
Using SPIN to Model Check Concurrent Algorithms, using a translation from C
to Promela

Ke Jiang, Bengt Jonsson
Department of Computer Systems, Uppsala University, Sweden

keji4095@student.uu.se, bengt@it.uu.se

Abstract

This paper addresses the problem of automatically veri-
fying correctness of concurrent algorithms, e.g., as found in
concurrent implementations of common data structures, us-
ing model checking. In order to use a model checker to an-
alyze programs in, e.g., C, one must first translate programs
to the input language of the model checker. Since our aim
is to use SPIN, we present an automated translation from a
subset of C to Promela. This translation is able to handle
features not covered by previous such translations, notable
pointer structures and function calls. We illustrate the ap-
plication of our translation to a concurrent queue algorithm
by Michael and Scott.

1 Introduction

In order to utilize multicore processors, increased atten-
tion is given to algorithms that achieve maximal concur-
rency to achieve performance, often resulting in complex
algorithms. Concurrency libraries are an important exam-
ple of this trend: the Intel Threading Building Blocks, the
java.util.concurrent package, and other libraries
support the programmer by providing concurrent imple-
mentations of familiar data abstractions such as queues,
sets, or maps. Implementations of such libraries typically
do not follow locking disciplines, and instead use lock-
free synchronization for gaining performance (e.g., [9, 14]).
Such implementation are typically hard to get correct, as
witnessed by many bugs found in published algorithms
(e.g., [2, 10]).

This paper addresses the problem of automatically veri-
fying correctness of, or finding bugs in, complicated but not
too large, concurrent algorithms, e.g., as found in concur-
rent implementations of common data structures. For such
algorithms, standard race-detection tools (e.g., [3, 13]) are
of limited use. An analysis of correctness must consider the
detailed operation of the algorithm implementation. This
is an application, where model checking techniques can be

helpful. There are several powerful model checkers that can
be used to analyze correctness of concurrent algorithms.
Perhaps the most popular is the model checker SPIN [7],
which analyzes algorithms expressed in the Promela mod-
eling language. However, SPIN can not analyze programs
written in, e.g., C, directly: first the programs must be trans-
lated into Promela.

The goal of our work is to use SPIN to automatically an-
alyze concurrent algorithms written in (a significant subset
of) C. This paper describes a step in this direction: an au-
tomated translation from a subset of C to Promela. Several
such translations exist, but are not adequate for our purposes
(see the next section). The translation of control structures
is relatively straight-forward. In this paper we will describe
our techniques for translating pointer structures and func-
tions, which are not supported by Promela. Features that are
not yet supported in our implementation are a completely
faithful representation of atomicity in basic C statements
(e.g., when they concern two global variables), and con-
sideration of weak memory models which become relevant
when standard locking disciplines are not obeyed.

We illustrate our translation by applying it to a concur-
rent blocking queue algorithm by Michael and Scott [11].

Some Related Work There are several implemented
translations from C to Promela, developed for different pur-
poses. ModEx [5] is a tool intended for model checking
ANSI-C code by mechanically extracting Promela models
from C program. There are several features of C, most
notably functions and pointers, that are not handled by
ModEx. To increase its applicability, it is possible to em-
bed C code directly into Promela statements [4, Sec. 10].
However, for model checking, one must manually describe
how to manipulate the associated state: it is unclear whether
this can be done for pointer structures.

This work is inspired by our previous work [8], where we
used a manual modeling in Promela to analyze concurrent
algorithms under a particular weak memory model. This
work is a step towards mechanising that approach, where
we handle important aspects of C, such as functions and

1

pointers. In this paper, we still do not consider the impact
of weak memory models, but use sequential consistency.

