,b) = (−)|Ȧ||B|+|Ċ||D| S0(a,b)SCD

AB (a,b)SĊḊ
ȦḂ (a,b) . (6.56)

Actually this is a graded tensor product according to the statistic of the indices,

16The definition of g2 is not uniform: in literature it is possible to find also g2 = λ
16π2 .
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namely |A| is 0 and 1 for even and odd indices respectively. The group factor-
ization in (6.54) turns out to be true whenever the symmetry group is a direct

product of two groups and the Yang-Baxter equations are satisfied [161].
In order to compute the S-matrix elements we must write down the action

of the SPSU(2|2) on two-particle states where the fields are in the fundamental
representation, and ask for the invariance of the S-matrix under the algebra

generators, i.e.

[J1+J2 ,S12] = 0 , (6.57)

as well as unitarity condition and YB equations (which are automatically satis-

fied)17. For the rigorous derivation we refer the reader to Beisert’s paper [50].

In this way, the matrix elements are univocally determined up to an overall

abelian phase which we have indicated with S0(a,b) in (6.56). As already
mentioned, due to technicalities we are not really developing the arguments

here, but rather reporting and commenting the main results.

On the string theory side
What about the string theory side? Does everything translate automatically

in a string language? From the previous section 6.2, we have learned that

in order to construct the world-sheet S-matrix we need to decompactify the

world-sheet.

However, in order to study the scattering between string excitations that

we can interpret as particles for a two-dimensional theory, we actually need

to relax the level-matching condition. The “particles” can travel along the

world-sheet and collide with an arbitrary momentum. In this way it makes

sense to compute the scattering amplitude, and thus the S-matrix elements for

such particles.

In the paper [22] Arutyunov, Frolov, Plefka and Zamaklar showed that the

actual world-sheet symmetry algebra for the AdS5×S5 light-cone string not
level-matched (and decompactified) is psu(2|2)⊕psu(2|2)��

3 (off-shell al-
gebra). Relaxing the level-matching condition is equivalent on the gauge the-

ory side to opening the spin chain, because the string level-matching condition

is equivalent to the cyclicity of the trace. This is another way of saying that

the operators are no longer gauge invariant, namely that two extra unphysical

central charges can appear (K, P). In the same paper the unphysical central

charges P and K have been computed in terms of string fields, and they turn

out to be proportional to the world-sheet momentum which should vanish for

physical (i.e. level-matched) states.

In [24] the world-sheet S-matrix has been rewritten in a string basis. This

essentially means that the scattering matrix elements have been deduced by

17The central charges are computed by acting with the algebra generators on single particle states

in the fundamental representation, cf. [50, 24].
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requiring the fulfillment of the Zamolodchikov-Faddeev (ZF) algebra. This

is the algebra that we have briefly presented in chapter 3. Such an algebra

takes into account the effects of the interactions in the commutation relation

for the free oscillators (i.e. creation and annihilation operators). The symbols

Aa(θ) introduced in section 3.3 are not the creation and annihilation operators,
since now we have an interacting field theory and we cannot use the free field

picture for the oscillators. The interactions affect the free oscillators algebra,

but on the other hand for integrable field theories the structure of the Hilbert

space is preserved (this is really the job of integrability!). Hence, there must

be a non-trivial operator which modifies and takes care of the algebra such

that the Hilbert space is preserved. This operator is nothing but the S-matrix

and the corresponding algebra is the ZF one, as we discussed in section 3.3.

Concretely, one needs to impose for the scattering matrix elements the in-

variance under the off-shell symmetry and physical constraints such as

• unitarity condition

• CPT invariance

• crossing symmetry 18

• Yang-Baxter equations .

The basis for the two-particle states in which the S-matrix elements satisfy

all the properties listed above as well as the ZF algebra (by construction) is

what is called the canonical string basis19.

In [130] Klose, McLoughlin, Roiban and Zarembo derived the perturbative

tree-level S-matrix by considering a slightly different perspective. The key-

point is requiring the invariance of the two-body S-matrix with respect to the

Hopf algebra. The action of the psu(2|2) symmetry generator is non-local.
The charges generated indeed are non-local expressions and they are not ad-

ditive, cf. chapter 3. Thus, when they act on multi-particles states they do

not follow the standard Leibniz rule, but rather the so called coproduct, which

characterizes the Hopf algebra. This simply means that when one rearranges

the order of the fields on the world-sheet the non-locality of the symmetry

generators creates a “disturbance” which is reflected in a non-trivial coprod-

uct from an algebraic point of view.

18The crossing symmetry is usually present in relativistic quantum field theories and it relates

the exchange between particles and anti-particles. Here we are dealing with a non-relativistic

theory, however since the two-dimensional Lorentz invariance is spontaneously broken, it might

hold also in this case. This has been proposed by Janik [122]. Such a symmetry constraints the

phase factor S0, cf. section 6.4.1.
19It is not exactly the same basis in which the spin-chain S-matrix has been written. Local trans-

formations which change the two-body basis can change the matrix elements without leading

to any actual change in the physical information. However in the new basis the S-matrix might

not respect the standard ZF algebra, but rather a “twisted” ZF algebra. Namely the standard

ZF relation is multiplied by a local operator which does not modify the vacuum. This is what

happens to the spin chain S-matrix derived by Beisert. For a more precise relation between the

two basis (spin chain and string) we refer the reader to the paper [24].
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The three-body S-matrix
The three-body S-matrix acts on the triple tensor product of single-particle

states and it is defined by the relation

S : Va⊗Vb⊗Vc→ Va⊗Vb⊗Vc

S|ΦAȦ(a)ΦBḂ(b)ΦCĊ(c)〉= |ΦDḊ(a)ΦEĖ(b)ΦFḞ(c)〉SDḊEĖFḞ
AȦBḂCĊ (a,b,c) .

(6.58)

The Yang-Baxter equations read now

S̃DḊEĖFḞ
AȦBḂCĊ (a,b,c) = ∑

XẊ ,YẎ ,ZŻ

S̃DḊEĖ
XẊYẎ (a,b) S̃XẊFḞ

AȦZŻ (a,c) S̃YẎ ZŻ
BḂCĊ(b,c)

= ∑
XẊ ,YẎ ,ZŻ

S̃EĖFḞ
YẎ ZŻ (b,c)S̃DḊZŻ

XẊCĊ(a,c)S̃XẊYẎ
AȦBḂ (a,b) ,

(6.59)

where the graded matrix elements are

S̃CĊDḊ
AȦBḂ = (−)|A||Ȧ||B||Ḃ|SCĊDḊ

AȦBḂ (6.60)

and

S̃CĊDḊEĖ
AȦBḂFḞ = (−)|A||Ȧ||B||Ḃ|+|B||Ḃ||F ||Ḟ |+|F ||Ḟ ||A||Ȧ|SCĊDḊEĖ

AȦBḂFḞ . (6.61)

Notice that each element SCĊDḊ
AȦBḂ decomposes according to the group factoriza-

tion (6.56).

What we are really interested in is the number of degrees of freedom of

the three-body S-matrix. Each field is in the fundamental representation 4 of
psu(2|2)��

3, i.e. �. The three body S-matrix is an invariant unitary operator
on their triple tensor product which decomposes in two irreducible represen-

tations, each with dimension 32. In terms of the super-Young tableau20 this
means

⊗ ⊗ = ⊕ . (6.62)

Taking also the other psu(2|2) factor into account, then the three-particle S-
matrix is a sum of four projectors

S = C1P( , ) +C2P( , ) +C3P( , ) +C4P( , ) . (6.63)

This means that the three particle S-matrix is constrained by the symmetries

up to four scalar functions Ci, which depend on the incoming momenta and

20For a more technical and comprehensive discussion the reader can consult [49] and references

therein.
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which are the eigenvalues of the corresponding projectors Pi. In order to de-

termine them, one needs to compute the scattering amplitudes for the four

eigenstates, namely for the highest weight states. These are written down in

paper II.

The S-matrix in the NFS limit
We want now to consider the world-sheet S-matrix in the NFS limit. One

might wonder whether the NFS truncation is consistent or not, namely if the

S-matrix computed directly from the action (6.48) is the same matrix obtained

taking the NFS limit from the original world-sheet S-matrix. This was inves-

tigated by Klose and Zarembo for the one-loop order [131] and then to two

loops by Klose, McLoughlin, Minahan and Zarembo in [127]. Indeed, even

if we truncate and decouple the right and the left moving sectors, saying that

the right modes are faster, it might be that the left moving particles can reap-

pear in the interactions, if we have enough time to wait. Then they might give

contributions in loop diagrams at quantum level.

The explicit S-matrix elements are in paper II. Notice that they are exact

in the NFS limit, apart from the dressing phase S0 which is expanded up to
order γ3. Moreover it turns out that the two-dimensional Lorentz invariance is
restored in the NFS model, since they depend on the difference of momenta.

6.4.1 The dressing phase

The three-loop disagreement, discussed at the end of section 6.2.4, pushed the

research in the direction of the so called dressing phase.
Searching for Bethe equations that fulfill the BMN scaling (6.41) to all or-

ders leads Beisert, Dippel and Staudacher [36] to modify the rapidity and the

dispersion relation, as mentioned in section 6.421. Indeed, the specific func-

tional form for the energy, and in general for the higher conserved charges, as

well as for the rapidity depends on the model we are considering. The BDS

proposal for the rapidity, which turned out to be correct, is

u(p) =
1

2
cot
( p
2

)√
1+8g2 sin2

( p
2

)
, (6.64)

where the coupling constant g is related to the ’t Hooft coupling by g2 = λ
8π2 .

