
Logical Methods in Computer Science
Vol. 5 (2:16) 2009, pp. 1–36
www.lmcs-online.org

Submitted Mar. 24, 2009
Published Jun. 30, 2009

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC

JESPER BENGTSON AND JOACHIM PARROW

Department of Information Technology, University of Uppsala, Sweden
e-mail address: {Jesper.Bengtson,Joachim.Parrow}@it.uu.se

Abstract. We formalise the pi-calculus using the nominal datatype package, based on
ideas from the nominal logic by Pitts et al., and demonstrate an implementation in Is-
abelle/HOL. The purpose is to derive powerful induction rules for the semantics in order
to conduct machine checkable proofs, closely following the intuitive arguments found in
manual proofs. In this way we have covered many of the standard theorems of bisimulation
equivalence and congruence, both late and early, and both strong and weak in a uniform
manner. We thus provide one of the most extensive formalisations of a process calculus
ever done inside a theorem prover.

A significant gain in our formulation is that agents are identified up to alpha-equivalence,
thereby greatly reducing the arguments about bound names. This is a normal strategy for
manual proofs about the pi-calculus, but that kind of hand waving has previously been
difficult to incorporate smoothly in an interactive theorem prover. We show how the nom-
inal logic formalism and its support in Isabelle accomplishes this and thus significantly
reduces the tedium of conducting completely formal proofs. This improves on previous
work using weak higher order abstract syntax since we do not need extra assumptions to
filter out exotic terms and can keep all arguments within a familiar first-order logic.

1. Introduction

1.1. Motivation. As the complexity of software systems increases, the need is growing
to ensure their correct operation. One way forward is to create particular theories or
frameworks geared towards particular application areas. These frameworks have the right
kind of abstractions built in from the beginning, meaning that proofs can be conducted at a
high level. The drawback is that different areas need different such frameworks, resulting in
a proliferation and even abundance of theories. A prime example can be found in the field
of process calculi. It originated in work by Milner in the late 1970s [27] and was intended
to provide an abstract way to reason about parallel and communicating processes. Today
there are many different strands of calculi addressing specific issues. Each of them embodies
a certain kind of abstraction suitable for a particular area of application.

For each such calculus a certain amount of theoretical groundwork must be laid down.
Typical examples include definitions of the semantics, establishing substitutive properties,

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Pi-calculus, Theorem proving, Isabelle, Nominal logic.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (2:16) 2009
c© J. Bentson and J. Parrow
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. BENTSON AND J. PARROW

structures for inductive proof strategies etc. This groundwork must naturally be correct
beyond doubt (if there is an error in it then all proofs conducted in that calculus will be
incorrect). The idea to use formal verification of the groundwork itself is therefore natural.
In this paper we shall present an improved method to accomplish this.

1.2. Theorem provers. There exist today several proof assistants, aka theorem provers:
Coq [11], Isabelle [32], Agda [1], PVS [34], Nuprl [16] and HOL [23], just to name a few.
These theorem provers are interactive. They have many automated tactics, and the user can
provide additional proof strategies. Many are also getting better and easier to use, and so the
concept of having fully machine checked proofs has recently become far more realistic. As
an indication of this several major results have been proven over the last few years, including
the four and five colour theorems [7, 22], Kepler’s conjecture [33] and Gödel’s incompleteness
theorem [41]. Significant advances in applications related to software are summarized in the
POPLmark Challenge [6], a set of benchmarks intended both for measuring progress and
for stimulating discussion and collaboration in mechanizing the metatheory of programming
languages. There are for example results on analysis of typing in system F and light versions
of Java. The theorem prover Isabelle is also currently used to verify software in the Verisoft
project [3].

We want to emphasize that these types of tools are now being transferred to industry.
In [12], a group at Microsoft Research in Cambridge compiles a subset of F♯ (a Microsoft
product) code to the pi-calculus and security properties are checked using ProVerif [13]. This
work was later extendend in [9] where a cryptographic type checker was constructed for F♯
which handles a larger set of problems. The ideas from these are now being transferred
into other Microsoft products. Also, the Spec♯ [2] programming system is integrated in
the Microsoft Visual Studio environment for the .NET platform and contains an automatic
theorem prover.

1.3. The π-calculus. As the basic underlying model we have chosen the π-calculus, which
since its conception in the late 1980s by Milner, Parrow and Walker [30] has had a signifi-
cant impact on the way formal methods handle mobile systems. The mechanism of name-
passing, in combination with the paradigm of static binding, where the scope of names
may be dynamically extended by means of communication to include the receiver, has
turned out to be surprisingly expressive for a vast variety of programming idioms: abstract
data types, lambda-calculus, i.e. functional programming, object-oriented programming,
imperative programming, logic and concurrent constraint programming, and primitives for
encryption/decryption. The π-calculus has influenced the development of many high-level
programming languages and it has triggered a whole family of related calculi. e.g. spi [5],
join [17], fusion [36], blue [14], the applied π-calculus [4] and ambients [15]. In essence, the
π-calculus has now grown out of a single formalism into a general field where components of
formalisms, such as operators, semantics and proof methods, can be more freely combined.

1.4. Approach. The goal of our project is to provide a library in an automated theorem
prover, Isabelle/HOL [32], which allows users to do machine checked proofs on the ground-
work of process calculi. The guiding principle is that the proofs should correspond very
closely to the traditional manual proofs present in the literature. This means that for a
person who has completed these proofs manually very little extra effort should be required

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 3

in order to let Isabelle check them. Today those proofs are reasonably well understood,
but capturing them in a theorem prover has until now been a daunting task. The reason is
mainly related to bound names and the desire to abstract away from α-equivalence [6].

In the literature it is not uncommon to find statements such as: “henceforth we shall not
distinguish between α-equivalent terms” or “we assume bound names to always be fresh”,
even though it is left unsaid exactly what this means. In [40] Sangiorgi and Walker write:

In any discussion, we assume that the bound names of any processes or ac-
tions under consideration are chosen to be different from the names free in
any other entities under consideration, such as processes, actions, substitu-
tions and sets of names.

And in [35] we can find:

... we will use the phrase “bn(α) is fresh” in a definition to mean that the
name in bn(α), if any, is different from any free name occurring in any of
the agents in the definition.

This kind of reasoning does not necessarily imply that proofs conducted in this manner
are incorrect, only that they are not fully formalised.

Our approach is to formulate the π-calculus using ideas from nominal logic developed
by Pitts et al. [37, 21, 42]. This is a first order logic designed to work with calculi using
binders. It maintains all the properties of a first order logic and introduces an explicit
notion of freshness of names in the terms. Gabbay’s thesis [18] uses it to introduce FM
set theory, this is the standard ZF set theory but with an extra axiom for freshness of
names. Recent work by Urban and Tasson [43] extends this work using ideas from [37] and
solves the problem with freshness without introducing new axioms. The techniques have
been implemented into the theorem prover Isabelle/HOL, in a nominal datatype package,
so that when defining nominal datatypes, Isabelle will automatically generate a type which
models the datatype up to α-equivalence as well as induction principles and a recursion
combinator allowing the user to create functions on nominal datatypes.

1.5. Results. Our contribution is to use the nominal package in Isabelle to describe the
π-calculus. We have proved substantial portions of [30] using these techniques. More
specifically, we have proven that strong equivalence and weak congruence are congruence
relations for both late and early operational semantics, that all structurally congruent terms
are bisimilar and that late strong equivalence, weak bisimulation and weak congruence are
included in their early counterparts. To our knowledge, properties about weak equivalences
of the π-calculus have never before been formally derived inside a theorem prover. Our
proof method is to lift the strong operational semantics to a weak one, enabling us to port
our proofs between the two semantics. Moreover, our proofs follow their pen-and-paper
equivalents very closely inside a first-order environment. In other words, the extra effort to
have proofs checked by a machine is not prohibitive.

1.6. Exposition. In the next section we explain some basic concepts of the nominal datatype
package. We do not give a full account of it, only enough that a reader may follow the rest
of our paper. In Section 3 we cover the strong late operational semantics of the π-calculus
as well as the induction and case analysis rules we have created for the semantic rules. Sec-
tion 4 treats strong late bisimulation, the proofs that it is preserved by all operators except
input prefix and that strong equivalence is a congruence. In Section 5 we show the proof

4 J. BENTSON AND J. PARROW

strategies for one of our main results in depth demonstrating how closely our formalised
proofs map their pen-and-paper equivalents. Section 6 handles the structural congruence
rules and the proof that all structurally congruent terms are also bisimilar. We cover the
weak late operational semantics in Section 7 and prove that weak bisimulation is preserved
by all operators except sum and input prefix and that weak congruence is a congruence. In
Section 8 we formalise the early π-calculus, both strong and weak, and prove all the results
which we have for the late semantics for early. We also prove that all late bisimulation rela-
tions are a subset of their corresponding early ones. In the concluding section we compare
our efforts to related work and comment on planned further work. The Isabelle source files
can be found at http://www.it.uu.se/katalog/jesperb/pi.

2. The pi-calculus in Isabelle

For a more thorough presentation of the nominal datatype package in Isabelle the reader is
referred to [43], but enough basic definitions will be covered here for the reader to understand
the rest of this paper. A nominal datatype definition is like an ordinary data type but it
explicitly tags the binding occurrences of names. For example, a data type for λ-calculus
terms would in this way tag the name in the abstraction. The point is that the nominal
package in Isabelle automatically generates induction rules where α-equivalent terms are
identified, thus saving the user much tedium in large proofs.

At the heart of nominal logic is the notion of name swapping where names are a count-
ably infinite set of atomic terms. If T is any term of permutation type (a term which
supports permutations of its names) and a and b are names then (a b) • T denotes the
term where all instances of a in T become b and vice versa. All names (even the binding
and bound occurrences) are swapped in this way. A permutation p is a finite sequence of
swappings. If p = (a1 b1) · · · (an bn) then p • T means applying all swappings in p to T ,
beginning with the last element (an bn).

Permutations are mathematically well behaved. They very rarely change the properties
of a term. Most importantly, α-equivalence is preserved by permutations. The property of
being preserved by permutations is often called equivariance. We shall mainly use equivari-
ance on binary relations, where the definition is:

Definition 2.1. Equivariance

eqvt R
def
= ∀p T U. (T, U) ∈ R =⇒ (p • T, p • U) ∈ R

Another key concept is the notion of support. The definition, in general, is that the support
supp T of a term T is the set of names which can affect T in permutations. In other
words, if p is a permutation only involving names outside the support of T then p • T = T .
Remembering that α-equivalent terms are identified we see that the support corresponds to
the free names in calculi like the λ-calculus.

A crucial property is that the support of a term is finite. This implies that for any term
it is always possible to find a name outside its support. We say that a name a is fresh for
a term T , written a ♯ T , if a is not in the support of T .

Permutations can be used to capture α-equivalence. Let [x].T stand for any operator
that binds x in T .

Proposition 2.2. [x].T = [y].U =⇒ (x = y ∧ T = U) ∨ (x 6= y ∧ x ♯ U ∧ T = (x y) • U)

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 5

If [x].T = [y].U then either x and y are equal and T and U are α-equivalent or x is not
equal to y and fresh in U and T is α-equivalent to U with all occurrences of x swapped with
y and vice versa. Another way to capture α-equivalence is the following:

Proposition 2.3. c ♯ (x, y, T, U) ∧ [x].T = [y].U =⇒ (x c) • T = (y c) • U

Here and in the rest of the paper we use the word “proposition” for something that Isabelle
generates automatically.

We use a version of the monadic π-calculus [30], and assume that the reader is familiar
with the basic ideas of its syntax and semantics.

Definition 2.4. Defining the π-calculus in Isabelle.

