
Optimization and Execution of Complex Scientific
Queries over Uncorrelated Experimental Data

Ruslan Fomkin and Tore Risch

Department of Information Technology, Uppsala University,

Box 337, SE-75105 Uppsala, Sweden
{Ruslan.Fomkin,Tore.Risch}@it.uu.se

Abstract. Scientific experiments produce large volumes of data represented as
complex objects that describe independent events such as particle collisions.
Scientific analyses can be expressed as queries selecting objects that satisfy
complex local conditions over properties of each object. The conditions include
joins, aggregate functions, and numerical computations. Traditional query
processing where data is loaded into a database does not perform well, since it
takes time and space to load and index data. Therefore, we developed SQISLE
to efficiently process in one pass large queries selecting complex objects from
sources. Our contributions include runtime query optimization strategies, which
during query execution collect runtime query statistics, reoptimize the query
using collected statistics, and dynamically switch optimization strategies.
Furthermore, performance is improved by query rewrites, temporary view
materializations, and compile time evaluation of query fragments. We
demonstrate that queries in SQISLE perform close to hard-coded C++
implementations of the same analyses.

1 Introduction

Large volumes of data produced and shared within scientific communities are
analyzed by many researchers to test scientific hypotheses. For example, in High
Energy Physics (HEP) a lot of data is generated by simulation software from the
Large Hadron Collider (LHC) experiment ATLAS [4]. The data is stored in files and
describes effects from collisions of particles.

This paper investigates the use of query processing techniques to implement such
scientific applications. Data is represented as complex objects describing
measurements of independent real-world events. The analyses are selections of events
applying conjunctions of complex numerical filters on each complex object.

In ATLAS, a collision event generates measurements of new particles summarized
as a complex object. Generated objects are stored in files, which are read by the data
management library ROOT [7]. Since every collision is performed independently
from others, each complex object describing an event is analyzed separately and there
are no joins between data from different events. Therefore each ROOT file can be
processed in one pass per query as a stream of objects describing collision events.
Physicists test their hypotheses on these data by selecting interesting events. An
example of a scientifically interesting event is a collision event which is likely to
produce Higgs bosons [5,11]. A collision event is interesting if it satisfies some

conditions, called cuts, specified over the object describing the event. The cuts are
complex conditions over properties of each object involving joins, aggregate
functions, and numerical computations.

Currently physicists test their hypotheses using regular programming languages,
e.g., C++. The analysis programs retrieve descriptions of events from files through
specific data management libraries, e.g. ROOT. However, it takes lots of efforts for
physicists to code their analyses as C++ programs. Furthermore, good knowledge of
programming methodologies is necessary for writing extensible and understandable
programs for complex analyses.

We present a database approach to test scientific hypotheses as declarative
conjunctive queries. We found that while such queries can be handled using
traditional query processing techniques, performance is very poor due to slow data
load and index times, space overhead of indexed data, and poor cost estimates for
large queries with many aggregates and user-defined numerical functions. On the
other hand, such queries can be processed very quickly using hand-coded C++
programs, but each program typically takes a scientist weeks to create. To improve
performance while retaining ease of query specification, we created SQISLE
(Scientific Queries over Independent Streamed Large Events), a query processing
system that takes advantage of the special data and query characteristics of our target
domain (high-energy physics) while also meeting its unique challenges. SQISLE
employs a one-pass streaming approach to process queries where data stays in their
sources, e.g. ROOT files, and is streamed through the system. SQISLE provides
facilities for complex queries over streams of objects with complex structure, as
required for our kind of scientific applications. The system reads complex objects
from sources, e.g. description of collision events from ROOT files, through a wrapper
interface and processes the objects one-by-one as they are streamed. The objects are
thus analyzed in one pass by reading data sequentially without populating a database.
This streaming approach requires limited memory and is shown to be efficient
compared to the traditional loading approach where data is loaded into a database and
indexed before being queried.