The dispersion relation is only one of the infinite tower of higher charges that

21Let us focus on the su(2) sector and on the gauge theory side. Beyond the one-loop order, the
model describing the su(2) sector is not anymore the Heisenberg spin chain discussed in section
2.4.1. Serban and Staudacher proposed to incorporate such a sub-sector into the Inozemtsev

spin chain [179]. However it breaks the BMN scaling beyond the three loops. The Inozemtsev

model is formulated in terms of rapidity and charges which are not the same of the Heisenberg

model, obviously.
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an integrable model possesses, and they are modified according to

qr+1(p) = g−r 2sin(1
2
rp)

r

⎛
⎝
√
1+8g2 sin2( p

2
)−1

2gsin( p
2
)

⎞
⎠

r

. (6.65)

Notice that the first charge q1(p) is the momentum p, while the second one is

the single magnon energy, i.e. q2(p) = 1
g2

(√
1+8g2 sin2( p

2
)−1

)
. The total

charge is defined by

Qr =
K

∑
k=1

qr(pk) , (6.66)

where K is the total number of magnons22. The BMN limit result can be found

by considering the string energy δE = g2Q2.

We have discussed until now the Bethe equations in the spin chain context,

let us move back to the string theory side. Kazakov, Marshakov, Minahan and

Zarembo (KMMZ) proposed the string Bethe equations (a set of non linear in-

tegral equations) in order to describe the classical string σ -model [125]. One
would like to generalize (and discretize) such equations in order to capture

also quantum string effects. Since the elementary excitations are the same

on both sides of the duality, it seemed reasonable to introduce a phase in the

S-matrix and thus in the Bethe equations without modifying the BDS disper-

sion relation [23]. This phase shift is part of the scalar factor (the dressing
phase) that cannot be determined by the symmetry algebra, but rather it can
be obtained by using the crossing relation23. The initial step in the direction of

determining the phase factor and the quantum string Bethe equations has been

done in [23] by Arutyunov, Frolov and Staudacher for the su(2) sub-sector.
The AFS phase has been deduced in such a way that it reproduces the thermo-

dynamic or continuum limit of the string KMMZ Bethe equations. Explicitly,

for K impurities and for the su(2) sub-sector, the Bethe equations formally are
still

eiLpk =
K

∏
j=1, j �=k

S(u j,uk) , (6.67)

22For the su(2) Heisenberg model the higher charges are given by

qr(p) = 2r

r−1 sin(
1
2 (r−1)p)sinr−1( p

2 ) and the rapidity is given by the formula (2.40).

For the r = 2 case, one finds the single magnon energy (2.29) discussed in section 2.4.1.
23Recall the footnote about the crossing symmetry in section 6.4.
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but now the S-matrix acquires an extra phase:

S(u j,uk) =
uk−u j + i
uk−u j− i

×

× exp

(
2i

∞

∑
r=2

(
g2

2
)r(qr(pk)qr+1(p j)−qr+1(pk)qr(p j))

)
,

(6.68)

where the charges are the ones in (6.65).

This is not the end of the story for the dressing phase, but rather the begin-

ning: The AFS represents the leading quantum correction to the Bethe equa-

tions and to the S-matrix. The phase in (6.68) can be generalized by shifting

the S-matrix according to

exp2iθ(pk, p j) = exp2i
∞

∑
r=2

∞

∑
s=1+r

s+r=odd

cr,s(g)(qr(pk)qs(p j)−qs(pk)qr(p j)) .

(6.69)

The coefficients cr,s(g) are expanded in the strong coupling limit according to

cr,s(g) =
(

g2
2

)r
∑∞

n=0 c(n)
r,s g−n. We see that the AFS phase is obtained by sub-

stituting c(0)
r,s = δs,r+1. The first quantum coefficient c(1)

r,s has been deduced by

Hernandez and Lopez (HL) [117], cf. also [44], the all-loop strong coupling

limit was discovered by Beisert, Hernandez and Lopez [52], i.e. c(n)
r,s for all

n ≥ 0, and finally, the full series at strong and weak coupling has been found

by Beisert, Eden and Staudacher (BES) in [51]. Nowadays, there have been

numerous tests for the BES proposal: From the world-sheet point of view up

to two-loops [171] and in the near flat space limit [127]; at weak coupling by

direct gauge theory computations [64] and up to four loop in the SU(2) sec-
tor [42]. Other important tests which confirm the BES result have been given

in the works [111, 112, 92]. Finally in [13] it has been shown that the HL

dressing phase satisfies Janik’s equation [122].

For us, it is relevant only the AFS phase. In particular we will need it in

paper III in the context of AdS4/CFT3, as we will see in chapter 7.

6.5 Paper II

We have already stressed that, from the beginning of the chapter up to now,

we are assuming to deal with a quantum integrable system. Surely this is a

suitable hypothesis, which have lead to immense progresses and there have

been a vast quantity of indirect checks about the validity of this hypothesis.

But notice that on the string theory side perturbative computations beyond

the leading order are still extremely difficult to perform. Remarkable in this
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sense the two-loop computations of the world-sheet scattering amplitudes in

the NFS limit, which has allowed to test the dressing phase beyond the next-

leading order in the strong coupling region.

Can we give a proof that the AdS5×S5 superstring is quantum integrable

at least in the planar limit? The word “proof” might discourage. However the

NFS model offers us a good region where we can test many of the assumed

working hypotheses, among them quantum integrability. The NFS Lagrangian

(6.48) is not so terrible and the S-matrix is not trivial in this region. This is

an incredible good window in the strong coupling limit where we can directly
face the important and non-trivial issue of quantum integrability. Hence the

goal of the paper II is to check for the first time in a very explicit and direct

way that the NFS model is quantum integrable at one-loop. This strongly

supports the hypothesis of a quantum integrable field theory describing the

AdS superstring.

The strategy adopted in the paper II is to verify the presence (or the absence)

of the dynamical constraints which define an integrable two-dimensional field

theory: absence of particle production, elastic scatterings, S-matrix factoriza-

tion. We have focused on a 3→ 3 scattering. Concretely we have compared

two sets of data. On the first set (the “theoretical data”) we have computed

the three-particle S-matrix which would follow assuming the quantum inte-

grability of the model, namely the three-particle S-matrix which is given by

the Yang-Baxter equations as a product of two-particle S-matrix elements,

i.e. (6.59). On the second set, (the “experimental data”), we compute the

3→ 3 scattering amplitudes which follow from the Feynman diagrams of the

corresponding NSF action. The computations are done perturbatively up to

one-loop. The scattering amplitude is defined by

A (a,b,c,d,e, f ) = 〈Ab3( f )Ab2(e)Ab1(d)|Aa1(a)Aa2(b)Aa3(c)〉connected
(6.70)

and the process considered is the generic 3→ 3 scattering 24

Aa1(a)Aa2(b)Aa3(c)→ Ab1( f )Ab2(e)Ab3(d) . (6.71)

Notice that we are dealing with connected diagrams, since the disconnected

diagrams trivially factorize. The S-matrix elements and the scattering ampli-

tudes are related by

A (a,b,c,d,e, f ) = ∑
σ(d,e, f )

Sσ (a,b,c) δad δbe δc f , (6.72)

where σ(d,e, f ) are all the permutations of the outgoing momenta. Hence,
in paper II we have showed that the two sets of data agree completely: the

tree-level and one-loop scattering amplitudes indeed factorize as in equations

24Recall the ordering and the ZF algebra introduced in chapter 3.

101



(6.72) and the S-matrix elements Sσ (a,b,c) precisely match the three-body
S-matrix computed by the Yang-Baxter equations (6.59). The formula (6.72)

means that the amplitudes give rise to the phase space showed in figure 3.3 in

chapter 3.

Since the three-body S-matrix is constrained by the symmetries up to four

scalar functionsCi, it is sufficient to compute the scattering amplitudes for the

four processes which correspond to the highest weight states, namely which

correspond to the eigenstates of the three-body S-matrix. Showing the factor-

ization for these four scattering amplitudes means proving the factorization of
the entire three-particle S-matrix to one-loop order. A proof in a “mathemati-

cal sense” would require to re-sum all the perturbative series and to show the

factorization of any n→ n scattering amplitudes. Not trivial at all.
Notice that here in the 3→ 3 scattering

• tree-level order means γ2 ∼ 1

λ
1
2

• one-loop order means γ3 ∼ 1

λ
3
2

.

Actually we have computed further scattering amplitudes involving mixed

states between fermions and bosons, in order to confirm the supersymmetries

of the NFS model.

According to chapter 3 this means that there must exist a higher conserved

charge. How does such charge manifest itself? How do the selection rules

and the factorization come from Feynman diagram computations? First recall

that each Feynman graph contains already the energy and momentum con-

servation. In computing the scattering amplitudes one can realize that in the

phase space points, where the set of incoming momenta is equal to the set of

outgoing momenta, the internal propagators go on-shell and diverge. Namely

for a 3→ 3 scattering the internal propagators may go on-shell (since in the

internal diagrams they might run two incoming momenta and one out-going

momentum which have different signs, thus in the point where the in-coming

momenta are equal to the out-going one this clearly diverges). They must be

regularized and this is done by using the iε prescription, namely each mass is
shifted by ±iε in order to move the singularities on the complex plane. The
residues are then computed with [81, 12]

1

�p2−m2± iε
= P

1

�p2−m2
∓ iπδ (�p2−m2) , (6.73)

whereP stands for the principal value prescription. The term with the princi-

pal value takes care of the singularities, namely skipping such delicate points

in the integration we can brutally apply the energy-momentum conservation

which makes the corresponding amplitudes vanish, after summing over all the

equivalent diagrams. What is left is only the term in (6.73) with the extra δ
function, “extra” since the Feynman diagrams already come with two-delta
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functions from the energy-momentum conservation. These three δ -functions
combine together and force the out-going momenta to be equal to one of the

in-coming momenta, cf. (6.72). The resulting phase space is as in figure 3.3

in chapter 3.

