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Abstract

The time-dependent Schrödinger equation models the quantum nature of molecular processes.

Numerical simulations of these models help in understanding and predicting the outcome of

chemical reactions.

In this thesis, several numerical algorithms for evolving the Schrödinger equation with an ex-

plicitly time-dependent Hamiltonian are studied and their performance is compared for the

example of a pump-probe and an interference experiment for the rubidium diatom. For the im-

portant application of interaction dynamics between a molecule and a time-dependent field,

an efficient fourth order Magnus–Lanczos propagator is derived. Error growth in the equation is

analyzed by means of a posteriori error estimation theory and the self-adjointness of the Hamil-

tonian is exploited to yield a low-cost global error estimate for numerical time evolution. Based

on this theory, an h, p-adaptive Magnus–Lanczos propagator is developed that is capable to

control the global error. Numerical experiments for various model systems (including a three

dimensional model and a dissociative configuration) show that the error estimate is effective

and the number of time steps needed to meet a certain accuracy is reduced due to adaptivity.

Moreover, the thesis proposes an efficient numerical optimization framework for the design of

femtosecond laser pulses with the aim of manipulating chemical reactions. This task can be

formulated as an optimal control problem with the electric field of the laser being the control

variable. In the algorithm described here, the electric field is Fourier transformed and it is opti-

mized over the Fourier coefficients. Then, the frequency band is narrowed which facilitates the

application of a quasi-Newton method. Furthermore, the restrictions on the frequency band

make sure that the optimized pulse can be realized by the experimental equipment. A numer-

ical comparison shows that the new method can outperform the Krotov method, which is a

standard scheme in this field.
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1. Introduction

Newtonian mechanics provides a model for processes that can be observed

by the naked eye. Quantum mechanics, on the contrary, is a mathematical

framework formulated to describe the probability distribution of particles,

e.g., electrons and nuclei, which cannot be perceived directly with the human

senses. The quantum nature of photons is demonstrated to students in school

by the double-slit experiment; and physicists can measure scattering cross-

sections or reaction rates in their laboratories. Solving the modeling equations

for quantum mechanics reveals the dynamics of the particles, and thereby

helps in understanding the observables in terms of the underlying molecu-

lar properties. Since it is generally impossible to find analytical solutions to

these equations, computer simulations are inevitable.

Even though quantum processes are not directly observable, they govern

chemical reactions and thereby become apparent. Hence, quantum dynam-

ics is intrinsic to all kinds of natural occurrences. With the aim of controlling

reactions, quantum chemists put efforts in probing and manipulating the dy-

namics of electrons and atomic nuclei. The upcoming of femtosecond lasers

in the late 1980s made it possible to “watch” the motion of nuclei. The devel-

opment of laser technologies has continued and around the turn of the mil-

lennium it even became possible to follow the motion of the electrons, now

using attosecond pulses.

The possibility to control reactions on the molecular level opens new op-

portunities for chemical processes, for instance in the semiconductor or catal-

ysis industries.1 Furthermore, it has potential impact to electronics where sci-

entists try to design miniaturized devices whose structures are made up of

very few atoms only.2 Quantum computing grounds on so-called qubits being

a probabilistic superposition of two quantum states.3

In the next chapter, quantum dynamics models are introduced. Unfortu-

natelly, the number of degrees of freedoms within a molecule is often very

large. For instance, in the full description of the quantum nature of just a sin-

gle water molecule (H2O), 39 spatial degrees of freedom are involved. More-

1cf. the Science Blog of the Max–Planck–Gesellschaft on

http://www.scienceblog.com/community/older/1999/B/199901875.html.
2cf. the Imperial College Department of Physics on

http://www3.imperial.ac.uk/physics/admissions/pg/dtc/cqd.
3cf, the Standford Encyclopedia of Philosophy on

http://plato.stanford.edu/entries/qt-quantcomp.
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over, the motion within a molecule ranges over scales of many orders of mag-

nitude in both time and physical space. The so-called Born–Oppenheimer ap-

proximation is a useful simplification which allows for splitting electronic and

nuclear motion. In this model, the 30 electronic and the nine nuclear degrees

of freedom in the H2O molecule model are separated. Still, the description for

the dynamics of the nuclei remains high-dimensional, and the corresponding

numerical simulation extremely challenging (see Chap. 3). This thesis con-

centrates on such nuclear Schrödinger equations. Chapts. 4 and 5 review time

propagation and optimal control for the design of femtosecond laser pulses

with the emphasis on the topics of Paper I-III. A focused summary of the con-

tent of the papers is provided in Chap. 6. The concluding Chapt. 7 collects

both unresolved problems directly related to the research reported in Papers

I-III and an outlook on interesting extensions of the presented work.
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2. Time-dependent Quantum
Dynamics

The Schrödinger equation was phrased for the first time by Erwin

Schrödinger in a series of papers [76, 77, 78, 79]. His first article [77] considers

the case of the hydrogen atom and the Schrödinger eigenvalue problem

was devised starting from a classical Hamiltonian differential equation,

taking into account several observations on the quantum nature of particles.

Schrödinger’s work is fundamental for today’s quantum mechanics.

The general time-dependent form of the Schrödinger equation, which

Schrödinger derived in his fourth article [78], reads

iħ
∂

∂t
Ψ(x, t )= ĤΨ(x, t ), (2.1)

where ħ is Planck’s constant divided by 2π and Ĥ is the (quantum) Hamilto-

nian operator containing the kinetic and the potential energies of the studied

system. The wave function Ψ depends on spatial (x) and temporal (t ) coordi-

nates. Its significance is given by the square of its modulus, ρ(x, t )= |Ψ(x, t )|2,

which defines the so-called probability density, i.e., ρ(x, t ) gives the probabil-

ity for the system to be in the configuration defined by x at time t . The partial

differential equation (2.1) needs to be closed with an initial value, Ψ(x,0) =
Ψ0, and boundary conditions.

