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1. Introduction

Most of our everyday experiences are determined by the electronic structure
of materials. This might seem a strong statement, but nevertheless it is mostly
true. The suns rays are of course powered by nuclear fusion processes, but
when we feel their warmth on our skin it is because of the electronic struc-
ture of the nerve ends that register heat, and the electronic structure of the
molecules of the atmosphere has ensured that wavelengths that would hurt us
are mostly filtered out. The electronic structure of copper ensures that we have
electricity in our homes, the electronic structure of the cooling medium makes
it possible to transport heat out of the refrigerator and the electronic structure
of a refrigerator magnet makes it stick to the fridge. And so on.

Of course we usually do not think of things like the feeling of heat on our
skin in terms of electronic structure, and not even a refrigerator designer is
likely to think very much about the electronic structure of the cooling medium.
But in many technological applications as well as in fundamental research an
understanding of electronic structures is absolutely essential.

This thesis is concerned mainly with theoretical studies from first princi-
ples, or ab initio theory, a term describing that we attempt to perform the
calculations without inputting any information other than what is contained
in the Schrödinger equation and universal constants. The focus of the stud-
ies is the electronic structure of f -electron materials, that is, materials that
have properties that are determined by valence f -electrons of their constituent
atoms. The electronic structure of f -electron materials is often complex and
this in turn gives rise to both complex crystal and magnetic structures. The
main difficulty lies in the electron correlation, the way that each electron is
affected by all electrons around it, often is particularly strong in f -electron
compounds.

Density functional theory (DFT) has in the last decades become the method
of choice for first principles studies of solids. The great benefit of DFT lies
in its capability of treating electron correlation without explicit references to
individual electrons; all interactions are represented by an approximate effec-
tive potential that is determined only by the total electron density. Virtually all
such approximations in current use are based on the local density approxima-
tion (LDA), which consists of taking the known solution1 to a homogenous
electron gas and apply the potential locally as if the density was homogenous.

1Or, more precisely, a parametrisation which is known to be very good.
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Extending this, we may add functions of gradients of the density and get a
generalised gradient approximation (GGA).

Both LDA and GGA in many situations tend to underestimate the tendency
of the f -electrons to form localised states on a specific atomic site, and yields
solutions in which the f -electrons move quite freely through the crystal. There
are several ways of dealing with this problem, and three of them has been em-
ployed in this work, namely the self-interaction correction (SIC), the LDA+U
method and the open core approximation.

When organising the material in this thesis the first comprehensive sum-
mary part has been put in the most natural order of theoretical progression.
The papers, however, are ordered more thematically, the first two about a new
implementation of the SIC method, then three studies of magnetic properties
of materials, one on its own concerning lattice stability and the last two being
concerned with evaluating and improving the precision of the calculational
schemes. Sections briefly describing the papers will appear wherever their
most natural place seemed to be.
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2. Self-consistent field equations and
the electronic structure of solids

2.1 Preliminary considerations
Before presenting the results of this thesis we need to look into some results of
solid state physics that will be useful to us later on. This is not an overview or
even an introduction to the whole field of solid state physics, but merely a brief
statement of certain formulas which will later be referred to. For a full account
the reader is referred to one of the many textbooks on the subject[40, 8, 29].

2.1.1 Electronic states in solids
A perfect solid is built up by an array of atoms in a periodic arrangement on
a so-called Bravais lattice. In three dimensions it may be viewed as consisting
of all points, R, such that

R = n1a1 + n2a2 + n3a3, (2.1)

where the {ni}3
i=1 are integers and the vectors {ai}3

i=1 are primitive transla-
tion vectors of the lattice. These vectors are the smallest distance one needs to
go along some direction before the lattice looks exactly the same. This transla-
tional symmetry puts certain constrains on the electronic wave functions, they
must be of the Bloch form. This is most easily stated as the requirement that
for each lattice site, R, the electronic eigenstates must satisfy,

ψ(r + R) = eik·Rψ(r) (2.2)

for some k. A useful form for such functions may be obtained from functions
centred on the atomic sites of the Bravais lattice,

ψk(r) =
∑
R

eik·Rφ(r − R). (2.3)

This is a sort of Fourier transform to a representation as a function of k, and
our description has been expanded into k-space, where the functions are also
periodic and described on the reciprocal lattice. Applying periodic — Born-
von Karman — boundary condition to the Bloch wavefunction (2.2),

ψ(r + niai) = ψ(r), i = 1, 2, 3, (2.4)
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will make the wavefunction have the periodicity of the lattice. The wavefunc-
tion will also be periodic in k-space, with a repeating cell that is typically
taken to be the first Brillouin zone of the lattice[8]. This means that to de-
scribe the full solid, extending throughout all of space, we may restrict our
attention to small volumes in both real space — the unit cell of the Bravais
lattice — and in k-space — the Brillouin zone.

2.1.2 The many-body problem in solids
With the problem of calculating the electronic structure of the a solid reduced
to a small cell in space, and a similarly small volume in reciprocal space, we
can turn to the problem of calculating the properties of the electrons in such
a cell. This is a much more tractable number, as in crystalline solids a unit
cell rarely has more than 100 atoms. With the number of valence electrons
per atom being on the order of 10, this would mean that we typically do not
need to worry about more than around 1000 electrons, a significantly more
tractable number than the 1026 we started out with.

The problem is described by the Hamiltonian1,

H = TN + V NN + V Ne + T e + V ee

=

N∑
i

− 1

2Mi
∇2

Ri
+

1

2

N∑
i

N∑
j �=i

ZiZj

|Ri − Rj | +
N∑
i

n∑
j

Zi

|Ri − rj |

+
n∑
i

−∇2
ri

2
+

1

2

n∑
i

n∑
j �=i

1

|ri − rj | , (2.5)

with sums taken over all nuclei (upper case letters) and electrons (lower case
letters) in the unit cell.

The contributions to the energy are the kinetic and electrostatic energy of
the nuclei, TN and V NN , the energy from electrostatic interactions between
nuclei and electrons, V Ne, the kinetic energy of the electrons, T e, and the
electron-electron interaction energy, V ee.

We now simplify the problem even further by disregarding the motion of the
nuclei, since they move very much slower than the electrons and their contri-
bution to the Hamiltonian can therefore be treated separately from the dynam-
ics of the electrons. We also for now disregard the nuclear-nuclear repulsion,
which from the point of view of the electronic structure is just a constant. This
constant is relevant for example if we wish to determine whether the crystal is
stable. Integrating out the nuclear degrees of freedom in this way is known as
the Born-Oppenheimer approximation.

1For notational convenience, Hartree atomic units will be used when describing the theory.
To convert the formulas to Rydberg units, substitute ∇2

2
→ ∇

2 and multiply all electrostatic
potentials by e2 = 2.
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There remains one reduction of the electronic system. The closed inner
electronic shells of the atoms in a solid retain virtually all of their atomic
character and will be treated in the calculations as if they were in a spherical
potential with no possibility of moving around in the crystal. They are in prin-
ciple still part of the many-body problem of the electrons, but since they are
constrained to a single site their treatment is very simple. We may therefore
think of all the remaining discussion in this chapter as pertaining to only the
valence electrons.

What is now left is solving the quantum mechanical problem for the elec-
trons in a single unit cell of the crystal. It consists of a number of interacting
particles moving in an external potential, arising from the term V Ne. Making
the operators explicit, we write the Hamiltonian (omitting the superscript on
the kinetic energy and renaming the Coulomb interaction between electrons
U ) as,

H = V̂ ext + T̂ + Û . (2.6)

The Schrödinger equation for the system of the electrons is now[ n∑
i

(
−∇2

2
+ V ext(r)

)

+
∑

{i,j:i<j}

U(ri, rj)

]
Ψ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ). (2.7)

This equation is still a formidable problem, seeing as how the interacting
many-body problem can only generally be solved for N = 2 and in some
special cases for larger numbers. The general strategy of all electronic struc-
ture calculations is to replace the many-body interaction with some effective
interaction.

2.2 The Hartree equations
One of the first attempts at an effective many-body theory for the electronic
structure problem was the Hartree equation[30]. It can be seen as the simplest
in a series of self-consistent field equations that will be outlined here.

The simplest way of constructing a many-body wavefunction is to simply
write a product of normalised single particle wavefunctions, φi(ri),

Ψ(r1, r2, . . . , rN ) = φ1(r1)φ2(r2) . . . φN (rN ). (2.8)
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Inserting this choice of wavefunction into equation (2.7) allows us to separate
the problem for each electron and this leads to the Hartree equations,(

−∇2

2
+ V ext(r) + V H

i (r)

)
φi(r) = εiφi(r), (2.9)

where we have introduced the Hartree potential,

V H
i (r) =

∑
j �=i

∫
dr′

φ∗j (r
′)φj(r

′)

|r′ − r| (2.10)

that describes the electrostatic repulsion between the electrons. The summa-
tion is taken over all j �= i in order to ensure that an electron does not see
contributions to the potential coming from itself. Exchanging the order of
summation and integration in the above equation we have∫

dr′
∑

j �=i φ
∗
j(r

′)φj(r
′)

|r′ − r| =

∫
dr′

ρN−i(r
′)

|r− r′| , (2.11)

where it is readily seen that this just expresses the potential seen by electron i
due to the average distribution of all other electrons, ρN−i(r). We can also see
that the wavefunctions will in general not be orthogonal to each other, since
they all are solutions corresponding to different potentials.

2.3 The Hartree-Fock equations
According to the Pauli principle, the total wavefunction of any fermion
system must be antisymmetric with respect to permutation of the particles.
The Hartree wavefunction clearly does not satisfy this, as permutation of the
single-particle orbitals leaves the wavefunction unchanged. To remedy this,
we can use a different trial wavefunction, built up by antisymmetrizing the
Hartree wavefunction. This is usually described by the construction of Slater
determinants of the single-electron orbitals of equation (2.8)

Ψ(r1, r2, . . . , rN ) =

∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN )

φ2(r1) φ2(r2) . . . φ2(rN )
...

...
. . .

...

φN (r1) φN (r2) . . . φN (rN )

∣∣∣∣∣∣∣∣∣∣
, (2.12)

where the permutation of any two electrons will mean permutation of two
rows (or columns) in the determinant, and so the wavefunction will have the
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required antisymmetry. This results in the Hartree-Fock equations(
−∇2

2
+ V ext(r) + V H(r)

)
φi(r) +

∫
dr′ V X(r′, r)φi(r) = εiφi(r).

(2.13)
To note at this point are two important differences from the Hartree equations.
Firstly, we have added the non-local exchange potential

V X(r′, r) = −
∑
j

φ∗j(r
′)φj(r)

|r′ − r| (2.14)

that comes from the assumed antisymmetry of the wavefunction. It describes
the effect that the electrons that come too close to each other are forced apart
by the Pauli principle, two electrons cannot have the same quantum numbers,
in particular, not occupy the same position in space. Secondly, we see that in
the Hartree-Fock equations there are no restrictions on the summations over
particles. The reason for this is that for j = i, the Hartree term and the ex-
change term will be identical, and so there is an orbital by orbital cancellation
of any self-interaction.

2.4 Density functional theory and the Kohn-Sham
equations
A completely different route to obtaining self-consistent field equations for
the electronic problem is provided by density functional theory (DFT). As
currently practised, DFT is implemented as an effective single-particle model
that originates mainly from two sources, the work of Slater and co-workers
with what was then known as the ”Xα method”[59] which later got a firmer
mathematical foundation in papers by Hohenberg and Kohn[35] and by Kohn
and Sham[42]. Here will be outlined the canonical description of the theory
as it can be derived from the Hohenberg-Kohn theorems.

The main idea behind DFT is to avoid the unpleasant problem of the very
large number of interacting electrons by instead casting everything in terms of
the electron density. No matter how complex our geometry or many electrons
we put into our system the total density will always be described by only three
spatial variables, so if we can succeed the simplification is clearly tremendous.

The starting point is to return to the many body Hamiltonian of Equa-
tion (2.6) acting on the space of all antisymmetric wavefunctions for the N -
electron system, and to consider the following functional of the electron den-
sity in terms of the the kinetic energy and the electron-electron interaction,

F [n] = min
ψ→n

〈ψ|T + U |ψ〉. (2.15)
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The functional for the density, n, is defined as the minimum of the expectation
value of the operator T +U over all antisymmetric N -electron wavefunctions
that produce that density. This property, to be a density corresponding to a
N -electron wavefunction, is referred to as N -representability. The theorems
were originally derived by considering densities generated by a potential, V -
representable densities, but it turns out that not all N -representable densities
are V -representable, so the current, more general, derivation is usually pre-
ferred nowadays. In terms of the functional (2.15) the Hohenberg-Kohn theo-
rems can be stated.

Hohenberg-Kohn 1

E[n] =

∫
drV ext(r)n(r) + F [n] ≥ E0 (2.16)

where E0 is the ground state energy of the system.

This establishes a variational principle for the functional E, which states that
any trial density from the space of antisymmetric N -electron wavefunctions
will always have an energy equal to or higher than the ground state energy of
the interacting electron system.

Hohenberg-Kohn 2

E[n0] =

∫
drV ext(r)n0(r) + F [n0] = E0 (2.17)

The second theorem states that the value of the functional E evaluated for
the true ground state of the interacting electron system is in fact equal to the
ground state energy. A consequence of this is that a wavefunction of equation
(2.15) that minimise F [n0] is the ground state wavefunction2, and any ground
state property can in principle be calculated as the expectation value of an op-
erator with respect to this function. In other words any ground state property
can be considered a functional of only the ground state density. These func-
tionals are of course not known explicitly, but the result nevertheless gives us
a handy door out from the world of N -body wavefunctions.