What about the 2→ 4 amplitudes? The crucial point is that now the internal

propagators will never be on-shell, since all the momenta flowing there have

the same sign. Then we can forget the iε regularization and proceed with

standard brute force computations. Summing all the amplitudes the result

turns out to vanish. This indeed corresponds to the fact that we are not in the

“famous six points” of the phase space.
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7 The AdS4/CFT3 duality

We now leave the AdS5/CFT4 duality. But we do not leave the gauge/string
duality. Actually I should say the gauge/gravity duality. In 2008 A. Aharony,

O. Bergman, D. Jafferis and J. Maldacena (ABJM) proposed a new conjec-

ture where the world-volume theory of a stack of M2-branes probing a �4/�k
singularity is a three-dimensional conformal field theory [6]1. I will refer to

this as the ABJM or the AdS4/CFT3 conjecture, in the next chapter it will
be clear why. The work has opened a huge amount of possibilities. Indeed,

considering the impressing results due to the integrability properties of the

planar AdS5/CFT4 duality, it is natural to try to export the same techniques
(and hopefully the same progresses) in the new correspondence. From the

initial paper by Aharony et al. up to now there has been an outstanding effort

to retrace the main topics which were mile stones in the AdS5/CFT4 duality,
here in the new setting. I will report only those relevant for the reading of

paper III.

7.1 Introduction

The AdS4/CFT3 states a duality between a three-dimensional conformal field
theory and an M-theory on eleven dimensions. Let us start from the gauge

theory side. It is constructed by two Chern-Simons (CS) theories, each one

with a U(N) gauge group, coupled with bifundamental matter. However the
level of the gauge group is different in the two cases: we have indeed U(N)k×
U(N)−k. The theory is conformally invariant at classical and quantum level

and it possesses N = 6 supersymmetries. It contains two parameters2: the

gauge group rank, N, and the level of the algebra k. Both parameters assume
integer values. However, it is possible to form a continuous parameter λ =
N
k , that will play the role of the ’t Hooft coupling, and that will interpolate

between the string and the gauge theory side. In the large N and k limits, λ is

continuous. In particular, the large N limit corresponds to the planar limit of

1The ABJM paper comes after plenty of works on multiple M2-branes. I will not go into detail

and leave the curious reader to consult the work [6] and references therein.
2There is also a generalization, known as ABJ theory [5], where the gauge group is U(N)k×
U(M)−k. It seems that, also in this case, the theory manifests integrable structures in the planar

limit [30].
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the CS-matter theory. Essentially, for the CS-matter theory 1
k plays the same

role as it was for g2YM in SYM theory, cf. section 7.2.

The gravity dual describes a stack of (Nk)M2-branes on a flat space. In par-
ticular the M-branes probes the orbifold3 �8/�k. The near-horizon geometry

is given byM-theory on AdS4×S7/�k. Notice that it is an eleven-dimensional

space. Due to the �k action, it is natural to write the sphere S
7 as an S1 fibra-

tion over �P3: roughly speaking we can say that S7/�k ∼= �P3×S1/�k. The

radius of the circle S1 depends on k and the effect of the orbifold is to re-
duce the volume by a factor k. In particular when k is very large, effectively
the space is ten-dimensional, i.e. AdS4×�P3. Explicitly, the circle radius is
given by R

S1
∼ (Nk)1/6

k . Thus, when such radius is very large, namely when

N � k5, then the theory is strongly coupled and the proper description is in
terms of the M-theory. Vice versa, when the radius is very small, i.e. N � k5,
then it can be effectively used a description in terms of IIA superstrings living

on AdS4×�P3 with RR fluxes. More details are given in appendix 10.3.

The two parameters N and k, which describe the number of M2-branes and
the order of the orbifold group, are contained in the effective string tension

and in the string coupling. They are given by

T =
R2

2πα ′
= 25/2π

(
N
k

) 1
2

gs =
(
32π2 N

k5

)1/4
. (7.1)

The specific relations and the ugly numerical factors in (7.1) are obtained

analyzing the supergravity regime, cf. appendix 10.3. Again, from the be-

havior of the string coupling, we can see that for N � k5, i.e. gs � 1 the

string description fails, we need to use the full M-theory formulation, while

for N � k5 (gs � 1) the “weak coupling” string limit is a good approxima-

tion. Notice that again the effective tension goes like the square root of the ’t

Hooft coupling, namely T ∼
√

λ . The string coupling in terms of λ reads as

gs = (32π2 λ
k4 )

1
4 = (32π2 λ 5

N4 )
1
4 , cf. table 7.1.

From now on, we are going to consider only a specific region for the gravity

side of the correspondence: the string regime. This means that for us N and k
are very large and in particular are such that N � k5 or 1� λ � k4.
Also the AdS4/CFT3 is a weak-coupling duality. A very natural question

is whether the duality is integrable, at least in the planar limit. There are

numerous features that are shared by the two gauge/string dualities, but there

are also important aspects which are different and which make things quite

intriguing and far from being obvious. In each part of this chapter, I will

stress the common points and the main differences between the two AdS/CFT

correspondences.

3An orbifold is a coset G/H where H is a group of discrete symmetries [168].
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AdS5/CFT4 AdS4/CFT3

IIB on AdS5×S5 AdS side IIA on AdS4×�P3

N = 4 SYM in 4d CFT side N = 6 CS-matter in 3d

λ = g2YMN ’t Hooft coupling λ = N
k

T = R2
2πα ′ =

√
λ

2π String tension T = R2
2πα ′ = 25/2π

√
λ

gs = g2YM
4π String coupling gs =

(
32π2 N

k5
)1/4

SU(N) gauge group U(N)k×U(N)−k

PSU(2,2|4) global symmetry OSp(6|4)
AdS5×S5 = SO(4,2)

SO(4,1) × SO(6)
SO(5) bosonic subgroup AdS4×�P3 = SO(3,2)

SO(3,1) × SU(4)
U(3)

Table 7.1: Summarized comparison between the two gauge/string dualities.

7.2 The field theory

The N = 6 Chern-Simons theory in three dimensions is described by the

following Lagrangian

L =
k
4π

Tr
{

εμνλ(Aμ∂νAλ +
2

3
AμAνAλ − Âμ∂ν Âλ −

2

3
Âμ Âν Âλ

)
+ DμY †

A DμY A +
1

12
Y AY †

AY BY †
BYCY †

C +
1

12
Y AY †

BY BY †
CYCY †

A

− 1

2
Y AY †

AY BY †
CYCY †

B +
1

3
Y AY †

BYCY †
AY BY †

C −
1

2
Y †

AY Aψ̄BψB

+ Y †
AY Bψ̄AψB +

1

2
ψ̄AY BY †

B ψA− ψ̄AY BY †
A ψB + iψ̄AγμDμψA

+
1

2
εABCDY †

A ψ̄cBY †
C ψD− 1

2
εABCDY Aψ̄BYCCψD

c
}
. (7.2)

The gauge group is U(N)k×U(N)−k, where the subscripts denote the level of

the algebra. The relative sign is reflected in the two Chern-Simons contribu-

tions in (7.2), which describe the two gauge fields Aμ and Âμ . The Lorentz

index μ runs between 0 and 2, i.e. μ = 0,1,2, since the theory is three-
dimensional. The gauge field A transforms in the adjoint representation of

U(N)k and it is a singlet with respect to the second U(N)−k. Vice versa the

field Âμ is a singlet for U(N)k and transforms in the adjoint of U(N)−k.

The fields Y A and Y †
A are eight scalars, the index A is a SU(4) index, namely

A = 1,2,3,4. This is not the original form of [6], but rather we use the formu-

lation given in [159, 56], such that the scalars grouped into SU(4) multiplet
make R-symmetry manifest. They transform in the fundamental representa-

tion of SU(4), i.e 4 and 4̄ respectively. Moreover, they transform in the bifun-
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damental representation of the gauge group: (N, N̄) and (N̄,N) respectively.
The explicit components of the scalars are4

Y A = (A1,A2,B†1̇,B
†

2̇
) Y †

A = (A†1,A
†
2,B1̇,B2̇) . (7.4)

Furthermore, the fields Aa transform as a SU(2) doublet and the same is
true for the Bȧ’s, as the notation indicates. Hence, there is a SU(2)×SU(2) ∈
SU(4) subsector, which is indeed closed and which is given by Y 1,Y 2 and

Y †
3 ,Y

†
4 . This will be important for understanding the paper III.

The covariant derivatives are

DμΦ = ∂μΦ+AμΦ−ΦÂμ DμΦ† = ∂μΦ†+ ÂμΦ†−Φ†Aμ . (7.5)

The scaling dimension of the scalars Y is Δ0 = 1
2
, while for the derivatives

is Δ0 = 1. Furthermore the scalars transform in the trivial representation of

SO(3), while the covariant derivatives transform in spin 1 representation of

SO(3) and in the trivial one of SU(4).
Finally, the fermions Ψ†

A and ΨA are the 4 and 4̄ multiplets in the spinorial
representation of SO(6), and they also transform in the U(N)k×U(N)−k bi-

fundamental representation. The fermions ψA
c are the charge conjugated fields

and they are given by ψA
c = Cγ0ψ�

A in terms of the charge conjugation matrix

C and γμ are the Dirac matrices in three dimensions. They transform in the

spin 1
2
representation of SO(3).

The action corresponding to (7.2) is invariant under a CP transformation:

the parity changes the sign of the Chern-Simons action which is compensated

by the exchange of the gauge fields Aμ and Âμ .