2 A Motivating Example

Our ambition is to automatically perform model check-
ing on algorithms written in a subset of C, such as the be-
low concurrent queue algorithm, translated from the pseu-
docode code published by Michael and Scott [11]. Algo-
rithms like this are often used to avoid making highly used
data structures bottlenecks in concurrent programs. It is also
the original algorithm of our previous manual translation,
which we would like to compare with. With respect to the
original algorithm, we changed the type of dequeue func-
tion from boolean to int since there is no boolean type
in ANSI C. The lock and unlock functions represent the
special locking and unlocking functions which need to be
treated specially. The C code of the algorithm is as follows.

struct node_t {
struct node_t *next;
int value;

};

struct queue_t {
struct node_t *Head;
struct node_t *Tail;
int H_lock;
int T_lock;

};

void initialize(struct queue_t *Q)
{
struct node_t *dummy =

malloc(sizeof(struct node_t));
dummy->next = 0;
dummy->value = 0;
Q->Head = Q->Tail = dummy;
Q->H_lock = Q->T_lock = 0;

}

void enqueue(struct queue_t *Q, int val)
{
struct node_t *node =

malloc(sizeof(struct node_t));
node->value = val;
node->next = 0;
lock(&Q->T_lock);

Q->Tail->next = node;
Q->Tail = node;

unlock(&Q->T_lock);
}

int dequeue (struct queue_t *Q, int *pvalue
)

{
struct node_t *node;

struct node_t *new_head;
lock(&Q->H_lock);

node = Q->Head;
new_head = node->next;
if (new_head == 0) {

unlock(&Q->H_lock);
return 0;

}

*pvalue = new_head->value;
Q->Head = new_head;

unlock(&Q->H_lock);
free(node);
return 1;

}

Our ambition is to analyze this program by translating it
to a Promela model, which can be analyzed using SPIN. The
translation must faithfully represent the control structure of
the above operations, as well as the dynamic memory op-
erations. It is also desirable to preserve the structuring into
functions, which can be called in different ways by different
test harnesses. In the next section, we consider how this can
be accomodated in Promela.

3 Promela

The modeling language Promela is designed for state
space exploration of finite-state models of systems of com-
municating processes. The main structuring unit is pro-
cesses, which communicate via channels or global vari-
ables. In order that models have finite and not too large
state spaces, individual processes should typically have a
small set of local variables, each with a not too big domain.
Thus, dynamic allocation of data, or pointer structures, can
not be represented, and there is a small set of control flow
primitives.

In order to use SPIN, we must solve some problems of
representation in Promela.

• Promela does not support dynamically allocated data
structures. To overcome this, we must explicitly model
dynamically allocated memory, e.g., by arrays.

• Promela does not support functions. We must therefore
emulate function calls, e.g., by creation of processes,
and represent the parameter passing and function re-
turn by appropriate synchronizations.

• We must consider the issue of creating suitable test
harnesses to exercise different configurations of con-
current processes.

4 Syntax-directed translation

In this section, we give an overview of our translation
from (our subset of) C to Promela.

2

4.1 Data Structures and Statements

Promela has C-like syntax (actually it is compiled to C),
but supports limited data-types. Our current translator han-
dles a subset of ANSI C. Integer and array variables will
be preserved in the same way as in C, while pointers and
structures (and linked lists) will be handled separately. The
translation of pointers is described in Section 4.2.

Simple statements are translated straight-forwardly be-
cause of the similarity between statements in C and
Promela. Control structures, including jumps (except
return which is described in Section 4.3), selection,
and iteration are translated to corresponding structures in
Promela. We illustrate these aspects by the following ex-
tract, which is the bubble sort algorithm on a[n].

#define n 5
struct record{
int min;
int max;

};
...
int x, y;
struct record r;
for(x=0; x<n; x++)

for(y=0; y<n-1; y++)
if(a[y]>a[y+1]) {

int temp = a[y+1];
a[y+1] = a[y];
a[y] = temp;

}
r.min = a[0];
r.max = a[n-1];

...