If suitable approximations to the terms T and U of the functional F were
known we could now proceed to directly minimise the total energy functional,
E, by fast and efficient means. Unfortunately, good approximations of this
kind currently does not exist, and so progress must instead be made by some
other means. In particular the kinetic energy functional, T , has resisted all
attempts of accurate description. To handle this problem, Kohn and Sham de-
rived equations by the following rearrangement of the terms in the interaction,

2We discuss here only non-degenerate ground states, but all results still hold for a degenerate
ground state, with some minor modifications of the derivation.
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T [n] + U [n] = TS [n] + T ′[n] + EH [n] +E′[n]. (2.18)

Here TS [n] is the kinetic energy of a system of non-interacting particles of
density n, EH [n] =

∫
drV H(r)n(r) is the Hartree energy and T ′ and E′ are

the remaining contributions coming from various many-body effects. This is
a useful partitioning, since by far the largest part of the kinetic energy comes
from the single particle contributions and the Hartree term takes care of most
of the electron-electron interaction. We then lump together the primed quanti-
ties in a single term called the ”exchange-correlation” which we will then try
to find appropriate approximations for. The energy functional is now

E[n(r)] = TS [n(r)] +

∫
drV ext(r)n(r) +EH [n(r)] +EXC [n(r)], (2.19)

which at first may not seem like a great improvement over Equation (2.16).
However, by considering the kinetic energy of only a non-interacting system, a
solution presents itself, since we may then use some normalised single-particle
wavefunctions, ψi(r) such that n(r) =

∑
i ψ
∗
i (r)ψi(r), and the single-particle

part of the kinetic energy may be evaluated as

TS [n(r)] =
∑
i

〈ψi(r)| − ∇2

2
|ψi(r)〉. (2.20)

For the ground state, the energy in Equation (2.19) is stationary with respect
to variations in the density by the first Hohenberg-Kohn theorem. The most
straightforward way to make this optimisation is to introduce a set of Lagrange
multipliers, εi, to account for the constraint,

〈ψi(r)|ψi(r)〉 = 1. (2.21)

We can then compute the functional gradient, ∇〈ψ|, with respect to the set of
orbitals and set the result equal to zero,

∇〈ψ|(E[n(r)] −
∑
i

(εi〈ψi(r)|ψi(r)〉 − 1)) = 0. (2.22)

The effective single particle equations thus obtained are,

− ∇2

2
|ψi(r)〉 +

(
V ext(r) +

δEH [n(r)]

δn(r)
+

δEXC [n(r)]

δn(r)

)
δn(r)

δ〈ψi(r)| =(
−∇2

2
+ V ext(r) + V H [n(r)] + V XC [n(r)]

)
|ψi(r)〉 = εi|ψi(r)〉, (2.23)
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where we have used the definition of the Hartree energy from equation (2.13),
and we have defined the exchange-correlation potential,

V XC [n(r)] ≡ δEXC [n(r)]

δn(r)
. (2.24)

These are the Kohn-Sham equations that have been extremely successful in
the calculation of the properties of solids during the last decades.

Here it is important to note that when we introduced the wavefunctions
ψi above, we made no assumptions about them other than that they are or-
thonormal. They are just some set of functions that when summed generate
the electron density of the system. Furthermore, the parameters εi are just La-
grangian multipliers ensuring that the particle number is conserved. We often
wish to identify the Kohn-Sham eigenvalues with quasi-particle eigenvalues,
and differences between them as excitation energies. From the theory as so
far derived here, however, there is no justification whatsoever for doing so. To
obtain the correct quasi-particle spectrum we would need to solve an equation
of the form[34],(∇2

2
+ V ext(r) + V H(r)

)
ψi(r) +

∫
dr′ Σ(r, r′, Ei)ψi(r

′) = Eiψi(r),

(2.25)
where Σ is the quasi-particle self-energy. This equation is seductively similar
to the Kohn-Sham equations, with the exchange-correlation potential replaced
with the self-energy, but it is not true that the Kohn-Sham equations are sim-
ply an approximation to the more elaborate quasi-particle equation (2.25).
The Kohn-Sham equations are capable of delivering the correct ground-state
density and energy regardless of whether the quasi-particle self-energy can
be approximated by a local and energy-independent quantity. Rather, the in-
terpretation of the similarity between the equations is that if the self-energy
can be approximated by a local, energy independent quantity, then we may
interpret the Kohn-Sham spectrum as a quasi-particle spectrum as measured
by for example an XPS experiment. While there is no simple way of knowing
whether this holds in any particular situation, it is known that a Kohn-Sham
spectrum usually gives a quite accurate picture of the true spectrum whenever
strong correlations are not present.

2.4.1 Exchange-correlation functionals
The Kohn-Sham equations derive their usefulness from our ability to make
sufficiently accurate approximations to the exchange-correlation energy and
potential and an enormous amount of work has over the years gone into the
design of new, and sometimes improved, functionals. We shall not attempt a
complete description of any modern functional in current use, but instead say
a few explanatory words on their most primitive origins.
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The exchange-correlation functional is clearly a very complex object and
had all our knowledge of the physics involved been the Kohn-Sham equations
and their derivation there would be little hope of finding a suitable approxima-
tion. Progress is instead made possible by means of the Hartree-Fock theory.
We can make a statistical approximation of the Hartree-Fock exchange energy,
which by averaging removes the non-local character of the exchange potential
(2.14). By regarding the homogenous electron gas, the eigenfunctions must by
symmetry be plane waves, e±ikr, occupied for all k < kF , the Fermi k-vector.
The resulting energy per particle from averaging the exchange over the whole
Fermi sphere may be expressed

EX = −
(
3

π

) 1

3
∫

drn
4

3 (r) = −
(
3

π

) 1

3
∫

dr εX [n(r)]n(r), (2.26)

where in the last step we have introduced the quantity εX , interpreted as the
exchange energy per particle and unit volume, the exchange energy density.
Assuming that the density is sufficiently smooth, we might expect to get a
good approximation to the exchange energy by simply evaluating this expres-
sion for the physical density at hand, and this is indeed found to be the case. If
we account for the effects of correlation by a simple rescaling of the exchange
by a factor α,

εXC [n(br)] = α

(
3

π

) 1

3

n
1

3 (r) (2.27)

and use this in the Kohn-Sham equations, we have the Slater Xα method[58,
59].

Equation (2.26) is the result of averaging over the whole Fermi sphere, but
it is not obvious that this is in fact the correct method. The only electrons that
really are ”in position” to interact with one another are, unless the temperature
is very high, the ones close to the Fermi surface. If the average is instead taken
over only the surface of the Fermi sphere, the expression is,

εX [n(r)] =
3

2

(
3

π

) 1

3

n
1

3 (r). (2.28)

This expression was derived by Gaspar[23] and Kohn and Sham[42], and is
the one that is used today. This form of the exchange energy is the basis for
virtually all other approximations to the exchange-correlation energy. Typi-
cally, the partitioning between exchange and correlation is retained, and these
parts are then described by fitting to suitable interpolation functions. Most of
the raw data for these fits go back to quantum Monte Carlo simulations of the
homogenous electron gas by Ceperley and Alder[14].

We list here some types of functionals that may be considered the most
relevant for present-day use.
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LDA - Local Density Approximations are the most direct extensions of the
formula (2.28), typically built up by a rescaling of the exchange energy
and one part coming from correlation. They have in common that they
are local and not depending on gradients of the charge density.

GGA - Generalized Gradient Approximations are extensions to LDA that in-
corporate gradients of the density.

Hybrid functionals - A class of functionals of great importance in compu-
tational chemistry. It simply consists of mixing in some amount of the
Hartree-Fock exchange energy in the functional and to evaluate this.
Not often used in solid state applications, since they have the same dis-
advantages as the Hartree-Fock method itself for infinite systems.

Orbitally resolved corrections - A more important class of corrections for
solid state applications that might be loosely described as ”spicing
up” LDA with your favourite aspect of Hartree-Fock. They share the
common characteristic that they are orbitally resolved and strive to
restore some desirable property of the Hartree-Fock wavefunctions
to the Kohn-Sham solutions. Examples include the self-interaction
correction (SIC), LDA+U , exact exchange and orbital polarisation.

2.5 The self-consistent field procedure
With the introduction of density functional theory in the Kohn-Sham picture
we have reduced the many-body problem to an effective one-particle prob-
lem. Still, there remains the Kohn-Sham equations to be solved, a coupled
system of non-linear differential equations. We do this by means of the self-
consistent field (SCF). If we can obtain some approximate initial potential, the
Kohn-Sham equations will give approximate wavefunctions for that potential.
If they are then squared to yield a density we can solve Poisson’s equation and
an approximate exchange-correlation functional to construct a new potential,
which can be reinserted into the Kohn-Sham equations and so on. When there
is no longer any change in the density (or the potential, total energy or any
other quantity of relevance) we have found a solution.

The starting point is to construct a suitable basis, expand the solutions
in that to obtain a solution in terms of the expansion coefficients. The so-
lution is usually sought in the form of wavefunctions directly or by means
of Green’s functions, and the procedure will be slightly different depending
on this choice. The wavefunction approach is most straightforward and with
somewhat less practical difficulties in implementation, but the Green’s func-
tions are a more general and powerful representation for further developments.
Once the Kohn-Sham equations for a given potential are solved, the Fermi
level must be determined. Then the scheme proceeds with computing the den-
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sity and then, using that density, determine a new effective potential by solving
Poissons equation for the solid. There are as many solutions to these different
problems as there are electronic structure programmes, but these main steps
are always the same:
1. Construct a basis.
2. Set up the Hamiltonian in this basis. Solve the eigenvalue problem (wave-

function approach) or invert the Hamiltonian (Green’s function approach).
3. Find the Fermi level.
4. Solve Poissons equation for the resulting density.
5. Evaluate the total energy.

To these may be added that we also need to provide some sort of starting
guess for the effective potential. In this work several different methods for
implementing the above scheme has been used, and we will now look into
one of them, the full-potential linear muffin-tin orbital method, in detail.

2.6 Paper VI. Lattice vibrations in La and Th
The approximation that the lattice is static is not always sufficient, and to
account for the movement of the atoms in a solid, the phonon spectrum may
need to be calculated. That way the phonon contribution to the free energy can
be calculated and phases that would otherwise be energetically unfavourable
may be stabilised by the vibrations. However, the phonon picture of lattice vi-
brations is also an approximation, coming from the assumption that the atoms
experience a force proportional to their displacement. When this assumption
breaks down, what happens is that instead of a set of phonons, the quantisa-
tion of an independent set of harmonic oscillators, we must model the lattice
vibrations as a set of interacting phonons.

In Paper VI we apply the self-consistent ab initio lattice dynamics
(SCAILD) method[61, 62] to study two cases where the independent phonon
approximation does not apply, the bcc phases of La and Th. If the phonon
spectrum is calculated directly, imaginary frequencies will appear in the
phonon spectrum, induced by the anharmonicity of the lattice. The study
demonstrates that the phases are possible to stabilise if the phonon-phonon
interaction is properly accounted for.
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3. Full-potential LMTO

The linear muffin-tin orbital method, LMTO, is one of the most successful
methods of computational materials science. It was developed by
O. K. Andersen[3] as a computationally more efficient way of solving the
Korringa-Kohn-Rostoker (KKR) equations. The method was originally
devised to make use of the atomic sphere approximation (ASA), but is not
restricted to geometric approximations, as long as the muffin-tin geometry
is applicable. An excellent account of the original LMTO-ASA method has
been given by H. L. Skriver[57].

Described here is the full-potential LMTO method as implemented in the
software package RSPt[1] developed by Wills et al.[76] The aim of the de-
scription is to be a suitable introduction for someone interested in using this
method, but who has no previous experience of LMTO theory. The notation
is that used by Wills et al. in the main reference[76], and is largely similar to
other references to the LMTO method[57, 4].

3.1 Crystal symmetry
In the following it will be convenient to introduce some slightly modified
versions of the spherical harmonics[36], Y�m(r̂),

Y�m(r̂) = i�Y�m(r̂) (3.1a)

C�m(r̂) =

√
4π

2	+ 1
Y�m(r̂) (3.1b)

C�m(r̂) = i�
√

4π

2	+ 1
Y�m(r̂). (3.1c)

Here the angular variables, (θ, φ), are denoted by r̂. A related quantity is the
Gaunt coefficient, the integral of the product of three spherical harmonics,
here in two slightly different forms

G(	,m; 	′,m′; 	′′,m′′) =

∫
dr̂Y�m(r̂)Y ∗�′m′(r̂)Y�′′m′′(r̂) (3.2)

G(	,m; 	′,m′; 	′′,m′′) =

∫
dr̂Y�m(r̂)Y∗�′m′(r̂)C�′′m′′(r̂). (3.3)
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Any function of the three spatial dimensions can locally on an atomic site,
τ , be expressed in spherical polar coordinates with the angular part expanded
in spherical harmonics. Due to the symmetry of the lattice only specific lin-
ear combinations of spherical harmonics will contribute, and each such linear
combination is common to all equivalent atomic sites of the Bravais lattice.
To decrease the cost of computations, we therefore express things in these
linear combinations, Dht(r̂), and change the indexing from site, τ , to type,
t, where every type can have several equivalent site as its members. We also
introduce the operator Dτ , that rotates the coordinates of its argument into the
coordinates of the desired site, τ . Assuming only purely rotational symmetry
types are present, this operator is simply a rotation matrix expressing a rota-
tion of the local coordinate system, possibly in combination with the inversion
operation.

In formulas we have for a symmetric function at a site, τ ,

f(r)|
τ

=

�max∑
�=0

�∑
m=−�

fτ,�m(r)Y�m(r̂) = (3.4a)

f(Dτrτ)|t =
∑
h

fht(r)Dht(Dτ r̂τ). (3.4b)

The variable rτ signals that the formula is in a coordinate system local to the
site, that is, with its origin on that site. These equations should be read as
follows: ”The symmetric function, f , on the site τ is a linear combination of
spherical harmonics times a radial function, which is obtained by a rotation of
a linear combination of symmetrised harmonic functions around the type, t.”

The symmetrised harmonic functions, calculated beforehand, are built up
from spherical harmonics using the symmetry coefficients, αht(m), and a
spherical harmonic, C�m(r̂),

Dht(r̂) =
∑
m

αht(m)C�hm(r̂). (3.5)

3.2 Basis functions
While there is no geometrical restrictions on the shape of the potential in FP-
LMTO, the basis functions are still taken to be the same as in the LMTO-ASA
method[57]. The lattice is described by a partitioning in spherical regions
around the atomic sites called muffin-tins and in between them the interstitial
region. We may think of it as a set of atomic-like regions – the muffin-tins –
dispersed in a free-electron-like interstitial ”sea”. The basis, and consequently
all other quantities, are defined through this partitioning of space. The LMTO
method constructs a set of basis functions centred on each lattice site, but the
geometry is the same in the APW methods, but there the starting point for the
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basis is instead plane waves. These interstitial functions are often referred to
as the envelope functions of the basis.

Once the basis is constructed we construct and solve the generalised eigen-
value problem,

(H−Oε)A = 0 (3.6)

where ε and A are eigenvalues and eigenvectors respectively, and H and O
are the full-potential Hamiltonian and overlap matrices.