Instead of relying on static query optimization, SQISLE collects query statistics at
runtime, uses them to reoptimize the query, and dynamically switches optimization
strategies. SQISLE's performance is further improved by query rewrites, temporary
view materializations, and compile time evaluation of query fragments. We show that
queries in SQISLE perform close to or better than equivalent C++ implementations
hand-coded by scientists.

SQISLE extends Amos II [24]. The architecture of SQISLE is illustrated by Fig. 1,
where the arrows show the data flow during query execution. A scientist specifies an

Fig. 1. Architecture of SQISLE with data flow

analysis as a query over a stream of complex objects from data sources processed by
SQISLE through a wrapper interface. The scientists write their analysis queries in
terms of a high level application schema (App. schema) that defines the structure of
the streamed complex objects. The source database (Source DB) contains meta-data
about stream sources. It is accessed in queries to locate sources containing data for the
analyses and their meta-data. The wrapper interface is defined in terms of an
application data management library (App. Library), e.g., ROOT.

To obtain efficient execution plans for complex queries over streams of complex
objects, SQISLE uses runtime query optimization strategies implemented by a profile-
controller operator. It encapsulates in each query the fragment that tests complex
conditions (hypotheses) over properties of the streamed complex objects. During
runtime it controls collecting statistics for the fragment, reoptimizes the fragment
based on collected statistics, and dynamically switches optimization strategies. The
cost-based query optimization utilizes a cost model for aggregate functions over
nested subqueries from [9]. To alleviate estimation errors in large queries the
fragments are decomposed into conjunctions of subqueries over which runtime
statistics are measured [9].

Data from controlled scientific experiments produced with the same experimental
run conditions usually have similar statistical properties. Therefore, we assume that
stream data statistics are similar. For example, in the ATLAS application properties of
events have the same distribution for events generated in the same experiment. Once a
fragment is reoptimized based on sufficient sampled data from the beginning of the
queried stream, the query execution is immediately continued using the reoptimized
query execution plan for the rest of the stream without profiling overhead.

The query processing is further improved by query rewrites, use of materialized
views, and compile time evaluation. Query rewrite rules reduce the number of
predicates in queries. Views are materialized once per read complex object and the
materialized results are accessed while processing the same object and then discarded.
Compile time evaluation [15,23] executes some predicates of a query at compile time
before query execution and replaces predicates with execution results.

By evaluating the performance of SQISLE for ATLAS queries over ROOT files
with different selectivities, we show that the SQISLE query processing techniques
improve performance of queries substantially. The query performance is compared
with the performance of a manually coded C++ program provided by the physicists
doing the same analysis. The SQISLE implementation is shown to have performance
close to or better than the hard-coded C++ implementation. Ideally a C++ program
should perform better than declarative programs interpreted by a DBMS, but in
practice writing an efficient C++ programs requires substantial effort, which has to be
repeated for new queries or for data from new experiments. Using a declarative query
language for testing scientific hypotheses is thus much more efficient for research
productivity than expressing the tests as more complex C++ programs.

In summary, the contributions are:
• One-pass query processing algorithms are shown to provide efficient

implementations of declarative queries testing our kind of scientific hypotheses.
• Runtime query optimization of streaming queries by the profile-controller operator

allows measuring real query behavior and dynamically switching execution

strategies. The runtime strategies are shown superior to a static cost-based
approach.

• With the proposed runtime optimization strategies, the streaming approach is
shown to be more efficient than the loading approach for the targeted kind of
queries with performance close to a hard-coded C++ program.
The rest of the paper is organized as follows. Section 2 presents how an ATLAS

analysis is specified as a query. The SQISLE query processing techniques are
presented in Section 3. The query performance is evaluated in Section 4. Section 5
presents related work. The paper is concluded in Section 6.