Nominal declaration in Isabelle Notation in this paper

nominal datatype pi = PiNil 0

| Tau pi τ.P
| Input name "<<name>> pi” a(x).P
| Output name name pi āb.P
| Match name name pi [a = b]P
| Mismatch name name pi [a 6= b]P
| Sum pi pi P + Q
| Par pi pi P | Q
| Res "<<name>> pi" (νx)P
| Bang pi !P

This definition is an example of Isabelle notation, where ≪name≫ pi indicates that name

is bound in pi . For the rest of the paper we shall use the traditional notation for π-calculus
terms as specified in the previous definition.

The nominal datatype package automatically generates lemmas for reasoning about
α-equivalence between processes – the ones generated from Prop. 2.2 can be found in the
following proposition.

Proposition 2.5. The most commonly used α-equivalence rules for the Input- and the

Restriction case.

Input: a(x).P = b(y).Q =⇒ a = b ∧ ((x = y ∧ P = Q) ∨
(x 6= y ∧ x ♯ Q ∧ P = (x y) • Q))

Restriction: (νx)P = (νy)Q =⇒ (x = y ∧ P = Q) ∨
(x 6= y ∧ x ♯ Q ∧ P = (x y) • Q)

Most modern theorem provers automatically generate induction rules for defined datatypes.
The nominal datatype package does the same for nominal datatypes but with one addition:
bound names which occur in the inductive cases can be assumed to be disjoint from any
finite set of names. This greatly reduces the amount of manual α-conversions.

Functions over nominal datatypes have one restriction – they may not depend on the
bound names in their arguments. Since nominal types are equal up to α-equivalence two
equal terms may have different bound names. When creating recursive functions over
nominal datatypes in Isabelle, one has to prove that this property holds for all instantiations
of the function. The nominal package provides the appropriate proof conditions.

6 J. BENTSON AND J. PARROW

Our only nominal function is substitution where P{a/b} (which can be read P with a
for b) is the agent obtained by replacing all free occurrences of b in P with a.

3. Operational semantics

3.1. Definitions. We use the standard operational semantics [30]. Here transitions are of
the form P α−→ P ′, where α is an action. A first attempt, which works well for simpler
calculi like CCS, is to inductively define a set of tuples containing three elements: a process
P , an action α and the α-derivative of P [8].

However, in the π-calculus the action α may bind a name, and the scope of this binding
extends into P ′. This observation is made already in the original presentation of the π-
calculus [30] where lemmas concerning variants of transitions are spelled out. In his tutorial
on the polyadic pi-calculus [28] Milner uses ”commitments” rather than labelled transitions.
A transition here corresponds to a pair consisting of an agent and a commitment where the
latter may have binders and contains both the action and derivative process. We thus
face a discrepancy between a more traditional syntax for transitions (looking like tuples
of three elements) and the intended semantics (that action and derivative in reality is
one construct with names that can be bound in all of it). In many presentations of the
π-calculus this issue is glossed over, and if α-conversions are not defined rigorously the
three-element syntax for transitions works fine. But here it poses a problem — it would
require us to explicitly state the rules for changing the bound variable, and we would not be
able to rely on the otherwise smooth treatment of α-variants in our framework. Therefore,
in our implementation we follow [28], with a slight change of notation to avoid confusion
of prefixes and commitments, and define a residual-datatype which contains both action
and derivative. It binds the bound names of an action also in the derivative. (A similar
technique is also used by Gabbay when formalising the π-calculus in FM set theory [20].)

Definition 3.1. The residual datatype

datatype subject = Input name

| BoundOutput name

datatype freeRes = Output name name

| Tau

nominal_datatype residual = BoundResidual subject "<<name>> pi"

| FreeResidual freeRes pi

In this paper we shall continue to write pairs of processes and residuals as transitions
in the familiar way, and we need to distinguish between actions that bind names and those
that do not. We introduce the following notation.

Definition 3.2.

(i) P a≪x≫−−−−→ P ′ denotes a transition with the bound name x in the action. Note that a
is of type subject. The residual by itself is written a≪x≫ ≺ P ′.

(ii) P α−→ P ′ denotes a transition without bound names. Note that α is of type freeRes.
The residual by itself is written α ≺ P ′.

(iii) A transition can also be written as P 7−→ Res where P is an agent and Res is a
residual, for example τ.P 7−→ τ ≺ P

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 7

a(x).P a(x)−−→ P Input āb.P āb−→ .P Output τ.P τ−→ P Tau

P 7−→ Res

[a = a]P 7−→ Res
Match

P 7−→ Res a 6= b

[a 6= b]P 7−→ Res
Mismatch

P āb−→ P ′ a 6= b

(νb)P ā(b)−−→ P ′ Open
P 7−→ Res

P + Q 7−→ Res
Sum

P a≪x≫−−−−→ P ′ x ♯ Q

P | Q a≪x≫−−−−→ P ′ | Q
ParB

P α−→ P ′

P | Q α−→ P ′ | Q
ParF

P a(x)−−→ P ′ Q āb−→ Q′

P | Q τ−→ P ′{b/x} | Q′ Comm

P a(x)−−→ P ′ Q ā(y)−−→ Q′ y ♯ P

P | Q τ−→ (νy)(P ′{y/x} | Q′)
Close

P a≪x≫−−−−→ P ′ y ♯ (a, x)

(νy)P a≪x≫−−−−→ (νy)P ′ ResB

P α−→ P ′ y ♯ α

(νy)P α−→ (νy)P ′ ResF
P | !P α−→ P ′

!P α−→ P ′ Replication

Figure 1: The Par - and the Res-rule in the operational semantics of the π-calculus have
been split. Symmetric versions have been elided.

As previously mentioned, functions over nominal datatypes cannot depend on bound names.
This poses a slight problem, since traditionally some of the operational rules have condi-
tions on the bound names. An example of this is the Par rule in the standard operational
semantics which states that the transition P | Q α−→ P ′ | Q can occur only if P α−→ P ′

and bn(α) ∩ fn(Q) = ∅. A function such as bn does not exist in nominal logic and thus
cannot be created using the nominal datatype package. An easy solution is to split the op-
erational rules which have these types of conditions into two rules — one for the transitions
with bound names, and one for the ones without. Doing this does not create extra proof
obligations as most proofs have to consider bound and free transitions separately anyway.
We can now define our operational semantics using inductively defined sets which will
contain pairs of processes and residuals. The Semantics, including the split rules for Par

and Res can be found in Fig. 1.
As mentioned previously, permutations are usually very well behaved. The following

proposition is generated automatically by the nominal package.

Proposition 3.3. P 7−→ Res =⇒ p • P 7−→ p • Res

8 J. BENTSON AND J. PARROW

3.2. Induction and case analysis rules.

3.2.1. Automatically generated rules. Isabelle will automatically create rules for both in-
duction and case analysis of the semantics. They are specifically tailored to allow induction
over all possible transitions but can also be custom made to do induction or case analysis
over specific types of processes, such as those composed by the |-operator. They will have
an assumption of the form P 7−→ Res , which is the term with which we are working, and
a logical proposition Prop which is what we want to prove. When applied these rules will
generate a set of subgoals where every subgoal corresponds to one action that the process P
could take to end up in Res – in short, Prop needs to be proven for all possible transitions
for the rule to hold. The rules do, however, assume that the equivalence relation used is
syntactic equivalence and not α-equivalence. The nominal datatype package automatically
creates induction rules for nominal datatypes as well as for inductively defined sets or pred-
icates. The induction rule generated for the semantics is the largest possible one which does
induction over all operational rules and there is currently no way to automatically generate
case analysis rules for transitions of a certain form. To derive rules for the cases which do
not make use of bound names is unproblematic. In fact, Isabelle will be able to derive the
following case analysis rules with very little help.

Proposition 3.4. The automatically generated case analysis rule for tau-transitions.

τ.P α−→ P ′

α = τ ∧ P = P ′ =⇒ Prop

Prop

Proposition 3.5. The automatically generated case analysis rule for output transitions.

āb.P α−→ P ′

α = āb ∧ P = P ′ =⇒ Prop

Prop

Proposition 3.6. The automatically generated case analysis rule for matches.

[a = b]P 7−→ Res
a = b ∧ P 7−→ Res =⇒ Prop

Prop

Proposition 3.7. The automatically generated case analysis rule for mismatches.

[a 6= b]P 7−→ Res
a 6= b ∧ P 7−→ Res =⇒ Prop

Prop

Proposition 3.8. The automatically generated case analysis rules for sums.

P + Q 7−→ Res

P 7−→ Res =⇒ Prop

Q 7−→ Res =⇒ Prop

Prop

The rest of the rules generated by Isabelle for our operational semantics deal with bound
names and suffer from three problems, which we now address in turn.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 9

3.2.2. Problems with generated bound names. The first problem is that some semantic case
analysis rules generate bound names. When the rule is applied in the context of a proof,
there is no a priori guarantee that these names are fresh in this larger context. We therefore
derive rules for induction and case analysis which are parameterized on a finite set of names,
the “context names”, which the user can provide when applying the rule. The bound
names generated by the rules are guaranteed to be fresh from the context names (just as is
guaranteed for induction rules genereated by the nominal package, and for the same reason:
avoiding name clashes and α-conversions later in the proof). This idea stems from [43] but
was developed independently of similar work in [45]. The logical framework has also been
covered in [38].

As an example a derived rule for case analysis of the parallel operator is shown in the
following proposition where the parameter C represents a set of context names and can be
instantiated with any nominal datatype:

Lemma 3.9. The derived case analysis rule for the parallel operator with no bound names

in the transition.

P | Q α−→ R

∀P ′. P α−→ P ′ ∧ R = P ′ | Q =⇒ Prop

∀Q′. Q α−→ Q′ ∧ R = P | Q′ =⇒ Prop

∀P ′ Q′ a x b. P a(x)−−→ P ′ ∧ Q āb−→ Q′ ∧ α = τ∧
R = P ′{b/x} | Q′ ∧ x ♯ C =⇒ Prop

∀P ′ Q′ a x b. P āb−→ P ′ ∧ Q a(x)−−→ Q′ ∧ α = τ∧
R = P ′ | Q′{b/x} ∧ x ♯ C =⇒ Prop

∀P ′ Q′ a x y. P a(x)−−→ P ′ ∧ Q ā(y)−−→ Q′ ∧ y ♯ P ∧ α = τ ∧
R = (νy)(P ′{y/x} | Q′) ∧ x ♯ C ∧ y ♯ C =⇒ Prop

∀P ′ Q′ a x y. P ā(y)−−→ P ′ ∧ Q a(x)−−→ Q′ ∧ y ♯ Q ∧ α = τ ∧
R = (νy)(P ′ | Q′{y/x}) ∧ x ♯ C ∧ y ♯ C =⇒ Prop

Prop

Each all-quantified term corresponds to a possible transition by the process P | Q. The two
semantic rules which introduce bound names are the Comm- and the Close rules. The rule
can be instantiated with an arbitrary term C and these bound names will be set fresh for
that term.

3.2.3. Problems with equivalence checks on terms. The second problem is that in case anal-
ysis, equivalence checks between terms always appear. If these terms contain bound names,
such as (νx)P = (νy)Q, then normal unification is not possible. As seen in Prop. 2.2 and
2.3, every such equivalence check produces either two cases which both have to be proven
or one case with several permutation and freshness conditions. As an example, a rule for
case analysis on the ν-operator with no bound names in the action can be found in the
following proposition:

10 J. BENTSON AND J. PARROW

Proposition 3.10. The automatically generated case analysis rule for the ν-operator, based

on Prop. 2.2, where no bound name occurs in the action.

(νx)P α−→ P ′

∀Q Q′ β y. Q β−→ Q′ ∧ y ♯ β ∧ (νx)P = (νy)Q ∧ α = β ∧ P ′ = (νy)Q′ =⇒ Prop

Prop

The conjunct (νx)P = (νy)Q poses a problem as we have to show Prop for all cases such
that the equivalence holds. We can reason about this equality using either Prop. 2.2 or
Prop. 2.3 but neither of these rules are convenient to work with. Prop. 2.2 causes a case
explosion which forces us to prove the same thing several times for different permutations on
terms and Prop. 2.3 introduces extra permutations which makes the proof more cumbersome
to work with. We therefore use the following derived lemma in place of the original case
analysis rule:

Lemma 3.11. Case analysis rule derived from Prop. 3.10.