3.2.1 The basis in the interstitial
We start by setting up a basis for the interstitial region, consisting of functions
centred on each atomic site. Since the potential in this region is fairly flat, the
most obvious choice are free-electron solutions. In spherical coordinates these
are spherical Bessel and Neumann functions, j� and n�, times an angular part
that are the spherical harmonic functions of Equation (3.1a). Explicitly,

N�m(κ, r) = n�(κr)Y�m(r̂) (3.7)

J�m(κ, r) = j�(κr)Y�m(r̂), (3.8)

if the centre of the site is taken to be at the origin. The κ quantum number is a
measure of the kinetic energy, just like the wavenumber, k, in the free-electron
problem in Cartesian coordinates.

The basis functions will be used to calculate quantities such as the overlap,
〈ψi|ψj〉, and Hamiltonian matrix elements, 〈ψi(r)|H|ψj(r)〉, and since the
basis functions i and j will in general be centred on different atoms, they
are examples of so-called two-centre integrals. The LMTO formalism reduces
these to one-centre integrals by means of an expansion theorem, which states
that a function of the type (3.7) centred at a site, τ 1 may be expanded around
any other site, τ 2 using the following relation

N�m(κ, r − τ 1) = 4π
∑
�′m′

∑
�′′m′′

G(	,m; 	′,m′; 	′′,m′′)

×N∗
�′′m′′(κ, τ 1 − τ 2)J�′m′(κ, r − τ 2). (3.9)

For our interstitial basis we choose the following linear combinations of par-
tial waves,

K�m(κ, r) = −κ�+1

{
N�m(κ, r)− iJ�m(κ, r) κ2 < 0,

N�m(κ, r) κ2 > 0,
(3.10)

and for future reference also introduce

J�m(κ, r) = κ−�J�m(κ, r). (3.11)
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We note that in the κ2 < 0 case the basis function in (3.10) is the spherical
Hankel function, iH+

�m(κ, r). Essentially the form of Equation (3.10) is made
to get a suitably short ranged orbital[57]. We also mention here that the pa-
rameter, κ, is chosen by us as one of the parameters that specify our basis,
and we will return to a more thorough discussion of how to choose these in
Chapter 3.7.1.

Using the basis function of Equation (3.10) to build Bloch orbitals, we get
the basis function, labelled by i,

ψi(k, r) =
∑
R

eik·RK�imi
(κi,Dτi(r − τ i − R))

= K�imi
(κi,Dτi(r−τ i))δ(τ , τ i)+

∑
R �=0

eik·RK�imi
(κi,Dτi(r−τ i−R)).

(3.12)

The first row is the defining expression for a basis function in the interstitial
region. In the second row, we split the summation over sites in the term from
τ i and the rest. This is to get a more convenient form for the basis function
also inside the other muffin tins. To reduce the amount of notation we for a
moment constrain ourselves to the case κ2 > 0, and combine this with the
expansion (3.9), we get for the basis function, i, the following expression,
evaluated at the site τ ,

ψi(k, r)
∣∣
τ
= K�imi

(κi,Dτi(r − τ i))δ(τ , τ i) +
∑
�m

J�m(κi,Dτ(r − τ ))

× 4π
∑

R �=τi

eik·R
∑
�′,m′

κ�+�i−�
′

G(	,m; 	i,mi; 	
′,m′)N∗

�′m′(κi, τ − τ i −R)

= K�imi
(κi,Dτi(r − τ i))δ(τ , τ i)

+
∑
�m

J�m(κi,Dτ(r − τ ))B�m;�imi
(κi, τ − τ i,k). (3.13)

We have here introduced the structure constants or structure functions,
B�m;�′m′(κ, τ − τ

′,k), and remind ourselves that this particular expression
is valid for κ2 > 0. For κ2 < 0 we have a Hankel function instead of a
Neumann function, and the structure constant is given by an analogous
expression for this case1.

At this point it is suitable to make a few more general remarks. The expres-
sion in Equation (3.13) expresses the behaviour of a basis function centred at
τ i around the its own site, and site around any other site, τ . This is a two-
centre expansion of the wavefunction, the two centres being τ i and τ . As will
be seen, this can be used to reduce two-centre integrals to sums over one-
centre integrals.

1For the Hankel function this gives the structure constants used in KKR theory[78].
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Much work has been done in relation to the expression (3.13) in other de-
velopments of MTO theory. By modelling some form of response at all other
sites to the presence of a wavefunction at τ , the expression in Equation (3.13)
can be ”rebalanced” in such a way that the contributions on other sites be-
comes much smaller. The expressions corresponding to (3.13) are then said
to be written in a screened representation, using the screened structure con-
stants. By these means we may construct a more short-ranged representation
where the basis functions do not extend throughout all space, but vanishes af-
ter a couple, or even just one, neighbouring shells. These approaches started
with the introduction of tight-binding (TB) LMTO[5] and has since given rise
to a long list of methods like the third-generation LMTO[4], EMTO[72] and
screened KKR[79].

3.2.2 The basis in the muffin-tins
With a basis in the interstitial constructed, we move on to improving on it
inside the muffin-tins. A basis made up purely from Bessel, Neumann and
Hankel functions would end up in the same problem as a plane-wave basis,
namely that the total wavefunction is not very well-behaved near the atomic
nuclei, and we would need a very large basis to deal with them. So we move
on by augmenting the basis. This simply means to hack off a bit and replace
it with something else, in the case of LMTO, we exchange the basis inside
the muffin-tins for a local solution to the Schrödinger equation for a spherical
potential at a representative energy2,(

− d2

dr2
+

	(	+ 1)

r2
+ VMT (r)−E�

)
r φ�(E�, r) = 0. (3.14)

This is solved on a logarithmic mesh using standard numerical methods[47].
Note that this is not an eigenvalue equation, we impose no boundary condition
and the energy is not something that is being sought, but a number dictated
by us. We may picture that we ”probe” the system at an energy E� to find a
suitable guess for trial wavefunction.

In order to create a basis function that is good for a range of energies around
E�, we also compute the energy derivative of the function φ�,

φ̇�(Eν , r) =
∂φ(E, r)

∂E

∣∣∣∣
E=Eν

. (3.15)

We will now make linear combinations of the functions φ�(r) and φ̇�(r), and
may think of it as a Taylor expansion of the energy dependence around the
energy Eν for the 	 shell. The linear combination we choose, should be such

2What is solved is not in fact the Schrödinger equation, but the scalar relativistic equation of
Koelling and Harmon[41], but this distinction is not important for present purposes.
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that the basis is continuous and differentiable everywhere, in particular across
the muffin-tin boundary, which means that we also need to specify the lin-
ear combination of radial derivatives, φ′�(r) and φ̇′�(r). If we now regard the
one-centre expansion (3.13) evaluated at the muffin-tin boundary of the type
t, for each k-point, and match the corresponding 	 components of the enve-
lope functions and our local atomic solutions, we get the required matching
criterion, here expressed in matrix form3,(

φ�(Eν , St) φ̇�(Eν , St)

φ′�(Eν , St) φ̇′�(Eν , St)

)(
ωh1 (Eν , κ) ωj1(Eν , κ)

ωh2 (Eν , κ) ωj2(Eν , κ)

)
=

(
K�(κ, St) J�(κ, St)

K′�(κ, St) J ′�(κ, St)

)
. (3.16)

Once the ω coefficients are determined we have the basis functions in the
muffin-tins as,

ψi(k, r) = ψ
(1)
ti;�imi

(Et;�, r)δ(τ−τ i)+
∑
�m

ψ
(2)
t;�m(Et;�, r)B�m;�imi

(κi, τ−τ i,k),

(3.17)
with,

ψ
(1)
t;�m(Et;�, r) =(φt;�m(Et;�, r)ω

h
1 (Et;�, κ)

+ φ̇t;�m(Et;�, r)ω
h
2 (Et;�, κ))Y�m(r̂)

(3.18)

ψ
(2)
t;�m(Et;�, r) =(φt;�m(Et;�, r)ω

j
1(Et;�, κ)

+ φ̇t;�m(Et;�, r)ω
j
2(Et;�, κ))Y�m(r̂)

. (3.19)

Note that we in expression (3.17) still has the same split in a parent contribu-
tion, here given the index 1, and a second contribution consisting of a structure
function summation. In some applications, most notably the dynamical mean
field theory (DMFT) implementation in the present FP-LMTO scheme, the φ
term of (3.18) is termed the ”head” of the muffin-tin. It turns out that the tails
coming in from other functions will be the main contribution to the φ̇ terms
of the expansion, and it is often useful to think of the muffin-tin orbital, in
its own muffin-tin, as an essentially atomic-like state that near the muffin-tin
boundary is modified by the tails of atomic-like states centred on all other
sites[4]. A pictorial representation of the muffin-tin orbital is given in Figure
3.1.

In heavier elements, the highest core states will be so delocalised that they
start to form bands. These bands, isolated in energy from the rest of the va-
lence band and so hybridise very little with other electrons, are referred to as

3The somewhat idiosyncratic indexing of the expansion coefficients, ω, comes from an attempt
here to conform to naming conventions used in the source code of the RSPt program.
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R2R1

MT1 MT2I

ψi(r)

r

Figure 3.1: The LMTO geometry. The upper part of the figure shows an array of
spherical regions, ”muffin-tins”, centred on the lattice sites, and the interstitial region.
The lower part shows the form of a basis function along the line connecting the two
spheres at R1 and R2. In the region MT1, the muffin-tin centred at R1, the basis
function is given by Equation (3.18), in region MT2 it is given by the 	m sum of
Equation (3.17). In the interstitial region, I, the basis function is given by Equation
(3.10).
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semi-core states. In order to fully describe the solid, the basis needs to include
also these states of similar 	 value but different principal quantum number
from the valence states. This is easily accomplished by simply assigning dif-
ferent linearisation energies to the different states. Basis functions with the
same 	 values but different values of Et;� are said to belong to different en-
ergy sets.

We have yet to choose appropriate values for the linearisation energies, Et;�.
The preferred way in the FP-LMTO method is to self-consistently minimise
the total energy with to respect them, and this is clearly always justifiable
since the aim of the SCF scheme is to minimise the total energy.4 When this
method is applied with multiple basis energy sets we also run a risk that the
semi-core and valence basis functions will start to mix and produce a non-
physical basis. The preferred way to avoid this to employ the same procedure
as was originally used to ensure the orthogonality of the core states to the
valence states[57] and take the valence function to have the same logarithmic
derivative at the muffin-tin boundary as the semi-core function, but one node
more. This ensures that they are orthogonal to each other, and will keep the
linearisation energies apart.

We will end this section by a change of notation to simplify later sections
and to conform to the convention of the original reference of the method[76].
We will introduce a vector notation such that the basis function in Equation
(3.17) can be written as

ψi(k, r) =
∑
�m

Ut;�m(ei,Dτrt)Ωt�(ei, κi)S�m;�imi
(κi, τ − τ i,k). (3.20)

Here Ω is the 2× 2 matrix of the ω’s in Equation (3.16), and

U(ei, r) =
(
φ(ei, r), φ̇(ei, r)

)
, (3.21)

S�m;�′m′(κ, τ − τ
′,k) =

(
δ(τ , τ ′)δ(	, 	′)δ(m,m′)

B�m;�′m′(κ, τ − τ
′,k)

)
. (3.22)

The symbol ei denotes the linearisation energy of basis function i. We also
need

K�(κ, r) =
(K�(κ, r),J�(κ, r)

)
. (3.23)

3.3 Interstitial quantities
Since we chose the basis functions in the interstitial region to be eigenfunc-
tions of the kinetic energy operator, the kinetic energy matrix elements are

4Historically the LMTO method has typically been used in the atomic sphere approximation
(ASA) and as a minimal basis. In this case the parameters must sometimes be chosen differently
depending on the property to be calculated[57].
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easily evaluated as simply,

〈ψi| − ∇2|ψj〉 = 1

2
(κ2

i + κ2
j )〈ψi|ψj〉, (3.24)

whence,

〈ψi|ψj〉 = −(κ2
j−κ2

i )
−1

∫
I
dr (ψ†i (r)(∇2ψj(r))−(∇2ψ†i (r))ψj(r)). (3.25)

Written in this form we may rewrite the overlap using Green’s identity to
reshape the integration over the interstitial volume into an integral involving
radial derivatives of the basis functions over the interstitial surface (i.e. the sur-
faces of the muffin-tin spheres). Using the Wronskian,W (f, g) = f ∂g

∂r − ∂f
∂r g,

we get

〈ψi(r,k)|ψj(r,k)〉 =
(κ2

j − κ2
i )
−1
∑
τ

S2
t

∫
I
r̂W (ψ†i , ψj) =

∑
τ

S2
t

∑
�,m

S†�m;�imi
(κi, τ − τ i,k)

× W (K†�(κi, St),K�(κj , St))

κ2
j − κ2

i

S†�m;�imi
(κi, τ − τ i,k) (3.26)

The evaluation of the potential matrix elements follows a more elaborate
procedure. This is so, since by simply squaring the eigenvectors and use the
definition of the basis function over the interstitial we would have a repre-
sentation of the density that is cumbersome to use for solving Poissons equa-
tion. What we instead want is to represent these quantities in reciprocal space
as a Fourier series since it is then a trivial matter to write down the poten-
tial. Straightforward Fourier transformation of the basis functions and den-
sities is not feasible, however, because of the oscillatory behaviour inside the
muffin-tins, which would make the series too poorly convergent. This obstacle
must clearly be avoidable, since we are only interested in the values of these
quantities in the interstitial region, and there basis functions and densities are
smooth. What is needed is the construction of pseudo-quantities that are equal
to the true quantities in the interstitial and are smooth functions inside the
muffin-tins, which retain just enough of the real characteristics to be able to
match smoothly to the interstitial.

For the pseudo potential constructed in this way we have for the interstitial,

〈ψi(r)|V (r)|ψj(r)〉
∣∣∣
I
= 〈ψ̃i(r)|θI Ṽ (r)|ψ̃j(r)〉

∣∣∣
cell

, (3.27)

where the pseudo wavefunctions and pseudo potential has added tildes and
we have introduced the interstitial step function, θI which is zero inside the
muffin-tins and 1 in the interstitial.
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The pseudo potential has contributions from two parts, the pseudo density,
ñ(g), constructed by squaring the pseudo wavefunctions, ψ̃(r,k) and and a
second part, ñ(p)(r), defined within the muffin-tins to give the correct multi-
pole moments.