2.1 Born–Oppenheimer Approximation

When describing the full dynamics of a molecule, the Hamiltonian is estab-

lished by adding up the kinetic and the potential energies of each nuclei and

each electron as well as the electron-nuclear potential energy. In this section,

we will consider the time-independent Schrödinger equation (TISE),

ĤΨ(x)= ÊΨ(x).

Let us denote by Ri the coordinates of nucleus Ni , and by Zi and Mi its charge

and mass, respectively. For electron ei , we denote its coordinates by ri and by

e and m we denote electronic charge and mass, respectively. With this nota-
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tion, the full molecular Hamiltonian is given by (cf. Refs. [80, 92]),

Ĥ = −
∑

i

ħ2

2Mi
∆Ni

+
∑

i> j

Zi Z j e2

|Ri −R j |
−

∑

i

ħ2

2m
∆ei

+
∑

i> j

e2

|ri − r j |
−

∑

i> j

Z j e2

|ri −R j |

= T̂N + V̂N + T̂e + V̂e + V̂eN ,

where ∆∗ denotes the Laplacian with respect to the coordinates of particle (*).

The number of degrees of freedom corresponds to 3n where n is the number

of particles involved (x, y , and z coordinate for each one). The full system

therefore rapidly becomes extremely high-dimensional, and also for small

molecules it is necessary to separate electronic and nuclear coordinates as

indicated in the introduction.

Since the mass of a nucleus is a factor 103 to 105 larger than the mass of

an electron, the nuclei move much slower than the electrons. On the time-

scale of the vibration of electrons, the positions of the nuclei are normally al-

most constant. In the Born–Openheimer approximation, it is assumed that

the wave function Ψ(r,R) can be split as

Ψ(r,R)=φ(r ;R) ·ψ(R).

Then the electronic Schrödinger equation is solved separately for fixed nu-

clear coordinates,

Ĥeφ(r ;R)= Ê el(R)φ(r ;R),

with the electronic Hamiltonian being Ĥe = T̂e +V̂e +V̂eN . With these assump-

tions, the full Hamiltonian reads

Ĥ
(
φ(r ;R)ψ(R)

)
=−

∑

i

ħ2

2Mi

(
φ(r ;R)∆Ni

ψ(R)+2∇N−iφ(r ;R) ·∇Ni
ψ(R)

+∆Ni
φ(r ;R)ψ(R)

)
+ (Ê el(R)+ V̂N )φ(r ;R)ψ(R).

(2.2)

The terms 2∇N−iφ(r ;R)·∇Ni
ψ(R) and ∆Ni

φ(r ;R)ψ(R) in (2.2) are difficult to

handle. For most configurations, they are however of the same magnitude as

the mass ratio between electrons and nuclei. Only at nuclear configurations

where the molecule tends to change its electronic state, those terms become

relevant. In order to simplify the nuclear TDSE, one therefore often applies a

so-called diabatic transformation that models the kinetic couplings by poten-

tial coupling terms.

In computations for the nuclear wave packet, one usually includes a num-

ber of different electronic states and splits the wave packet into different parts

for each state, ψ(R) = (ψstate 1(R), . . . ,ψstate n(R)). For a two-state system, for
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instance, the Hamiltonian becomes a block matrix

Ĥ =
(

T̂ + V̂state 1 V̂c

V̂ H
c T̂ + V̂state 2

)

,

where V̂1/2 is the potential energy surface (PES) of state 1 or 2, respectively,

and V̂c models the coupling of the two PES in the diabatic framework. By (·)H

we denote complex conjugation. A PES for a certain state is the sum of the

internuclear repulsion and the eigenenergy.

A typical feature of an PES is that it goes to infinity as the internuclear

distance approaches zero due to infinite nuclear-nuclear repulsion.

Moreover, as the distance becomes large, the PES approach an asymptotic

value, since the nuclei are too far apart from each other to interact. We

can distinguish two classes of PES. The first type corresponds to a stable

electronic state of the molecule, and the second one to unstable electronic

states [92, Chap. 12.1]. For stable states there exist one or more vibrational

eigenstates that are bounded, whereas the molecular bound eventually

breaks once the system gets into an unstable state. The latter phenomenon is

called dissociation.

2.2 Interactions with Time-dependent Fields

Given precomputed values for the electronic spectrum Ê el(R) in the diabatic

representation, we can form the molecular Hamiltonian describing the

dynamics of the nuclei. As a second step, we do not only want to consider the

dynamics of an isolated molecule but its interaction with a time-dependent

field. Applications we have in mind are, for instance, multiple pulse optical

spectroscopy or control of molecular dynamics by laser fields (cf. Ref. [92]).

Optical spectroscopy can be applied to analyze the structure of complex

molecules like biopolymers and the manipulation of molecular dynamics

can initiate chemical reactions.

The vibrational period of motion of the nuclei in a molecule is on the time

scale of tens or hundreds of femtoseconds. It was thus with the introduction of

femtosecond lasers in the mid-1980s that it became experimentally possible

to track and even manipulate the dynamics of molecular nuclei [60].1 Zewail

and his group probed various molecules with femtosecond pulse pairs [101],

and later also demonstrated how molecular states can be controlled with the

1Note that the recent development of attosecond lasers also facilitates physicists to probe the

motion of electrons which takes place on the atto-scale, cf. Ref. [46].
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help of time-delayed pulses [68].2 Fleming and co-workers [74] used time-

delayed pulses with controlled phase for manipulating molecules. The groups

of Crim [85] and Zare [13] attempt to use tunable laser-pulses where the wave-

length can be varied for steering chemical reactions. Advances in pulse shap-

ing techniques based on grating and filtering by, amongst others, Weiner and

co-workers [37, 95] spurred the development of femtosecond chemistry. The

basic idea is to grate the incoming laser pulse to spatially disperse light of dif-

ferent frequencies which then can be delayed independently from each other

through a spatial filter [96, 99]. This technique is also-called Fourier transform

femtosecond pulse shaping.