(νx)P α−→ P ′

∀P ′′. P α−→ P ′′ ∧ x ♯ α ∧ P ′ = (νx)P ′′ =⇒ Prop

Prop

The main idea of the proof is to find a P ′′ which suitably depends on the universally
quantified terms in the second assumption of the original proposition.

The other rule which require this treatment is the case analysis rule for the parallel
operator where the transition contains a bound name.

Lemma 3.12. Case analysis rule for the parallel operator with a bound name in the tran-

sition.

P | Q a≪x≫−−−−→ R

∀P ′. P a≪x≫−−−−→ P ′ ∧ x ♯ Q ∧ R = P ′ | Q =⇒ Prop

∀Q′. Q a≪x≫−−−−→ Q′ ∧ x ♯ P ∧ R = P | Q′ =⇒ Prop

Prop

3.2.4. Problems with multiple bound names in terms. The third problem arises when several
bound names occur in the term that you want to do case analysis on. We have already shown
how we can ensure that any newly generated bound names are disjoint from any context we
might be interested in. The problem here is that since multiple bound names are present
before case analysis starts, any properties regarding them are fixed in the environment and
if we have a name clash, we have to do manual α-conversions. There are two rules that
suffer from this problem, where the simplest one is the one for input-prefix. To solve this
problem, we derive the following case analysis rule.

Lemma 3.13. The derived case analysis rule for the input-prefix.

a(x).P b(y)−−→ P ′

a = b ∧ P ′ = (x y) • P =⇒ Prop

Prop

The other rule which requires this treatment is the restriction case where a bound name
appears in the transition.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 11

Lemma 3.14. The derived case analysis rule for restriction with a bound name in the

transition.

(νx)P a≪y≫−−−−→ P ′

x 6= y
∀b P ′′. P b̄x−→ P ′′ ∧ b 6= x ∧ a = BoundOutput b ∧ P ′ = (x y) • P ′′ =⇒ Prop

∀P ′′. P a≪y≫−−−−→ P ′′ ∧ x ♯ a ∧ x 6= y ∧ P ′ = (νx)P ′′ =⇒ Prop

Prop

In this rule we require x and y to be disjoint. The two applicable rules from the semantics
have conflicting requirements on the bound names – one requires them to be the same,
and the other requires them to be disjoint. To keep the generality of the lemma, we keep
the bound names disjoint and in the Open case permute the names in the derivative. As
we shall se later, we will always be in a context where we can guarantee that x and y are
separate when applying this rule.

3.2.5. Induction. The remaining operator is the !-operator which requires an induction rule
rather than a case analysis rule as it is the only operator which occurs in the premise of its
inference rule, as can be seen in Fig. 1. As in Lemma 3.9, C is a parameter representing
the names with which new bound names may not clash.

Lemma 3.15. The derived induction rule for the !-operator.

!P 7−→ Res
(1) ∀a x P ′ C. P a≪x≫−−−−→ P ′ ∧ x ♯ P ∧ x ♯ C =⇒ Prop C (P | !P) (a≪x≫ ≺ P ′ | !P)
(2) ∀α P ′ C. P α−→ P ′ =⇒ Prop C (P | !P) (α ≺ P ′ | !P)
(3) ∀a x P ′ C. !P a≪x≫−−−−→ P ′ ∧ x ♯ P ∧ x ♯ C ∧ Prop C (!P) (a≪x≫ ≺ P ′) =⇒

Prop C (P | !P) (a≪x≫ ≺ P | P ′)
(4) ∀α P ′ C. !P α−→ P ′ ∧ Prop C (!P) (α ≺ P ′) =⇒ Prop C (P | !P) (α ≺ P | P ′′)
(5) ∀a x b P ′ P ′′ C. P a(x)−−→ P ′∧ !P āb−→ P ′′ ∧ Prop C (!P) (āb ≺ P ′′) ∧ x ♯ C =⇒

Prop C (P | !P) (τ ≺ P ′{b/x} | P ′′)
(6) ∀a x b P ′ P ′′ C. P āb−→ P ′∧ !P a(x)−−→ P ′′ ∧ Prop C (!P) (a(x) ≺ P ′′) ∧ x ♯ C =⇒

Prop C (P | !P) (τ ≺ P ′ | P ′′{b/x})
(7) ∀a x y P ′ P ′′ C. P a(x)−−→ P ′∧ !P ā(y)−−→ P ′′ ∧ Prop C (!P) (ā(y) ≺ P ′′) ∧ x ♯ C ∧

y ♯ P ∧ y ♯ C =⇒ Prop C (P | !P) (τ ≺ (νy)(P ′{y/x} | P ′′))
(8) ∀a x y P ′ P ′′ C. P ā(y)−−→ P ′∧ !P a(x)−−→ P ′′ ∧ Prop C (!P) (a(x) ≺ P ′′) ∧ x ♯ C ∧

y ♯ P ∧ y ♯ C =⇒ Prop C (P | !P) (τ ≺ (νy)(P ′ | P ′′{y/x}))

Prop C (!P) Res

Each numbered line corresponds to one way that an action can be inferred from a replication.
Line (1) and (2) cover the case where a single process makes an action, line (3) and (4)
perform the inductive step where a process in the smaller chain of replicated processes
makes an action. Line (5) and (6) handle communication and line (7) and (8) handle scope
extrusion.

The derived lemma is an induction rule in that it has the induction hypothesis Prop

occurring on the left hand side of the implications in the inductive rules where ! occurs. A
simpler rule which only makes use of the inference rule for ! is available, but the proofs we

12 J. BENTSON AND J. PARROW

are interested in would have to make use of the rules for the |-operator to reason about all
possible transitions that a process of the form !P could do. This induction rule combines
the two in one rule.

4. Strong bisimulation

4.1. Simulation. Intuitively, two processes are said to be bisimilar if they can mimic each
other step by step. Traditionally, a bisimulation is a symmetric binary relation R such that
for all processes P and Q in R, if P can do an action, then Q can mimic that action and
their corresponding derivatives are in R.

When defining bisimulation between two processes in the π-calculus, extra care has to
be taken with respect to bound names in actions. Consider the following processes:

P
def
= a(u).(νb)b̄x.0

Q
def
= a(x).0

Clearly P and Q should be bisimilar since they both can do only one input action along a
channel a and then nothing more. But since x occurs free in P , P cannot be α-converted
into a(x).(νb)b̄x. However, since processes have finite support, there exists a name w which
is fresh in both P and Q and after α-converting both processes, bisimulation is possible.
Hence, when reasoning about bisimulation, we must restrict attention to the bound names
of actions which are fresh for both P and Q. One of our main contributions is how this
is achieved without running into a multitude of α-conversions. Our formal definition of
bisimulation equivalence uses the following notion, where R is a binary relation on agents.

Definition 4.1. The agent P can simulate the agent Q preserving R, written P R Q, if

(∀a x Q′. Q a≪x≫−−−−→ Q′ ∧ x ♯ P =⇒
∃P ′. P a≪x≫−−−−→ P ′ ∧ derivative(a, x, P ′, Q′, R)) ∧

(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α−→ P ′ ∧ (P ′, Q′) ∈ R)

where

derivative(a, x, P ′, Q′, R)
def
=

case a of Input ⇒ ∀u. (P ′{u/x}, Q′{u/x}) ∈ R
| BoundOutput ⇒ (P ′, Q′) ∈ R

Note that the argument a in derivative is of type subject as described in Def. 3.1. Thus,
the requirement is that if Q has an action then P has the same action, and the derivatives
P ′ and Q′ are in R.

Equivariance also needs to be established for simulations. More specifically, we need to
prove the following lemma:

Lemma 4.2. If P R Q, R is a subset of R′ and R′ is equivariant then p •P R′ p •Q.

Proof. By Def. 4.1. The intuition is to apply the inverse permutation of p to cancel it out.
The inverse can be applied using Lemma 3.3 and the assumption eqvt R′.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 13

The traditional way to define strong bisimulation equivalence is to say that R is a bisimula-

tion if it is symmetric and that for all agents P,Q it holds that (P,Q) ∈ R → P R Q; the
strong bisimulation equivalence is then the union of all strong bisimulations. As we shall
see in a moment, an alternative definition using direct coinduction, similar to the approach
in [25], yields shorter proofs. Our main improvement, however, is in the treatment of the
bound name x. In Def. 4.1 it is by definition ensured not to be among the free names in
P , but when we use it within a complex proof we will run into a massive case analysis on
whether x is equal to other names used in the proof. In the same way as in Lemma 3.9 we
bypass this tedium and derive the following introduction rule for an arbitrary nominal data
term C. This term is provided by the user to ensure that the bound name is distinct from
any name occurring so far in the proof.

Lemma 4.3. An introduction rule for simulation avoiding name clashes.

eqvt R
∀a x Q′. Q a≪x≫−−−−→ Q′ ∧ x ♯ C =⇒

∃P ′. P a≪x≫−−−−→ P ′ ∧ derivative(a, x, P ′, Q′, R)
∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α−→ P ′ ∧ (P ′, Q′) ∈ R

P R Q

This is used extensively in our proofs. We can in this way make sure that whenever bound
names appear in our proof context, these bound names do not clash with other names which
would force us to do α-conversions. The amount of α-conversions we have to do manually
is reduced to the instances where they would be required in a manual proof.

Note that we need an extra requirement that our simulation relation is equivariant.
The reason is that if the relation is not closed under permutations, we cannot α-convert our
processes. Fortunately, all relations of interest turn out to be equivariant and the proofs
trivial.

4.2. Preservation properties. Our simulations are parametrised on an arbitrary relation
R. We exploit this by providing, for each operator, a set of constraints on R such that the
operator preserves R. This set of constraints should be kept as small as possible as they
will have to be proven when we prove preservation properties of bisimulation. In this section
we show all proofs that are needed to show that a relation is preserved by all operators.

We first establish lemmas for reflexivity and transitivity.

Lemma 4.4. Id ⊆ R =⇒ P R P

Proof. By the definition of simulation.

Lemma 4.5. P R Q ∧ Q R′ R ∧ eqvt R′′ ∧R′ ◦ R ⊆ R′′ =⇒ P R′′ R

Proof. By Lemma 4.3 and setting C to (P, Q) to make the bound names which occur in the
transitions disjoint from P and Q. We would otherwise have to do manual α-conversions
when traversing the simulation chain.

We can now move on to our preservation lemmas.

Lemma 4.6. (P, Q) ∈ R =⇒ τ.P R τ.Q

Proof. By Def. 4.1 and Prop. 3.4.

14 J. BENTSON AND J. PARROW

Lemma 4.7. (P, Q) ∈ R =⇒ āb.P R āb.Q

Proof. By Def. 4.1 and Prop. 3.5.

In order for a relation to preserved by the input prefix it needs to be closed under substi-
tutions. We write Rs for the closure of the relation R under all substitutions.

Definition 4.8. P Rs Q
def
= ∀σ. (Pσ) R (Qσ) where σ is a chain of substitutions.

Lemma 4.9. (P, Q) ∈ Rs ∧ eqvt R =⇒ a(x).P R a(x).Q

Proof. By Lemma 4.3 and setting C to (x, P). Lemma 3.13 can then be used to finish the
proof.

Lemma 4.10.

P R Q

[a = b]P R [a = b]Q

Proof. By Def. 4.1 and Prop. 3.6.

Lemma 4.11.

P R Q

[a 6= b]P R [a 6= b]Q

Proof. By Def. 4.1 and Prop. 3.7.