7.3 The algebra

The theory is conformal and supersymmetric. In particular it possessesN = 6

supersymmetries, which is not the maximal number of supersymmetries that
one can have in three dimensions. We already see the first difference with the

AdS5/CFT4 duality. The supercharges transform in the vector representation

of SO(6) ∼= SU(4). I will write the 24 odd generators as QαI and SI
α where

the spinorial index is α = 1,2 and the SO(6) label is I = 1, . . . ,6. Actually,
for k = 1,2 the supersymmetries are enhanced to N = 8, and thus the R-
symmetry is lifted to SO(8) [56]. We will not consider these two cases, since

4The fields Aa, Bḃ and their Hermitian conjugates A†a, B†
ḃ
are components of the super-potential

W =
2π
k
Trεabε ȧḃ (AaBȧAbBḃ

)
with a,b = 1,2 , ȧ, ḃ = 1̇, 2̇ . (7.3)

Writing in terms of the super-potential W (7.3) makes the flavor SU(2)× SU(2) symmetry
manifest (but not the R-symmetry).
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as already mentioned, for us k takes very large values.
The conformal group in three dimensions is SO(3,2). The generators are

the Lorentz generators Lμν , which are in total three, i.e. μ = 0,1,2, the three
translation generators Pμ , the dilatation generator D and the three special con-

formal transformations Kμ .

The R-symmetry group is SO(6) ∼= SU(4) with 15 generators, RIJ , I,J =
1, . . . ,6, as we discussed in the N = 4 SYM case in chapter 2.

The direct product SO(3,2)×SU(4) corresponds to the bosonic subgroup
of OSp(6|4). Thus the full global symmetry group of the CS-matter theory is
OSp(6|4).
The string states and the gauge theory primary operators will organize them-

selves as osp(6|4) multiplets and they will be characterized by the quantum
numbers labeling the bosonic sub-sectors. In particular, these are

(Δ = E,S,J1,J2,J3) . (7.6)

The first two charges, i.e. Δ(E) and S, are the Cartan generators of the

SO(2)×SO(3) maximally compact sub-sector5 of the full conformal group.
Notice that in the first entry of (7.6) we have summarized the content of

the gauge/gravity correspondence. The scaling dimension Δ and the string

energy E are the only charges which depend on the coupling constant λ :
Δ(λ ,N) = E(λ ,N). The last three charges J1,J2,J3 are the eigenvalues corre-
sponding to the SU(4) Cartan generators. I have indicated with J1 and J2 the
two generators of the SU(2)×SU(2) sub-sector mentioned before.

The string side
Let us see how the global symmetries are realized on the string scenario. The

IIA superstring lives on AdS4×�P3. The isometry group of AdS4 is indeed
SO(3,2). As for the previous case, E is the charge corresponding to global

time translation and S is the spin in the AdS space. In other words, accord-
ing to the splitting of SO(3,2) → SO(2)× SO(3) and to the isomorphisms
SO(2)∼=U(1), SO(3)∼= SU(2), E is the eigenvalue for the U(1) charge, while
S is the spin generator of SU(2). Thus once more, the conformal group enters
on the string theory side as a symmetry of the background. The same is true

also for the projective space �P3: the corresponding isometry group is SU(4).
Notice that in �P3 there are two 2-spheres S2 embedded. They corresponds
to the SU(2)× SU(2) sub-sector on the gauge theory side. Thus, J1 and J2
represent the total angular momenta in each sphere S2.

5Actually we are splitting the group SO(3,2) according to an Euclidean signature.
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7.4 Spin chains and anomalous dimension

We want to study the correlation functions of primary operators in the ABJM

theory. This means that we want to compute the anomalous dimension for

such operators, cf. section 2.4. Can we use the spin chain picture also in this

case?

We can repeat the arguments for the AdS5/CFT4 duality and represent a
local gauge invariant single trace operator via spin chain and study the corre-

sponding quantum mechanical model. In particular the spin chain Hamilto-

nian will be the mixing matrix, and its eigenvalues will be the anomalous

dimensions. Once more this was done for the first time by Minahan and

Zarembo in [159].

Let us consider the SU(4) scalar sector. A prototype of the operator that we

want to study is

O = CB1B2...BL
A1A2...AL

Tr
(

Y A1
† YB1Y

A2
† YB2 . . .Y

AL
† YBL

)
, (7.7)

where CB1B2...BL
A1A2...AL

is a generic tensor. We have to insert a field transforming in

the 4 representation in one site of the spin chain, and the next neighbor has
to be a field in the 4̄ representation, since we want a gauge invariant operator
and the matter is in the bifundamental representation, as we discussed in the

previous section. In this way, the gauge group indices are correctly multiplied.

Hence, the operator O (7.7) can be represented as an alternating spin chain.
This also implies that now the leading order spin chain Hamiltonian involves

the next-nearest neighbors, in other words it starts with two-loop interactions

(∼ λ 2). Notice that the length of the chain corresponding to the local operator

O (7.7) is 2L.
When the tensor CB1B2...BL

A1A2...AL
gives a symmetric and traceless combination of

the scalars in (7.7), then the operator O is a chiral primary, and its scaling

dimension is protected.

The SU(4) 2-loop spin chain Hamiltonian is [159]

Γ(2) =
λ 2

2

2L

∑
l=1

Hl,l+1,l+2 =
λ 2

2

2L

∑
l=1

(2−2Pl,l+2+Pl,l+2Kl,l+1+Kl,l+1Pl,l+2) ,

(7.8)

where Pl,l+2 is the permutation operator and Kl,l+1 is the trace operator.

In [159] the scalar SU(4) sector was shown to be integrable at leading order
(two-loops). The result was also found in [31] and in [99]. In [155] and

in [199] the two-loop spin chain Hamiltonian for the entire OSp(6|4) group
has been constructed and showed that it is integrable. The result was also

found in [31] and in [99].

As before, we can exploit integrability by applying the techniques learned in

chapter 2 in order to compute the anomalous dimensions for single trace local
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gauge invariant operators. The leading order Bethe Ansatz (ABE) where con-

structed for the scalar sector in [159] and for the full OSp(6|4) group in [155].
Afterwards, N. Gromov and P. Vieira proposed the Bethe Ansatz equations

for the entire OSp(6|4) group and at all loop order [113].
There are already important data available from the string world-sheet com-

putations, in particular for the spinning and rotating strings at one-loop [10,

146, 132, 147]. From these computations it emerges an apparent disagree-

ment with the Bethe ansatz predictions at the next-leading order of the strong

coupling limit for the function h(λ ), cf. equation (7.14). However, this is not
completely understood yet [147], hence it will not be discussed in this thesis.

7.4.1 The SU(2)×SU(2) spin chain

Let us focus on the SU(2)× SU(2) bosonic sector. This is a nice testing

ground since it is a closed subsector and probably the simplest one. Recall

that it is generated by the scalars A1,2 and B1̇,2̇, i.e. Y 1,2 and Y †
3,4.

We want to calculate the anomalous dimension γ for operators such as

O = Ca1a2...aL
b1b2...bL

Tr(Aa1Bb1Aa2Bb2 . . .AaLBbL) . (7.9)

The choice of the vacuum

Tr
(
Y 1Y †

3

)J ≡ Tr(A1B1̇)
J (7.10)

breaks the initial global symmetry. In particular what is left is a SU(2|2)×
U(1) symmetry. Looking at the Hamiltonian (7.8), one can see that in this
sub-sector the trace operator Kl,l+1 does not contribute, thus the Hamiltonian

reduces to

Γ(2)
|SU(2) =

λ 2

2

2L

∑
l=1

Hl,l+1,l+2 =
λ 2

2

2L

∑
l=1

(2−2Pl,l+2) . (7.11)

If one remembers section 2.4, one will recognize that the Hamiltonian (7.11) is

nothing but (two times) the Heisenberg Hamiltonian of section 2.4. Thus, we

have two separate XXX1
2

spin chains, one corresponding to the odd sites and

the other to the even ones [159]. However, they are not completely decoupled

since we have a unique cyclicity condition, which will couple the momenta

for the two spin chains. Notice that each spin chain has L sites.
Recalling the Bethe Ansatz equations for the Heisenberg spin chain in chap-

ter 2, section 2.4.1, it is straightforward to write down the su(2)×su(2) Bethe
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Ansatz equations, essentially they are the same:

E = 4λ 2

[
K1

∑
i=1

sin2
p(1)

i
2

+
K2

∑
i=1

sin2
p(2)

i
2

]

eip(a)
k L =

Ka

∏
j=1, j �=k

S(p(a)
j , p(a)

k )

K1

∑
i=1

p(1)
i +

K2

∑
i=1

p(2)
i = 0 . (7.12)

K1 and K2 are the magnon numbers in the odd and even sites of the chain,

respectively; the superscript a = 1,2 selects the odd or the even sites. The

S-matrix is the same as in section 2.4.1, namely S(p j, pk) =−1+ei(pk+p j)−2eipk

1+ei(pk+p j)−2eip j
.

Symmetries and S-matrix
The choice of the vacuum (7.10) breaks the initial global OSp(6|4) symmetry
to the SU(2|2) symmetry. Once more, the algebra that realizes the integrable
structure of the model is the centrally extended su(2|2) algebra. Although
now, we have only one copy. Analyzing the bosonic sector, we see that the

initial symmetries are broken into

SO(3,2)×SU(4)→ SO(2)×SO(3)×SU(2)R×SU(2)R . (7.13)

SO(3)∼= SU(2) is the group of the space-time rotations; one of the two SU(2)R

groups is broken by the vacuum choice.Thus the direct group SU(2)×SU(2)R

gives the bosonic subgroup of SU(2|2) (with U(1) central extension).
The full S-matrix has been constructed in [8]. It has been deduced through

the ZF algebra, cf. section 6.4. It has already passed some consistency checks,

at two loops at weak coupling [9] and at tree-level at strong coupling [196]. It

reproduces the all-loop Bethe Ansatz equations conjectured in [113].