To model interactions of a molecule with a femtosecond laser field, the

molecular Hamiltonian (denoted Ĥ0 in the following) is augmented by an ad-

ditional term representing the interaction with the electromagnetic field. For

weak fields, this interaction can be modeled classically using a dipole approx-

imation. Given the laser field ε(t ) and the transition dipole moment µ̂, the

(nuclear) time-dependent Schrödinger equation (TDSE) reads,

iħ ∂

∂t
ψ(R , t )=

(
Ĥ0(R)+ µ̂(R) ·ε(t )

)
ψ(R , t ). (2.3)

Fig. 2.1 shows a typical configuration where we have a molecule in its ground

state and want to excite it to a target state with the help of a femtosecond

pulse.

2.3 Physical and Mathematical Properties

In this section, we discuss some important properties of the physical model

that also play an important role for the design of numerical methods. First

of all, total probability in a closed quantum mechanical system is conserved.

This means physically that no matter is destroyed or created. Probability con-

servation can be expressed as
∫

|ψ(R , t )|2 dx = 1 for all t ,

i.e., the L2 norm of the wave function is conserved.

Another important property of the evolution of the TDSE is time-

reversibility. No information is destroyed, as it would be if, e.g., diffusion was

involved. Hence, if the Hamiltonian is known for the studied time interval,

we can reconstruct the initial state from the final state.

2A. H. Zewail was rewarded the 1999 Nobel price in Chemistry “for his pioneering in-

vestigations of chemical reactions on the time-scale they really occur.” (quote from ex-

tended version of the press release of the Royal Swedish Academy of Sciences, see

http://nobelprize.org/nobel_prizes/chemistry/laureates/1999/chemback99.pdf.
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internuclear distance

pulse

target state

initial state

Figure 2.1: Schematic configuration of interaction of a molecule with a time-

dependent field ε(t ). The ground state (dashed line) is coupled to an excited state

with a laser field (dash-dot line). The second excited state (doted line) is coupled to

the first excited state by a static crossing of the PES.

Another characteristic of the TDSE comes from the self-adjointness of the

Hamiltonian which implies that the adjoint equation is exactly the same as the

original TDSE. It is the self-adjointness — together with the imaginary unit i in

the Schrödinger equation — that leads to both norm-conservation and time-

reversibility.

Since classical Hamiltonian systems are well-studied, it is of interest that

the TDSE can be rewritten as a classical system by defining the configuration

variable q(R , t ) =
p

2ħRe
(
ψ(R , t )

)
and the canonically conjugate momentum

p(R , t ) =
p

2ħIm
(
ψ(R , t )

)
(cf. Ref. [30]). An important conservation law for

classical Hamiltonian systems is area conservation for the flow. Such a flow

is called symplectic. This property in the classical version of the TDSE assures

norm conservation of ψ (cf. Ref. [50]).
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3. Numerical Challenges

The simulation of molecular processes based on the chemical model

discussed in the previous chapter entails several challenges. Before

discussing these difficulties, we review a standard discretization approach.

A common discretization technique for time-space dependent differential

equations is to use the method of lines, i.e., one first discretizes the spatial

variables yielding a system of ordinary differential equations (ODE). A

standard method for spatial discretization in quantum chemistry is the

pseudospectral method with a Fourier basis [23, 25]. An important reason

for this is that the solutions are generally of class C∞ and high accuracy

methods are more efficient considering both computing time and memory

requirements. Another reason for the popularity of the Fourier spectral

method is that it can nicely be combined with the so-called split operator

time-evolution method (see Sec. 4.1) yielding a full discretization which

is easy to implement. Nevertheless, the pseudospectral method is not

always flexible enough when boundary treatment for dissociative states,

parallelization, or mesh adaptivity is needed. A study of these aspects is,

however, not within the scope of this thesis and spatial discretization based

on the Fourier spectral method is assumed throughout the text unless stated

otherwise.

Once the spatial variables are discretized, we have to solve the following

ODE system,

d

dt
u(t )=− i

ħ
H(t )u(t ), (3.1)

where H denotes a matrix that represents the Hamiltonian on the spatial grid

and u = (ui ) is the vector of the wave function values at the mesh points xi ,

i.e., ui approximates ψ(xi ).

The first intricacy with such a discretization is the fact that the number of

degrees of freedoms increases linearly with the number N of atoms in the sys-

tem as indicated in Sec. 2.1. More precisely, the total number of degrees of

freedom is 3N — three coordinates for each nucleus. Six degrees of freedoms

are external (three translational and three rotational) giving 3N−6 internal de-

grees of freedom [92, Chap. 12.4].1 Only the internal degrees are of importance

1Note that the number of internal degrees of freedom is 3N −5 for linear molecules where the

rotation along the molecular axis is ill-defined.
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for a quantum description of an isolated molecule. For a grid based model, the

number of grid points grows exponentially with the dimensionality. Hence,

only very small molecules can be handled using such numerical schemes.

Adaptive mesh refinement [19], sparse grids [28], and parallelization [33, 75]

are options to tackle slightly larger problems. However, further modeling is

necessary to cope with molecules containing many atoms (cf. Ref. [16] for dif-

ferent strategies). A popular approach is to use the multi configuration time-

dependent Hartree (MCTDH) method [58], and another, more recent ansatz

is to approximate semiclassical models based on Hagedorn wave packets [21].

The wave function does not only depend on the spatial coordinates but also

on time. Since multiple time scales are usually present in the model, a huge

number of time steps is often necessary. High-frequency oscillations have to

be resolved or modeled. High order and adaptive integrators or multi-scale

algorithms can help in reducing the number of time steps. There are various

sources for high-frequency oscillations depending on the particular type of

application. For simulations of interaction with a time-dependent field, the

oscillations of the laser field pose limitations to the step size. A simple multi-

scale model, allowing for larger time steps, is the so-called rotating wave ap-

proximation (see Sec. 4.3). This is, however, limited to monochromatic pulses.

A review of numerical integrators for highly oscillatory Hamiltonian systems

is provided by Cohen et al. [18].