Lemma 4.12.

P R Q
Id ⊆ R

P + S R Q + S

Proof. By Def. 4.1, Prop. 3.8 and Lemma 4.4.

The remaining preservation lemmas do not require that the relation reasoned about in the
assumptions are the same as in the conclusions. It suffices to require them to be related by
a set of constraints. The reason for this will be clarified when we cover bisimulation, suffice
here to say that it makes the lemmas more general.

Lemma 4.13.

P R Q (P, Q) ∈ R Id ⊆ R
∀P Q S. (P, Q) ∈ R =⇒ (P | S, Q | S) ∈ R′

∀P Q x. (P, Q) ∈ R′ =⇒ ((νx)P, (νx)Q) ∈ R′

P | S R′ Q | S

Proof. By the definition of . Lemma 3.12 is used to prove the cases where bound names
occur in the transition and Lemma 3.9 is used otherwise. When using Lemma 3.9 C is set
to (P, S). This proof will be covered more extensively in Section 5.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 15

Lemma 4.14.

P R Q eqvt R eqvt R′ R ⊆ R′

∀P Q x. (P, Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R′

(νx)P R′ (νx)Q

Proof. By Lemma 4.3 and setting C to (x, P). Lemma 3.14 and 3.10 are then used for the
case analysis. R has to be equivariant since the Open case introduces permutations which
need to be applied to the relation.

The remaining preservation lemma we need is for the !-operator. For this proof we are going
to need a recursively defined relation. This follows from the fact that the !-operator is the
only operator which occurs on the left hand side of the semantic rules and the proof needs
to be done on the depth of inference and not the size of the term.

Definition 4.15.

Rep R
def
= (P, Q) ∈ R =⇒ (!P, !Q) ∈ Rep R

(P, Q) ∈ R ∧ (S, T) ∈ Rep R =⇒ (P | S, Q | T) ∈ Rep R
(P, Q) ∈ Rep R =⇒ ((νx)P, (νx)Q) ∈ Rep R

Lemma 4.16.

(P, Q) ∈ R eqvt R
∀P Q. (P, Q) ∈ R =⇒ P R Q

!P Rep R!Q

Proof. The trick here is to include the fact that (!P, !Q) ∈ Rep R in the induction hypoth-
esis. We use Lemma 3.15 to do induction over the transitions made by the process !Q. We
know that the processes in the relation R simulate each other and the induction hypothesis
generates the simulations by the nested replications. This proof is the most extensive of the
preservation proofs due to its many cases and the need for induction.

4.3. Strong Bisimulation. Strong bisimulation equivalence can be described using coin-
duction, i.e. the greatest fixed point derived from a monotonic function.

Definition 4.17. Strong bisimulation equivalence, ∼, is the largest relation satisfying:

P ∼ Q =⇒ P ∼ Q ∧ Q ∼ P

Note that we do not need to define what a bisimulation is; our coinductive definition uses
P R Q directly. This defines ∼ to be the largest relation such that related agents can
simulate each other preserving ∼.

Conducting proofs on bisimulation equivalence often boils down to proving the same
thing twice – once for each direction. With our formulation it is often easy to just prove
one direction and let the other be inferred automatically.

When proving that two processes are bisimilar, we pick a set X which contains the
processes and which respects the constraints of the corresponding preservation lemma. It
then suffices to show that all members of X are simulated preserving X ∪ ∼. The following
coinduction rules are easily derivable from the ones genereated by Isabelle.

16 J. BENTSON AND J. PARROW

Lemma 4.18.

(P, Q) ∈ X
∀P ′ Q′. (P ′, Q′) ∈ X =⇒ P ′

 X∪∼ Q′ ∧ Q′
 X∪∼ P ′

P ∼ Q

Lemma 4.19.

(P, Q) ∈ X
∀P ′ Q′. (P ′, Q′) ∈ X =⇒ P ′

 X Q′ ∧ Q′
 X P ′

P ∼ Q

The difference between the two rules is found in the goal where the weaker version requires
the processes to be simulated preserving X ∪ ∼ whereas the stronger version only requires
them to be simulated preserving X . Unless otherwise specified, the first of the two is the
one being used.

The coinductive definition of bisimulation is equal to the standard one where bisimula-
tion is regarded as the union of all bisimulation relations.

Definition 4.20. A relation R is a bisumlation relation if for all (P, Q) ∈ R, P R Q
and Q R P . We define ∼′ to be the union of all bisumlation relations.

We find the coinductive approach easier to work with and the proof that the two versions
of bisimilarity are equal is straightforward.

Lemma 4.21. ∼ = ∼′

Proof.

⇒ By definition of ∼ we get for all processes P and Q where P ∼ Q that P ∼ Q and
Q ∼ P . Hence ∼ is a bisumlation relation.

⇐ From the definition of ∼′ we get an arbitrary bisimulation relation R and processes P
and Q where (P, Q) ∈ R, P R Q and Q R. That P ∼ Q follows immediately by
coinduction using lemma 4.19 where X is set to R.

An important property of the bisimulation relation is that it is equivariant. When doing
proofs we rely heavily on Lemma 4.3 which requires the simulation relation to be equivariant.

Lemma 4.22. eqvt ∼

Proof. By coinduction using Prop. 4.18 on ∼. Set X to be {(p •P, p •Q) | P ∼ Q}. Using
Lemma 4.2 the proof is quite straight forward since ∼ is a subset of X by instantiating X
with the identity permutation. X is also trivially equivariant.

Another important property of strong bisimulation is that it is an equivalence relation.

Lemma 4.23. ∼ is an equivalence relation.

Proof.

Reflexivity : Use coinduction and set X to the identity relation. The proof then follows
trivially from Lemma 4.4.

Symmetry : Follows trivially from the definition of ∼.
Transitivity : By coinduction where X is set to ∼ ◦ ∼. The result then follows by using

Lemma 4.5.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 17

We can now prove one of our main theorems.

Theorem 4.24. Strong bisimulation is preserved by all operators except the input-prefix, i.e.

if P ∼ Q then τ.P ∼ τ.Q (1)
and āb.P ∼ āb.Q (2)
and [a = b]P ∼ [a = b]Q (3)
and [a 6= b]P ∼ [a 6= b]Q (4)
and P + R ∼ Q + R (5)
and P | R ∼ Q | R (6)
and (νx)P ∼ (νx)Q (7)
and !P ∼ !Q (8)

Proof. To prove (1) to (5), Lemmas 4.6-4.7 and 4.10-4.12 are used respectively.
When proving (7) we use coinduction and set X to {((νx)P, (νx)Q) | P ∼ Q}. Lemma

4.14 can then prove preservation of both simulations.
To prove (8) we strengthen our assumption that P ∼ Q to (P, Q) ∈ Rep ∼ and use

the coinduction principle 4.19 with X set to Rep ∼. The preservation properties of the
simulations can then be inferred by induction over Rep ∼ resulting in three cases from the
derivation rules of Rep. These can be proven by Lemmas 4.16, 4.13 and 4.14 respectively.

The proof for (6) is deferred to Chapter 5.

We now define strong equivalence as the largest bisimulation relation closed under substi-
tution and prove our next theorem.

Theorem 4.25. ∼s is a congruence.

This result uses Theorem 4.24. In the preservation proof for the ν-operator the bound name
must be α-converted to not clash with the substitution chain. We also need the following
lemma to prove closure under input-prefix.

Lemma 4.26. P ∼s Q =⇒ a(x).P ∼s a(x).Q

Proof. By the definition of ∼s and Lemma 4.9.

5. An Example Derivation

As an example of our proof techniques, we here present the omitted part of the proof for
Theorem 4.24(6) – that strong bisimulation is preserved by the parallel operator.

The proof strategy amounts to proving simulations P R Q. We begin by stating
the requirements on R that are necessary for the proof to go through. We do this before
instantiating R, since this makes the proof more general and better structured.

Recall Lemma 4.13 which is our preservation result for the |-operator.

(1) P R Q
(2) (P, Q) ∈ R
(3) Id ⊆ R
(4) ∀P Q S. (P, Q) ∈ R =⇒ (P | S, Q | S) ∈ R′

(5) ∀P Q x. (P, Q) ∈ R′ =⇒ ((νx)P, (νx)Q) ∈ R′

P | S R′ Q | S

18 J. BENTSON AND J. PARROW

Two of these conditions concern R′. Condition (4) is straightforward – if P and Q are in
R, then P | S and Q | S must be in R′. Condition (5) is a bit less obvious but since the
parallel operator can introduce restrictions, R′ must also be preserved by the ν-operator.
Assumptions (2) and (3) ensure that the processes are in the R to begin with. This is not
a prerequisite for simulation, but we need to know this in order to use (1) when a process
stands still and we need to place it in parallel with the derivative of the other process in
R′.

We provide a more in depth look at the proof for Lemma 4.13.

Proof. By Definition 4.1 we shall show:

(∀a x T ′. Q | S a≪x≫−−−−→ T ′ ∧ x ♯ P | S =⇒
∃P ′. P | S a≪x≫−−−−→ P ′ ∧ derivative(a, x, P ′, T ′, R′)) ∧

(∀T ′ α. Q | S α−→ T ′ =⇒ ∃P ′. P | S α−→ P ′ ∧ (P ′, T ′) ∈ R′)

We can now do case analysis on Q | S α−→ T ′ and Q | S a≪x≫−−−−→ T ′. We get eight cases (the
four rules for parallel composition as seen in Fig. 1 and their symmetric versions). We will
focus on the Close-case, as it nicely demonstrates the advantages of the nominal package.
Using our derived case analysis rule, Lemma 3.9, we can make sure that the bound names
which appear in the Close-case do not clash with P by setting C to P . After induction we get:

(6) Q a(x)−−→ Q′ (assumption)
(7) S ā(y)−−→ S′ (assumption)
(8) x ♯ P (C = P in Lemma 3.9)
(9) y ♯ P (C = P in Lemma 3.9)

(10) ∃P ′. P a(x)−−→ P ′ ∧ derivative((Input a), x, P ′, Q′) (1, 6, 8, Def. 4.1)

(11) P a(x)−−→ P ′ (10)
(12) P | S τ−→ (νy)(P ′{y/x}, S′) (Close, 11, 7, 9)

(13) (P ′{y/x}, Q′{y/x}) ∈ R (10, Def. 4.1)
(14) (P ′{y/x} | S′, Q′{y/x} | S′) ∈ R′ (4, 13)
(15) ((νy)(P ′{y/x} | S′), (νy)(Q′{y/x} | S′) ∈ R′) (5, 14)

∃P ′. P | S τ−→ P ′ ∧ (P ′, (νy)(Q′{y/x} | S′)) ∈ R′ (12, 15)

The above is a step-by-step version of the Isabelle proof and it mimics the way one could
do a strict pen-and-paper version of the proof. Note how in steps 6 and 7, the bound names
of both transitions generated by the induction rule are set to be fresh for P . We would
otherwise have to α-convert both transitions. As it stands, all α-conversions are abstracted
away completely. Steps 13-15 uses the preservation properties of R and R′ to prove that
the proper derivatives are in R′.

Furthermore, we have to prove a lemma on chains of restrictions, since the Close-
operator introduces new restrictions, as was also seen in lemma 3.9.

Definition 5.1. (νṽ)P denotes a chain of restrictions applied to P where ṽ is a list, possibly
empty, of restrictions.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 19

Lemma 5.2. Introduction rule for restriction chains:

P R Q eqvt R ∀P Q x. (P, Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R

(νṽ)P R (νṽ)Q

Proof. By induction on ṽ.

The intuition behind the lemma is quite simple. If a simulation relation R is preserved by
the ν-operator and P simulates Q preserving R, then since R is preserved by restriction and
thus (νx)P simulates (νx)Q preserving R for an arbitrary name x, then by induction (νṽ)P
must simulate (νṽ)Q preserving R where ṽ is an arbitrary chain of restricted names. This
is a general lemma which is used repeatedly when proving bisimulations using the parallel
operator.