The one particle state forms a (2|2) fundamental representation of the cen-
trally extended su(2|2) algebra. The dispersion relation obtained by the BPS
condition (or shortening condition), cf. 6.4, is

C =

√
1

4
+h(λ )sin2

p
2
. (7.14)

In AdS5/CFT4 the dispersion relation (6.52) is the same (with h(λ ) ∼ λ ) at
strong and weak coupling limit, as we saw, for example, by studying the BMN

limit in section 6.2.4. However now things are different. Recall that the short-

ening condition and, more in general, symmetry arguments fix the form of the

dispersion relation only up to a scalar function h(λ ). The specific behavior of
such a function in the UV or IR regime enters as an input and, for example, it
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can be fixed by a comparison with the BMN limit. There is no reason why this

should be the same at strong and weak coupling limit. For the AdS5/CFT4 du-
ality it happens. But this is not true now in the ABJM conjecture. At the weak

coupling (λ � 1) the authors of [159, 99, 160] have found that h(λ )∼ 4λ 2:

C =

√
1

4
+4λ 2 sin2

p
2

when λ � 1 . (7.15)

However, at the strong coupling (λ � 1) the results of [99, 106, 160] give a

different behavior: h(λ )∼ 2λ , cf. section 7.5.1:

C =

√
1

4
+2λ sin2

p
2

when λ � 1 . (7.16)

The violation of the BMN scaling already at the leading order might be due to

a lack of supersymmetries.

7.5 Integrability on the string theory side

Let us move to the string theory side: the type IIA superstring leaving on

AdS4×�P3. The background can be written as a bosonic quotient space,

namely

AdS4 =
SO(3,2)
SO(3,1)

�P3 =
SU(4)
U(3)

, (7.17)

which is the bosonic subgroup of OSp(6|4). Hence the super-coset approach á
la GSMT, cf. section 4.2, can be employed in this case for the formulation of

the type IIA string action [18]. There are certain subtleties. In the initial GS

superstring action there are in total 32 fermionic degrees of freedom, while

now they are 24. Thus part of the κ-symmetries must be fixed in order to
adjust the number of fermions, in particular half (8) of such local fermionic

symmetries are gauged away [18].

Arutyunov and Frolov have proved the classical integrability of the type

IIA string σ model on OSp(6|4)/SO(3,1)×U(3) in [18] by constructing the
Lax pair as it was done for the AdS5×S5 case [55], cf. section 4.3. However,
the fact that the superspace AdS4×�P3 is not a super-coset, implies that the
classical integrability has been rigorously showed only for a sub-sector of the

full complete AdS4×�P3 background [102].
In the next section, I will illustrate the plane-wave limit for the type IIA su-

perstring, mostly for preparing the ground for the paper III. However I will not

repeat the (entire) section 6.2. I will write down only the relevant information

in this case and assume that the reader has really read the previous chapter.
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7.5.1 The BMN limit

Recalling what we have learned about the BMN limit (especially on the string

theory side) in chapter 6, cf. section 6.2.4, we will analyze the IIA string on

the projective space in an analogous manner. Let us consider a string with a

very large angular momentum6 J in �P3. As we discussed in 6.2.4, this limit is
equivalent to consider the string moving in the background obtained by taking

the Penrose limit (R→∞) of the original geometry, which is now AdS4×�P3.
Remember that, by dimensional analysis, the very large R2 limit is the same
as the very large J limit. The string is excited along the global time direction
t in AdS4 and it is rotating very fast in �P3. Thus we proceed by computing
a perturbative expansion around the classical trajectory (the point-like string

configuration).

The Penrose limit has been computed in [99, 160, 18, 106], expanding the

motion in very similar null geodesics. However, I will mostly refer to the

decoupling limit used by Grignani, Harmark and Orselli [106], which is based

on the work [66] for the SU(2) sector of AdS5× S5, since this is the most
relevant for us, in view of the paper III.

The AdS4×�P3 space is described by

ds2 =
R2

4
ds2AdS4 +R2ds2

�P3 , (7.18)

with the unit metric written as

ds2AdS4 =
(−cosh2ρdt2+dρ2+ sinh2ρdΩ̂2

2

)
ds2
�P3 =

1

4
dψ2+

1− sinψ
8

dΩ2
2+

1+ sinψ
8

dΩ′2
2+ cos2ψ(dδ +ω)2 .

(7.19)

The one-form ω in (7.19) is given by

ω =
1

4
sinθ1dϕ1+

1

4
sinθ2dϕ2 , (7.20)

and dΩ2
2 and dΩ′2

2
parameterize the two spheres S2 embedded in �P3, in

particular we have that:

dΩ2
2 = dθ 2

1 + cos2 θ1dφ 2
1 dΩ′2

2 = dθ 2
2 + cos2 θ2dφ 2

2 . (7.21)

Thus, the ten embedding coordinates on AdS4×�P3 are:

t, ρ, Ω̂2︸ ︷︷ ︸
AdS4

ψ ,δ ,θ1 ,φ1 ,θ2 ,φ2︸ ︷︷ ︸
�P3

(7.22)

6On the gauge theory side this corresponds to primary local operators with a very large R-charge
(or alternatively very long spin chain with a finite number of impurities), cf. section 6.2.4.
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We want to make two operations at this point:

• We want to select the SU(2)×SU(2) sector;
• we want to take the Penrose limit, cf. equation (6.29).

This implies that we have to choose a null geodesic such that the only excited

coordinates lie in the projective space (a part the time direction), i.e. Rt×S2×
S2. Secondly, the coordinates should be rescaled in order to take the infinite

radius limit.

The coordinates which are suitable in order to select the SU(2)× SU(2)
sector [106], are

t ′ = t χ = δ − 1

2
t . (7.23)

This gives the following metric for AdS4×�P3

ds2 = −R2

4
dt ′2(sin2ψ + sinh2ρ)+

R2

4
(dρ2+ sinh2ρdΩ̂2

2)

+ R2
[dψ2

4
+
1− sinψ

8
dΩ2

2+
1+ sinψ

8
dΩ′2

2

+ cos2ψ(dt ′+dχ +ω)(dχ +ω)
]
. (7.24)

In chapter 6 we have introduced the U(1) charges in equation (6.8), analo-
gously here we have7

Δ = i∂t J =− i
2

∂δ . (7.25)

After the change of coordinates (7.23), by the chain rule8 the charges become

E ≡ Δ− J = i∂t ′ 2J =−i∂χ . (7.26)

Let us rescale the coordinates according to

v = R2χ , x1 = Rϕ1 , y1 = Rθ1 , x2 = Rϕ2 , y2 = Rθ2 , u4 =
R
2

ψ , (7.27)

and transform the transverse coordinates in AdS4 with u1, u2 and u3 defined
by the relations

R
2
sinhρ =

u

1− u2
R2

,
R2

4
(dρ2+ sinh2ρdΩ̂2

2) = ∑3
i=1 du2i

(1− u2
R2 )

2
, u2 =

3

∑
i=1

u2i .

(7.28)

7The symbol = should be properly read as a prescription here.
8The inverse transformations of (7.23) are t = t ′ and δ = 1

2 t ′+ χ .
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Explicitly, the metric (7.24) in the new coordinates (7.27) and (7.28), becomes

ds2 = −dt ′2
(

R2

4
sin2

2u4
R

+
u2

(1− u2
R2 )

2

)
+ ∑3

i=1 du2i
(1− u2

R2 )
2
+du24

+
1

8

(
cos

u4
R
− sin u4

R

)2(
dy21+ cos2

y1
R

dx21
)

+
1

8

(
cos

u4
R

+ sin
u4
R

)2(
dy22+ cos2

y2
R

dx22
)

+ R2 cos2
2u4
R

[
dt ′+

dv
R2

+
1

4

(
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

)]
×

×
[

dv
R2

+
1

4

(
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

)]
. (7.29)

At the leading order, the R→∞ limit of the metric (7.29) leads to the plane-

wave metric given by:

ds2 = dvdt ′+
4

∑
i=1

(du2i −u2i dt ′2)+
1

8

2

∑
i=1

(dx2i +dy2i +2dt ′yidxi) . (7.30)

The light-cone coordinates in this metric are t ′ and v: one should read

t ′ → X+ v→ X− (7.31)

in order to use the results of chapter 6. In essence, this is equivalent to consider

the following classical configuration for the string

ρ = 0 θ =
π
4
. (7.32)

After the rescaling (7.27), also the U(1) charge J in (7.25) gets rescaled

according to
2J
R2

=−i∂v . (7.33)

This is equivalent to P− in equation (6.32) in the case a = 0.

