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Abstract. Background fluorescence, also known as autofluorescence, and 
cross-talk are two problems in fluorescence microscopy that stem from similar 
phenomena. When biological specimens are imaged, the detected signal often 
contains contributions from fluorescence originating from sources other than 
the imaged fluorophore. This fluorescence could either come from the specimen 
itself (autofluorescence), or from fluorophores with partly overlapping emission 
spectra (cross-talk). In order to resolve spectral components at least two distinct 
wavelength intervals have to be imaged. This paper shows how 
autofluorescence can be presented statistically using a spectral angle histogram. 
Pixel classification by spectral angles was previously developed for detection 
and quantification of colocalization. Here we show how the spectral angle 
histogram can be employed to suppress autofluorescence. First, classical 
background subtraction (also referred to as linear unmixing) is presented in the 
form of a fuzzy classification by spectral angles. A modification of the fuzzy 
classification rules is also presented and we show that sigmoid membership 
functions lead to better suppression of background and amplification of true 
signals. 

Keywords: autofluorescence, fluorescence microscopy, multispectral image 
analysis, fuzzy classification, dimensionality reduction 

1 Introduction 

Autofluorescence, i.e., fluorescence from other substances than the fluorophores of 
interest, can be limited either chemically while specimens are prepared or during the 
imaging by using appropriate filter and microscope settings. Autofluorescence can 
also be suppressed by image analysis based methods, traditionally by spectral 
unmixing in the same fashion as cross-talk suppression [1, 2, 3]. In recent years, 
autofluorescence removal has been treated as a blind spectral decomposition problem 
solved by multispectral imaging [4, 5]. 

In this paper we address how autofluorescence can be presented statistically from 
as few as two spectral channels using a spectral angle histogram [6]. We also show 
how the parameters needed for background subtraction can be extracted from a 
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spectral angle histogram. Unlike 2D histograms or scatterplots, commonly used for 
representation of the relationship between two channels, spectral angle histograms 
describe the same relationship with the dimensionality reduced to one. Automated 
analysis of one-dimensional histograms in general is more convenient as standard 
methods for histogram segmentation can be applied. Specifically, analysis of the 
shape of a 1D spectral angle histogram can provide input parameters both for linear 
unmixing (e.g., background subtraction) and the novel method proposed in this paper. 

In many cases, it is of interest to limit the amount of image data that has to be 
collected, and we show that autofluorescence can be suppressed using only two 
channels, one showing both fluorescent signals and background, and one showing 
only background fluorescence (see Fig.1). In this paper, we will follow a convention 
in fluorescence microscopy and associate ratios between two pixel values with hues in 
the dual colour image. A pixel that represents a true signal should have a higher ratio 
of “red” to “green” values than a pixel that belongs to the background. Naturally, 
“red” and “green” could be any pair of wavelength intervals representing signal and 
autofluorescence.  

2 Background 

2.1 Background subtraction 

Background subtraction, also referred to as linear unmixing [7], is a classical method 
for suppression of autofluorescence and cross-talk. It reduces to simple subtraction in 
cases when one channel has contributions from two sources of fluorescence (i.e., 
signals and background in the “red” channel R) and the other channel has contribution 
from the background (i.e., background imaged in the “green” channel G). The 
autofluorescence compensated channel Rcomp containing only true signals is calculated 
using (1) where s depends on the ratio of intensities in channels R and G. 

),0max(.., GsRR SBcomp ⋅−=  (1) 
 

Methods described in this paper can be used for suppression of autofluorescence in 
general, although they are designed for the more difficult problem in which signals 
are sparsely scattered over the background as seen in Fig.1. The relationship between 
the two channels is shown in Fig.2. Here, any algorithm that searches for the ratio of 
intensities in channels R and G associated with the true signals would give unstable 
results. As seen in the 2D histogram of Fig.2B, the image is dominated by a ratio of 
intensities equal to k0 which shows that the two channels as almost linearly 
dependent. On the other hand, the scatterplot in Fig.2B shows a group of ordered pairs 
(R,G) that represents the true signals. 

If the parameter s needed for equation (1) is calculated using Principal component 
analysis or a similar method, the first component is located around the line G=k0⋅ R, 
where k0 is the median ratio of intensities. Using s=k0

-1 results in somewhat 
suppressed background, but still does not give the optimal result as most of the 
background intensity levels in R are still greater than zero. Therefore, parameter s 
should be smaller than k0