We now proceed to the main proof of Theorem 4.24(6) using coinduction. We will need
a set X which captures the agents we are interested in and prove the simulations which
compose the bisimulation. We define X as {((νṽ)(P | R), (νṽ)(Q | R)) | P ∼ Q}. The two
simulation proofs we use reside in our main lemma since they share the same assumption,
which is the way the proof is done inside Isabelle.

Proof. If P ∼ Q then P | R ∼ Q | R.
(1) P ∼ Q (assumption)
(2) (P | R, Q | R) ∈ X (1, def. of X)

In order to use coinduction using Prop. 4.18 we must prove that every pair in X sim-
ulates preserving X ∪ ∼. The members of X have chains of restrictions so we first have to
use Lemma 3.9 with a specific simulation relation in order to reason about them.

Lemma 5.3. if P ∼ Q then P | R X∪∼ Q | R

Proof.

(i) P ∼ Q (assumption)
(ii) ∀P Q R. (P,Q) ∈ ∼ =⇒ (P | R, Q | R) ∈ X ∪ ∼ (Def. of X)
(iii) ∀P Q x. (P, Q) ∈ X ∪ ∼ =⇒ (Def. of X , Lemma 4.24)

((νx)P, (νx)Q) ∈ X ∪ ∼
P | R X∪∼ Q | R (Lemma 3.9, i-iii, 1)

From this lemma we see why Lemma 4.13 has to have different relations in the assumptions
and the conclusion. The simulation we can assume is P ∼ Q but the one we need to prove
is P | R X∪∼ Q | R.

We can now extend our simulation to include chains of restrictions.

Lemma 5.4. If P ∼ Q then (νṽ)(P | R) X∪∼ (νṽ)(Q | R)

Proof.

(i) P ∼ Q (assumption)
(ii) P | R X∪∼ Q | R (Lemma 5.3, i)
(iii) eqvt(X ∪ ∼) (def. of X , Lemma 4.22)
(iv) ∀P Q x. (P,Q) ∈ X ∪ ∼=⇒ (def. of X , Lemma 4.24)

((νx)P, (νx)Q) ∈ X ∪ ∼
(νṽ)(P | R) X∪∼ (νṽ)(Q | R) (Lemma 5.2, ii-iv)

20 J. BENTSON AND J. PARROW

We can now prove our goal:

P | R ∼ Q | R (coinduction, 2, Lemma 5.4, Def. 8.3)

It is interesting to note that we only have to prove simulations one way. When set up this
way, Isabelle manages the symmetric versions of the proofs automatically. Of course, if the
relation is not symmetric, such as in the proof of (νx)P ∼ P if x ♯ P , the two different
directions require separate proofs, just as when doing the proofs on paper.

6. Structural congruence

Structural congruence rules are used to equate processes which are structurally different but
intuitively behave in the same way. The way these rules are implemented differ in different
formalisations. A common approach is to let the labeled transition system replace a term
for a structurally congruent one in order to enable transitions. Another approach, and the
one that we have chosen, is to prove that all structurally congruent terms are also bisimilar.
The rules for structural congruence can be found in Fig. 2.

Theorem 6.1. If P ≡ Q then P ∼ Q.

As in the previous section we need to create auxiliary lemmas for all simulations we are
interested in. Proving Theorem 6.1 requires that every structural congruence rule is proven
individually. We will here demonstrate the most complicated example which is to prove
associativity of the |-operator. We will need the following two lemmas for simulation.

Lemma 6.2.

∀P Q R. ((P | Q) | R, P | (Q | R)) ∈ R
∀P Q x. (P,Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R
∀P Q R x. x ♯ P =⇒ ((νx)((P | Q) | R), P | (νx)(Q | R)) ∈ R
∀P Q R x. x ♯ R =⇒ (((νx)(P | Q)) | R, (νx)(P | (Q | R))) ∈ R

(P | Q) | R R P | (Q | R)

Proof. By case analysis over the |-operator. This proof contains 18 cases. The proofs
individually are not very hard, there are just a lot of cases to cover. The assumptions used
about the relation R are used extensively in the proof.

Lemma 6.3.

∀P Q R. (P | (Q | R), (P | Q) | R) ∈ R
∀P Q x. (P,Q) ∈ R =⇒ ((νx)P, (νx)Q) ∈ R
∀P Q R x. x ♯ P =⇒ (P | (νx)(Q | R), (νx)((P | Q) | R)) ∈ R
∀P Q R x. x ♯ R =⇒ ((νx)(P | (Q | R)), ((νx)(P | Q)) | R) ∈ R

P | (Q | R) R (P | Q) | R

Proof. Similar to Lemma 6.2.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 21

The structural congruence ≡ is defined as the smallest congruence satisfying the following
laws:

(1) If P and Q are variants of α-conversion then P ≡ Q.
(2) The abelian monoid laws for Parallel: commutativity P | Q ≡ Q | P , associativity

(P | Q) | R ≡ P | (Q | R), and 0 as unit P | 0 ≡ P ; and the same laws for Sum.
(3) The unfolding law !P ≡ P | !P
(4) The scope extension laws

(νx)0 ≡ 0

(νx)(P | Q) ≡ P | (νx)Q if x ♯ P
(νx)(P + Q) ≡ P + (νx)Q if x ♯ P
(νx)[u = v]P ≡ [u = v](νx)P if x 6= u and x 6= v
(νx)[u 6= v]P ≡ [u 6= v](νx)P if x 6= u and x 6= v
(νx)(νy)P ≡ (νy)(νx)P

Figure 2: The definition of structural congruence.

In order to do the rest of this proof efficiently it turns out that we need to use other rules
for structural congruence since Lemma 6.2 and 6.3 make heavy use of scoping rules. The
coinduction rule (Prop. 4.18) allows us to work with an arbitrary relation, but to include
the laws of structural congruence in this relation would be cumbersome. Instead we create
the following coinduction rule.

Lemma 6.4. Compositional coinduction rule. Let Y be ∼ ◦ (X ∪ ∼) ◦ ∼.

(P, Q) ∈ X eqvt X
∀P ′ Q′. (P ′, Q′) ∈ X =⇒ P ′

 Y Q′ ∧ Q′
 Y P ′

P ∼ Q

Proof. By coinduction and transitivity of simulation.

We can now prove associativity of the |-operator.

Lemma 6.5. (P | Q) | R ∼ P | (Q | R)

Proof. By coinduction using Lemma 6.4 and setting X to
{((νṽ)((P | Q) | R), (νṽ)(P | (Q | R)))}. Lemma 6.3 and 6.2 can then be used together
with the laws for scope extrusion to complete the proof.

The next step is to prove that all structurally congruent terms are strongly equivalent.

Theorem 6.6. P ≡ Q =⇒ P ∼s Q

Proof. Nearly all work has already been done in Theorem 6.1. These proofs do, however,
require manual alpha conversions when dealing with scoping rules as the cases where the
restricted name clashes with the substitution chain must be taken into consideration. This
is an example of where pen-and-paper proofs often are less rigorous than strictly required.

22 J. BENTSON AND J. PARROW

The proofs we have done in this section are not overly complicated but require a solid
attention to detail. Many of the proofs have many cases and even though the results have
never been in doubt, having them fully machine checked convinces us that no case has
been overlooked. Moreover, without the framework to abstract away from bound names
the amount of cases for all different α-variants would have been very much larger.

7. Weak bisimulation

7.1. Basic definitions. Weak bisimulation equivalence is often called observation equiv-
alence. The intuition is that τ -transitions are considered internal and hence invisible to
the outside environment. For two processes to be observation equivalent, they only need to
mimic the visible actions of each other. More formally, we reason about a τ -chain P bτ==⇒ P ′

as the reflexive transitive closure of τ -actions, i.e. P bτ==⇒ P ′ def
= P τ−→∗ P ′. A weak transition

is then said to be an action preceded and succeeded by a τ -chain.
Weak late bisimulation is complicated for input actions. It requires substitutions made

as a result of the input to be applied immediately to the input derivative before the suc-
ceeding τ -chain is executed, and that one such derivative can continue to simulate for all
possible received names, see e.g. [35]. Therefore the weak late semantics needs to carry
additional information in the labels as follows.

Definition 7.1.

P α==⇒ P ′ def
= P bτ==⇒ α−→ bτ==⇒ P ′

P ā(x)==⇒ P ′ def
= P bτ==⇒ ā(x)−−→ bτ==⇒ P ′

P u:a(x)@P ′′

=======⇒ P ′ def
= P bτ==⇒ a(x)−−→ P ′′ ∧ P ′′{u/x} bτ==⇒ P ′

Residuals are written in the same way for weak as for strong transitions, except for the input
case which is written u : a(x)@P ′′ ≺ P ′. A transition can also be written as P |=⇒ Res
where Res is a residual.

The transition P u:a(x)@P ′′

=======⇒ P ′ means that P can do a τ -chain and then a(x) to an agent
P ′′ where x is substituted for u and another τ -chain is done to P ′. The agent P ′′ represents
the exact state where the substitution is made. This will be important when we define weak
simulation.

Note that the bound name x in the bound output case is bound in P ′ and normal α-
conversions can be applied. Also, even though we are modeling a late semantics, the name
x is not bound in P ′ in the input-transition as it is substituted for u before the τ -chain.
We can still do α-conversions through the following lemma:

Lemma 7.2. if P u:a(x)@P ′′

=======⇒ P ′ and y ♯ P then P u:a(y)@(x y)•P ′′

==========⇒ P ′

We also need to weaken the transitions in the standard way:

Definition 7.3. Weak late transitions

P bα==⇒ P ′ def
= P bτ==⇒ P ′ if α = τ

P α==⇒ P ′ otherwise

We can now define weak late simulation.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 23

Definition 7.4. The agent P can weakly late simulate the agent Q preserving R, written
P ≈>R Q, if

(∀a x Q′. Q ā(x)−−→ Q′ ∧ x ♯ P =⇒
∃P ′. P ā(x)==⇒ P ′ ∧ (P ′, Q′) ∈ R) ∧

(∀a x Q′. Q a(x)−−→ Q′ ∧ x ♯ P =⇒
∃P ′′. ∀u. ∃P ′. P u:a(x)@P ′′

=======⇒ P ′ ∧ (P ′, Q′{u/x}) ∈ R) ∧

(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P bα==⇒ P ′ ∧ (P ′, Q′) ∈ R)

The important aspect of weak late simulation is the fact mentioned above – that an input-
action a(x) must be matched by a weak transition with the same input derivative P ′′

for all possible instantiations u of the bound name. From our definition, we can derive
an introduction rule for weak simulation similar to the one done for strong simulation in
Lemma 4.3.

In the standard way we define another version of simulation ≃> where we require the
simulating process to do at least one action to mimic the simulated agent. The definition
of ≃> is the same as for ≈> except that the simulating process in the last conjunct uses α==⇒
instead of bα==⇒.

Definition 7.5. P ≃>R Q if

(∀a x Q′. Q ā(x)−−→ Q′ ∧ x ♯ P =⇒
∃P ′. P ā(x)==⇒ P ′ ∧ (P ′, Q′) ∈ R) ∧

(∀a x Q′. Q a(x)−−→ Q′ ∧ x ♯ P =⇒
∃P ′′. ∀u. ∃P ′. P u:a(x)@P ′′

=======⇒ P ′ ∧ (P ′, Q′{u/x}) ∈ R) ∧

(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α==⇒ P ′ ∧ (P ′, Q′) ∈ R)

7.2. Lifted semantics. Our preservation proofs for weak transitions are very similar to
the corresponding proofs for strong transitions. We achieve this by lifting the operational
semantics, i.e. mapping each rule from Fig. 1 to a corresponding rule using weak transitions.
The following transition system can be derived for the transitions defined in Def. 7.1.