The light-cone gauge
We need to fix the light-cone gauge if we want to quantize the string Hamil-

tonian, since there are Ramond-Ramond fluxes and they survive the Penrose

limit, cf. equations (6.6) and (6.31). Explicitly:

t ′ = cτ pv = constant , (7.34)
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where the constant is fixed by the computation9 of the canonical momentum

pv = δL
δ v̇ and gives

c =
4J
R2

. (7.35)

This will be used as our expansion parameter in paper III and it corresponds

to P− of section 6.2.4, cf. equation (6.32).
After solving the Virasoro constraints (6.16), the bosonic light-cone Hamil-

tonian computed according to (6.18) in the background (7.30) gives

cHB,pp =
2

∑
a=1

(pxa ẋa + pya ẏa)+
4

∑
i=1

pui u̇i−LB,pp =

=
2

∑
a=1

[4p2xa
+4p2ya

+
1

16
x′2a +

1

16
y′2a− cpxaya +

c2

16
y2a]

+
1

2

4

∑
i=1

[p2ui
+u′2i + c2u2i ] . (7.36)

The quantization of the coordinates10 leads to the following free11 bosonic

Hamiltonian

cHfree =
4

∑
i=1

∑
n∈�

Ωn N̂i
n +

2

∑
a=1

∑
n∈�

(
ωn− c

2

)
Ma

n +
2

∑
a=1

∑
n∈�

(
ωn +

c
2

)
Na

n , (7.38)

with the number operators N̂i
n = (âi

n)
†âi

n, Ma
n = (aa)†naa

n and Na
n = (ãa)†nãa

n, and

with the level-matching condition

∑
n∈�

n

[
4

∑
i=1

N̂i
n +

2

∑
a=1

(Ma
n +Na

n )

]
= 0 . (7.39)

The dispersion relations are

Ωn =
√

n2+ c2 ωn =

√
c2

4
+n2 . (7.40)

9The constant is fixed through the relation 2J = 1
2πα ′

∫ 2π
0 dσ pχ = 1

2πα ′
∫ 2π
0 dσ δL

δ χ̇ .
10The details about the normalization and the explicit expression for the bosonic modes are in

paper III.
11The same is obtained for the plane-wave fermionic spectrum [27]:

HF,pp =
1

c ∑
n∈�

4

∑
b=1

ωnF(b)
n +

1

c

{
∑

n∈�

2

∑
b=1

(
Ωn +

c
2

)
F̃(b)

n + ∑
n∈�

2

∑
b=1

(
Ωn− c

2

)
F̃(b)

n

}
, (7.37)

with dispersion relations ωn =
√

n2+ c2
4 , Ωn =

√
n2+ c2 and the number operators Fn = d†ndn

and F̃n = b†nbn. We avoid to write the spinorial indices.
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This plane-wave Hamiltonian (7.38) describes 8 bosonic (and 8 fermionic)

degrees of freedom. But there are some surprises.

The dispersion relations (7.40) of the plane-wave Hamiltonian show that,

firstly, we have two different sets of excitations, and secondly, that in both

cases the dispersion relations do not match the gauge theory result. As it

is clear from (7.38) and (7.37), the masses, which appear there, are differ-

ent. We have obtained four bosons with mass m = 1
2
, the light-modes and

four with mass m = 1, the heavy-modes. The same is true for the fermions.
The (4|4) light multiplet corresponds to the transverse coordinates of �P3,
(x1,y1,x2,y2), namely to the two spheres S2, (7.21), after the rescaling (7.27).
These elementary excitations correspond to those seen on the gauge theory

side. In particular for the light-modes, after using (7.35), the energies are

1

c
ωn =

√
n2

c2
+
1

4
=

√
1

4
+
2π2λ

J2
n2 . (7.41)

This is consistent with the dispersion relation discussed in the previous sec-

tion: √
1

4
+2λ sin2

p
2
. (7.42)

The bosonic heavy modes correspond to the transverse directions (partially) in

AdS4: (u1,u2,u3,u4) and they are not observed on the gauge theory side. Ac-
tually their role is distinct, this fact is not visible in the BMN limit, but it will

be clear in paper III. Indeed, the coordinate u4 plays a special role. The other
coordinates u1 ,u2 ,u3 are rotated by the group SO(3) and they correspond to
the derivatives on the gauge theory side.

Hence, there is an apparent mismatch on the number of the elementary

impurities which appear on gauge and string theory side. This was resolved by

Zarembo in [196] where he showed the fate of the heavy world-sheet modes.

They are not elementary world-sheet excitations. They disappear from the

spectrum: Once the leading quantum corrections in the propagator are taken

into account, it is possible to see that the pole corresponding to heavy modes

is indeed above the threshold for the light-mode pair productions. They are

absorbed in the continuum and thus “invisible” from the gauge theory point

of view.

7.6 Paper III

The paper III takes a step forward in the study of the BMN regime on the

string theory side. The goal of the work is the computation of the leading

(1J ) quantum corrections to the string energies, for a certain class of string

configurations. This method was proposed by Callan et al. in [75, 73] for the
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AdS5×S5 superstring. For other methods used to compute the 1
J corrections

in the AdS5/CFT4 context we refer the reader to the papers [16, 17, 98].
Summarizing what we have seen in the previous section, the starting point

of paper III is a light-cone gauged string moving on t ∈ AdS4 and S2×S2 ∈
�P3 with a very large angular momentum J in the projective space. We are at
strong coupling limit λ � 1 and also J (or R) is very large, however the ratio
λ ′ = λ

J2 is kept fixed. This λ ′ becomes an effective parameter to explore the
spectrum beyond the Penrose limit.

In particular we want to make a joint expansion in large J and in small λ ′,
cf. what we have discussed in section 6.2.4 about the BMN-scaling. In a

certain sense, we are saying that the angular momentum is very large but yet

finite. From this, it follows the name (and the title of the paper III) finite size

corrections12. They are near-BMN corrections, and indeed, I will use the two

expressions as synonyms.

Since by dimensional analysis the 1
J corrections are equivalent to the 1

R2
corrections, the finite-size corrections can be computed by including higher

order terms in the inverse of the curvature radius, i.e. up to 1
R2 .

Since in paper III we investigate only the bosonic sector of the type IIA

AdS4×�P3 superstring, the discussion of the section 6.2.1 applies directly
here with a slight change in the notation. All the relevant formulas are written

in section 6.2.1, let me just sketch the main formulas more for commenting

about the different notation. The starting point is the bosonic action13

S =
1

2πα ′

∫
dσ2L with L =−1

2
γμνGMN∂μXM∂νXN , (7.43)

and the two Virasoro constraints (6.16). Solving the second one of (6.16) in

favor of X−′ (v′ in the new notation) gives the light-cone Hamiltonian density

Hlc =−pt ′ . (7.44)

Notice that p+ of chapter 2 is pt ′ in the notation of paper III.

The crucial step is that everything is consistently expanded up to order
1

R2 ∼ 1
J . In the curvature radius expansion, the leading term in (7.44), i.e.

the term of order O(1), is the BMN limit (Hfree); the next-leading terms are

the new contributions that, once they are quantized, will give us the quantum

12They should not be confused with the finite size corrections which enter by considering the

strings in a finite volume and which are exponentially small. This kind of corrections are not

captured by the ABE, thus we will not deal with them, cf. the discussion in chapter 2 section

2.4.1.
13Notice also the different notation for the indices. In paper III the world-sheet indices are the

first letters of the Greek alphabet α,β , instead here they are μ,ν ; vice versa the curved target-
space indices are denoted with μ,ν . . . in paper III, while now with the capital Latin letters

M,N, . . . . Moreover, in paper III we set ls = 1.
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corrections to the string BMN spectrum, i.e. Hint:

Hlc = Hfree+Hint . (7.45)

Notice that Hfree reduces to (7.36) in the bosonic sector, which is the sector

we are interested in.

With respect to the AdS5 case, one of the surprising properties of the inter-

acting Hamiltonian Hint is that it contains also three-leg vertices. It is indeed

built of two contributions:

• at order 1
R it is cubic and it contains three fields (the heavy mode cor-

responding to u4 and two light-modes corresponding to two of the four
S2 ∈ �P3 coordinates), i.e. H (1)

int ;

• at order 1
R2 it is quartic (the relevant terms for us are the ones with all the

transverse SU(2)×SU(2) coordinates), H (2)
int .

The classical interacting HamiltonianHint must be then quantized and used

to compute the energy corrections via standard perturbation theory. However,

since Hint is derived classically, there is a normal ordering ambiguity. We

choose to fix the constant of normal ordering to zero, by consistency with the

zero vacuum energy. Notice that both terms H
(1)
int and H

(2)
int contribute at

order 1
J , in particular the cubic Hamiltonian contribution contains divergent

terms which we regularize with the ζ -function.
In concrete terms, in paper III we investigate two specific string configura-

tions with two impurities in both cases. One state contains two world-sheet

excitations sitting on the same sphere S2 ∈�P3 (the state |s〉). The second case
we consider, is when the two world-sheet excitations are on the two different

2-spheres SU(2) (the state |t〉). From a spin chain picture, the SU(2)×SU(2)
light excitations correspond to the insertions of two fundamental magnons

such as A1B2, A1,B
†

2̇
, A2,B1 and B†2,B1 in the spin chain. We can pictorially

think to the case |s〉 as two down spins in the same XXX1
2

chain and to the

case |t〉 as each spin down for each chain14. In this way it has been possible
to see that, in the case |t〉, the dressing phase contribution is responsible for
the interactions between the two spin chains since the S-matrix contribution

is trivial in this case. The results of paper III have been confirmed in [185].

Comparing with the Bethe Ansatz equations and with the Landau-Lifshitz model
The energies up to order 1

R2 obtained with the above finite-size procedure are

then compared with the strong coupling limit of the Bethe equations proposed

in [113]. The SU(2)×SU(2) Bethe Ansatz equations are written in paper III
by following the AdS5/CFT4 example. In particular, at this order, the dressing

14This picture should not be taken too much seriously: the chains are the same just involving

odd and even sites, indeed there is one trace condition.
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phase is a direct generalization of the AFS phase (6.68) with the substitution

g2 → h(λ ), cf. section 6.4.1. Furthermore, in the concrete computation it

has been used the strong coupling leading order value for the function h(λ ),
namely h(λ ) = 2λ .
We have also used another approach in order to compute the energy cor-

rections to the string configurations considered: the so called Landau-Lifshitz

(LL) model. This is a low-energy effective model that was initially devel-

oped in the AdS5/CFT4 case by Kruczenski [134]. It has the advantage to be
free from divergences and to be well-defined at leading quantum level. For

a nice review we refer the reader to the paper [189] and for examples in the

AdS5×S5 context we refer to the works [156, 157, 133, 135].
The final result of paper III is the complete matching between the energy

corrections computed with the different three techniques.
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8 Epilogue

The thesis is devoted to a specific area of research in String Theory: the study

of the string integrability in the context of the AdS/CFT dualities. The inte-

grable structures which emerge on both sides of the AdS5/CFT4 correspon-
dence, manifest themselves with an infinite set of conserved charges. These

infinite “hidden” symmetries solve, at least in principle, the model and provide

us with a formidable tool for exploring the string/gauge correspondence.