A third potential difficulty is the domain on which the Schrödinger equation

is formulated, which is unbounded. For a wide class of problems the wave

function stays within a certain domain, corresponding to that the molecule

stays bounded. In such cases, the computational domain can be truncated

and the PDE is usually closed by periodic or homogeneous Dirichlet boundary

conditions. However, the modeling of dissociative processes poses difficul-

ties on domain truncation. Standard methods to handle dissociative bound-

aries are complex absorbing potentials [56, 32] and perfectly matched layers

[1, 62]. In both cases, artificial damping is introduced to the system and phys-

ical properties like norm-conservation and time-reversibility are no longer

valid on the truncated domain. Therefore, numerical methods designed for

bound states can be difficult to generalize to dissociative problems.

The challenges discussed so far concern solving one single TDSE problem.

When this equation enters within an optimization loop, e.g., for finding the

optimal shape of an interacting laser pulse, additional complexity is intro-

duced. The Schrödinger equation has to be solved several times, and, more-

over, an adjoint equation might have to be computed to calculate optimal-

ity conditions. This introduces extra demands on both computing power and

memory size.
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4. Time Propagation

As discussed in Chap. 3, the temporal dimension has to be treated with ex-

tra care since the number of time steps needed usually exceeds the number

of grid points per dimension tremendously. Throughout this chapter, we con-

sider the semi-discretized TDSE (3.1).

There is a large spectrum of methods designed for time-evolution of ODE

systems. For our purpose, an explicit method1 is preferable since solving a lin-

ear system can become very costly and memory consuming when high-order

spatial methods in high dimension are involved. A suitable numerical inte-

grator of the TDSE should attempt to preserve the essential physical proper-

ties of the model (discussed in Sec. 2.3). The monographs [34, 49, 72] present

methods specially suited for Hamiltonian systems. There are two families of

methods that are most often used for the TDSE, exponential integrators and

partitioned Runge–Kutta (PRK) methods [51] which we both will discuss in

more detail below.

Note that, in this thesis, we only consider the case where short time

steps are required because we assume that the Hamiltonian is explicitly

time-dependent. The situation with a time-independent Hamiltonian is

relatively well-understood, see the study by Leforestier et al. [48].

4.1 Exponential Integrators

For a linear ODE with a time-independent right-hand-side, i.e., for the semi-

discretized TDSE with time-independent Hamiltonian, the evolution operator

(propagating the wave function from t0 to t f ) is analytically given as the expo-

nential of the Hamiltonian matrix times the time span. The situation becomes

more complicated for time-dependent right-hand-sides but, for sufficiently

small time intervals, the Magnus expansion [43, 55] provides an expression of

the evolution operator U (t +∆t , t ) in the form of the exponential of a series

expansion,

U (t +∆t , t ) = exp

(
∑

l≥0

θl

)

.

1A method that does not involve inversion of large matrices or iterative solvers.
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Each term θl contains l +1 integrals over l commutators of the Hamiltonian

at different points in time. Since the l th (l > 0) term decays as (∆t )l+2 for suffi-

ciently small time steps, a truncated version of this expansion provides a nat-

ural starting point for numerical evolution methods.

One restriction is the condition given in Ref. [59] under which the series

converges, ∫t+∆t

t

∥∥∥∥
−i

ħ
H(τ)

∥∥∥∥ dτ<π. (4.1)

This bound is problematic for the TDSE since the continuous Hamiltonian is

an unbounded operator. The effect is that the estimate (4.1) becomes more

and more restrictive the finer the spatial discretization of the TDSE. Neverthe-

less, the method gives good results in practice also for larger time steps which

was explained by Hochbruck and Lubich [40] for a special form of the poten-

tial energy.

Once we have truncated the Magnus expansion, we have to compute the

matrix exponential. The simplest approach is the Strang splitting method

[88]. This propagator is known as split operator in the quantum chemistry

community [22]. The method is second order accurate, so we simply evaluate

the Hamiltonian at the mid-point to handle the time-dependence. Then, the

Hamiltonian is split into its kinetic and potential energy part as follows

exp

(
− i

ħH

(
t + ∆t

2

)
∆t

)
=

exp

(
− i

ħ
T
∆t

2

)
·exp

(
− i

ħ
V

(
t + ∆t

2

)
∆t

)
·exp

(
− i

ħ
T
∆t

2

)
.

Exploiting the first-same-as-last property, one can merge the last kinetic en-

ergy term with the first one of the next step. Since T is diagonal in Fourier

space (assuming a spatial Fourier pseudospectral approximation) and V (al-

most) diagonal in real space [81], the essential cost for each time step is only

one FFT/IFFT pair. Higher-order splitting methods are available and are re-

lated to PRK methods.

An alternative way of computing the matrix exponential is to use the Lanc-

zos algorithm [71]. For this method, the error decays fast after a certain num-

ber of iterations [39]. One advantage compared to the splitting method is that

the Lanczos scheme can handle more general Hamiltonians. A generalization

is the so-called Arnoldi algorithm that can also tackle non-selfadjoint Hamil-

tonians. The error of the Lanczos algorithm after a certain number of itera-

tions can be computed with little additional cost using an estimate analyzed

in Ref. [41].

A truncation of the Magnus expansion after more than one term can be

combined with the Lanczos algorithm to devise a higher order method. Eval-

uating higher Magnus terms is quite costly, though, since an increasing num-
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ber of commutators has to be computed. Several attempts have been made

to simplify the terms. Blanes et al. [6] rewrite the expansion reducing the to-

tal number of commutators for truncation up to a certain order and Blanes

& Moan [8] split the matrix exponential to completely avoid commutators (at

the price of several exponentials to be computed per time step). For the spe-

cial case (2.3) with weak spatial dependence in the transition dipole moment,

the second Magnus term is simplified by analytical manipulations to a block-

diagonal matrix in Paper I. This yields a fourth order accurate propagator that

is only marginally more computationally demanding than the second order

scheme.