The C code fragment will be translated as follows.

typedef record {
int min;
int max;

}

...
int x; int y;
record r;
int temp;
x = 0;
do
:: (!(x < 5)) -> break
:: else ->

y = 0;
do
:: (!(y < 4)) -> break
:: else ->

if
:: (a[y] > a[(y + 1)]) ->

temp = a[(y + 1)];
a[(y + 1)] = a[y];

a[y] = temp
:: else
fi;
y ++

od;
x ++

od;
r.min = a[0];
r.max = a[4];

...

4.2 Dynamically Allocated Memory

Promela does not support dynamically allocated data
structures or pointers, hence we must emulate them. Since
the memory can be seen as a large sequential array contain-
ing all program data, one option could be to define a global
array, indexed by addresses, that simulates all memory. This
option obviously is too space-consuming for analysis by
model checking. A less costly approach is to allocate ar-
rays which hold only objects that are dynamically allocated
by the program. We must allocate one array for each data
type, since different data-types have different structures and
fields. For each data type, which has an object that is ac-
cessed by a pointer in the program, we allocate an array, and
the pointers to this data type will be translated into indices in
the array. With this approach, we obviously cannot handle
pointer arithmetic; only type-respecting pointer operations
are permitted. Our current translator has implemented this
solution for two data types: int and user-defined struct.

Since the array for a data type must be allocated statically
at the beginning of program execution, we must also record
which cells are allocated and which are not. This can done
by a special “unallocated” value, or by a separate array of
booleans (as we have done).

Figure 1 illustrates how a linked list is formalized in
Promela. The left part in Figure 1 shows the Promela ar-
ray, and the right part shows a linked list that is represents.

Translating Pointer operations From the previous de-
scription, it follows that assignments to pointers is trans-
lated to normal integer assignments. Allocation of a new
object in the C program must be done using malloc,
and a new object will be allocated to the first available
position in the corresponding array (by convention named
type_valid[9]). Freeing an object is analogous. A
small example of the translation of a code snipped follows.

struct person{
int age;

};
...
struct person *ptr;
ptr = malloc(sizeof(struct person));

3

Figure 1. Array representation in Promela of
a linked list

ptr->age = 24;
free(ptr);

...

Its translation is

typedef person {
int age;

}
person person_mem[9];
int person_valid[9];

...
int person_ct;
int ptr; int tmp;
atomic {

person_ct = 1;
do
:: (person_ct >= 9) -> break
:: else ->

if
:: (person_valid[person_ct] == 0) ->

person_valid[person_ct] = 1;
break

:: else -> person_ct ++
fi

od;
assert (person_ct < 9);
tmp = person_ct;
person_ct = 1

};
ptr = tmp;
person_mem[ptr].age = 24;
d_step {

person_valid[ptr] = 0;
person_mem[ptr].age = 0

};
...

4.3 Translating functions

The translation of functions and function calls is essen-
tial for translation of C programs, e.g., so that we can de-
fine test harnesses that call functions that manipulate shared
data, or translate recursively defined functions. Since there
is no function concept in Promela, they must be emulated.
The only structuring concept available in Promela is the
process, whence we will use them to emulate functions.
Each function definition will be translated to a Promela pro-
cess type declaration which uses the corresponding local
variables. A function call will be translated into the cre-
ation of a process. Parameters that are passed in the function
call will be translated into parameters that are instantiated
when the function is created. Return values will be passed
by passing a message back with the corresponding value as
parameter to the calling context. This idea was originally
proposed by Holzmann [6, Ch. 5.9], and we have altered it
slightly. We present a more detailed account in the follow-
ing paragraphs.

Function definitions in C will be translated into process
type declarations in Promela, whose parameters will be
the formal parameters of the function, plus an additional
channel parameter that is used to communicate the return
value. The body of the function is translated “as usual”. A
return statement in C is translated into the transmission
of a return message, after which process should be termi-
nated immediately.