2 The ATLAS Application Queries

To evaluate the query processing techniques implemented in SQISLE an ATLAS
application is defined as SQISLE queries. For example, the hypothesis from [5],
which searches for events producing Higgs bosons, is specified as this query:

1:
2:
3:
4:
5:
6:
7:
8:

select e
from Event e, EventFile f
where name(experiment(f)) = “bkg2” and
 fileid(f) < 15 and
 e in events(filename(f)) and
 hadrtopcut(e) and jetvetocut(e) and
 misseecuts(e) and zvetocut(e) and
 threeleptoncut(e) and leptoncuts(e);

(1)

The query selects objects of type Event satisfying six cuts constituting the
hypothesis from [5] called the Six Cuts Analysis. On lines 3-5 the query specifies the
sources to query by selecting the files produced by the experiment named bkg2. The
source database is searched in lines 3-4, while the function events calls a ROOT
wrapper interface function to read objects from the selected ROOT files. The rest of
the query specifies the Six Cuts Analysis.

Wrapper interface functions read data from sources as complex stream objects
represented by a data type named Sobject. The stream objects are defined as user-
defined types, and are deallocated automatically and efficiently by an incremental
garbage collector when they are not referenced any more.

Each cut is a view defined as a Boolean function that returns true if the cut is
fulfilled. The views are defined as declarative queries over properties of each event
object e involving joins, aggregate functions, and complex numerical computations
defined in terms of a high-level application schema. The type hierarchy of the
application schema for the ATLAS application is presented in Fig. 2.

A wrapper interface function reads events and instantiates them as stream objects
of type Event, a subtype of type Sobject. Each complex event object describes
measurements from one collision. Objects of type Particle represent various kinds of
particles produced by the collision, which are derived from the event object by
transformation views. The transformation views are defined as declarative functions
mapping stream objects returned by a wrapper interface function into a set of derived
stream objects representing objects in terms of the application schema.

 For example, the Three Lepton Cut, one of the simplest among the six cuts being
part of the Six Cuts Analysis, requires that an event has exactly three isolated leptons
with |Eta|<2.4 and Pt>7, where at least one lepton has Pt>20. The Three Lepton Cut is
defined in SQISLE as this Boolean function:

create function threeLeptonCut (Event e) -> Boolean as
select TRUE
where count(isolatedLeptons(e)) = 3
 and some(select r
 from Real r
 where r = Pt(isolatedLeptons(e))
 and r > 20.0);

The function isolatedLeptons is defined as:
create function isolatedLeptons(Event e) ->
 Bag of Lepton as
select l
from Lepton l
where l in leptons(e)
 and pt(l) > 7.0
 and abs(eta(l)) < 2.4;

The functions Pt and Eta are defined in terms of numerical operators calculating

22 yxPt += and
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−++

+++
⋅=

zzyx

zzyx
Eta

222

222

ln5.0 , respectively, over momentum

(x,y,z) of a particle. The function leptons is a transformation view defined as a query
that returns all leptons detected by event e. It is defined as the union of the
transformation views electrons and muons, which generate objects of types Electron
and Muon, respectively. There is a detailed description of the used cuts and view
definitions in [8].

Given that the cuts are defined as Boolean functions, a user query always contains
the following kinds of query fragments:
• A source access query fragment, e.g. lines 3-5 in query (1), specifies sources to

access and calls a stream function that emits a stream of complex objects.
• A processing query fragment, e.g. lines 6-8 in query (1), specifies the scientific

analyses (tested hypotheses) as queries over views of complex objects, e.g.
specifying cuts over events. The views are defined in terms of transformation
views.

Fig. 2. Type hierarchy of an application schema for the ATLAS application

3 Query Processing in SQISLE

In [9] we implemented the above queries using the traditional loading approach where
the data streams were first loaded into the DBMS and indexed before the queries were
given. The loading and indexing is very time consuming. In our example, it takes
about 15 seconds to load one ROOT file containing 25000 events, while the analysis
alone of the 25000 events takes just 1.5 seconds, i.e. a total processing time of 16.5
seconds. Furthermore, the loading approach requires sufficient memory to store all
complex objects indexed.