Lemma 7.6. The lifted semantics for the transitions defined in Def. 7.1.

a(x).P u:a(x)@P======⇒ P{u/x} Input āb.P āb==⇒ P Output τ.P τ==⇒ P Tau

P |=⇒ Res

[a = a]P |=⇒ Res
Match

P |=⇒ Res a 6= b

[a 6= b] |=⇒ Res
Mismatch

P āb==⇒ P ′ a 6= b

(νb)P ā(b)==⇒ P ′ Open
P |=⇒ Res

P + Q |=⇒ Res
Sum

P u:a(x)@P ′′

=======⇒ P ′ x ♯ Q

P | Q u:a(x)@P ′′|Q========⇒ P ′ | Q
ParIn

P ā(x)==⇒ P ′ x ♯ Q

P | Q ā(x)==⇒ P ′ | Q
ParBO

24 J. BENTSON AND J. PARROW

P α==⇒ P ′

P | Q α==⇒ P ′ | Q
ParF

P b:a(x)@P ′′

======⇒ P ′ Q āb==⇒ Q′

P | Q τ==⇒ P ′ | Q′ Comm

P y:a(x)@P ′′

=======⇒ P ′ Q ā(y)==⇒ Q′ y ♯ P

P | Q τ==⇒ (νy)(P ′ | Q′)
Close

P ā(x)==⇒ P ′ y ♯ (a, x)

(νy)P ā(x)==⇒ (νy)P ′ ResBO

P u:a(x)@P ′′

=======⇒ P ′ y ♯ (a, u, x)

(νy)P u:a(x)@(νy)P ′′

=========⇒ (νy)P ′ ResIn
P α==⇒ P ′ x ♯ α

(νx)P α==⇒ (νx)P ′ ResF

P | !P |=⇒ Res

!P |=⇒ Res
Replication

When trying to lift the semantics to the transitions defined in Def. 7.3 we encounter diffi-
culties. The rules which do not have α̂==⇒ in the assumptions trivially follow from Lemma
7.6, but of the remaining, only ParF and ResF can be lifted.

Corollary 7.7. The lifted rules for ParF and ResF.

P bα==⇒ P ′

P | Q bα==⇒ P ′ | Q
ParF

P bα==⇒ P ′ x ♯ α

(νx)P bα==⇒ (νx)P ′
ResF

The operational rules from Fig. 1 that we cannot be lifted in this manner, as opposed to
the ones in Lemma 7.6, are Match, Mismatch, Sum and Replication in the case where
α = τ and P = P ′.

7.3. Preservation properties. To prove preservation properties for weak simulations we
need to lift the preservation proofs from strong simulations to weak ones. For ≃> this turns
out to be unproblematic. The lemmas require the same assumptions to be proven with
the addition that we sometimes need to know that if (P, Q) ∈ R then P ≃>R Q. The
reason for this is that after following a τ -chain, we need to know that we are still inside
the simulation. For ≈>, however, the lemmas that we could not lift in Cor. 7.7 need their
assumption strengthened. These lemmas are:

Lemma 7.8.

P ≈>R Q
∀P Q a. (P, Q) ∈ R =⇒ ([a = a]P, Q) ∈ R

[a = b]P ≈>R [a = b]Q

Proof. By the definition of ≈> and Prop. 3.6. In the case where the τ -transition stands still,
the second assumption is used to prove that the derivatives are still in R.

Lemma 7.9.

P ≈>R Q
∀P Q a b. (P, Q) ∈ R ∧ a 6= b =⇒ ([a 6= b]P, Q) ∈ R

[a 6= b]P ≈>R [a 6= b]Q

Proof. By the definition of ≈> and Prop. 3.7. In the case where the τ -transition stands still,
the second assumption is used to prove that the derivatives are still in R.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 25

Lemma 7.10.

(P, Q) ∈ R eqvt R
∀P Q. (P, Q) ∈ R =⇒ P R Q

∀P Q. (P | !P, Q) ∈ R =⇒ (!P,Q) ∈ R

!P Rep R!Q

Proof. Similar to Lemma 4.16 but when a τ -action stands still the fourth assumption is
used.

The other preservation lemmas look the same as their strong counterparts. Their proofs
need to treat input-actions differently as there is a noticeable difference in how input-actions
are treated in strong and weak simulations. Other than this, the proofs follow the same
pattern.

Weak bisimulation equivalence is defined using coinduction in exactly the same way
as strong bisimulation. As a result, all coinduction rules which were generated for strong
bisimulation are also generated for weak.

Definition 7.11. Weak bisimulation equivalence, ≈, is the largest relation satisfying:

P ≈ Q =⇒ P ≈>≈ Q ∧ Q ≈>≈ P

Weak bisimulation is not a congruence since it is neither preserved by the +-operator nor
by the input-prefix, but it is preserved by all other operators.

Theorem 7.12. ≈ is preserved by all operators except + and input prefix.

Proof. The first step in in this proof is to use the lifted preservation rules for weak simulation.
In order to prove preservation of Match, Mismatch and Replication, we need the results
P ≈ [a = a]P , P ≈ [a 6= b]P when a 6= b as well as the structural congruence result
P | !P ≈ !P .

To obtain a congruence we follow the standard procedure. The proofs of the preservation
lemmas for ≃> are similar to their strong counterparts since all rules from the operational
semantics can be lifted using Lemma 7.6.

We can now define weak congruence.

Definition 7.13. P ∼= Q
def
= P ≃>≈ Q ∧ Q ≃>≈ P

Note that this is not a coinductive definition since it refers to ≈. The proof that ∼= is
preserved by all operators except input-prefix corresponds closely to our corresponding
proof for ∼. The proof that ∼=s is a congruence follows in the same manner.

Theorem 7.14. ∼= is preserved by all operators except input-prefix.

Proof. This proof is nearly identical to the one for Theorem 4.24, but we use our preservation
proofs for ≃> instead of the ones for .

Lemma 7.15. ∼=s is a congruence

Proof. Similar to Lemma 4.25.

26 J. BENTSON AND J. PARROW

7.4. Relationships between equivalences. We prove that ∼ ⊆ ∼= ⊆ ≈. Among other
things, this implies that the weaker bisimlation equivalences contain structural congruence.
The first part of this proof is to establish correspondance properties between the different
types of transitions.

Corollary 7.16.

If P ā(x)−−→ P ′ then P ā(x)==⇒ P ′

If P α−→ P ′ then P α==⇒ P ′

If P a(x)−−→ P ′ then P u:a(x)@P ′

======⇒ P ′{u/x}

Proof. Follows from the definition of P |=⇒ Res by adding empty τ -chains before and after
the transitions.

The next step is to do the same for simulations.

Corollary 7.17. If P R Q then P ≃>R Q

Proof. By the definition of , ≃> and Cor. 7.16.

And finally for weak congruence.

Corollary 7.18. If P ∼ Q then P ∼= Q

Proof. By the definition of ∼, ∼= and Cor. 7.17.

The corresponding proof for our congruence relations follow trivially.

Corollary 7.19. If P ∼s Q then P ∼=s Q

Proof. Follows from the definitions of ∼s, ∼=s and Cor. 7.18.

We can use the same technique when reasoning about weak bisimulation.

Corollary 7.20. If P α==⇒ P ′ then P bα==⇒ P ′

Proof. Follows from the definitions of α==⇒ and bα==⇒ as α==⇒ can do everything bα==⇒ can do
except doing an empty sequence of τs.

Followed by simulation

Corollary 7.21. If P ≃> Q then P ≈> Q

Proof. Follows from the definitions of ≃>, ≈> and Cor. 7.20.

And finaly for weak bisimulation.

Corollary 7.22. If P ∼= Q then P ≈ Q

Proof. Follows from the definitions of ≈, ∼= and Cor. 7.21.

Using the techniques above our results follow as a simple corollary.

Corollary 7.23.

If P ≡ Q then P ≈ Q
and P ∼= Q
and P ∼=s Q

Proof. Follows from Theorem 6.6 and Corollaries 7.18, 7.22 and 7.19.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 27

7.5. The Hennessy Lemma. As an example we prove the Hennessy Lemma.

Theorem 7.24. P ≈ Q iff τ.P ∼= Q ∨ P ∼= Q ∨ P ∼= τ.Q

Proof. We first prove the lemma in the direction left-to-right. We will need the following
auxiliary lemmas.

Lemma 7.25. If P ≈>R Q then τ.P ≃>R Q

Proof. By the definition of ≃>. The interesting case is the Q does a τ -action, and τ.P can
always mimic that with at least one step since P ≈>R Q.

Lemma 7.26.

P ≈>R Q
∀Q′. Q τ−→ Q′ =⇒ (P, Q′) /∈ R

P ≃>R Q

Proof. This follows from the definition of ≈> and ≃>. The only difference being that for a
τ -transition, the simulating process by ≈> can do an empty sequence of τs. whereas in ≃>
it cannot. In our assumptions we remove this option.

Lemma 7.27. If P τ−→ P ′ and (P ′, Q) ∈ R then P ≃>R τ.Q

Proof. Follows from the definition of ≃>.

We can now complete our proof for the left-to-right direction of the Hennessy lemma by
doing proofs on the following cases:

(1) ∃P ′.P τ−→ P ′ ∧ P ′ ≈ Q
(2) ∃Q′.Q τ−→ Q′ ∧ P ≈ Q′

In the case that 1 or 2 holds we use Lemmas 7.25 and 7.27 to prove the first and third
disjunct. In the case that neither hold, Lemma 7.26 can be used for both directions of the
bisimulation. This concludes the proof in the left-to-right direction.

We will need the following lemmas for the direction right-to-left.

Lemma 7.28. If τ.P ≃>R Q then P ≈>R Q

Proof. By the definition of ≈>. If Q does a τ -action and τ.P simulates by doing a single
τ -step, P can stand still and end up in the same state. Otherwise, P can always move to
the same state as τ.P by doing one less τ -step.

Lemma 7.29.

P ≃>R τ.Q
∀P ′ Q′. (P ′, Q′) ∈ R =⇒ P ′ ≈>R Q′

P ≈>R Q

Proof. From the definition of ≃> we get a τ -chain P =⇒τ P ′ for some P ′ where (P ′, Q) ∈ R.
We also know that P ′ ≈>R Q. By the definition of ≈> we can add the chain P =⇒τ P ′ to
any simulation of Q.

To finish the the proof we use Lemmas 7.28 and 7.29 for the first and third disjunct and
Cor. 7.22 for the second one.

28 J. BENTSON AND J. PARROW

a(x).P au−→e P{u/x} Input āb.P āb−→e P Output τ.P τ−→e P Tau

P 7−→e Res

[a = a]P 7−→e Res
Match

P 7−→e Res a 6= b

[a 6= b]P 7−→e Res
Mismatch

P āb−→e P ′ a 6= b

(νb)P ā(b)−−→e P ′ Open
P 7−→e Res

P + Q 7−→e Res
Sum

P ā(x)−−→e P ′ x ♯ Q

P | Q ā(x)−−→e P ′ | Q
ParB

P α−→e P ′

P | Q α−→e P ′ | Q
ParF

P ab−→e P ′ Q āb−→e Q′

P | Q τ−→e P ′ | Q′ Comm
P ay−→e P ′ Q ā(y)−−→e Q′ y ♯ P

P | Q τ−→e (νy)(P ′ | Q′)
Close

P ā(x)−−→e P ′ y ♯ (a, x)

(νy)P ā(x)−−→e (νy)P ′ ResB
P α−→e P ′ y ♯ α

(νy)P α−→e (νy)P ′ ResF

P | !P 7−→e Res

!P 7−→e Res
Replication

Figure 3: The Par - and the Res-rule in the early operational semantics are still split, but
the input action contains no bound names. Symmetric versions have been elided.