-1 in order to suppress all the bright pixels associated with the  
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Fig.1. Tissue section showing: (A) Alexa555 labeled FISH probes excited at 563nm (the “red” 

channel); (B) Lipofuscin and hemoglobin autofluorescence imaged using the FITC channel 
(excited at 488nm, the “green” channel) where the Alexa555 signal is not seen. (C) Zoom in on 
A, the combined image. The arrows point at a few true signals. These signals are visible as red 

and orange blobs over yellow-green background. The white rectangle shows the area that is 
used in Section 5 to compare the described methods visually.  
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Fig.2. (A) In a 2D histogram of the red (Fig.1A) against the green (Fig.1B) channel, the darker 

regions represent the more common ordered pairs (R,G), and only the dominating pairs 
corresponding to background fluorescence are visible. (B) In a scatterplot of the same data, 

each type of ordered pairs (R,G) is represented by a black point, independent of the number of 
pairs. Here it is possible to see the red-green pairs of the true signals as they deviate from the 

large cluster representing background fluorescence. 
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Fig.3. (A) Spectral angle histogram showing relative intensity distribution over the 
range of spectral angles, where 0° represents “pure red” and 90° represents “pure 

green”. Background fluorescence is visible as a strong and smooth peak at α0. (B) The 
histogram zoomed 3000 times in ordinate axis showing weak signals represented by a 

series of local maxima in the range of spectral angles between 0° and αk. 
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background. Calculating the principal component associated with the true signals will 
not give stable results due to the small number of true signals present.  

2.2 Spectral angles and angle histograms 

An image consisting of two colour channels, can be thought of as a collection of pixel 
samples (R,G) from a colour spectrum varying from red to orange to yellow to 
yellowish green to green. The spectral angle can be described by the angular deviation 
of the pixel (R,G) from the red intensity axes of a scatterplot. An angle histogram, 
calculated using the infinity norm of (R,G) as a weight and compensated for 
quantification noise, is simply a histogram where each bin represents a given angle 
interval [6]. 

Here, we reduce the 2D histogram of Fig.2 to a 1D angle histogram, and extract the 
parameter k based on the histogram shape as described below. A spectral angle 
histogram can be useful for both automated background subtraction and for 
generation of more general fuzzy classification rules. The angle histogram that 
corresponds to the 2D data representation in Fig.2 is shown in Fig.3. Saturation in the 
channel G should be avoided during the image acquisition as it results in false spectral 
angles. If saturation is present, saturated pixels should be excluded, as it is impossible 
to extract useful information from them. 

3 Methods 

3.1 Background subtraction as a fuzzy membership function 

Equation (1) describes how an autofluorescence compensated image Rcomp containing 
only true signals, can be calculated. The parameter s should be associated with the 
slope of the line G=k⋅R shown in the scatterplot in Fig.2B. If a spectral angle α is 
defined as α=arctan(G/R), the spectral angle αk of that line is given by αk=arctan k= 
arctan s-1=90°-arctan s. Thus, equation (1) can be rewritten as shown in equation (2). 
The second term in equation (2) has the form of a fuzzy membership function of the 
spectral angle α. Therefore, background subtraction can be considered as a special 
case of generating a fuzzy classification by spectral angles with a tangent membership 
function. 
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(2) 

 

3.2 Nonlinear unmixing: the sigmoid membership function 

As the photons recorded in the “red” channel come from fluorophores representing 
both the signals and the background fluorescence, and there are no nonlinear 
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phenomena that should be modeled, a linear combination of the “red” and the “green” 
channels is the only physically correct approach to produce the image Rcomp showing 
only signals. On the other hand, for the purpose of detection and quantification of the 
number of objects we are interested in amplifying intensities of the pixels 
representing true signals, e.g., no matter whether the spectral angle is 0° or close to 
αk. That is not possible if subtraction is used since pixels with higher spectral angles 
are more suppressed for every choice of αk. Therefore, a sigmoid membership 
function (3) is a natural choice providing a soft pixel classification by spectral angles. 
The proposed function is commonly used for fuzzy thresholding [8]. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅−+

−⋅=
))(exp(1

11,0max,
c

sigmcomp p
RR

αα
  (3) 

 
The parameter αc is associated with the highest spectral angle representing the 

signal, with membership value equal to 0.5, and p is used for scaling the sigmoid 
function.  
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Fig.4. The angle histogram shown in Fig.3 is used for tuning the parameters αk and αc needed 
for equations (2) and (3), respectively. Both types of membership functions suppress spectral 

angles classified as background to 0, and leaves spectral angles associated with the true signals. 

3.3 Defining membership function parameters 

Parameter αc can be extracted by assuming that α0 is the peak associated with the 
background, i.e., the angle at the maximum value in the angle histogram, and αc is 
determined by the last local maximum in the series of local maxima between 0° and 
α0. For automatic calculation of αc, the original angle histogram is smoothed by a 
series of Gaussian filters with standard deviation σ ranging from zero to eight. For 
each σ the last local maximum of the smoothed angle histogram in the range 0 to α0 is 
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detected.  Thereafter αc is set to the average value of all last local maxima, increasing 
robustness. Pixels with spectral angles greater than αc should be classified as 
background, and thus the fuzzy membership function should have values close to 0 in 
that range, and pixels with spectral angles lower than αc are associated with the true 
signals, i.e., the membership function should be significantly greater than 0 in that 
range. Parameter p is typically set to one. Such a sigmoid membership function is 
shown in Fig.4. 