Function call will be translated into a sequence of state-
ments in Promela. Before calling a function, a channel must
be defined for the transmission of return values. If the same
function is called several times within the same context,
only one channel is necessary. The actual call is translated
into the creation of a process (using the run statement of
Promela), to which the actual parameters, and the recently
defined channel are passed. The created process will exe-
cute asynchronously. Meanwhile, the calling context will be
blocked on its next statement, which is a (blocking) receive
of the return value on the return channel. The two functions,
lock and unlock, which are used to represent the locking
and unlocking mechanisms in C, will not be translated into
process creations but into an atomic structure simulation.

Return statements A return statement in C passes a
value to its caller and terminates the function. So we have
to emulate both of these two properties. The first prop-
erty is emulated by transmitting a return value over the syn-
chronous return channel. If a void is returned, a dummy
value 0 will be sent. The second property is emulated by a
goto end statement immediately after the transmission.

4

Recursive functions The above scheme for translating
function definitions and calls automatically handles recur-
sion. The main reason is that the declared return channels
are local to the calling process, and that therefore multiple
independent local copies of the return channels are created
by the scoping mechanism of Promela. Promela allows at
most 255 processes to be created in an execution, so this
puts a limit on the recursion depth: this limitation is not
significant for the analyses that we envisage.

An example The code below demonstrates the function
translation.

int test(int a, int b){
if(a >= b) return a;
else return b;

}

int main(){
int x = 2;
int y = 3;
return test(x, y);

}

The Promela translation is as follows.

proctype test(chan in_test; int a; int b){
if
:: (a >= b) -> in_test ! a; goto end
:: else -> in_test ! b; goto end
fi;

end :
printf ("End of test")

}

proctype main(chan in_main){
chan ret_test = [0] of { int };
int x; int y; int tmp;
x = 2;
y = 3;
run test(ret_test, x, y);
ret_test ? tmp;
in_main ! tmp;
goto end;

end :
printf ("End of main")

}

init {
chan ret_main = [0] of { bit };
run main(ret_main);
ret_main ? 0

}

5 Implementation

We have implemented the described translation with the
aid of CIL [12]. CIL handles the parsing and semantic anal-

ysis for C programs, relieving us from a lot of work. CIL
compiles valid C programs into a few core constructs with
a clean semantics to make the result program easier to ana-
lyze. For example, all looping constructs, i.e., while, for
and do..while, in the input C programs are transformed
to a single form while; all function bodies are given ex-
plicit return statements; and a group of involved files are
merged into one. CIL can also be guided to perform user
defined transformation like the translator module we devel-
oped. Our C to Promela translator is actually realized as a
new module which can be employed by CIL, and will use
the CIL-analyzed syntax trees as its input format. After ob-
taining the syntax trees of a C program, our translator will
preprocess the C syntax tree, transform it into Promela syn-
tax tree and generate Promela code. The whole translation
procedure is illustrated in Figure 2.

Figure 2. Translation flow

6 Experiments

In order to evaluate the translator we developed, we de-
cided to perform some test harnesses including the ones
we previously introduced [8] on the translation of blocking
queue algorithm. Then we can evaluate the automatic trans-
lation comparatively with our previous manual translation.
We denote test harnesses in a condensed notation (follow-
ing [1]), using a sequence of E (for enqueue) and D (for

5

dequeue) in each thread, and separating threads by |. For
example, the test (EE|DD) has two threads, which respec-
tively calls two enqueue/dequeue operations sequen-
tially [8]. We created two functions, “e” and “d”, for sim-
ulating two independent threads where our enqueue and
dequeue processes are running. Therefore, when trans-
lating these two functions, they will not be synchronized
with their calling process. The reason is an obvious one,
that the channel synchronization will keep the executions in
sequence, but we need these two processes running simul-
taneously, i.e. the test (EE|DD) will cause process e and
d to instantiate enqueue and dequeue processes twice
independently.

First, we performed a simple test (E|D), in which 851
states were generated and 5.044Mb memory in the rapid
verification procedure (almost 0 second consumed). Then
we tested the translation with a number of more advanced
ones, and present the results in Table 1. The C code im-
plementation of the test harness (EEE|DDD) is presented
in the Appendix, and the codes for the others are similar.
The automatic Promela translation for the test harness is
also presented, in which we manually inserted the check-
ing mechanism for dequeued values, which checks that the
dequeued values is a prefix of the enqueued values, possi-
bly interleaved with dequeue operations that return “empty
queue”.