The exposition starts with the AdS5/CFT4 correspondence. Its gravity

side, namely the type IIB superstring action in AdS5×S5, can be formulated
in two approaches: the Green-Schwarz-Metsaev-Tseytlin (GSMT) formalism

and the Berkovits (pure spinor) formalism. The latter allows one to proceed

perturbatively to a manifestly covariant quantization of the string action. Us-

ing the pure spinor approach we could analyze the operator algebra of the

left-invariant currents which are the main ingredient in the construction of the

string action. This has been done by computing the operator product expan-

sion (OPE) of the left-invariant currents at the leading order in perturbation

theory (i.e. 1
R2 ∼ 1√

λ
) and up to terms of conformal dimension 2. This con-

firms the �4-grading of the full psu(2,2|4) algebra, which is the AdS/CFT
global symmetry, as well as the non-holomorphicity of the currents. We have

then investigated the quantum integrability of the type IIB AdS5×S5 super-
string. Its proven classical integrability does not automatically imply that such

a property survives at quantum level, as the example of the �Pn model teaches

us. In the first order formalism, the integrability is related to the existence of

a Lax pair, namely a flat connection, which guarantees the independence of

the contour for the monodromy matrix (the functional generating the infinite

tower of conserved charges) and thus the conservation of the charges. We have

studied the variation of the monodromy matrix under a small path deformation

at the leading order in perturbation theory and in the pure spinor approach. We

could give a direct and explicit check that indeed its path-independence holds

at quantum level and that it remains free from UV logarithmic divergences. A

crucial ingredient in this computation are the OPE’s mentioned above.

Employing the GSMT light-cone gauged type IIB superstring action, one

can interpret the world-sheet elementary excitations as two-dimensional par-

ticles and construct the corresponding S-matrix by assuming that the model

is quantum integrable. We have explicitly verified that such a scattering ma-
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trix factorizes as it should be for a two-dimensional integrable quantum field

theory. For this computation we have exploited the near-flat space truncation

of the full string σ -model up to one-loop, which means ∼ 1
λ 3/2 for the three-

particle scatterings considered.

Finally we have turned our attention to the AdS4/CFT3 correspondence.
We have considered the gravity dual given by the type IIA superstring in

AdS4×�P3. In the GS formalism we have examined near-BMN string con-

figurations with a large angular momentum J in �P3. For the bosonic SU(2)×
SU(2) closed sector we have then calculated the first quantum correction,

namely 1
J ∼ 1

R2 , to the corresponding string energies. The obtained values

have been positively checked against the conjectured all-loop Bethe ansatz

predictions.
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9 Summary in Swedish
Aspekter på integrabilitet av strängteori

I Naturen finns det fyra fundamentala krafter: gravitationskraften, den elektro-

magnetiska kraften samt den starka och svaga kärnkraften. De tre sistnämn-

da är beskrivna av Standardmodellen. Standardmodellen är en kvantfältteo-

rien som har en speciell symmetri som kallas gaugesymmetri. Kvantfältte-

orier med en gaugesymmetri kallar vi för gaugeteorier. I Standardmodellen

beskrivs partiklar som punktformiga och växelverkan sker genom budbärar-

partiklar (fotoner, W±-och Z bosoner och gluoner). Standardmodellens be-

skrivning av partikelfysik stämmer mycket väl överens med observationer

som kommer till exempel ifrån partikelacceleratorer. Man skulle vilja lägga

till också gravitationen och hitta en beskrivning av världen där alla krafterna

beskrivs på samma sätt. Det finns dock en viktig skillnad mellan gravitationen

och Standardmodellen-krafterna: den första berättar hur tunga och stora objekt

växelverkar och den andra beskriver det lilla, det vill säga partikelfysiken.

Ett revolutionärt synsätt kommer med strängteori. De fundamentala objek-

ten i strängteori är inte längre punktformiga partiklar utan strängar. De är en-

dimensionella och kan inte bara röra sig utan även vibrera. Att byta ut punkt-

formiga partiklar mot endimensionella strängar leder till möjligheten att hitta

en gemensam beskrivning av alla fyra krafter. Poängen är att när strängar vi-

brerar producerar den olika “toner” och dessa olika “toner” tolkar vi som olika

partiklar. En av dessa olika toner är gravitonen, som är budbärarpariklen an-

svarig för gravitationen. Man kan även generalisera strängar och introducera

objekt som har mer än en dimension, de är då n-dimensionella ytor som kallas

bran.

Vi borde vara mer precisa. Strängteori är inte en fullsändig teori. Vad jag

menar är att vi har ännu inte en komplett förståelse. Bland annat har vi fem

olika strängteorier, och är de relaterade med hjälp av olika dualiteter (en spe-

ciell typ av symmetri). Vi tror att de är gränser av en och samma okända teori,

M-teori.

Men strängteori är relaterad med partikelfysik också på en annan sätt: via

sträng/gauge dualitet. 1997 upptäckte Maldacena att vissa slutna supersym-

metriska strängar som lever i en tiodimensionell krökt bakgrund beskriver

samma fysik som en gaugeteori av partiklar i fyra dimensioner. Denna idé kal-
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las för AdS5/CFT4-dualitet. På ena sidan har vi typ IIB supersträngar1 som

lever i ett rum som kallas för AdS5×S5, och på den andra sidan har vi super
Yang-Mills teori (SYM) i fyra platta dimensioner med SU(N) som gauge-

grupp. Bakgrunden som strängen lever i är uppbyggd av ett femdimensionellt

anti De Sitter rum (AdS), som vi kan tänka som en hyperboloid, tillsammans

med en femdimensionell sfär (S). 2008 hittade Aharony, Bergman, Jafferis

och Maldacena en ny typ av sträng/gauge dualitet mellan en teori av M2-bran

(tredimensionella bran) i elva dimensioner och en viss gaugeteori i tre dimen-

sioner. Vi kallar den här nya korrespondensen för AdS4/CFT3 dualitet. I det
här fallet är gravitations-sidan ännu rikare: när sträng-kopplingen är svag kan

M2-bran beskrivas som typ IIA supersträngar i ett speciellt rum som kallas

för AdS4×�P3. AdS4 är ett fyrdimensionell anti-De Sitter rum och �P3 är ett
projektions rum med sex dimensioner. Vi har nu förstått att bokstäven AdS är

relaterade till gravitationssidan av dualiteten.

Vad betyder CFT? Det står för konform fältteori. De duala gaugeteorierna

som vi diskuterar är konforma. Det betyder att de är invarianta under kon-

forma transformationer. Dessa transformationer skalar avstånd med en posi-

tionsberoende faktor, men de bevarar vinklar. Viktig fysikalisk information i

en konform fältteori finns i en observabel som kallas för den anomala dimen-

sionen. Den beskriver hur operatorer2 uppför sig vid höga energier och under

skalning. Det är därför viktigt att kunna räkna ut anomala dimensioner, men

i allmänhet är det mycket svårt. Här spelar gauge-sträng dualiteter en viktig

roll.

Båda korrespondenserna är stark/svagkopplingsdualiteter: när gaugeteorin

är starkt kopplad är strängen fri och vice versa. När kopplingen i en teori är

stark är det mycket svårt att räkna ut saker. Detta betyder att man kan an-

vända strängteorin när gauge teorien är för svår att tillämpa, och vice versa,

man kan använda gaugeteoribeskrivningen när det blir svårt att räkna något i

strängteori.

På ett sätt, så har vi rört oss i cirkel. 1968 utvecklades strängteori sig med

målet att förklara den starka kärnkraften. Det började alltså som partikelfysik.

Med införandet av Quantum Chromo Dynamics (QCD), som är den kvantfält-

teori som beskriver starka kärnkraften, gav man upp strängteori. 1974 insåg

man att strängteori nödvändigtvis innehåller gravitationen och det fick nytt liv.

Nu ger AdS/CFT dualiteter oss möjligheten att få en bättre insikt i vissa gau-

geteorier med hjälp av strängteori. Man hoppas att strängteori en dag ska ge

en dual beskrivning också för QCD, men det har man inte lyckats med ännu.

Både gauge-och strängteorier är ganska komplicerade. I en viss gräns, som

kallas för plana gränsen, uppvisar både sträng-och gaugeteori en speciell egen-

1Typ IIB supersträngar är en av de olika fem strängteorier. Bland annat, finns det också typ IIA.

De två typ av strängteorier kommer vi att diskutera i den här avhandlingen.
2I kvantfältteori beskrivas partiklar som fält. En operator är uppbyggd av en product av fält.
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skap: båda teorierna är “integrabla”. Vad betyder integrabel? Vi kan tolka or-

det som “lösbar”. Integrabla teorier har oändligt många bevarade laddningar

som gör att man kan lösa modellen helt. Dessa laddningar generaliserar beva-

ringslagen av energi och rörelsemängd som alltid finns där i fysikaliska pro-

cesser, som till exempel i partikelspridning. Bland alla integrabla teorier är de

som lever i två dimensioner mycket speciella: i det här fallet ger den oändli-

ga mängden laddningar starka villkor på strängdynamiken i modellen. För att

illustrera idéen, kan vi tänka på spridning av n partiklar i två dimensioner. I
en integrabel två-dimensionell teori, reduceras en allmän n-partikelspridning
till en två-partikelspridning. För att lösa hela modellen (spridningen av n par-
tiklar), behöver vi bara att kunna lösa två-partikelproblemet, som är mycket

enklare. Därför integrabilitet är viktigt.