The pseudo potential is given throughout the unit cell as,

Ṽ (r) = 4πe2
∑
g �=0

ñ(g) + ñ(p)(g)

g2
eig·r. (3.28)

The construction of the pseudo quantities inside the muffin-tins along with
the considerations leading to their definition are well described in the original
reference[76] and references therein, and we will just briefly state them and
give short descriptions of their content. The pseudo wavefunction inside the
muffin tins is obtained as the solution to the equation,

(∇2 + κ2
i )ψ̃i(κi, r) = −c�

(r
s

)� [
1−
(r
s

)2]n
Y�m(r̂)Θ(s− r), (3.29)

and the pseudo density in the muffin-tins is given by,

ñ(p)(r) =
∑
τ

∑
h

ñ
(p)
ht (rτ)Dht(Dτ r̂τ) (3.30)

ñ
(p)
ht (rτ) = cht

(r
s

)� [
1−
(r
s

)2]n
Θ(s− r). (3.31)

The coefficients c� of Equation (3.29) are determined so as to match the
pseudo wavefunction to the true wavefunction, K�m(κ, r) at the radius s,
which must be smaller than or equal to the muffin-tin radius. The density
coefficient cht of equation (3.31) are instead determined by the requirement,
in terms of the true muffin-tin density, n(r) and the squared pseudo wavefunc-
tions, ∫ s

0
dr r�

τ
D∗ht(Dτ r̂τ)(ñ

(p)(r)− n(r) + ñ(r)) = 0. (3.32)

The above equations also introduce the muffin-tin stepfunction, Θ(sτ − r),
which is 1 inside the muffin-tin centred at τ and 0 elsewhere, and an exponent,
n, which is arbitrary, but may be chosen to ensure that the pseudo quantities
has sufficiently rapidly convergent Fourier series. By comparison of Equations
(3.29) and (3.31) it is easy to see that the constructions of the two are related.
The idea is in both cases to construct a function that has multipole moments
that matches the true quantity. If in Equation (3.32) the term containing the
true density is moved to the right hand side, we see that the requirement means
that ñ(p)(r) forms a compensation charge inside the muffin-tins to ensure that
the pseudo density gets the correct multipole moments.
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3.4 Muffin-tin quantities
3.4.1 Matrix elements
For the muffin-tin part of the matrix elements, we split the Hamiltonian in a
spherical part plus the non-spherical (or ”full-potential”) part,

H = H0 + vht. (3.33)

The potential is a symmetric function on each type, and so it is described for
the site τ with full angular dependency according to Equation (3.4b), as

V (r)|rτ<Sτ

=
∑
h

vht(r)Dht(Dτ r̂t). (3.34)

The electrostatic part of the potential is determined by standard methods[36]
as,

vht(r) =
4πe2

2	h + 1

∫ St

0
dr′ r′

2 r�h<

r�h+1
>

nht(r)

+

[
Vht(St) +

4πe2

2	h + 1

∫ St

0
dr′ r′

2 r′�hnht(r
′)

S�h+1
t

](
r

St

)�h
(3.35)

As for the interstitial, the exchange-correlation potential must be calculated
from the density directly on a real-space grid, for the muffin-tins expressed
in spherical coordinates. The resulting potential is then projected from the
angular grid onto the harmonic functions, so that

vXC
ht (r) =

∫
drV XC(r)Dht(r̂). (3.36)

Combining these with the definition of the basis functions in the muffin-tin
we have,

Hij(k) = 〈φi|H|φj〉 =
∑
τ

∑
�,m

S†�m;�imi
(κi, τ − τ i,k)

×
(∑
�′m′

∑
h

ΩT
t�(ei, κi)〈UT

t�(ei, r)|H0 + vht|Ut�′(ej , r)〉Ωt�′(ej , κj)

〈	m|Dht|	′m′〉S�′m′;�jmj
(κj , τ − τ j,k)

)
, (3.37)

where summations harmonics are to be taken for components with 	h > 0,
since those are the spherical terms already included in H0. Here we can clearly
see the benefit of making a one-centre expansion of the basis functions. There
is only summation over a single τ index, and the term on the middle line only
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has integrals centred on the type t; the information of the off-site contributions
to the matrix element is accounted for by the structure functions.

The radial integrals of Equation (3.37) of the form 〈Ui(r)|H|Uj(r)〉
have contributions of the forms 〈φi(r)|H|φj(r)〉, 〈φi(r)|H|φ̇j(r)〉 and
〈φ̇i(r)|H|φ̇j(r)〉. Since we are using the same basis as is used in the
atomic sphere approximation, these matrix elements of H0 are given by the
expressions[57],

〈φt;�i(ei, r)|H0|φt;�j (ej , r)〉 =Eij
t 〈φt;�i(ei, r)|φt;�j (ej , r)〉 (3.38a)

〈φ̇t;�i(ei, r)|H0|φt;�j (ej , r)〉 =Eij
t 〈φ̇t;�i(ei, r)|φt;�j (ej , r)〉

+
1

2
〈φt;�i(ei, r)|φt;�j (ej , r)〉

(3.38b)

〈φ̇t;�i(ei, r)|H0|φ̇t;�j (ej , r)〉 =Eij
t 〈φ̇t;�i(ei, r)|φ̇t;�j (ej , r)〉

+
1

2

(〈φ̇t;�i(ei, r)|φt;�j (ej , r)〉+ 〈φ̇t;�i(ej , r)|φt;�j (ei, r)〉
)
,

(3.38c)

where Eij
t = 1

2(Et;�i + Et;�j) and the last equation has a similar averaging
over different energy sets in the φ–φ̇ cross terms.

The simple closed forms for these expressions for the contributions from ki-
netic energy and the spherical part of the potential follow from our choice of
basis functions as linear combinations of solutions to the Schrödinger equa-
tion for the spherical potential. The remaining integrals for the higher har-
monic components, as well as the overlap integrals themselves are performed
numerically.

3.4.2 Density
The full electron density inside the muffin-tins is expanded in harmonic func-
tions for each type as shown in Section 3.1,

nt(r) =
∑
h

nht(r)Dht(r̂), (3.39)

where the site-harmonic-projected density is obtained from the basis functions
and the harmonic density coefficients, Mht,

nht(r) =
∑
e�

∑
e′�′

Ut�′(e
′, r)Mht(e, 	; e

′, 	′)UT
t� (e, r). (3.40)
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These are calculated from a set of intermediate density coefficients, Mt, that
hold the m-projected information about the density

Mht(e, 	; e
′, 	′) =

2	h + 1

4π

∑
m,m′,mh

α∗(mh)G(	,m; 	′,m′; 	h,mh)Mt(e, 	,m; e′, 	′,m′).

(3.41)

The quantities, Mt, can be calculated from the density matrix and the struc-
ture functions, scaled by the Ω-matrices and through integration over the Bril-
louin zone (the k sums). For each type there is a summation over the Nτ(t)
sites of that type, which give rise to the normalisation factor 1/Nτ(t).

Mt(e, 	,m; e′, 	′,m′) =

1

Nτ(t)

∑
τ∈t

∑
k

∑
i,j

δ(e, ei)S̃�m;�imi
(e;κi; τ − τ i;k)

× ρij(k)S̃
†
�′m′;�jmj

(e′;κj ; τ − τ j;k)δ(e
′, ej), (3.42)

with the density matrix calculated from a sum over eigenvectors,

ρij(k) =
∑
v

wv,kAi(v,k)A†j(v,k) (3.43)

and the scaled structure constants,

S̃�m;�imi
(e;κi; τ − τ i;k) = Ωt�(e, κi)S�m;�imi

(κi; τ − τ i;k) (3.44)

with i, j being basis function indices. The factor wv,k is the weight of each
eigenvector calculated according to the choice of method for the Brillouin
zone integration.

From the matrix Mt we can also calculate the 	-projected average occu-
pancies, Qt,�, and the orbital moments, Ot,�, resolved per type and 	 quantum
number and, optionally, also in energy sets by taking traces over the m indices
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and scaling by the overlap matrix elements,

Qt,� =
∑
e,e′

Qt,�(e, e
′) (3.45a)

Qt,�(e, e
′) =

�∑
m=−�

δ(	, 	′)δ(m,m′)Mt(e, 	,m; e′, 	′,m′)

× 〈Ut,�(e, r)|Ut,�′(e
′, r)〉

(3.45b)

Ot,� =
∑
e,e′

Ot,�(e, e
′) (3.45c)

Ot,�(e, e
′) =

�∑
m=−�

δ(	, 	′)δ(m,m′)Mt(e, 	,m; e′, 	′,m′) ·m

× 〈Ut,�(e, r)|Ut,�′(e
′, r)〉.

(3.45d)

It is important to note that the energy set resolved quantities only make phys-
ical sense if the energy sets are well separated in energy and hybridise very
little, that is to say, the off-diagonal components of Qt,�(e, e

′) are small. If this
is not the case, the charge density in equation (3.40) is still perfectly fine, but
projected partial occupancies may be completely unphysical, with, for exam-
ple, very large partial occupancies in one energy set and almost equally large
but negative occupancies in another. However, in the typical use of differ-
ent energy sets, with each energy set describing bands derived from different
atomic principal quantum numbers, the energies are well separated and such
issues do not arise. In this case we may safely interpret the diagonal elements
of Qt,�(e, e

′) as valence and semi-core occupancies.

3.5 The total energy
As seen in Chapter 2 the total energy is the sum of the kinetic and potential
energies of the single particle part of the problem plus the exchange correla-
tion energy. If we evaluate these for both the core and valence states, and also
include the interaction between the nuclei from Equation (2.5), we have,

E = T val
S + T core

S + EC + EXC + ENN . (3.46)

The electrostatic and exchange-correlation contributions are readily calcu-
lated by their definitions from quantities available at convergence of the SCF
cycle. The kinetic energy however is not, since in an actual calculation it is
impractical to explicitly construct the Kohn-Sham orbitals and differentiate
them, so instead we do the following. If we multiply the Kohn-Sham equa-
tions from the left by 〈ψi(r)|, integrate and sum over the occupied states we
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obtain
N∑
i

〈ψi(r)| ∇
2

2
+ V eff (r) |ψi(r)〉 =

N∑
i

εi〈ψi(r)|ψi(r)〉. (3.47)

From this the kinetic energy is seen to be

T val
S =

N∑
i

〈ψi(r)| ∇
2

2
|ψi(r) 〉 =

∫ EF

−∞
dε ε−
∫

drV eff (r)ρ(r), (3.48)

and similarly for the core states, for which the integral is a discrete sum over
the occupied states.

The interaction between nuclei is accounted for in the Madelung term which
can be expressed in terms of the nuclear charge and the spherical part of the
external Coulomb potential at the muffin-tin boundary,

ENN = −1

2

∑
t

∑
τ∈t

ZtV
C
0 (St). (3.49)

The exchange-correlation energy must be calculated over both the inter-
stitial and the muffin-tins on a real space mesh. The energy density in the
muffin-tins is then expanded, just as the potential, in harmonic functions,

εXC
ht (r) =

∫
dr εXC(r)Dht(r̂), (3.50)

and is then multiplied by the corresponding density, integrated and summed
over harmonic functions,

EXC =

∫
drn(r)εXC(r) =

∑
τ∈t

∑
th

∫
dr εXC

ht (r)nht(r). (3.51)

Using these and previous results the total energy is,

E =

∫ EF

−∞
dε ε+

∑
i∈occ

εcorei +

∫
drn(r)

(
1

2
V C(r)− V eff (r)

)

+

∫
drn(r)εXC(r) +

1

2

∑
t

∑
τ∈t

ZtV
C
0 (St), (3.52)

with V C being the total electrostatic (Coulomb) potential.

3.5.1 Constraints and the kinetic energy
We may wish to introduce some additional potential by hand in the Kohn-
Sham equations, Ṽi (such constraints are often orbital dependent, hence the

37



index i), such as the Lagrangian multiplier associated with some constraint
you wish to put on your solutions. In such cases one must correct the kinetic
energy by adding

T corr = −
∑
i

〈ψi| Ṽi |ψi 〉 (3.53)

to the right hand side of equation (3.48).
A simple example is that of fixing the magnetic moment of the unit cell. We

can do this by adding a constraining potential to each spin channel,

±V fix ∝ μfix − μSCF . (3.54)

The plus and minus apply to the up and down spin channels, respectively,
and the constraining potential is taken to be proportional to the deviation of
the moment of the SCF cycle from the desired value, μfix. The correction in
equation (3.53) for this case becomes

T corr = −
∫
Vcell

(V fixρ↑(r)− V fixρ↓(r)) dr = −V fixμSCF . (3.55)

3.6 Brillouin zone integration
When using the band structure method for solids the wavefunction is written
in the Bloch form (2.2), and all expectation values and similar integrals needs
to be evaluated by integration of all occupied bands over the Brillouin zone.
If we let i label the band and write, fi(k), for the quantity to be integrated, we
have

I =
∑
i

∫
BZ

dkw(Ei(k))fi(k), (3.56)

where w is the occupation number. The integration is done on a discrete mesh
which can be constructed in several ways[21, 51] and we will briefly describe
two approaches to evaluating (3.56) that are particularly popular, smearing
type methods and the tetrahedron method.

3.6.1 Smearing type methods
In the smearing type methods the integral (3.56) is rewritten as,

I =

∫ ∞
−∞

S(ε− EF )F (ε) dε (3.57)
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where S is some smooth approximation to the step function, EF is the Fermi
energy, and

F (ε) =

∫
BZ

f(k)δ(ε − E(k)) dk.

This gives a particularly simple evaluation of the integral since once we have
chosen an approximation to the step function, all we need to do to evaluate
(3.57) is to order all eigenvalues for all k-points on our mesh by size and sum
up to the highest one that is non-zero.

The most common approximation for the step function is a series of Her-
mite’s functions[50],

S0(x) =
1

2
(1− erfc(x)) (3.58)

SN (x) = S0(x) +
N∑
n=1

AnH2n−1(x)e
−x2 , (3.59)

where, erfc(x) =
∫ x
−∞ dt e−t

2

, is the error function and x = E−EF
σ . This

expression then contains two parameters to be chosen, the integer N to use
for the truncation of the series (3.59), and the smearing parameter, σ. Using
a larger smearing will improve the convergence of the SCF procedure since
small changes in the Fermi level will be lost in the smearing and stability
to small occupation changes is therefore enhanced. However, if the quantity
we are interested in depends on such small changes of occupation all such
information has been lost and the result is not accurate enough.