Test harness States Mem. Time
E|D 851 5.044 ~0

EE|DD 14,467 11.587 0.13
EE|DDD 29,506 19.009 0.26
EEE|DDD 138,751 74.575 1.33
EEEE|DD 128,611 69.399 1.26
EEEE|DDDD 1,101,416 583.583 11.5
EEEEE|DDDD 3,181,607 1727.196 34.4
EEEEE|DDDDD 7,894,946 4403.891 87.5

Table 1. Verification results

We also considered the most complicated test harness
from [8], (E|E|E|E|D|D). Verifying this would consume
a large amount of memory, exceeding the physical mem-
ory of our computer (8Gb). So, we analyzed it non-
exhaustively, using the Supertrace/Bitstate mode. There
were 28,131,899 states generated which was equivalent to
18887.383Mb memory usage.

Of all the experiments we performed on the Exhaus-
tive mode, two were the same with our previous work [8],
namely (E|D) and (EEEEE|DDDDD). For the first one, the
manual translation generated 900 states comparing to the
851 states of the automatic translation. For the second ex-
periment, there were about 100,000 states generated for our
manual work, while there were about 7,900,000 states gen-
erated by the automatic translation.

7 Conclusion

We have presented an implementation of a translation
from a subset of C to Promela, motivated by the intention to
automatically model check concurrent programs, e.g., im-
plementing shared data structures. Nontrivial aspects of
the translation include dynamically allocated data structures
and function calls. In our previous work [8], we performed
such a translation manually. Compared with that trans-
lation, our current implementation still does not have the
same capabilities: it still does not adequately divide state-
ments into atomic parts (e.g., a statement like x++ is not
broken up into atomic parts), and does not consider the im-
pact of weak memory models, but translates into sequential
consistency: this means that errors related to these features
may not be detected in subsequent model checking anal-
yses. When comparing the manual and automated transla-
tions with regard to efficiency, we see that for corresponding
test runs, the automated translation generated about an or-
der of magnitude more states. Considering that the manual
translation also takes into account complications caused by
weak memory models, there appears to be room to optimize
the translation for more efficient model checking.

Although the C code we processed is still a subset,
we can already foresee that many complex portions of C
could also be handled using the methods we proposed, e.g.
multi-dimensional arrays and pointers to pointers. We also
plan to add the impact of weak memory models. Future
work should also include optimizing the current translation
(e.g., making sequences of statements without global effects
atomic). An interesting extension would also be to include
garbage collection (as is done, e.g., Promela models consid-
ered in [15]).

References

[1] S. Burckhardt. Memory Model Sensitive Analysis of
Concurrent Data Types. PhD thesis, Univ. of Pennsyl-
vania, 2007.

[2] S. Doherty, D. Detlefs, L. Groves, C.H. Flood,
V. Luchangco, P.A. Martin, M. Moir, N. Shavit, and
G.L. Steele Jr. Dcas is not a silver bullet for nonblock-
ing algorithm design. In SPAA 2004: Proceedings of
the Sixteenth Annual ACM Symposium on Parallel Al-
gorithms, June 27-30, 2004, Barcelona, Spain, pages
216–224, 2004.

[3] C. Flanagan and S.N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. Sci-
ence of Computer Programming, 71(2):89–109, 2008.

6

[4] Gerard J. Holzmann. Spin Model Checker, The Primer
and Reference Manual. Addison Wesley, September
2003.

[5] Gerard J. Holzmann and Margaret H. Smith. Software
model checking: extracting verification models from
source code. Softw. Test., Verif. Reliab., 11(2):65–79,
2001.

[6] G.J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, 1991.

[7] G.J. Holzmann. The model checker SPIN. IEEE
Trans. on Software Engineering, SE-23(5):279–295,
May 1997.