8. Early semantics and bisimulation

8.1. Early semantics. In the early semantics the input action carries the name received
rather than a bound name, so we have that the process a(x).P can receive all names u
doing an action au and ending up in the derivative P{u/x}. The main difference to late
semantics is that substitution is done at the input prefix rule, i.e. as early as possible, and
not during communication.

The way we write actions differ somewhat from the late semantics. We write the early
transitions in a similar way, but with a subscript e to differentiate them from the late ones.
Moreover, In the early semantics, a transition α−→e can include an input-transition as it
does not contain a bound name. The intuition is that an action is denoted α if it contains
no binders. As a result, our Isabelle definition for early residuals need to be changed.

Definition 8.1. The early residual datatype.

datatype freeRes = InputR name name

| OutputR name name

| TauR

nominal_datatype residual = BoundOutputR name "≪name≫ pi"

| FreeR freeRes pi

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 29

8.2. Early bisimulation. The definition of early simulation is similar to its late coun-
terpart. The difference between the two is that no distinction has to be made for the
input-action as the substitution takes place before any communication is made.

Definition 8.2. The agent P can early simulate the agent Q preservingR, written P eR Q,
if

(∀a x Q′. Q ā(x)−−→e Q′ ∧ x ♯ P =⇒ ∃P ′. P ā(x)−−→e P ′ ∧ (P ′, Q′) ∈ R)∧

(∀α Q′. Q α−→e Q′ =⇒ ∃P ′. P α−→e P ′ ∧ (P ′, Q′) ∈ R)

Bisimulation is again defined using our standard coinduction technique.

Definition 8.3. Early bisimulation equivalence, ∼e, is the largest relation satisfying:

P ∼e Q =⇒ P e∼e
Q ∧ Q e∼e

P

All the preservation proofs and congruence results for late bisimulation have also been done
for early. This did require creating rules for case analysis on the early operational semantics
in a similar way as was done for late. We have created the library of preservation lemmas
similar to the one for late semantics. This work was pretty straightforward and the two
libraries work in the same way except for how they treat input actions. Once this was
done, the proofs for early bisimulation were nearly identical to their late counterparts and
required very little extra work.

Theorem 8.4. ∼e is preserved by all operators except input-prefix.

Theorem 8.5. ∼s
e is a congruence.

8.3. Weak early bisimulation. We have also proven our results for weak early bisimula-
tion. We use the same technique as we did for weak late bisimulation by lifting the early
operational semantics to a weak counterpart. The weak early operational semantics can be
written on a simpler form, however, as weak early simulation does not require any knowl-
edge of the point that a substitution was made. A weak early transition is hence written
α==⇒e or bα==⇒e, where α is an arbitrary transition.

Lemma 8.6. The lifted semantics for the weak early operational semantics.

a(x).P au==⇒e P{u/x} Input āb.P āb==⇒e P Output τ.P τ==⇒e P Tau

P |=⇒e Res

[a = a]P |=⇒e Res
Match

P |=⇒e Res a 6= b

[a 6= b] |=⇒e Res
Mismatch

P āb==⇒e P ′ a 6= b

(νb)P ā(b)==⇒e P ′
Open

P |=⇒e Res

P + Q |=⇒e Res
Sum

P ā(x)===⇒e P ′ x ♯ Q

P | Q ā(x)===⇒e P ′ | Q
ParB

P α==⇒e P ′

P | Q α==⇒e P ′ | Q
ParF

P a(b)==⇒e P ′ Q āb==⇒e Q′

P | Q τ==⇒e P ′ | Q′
Comm

P a(y)==⇒e P ′ Q ā(y)==⇒e Q′ y ♯ P

P | Q τ==⇒e (νy)(P ′ | Q′)
Close

P ā(x)===⇒e P ′ y ♯ (a, x)

(νy)P ā(x)===⇒e (νy)P ′
ResB

P α==⇒e P ′ x ♯ α

(νx)P α==⇒e (νx)P ′
ResF

P | !P |=⇒e Res

!P |=⇒e Res
Replication

30 J. BENTSON AND J. PARROW

This semantics is very similar to its late counterpart. The reason for this is that in the
weak late operational semantics, the instantiations of input bound names occur inside the
transition before the succeeding τ -chain. This becomes apparent when we compare the lifted
rules for Input. In the late semantics, it looks like an early transition since it contains the
name u received in the input. The rules Close and Comm also behave in the same way.
We have proven Lemmas 8.13, 8.14, 8.15, 8.16 and Theorem 8.17 for the correspondence of
the weak late and early transition systems.

We do encounter the same problem when trying to lift the bα==⇒e transitions in that
Match, Mismatch, Sum and Replication cannot be lifted, for the same reason as in the
late semantics. The lifted early rules correspond more closely to their strong counterparts
than the lifted late rules correspond to theirs. The weak early and late rules are very simi-
lar to each other since the Input-rules behave in the same intuitive manner. The difference
between the two semantics is not so much in the operational rules as in the definition of
simulation.

Definition 8.7. The agent P can weakly early simulate the agent Q preserving R, written
P ≈>eR Q, if

(∀a x Q′. Q ā(x)−−→e Q′ ∧ x ♯ P =⇒ ∃P ′. P ā(x)==⇒e P ′ ∧ (P ′, Q′) ∈ R) ∧

(∀α Q′. Q α−→e Q′ =⇒ ∃P ′. P bα==⇒e P ′ ∧ (P ′, Q′) ∈ R)

Definition 8.8. Weak early bisimulation equivalence, ≈e, is the largest relation satisfying:

P ≈e Q
def
= P ≈>e≈e

Q ∧ Q ≈>e≈e
P

Theorem 8.9. ≈ is preserved by all operators except + and input-prefix.

Proof. Similar to the proof for Theorem 7.12.

Weak early bisimulation is not a congruence for the same reason as weak late bisimulation,
and in order to create a congruence we need to define a weak early congruence simulation,
≃>e, by replacing the bα==⇒e in Def. 8.7 by α==⇒e.

We can now define our weak early congruence.

Definition 8.10. P ∼=e Q
def
= P ≃>e≈e

Q ∧ Q ≃>e≈e
P

Theorem 8.11. ∼=e is preserved by all operators except input-prefix.

Proof. Similar to the proof for Theorem 7.14.

Lemma 8.12. ∼=s
e is a congruence.

Proof. Proved in a similar way as Lemma 7.15.

8.4. Relationships between equivalences. Not surprisingly, strong early and weak early
relations enjoy the same inclusion properties as their late counterparts, i.e. ∼e ⊆ ∼=e ⊆ ≈e.
Furthermore, ∼ ⊆ ∼e.

The proof for the latter is more involved and requires correspondance proofs between
strong early and late actions. The connection we have proved between them is that every
early τ -transition has a corresponding late τ -transition and vice versa. More precisely, the
following lemmas are proven:

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 31

Lemma 8.13. P āb−→e P ′ iff P āb−→ P ′

Proof. By induction over the possible output transitions.

Lemma 8.14. P ā(x)−−→e P ′ iff P ā(x)−−→ P ′

Proof. By induction over the possible bound output transitions.
Before induction, the transitions are α-converted such that x is fresh for a and P . In the
Open cases, Lemma 8.13 is used.

Lemma 8.15. If P a(x)−−→ P ′ then P au−→e P ′{u/x}

Proof. By induction over the possible input transitions. Before induction, the late transition
is α-converted such that x is fresh for a, u and P .

Lemma 8.16. If P au−→e P ′ then for all name contexts C, there exists an x and a P ′′ s.t.

P a(x)−−→ P ′′, P ′ = P ′′{u/x} and x ♯ C

Proof. By induction over the possible input-transitions. When doing the induction, the last
conjunct of the goal is not used but only the first two ones. We can then take the results
from the induction and eliminate the existential quantifiers, pick a new fresh name x′ which
is fresh for P ′′ and C and instantiate the goal with x′ and (x x′) • P ′′.

We can now prove our theorem.

Theorem 8.17. P τ−→e P ′ iff P τ−→ P ′

Proof. By induction over the possible τ -transitions. In the Open, Comm and Close cases,
Lemma 8.13, 8.14, 8.15 and 8.16 are used.

We can now continue with our correspondence proofs between late and early semantics.

Lemma 8.18. If P R Q then P eR Q

Proof. By case analysis of Def. 8.2. Lemmas 8.13, 8.14, 8.15, 8.16 and Theorem 8.17 are
used to transform the early simulations to late ones and back again after applying Def. 4.1.
Lemma 8.16 has the context C instantiated as P to ensure that the generated bound name
is fresh for P as required by Def. 4.1.

We now prove that all late bisimilar processes are also early bisimilar.

Theorem 8.19. If P ∼ Q then P ∼e Q

Proof. By coinduction using Prop. 4.19 and setting X to ∼. Lemma 8.18 then proves our
goal.

Corollary 8.20. If P ∼s Q then P ∼s
e Q

Proof. Follows trivially from Theorem 8.19.

With these we can very easily prove our theorems about structural congruence for early.

Corollary 8.21.

If P ≡ Q then P ∼e Q
and P ∼s

e Q

Proof. Follows trivially from Theorems 6.1, 8.19, 6.6 and Cor. 8.20.

32 J. BENTSON AND J. PARROW

Finally, for the weak early semantics:

Corollary 8.22.

If P ∼e Q then P ∼=e Q
If P ∼s

e Q then P ∼=s
e Q

If P ∼=e Q then P ≈e Q

Proof. Similar to their corresponding proofs in section 7.4.

From this our structural congruence results follow trivially.

Corollary 8.23.

If P ≡ Q then P ∼=e Q
and P ≈e Q
and P ∼=s

e Q
and P ≈s

e Q

Proof. From Theorems 6.1, 6.6 and Cor. 8.22.

9. Results and Conclusions

9.1. Current Status. We have used the new nominal datatype package in Isabelle to
model the π-calculus and our results are very encouraging. We have proved a substantial
part of [30], in particular preservation properties of strong and weak bisimulation for both
late and early operational semantics. Other results include that all late τ -transitions have
a corresponding early one and vice versa and that all late bisimulation relations have an
early counterpart. Moreover, we have proven that all the bisimulation relations we have
investigated contain structural congruence. We have created a substantial library concerning
the fundamental mechanisms in the π-calculus, such as substitution and transitions. One
of our main contributions is that the proofs resemble the ones on paper very closely, since
we make precise the traditional “hand waving” with respect to bound names. Since we are
using Isabelle, we can write our proofs in a very readable form using Isar [47]. We believe
this to be the most extensive formalisation of a process calculus ever done inside a theorem
prover.

In recent work we put our formalisation to the test by proving that the axiomatisation
of strong late bisimilarity is sound and complete [10]. The proofs were complex, but again
mapped their pen-and-paper equivalents very closely and we made extensive use of the
foundation provided in this paper.

The nominal package is still work in progress and it is constantly being updated. One
recent addition allows for users to define functions on their nominal datatypes using an
automatically generated recursion combinator [44]. At the moment the only function we
use is substitution.

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 33

9.2. Related Work. The π-calculus has been subjected to many attempts at formalisa-
tions. Gabbay made a formalisation in [20] utilising FM set theory, the precursor of nominal
logic. His work is mathematically close to ours. The rest of this section will focus mainly
on formalisations which have been subject to mechanisation inside a theorem prover. Early
sketches in HOL include [31, 26]. Later attempts have also been made using de-Bruijn in-
dices where names are encoded using natural numbers. The most extensively used approach
is higher order abstract syntax (HOAS) where weak HOAS is the technique most similar to
ours. We here comment on the more important approaches.

de Bruijn indices are heavily used in software which reasons about terms with binders;
an example for the π-calculus is the Mobility Workbench [46]. They work well in these
environments as they have very nice algorithmic properties. However, these properties do
not provide an intuitive mathematical framework. In [24], Daniel Hirschkoff formalised a
subset of the π-calculus excluding sum, match and mismatch in Coq using de Bruijn indices.
The theories formalised was that early bisimulation is a congruence as well as the structural
congruence results. Preliminary work was also made to help formalise Milner’s encoding of
the λ-calculus [29]. Hirschkoff writes the following:

Technical work, however, still represents the biggest part of our implementa-
tion, mainly due to the managing of de Bruijn indexes. . . Of our 800 proved
lemmas, about 600 are concerned with operators on free names.