3.6.2 The tetrahedron method
The tetrahedron method evaluates the integral by using the k-points to divide
the space into tetrahedra. After obtaining a value of the band for the k-point in
each corner the band is then linearly interpolated through the tetrahedron[38,
46]. This will give give the filling of this tetrahedron5, and from that number,
the occupations of Equation (3.56) for each of the k-points can be calculated.
A quadratic correction formula that drastically improves the convergence has
also been constructed by Blöchl et al.[11] Unlike the smearing type of meth-
ods the tetrahedron method has no adjustable parameter, but instead derives
the weights directly from the linear approximation of the band dispersion.

For future reference we illustrate how a cube can be partitioned into tetra-
hedra of equal volume in Figure 3.2. The general scheme followed is as fol-
lows.
1. Select one corner of the cube, label it 1, and draw the body diagonal from

this corner.

5That is, how large portion of the tetrahedron that is within the Fermi surface.
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1

2

34

Figure 3.2: Illustration of the steps in partitioning of a cube into equal tetrahedra.

2. Following the body diagonal, label the next corner 2.
3. Follow either of the three possible edges to the next corner. Label this 3.
4. Continue along one of the next two possible edges and label the next corner

4.
5. Draw the remainder of the lines to connect these four corners. This is one

of the tetrahedra.
6. Repeat the procedure in all possible different ways. There will be 6 differ-

ent ways, since along each way we get first a choice of three and then a
choice of two.
All tetrahedra generated in this way will share the initial body diagonal as

one of its sides and looking at Figure 3.2 we can easily see that a partitioning
generated by the above scheme leaves us with a construction that does not
have the symmetry of the original cube. The use of the tetrahedron method
has broken the cubic symmetry in this case.

3.6.3 Paper VII. Adaptive Gaussian smearing
The tetrahedron method has the great benefit of not needing any adjustable
parameters, which has made it popular to determine very sensitive quantities.
One such property is the magnetocrystalline anisotropy energy (MAE), the
difference in energy between different magnetisation directions, which in cu-
bic materials can be on the order of 0.1μeV[13]. Unfortunately, the breaking
of the cubic symmetry as described above means that directions that in a cubic
lattice should be equivalent no longer are. This leads to inconsistent results of
the MAE, giving different energy differences depending on which choice of
supposedly equivalent axis we choose.
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The adaptive Gaussian smearing (AGS) scheme was developed in an at-
tempt to circumvent this problem. Smearing types of methods do not break
the symmetry, since the it uses each k-point individually without considering
its surrounding k-points. Thus, if we can find a way to eliminate the smearing
parameter, these schemes should be better for calculating the MAE in sensitive
materials. In Paper VII we present a way to eliminate the smearing parameter
by adaptively decreasing it depending on the density of the k-point mesh. We
suggest using the formula

σ =
3
√
2W

4πm∗

(
VBZ
nk

)1/3

(3.60)

where W is the width of the valence band, nk is the number of k-points, VBZ
is the Brillouin zone volume and m∗ is an effective mass parameter that needs
to be given. This still leaves one parameter to be set ad hoc, the effective mass
parameter, but we demonstrate that for any value of m∗ in a physically rea-
sonable range the calculation will converge to the same answer, independent
of this choice.

When tested, the AGS scheme did not yield the convergence properties of
the MAE that was anticipated, we did not manage to converge total energy
differences to the μeV level. Nevertheless the scheme seems robust on the
energy scales practitioners in the ab initio solid state field usually work with,
and we think that the AGS scheme will be found useful in the future.

3.7 Technical remarks on the FP-LMTO method
3.7.1 The quality of the basis set
A fundamental problem in the FP-LMTO method is to judge the quality of the
basis set. We know that the individual basis functions are rather close to the
true solution—if we had employed the atomic sphere approximation we would
even have been content with a single one of them—but it is not obvious how to
proceed to improve on this choice by adding more functions of the same shape.
Nor is there any obvious general criterion for how to determine whether the
basis is a good one. We will now outline one possible such criterion that has
been found to be useful, along with a suggested procedure to arrive at a good
basis.

We choose to take as a measure of the quality of the basis how dependent
the final solution is on the choice of muffin-tin radius RMT . That our total
energy is independent of RMT can be crucial when we wish to determine
structural stabilities between structures or compounds with different packing
ratios. In such cases, the geometry forces us to choose different muffin-tin
radii for the different calculations, and a strong dependence of the final result
on RMT may cause large errors. As an example we may look at the smallest
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possible fraction of the interstitial volume to the total volume of the cell for
the cubic close packed structure (fcc) and the much more open zinkblende
structure. The smallest possible value of the interstitial volume6 for the fcc is
26%, while it is 66% for the zinkblende structure.

Traditionally, there are two ways of constructing a basis set for the FP-
LMTO method. The first is based on a tail setup (number of tails and κ2

values) as described in the original main reference of the method[76]. This
setup, referred to as ”default” since it is generated as default by the program,
is based on calculations for the actinide metals and consists of a triple-κ basis
for the valence s and p states and a double-κ basis for the remainder of the
states, be they semicore or valence states. There are two κ2 values common to
all basis functions, 0.3 Ry and −2.3 Ry, and the additional tail of the valence s
and p states has κ2 = −0.6 Ry. In this approach every 	-shell has basis func-
tions with tails that span the entire range of the physical energies involved.
The individual tails are typically not seen as carrying physical content, but it
is sometimes convenient to set the highest tail equal to the average kinetic en-
ergy of the interstitial. The proper separation of the semicore and the valence
states is imposed by fixing the logarithmic derivative at the muffin-tin sphere
of the valence states to be the same as that of the semicore states (but hav-
ing one more node in the wavefunction, since they describe different principal
quantum numbers).

The second approach to basis set construction has been gradually devel-
oped in Uppsala and will therefore be referred to as the ”Uppsala” setup. This
associates more physical content with the basis, and so a double-κ basis will
use four different tail energies, two for the valence and two for the semicore.
These four tail energies are all chosen to be negative, by roughly the following
scheme.
1. Set the highest tail energy, κ2 = −0.1 Ry.
2. Set the lowest tail energy, κ2 ≈ the difference between the lowest semicore

eigenvalue and the Fermi level.
3. Space the remaining tails evenly between the first two.
4. Attach the two lower to the semicore states and the two higher to the va-

lence states.
The separation between semicore and valence states is enforced by choosing
Eν to be the band centre for the semicore states, and then minimise the energy
only with respect to the Eν for the valence states. Typically this basis set will
yield higher total energies than the default setup, and so can be seen as less
good. In practice, however, little difference is found when calculating energy
differences and physical properties and one often finds a faster convergence
of the ground state calculations than with the default setup. It is surmised that
this property and the systematically higher total energies is due to the harder
constraint put on the semicore states which has a large contribution to the

6The value for which we have the muffin-tin spheres almost touching.
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total energy but usually do not take active part in physical properties that are
calculated.

We now proceed to evaluate these two approaches in terms of the total en-
ergy and its dependency of the muffin-tin radius. We show here an example
where a heavy element, fcc lead, has been calculated without spin-orbit inter-
action7, and the total energies, offset by an arbitrary constant, are shown in
Figure 3.3. The Default setup is shown (dashed) and it has also been supple-
mented with a version where the top tail has been replaced with a tail with
κ2 = T̄Int, the average kinetic energy over the interstitial (dotted). The result
of the Uppsala setup is shown as a dashed-dotted line. We can see that using
the average kinetic energy as one tail improves the result, since the energy is
lowered and the variation from the muffin-tin dependency is smaller. The Up-
psala setup has a higher total energy for almost the whole range of muffin-tin
radii, but is somewhat better for small radii. Both perform quite poorly seen
over the whole range of values but we can note that if we restrict ourselves to
the range from fcc to zinkblende interstitial volume fractions (∼ 0.26− 0.66)
the variation is on the order ∼ 5 mRy, which is quite acceptable.

As we see, both basis sets seem to have their strong points in this compari-
son, and it seems plausible that combining some ideas in the two setups might
be worthwile. We do this by choosing the lower tails from the Uppsala setup
and from the Default setup we take the one positive (”interstitial average”)
tail together with the means to separate semicore and valence states by fixing
the logarithmic derivative of the valence states. As is seen from Figure 3.3 the
result is a drastic improvement over the two other basis sets. Also included
is a calculation using the average interstitial energy as the highest tail, which
is virtually indistinguishable from the fixed tail since the average interstitial
energy happened to end up very close to the chosen fixed energy. We get the
lowest total energy and the maximum deviation over the whole range of radii
is only ∼ 2.5 mRy.

If we study actual physical properties we can see the effect of the improved
basis set clearly. In Table 3.1 we show what can be achieved for the equation
of state of lead if a suitably good basis is chosen. With the Default basis we
obtain a good equilibrium volume and a reasonable bulk modulus, but with
the improved basis set even the derivative of the bulk modulus with respect to
volume is in agreement with experiment. In particular, the AM05 functional
performs very well in this case.

3.7.2 Performance aspects of the FP-LMTO method
When performing electronic structure calculations it is good to have an under-
standing of computational performance of the code. In the following we out-

7The spin-orbit part of the Hamiltonian is only evaluated over the muffin-tins, and so the Hamil-
tonian itself is depends on the muffin-tin radius and we could not tell which variation comes
from the basis and which come from the spin-orbit term.
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Figure 3.3: The total energy as function of the interstitial volume fraction (upper
panel) and the muffin-tin radius (lower panel) for a ground state calculation, exclud-
ing spin-orbit coupling, of fcc Pb at the experimental lattice constant. The result is
drastically different depending on the choice of basis set. See text for explanation of
the terms in the legends.
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Table 3.1: Comparison of the equilibrium volume, V0 and the bulk modulus, B0 and
derivative of the bulk modulus,B′

0
, for the Default basis set and the improved basis set

described above (labelled New). Calculations were made for three different exchange-
correlation functionals, LDA (von Barth-Hedin[74]), PBE96[53] and AM05[7]. Spin-
orbit coupling is included in these calculations.

V0 (Å3) B0 (GPa) B′0

Experiment[43] 30.31 40.5 5.74

New
LDA 29.3 49.6 4.91

PBE96 32.4 37.2 4.40

AM05 30.5 41.5 5.39

Uppsala
LDA 29.7 47.5 4.85

PBE96 32.9 35.3 4.67

AM05 31.0 39.9 4.87

Default
LDA 29.2 52.3 8.50

PBE96 32.4 37.5 3.07

AM05 30.4 37.7 11.7

line some details of the implementation of the full-potential LMTO method in
the software package RSPt[1].

3.7.2.1 Brief tour of the numerics
The RSPt code relies for its performance heavily on the external libraries
BLAS, LAPACK and FFTW for linear algebra and Fourier transforms. In
particular, calls to BLAS functions are extensively used to take care of the
innermost part of nested loops8. This means that for high performance it is
essential to link with highly optimised versions of BLAS and LAPACK, but
there is not a very large improvement by turning on the highest optimisation
flags in the compiler.

The process of calculation in a normal electronic SCF step is sketched in
Figure 3.4. The division in blocks is the same as in the actual computation, and
by looking for the words eigen, conden and conpot in the out file you
will find timings for the different parts. The different blocks do the following:

eigen – Sets up the Hamiltonian and overlap matrices and solves the gen-
eralised eigenvalue problem for all vectors on the k-point mesh. Finds
the Fermi level and computes the eigenvalue sum.

8Element-wise multiplication and addition of two double precision vectors are for example
taken care of with a call to the BLAS scalar multiplication function ddot.
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conden – Computes the density, n(r), throughout the unit cell from the
eigenvectors, eigenvalues and basis functions by integration over the
occupied part of the Brillouin zone.

conpot – Computes the potential and then calculates the total energy.

There are also initialisation blocks before these three, doing various prelim-
inary calculations that are not performance critical (setting up lattices, prepar-
ing the calculation of the muffin-tin matrix elements, initialising the FFT’s
etc.) and we therefore lump them together as simply ”Initialisations”.

A few things are to be noted here.
• The FP-LMTO method is based on a set of rather complex basis functions.

The calculation of the matrix elements therefore takes significant time.
• The computations of all quantities are in principle done twice — once

for the muffin-tins and once for the interstitial. These two parts may be-
have rather differently performance-wise, for example as soon as interstitial
quantities are to be handled there are Fourier transforms involved, whereas
the muffin-tins instead always have summations over structure functions.
The former do not scale directly with the number of basis functions, but
the latter do. We will see the effect of this later.

• The blocks eigen and conden are the only parts that depend on the k-
space mesh.

3.7.2.2 Analysis of performance
We study two examples that stress the code in different ways.
1. An fcc Ce 3 × 3 × 3 supercell (27 atoms). The Fourier mesh was 60 ×

60 × 60 and there were 3 k-points in the irreducible Brillouin zone (IBZ).
The default basis with 5s-states in the core was used (intermediate, fairly
typical size of basis).

2. A simple fcc Ni cell (one atom) with inversion as the only symmetry op-
eration. The Fourier mesh was 20 × 20 × 20, and number of k-points in
the IBZ was 27652. The default basis with 3s and 3p states in the core was
used (rather small basis).

In the first case the problems come from the large cell, which gives us many
basis functions and the fact that we need a large Fourier mesh to get sufficient
resolution in real space. In the second case the only problem is the large set
of k-points. The calculations are in both cases the first electronic iteration of
a simple ground state run. The number of k-points for the Ni calculation has
been chosen so that the total runtime is very similar in the two cases, and so
allows for a very direct comparison of how the run time is distributed between
different tasks within the code both for a large and a small cell. The tests were
performed on an Intel Harpertown 2.66GHz CPU.

If we look at the first section of the breakdown of timings (Table 3.2) we see
that the time spent in the different parts of the code does not seem to change.
The main difference is that conpot, the potential calculation, is much larger in
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Figure 3.4: Sketch of the principal layout of the RSPt band structure program.

47



Table 3.2: Breakdown of the significant timings for two RSPt runs for one Ce supercell
(3 k-points) and one fcc Ni cell (27652 k-points). The timings are broken down in two
different ways, after block of code and depending on the numerical task performed.
Note that the different calculations in the Tasks section may overlap, so the total is
not the sum of all numbers in the column. All times are in seconds.