[8] Bengt Jonsson. State-space exploration for concur-
rent algorithms under weak memory orderings: (pre-
liminary version). SIGARCH Comput. Archit. News,
36(5):65–71, 2008.

[9] M.M. Michael. Scalable lock-free dynamic memory
allocation. In PLDI 2004, pages 35–46, 2004.

[10] M.M. Michael and M. Scott. Correction of a mem-
ory management method for lock-free data structures.
Technical Report TR599, University of Rochester,
1995.

[11] M.M. Michael and M. Scott. Simple, fast, and prac-
tical non-blocking and blocking concurrent queue al-
gorithms. In Proc. 15th ACM Symp. on Principles of
Distributed Computing, pages 267–275, 1996.

[12] George C. Necula, Scott McPeak, S. P. Rahul, and
Westley Weimer. Cil: Intermediate language and
tools for analysis and transformation of c programs.
Proceedings of Conference on Compiler Construction
(CC’02), March 2002.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T.E. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Trans. on Computer
Systems, 14(4):391–411, Nov. 1997.

[14] H. Sundell and P. Tsigas. Fast and lock-free concur-
rent priority queues for multi-thread systems. J. Par-
allel Distrib. Comput., 65(5):609–627, 2005.

[15] T. Vechev, E. Yahav, and G. Yorsh. Experience with
model checking linearizability. In Proc. 16th Int.
SPIN Workshop, volume 5578 of Lecture Notes in
Computer Science, pages 261–278, Grenoble, France,
2009. Springer.

Appendix

• Translation for the concurrent queue algorithm

int int_mem[9];
int int_valid[9];
typedef node_t {
int next;
int value;

}
node_t node_t_mem[9];
int node_t_valid[9];
typedef queue_t {
int Head;
int Tail;
int H_lock;
int T_lock;

}
queue_t queue_t_mem[9];
int queue_t_valid[9];

proctype initialize(chan in_initialize;
int Q){

int node_t_ct; int dummy; int tmp;
atomic {

node_t_ct = 1;
do
:: (node_t_ct >= 9) -> break
:: else ->

if
:: (node_t_valid[node_t_ct] == 0) ->

node_t_valid[node_t_ct] = 1;
break

:: else -> node_t_ct ++
fi

od;
assert (node_t_ct < 9);
tmp = node_t_ct;
node_t_ct = 1

};
dummy = tmp;
node_t_mem[dummy].next = 0;
node_t_mem[dummy].value = 0;
queue_t_mem[Q].Tail = dummy;

queue_t_mem[Q].Head = queue_t_mem[Q].Tail;
queue_t_mem[Q].T_lock = 0;
queue_t_mem[Q].H_lock =

queue_t_mem[Q].T_lock;
in_initialize ! 0;
goto end;

end :
printf ("End of initialize")

}

proctype enqueue(chan in_enqueue; int Q;
int val){

int node_t_ct; int node;
int tmp; int mem_5;

7

atomic {
node_t_ct = 1;
do
:: (node_t_ct >= 9) -> break
:: else ->

if
:: (node_t_valid[node_t_ct] == 0) ->

node_t_valid[node_t_ct] = 1;
break

:: else -> node_t_ct ++
fi

od;
assert (node_t_ct < 9);
tmp = node_t_ct;
node_t_ct = 1

};
node = tmp;
node_t_mem[node].value = val;
node_t_mem[node].next = 0;
atomic {

(queue_t_mem[Q].T_lock == 0) ->
queue_t_mem[Q].T_lock = 1

};
mem_5 = queue_t_mem[Q].Tail;
node_t_mem[mem_5].next = node;
queue_t_mem[Q].Tail = node;
queue_t_mem[Q].T_lock = 0;
in_enqueue ! 0;
goto end;

end :
printf ("End of enqueue")