4.2 Partitioned Runge–Kutta Methods

Partitioned Runge–Kutta (PRK) methods are symplectic methods of Runge–

Kutta type that are designed to mimic the conservation laws exhibited by clas-

sical Hamiltonian systems. As described in Sec. 2.3, the TDSE can be reformu-

lated in such a system. However, most PRK methods are implicit. Explicit PRK

methods are available for separable Hamiltonian functions where

H(p, q, t )= H(p)+H(q, t ). (4.2)

If the Hamiltonian is explicitly time-dependent, this separation cannot be

made. However, Gray and Verosky [30] exploit the Magnus expansion to

be able to use explicit methods for time-dependent Hamiltonians as well.

Sanz-Serna and Portillo [73] propose a more elegant procedure, where they

introduce an additional conjugate pair of variables to represent the time

dimension.

When the Hamiltonian is complex-valued, a separation as in (4.2) cannot

be done either. This is, e.g., the case when modeling dissociation by adding

complex terms to the potential or the kinetic energy.

By varying the number of stages it is possible to design optimal Runge–

Kutta coefficients for special problems under certain accuracy and stability

requirements. A lot of attempts have been made to devise efficient methods.

Suzuki [89, 90, 91] and Yoshida [100] demonstrated how to construct high or-

der symplectic methods. Later McLachlan [57] came up with the idea to con-

struct methods with an optimal error constant for given order and Blanes

& Moan [7] refined his ideas. Much effort has also been made to find PRK

methods optimized for certain applications. The TDSE was considered, e.g.,

in Refs. [5] and [29], even though both articles only provide examples with

time-independent Hamiltonians.

In Paper I, the numerical propagation for a model of the rubidium diatom

(Rb2) molecule is studied. In these calculations, the methods proposed in

Ref. [7] proved to perform better than those tailored to the TDSE [5, 29].
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4.3 Rotating Wave Approximation

For the simulation of molecule-laser-interaction, we have to resolve the oscil-

lations of the laser pulse which requires small time steps. For computations

with a low accuracy requirement, this shortage can be overcome with the help

of the rotating wave approximation (RWA) [69]. Consider a two state system

with Hamiltonian

Ĥ =
(

T̂ + V̂g (R) f (t ) cos(ωt )

f (t ) cos(ωt ) T̂ + V̂e (R)

)

,

where ω is the frequency of a (monochromatic) laser field and f (·) a slowly

varying envelope function. Define the transformation

Ŵ :=
(

I 0

0 e−iωt · I

)

,

of the wave packet. Then, the TDSE for the transformed wave packet ϕ :=
Ŵ −1ψ reads

iħ∂ϕ
∂t

=
(

T̂ + V̂g (R) 1
2 f (t )

(
1+e−i2ωt

)

1
2

f (t )
(
1+ei2ωt

)
T̂ + V̂e (R)−ħω

)

ϕ.

If the laser frequency is very high compared to the variations of the envelope,

the time-averaged influence of the terms e±i2ωt is insignificant. In the RWA

this term is dismissed. In this way, no highly oscillatory term remains in the

TDSE. However, only the average effect of the laser field is modeled. When

propagating the solution of the RWA-TDSE, we do not have to resolve the os-

cillatory frequency of the laser field. This corresponds to a separation of scales

where effects on the scale of π/ω and below are neglected. A detailed discus-

sion of the modeling error introduced by the RWA can be found in Paper I.

A major shortcoming of the RWA multiscale ansatz is that it is designed

for a pulse with one frequency and, therefore, not capable of tackling, e.g.,

a chirped pulse (where ω is time-dependent).

4.4 Error Control and Adaptivity

In order to design an algorithm that automates the choice of the time step and

is capable of meeting a given error tolerance, adaptive step size control is de-

sirable. A theoretical study of accuracy and convergence rates for several stan-

dard time-marching methods for the TDSE is provided by Lubich [52]. How-

ever, those estimates are not designed to be easily computable within a step

size control algorithm.
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Within the framework of Runge–Kutta methods, efficient techniques for lo-

cal error control have been designed based on embedded methods of two

consecutive orders. Admittedly, a straight-forward implementation for PRK

methods suffers from the fact that symplecticity is lost (cf. Ref. [72]). Sophis-

ticated techniques have been developed to circumvent this problem (cf., e.g.,

Ref. [4, 35]) which are, however, connected to specific applications.

For the Magnus expansion, on the other hand, an easy-to-compute error

estimate based on extrapolation is available [6] and has been successfully ap-

plied to the TDSE (cf. Ref. [97] and Paper II). This can be combined with a

Lanczos algorithm that chooses the size of the Krylov space to meet the same

tolerance. The Lanczos error can be computed according to Ref. [41].

Those estimates only cover the local error. However, the main interest is to

predict the global error. One way to connect local to global errors is to use a

posteriori error control based on duality. These kinds of error estimates are

widely used in the finite element community [3, 20] but are also available for

ODE systems (cf. Ref. [17]). In Paper II, the ODE theory is applied to the semi-

discrete TDSE (3.1). For a posteriori estimates, one considers the error in some

functional of the solution at the final time,

e(t f ) = 〈φ,u(t f )− y(t f )〉,

where φ is some state of interest, u is the solution to the semi-discrete TDSE

(3.1), and y the numerically propagated result. In order to compute the a

posteriori estimate, the primal problem (3.1) is considered together with the

dual problem. The dual problem is solved backwards in time, starting from

the functional φ and with the adjoint operator on the right-hand-side. In the

TDSE, the Hamiltonian is self-adjoint, and the dual equation is the same as

the primal. The dual problem is thus given by

d

dt
v =− i

ħ
H v, v(t f ) =φ.

Knowing the solution to the dual problem, the error can be estimated using

the formula

e(t f ) =
∫t f

t0

〈v(τ), p(τ)〉dτ,

where p is the perturbation of the ODE (3.1) induced by employing a numeri-

cal integrator.