To avoid the high loading and indexing costs, in SQISLE, instead of preloading the
data into a DBMS, the data stays in their sources, e.g. ROOT files, and are processed
in one pass. The system reads the complex objects from the sources through a
wrapper interface where each independent complex object is analyzed one-by-one as
they are streamed.

Fig. 3 illustrates the query processing steps in SQISLE. The query pre-processor
expands views and applies rewrite rules on the query. The cost-based query optimizer
produces an execution plan, which is interpreted by the execution engine. The
execution plan contains operators that call a wrapper interface implemented in terms
of an application data management library (App. Library, e.g. ROOT) to access the
data sources. To improve query processing, runtime query optimization collects data
statistics for the query optimizer, which is stored in the statistics database (Stat. DB).
The execution engine calls the optimizer to reoptimize the query at runtime using the
collected statistics.

A general structure of an execution plan for a typical query like query (1) is
presented in Fig. 4. With runtime query optimization the query pre-processor first
splits the query into a source access query fragment and a processing query fragment.
The figure illustrates the two corresponding subplans: the source access plan and the
processing plan. The source access plan first calls wrapper argument operators that
access the source database (Source DB) and the application schema meta-data (App.
schema) to select sources and bind parameters a1, a2, … for a wrapper interface
operator. The wrapper interface operator accesses each selected data source, e.g. a
ROOT file, and generates a stream of complex objects, each bound to a stream object
variable, o. The processing plan implements selections of o based on analysis

Fig. 3. Query processing steps in SQISLE

operators and aggregated subqueries over properties of o. The aggregated subqueries
apply aggregate functions on nested subqueries. The nested subqueries first call
transformation views to derive stream objects in terms of the application schema and
then analyze properties of the derived objects. The source access plan and the
processing plan are joined only on stream object variable o.

For query (1) the number of operators in the source access plan is 10. It produces a
stream of objects representing events, which are analyzed by the processing plan. The
processing plan contains 22 operators and 8 of them are calls to aggregated
subqueries. The number of operators in the aggregated subquery plans is between 9
and 59, including transformation operators and analysis operators implementing the
selections. Some aggregated subqueries contain calls to further aggregated subqueries.

There are many possible operator orders for a processing plan. Thus query
optimization is difficult, and the query plans obtained with naïve static cost-based
query processing strategies are slow. Therefore SQISLE implements runtime query
optimization to collect data statistics from streams at runtime in order to adapt the
query plan using collected statistics. Runtime query optimization is managed by a
special operator, the profile-controller. During query execution it monitors whether
sufficient statistics have been collected so far while processing the stream. If so, it
dynamically reoptimizes the query and switches to non-profiled execution by
disabling collecting and monitoring statistics.

The runtime query optimization is investigated with three strategies:

Wrapper argument
operators

Source
DB

App.
schema

Wrapper interface
operator

< a1, a2, … >

< o >

Aggregated
subquery

Analysis
operators

Aggregated
subquery ...

Join on o

< o >

Analysis
operators

< o, v1 > < o, v2 >

< o >

< o >

Aggregated
subquery

< o >

Processing
plan

Transformation
operators

Aggregated
subquery

Analysis
operators

< o >

Aggregate
operator

< o > / < o, v5 >

< o, p1 >< o, v3 >

< o, v4 >

...

App.
schema

Source
access plan

Data
sources

Aggregated
subquery plan:

Fig. 4. General structure of a query plan

1. Attribute statistics profiling maintains detailed statistics on the sizes of vectors
stored in each stream object attribute as the objects are read. Once the sample size
is large enough the query is reoptimized using the collected statistics.

2. Group statistics profiling first decomposes the queries into fragments, called
groups, which are joined only on the stream object variable, and then maintains
runtime statistics of executing each group. When sufficient statistics is collected
the query is reoptimized.