}

proctype dequeue(chan in_dequeue; int Q;
int pvalue){

int node; int new_head;
atomic {

(queue_t_mem[Q].H_lock == 0) ->
queue_t_mem[Q].H_lock = 1

};
node = queue_t_mem[Q].Head;
new_head = node_t_mem[node].next;
if
:: (new_head == 0) ->

queue_t_mem[Q].H_lock = 0;
in_dequeue ! 0;
goto end

:: else
fi;
int_mem[pvalue] = node_t_mem[new_head].

value;
queue_t_mem[Q].Head = new_head;
queue_t_mem[Q].H_lock = 0;
d_step {

node_t_valid[node] = 0;
node_t_mem[node].next = 0;
node_t_mem[node].value = 0

};

in_dequeue ! 1;
goto end;

end :
printf ("End of dequeue")

}

• Test harness implementation for (EEE|DDD)

int ins = 1;

void i(struct queue_t *Q) {
initialize(Q);

}

void e(struct queue_t *Q) {
enqueue(Q, ins);
ins ++;
enqueue(Q, ins);
ins ++;
enqueue(Q, ins);
ins ++;

}

void d(struct queue_t *Q) {
int res;
int *val = malloc(sizeof(int));
res = dequeue(Q, val);
res = dequeue(Q, val);
res = dequeue(Q, val);

}

int main(){
struct queue_t *queue;
queue = malloc(sizeof(struct queue_t));
i(queue);
e(queue);
d(queue);
return 0;

}

• Translation for test harness (EEE|DDD). The manually
added codes for checking purpose were the second line
and the three if structures at the end of process d.

int ins = 1;
int check;

proctype i(chan in_i; int Q){
chan ret_initialize = [0] of { bit };
run initialize(ret_initialize, Q);
ret_initialize ? 0;
in_i ! 0;
goto end;

end :
printf ("End of i")

}

8

proctype e(int Q){
chan ret_enqueue = [0] of { bit };
run enqueue(ret_enqueue, Q, ins);
ret_enqueue ? 0; ins ++;
run enqueue(ret_enqueue, Q, ins);
ret_enqueue ? 0; ins ++;
run enqueue(ret_enqueue, Q, ins);
ret_enqueue ? 0; ins ++;

end :
printf ("End of e")

}

proctype d(int Q){
chan ret_dequeue = [0] of { int };
int int_ct; int res; int val; int tmp;
atomic {

int_ct = 1;
do
:: (int_ct >= 9) -> break
:: else ->

if
:: (int_valid[int_ct] == 0) ->

int_valid[int_ct] = 1;
break

:: else -> int_ct ++
fi

od;
assert (int_ct < 9);
tmp = int_ct;
int_ct = 1

};
val = tmp;
run dequeue(ret_dequeue, Q, val);
ret_dequeue ? res;
if
:: (int_mem[val] == check) -> check ++
:: else -> assert(res == 0)
fi;
run dequeue(ret_dequeue, Q, val);
ret_dequeue ? res;
if
:: (int_mem[val] == check) -> check ++
:: else -> assert(res == 0)
fi;
run dequeue(ret_dequeue, Q, val);
ret_dequeue ? res;
if
:: (int_mem[val] == check) -> check ++
:: else -> assert(res == 0)
fi;

end :
printf ("End of d")

}

proctype main(chan in_main){
chan ret_i = [0] of { bit };
int queue_t_ct; int queue; int tmp;

atomic {
queue_t_ct = 1;
do
:: (queue_t_ct >= 9) -> break
:: else ->

if
:: (queue_t_valid[queue_t_ct] == 0) ->

queue_t_valid[queue_t_ct] = 1;
break

:: else -> queue_t_ct ++
fi

od;
assert (queue_t_ct < 9);
tmp = queue_t_ct;
queue_t_ct = 1

};
queue = tmp;
run i(ret_i, queue);
ret_i ? 0;
run e(queue);
run d(queue);
in_main ! 0;
goto end;

end :
printf ("End of main")

}

init {
chan ret_main = [0] of { bit };
run main(ret_main);
ret_main ? 0

}

9