Computing this error usually requires solving the dual problem. Since dual

and primal equations are solved in different directions in time, it is reasonable

in many situations to use the Cauchy–Schwarz inequality to split the inner

product, yielding

|e(t f )| ≤
∫t f

t0

‖v(τ)‖‖p(τ)‖dτ=
∫t f

t0

‖p(τ)‖dτ. (4.3)
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In the last step, the norm-conservation property is used to completely elim-

inate the influence of the dual problem. In this way, an easy-to-compute er-

ror estimate (that holds for any error functional) was derived in Paper II. Of

course, when using the Cauchy–Schwarz inequality in estimate (4.3) some ef-

ficiency is lost, and it depends on the particular situation whether or not it

pays off to eliminate the dual problem (see Paper II for further discussion).

4.5 Comparison of Various Methods

We conclude the chapter on time propagation by a comparative summary.

Overall, the Magnus–Lanczos (or Arnoldi if necessary) combination could be

considered to be the most versatile method since it can tackle complex impu-

rities in the Hamiltonian as well as variable step sizes for error control. In the

study reported in Paper I, it also proves to be very competitive in a comparison

with Strang splitting and PRK methods for accurate simulations on an equidis-

tant temporal grid. This study also shows that the Strang splitting method is

very suitable for low-accuracy computations on simple configurations.

The Magnus–Lanczos method also has two drawbacks; firstly, the Lanc-

zos algorithm is not time reversible, and, secondly, analytic manipulations of

higher order Magnus terms for the specific configuration are necessary to op-

timize the performance (making other methods easier to implement). Note

that the loss of time reversibility is often not that severe since the error in the

Lanczos algorithm can be kept small compared to other errors for little extra

cost. Nevertheless, it may cause difficulties, e.g., when formulating the dis-

crete adjoint problem (cf. Sec. 5.2).
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5. Quantum Optimal Control

In the laboratory, physicists use laser pulses to manipulate the energetic state

of molecules and thereby initiate chemical reactions. They design the laser

fields in a special way to get the desired outcome. This chapter is devoted to

the question of how to use simulation and numerical optimization to find a

suitably shaped laser field for a given purpose.

5.1 Optimal Control Formulation

Let us first express the optimization problem in mathematical terms. A

generic objective would be to find a pulse ε that minimizes the function

J1(ε,ψ)= 1

t f

∫t f

t0

ψ∗(R , t )Ôψ(R , t ) dt , (5.1)

where Ô = Ô1 ·δ(t − t f )+Ô2(t ) and ψ is the wave packet solving the TDSE (2.3)

for the interaction with the laser field ε. The operator Ô1 defines some target

state at final time t f and Ô2(t ) allows us to include a time-dependent objec-

tive, such as the penalization of a special molecular state (that is undesired).

In this form, the problem is ill-posed since there is no restriction on the

strength of the pulse. A strategy to resolve this issue is to introduce a so-called

Tikhonov regularization, i.e., to add the term

J2(ε) =λ

∫t f

t0

ε2(t ) dt , λ> 0,

to the objective function. The choice of the constant λ indirectly controls the

total energy of the optimal pulse and has to be chosen in a way that the result-

ing pulse has a strength that can be achieved with the experimental equip-

ment. The complete optimization problem now reads

min
ε∈L2([t0 ,t f ])

J (ε,ψ) =J1(ε,ψ)+J2(ε),

subject to iħ ∂

∂t
ψ=

(
Ĥ0 +µε(t )

)
ψ, ψ(R , t0) =ψ0.

(5.2)

17



It was shown by Peirce et al. [65] that (5.2) has a solution in the special case

where

J1(ε,ψ)= 〈ψ(t f )−φ,ψ(t f )−φ〉.

The essential property of J1 in the proof is weak lower semi-continuity, and

hence the reasoning in [65] can also be adopted to more general cases.

Problem (5.2) is an optimal control problem and the first step in solving it is

to formulate the optimality system. The Lagrangian function corresponding

to the system (5.2) is,

L (ε,ψ,χ) = 1

t f

∫t f

t0

〈ψ(·, t )|Ô|ψ(·, t )〉dt +λ

∫t f

t0

|ε(t )|2 dt

−2

∫t f

t0

Re〈χ|
(
∂

∂t
+ i

ħ
(
Ĥ0 + µ̂ε(t )

))
|ψ〉dt .

By differentiating with respect to the Lagrange multiplier, we arrive at the state

equation

iħ
∂

∂t
ψ=

(
Ĥ0 +λε(t )

)
ψ, ψ(R ,0)=ψ0.

Differentiation with respect to the state variable gives the adjoint equation

∂

∂t
χ=− i

ħ
(
Ĥ0 + µ̂ε(t )

)
χ− 1

t f

Ô1(t )ψ(r, t ), χ(x, t f ) = Ô2ψ(r, t f ).

Finally, the first-order optimality condition ∇εL = 0 becomes

1

ħ
Im

(
〈χ|µ̂|ψ〉

)
+ηε= 0. (5.3)

5.2 Discretization

In order to be able to apply a numerical optimization algorithm to problem

(5.2), the first step is to discretize the continuous problem. We limit our dis-

cussion to bound states and use the Fourier spectral method for spatial dis-

cretization. For time propagation, there are several arguments in favor of the

Strang splitting method. Firstly, Strang splitting has proved to be very effi-

cient for low accuracy computations. Since the TDSE may have to be solved

hundreds of times, high accuracy is out of reach. Moreover, methods of or-

der higher than two generally require evaluations of the pulse at points in-

between the grid points where we usually do not have this information.1 Last

1When optimizing the Fourier coefficients as discussed below, the pulse can be evaluated at any

point in time, though.
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but not least the property of time-reversibility is important in connection with

the (discrete) dual problem.

Denoting the discrete state variables by u j , j = 1, . . . , N , and the discrete

control parameters by ǫ j , and defining the evolution operator for time step j

by

M j (ǫ j ,ǫ j+1) := e−i ∆t
2 T e−i∆t (V + 1

2µ(ǫn+ǫn+1))e−i ∆t
2 T ,

we can formulate the discrete state equation

u0 =P ψ0,

u j+1 =M j (ǫ j ,ǫ j+1)u j , j = 0, . . . , N −1,

where P denotes the projection of the wave packet to its discrete representa-

tion.