3. Two-phase statistics profiling combines the two strategies above by in a first phase
collecting detailed statistics of attribute vector sizes of stream objects to optimize
the group definitions, and in a second phase switching to group statistics profiling
for ordering the groups.
All three strategies assume that data statistics over the stream is stable so that the

statistics collected in the beginning of the stream is expected to be close to the
statistics for the entire data stream. This is the case in scientific applications such as
the ATLAS experiment, since all collision events in a stream are generated with the
same experimental run conditions. The strategies perform statistics sampling at
runtime until the statistics are stabilized. Cost-based query optimization utilizes a cost
model for aggregate functions over nested subqueries [9]. This aggregate cost model
estimates costs and selectivities for aggregate functions from costs and selectivities of
their nested subqueries.

3.1 The Profile-Controller Operator for Runtime Query Optimization

The query pre-processor modifies the view expanded query to add the profile-
controller operator and encapsulate the processing query fragment with the operator.
The processing query fragment needs to be optimized carefully, since it is defined as a
large condition over a complex stream object. The optimization at runtime of the
encapsulated complex condition is controlled by the profile-controller operator.

The profile-controller performs the following operations for each stream object o:
1. It executes the processing plan parameterized by o.
2. It checks if profiling is enabled. If so it calls a subroutine, the switch condition

monitor, which supervises collection of data statistics. The switch condition
monitor returns true if sufficient statistics is collected. To enable different kinds of
profiling the switch condition monitor can be different for different strategies and
can also be dynamically changed during query execution.

3. If item two is satisfied it calls another subroutine, the switch procedure, which
reoptimizes the processing query fragment and either switches to another runtime
query optimization strategy or disables profiling. The switch procedure is also
dynamically replaceable.

4. The result of the processing query fragment in item one is always emitted as result
of the profile-controller operator.

3.2 Attribute statistics profiling

When attribute statistics profiling is enabled, detailed statistics on stream object
attribute vector sizes are collected when each new stream object o is emitted by the
wrapper interface operator. The means and variances of the attribute vector sizes of o
are maintained in an internal table.

The switch condition monitor maintains statistics to check for every tenth read
stream object o whether an estimated mean attribute vector size x is close enough to
the actual mean attribute vector size with probability 1-α. The following attribute
switch condition is checked:

xSz E ⋅≤⋅ δα 2/ (2)
The closeness is defined by δ. α and δ are provided as tuning parameters. The

estimate of the mean x is calculated by ∑
=

=
n

i
ix

n
x

1

1
, where xi is the attribute vector

size for the ith stream object, and n is the number of stream objects read so far. SE is an

estimate of n/σ and calculated by
n
xx

n
S

n

i
iE

2

1

2
2

1
−= ∑

=

.

If the attribute switch condition is satisfied for every attribute, the switch procedure
is called. It reoptimizes the processing query fragment and disables profiling. After
this, when the wrapper interface operator constructs a new stream object, it does not
collect statistics any more. The profile-controller executes only the processing plan
and does not call the switch condition monitor or the switch procedure.

When the query is started there no statistics collected and the query is initially
optimized using default statistics where the attribute vector sizes of stream objects,
e.g. the number of particles per event, is approximated by a constant (set to nine).

3.3 Group Statistics Profiling

With group statistics profiling, first a stream fragmenting algorithm is applied to the
query. The algorithm decomposes the processing query fragment into smaller query
fragments called groups [9]. The groups have only the stream variable o in common
and thus the groups are equi-joined only on o. The complex object o is selected by the
query if it satisfies the inner join of all groups.

After optimization, each group is implemented by a separate group subplan, which
is encapsulated by a group monitor operator. The group monitor operator takes a
group subplan and a stream object as arguments and returns the result of applying the
subplan on the stream object. If profiling is enabled, it measures execution time and
selectivity of the monitored subplan.

The switch condition monitor calls the query optimizer at runtime for every read
stream object o to greedily order the executions of the monitored subplans based on
available statistics on the groups. An internal table keeps track of the groups and their
statistics. The switch condition is true if the order of the groups in the new processing
plan is the same for a number of read stream objects in a row, called the stable
reoptimization interval (SI), which is provided as a tuning parameter.

The contents of the groups and the initial join order of the groups are optimized
using the default statistics before starting to execute the query.