Numerical Computation Ce supercell fcc Ni

Blocks
eigen 985 996

conden 214 270

conpot 13 < 1

Tasks
Hamiltonian + overlap 652 913

Matrix diagonalisation 285 31

Fourier transforms 145 687

Total 1228 1269

the supercell, but still very small. The reason for the large difference is that
the potential is not k-dependent and so the calculation is very fast in the small
Ni cell.

If we turn to the second section in the table we see that the time is spent
doing slightly different things in the two cases. Note that in this section the
different timings overlap, since the Hamiltonian+overlap calculation contains
Fourier transforms. In the supercell the larger basis gives us a matrix that takes
longer to diagonalise. This takes a barely noticeable time for the small cell. In
the small cell instead nearly all time is spent setting up the matrix elements,
and we see that a large amount of this time is spent doing Fourier transforms.
For a large cell the muffin-tin part is a larger portion of the total time. The part
that mainly grows in the muffin-tin part is summations over structure func-
tions, which are not present for the interstitial potential matrix elements be-
cause of the use of the pseudo basis9. Thus it seems that the structure function
summations scale worse with system size than the FFT’s.

In conclusion we can say that for a given size of the k-mesh, the two factors
that determine the speed of the calculations are the size of the Fourier mesh
and the size of the basis, the first being the more important. For small systems,
one should use as small a Fourier mesh as possible and for large systems it is
also important to ensure that the basis is not to large. The whole calculation
will scale linearly with the number of k-points.

9Nevertheless, structure functions enter the interstitial matrix elements in the evaluation of the
overlap, and from that the kinetic energy.
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4. Self-interaction corrections in band
theory

4.1 The self-interaction
When we set up the expressions for the total energy of an N -electron system
we had the Hartree term

EH =
1

2

∫
ρN (r)ρN (r′)

r − r′
drdr′ =

1

2

∫
V N (r)ρN (r)dr (4.1)

for the ”classical” part of the static Coulomb interaction of a distribution, ρN ,
of N electrons. Written in this form it is easy to spot that this is incorrect.
What we sum up is the electrostatic energy of N electrons in the presence of
the electrostatic field from the same N electrons. While this would be right
for a continuous charge distribution, it is incorrect for a distribution of discrete
charges moving in the potential created by all other charges. The appropriate
expression is instead

1

2

∫
ρN (r)ρN−1(r′)

r − r′
drdr′ =

1

2

∫
V N−1(r)ρN (r)dr, (4.2)

where we have the appropriate form of the interaction with each electron mov-
ing in the field created by the remaining N − 1 electrons. To directly correct
this error by calculating the appropriate potential V N−1 is cumbersome, as it
would require you to solve an additional N − 1 electron system on the side
throughout your calculation. Fortunately a neater way automatically presents
itself through the Hartree-Fock approximation, and this will then carry over
directly to the various approximations to the exchange-correlation energy in
DFT.

As we saw earlier in Chapter 2, in Hartree-Fock we have for the electrostatic
interaction in addition to the Hartree term the exchange term

EX =
∑
i,j

∫
ψ∗i (r1)ψj(r1)ψ

∗
j (r2)ψi(r2)

r1 − r2
dr1dr2. (4.3)
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By re-expanding the charge densities of (4.1) in its wave function components,
we can write the Hartree term in the form

EH =
∑
i,j

∫
ψ∗i (r1)ψi(r1)ψ

∗
j (r2)ψj(r2)

r1 − r2
dr1dr2. (4.4)

The interaction of a particle with itself is obtained by setting i = j in these
two-electron integrals, and we then see that the self-Hartree interaction is ex-
actly cancelled by a self-exchange interaction. Thus in Hartree-Fock the prob-
lem automatically goes away. In LDA and other functionals commonly used
in the Kohn-Sham scheme, however, the cancellation of the self-Hartree and
self-exchange-correlation energies for a single orbital is incomplete,

EH [nα(r)] + EXC [nα(r)] �= 0. (4.5)

In solids, this turns out to be a problem mainly for localised states, typically of
d and f character, for which the self-interaction is large. This favours solutions
to the KS equations which have itinerant d- and f -electrons over the localised
solution, and yields a spurious bonding that give completely wrong results for
many d- and f -systems such as the elements in the lanthanide series.

4.2 The correction
A few words on the notation in what follows is in order. Quantities associ-
ated with the self-interaction of a single-electron state will be denoted by the
superscript SI , and quantities that has been corrected for the self-interaction
will have the superscript SIC . The approximation for the effective potential
and energy functionals will be denoted LDA throughout, but it could equally
well be any other approximation such as a GGA or hybrid functional. We also
need to introduce a notation in relation to the exchange-correlation function-
als. The functionals are typically parametrised in terms of the Wigner-Seitz

radius, rs =
(

4πn(r)
3

)− 1

3

, and the polarisation, ζ = n↑(r)−n↓(r)
n(r) , which is

one for a fully polarised density and 0 for a non-polarised one. Following the
common notational customs we write,

EXC [n↑(r), n↓(r)], (4.6)

to denote the spin-polarised functional.

4.2.1 The Perdew-Zunger prescription
Inspired by the orbital-by-orbital cancellation of the self-interaction in
Hartree-Fock theory Perdew and Zunger[54] suggested to remedy the
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incomplete cancellation of the self interaction by simply prescribing that for
each occupied orbital, α, the quantity in Equation (4.5) should vanish. They
argued that as each electron state should be considered as being completetly
spin polarised, and we get the following correction to the energy functional

ESIC [n] = ELDA[n]−
∑
α

(
EH [nα] + EXC [nα, 0]

)
. (4.7)

We also get a corresponding correction to the potential for the electron in the
state α,

V SIC
α = V LDA[n]− (V C [nα] + V XC [nα, 0]). (4.8)

Note the functional argument 0 that denotes that the state is completely
spin-polarised. From this point on we will drop the two arguments and
just write, EXC [n(r)] etc., and need to remember that the self-interaction
corrected states have ζ = 1.

We now have an orbital-dependent potential which results in the Kohn-
Sham-SIC equations,(∇2

2
+ V LDA − (V C

α + V XC
α )

)
ψα =

occ.∑
α′

εα,α′ψα′ , (4.9)

where the Lagrange multipliers on the right hand side now form a matrix, and
the summation on the right hand side is taken over occupied states. This is
to construct solutions which are orthogonal, despite the fact that the eigen-
functions, ψα, are solutions to different Hamiltonians since they all see a dif-
ferent potential. There are different ways to tackle the problems that the off-
diagonal Lagrange multipliers introduce, and now follows an outline of the
unified Hamiltonian method[32, 33, 66]. Another solution is to use a steepest
descent method to search for the values of the εα,α′ matrix that gives energy
minimum[64].

In the unified Hamiltonian the aim is to transform Equation (4.9) into a form
where the Hamiltonian absorbs the off-diagonal Lagrange multipliers—we
effectively move them to the left hand side of the equation, and then solve the
resulting problem as usual. This can be done by the following transformation,

Hu =

occ.∑
α

(PαH
SIC
α Pα +OHSIC

α Pα + PαH
SIC
α O) +OHLDAO. (4.10)

We have introduced HSIC
α for the Hamiltonian of the α orbital and the pro-

jection operators Pα and O which projects onto the orbital α and the space of
non-SIC states, respectively. Specifically,

O =
occ.∑
α

(1− Pα). (4.11)
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In this work we will neglect the off-diagonal Lagrangian multipliers, thus
having states that are not exactly orthogonal, and for this case the transforma-
tion (4.10) reduces to the much simpler

H ′
u = HLDA +

1

2

occ.∑
α

(ΔHSIC
α Pα + PαΔHSIC

α ), (4.12)

where ΔHSIC
α = HSIC

α −HLDA is the difference between the SIC and the
LDA Hamiltonians for the state α.

To better get a feeling for the consequences of the SIC correction of the
Hamiltonian, let us consider ΔHSIC

α more explicitly. HSIC is simply HLDA

with an added term −V SI
α , so a diagonal matrix element of the Hamiltonian

is modified by an amount

−ΔεSIC = −〈ψα|V SI |ψα 〉 =∫
drψ∗α(r)V

SI [nα(r)]ψα(r) =

∫
dr
(
V SI [nα(r)]

)
nα(r). (4.13)

We will assume that the quantity V SI is positive (the Hartree potential is typ-
ically larger than the exchange-correlation potential), so the potential correc-
tion will shift the eigenvalue down in energy.

4.2.2 The Lundin-Eriksson prescription
A somewhat different correction scheme was proposed by Lundin and
Eriksson[49]. They argued that to get the proper correction one ought not to
subtract the energy of the orbital density from the energy of the total density,
but instead subtract the orbital density from the total density and evaluate
the functional for this quantity. This will make no difference for the Hartree
term, but the nonlinear dependency of the exchange-correlation energy on the
density will result in a different outcome for that quantity. The expression for
the self-interaction corrected energy is then

ELE−SIC = ELDA[n(r)]

−
∑
α

(
EH [nα(r)] + (EXC [n(r)− nα(r)]− EXC [n(r)])

)
. (4.14)

The potential correction changes accordingly, and we have the following ex-
pression for the SIC eigenvalue shift,

ΔεLE−SICα =

∫
dr
[
V LDA[nLDA(r)− nα(r)]

− V LDA[nLDA(r)]
]
nSICα (r). (4.15)
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4.3 The relation to LDA+U

Another popular method for correcting the the Coulomb interaction of LDA
is the LDA+U method. The method introduces the quantities U and J , the
for the direct and the exchange part of the on-site interaction, and assumes
that there exists some means of determining these quantities. Although many
practitioners of the method use U as an adjustable parameter, the way to obtain
a suitable U parameter was originally the so-called constrained LDA (C-LDA)
[26], and seen from this perspective, the LDA+U bears a simple relationship
with the LDA+SIC method.

Taking a first and most basic shot at a value for the U parameter is to say
that the direct part of on-site Coulomb interaction is equal to the Slater integral
F 0(α,α) from standard atomic theory[15]

Uα = F 0(α,α). (4.16)

This unfortunately gives a value that is much to large since in solids, the value
of F 0(α,α) is significantly screened by other electrons. We first give a hand-
waving argument for how to obtain U in the SIC scheme. Slater noted that the
unscreened parameter F 0(α,α) in Hartree theory is just the spherical average
of the (Hartree) self-interaction[59]. By instead using the spherical average of
the full LDA self-interaction we get a screening of the Hartree self-interaction
by the self-exchange-correlation. This reduces the value of F 0(α,α), not ac-
counting for relaxation of the orbitals and the local environment. We will now
show in more detail how the value of ΔεSIC ends up close to the U parameter
as calculated from C-LDA.

Invoking Janak’s theorem[37], Gunnarsson et al. obtained for an orbital, α,
in the correlated subshell

U =
∂εLDA

α

∂nα
. (4.17)

To evaluate this derivative, the charge density of the correlated subshell is
then constrained to contain some number of electrons, different from the LDA
result, nLDA

α + Δnα, and the shift of the eigenvalue is calculated using a
formula from first order perturbation theory

ΔεC−LDA = εLDA
α [nLDA

α +Δnα]− εLDA[nLDA
α ]

≈
∫

dr
(
V [nLDA

α (r) + Δnα]− V [nLDA
α (r)]

) (
φLDA
α (r)

)2
. (4.18)

According to Slater’s transition state rule[59], the optimal way of evaluate this
quantity is by using the values Δnα = ±1

2 , as was done in the first LDA+U
implementation[6]. However, the results of Gunnarsson et al. in Reference
[26] indicate that the slope of Δε/Δnα is not highly sensitive to the choice
of Δnα. If one instead makes the choice Δnα = −1, that is, to calculate the
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difference from nLDA to a state with one electron less, the right hand side
of equation (4.18) almost coincides with equation (4.15), the shift of the SIC
eigenvalue in the Lundin and Eriksson scheme. If the orbital, φα, in equation
(4.18) is allowed to relax from the LDA value in response to the difference in
occupation, the content of the two equations will essentially be the same as the
result of the fully relaxed C-LDA, since in a fully self-consistent calculation
both the local orbitals and the environment is allowed to relax in response to
the altered occupation of the α orbitals. We may therefore consider it justified
to say that

ΔεC−LDA ≈ ΔεSIC . (4.19)

So the constrained LDA scheme can be seen as a way of obtaining the
self-interaction, and conversely, the self-interaction correction provides as a
by-product a value of the screened Coulomb interaction (as determined from
LDA). This could be put to good use in LDA+U calculation as a way to
obtain the U parameter automatically and self-consistently, as our procedure
for determining ΔεSIC from a core state can be performed independently
from any other calculations involved in a self-consistent scheme.

4.4 Paper I. SIC in the FP-LMTO method
In Paper I the implementation of SIC in the FP-LMTO method is described.
This section mainly restates the information of Paper I in a slightly different
way, and in some instances more details are given, in particular, some results
for atoms using the core state solver are given.

4.4.1 SIC for a core state
Before describing the full implementation of the self-interaction correction for
the valence electrons in a crystal it is instructive to see how it can be applied
to the simpler case of a core state. Using the LDA effective potential, V LDA,
we first get a core wave function, φα(r), of the selected orbital, α (e.g. a d or
f state). We then use this to obtain a spherical density for an electron in the
α-shell squaring the wave function.

nα(r) = |φα(r)|2. (4.20)

We now determine the contribution to the total potential that comes from the
self-interaction of the α-shell electrons as in equation (4.8) above.

V SI
α (r) = VC [nα(r)] + VXC [nα(r), 0] (4.21)
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We then subtract the self-interaction from the LDA potential to get a corrected
potential, determine new α-shell wave functions and reiterate until V SI(r) is
converged. The procedure is illustrated in Figure 4.1.

V LDA(r)
Input−−−−→ φα(r) −−−−→ nα(r)�⏐⏐ ⏐⏐�

V LDA(r)− V SIC
α (r) ←−−−− V SI

α (r)⏐⏐�Convergence

nα(r), V
SI
α (r), εSICα

Figure 4.1: The self-consistent cycle determining the SIC potential, V SIC(r), the SIC
eigenvalue, εSIC , for a core eigenstate.