We now introduce Lagrangian multipliers v j and formulate the discrete La-

grangian,

L(ǫ0, . . . ,ǫN ) = ∆xuH
N O2uN + ∆x ·∆t

t f

N−1∑

k=0

uH
k O1uk +η ·∆t

N∑

k=0

ǫ2
k

−2 ·∆x ·∆tRe

(
N−1∑

k=0

v H
k+1(Mk(ǫk ,ǫk+1)uk −uk+1)

)

.

From this, we can derive the discrete adjoint equation

vN =−O2uN · 1

∆t
,

v j =
(
M j (ǫ j ,ǫ j+1)

)H
v j+1−

1

T
O1u j , j = N −1, . . . ,1.

as well as the discrete first-order optimality condition, j = 1, . . . , N −1,

∂L

∂ǫ j
= 2 ·∆t

(
λ ·ǫ j −Re

(
v H

j+1

∂

∂ǫ j
M j u j + v H

j

∂

∂ǫ j
M j−1u j−1

)
·∆x

)
= 0.

For j = 0 and j = N , we will get the same expression but only with the first or

second term of the real part, respectively. Note that we have first discretized

and then differentiated to get the discrete optimality system (cf. Ref. [38,

Chap. 3.2]).

5.3 Optimization Tools

Originally, quantum optimal control problems were studied that only

included final time objectives. In the late 1980s, the pulse shaping problem

was formulated as an optimal control problem and solved with the conjugate
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gradient (CG) method [45, 65, 83]. The CG algorithm is a standard first order

method which may suffer from slow convergence [26]. The efficiency of the

numerical optimization was improved in a paper by Somlói and co-workers

[87] who introduced the Krotov method [47] to quantum control. The Krotov

iteration was refined by Zhu and co-workers [102, 103] and by Maday and

Turinici [54]. The idea of this method is to solve the first-order optimality

condition (5.3) for ε, yielding

ε(t )=− 1

ħη
Im

(
〈χ|µ̂|ψ〉

)
.

Sinceχ andψ depend on ε, a fixed point iteration is applied to find the optimal

field.

In 2001, Ohtsuki et al. [63] showed how to include time-dependent

targets of the general form (5.1) to the optimal control formulation. This

time-dependent objective problem was also tackled with the Krotov method

(cf. also the tutorial [98]).

All of these methods are based on the first order optimality condition.

Usually, convergence can be improved using a quasi-Newton method that

includes information of an approximate Hessian. Among those methods,

the so-called Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

[14, 24, 27, 82] is the most successful one. The problem with the application

of a quasi-Newton method to the quantum optimal control problem is the

fact that the number of control parameters is the number of time steps,

which is very large in general. Therefore, memory shortage will make it

impossible to store the approximate Hessian.

In 1992, Judson and Rabitz [44], proposed an alternative way to design laser

pulses: feedback control. For systems where the Hamiltonian is unknown or

for molecules that are too large to be simulated on the computer, feedback

control offers an alternative. The computer only successively generates pulses

(usually based on some global optimization strategy) and then the fitness of

the pulse is determined by an experiment. Assion et al. [2] point out that the

experimental shaper manipulates the spectral phase which is why the opti-

mization procedure should do the same. In Ref. [84], a special global optimiza-

tion strategy is applied to find optimal Fourier coefficients with a computer

simulation.

Using the Fourier coefficients as control variables like in feedback control

algorithms, one can drastically reduce the dimensionality of the optimization

problem as demonstrated in Paper III. In this way, it becomes feasible to use

quasi-Newton methods even for long-time quantum optimal control prob-

lems. Moreover, one can make sure that the theoretically found pulses can be

realized in practice.
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Note that the quasi-Newton method was also applied to quantum optimal

control of Bose–Einstein condensate in the context of von Winckel and Borzì’s

study [94] on a suitable norm for minimization.

21





6. Summary of Papers

In this chapter, the content of the attached articles is briefly summarized. Pa-

per I-II examine time propagation for the TDSE and Paper III deals with the

quantum optimal control problem.

6.1 Paper I

Paper I contributes to the time evolution of the TDSE modeling the interac-

tion of a molecule with a time-dependent field and has three main objectives.

Firstly, the rotating wave approximation is analyzed and an expression for the

error depending on the shape of the envelope function in relation to the fast

oscillation of the laser field is devised. This shows that the results become

more accurate when the RWA is applied in case the step size is larger than

about the reciprocal of the oscillational period ω. On the other hand, the RWA

introduces a systematic error on the time-scale of π/ω which is why reducing

the step size further does not improve the quality of a simulation based on the

RWA. A numerical study for Rb2 also shows that the error introduced by the

RWA has more influence on the phase information of the wave packet than on

its absolute value.

The second goal of the article is to tailor the fourth order Magnus approxi-

mation for the specific problem of molecule-laser interaction. This is done by

analytical simplifications based on the assumption that the transition dipole

moment has a weak spatial dependence. The result is a highly efficient fourth

order propagator. Finally, the paper provides a numerical comparison of dif-

ferent methods suitable for solving the TDSE modeling a relevant chemical

problems. A pump-probe as well as an interference experiment for Rb2 are

considered.

6.2 Paper II

Paper II is concerned with error control and adaptivity. Starting from the the-

ory in [17], we derive an a posteriori error estimate for the TDSE. Exploiting

self-adjointness of the Hamiltonian, this estimate is simplified as discussed

in Sec. 4.4. Nevertheless, the simplified estimate still holds for the case where

self-adjointness is truncated due to an absorbing boundary layer. Based on
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these ideas and the fourth order Magnus-Lanczos propagator devised in Paper

I, a variable step-size implementation with global error bound is described.

Especially, we discuss how to compute the perturbation in the Magnus ex-

pansion.