The profile-controller operator encapsulates the entire processing plan containing
all the joined groups. It invokes the dynamically optimized query processing plan at
runtime. If some join fails, the entire processing plan fails. Thus, to answer the query
the processing plan must execute only those first group subplans up to the first
subplan that fails. No group subplans joined after the failed one need to be executed
to answer the query. However, statistics still should be collected for all groups, even
those that need not be executed. Thus, if profiling is enabled, the switch condition
monitor executes also those remaining groups that were not executed to answer the
query. In this way statistics is first collected for all groups by the switch condition
monitor. The groups are then greedily reordered based on the measured estimates of
the group costs and selectivities. To minimize overhead the processing plan is
reoptimized once for every read complex stream object rather than for every query
plan operator; there is no dynamic reordering per operator as with Eddies [3].

3.4 Two-Phase Statistics Profiling
As with group statistics profiling, with two-phase statistics profiling queries are first
fragmented into groups before executing them. To collect runtime statistics for
optimizing of group subqueries, attribute statistics profiling is enabled initially when
query execution is started. When the attribute switch condition (2) is satisfied, the
entire query is reoptimized, including the groups, and attribute statistics profiling is
disabled. Then the switch condition monitor and switch procedure are changed to
perform group statistics profiling to produce a further optimized group join order.

The main advantage with the two-phase statistics profiling is that it enables
optimization of group subqueries based on collected attribute statistics. With group
statistics profiling alone, where the attribute values are not monitored, the groups
themselves must be optimized based on heuristic default statistics.

3.5 Query Rewrite Strategies

The performance is measured comparing runtime query optimization with a manually
coded C++ program. It will be shown that optimized query plans of selective queries
may perform better than a C++ implementation, while non-selective queries are still
around 28 times slower.

In order to improve the performance of non-selective queries, their performance
bottlenecks were analyzed. It was found that most of the time is spent on computing
the transformation views many times for the same stream object. To remove this
bottleneck, the use of rewrite rules to speed up the queries is investigated. One kind of
rewrite is based on observing that the derivation of particle objects from event objects
can be regarded as a two-dimensional matrix transposition. Different variants of
operators for the transposition were implemented and evaluated. The chosen matrix
transpose operator generates new particle stream objects as the result of the
transposition and temporarily caches them as an attribute on the currently processed
event object. This strategy is called transformation view materialization. It improves

performance of non-selective queries about 1.5 – 2.5 times compared with only
runtime query optimization.

Queries are further simplified in SQISLE by removing unnecessary vector
constructions in queries and view definitions. Some vectors are first constructed out
of variables and then only specific element values are accessed explicitly; the
constructions of such vectors are removed and the original variables are instead
accessed directly without vector construction and access overheads. These vector
rewrites improve performance of non-selective queries with factor 1.5 – 2.

In addition computational view materialization improve query performance by
temporarily saving on each processed complex object the results of numerical
calculations computing properties of derived stream objects used in analysis queries,
e.g. in cut definitions. This pays off when a query does the same complex numerical
calculations several times per complex object. Materialization of computational views
improves non-selective queries with at least another 32%.

Finally, the performance of queries is further improved by compile time evaluation
[15,23], which is a general technique to evaluate predicates at query compilation time
and replace them with computed values. Compile time evaluation is used to remove
accesses to application schema meta-data, which simplifies the queries. Compile time
evaluation improves performance of non-selective queries an additional 20%

All together the above query rewrite techniques improve performance of non-
selective queries around 5 times. The execution is still about 4 times slower than C++.
However, the execution plan is currently interpreted in SQISLE and further
performance improvements can be made by making an execution plan compiler. This
is expected to make the plan as fast as C++ also for non-selective queries.

4 Performance Evaluation

Performance experiments are made for scientific analyses expressed as queries in
SQISLE for the ATLAS application. The experiments are run on a computer having
2.8 GHz Intel P4 CPU with 2GB RAM and Linux OS.