The same method is used for extraction of the background subtraction parameter 
αk. Unlike the sigmoid function, the tangent membership function shown in equation 
(2) is more rigid. The position of the peak αc can be used either to suppress the 
content to the right of the peak completely (αk’=αc) or to 50% of its value just like the 
sigmoid membership function: 0.5=1-tan(90°-αk”)⋅tanαc ⇒αk”=arctan(2⋅tanαc). 

4 Materials 

4.1 Image data 

Images used for testing the presented methods come from a study of protein complex 
formation in brain tissue. Brain tissue is highly autofluorescent due to the presence of 
lipofuscin and hemoglobin. Protein complexes are detected using the proximity 
ligation assay [9], where each detection event gives rise to a concatemeric DNA 
strand that folds into a micrometer sized coil, detected by Alexa555 labeled FISH 
probes excited at 563nm. Lipofuscin and hemoglobin fluorescence have very broad 
spectral profiles and are imaged using the FITC channel (excited at 488nm) where the 
Alexa555 signal is not seen. The image stacks are 1288x1024x30 voxels in size with 
signals distributed over a number of slices.  

To guarantee a fair comparison of the presented methods, a test set of 69 images 
acquired under the same conditions was randomly selected. 

4.2 Ground truth generation 

The complete image analysis of the material could be provided even without 
background suppression. Signals are small, bright and always have regular Gaussian 
shape meaning that the true signals are detected by careful shape modeling. To 
generate the ground truth used for comparison of the methods described in section 3, 
we produce binary 2D masks of signals by using the so called Stable Wave Detector 
[10]. 

5 Results 

Before either the 2D histogram or the spectral angle histogram was created, the data 
was shifted by subtracting the minimum intensity values in both channels separately. 
This corrected for the microscope intensity offset. Using similar dynamic range is not 
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essential, though the methods were tested for data sets with k0 varying from one to six 
(e.g., in the example shown in Fig.2A, k0=2.9). The plots shown in Fig.2-4 represent 
the relationship between the two channels of one of the test images (see Fig.1) from 
the set described in section 4.1. The strongest peak in Fig.3 and Fig.4 at k0=71° 
clearly shows that the expected range of the spectral angles representing 
autofluorescence is associated with the peak.  

For the sigmoid membership function αc was determined to 49.4°. For the tangent 
membership function the parameter for background subtraction αk’ was set to 
αc=49.4°, a reasonable choice for both methods since ordered pairs (R,G) of pixels 
representing signals are left on one side of the line G=k⋅R, where k=tanαk’, and pairs 
representing the background on the other side of the line (see the scatterplot in 
Fig.2B). The one-dimensional intensity profiles in Fig.5 show the difference between 
background subtraction using the tangent membership function, and fuzzy 
classification using the sigmoid membership function. Signals close to αc are more 
suppressed by background subtraction than by the sigmoid membership function. 
Although the sigmoid transformation is not linear, it will improve the result of the 
study as a larger number of signals can be enhanced, and thereby improve recall of 
signal counts. 
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Fig.5. Intensity distribution over one spatial dimension taken from an image in the data set 
described in Section 4.1 showing: (A) two signals over the background (one weak and one 
strong); (B) background; (C) the result of background subtraction, i.e., linear unmixing or 

fuzzy classification using the tangent membership function; (D) the result of fuzzy 
classification as defined in equation (5), using the sigmoid function, i.e., nonlinear unmixing. 
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5.1 Comparison 

In Section 3 we discussed unmixing methods – nonlinear unmixing (or fuzzy 
classification using the sigmoid membership function centered at αc) and linear 
unmixing, that can be implemented either as background subtraction determined by 
αk’=αc, or background subtraction determined by αk”=arctan(2⋅tanαc). In addition, we 
compared these methods with signal enhancement using a simple morphological top-
hat filter. The top-hat filtering was applied to the “red” Alexa 555 image.  A 
background image is created by opening the input image with a non-flat structuring 
element with the origin in its centre. Thereafter, the background image is subtracted 
from the input to yield an enhancement of the signals as defined in (4). The 
structuring element is modeled by the shape of a signal (i.e., values are chosen to 
match an average 3x3 size signal). 