Once we have determined the SI corrected density, nα(r), it can be added
to the total density and the eigenvalue is added to the core eigenvalue sum
as usual. We must also evaluate the SIC contribution to the total energy from
equation (4.7) for the density nα(r), and, since we modify the Hamiltonian by
hand with an additional potential for part of the density, we also need to add
a correction to the kinetic energy as shown in equation (3.53). In the present
case the kinetic energy correction is simply the shift of the energy eigenvalue,

T corr = ΔεSICα =

∫ Sco

0
dr nSICα (r)V SIC

α (r). (4.22)

4.4.2 SIC for valence states
There are many ways to apply the self-interaction correction to the valence
states of a solid. The present scheme is based on the idea that the correction
is to be used to describe localised states in the solid when LDA fails to do
so correctly. It is therefore useful in the following to think of the SIC state
as describing electrons sitting in atomic-like states on a single lattice site.
These states form, in general, an open atomic shell which in the crystalline
environment will have a non-spherical charge density and may hybridise to
some extent with other states in the solid. It is therefore insufficient to treat
these states as core states, which by construction are always spherical and
cannot hybridise with any other states. The LMTO machinery is particularly
well suited for special treatment of localised states, since the basis functions
are local solutions to the Schrödinger equation for each site.

Since we will be describing localised, atomic-like states, our basis for the
calculation of the self-interaction of a valence state is the procedure described
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above for a core state. We use the procedure illustrated in Figure 4.1 for a
core state corresponding to the valence shell we intend to correct. This will
give us the self-interaction part of the potential, V SI

α , an eigenvalue εSICα and
the shift of the LDA eigenvalue, ΔεSICα . This way of defining the SIC state is
very closely related to the previous implementation known as local SIC[48].

The procedure for a SIC calculation is then implemented essentially in three
parts;
1. Modification of the Hamiltonian.
2. Optionally modify of the LMTO basis.
3. Projection of the SIC valence density and evaluation of the SIC functional.

4.4.3 Modifying the Hamiltonian
To modify the Hamiltonian we must decide on which single-particle states we
wish to correct. The choice is made as a some linear combination of m� and
spin quantum numbers for a state centred on some site

|α〉 =
∑
m�,σ

cm�,σ|m�, σ〉, (4.23)

where the coefficients, cm�,σ need to be chosen by physical intuition. We will
mostly chose crystal field states, such as the T2g and Eg states for d-electrons,
in ways that conserve the symmetry of the lattice. The problem of choosing
appropriate single-particle states will be discussed in more detail later.

We now get the SIC Hamiltonian matrix elements by constructing projec-
tors for all our chosen occupied states, |α〉〈α|, and add these to the LDA
Hamiltonian

HSIC
ij = 〈i|HLDA|j〉 +

∑
{α∈occ.}

〈i |α〉〈α| j〉ΔεSICα . (4.24)

Since the eigenvalue shift will be negative, this means that we move down the
eigenvalues of the selected linear combinations of by an amount ΔεSICα and
leaves the remainder of the α shell untouched.

4.4.4 The basis set
As described in Chapter 3, the LMTO basis set is generated from the atomic
potential at a representative energy for the band to be as close to the final
solution as possible. In the full-potential LMTO method we do not employ
a minimal basis, and we are in principle free to retain the basis functions ob-
tained from the LDA calculation to expand our solutions, or we may choose to
construct the LMTO using the corrected potential, V LDA(r)− V SIC(r), and
choose the linearisation to be εSICα . As implemented, the same basis functions
will be used both for the corrected and the uncorrected states. This should
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not cause any major problems, since we can add more basis functions, and in
cases of doubt, such as if there are major occupancy of both the itinerant and
the localised states, the total energy criterion can be used to determine which
is the more favourable.

It seems natural to assume that the optimal choice is to use corrected basis
functions, at least for compounds like rare earths where nearly all of the occu-
pation of the shell comes from the corrected states. In practice, however, it has
turned out that the best solution has always been to use the LDA basis func-
tions, linearised around the centre of the occupied band, e.g. Et;� ≈ εSICα .
This has given both lower total energies and better numerical stability and
convergence properties of the SCF cycle.

4.4.5 SIC density and total energy
To evaluate the SIC total energy in Equation (4.7) we need to project out the
density from each of the α-states that were chosen. This is done by applying
the projection (4.12), described in connection with the unified Hamiltonian
method, to the density matrix calculated as in Equation (3.43),

ραij(k) =
1

2

∑
n

(αi,nρn,j(k) + ρi,n(k)αn,j) . (4.25)

Here we have given the projectors basis function indices, (i, j), to make ex-
plicit that we identify the |m�, σ〉 states with specific basis functions. We then
proceed as in Equations (3.40-3.42) using the partial density matrices, ραij(k),
to obtain the SIC density resolved in lattice harmonic functions

nαt (r) =
∑
h

nαht(r)Dht(r̂). (4.26)

The Hartree energy can be evaluated for this density by the same methods as
for the regular density. For the exchange-correlation energy it has been found
that the highly non-spherical form of the density, nSICα (r) that results from
choosing a crystal field state makes the projection onto crystal harmonic com-
ponents as described in Equation (3.51) poorly convergent in 	h. To improve
the convergence in harmonic functions it is necessary to construct and evaluate
the integral,

EXC [nSICα (r)] =

∫
drnSICα (r) εXC [nSICα (r)], (4.27)

directly on the real space (r, θ, φ) mesh.
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As explained in subsection 3.5.1, the kinetic energy needs to be modified
for the extra potential, V SI , applied. In this case Equation (3.53) is given by,

T corr = −
∑
α

∫
drV SI(r)nSIC(r) = −

∑
α

ΔεSICα , (4.28)

which gives an additional contribution to the total energy.

4.4.6 Results
4.4.6.1 Core SIC
A set of tests were done using the core SIC implementation, to check the
method against the original results of Perdew and Zunger[54]. The original
publication used an atomic solver with no relativistic corrections, whereas the
present implementation has a fully relativistic solver. This affects the results,
as shown in Table 4.4.6.1. The non-relativistic results of Reference [54] show
SIC as giving a drastic improvement over the LDA results, but including rel-
ativistic effects we see that for the heavier elements the situation is reversed:
SIC overcompensates the LDA error.

Table 4.1: Comparison of calculated ground state energies using LDA and SIC to
experiment for hydrogen and the first noble gases. The discrepancies from the results
of Perdew and Zunger[54] are due to the use of a fully relativistic solver for the atomic
problem. All numbers are in eV.

Atom ELDA ESIC ELDA[a] ESIC [a] Expt.[b]

H -13.28 -13.61 -13.28 -13.61 -13.61

He -77.28 -79.44 -77.1 -79.0 -79.02

Ne -3493.2 -3521.9 -3488.9 -3517.6 -3508.1

Ar -14362.4 -14430.3 -14310.5 -14378.3 -14354.6

[a] Calculation of Perdew and Zunger[54].
[b] Veillard and Clementi[71].

It is possible that the result might be improved upon by improving on
the choice of single particle state. According to Perdew and Zunger, any
single-electron state is completely spin polarised, but this is only true for
non-relativistic systems. If we instead as our single-particle states chose for
example one of the spin-orbit eigenstates in the 2p1/2 manifold, there would
be no spin polarisation at all. A better model could be constructed by using a
polarisation 0 ≤ ζ ≤ 1, determined in some way by the relative strengths of
the exchange and spin-orbit interactions.
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4.4.6.2 Valence SIC
To compare the method with earlier results we performed calculations for the
cubic transition metal oxides[64, 66] and for the first three rare earth elements,
Ce, Pr and Nd. The calculations for the transition metal oxides show that the
metallic LDA solution is stable for the first two oxides, TiO and VO, but that
the insulating SIC solution is favourable for the later oxides in agreement
with experimental findings and earlier results with SIC. For the rare earths Pr
and Nd we find phase transitions from a localised fcc-like phase to a delo-
calised α-U phase in rough agreement with experimental findings and in very
good agreement with previous SIC calculations[65]. For Ce, the localised γ-
phase and the delocalised α-phase can be modelled by the SIC and LDA so-
lutions, respectively. However, the energetics of the two phases come out less
favourable in comparison to experiments than earlier SIC calculations[67, 63].
This difference appears to be a consequence of the full-potential scheme, most
likely from the use of additional basis functions. Test calculations was at-
tempted as close to an ASA calculation as the method allows, but failed to
converge, so it is hard to ascertain exactly were the difference lies.

Another important aspect of the full potential scheme is the finding that in
order to give a useful scheme the charge densities of the corrected states needs
to be sphericalised. This is in accord with earlier SIC findings[28, 75].

4.4.7 Paper II. CeOFeAs under pressure
In the last year a new group of high-TC superconductors, iron pnictide
superconductors, has been the focus of enormous research efforts. The
most successful formula for superconducting properties can be written
REO1−xFxFeAs, where RE is a rare earth compound and the structure
has been doped with flourine to add extra carriers to the FeAs subsystem.
One particular parent compound, CeOFeAs, was studied using the new
full-potential implementation of SIC, and it was found that under pressure
it should undergo a Mott transition, such that the CeO subsystem becomes
metallic.
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5. Magnetism

5.1 Non-collinear magnetism and spin spirals
When superimposing any magnetic structure more complex than ferromag-
netic ordering on a Bravais lattice, the symmetry of the lattice is destroyed.
For a simple anti-ferromagnet this typically doubles the size of the unit cell
in some direction, which typically causes no major problem for calculations.
But much more complex arrangements can of course be constructed, where
the local moments point e.g. in towards some particular site in the unit cell
or at right angles to each other, etc. and we then have non-collinear magnetic
ordering.

One particular form of non-collinear magnetism is the spin spiral, where
the directions of the local moments form a spiral along some direction, as
illustrated in Figure 5.1. A spiral that repeats itself after N unit cells of the
underlying lattice will as for the simple anti-ferromagnet result in an N times
bigger supercell. However, if the spiral is incommensurate with the underly-
ing lattice, there is no longer any translation vector that will leave the lattice
invariant, and the Bloch description breaks down.

q

Figure 5.1: A spin spiral illustrated along some array of atoms in a crystal parallel
to the spin spiral propagation vector, q. The lattice is no longer invariant under pure
translations along this axis, but instead under a translation along the array, r → r+R,
combined with rotation by an angle, φ = R · q.

Fortunately, in the case of a spin spiral it is possible to construct a gen-
eralised version of Blochs theorem that will restore the unit cell of the non-
magnetic lattice[55, 56]. While a lattice exhibiting a spin spiral is not invariant
under pure translations, it is invariant under a combined translation and rota-
tion of the spins. In general, the angle is given by φ = q · R, where R is
the translation vector and q is the propagation vector of the spin spiral, as il-
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lustrated in Figure 5.1. This allows for a generalisation of Bloch’s theorem,
Equation (2.2), in which we have the wavefunctions,

ψk(r) = eik·r

(
e−iq·r/2 ψ↑

k
(r)

eiq·r/2 ψ↓k(r)

)
. (5.1)

If the Hamiltonian is diagonal in spins it will commute with a combined
translation-rotation as described above. Then Equation (5.1) merely expresses
a rotation of the solutions in each k-point of the Brillouin zone, and there is no
need to extend the calculation to larger cells either in k-space or in real space.
This puts restrictions on the Hamiltonians that can be used, most notably,
spin-orbit interaction cannot be included at the same time as a spin spiral is
described by the generalised Bloch theorem.

5.2 Paper III. The incommensurate magnetic structure
of TbNi5
The compound TbNi5−xCux were synthesised and characterised for concen-
trations, x = 0, 0.5, 1.0, 1.5, 2.0. The magnetic structure of all the copper sub-
stituted compounds is ferromagnetic, but the pure TbNi5 system has a helical
spiral with a propagation vector q = (0, 0, 0.0195). The magnetic moment
measurements show that the f -electrons of Tb are localised in an f8 configu-
ration.

Electronic structure calculations using the full-potential LAPW and TB-
LMTO methods were performed for the unalloyed (x = 0) structure, in order
to characterise the mechanism of the non-collinear magnetic ordering. The f -
electrons of Tb were treated in the open core approximation, removing them
from the valence band, but allowing for a spin splitting of the valence band
through the coupling via the exchange-correlation potential. The calculations
could not resolve the very small ordering vector in total energy. However, a
Fermi surface analysis reveals the possibility of Fermi surface nesting between
the spin up and spin down bands, which by the Fermi level are split by a small
amount by the local moment from the f -electrons.

5.3 Paper IV. Non-collinear structure of CeRhIn5
The heavy fermion compound CeRhIn5 has attracted a lot of attention
because it shows a coexistence of superconductivity and an ordered
anti-ferromagnetic phase. It is a tetragonal compound, with the moments
ordered anti-ferromagnetically in the ab plane, and the direction of the
magnetisation of these planes is described by a spiral along the c-axis. The
spin spiral propagation vector is q = (1/2, 1/2, qz), with qz = 0.298. There
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has been some controversy over whether the 4f electron of the Ce atom
is localised or delocalised in this compound, but Fermi surface data and
calculations suggests that the localised solution is the preferable one.

To analyse the magnetic state of CeRhIn5 we performed calculations both
using an open core treatment of the Ce 4f electron and using LDA+U . The
open core calculations failed to resolve the small energy differences involved,
but in the LDA+U approach we did indeed find a spin spiral with a propaga-
tion vector q = (1/2, 1/2, 0.375). An analysis of the Fermi surface revealed
a large nesting corresponding to this wave vector and, we therefore attribute
this breaking of the crystal symmetry to Fermi surface nesting.

5.4 Paper V. FeMnSi0.75P0.25

The magnetic structure of hexagonal FeMnSi0.75P0.25 was found to be very
sensitive to the precise details of the synthesis. If the melt is annealed slowly,
the sample becomes an anti-ferromagnet, whereas if it is quenched, it becomes
a ferromagnet with a magnetic moment of 1.26μB . Characterisation of the
samples using X-ray diffraction and Mössbauer spectroscopy reveals no other
difference of the structures than a slight increase in the disorder of the Fe-Mn
sites for the quenched sample.

Theoretical calculations where carried out using the EMTO method[72],
and the coherent potential approximation (CPA) was used to simulate the dis-
order of the Fe-Mn sublattice. The results indicate that the magnetic ordering
of the quenched sample is not a pure ferromagnet but a ferrimagnet, with Fe
and Mn atoms coupling antiferromagnetically.
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6. Paper VIII. The 5f electron
occupation of Pu from XPS

Plutonium has one of the most complex phase diagrams of all the elements. At
ambient pressure, it undergoes six phase transformations as function of tem-
perature before melting, the volumes of the different phases are very different,
and several of them exhibit anomalous behaviour such as negative tempera-
ture expansion. These difficulties have spurred large efforts in the electronic
structure community to find a theory capable of simultaneously describing all
these properties.