The efficiency of the estimate in various contexts is discussed and

numerical examples are provided. In this study, we again examine the

one-dimensional Rb2 example. It is also shown that the method is applicable

to larger molecules like chlorine dioxide (ClO2) which is modeled as a three

dimensional problem. Furthermore, the paper considers a configuration of

the iodine bromide (IBr) molecule that includes a dissociative state.

6.3 Paper III

Paper III discusses the quantum optimal control problem (5.2) reformulated

so that the laser field is optimized in Fourier space. The Fourier transform of

the pulse facilitates a reduction of the dimensionality of the control variable,

since the frequency band can be narrowed to a technically possible and phys-

ically relevant interval. With this reduced optimization space, it becomes fea-

sible to apply a quasi-Newton method and exploit its favorable convergence

properties. A comparison with the Krotov method (in its formulation given in

Ref. [102]) for a configuration of the Rb2 molecule suggests that the method

indeed can outperform the Krotov method. We also test our algorithm for a

Raman transition with a time-dependent objective. This optimization prob-

lem was considered by Palao et al. [64], where the Krotov method was used.

For the Raman-transition example, we also perform an automatic choice of

the included Fourier coefficients from a given interval. Furthermore, we dis-

cuss a memory efficient way to perform the gradient evaluations.
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7. Outlook

This thesis describes efficient time propagation for the TDSE with an explic-

itly time-dependent Hamiltonian as well as a powerful way of finding optimal

pulses. For the time-propagation, the Magnus expansion proved very practi-

cal in numerical simulations. However, Hochbruck and Lubich [40] point out

stability issues and present an analysis for the TDSE with a specific form of the

potential energy. Their assumptions are generally not valid for models of fem-

tosecond pulse excitation experiments. Therefore, the stability of the Magnus

approach needs to be studied further in order to theoretically verify the nu-

merical stability observed in our experiments.

The results of Paper III show that the use of quasi-Newton methods for the

quantum optimal control problem is very promising. However, in the solution

process three parameters need to be chosen, namely the penalty parameter,

the range of frequencies that is included for finding the appropriate pulse, and

the initial value. In order to make the method easy to use, it would be worth-

while to automate the identification of these unknowns. Paper III proposes

a first step towards an algorithm to identify the most important frequencies.

Presumably, a study of the interaction between different frequencies helps to

better understand this process. Since the choice of the initial value is very im-

portant for the convergence of the method and can even influence the solu-

tion produced by the optimization procedure, it might be beneficial to com-

bine the local optimization strategy of Paper III with some global optimization

strategy to find — possibly several — viable initial values.

This thesis only considers pseudospectral spatial discretizations with the

Fourier basis. One direction of further research is how to combine the time-

evolution method developed in Paper I-II with more flexible spatial discretiza-

tions. In order to be able to work on large molecules, efficient spatial methods

which are implemented for massively parallel systems are necessary. Gustafs-

son [33] recently presented a parallel implementation based on high-order

finite differences which could be used to apply the methods proposed in this

thesis to larger quantum systems.

Other methods than Fourier-coefficient based schemes are also necessary

when including dissociation. In [62], Nissen and Kreiss analyze the use of

perfectly matched layers (within the finite difference framework) in order

to handle dissociative states. It would be valuable to merge efficient time

evolution, boundary treatment, and the massively parallel implementation

to get a highly efficient and comprehensive solver for the TDSE.
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One major problem when absorbing boundary conditions are involved

is the fact that this modeling modifies the mathematical properties of the

system that are exploited when constructing methods suitable for bounded

systems. For instance, the gradient computation in the optimal control

algorithm becomes much more complicated when time-reversibility of

the equation can no longer be utilized. For this reason, it would be utile to

consider pseudospectral methods based on polynomials specially suited for

semi-infinite domains [11, 12] instead of domain truncation.

Also other classes of spatial discretizations are potentially interesting for the

TDSE, such as finite elements where global error control based on an a pos-

teriori error estimate can be derived for the spatial parts [19]. This would fit

together with the time adaptivity presented in Paper II. Promising spatial dis-

cretization methods are also found among radial basis functions [15] which

are especially adequate for high-dimensional problems as shown in Ref. [66]

for the Black–Scholes equation. Radial basis functions were, for instance, ap-

plied to a 2D example TDSE in Ref. [42].

As mentioned in the chapter on numerical challenges, high-frequency os-

cillations put high demands on the numerical evolution algorithm. For this

situation, laser chemists invented the RWA (cf. Sec. 4.3). Since the RWA is

only applicable to monochromatic pulses, a more versatile modeling should

be devised. Multiple time-scales also become apparent in quantum-classical

dynamics where larger molecules are tackled by combining quantum mod-

els with Newtonian physics in order to reduce the dimensionality (cf., e.g.,

Refs. [70] and [61] for numerical evolution in quantum-classical systems).

Throughout this thesis, we were only concerned with the linear

Schrödinger equation. However, there are phenomena that are described

by a non-linear version of the Schrödinger equation. One such example is

the Gross–Pitaevskii equation (GPE) [31, 67] which models the quantum

nature of Bose–Einstein condensate [10]. In recent years, many attempts

have been made to efficiently solve this equation. For example, Thalhammer

et al. [93] compare different high order propagation methods for the GPE

with time-independent potential. Also for other nonlinearities in the TDSE,

time-splitting methods are considered; for example, Lubich [53] studies the

Schrödinger–Poisson and the cubic nonlinear Schrödinger equation.

Like for the linear TDSE, state-to-state transition through manipulation by

an external field is of interest for Bose–Einstein condensates (cf., e.g., [36]).

Sklarz and Tannor [86] formulate the Krotov method for the arising optimal

control problem, Borzì and Hohenester [9] use a multigrid optimization

scheme, and von Winckel and Borzì [94] study the effect of different norms.

Many questions arise when considering a nonlinear TDSE. For example, it

would be interesting to consider high-order methods also for equations with

explicitly time-dependent Hamiltonian. Furthermore, the question arises
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whether a quasi-Newton method can likewise be employed in a memory

efficient way and improve the Krotov ansatz for the nonlinear TDSE.
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