,.., SERRR OMcomp ο−=
   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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152815
5155

28
1

     
  
    

SE
  

 (4) 

 
A very common method for background suppression, surface fitting, was not used 

or tested due to irregular variations of the background [11].  
Since images Rcomp produced by the four described methods have different intensity 

ranges, a fair comparison of the methods was guaranteed by fixing the “optimal” 
threshold to the intensity where exactly one false positive was detected (see value 1 in 
Fig.6). Finally, Fig.6 shows the result on the 69 test images. The left plot shows that 
both the sigmoid membership function and background subtraction with αk’=49.4° 
keep the number of false positives low (i.e., high precision). For such range of the 
intensity thresholds, recall is relatively low for all four methods, although the sigmoid 
membership function and background subtraction with αk”=66.8° have the highest 
recall values (i.e., true positive rate). Therefore, we conclude that the sigmoid 
membership function gives similar result to that of the tangent membership function 
with low αk considering suppression of false signals, and similar or even better result 
than the tangent membership function with high αk considering amplification of true 
signals. 
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Fig.6. Plots show precision and recall of each of the four methods applied to the image test 

set described in section 4. 
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Fig.7. (A) Red channel of the part of the image shown in Fig.1. Circles denote the ground truth. 
(B) Corresponding autofluorescence image. (C) The result of fuzzy classification (αc=49.4° and 

p=1) shows bright signals and flat background. (D) Top-hat filtering results in a non-flat 
background as it also enhances some of the structures in the auto-fluorescent tissue. (E,F) The 

results of background subtraction with αk’=αc=49.4° (E) and αk”=arctan(2tanαc)=66.8° (F) 
show either weaker signals than fuzzy classification using the sigmoid membership function or 
artifacts in the background. Images (C)-(F) are scaled to cover the full dynamic range and log 

transformed to visualize the variations in signal to background achieved with the different 
methods. 

Results produced by another choice of “optimal” threshold are shown in Table 1. 
For each image, the “optimal” threshold was determined by the maximal value of the 
F1-score. Precision and recall were calculated for all 69 images in the test set that had 
more than one signal detected giving mean values and standard deviations of 
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precision and recall. The previous conclusion is confirmed as the method based on 
fuzzy classification using the sigmoid membership function has the highest precision 
value when compared to the ground truth, together with linear unmixing that 
completely suppresses the background (αk’=αc). With a higher value of αk’, the 
precision was lower, though the recall was higher. On the other hand, the simple top-
hat filtering described by equation (4) had the highest recall value. This was expected 
because the “ground truth” was created by a similar, more advanced, shape-based 
algorithm. Finally, the high signal-to-noise ratio of the first two methods gave 
visually more appealing results as shown in Fig.7. 

Table 1. Mean values and standard deviations of precision and recall of the same image data 
used to generate Fig.6 with another choice of the “optimal” threshold, followed by signal-to-
noise ratio. 

Precision Recall SNR 
Methods: mean std mean std  
Sigmoid (αc=49.4°, p=1) 0.85 0.12 0.51 0.15 75 
Backg. sub. (αk”=66.8°) 0.66 0.20 0.58 0.17 24 
Backg. sub. (αk’=49.4°) 0.83 0.15 0.43 0.14 70 
Top-hat filtering 0.65 0.18 0.65 0.18 17 

6 Conclusions and further development 

Although the proposed algorithm is of higher complexity than simple background 
subtraction, these methods have shown to be useful (M. Jarvius, Dept. of Genetics and 
Pathology, Uppsala University, personal communication). By using the described 
methods it was possible to tune the parameters of the fuzzy classification rules and 
apply them on a large data set that consists of thousands of two-channel images that 
were not acquired with the constrains required for correct linear unmixing [7]. In spite 
of the high complexity of parameter extraction, time was saved in image acquisition 
when compared to multispectral imaging solutions, which require a large number of 
channels to be recorded. Also, storage of multispectral images is unnecessary since 
only one channel showing the signals and one channel showing background are 
required. 

Development of more robust algorithms for parameter extraction is a challenge. 
For instance, if image data was not disrupted by saturation, the background cluster 
would follow the normal distribution allowing us to determine αc by placing the angle 
threshold at certain standard deviation. Finally, if the number of signals was larger, 
the spectral angle histogram would be bimodal. In that case αc could be determined 
by an algorithm that searches for a minimum between the two peaks. 

Spectral angle histograms can be used for extraction of the parameters for cross-
talk suppression, but also for generation of fuzzy classification rules that would 
amplify each fluorophore without changing the original intensity values as done by 
linear unmixing. As the proposed method performs pixel classification, it is 
independent of the spatial and time resolution of the image data, and thus directly 
applicable to 3D images or time-sequences. All described algorithms were 
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implemented in Matlab (The MathWorks, Inc., Natick, MA), and are available from 
the authors on request for research purposes.  

Using fuzzy classification rules in general can be considered as nonlinear 
unmixing, preserving the original intensities of the signals of interest, but affecting 
the shape of the resulting objects. In such situations, the method can provide masks 
for fuzzy segmentation or classification, but should be used with care as a substitute 
for classical linear unmixing in quantitative analysis of biological data.  
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