The development of more sophisticated techniques in electronic structure
theory also advances the need for evaluation of the results obtained in terms of
experimental quantities. One useful and easily obtained quantity in electronic
structure calculations are partial occupancies of some orbital shell. These are
particularly useful, since many of the extensions to regular DFT in the Kohn-
Sham picture, such as SIC, LDA+U or orbital polarisation, are schemes that
explicitly manipulate these shells and their occupancies. Unfortunately partial
occupancies of specific shells are not directly observables, and so indirect
ways of deriving values for them from experiments must be used. In Paper
VIII we attempt to establish a relation between the 5f occupation and the 4f
core binding energy.

6.1 X-ray photoelectron spectroscopy
Before proceeding to the result of the investigation, we will very briefly re-
view the experimental technique X-ray photoelectron spectroscopy (XPS)[60,
52], and in particular, explain the phenomenon of well screened and poorly
screened features of the spectrum. XPS is a well established method for deter-
mining binding energies in solids.

An incoming photon ionises one of the orbitals of an atom in the solid.
This leads to an electron being expelled from the solid with a kinetic energy,
EK = �ω−φ−EB , where we have the photon energy, �ω, the work function,
φ, and the binding energy of the electron, EB . The binding energy is defined as
the energy difference of the ionised and the unionised atom, EB = EA+−EA.
The energy of the ionised system, EA+ , is known as the final state energy and
it should be noted that the + sign is a superscript noting that when an electron
leaves a localised orbital a positive ion is left as an impurity in the solid. An
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illustration of the process resulting in a measured spectrum is shown in Figure
6.1. As the incoming photon energy can be controlled with great accuracy and
the work function is just a constant, the kinetic energy of the photons directly
measure the binding energy of the electrons.

well screenedpoor screened

Kinetic energy

In
te

n
si

ty

Valence band

E

E
F

vac

Spectrum
Ekin

EF

Figure 6.1: The principle of XPS. A photon of energy �ω ionises an orbital with
binding energy EK = �ω− φ−EB . The inset shows examples of well screened and
poor screened features of electron spectroscopy, adapted from data of Fuggle et al.[22]
The top curve represents a material with itinerant valence band f-states, whereas in
the bottom curve these states are localised. The curve in the middle represents an
intermediate case.

The XPS process has an ionised system as a final state, where primarily
the core hole provides the main difference in electronic structure compared
to the unionised system. The absence of the core electron provides an addi-
tional positive charge which attracts electrons to it, a process known as the
screening of the core hole. Details in how this screening process appears re-
sult in a variety of binding energies, due to different values of the final state
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energy energy, EA+ . The standard theory for core hole screening in solids
was developed by Gunnarsson and Schönhammer[27], consisting of the anal-
ysis of an Anderson-like many-body Hamiltonian. One of its consequences,
in its standard interpretation, is that multiple screening channels can exist si-
multaneously in a solid. This means that a single core level excitation may
leave more than one peak in the XPS spectrum, as the different screening
channels result in different binding energies. A schematic picture of this fact
is shown in the inset of Figure 6.1. If the screening electron is due to narrow
band states at the Fermi level of the same angular momentum as the core hole,
the screening is efficient and results in the outgoing electron seeing less of
the positive core, resulting in a high kinetic energy. If, on the other hand, the
screening orbital is a broad band state, preferably of an angular momentum
character different than that of the core hole, the screening is less efficient and
the electron will leave the material with a smaller kinetic energy. These peaks
are thus traditionally referred to as the ”well screened” and ”poor screened”
peaks, respectively.

In lanthanide and actinide compounds the well and poor screened peaks can
be directly coupled to the degree of localisation of the valence band f shell.
The f electrons of itinerant states make narrow bands close to the Fermi level
that will be responsible for efficient screening, and one observes a pronounced
well screened peak. For a material with a localised f -electron valence band,
these valence electrons have been pulled away from the Fermi level, leaving
only the spd electrons to perform the screening, and one typically observes a
poor screened peak.

6.2 Results
We have studied Pu compounds where a reliable 5f count can either be es-
tablished on the basis of experiments such as magnetometry, resistivity mea-
surements or neutron scattering experiments or, for the oxides and very highly
oxidised compounds, according to the formal oxidation number. We obtain
4f core binding energies of plutonium in a number of compounds from pre-
viously published XPS data. The result is displayed in Figure 6.2 and, along
with references to the sources, in Table 6.1.

The main conclusion drawn from this data is that all phases of metallic Pu
has a 5f occupation of close to 5 electrons. A significant deviation from this
would result in a shift of the core binding energies, which is not observed;
only a redistribution from the well screened to the poorly screened features
are seen, which shows the variation of the localisation of the 5f electrons.

A particularly problematic compound in the study is PuN. It is not clear
what designation is the appropriate one, but to fit in the present diagram, it
must be considered to be either in a f4 or f6 configuration. Valence spec-
troscopies of PuN show a three-peak structure[31] which is interpreted as a
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f6 → f5 transition could be indication of an f6 configuration. On the other
hand, available neutron data[12] suggests an f4 configuration, and generally
we expect the f5 to be stable in metallic systems[39]. It is at present not clear
how to interpret and reconcile these seemingly contradictory facts.

Table 6.1: Excitation energies for Pu 4f states (in eV), and designation of oxidation
states.

Poor screened Well screened

4f5/2 4f7/2 4f5/2 4f7/2 Oxidation state

Pu[44] 434.9 422.2

α-Pu[10] 435.1 422.1

α-Pu[2, 18, 19] 435.2[1] 422[1]

β-Pu[2, 18] 435.2[1] 422[1]

γ-Pu[2, 18] 435.2[1] 422[1]

δ-Pu[2, 18] 435.2[1] 422[1]

Pu[31] 437.5 424.6

Pu Suboxide[44] 437.1 424.4 (III)

Pu2O3[16] 437.2 424.5 (III)

PuO2[70] 439.3 426.6 (IV)

PuO2[44] 438.7 426.1 (IV)

PuO2[16] 438.6 426 (IV)

Pu(OH)4[19] 439.5[1] 426.6 (IV)

Pu(NO3)4 · nH2O[69] 439.8 427.1 (IV)

PuO2CO3[19] 441.1[1] 428.8 (VI)

Cs2PuO2Cl4[68] 441.2 428.7 (VI)

PuH2[45] 425.0 (III)

PuSe[25] 437.6 424.7 420.6 (III)[20]

PuSb[25] 437.7 424.9 (III)[73]

PuN[31] (436.3?) (423.6?) 436.3 423.6 (III)[73]

PuFe2[24] 437.8[1] 424.6[17] 422.6 (III)[77]

Pu1−xAmx[9] The same as for metallic plutonium

[1]Estimated from the figures of the original references.
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Figure 6.2: Pu 4f core shifts as function of 5f occupancy.
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7. Outlook and conclusions

The work presented in this thesis has taken us to a point that is, hopefully,
slightly higher up than we were before, and here is now presented a small
collection of thoughts on the view of the world from this point. It will per-
haps seem a bit negatively biased, since it consists of thoughts about some
rather difficult things that are part of the everyday work with the methods of
electronic structure calculations, such as trying to establish the errors of our
calculations. Despite the very large fraction of the total time spent working on
a problem that is taken up by such questions they often are a very small part of
published papers, and this little discussion therefore seems appropriate here.

While SIC in the full-potential scheme retains its strong points in that the
good total energy, compatible with the LDA energy and free of the double
counting problem that plagues for example LDA+U, the need to require that
we restrict ourselves to only the spherical component of the correction is prob-
lematic. Nothing in the basic argument for the form of the self-interaction
gives any reason for such a restriction. The error (if such it be) comes from
the evaluation of the XC energy, which behaves in a very non-linear fashion
for a highly non-spherical charge density. An interesting thing to note is that
the Lundin-Eriksson formulation of SIC[49] evaluates the total density, which
is large and rather spherical, minus the non-spherical density of the corrected
state. This difference should still be rather spherical, and so the problem might
not arise in this scheme. Another interesting question is what impact the gradi-
ents of a GGA scheme would have on the non-spherical part of the correction.
Further studies of the non-spherical contributions to the self-interaction are
needed to better judge how well-founded the theory actually is.

The two last papers concern two important issues, the dependence of our
end result on various parameters that we specify ourselves, and more generally
how we determine if the results are correct. Paper VIII attempts a straightfor-
ward determination of a common parameter from experiment and theory that
can be compared, and such comparisons are of course usually done in any
theoretical study to ascertain the validity of the results. Still, more such num-
bers are needed when we wish to extend DFT to more correlated systems. The
present approximations in this field (SIC, LDA+U , orbital polarisation. . . )
are still at a rather crude stage, heavily dependent on details of implementa-
tions and arbitrary choices of the practitioner. They all have a long way to go
before approaching the accuracy of regular DFT schemes.

71



In Paper VII, we are concerned, in a small way, with questions of how
we can ascertain that the first principles result really is in itself correct. In
other words, do our calculation really produce the answer that the theoretical
model should give. In the first principles community the claim is often heard
that we have the tools to make quantitative as well as qualitative predictions,
yet quantitative estimates of errors for calculated values are too often absent
in papers. The present work admittedly no exception to this, and the main
reason is quite clearly the exchange-correlation functionals which introduce
errors that are very hard to estimate quantitatively. Nevertheless, it is felt that
questions of the quantitative accuracy of our schemes is presently one of the
large challenges in the field.
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8. Populärvetenskaplig sammanfatt-
ning på svenska

De flesta av vår vardag bestäms av elektronstrukturen hos olika material.
Påståendet kan tyckas överaskande, men det ligger en stor del sanning i det.
Solens strålar får i och för sig sin energi från kärnreaktioner, men när vi kän-
ner hur de värmer vår hud är det för att elektronstrukturen i några nervändar
registrerar värmen, och på vägen har atmosfärens molekyler genom in elek-
tronstruktur filtrerat bort våglängder som skulle ha skadat oss. Tack vare elek-
tronstrukturen i koppartråden har vi elektricitet i våra hem, elektronstrukturen
för ett kylmedium ser till att det går att transportera värme ut ur kylskåpet och
kylskåpsmagnetens elektronstruktur ser till att den sitter fast på kylskåpsdör-
ren. Och så kan man fortsätta att rada upp exempel.

Vi tänker förstås inte på företeelser som känslan av värme i huden som
en elektronstruktureffekt Det är inte särskilt troligt att ens en ingenjör som
konstruerar kylskåp funderar närmare över kylmediets elektronstruktur, men i
grundforskningen om materials egenskaper är elektronstrukturen en hörnsten
för vår förståelse.

I den här avhandlingen studeras i huvudsak magnetiska egenskaper
och kristallers struktur, och det sammanhållande temat är de så kallade
f -elektronsystemen. f -elektronsystemen består av två klasser av ämnen,
lantanider och aktinider, och den som känner till det periodiska systemet
känner igen dem som de två raderna längst ner som ställts ut lite åt sidan.
Ämnena har i sina yttersta elektronskal så kallade f -elektroner, vilka ger
materialen en stor mängd fascinerande egenskaper, men som också är en stor
utmaning för beräkningar och modeller.

Den övergripande metod som använts i studierna är densitetsfunktional-
teori, ett sätt att beskriva elektronstrukturen med hjälp av bara elektrontä-
theten i kristallen. Utifrån denna kan man konstruera Kohn-Sham-ekvationen,
en sorts hjälpsystem för att lösa kvantmekanikens huvudekvation, Schrödin-
gerekvationen, för ett system av elektroner som alla växelverkar med varan-
dra. Med detta angreppssätt krävs att man har någon form av approximation
som för en elektron i materialet beskriver effekten av alla de andra elek-
tronerna, en beskrivning av hur en elektron ”ser” molnet av alla andra elek-
troner.

Ett problem som uppstår i de vanligaste approximationerna till denna väx-
elverkan är att när man lägger ihop effekterna av alla andra elektroner så kom-
mer elektronen vi är intresserade av själv med. Detta leder till att varje elek-

73



tron i materialet i viss mån kommer att växelverka med sig själv. Denna extra
självväxelverkan är i de flesta fall så liten att den inte är ett problem, men i de
fall då en elektron är benägen att sitta på en viss atom utan att röra sig så my-
cket i kristallen kan den felaktiga självväxelverkan bli stor. Som en liten baron
von Münchhausen, som lyfte sig själv i håret ur träsket, lyfter sig elektronen
själv upp från att sitta bunden vid en atom och börjar röra sig i materialet,
vilket ger felaktiga resultat i våra beräkningar. I avhandlingen beskrivs hur
en metod som korrigerar det här beteendet, självväxelverkanskorrektion har
utvecklats för en specifik elektronstrukturmetod. Metoden har också använts
för att studera ett nyupptäckt supraledande material, CeOFeAs.

De flesta associerar säkert magnetiska material till föremål som den tidi-
gare nämnda kylskåpsmagneten. Den är fall där alla atomerna riktar sin mag-
netisering åt samma håll, ett ferromagnetiskt material. Detta är inte det enda
möjliga tillståndet, naturen förser oss med en förbluffande rik flora av mag-
netiska strukturer. Atomernas magnetisering i stället kan peka i motsatta rik-
tningar från en atom till nästa, vilket är ett enkelt fall av antiferromagnetism.
Som antiferromagnetism benämns också ett tillstånd då flera atomers moment
pekar in mot en annan atom, eller vrider sig från ett atomlager till nästa som
en spiral. Det sistnämnda kallas också spin-spiral och är en av de magnetiska
strukturer som särskilt har studerats i två av studierna i avhandlingen.

q

Figure 8.1: Illustration av en spin-spiral, en av de magnetiska strukturerna som stud-
erats i avhandlingen.

Vad som händer med material vid höga temperaturer har också studerats
med en förbättrad metod för att beskriva vibrationerna i materialet, de så
kallade fononerna. Om fononerna tillåts växelverka med varandra på ett sätt
som påminner om det som beskrevs tidigare för elektronerna kan man visa att
vibrationerna själva kan stabilisera vissa kristallstrukturer.

De sista två artiklarna i avhandlingen försöker på olika sätt bedömma och
förbättra själva elektronstrukturmetoderna. Den ena är en studie av experi-
mentella data för att försöka fastställa antalet f -elektroner i grundämnet plu-
tonium i fast form. Detta är gjort som en hjälp för att bedöma kvaliteten i olika
approximationer för beräkning av elektronstrukturen. I den andra har ett för-
bättrat schema för den så kallade Brillouinzonsintegrationen tagits fram och
testats.
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