The performance is evaluated with different query processing strategies for two
different kinds of queries implementing Six Cuts Analysis [5] and Four Cuts Analysis
[11]. The performance of the C++ implementation is measured only for Six Cuts
Analysis, since this implementation was the only one provided by the physicists.

Data from two different ATLAS experiments stored in ROOT files were used. The
experiment bkg2 simulates background events, which unlikely produce the Higgs
bosons, so the analysis queries are very selective (Six Cuts Analysis has selectivity
0.018% and Four Cuts Analysis has selectivity 0.19%). The experiment signal
simulates events that are likely to produce Higgs bosons, and both kinds of queries
over these data are non-selective (Six Cuts Analysis selects 16% events and Four Cuts
Analysis selects 58% events).

Event descriptions from the bkg2 experiment are stored in 41 ROOT files, where
each file contains 25000 event objects, i.e. a 1025000 event objects in total. Event
descriptions from the signal experiment are stored in a single file with 8623 event
objects. The sizes of the event streams are scaled by reading subsets of the files.

Two different kinds of queries are measured for the two different experiments. Six
Cuts Analysis uses the views bkgsixcuts and signalsixcuts for experiment bkg2 and
experiment signal, respectively. Four Cuts Analysis uses the views bkgfourcuts and
signalfourcuts, which are less complex than bkgsixcuts and signalsixcuts. A view
parameter is used to specify the number of events to read and analyze, i.e. the stream
size. The details can be found in [8].

Two kinds of measurements are made: the total query processing time and the final
plan execution time. The total query processing time is the total time for optimization,
profiling, and execution of a query. The final plan execution time is the time to
execute the optimized plan.

4.1 Evaluated Strategies

The following strategies are evaluated:
− Naïve query processing (NaiveQP). As a reference point, this strategy

demonstrates performance of naive query processing without cost-based
optimization. The cuts are executed in the same order as they are specified in the
queries.

− Static query processing with the aggregate cost model (StatQP). This reference
strategy demonstrates the impact of regular static cost-based optimization based on
the aggregate cost model. The aggregate cost model is enabled, but no runtime
query optimization strategies. No data statistics is available when the query is
optimized and default statistics are used. Since queries are very large, they are
optimized using randomized optimization [14,27,22], which is able to find a good
plan in terms of estimated costs. The strategy is compared with NaiveQP to
demonstrate impact of the static cost-based query optimization using default
statistics.

− Attribute statistics profiling (AttrSP). The query is initially optimized with the
aggregate cost model and default statistics. During execution of the query the
statistics on sizes of the attribute vectors is collected and query reoptimization is
performed using collected statistics. The initial optimization uses a fast greedy
optimization method [16,18] and default statistics. The query reoptimization uses
slow randomized optimization, which produces much better plan in terms of
estimated cost than the greedy optimization.

− Group statistics profiling (GroupSP). After query fragmentation into groups, the
created groups and their order are initially re-optimized per event by greedy
optimization using default statistics until a stable plan is obtained. Fast greedy
optimization is also used to reoptimize the group order since dynamic
programming [26] produced the same execution plans.

− Two-phase statistics profiling (2PhaseSP). Greedy optimization is used first to
produce optimized group subplans after performing attribute statistics profiling. In
a second phase GroupSP is applied to optimize the order of the group subplans.

− Full query processing (FullQP). This strategy implements query rewrites
combined with the best of the above optimization strategies.

As reference FullQP is compared with the following C++ implementations of the
same analysis:
− Unoptimized C++ implementation (NaiveCPP). This strategy demonstrates the

performance of a manual C++ implementation of Six Cuts Analysis executed in the
same order as in query bkgsixcuts. This strategy is compared with FullQP.

− Optimized C++ implementation (OptCPP). This strategy demonstrates the
performance of Six Cuts Analysis implemented in a C++ program where the order
of the cuts had been optimized by a researcher manually. This strategy is compared
with FullQP.

All evaluated strategies are summarized in Table 1.