Den huvudsakliga motivation för mitt arbete har varit att ge några explicit

bevis för kvantintegrabilitet av strängteori i AdS-CFT korrespondensen till

första ordningen i störningsteori.

Artiklar
Den modellen som beskriver typ IIB supersymmetriska strängan i AdS rum-

tiden kan formuleras på två olika sätt, dels i den så kallades för Green-Schwarz

(GS) formalismen och dels i Berkovits-(eller pure spinor, PS) formalismem.

Berkovitsformalism har fördelen att man kan kvantisera strängmodellen med

alla symmetrier manifesta, men den är samtidigt mer komplicerad. Vi använ-

der den formalismen i artiklar I och IV. I artikel I och IV, visar vi att ett objekt

som generar alla bevarade laddningar, och kallas för en monodromymatris, är

oberoende av integrationsvägen på världsytan till första ordningen i störnings-

teori. Detta är ekvivalent med att säga att laddningarna bevaras. I artikel II

kommer vi tillbaka till GS formalismen. Vi visar spridning-matrisfaktorisering

till förtsa ordningen i near-flat-space (NFS) gränsen, som är en trunkering av

hela strängmodellen. I artikel III fokuserar vi på AdS4/CFT3-dualitet. Vi räk-
nar den första kvantkorrektionen för typ IIA supersträngar i AdS4×�P3. Det
betyder att vi räknar korrektioner för strängkonfigurationer med ett mycket

stort men fortfarande ändligt rörelsemängdsmoment i �P3.
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10 Appendix

10.1 Notation

Complex coordinates
The conventions are the same as used by Polchinski in chapter 2 of [168].

The z, z̄ coordinates are defined according to:

z = σ1+ iσ2 z̄ = σ1− iσ2 . (10.1)

The derivatives are

∂z =
1

2
(∂1− i∂2) ∂z̄ =

1

2
(∂1+ i∂2) . (10.2)

Notice that for the Maurer-Cartan forms I use J ≡ Jz and J̄ ≡ Jz̄. In paper

IV they are also indicated with J+ and J− respectively. The two-dimensional
metric is

ηzz̄ = ηz̄z =
1

2
ηzz̄ = η z̄z = 2 , (10.3)

where all the other components are zero. The Levi-Civita tensor is defined by

ε12 = −ε21 = +1. In the Minkowski world-sheet the ε tensor is defined as

ε01 = −ε10 = +1. In particular, we use the prescription σ2 = iσ0 for Wick-

rotating the coordinates. Finally, the measure in the z, z̄ coordinate is d2z =
2dσ1dσ2.

10.2 PS formalism: BRST invariant charges

We want to show that whenever the BRST cohomology class for operators of

ghost number 2 is trivial, then we can construct an infinite set of non-local

BRST invariant charges. We follow Berkovits arguments [61].

The local conserved charges qA is given by

qA =
∫

dσ jA(σ) (10.4)

where jA is some conserved current transforming in the adjoint representation
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of the symmetry algebra. qA should be BRST invariant, which implies

Q(qA) = 0 → Q( jA) = ∂σ hA , (10.5)

where hA is an operator of ghost number 1.

The BRST operator is nilpotent, namely we have

Q2(qA) = 0 → Q(hA) = 0 , (10.6)

where we exclude the trivial solution ∂σ hA = 0.

Consider the ghost number 2 operator sC = f C
AB : hAhB :, where f C

AB are the

structure constants. Acting with Q on the bilocal charge kC

kC =: f C
AB

∫ ∞

−∞
dσ jA(σ)

∫ σ

−∞
dσ ′ jB(σ ′) : (10.7)

and recalling that Q( jA) = ∂σ hA, one obtains

Q(kC) =−2 f C
AB :

∫ ∞

−∞
dσ jA(σ)hB(σ) :≡

∫ ∞

−∞
dσ lC(σ) (10.8)

where we define lC(σ)≡−2 f C
AB : jA(σ)hB(σ) :. lC is a ghost number 1 oper-

ator thus
∫ ∞
−∞ dσ lC(σ) is a local integrated ghost number 1 operator. Acting

with Q on lC we obtain,

Q(lC) = Q(−2 f C
AB : jA(σ)hB(σ) :) = f C

AB∂σ (: hA(σ)hB(σ) :) (10.9)

where we have used the fact that Q( jA) = ∂σ hA and Q(hA) = 0. Then we have

that Q(lC) = ∂ sC. If there exists an operator ΩC such that Q(ΩC) = sC, then

the relation above becomes

Q(lC) = f C
AB∂σ (: hA(σ)hB(σ) :) = ∂σ sC = ∂σ Q(ΩC) = Q(∂σ ΩC) (10.10)

namely

Q(lC−∂σ ΩC) = 0 . (10.11)

On the other hand the operator lC−∂σ ΩC has conformal weight +1 and since

the BRST cohomology is non-trivial only at conformal weight 0, this implies

that there exists an operator ΣC such that lC−∂σ ΩC = Q(ΣC).
This is the operator that we can use in order to construct the BRST-invariant

charges, namely

k̃C =: f C
AB

∫ ∞

−∞
dσ jA(σ)

∫ σ

−∞
dσ ′ jB(σ ′) :−

∫ ∞

−∞
dσΣC(σ) . (10.12)

The infinite set is generated by the fist and the second (bilocal) charges, qA and

k̃A respectively, by repeatedly taking their Poisson brackets. What we have
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shown here is that whenever one can write sC ≡ f C
AB : hAhB := Q(ΩC), namely

whenever sC ≡ f C
AB : hAhB : is not in the BRST cohomology, then the infinite

set of non-local and BRST invariant charges can be constructed by adding to

qA the integrated operator ΣC which is the BRST variation of lC−∂σ ΩC.

Finally, the explicit construction of ΩC and hC is given in [61].

Summary
All the construction of the non-local charges is based on the relation be-

tween integrated and unintegrated vertex operators and the BRST cohomol-

ogy. Summarizing, we can say that

• the cohomology class of ghost number 0 does not exist;

• the cohomology class of ghost number 1 corresponds to the non-local charges

associated with the global symmetry;

• the cohomology class of ghost number 2 corresponds to unintegrated vertex

operators.

10.3 The AdS4/CFT3 duality: Preliminaries

Reducing the M-theory background to AdS4× S7

k .

The near-horizon limit of the M2-brane solution is AdS4×S7, namely

ds2 =
L2

4
ds2AdS4 +L2ds2S7 , (10.13)

where L is curvature radius for the eleven-dimensional target-space.
We choose four complex coordinates to parameterize S7 such that∑4

i=1 |Xi|2 =
1 [160], i.e.

X1 = cosθ cos
θ1
2

eı(χ1+ϕ1)/2 X2 = cosθ sin
θ1
2

eı(χ1−ϕ1)/2

X3 = sinθ cos
θ2
2

eı(χ2+ϕ2)/2 X4 = sinθ sin
θ2
2

eı(χ2−ϕ2)/2 ,

(10.14)

with 0≤ θ ≤ π/2, 0≤ χi ≤ 4π , 0≤ ϕi ≤ 2π and 0≤ θi ≤ π for i = 1,2. Then,
the metric on the sphere S7 is

ds2S7 =
4

∑
i=1

dXidX̄i =

= dθ 2+
1

4
cos2 θ

{(
dχ1+ cosθ1dϕ1

)2+dθ 2
1 + sin2 θ1dϕ2

1

}
+
1

4
sin2 θ

{(
dχ2+ cosθ2dϕ2

)2+dθ 2
2 + sin2 θ2dϕ2

2

}
. (10.15)

133



With the change of coordinates χ1 = 2y+2δ , χ2 = 2y−2δ and implementing

the orbifold condition according to y∼ y+ 2π
k , the metric (10.15) becomes

ds2S7 =

= dθ 2+
1

4
cos2 θdΩ2

1+
1

4
sin2 θdΩ2

2+(A+dy)2

+4cos2 θ sin2 θ
(
dδ +

1

4
cosθ1dϕ1− 1

4
cosθ2dϕ2

)2 =

= ds2
��3

+(A+dy)2 , (10.16)

with

dΩ2
1 = dθ 2

1 + sin2 θ1dϕ2
1 dΩ2

2 = dθ2+ sin2 θ2dϕ2
2 (10.17)

and

A =
(
cos2 θ − sin2 θ

)
dδ +

1

2
cos2 θ cosθ1dϕ1+

1

2
sin2 θ cosθ2dϕ2 . (10.18)

Thus the total eleven-dimensional metric is

ds211 =
L2

4
ds2AdS4 +L2ds2S7 = L2(1

4
ds2AdS4 +ds2

��3
)+(A+dy)2 . (10.19)

In order to find the dilaton in terms of the other parameters k,L, we can com-
pare (10.19) with the standard eleven-dimensional supergravity metric [6]

ds211 = e−2φ/3ds2IIA + e4φ/3(dỹ+ Ã)2 (10.20)

with ỹ∼ ỹ+2π . Thus, comparing (10.19) and (10.20) (in unit where α ′ = 1),

one finds

e2φ =
L3

k3

ds2IIA =
L3

k
(1
4
ds2AdS4 +ds2

��3
)≡ R2(1

4
ds2AdS4 +ds2

��3
) . (10.21)

Hence, summarizing the results, we have that

R2 ≡ L3

k
= k2e2φ eφ =

R
k
. (10.22)

In order to make contact with what we have found in this appendix and with

the results in paper III, we shift the variables as

θ1→ θ1− π
2

θ2→ θ2+
π
2
. (10.23)

With this change of coordinates we obtain the same metrics used in the main
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text of this thesis and in paper III.

The fluxes
The type IIA superstring on AdS4×�P3 is supported by two Ramond-Ramond
fluxes F(2) and F(4). They are given by

eφ F(2) = RdA eφ F(4) =
3R3

8
εAdS4 . (10.24)
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