Fraenkel Mostowski set theory was one of the first serious attempts to fomalise nomi-
nal logic. It is standard ZF set theory but with an extra freshness axiom added. In [20],
Gabbay formalises a portion of the π-calculus in FM. In this approach a N-quantifier (new
quantifier) is used to generate names which are fresh for the current context. The nominal
package does not provide support for this quantifier, but the same effect is achieved by
instantiating our rules with a set of context names. Gabbay also started work on incor-
porating a framework for FM inside Isabelle [19] with which formalisations such as ours
could be made. Unfortunately, this early version of nominal logic was incompatible with
the axiom of choice and had to be used in Isabelle/PURE – a bare boned set of theories.
This choice of framework was necessary since Isabelle/HOL contains the axiom of choice,
but the attempt was later abandoned.

HOAS has been used to model the π-calculus in both Coq [25], by Honsell et. al., and
in Isabelle by Röckl and Hirschkoff [39]. In [25] the late operational semantics is encoded
together with late strong bisimulation. The proved results include that the algebraic laws
presented in [30] are sound where the non-trivial proofs include preservation results for
bisimulation and the results for structural congruence. When using HOAS terms, binders
are represented as functions of type name->term. However, if these functions range over the
entire function space they may produce exotic terms, so the formalisations need to ensure
that those are avoided. In [39], a special well-formedness predicate is used to filter out the
exotic terms. Another problem is that since abstraction is handled by the meta-logic of the
theorem prover, reasoning about binders at the object level can become problematic. In
[25] we can read:

The main drawback in HOAS is the difficulty of dealing with metatheoretic
issues concerning names in process contexts, i.e. terms of type name->proc.
As a consequence, some metatheoretic properties involving substitution and
freshness of names inside proofs and processes, cannot be proved inside the
framework and instead have to be postulated.

34 J. BENTSON AND J. PARROW

Our approach is completely free from any extra axioms, and since nominal logic is a first
order approach we do not have exotic terms. Moreover, freshness conditions are part of the
nominal infrastructure and all such conditions are explicitly known at the object level and
do not have to be postulated, thus no extra infrastructure for choosing particular names is
needed.

9.3. Impact and Further Work. Theorem provers suffer from a somewhat well-deserved
reputation of being hard to use for the uninitiated. However, having theories formalised
by a computer has significant advantages and making theorem provers easy to use for the
general engineer is a high priority. We believe that our work helps in this venture. The
challenging part has been to create inductive rules and easy-to-use definitions for simulation
and bisimulation. With this done the actual proofs done in the theorem prover are not much
harder than the ones done on paper.

Our next goal will be to provide support for model- and bisimulation checking on
actual protocols such as ad-hoc routing. Particularly processes with infinite state space are
of interest as these cannot be handled by automatic tools like the Mobility Workbench.

There are several variants of the π-calculus, polyadic π-calculus and higher order π-
calculus just to name two. We believe that our definitions for simulation and bisimulation
can easily be transfered to many other calculi.

Acknowledgments. We would like to thank Stefan Berghofer for his generous help with the
inner workings of Isabelle, Christian Urban for developing the nominal datatype package
and providing extensive support and insights, and Lars-Henrik Eriksson for discussions on
theorem provers. We would also like to thank the anonymous referees for their many helpful
and constructive comments.

References

[1] Agda: An interactive theorem prover. http://unit.aist.go.jp/cvs/Agda.
[2] Spec♯. http://research.microsoft.com/specsharp/ .
[3] The Verisoft project. http://www.verisoft.de.
[4] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Proceedings

of POPL ’01, pages 104–115. ACM, January 2001.
[5] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus. In

Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM Press, 1997.
[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, Nathan J. Foster, Benjamin C. Pierce, Peter

Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. Mechanized
metatheory for the masses: The POPLmark challenge. In International Conference on Theorem Proving
in Higher Order Logics (TPHOLs), August 2005.

[7] Gertrud Bauer and Tobias Nipkow. The 5 colour theorem in Isabelle/Isar. In Theorem Proving in Higher
Order Logics, volume 2410 of Lecture Notes in Compture Science, pages 67–82. Springer-Verlag, 2002.

[8] Jesper Bengtson. Generic implementations of process calculi in Isabelle. In The 16th Nordic Workshop
on Programming Theory (NWPT’04), pages 74–78, 2004.

[9] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.
Refinenment Types for Secure Implementations. In IEEE Computer Security Foundation series, 2008.
To appear.

[10] Jesper Bengtson and Joachim Parrow. A completeness proof for bisimulation in the pi-calculus using
isabelle. Electron. Notes Theor. Comput. Sci., 192(1):61–75, 2007.

[11] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

http://unit.aist.go.jp/cvs/Agda
http://research.microsoft.com/specsharp/
http://www.verisoft.de

FORMALISING THE π-CALCULUS USING NOMINAL LOGIC 35

[12] Karthikeyan Bhargavan, Cedric Fournet, Andrew D. Gordon, and Stephen Tse. Verified interopera-
ble implementations of security protocols. In CSFW ’06: Proceedings of the 19th IEEE Workshop on
Computer Security Foundations, pages 139–152, Washington, DC, USA, 2006. IEEE Computer Society.

[13] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In CSFW ’01: Pro-
ceedings of the 14th IEEE Workshop on Computer Security Foundations, page 82, Washington, DC,
USA, 2001. IEEE Computer Society.

[14] Gérard Boudol. The pi-calculus in direct style. In Conference Record of POPL ’97, pages 228–241, 1997.
[15] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science and Com-

putation Structures: First International Conference, FOSSACS ’98. Springer-Verlag, Berlin Germany,
1998.

[16] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-Hall, NJ, 1986.

[17] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-calculus.
In Proceedings of the 23rd ACM Symposium on Principles of Programming Languages, pages 372–385,
St. Petersburg Beach, Florida, January 21-24 1996. ACM.

[18] M. J. Gabbay. A theory of inductive definitions with α-equivalence, PhD thesis, University of Cambridge,
2000.

[19] M. J. Gabbay. Automating Fraenkel-Mostowski Syntax. In TPHOLs, 15th International Conference on
Theorem Proving in Higher Order Logics, number CP-2002-211736, pages 60–70. NASA, August 2002.

[20] M. J. Gabbay. The pi-calculus in FM. In Fairouz Kamareddine, editor, Thirty-five years of Automath,
volume 28 of Applied Logic Series, pages 247–269. Kluwer, 2003.

[21] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2001.

[22] G. Gonthier. A computer-checked proof of the four colour theorem. Technical report, Microsoft Research
Cambridge, 2004.

[23] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem proving environment for
higher order logic. Cambridge University Press, New York, NY, USA, 1993.

[24] Daniel Hirschkoff. A full formalisation of pi-calculus theory in the calculus of constructions. In TPHOLs
’97: Proceedings of the 10th International Conference on Theorem Proving in Higher Order Logics, pages
153–169, London, UK, 1997. Springer-Verlag.

[25] Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in (co)inductive type theory. Theoretical
Computer Science, 253(2):239–285, 2001.

[26] Thomas F. Melham. A mechanized theory of the pi-calculus in HOL. Nordic Journal of Computing,
1(1):50–76, 1994.

[27] R. Milner. A Calculus of Communicating Systems. Number 92 in LNCS. Springer-Verlag, 1980.
[28] R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and H. Schwichtenberg,

editors, Logic and Algebra of Specification, pages 203–246. Springer-Verlag, 1993.
[29] Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–141,

1992.
[30] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I/II. Inf. Comput.,

100(1):1–77, 1992.
[31] Otmane Aı̈t Mohamed. Mechanizing a pi-calculus equivalence in HOL. In Proceedings of the 8th Inter-

national Workshop on Higher Order Logic Theorem Proving and Its Applications, pages 1–16, London,
UK, 1995. Springer Verlag.

[32] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic.
Springer-Verlag, 2002.

[33] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. Flyspeck I: Tame graphs. In U. Furbach and
N. Shankar, editors, Automated Reasoning (IJCAR 2006), volume 4130, pages 21–35, 2006.

[34] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes
in Artificial Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[35] Joachim Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–543.
Elsevier, 2001.

36 J. BENTSON AND J. PARROW

[36] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-
cesses. In Logic in Computer Science, pages 176–185, 1998.

[37] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[38] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53:459–506, 2006.
[39] Christine Röckl and Daniel Hirschkoff. A fully adequate shallow embedding of the π-calculus in Is-

abelle/HOL with mechanized syntax analysis. J. Funct. Program., 13(2):415–451, 2003.
[40] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes. Cambridge Uni-

versity Press, New York, NY, USA, 2001.
[41] Natarajan Shankar. Metamathematics, Machines and Gödel’s Proof. Cambridge University Press, 1994.
[42] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science, 323:473–

497, 2004.
[43] Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning, 40(4):327–356,

2008.
[44] Christian Urban and Stefan Berghofer. A recursion combinator for nominal datatypes implemented in

Isabelle/HOL. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture Notes
in Computer Science, pages 498–512. Springer, 2006.

[45] Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s variable convention in rule in-
ductions. In Frank Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer Science, pages
35–50. Springer, 2007.

[46] Björn Victor and Faron Moller. The Mobility Workbench — a tool for the π-calculus. In David Dill,
editor, CAV’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 1994.

[47] Markus Wenzel. Isar - a generic interpretative approach to readable formal proof documents. In Yves
Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors, TPHOLs, volume
1690 of Lecture Notes in Computer Science, pages 167–184. Springer, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

Examples of proof.sty

\infer draws beautiful proof figures easily:
(1)

B11 & B12 & B13 B21 & B22 & B23
B C

A

(2)
B11 & B12 & B13 B21 & B22 & B23

B C
A1 & A2 & A3 & A4 & A5 & A6

(3)

C
B11 & B12 & B13 B21 & B22 & B23

B
A1 & A2 & A3 & A4 & A5 & A6

You can use also some variations:
(4)

B11 & B12 & B13 B21 & B22 & B23....
B C

A
(1)

(5)
B11 & B12 & B13 B21 & B22 & B23∑

B
(2)
C.... (1)

A1 & A2 & A3 & A4 & A5 & A6

(6)
A & B & C

A

Here are more practical examples:
(7)

A B
A & B

(&I) A & B
A

(&El)
A & B

B
(&Er)

[A]
....
B

A → B
(→ I) A → B A

B
(→ E)

Some techniques: Use \vcenter for an equation of proofs.

1

(8)

π = A
B C

D
E

Use \kern to adjust the form of a proof.
(9)

A
B C

D
E

2

	1. Introduction
	1.1. Motivation
	1.2. Theorem provers
	1.3. The -calculus
	1.4. Approach
	1.5. Results
	1.6. Exposition

	2. The pi-calculus in Isabelle
	3. Operational semantics
	3.1. Definitions
	3.2. Induction and case analysis rules

	4. Strong bisimulation
	4.1. Simulation
	4.2. Preservation properties
	4.3. Strong Bisimulation

	5. An Example Derivation
	6. Structural congruence
	7. Weak bisimulation
	7.1. Basic definitions
	7.2. Lifted semantics
	7.3. Preservation properties
	7.4. Relationships between equivalences
	7.5. The Hennessy Lemma

	8. Early semantics and bisimulation
	8.1. Early semantics
	8.2. Early bisimulation
	8.3. Weak early bisimulation
	8.4. Relationships between equivalences

	9. Results and Conclusions
	9.1. Current Status
	9.2. Related Work
	9.3. Impact and Further Work

	References