Table 1. Evaluated query processing techniques

Strategy Aggregate cost
model

Attribute statistics
profiling

Group statistics
profiling

Rewrites

NaiveQP – – – –
StatQP + – – –
AttrSP + + – –
GroupSP + – + –
2PhaseSP + + + –
FullQP + + + +
NaiveCPP C++ implementation with suboptimal order of cuts
OptCPP C++ implementation with the cuts ordered manually by a scientist

4.2 Experimental results

The performance of different optimization approaches without query rewrites is
investigated first. Then the additional impact of the query rewrites is investigated.
Finally, the best strategy is compared with hardcoded C++ implementations. The
sizes of input streams in the evaluations are scaled over six points per experiment as
shown in Figures 5 and 6.

Fig. 5(a) presents performance of the query plans measured by the different
optimization approaches for the selective complex query bkgsixcuts (0.018% events
selected).

The query plan of the unoptimized processing strategy (NaiveQP) performs
substantially worse than the other strategies. Static query optimization with the
aggregate cost model (StatQP) gives a query plan that performs four times better than
the query plan from NaiveQP. This demonstrates the importance of the aggregate cost
model to differentiate between different aggregated subqueries.

The query plan obtained with attribute statistics profiling (AttrSP) performs twice
better than the statically optimized plan (StatQP). This shows that runtime query
optimization is better than static optimization.

The query plans from the group statistics profiling (GroupSP) and two-phase
statistics profiling strategies (2PhaseSP) perform best and substantially better than the
strategies without grouping. They outperform naïve query processing (NaiveQP) with
a factor 450 and attribute statistics profiling without grouping (AttrSP) with a factor

50. This demonstrates that the grouped strategies GroupSP and 2PhaseSP alleviate
the problem of errors in the cost estimates [12] by measuring real execution time and
selectivity for each group. The difference between GroupSP and 2PhaseSP is
insignificant (Fig. 5(b)). The total query processing times for the strategies (Table 2)
demonstrate that 2PhaseSP performs better than GroupSP. Thus 2PhaseSP is chosen
to optimize rewritten queries in FullQP. Fig. 5(b) demonstrates that the strategy with
rewrites (FullQP) performs 17% better than the optimization strategies without
rewrites (GroupSP and 2PhaseSP) for the selective query bkgsixcuts. The query
performance for the other selective query bkgfourcuts is similar to query bkgsixcuts,
but with lower overheads, since the query is simpler.

Fig. 5(c) demonstrates that for the selective query the best query processing
strategy (FullQP) performs 20% better than unoptimized C++ (NaiveCPP). However,
the C++ implementation where the order of cuts is optimized manually by the
physicist, OptCPP, performs 34% better than the query plan from FullQP. Further
performance improvements in SQISLE can be made by making an execution plan
compiler, which is likely to make the plan faster than C++ for selective queries.

In conclusion, query optimization, in particular runtime query optimization,
improves performance substantially for selective queries. For selective queries the
impact of query rewrites is relatively insignificant compared to query optimization.

The loading approach in [9] took 15 seconds to load 25000 events. By contrast, the
total processing in SQISLE with FullQP of the same number of events is 1.6s, which
clearly shows the advantage with the streaming approach for our kind of applications.

0

5000

10000

15000

20000

25000

30000

35000

40000

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

NaiveQP
StatQP
AttrSP
2PhaseSP
GroupSP

(a)

0
10
20
30
40
50
60
70
80
90

100

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

2PhaseSP
GroupSP
FullQP

(b)

0
10
20
30
40
50
60
70
80
90

100

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

NaiveCPP
FullQP
OptCPP

(c)

Fig. 5. Performance of different strategies for selective complex query bkgsixcuts: (a) and (b)
show performance of different query strategies in SQISLE, while (c) compares performance of
the best strategy (FullQP) with the C++ implementations.

 In Table 2 the optimization strategies are compared by their optimization
overheads obtained by subtracting the final plan execution time from the total query
processing time. These overheads are independent of the stream size so the impact is
negligible in practice for large streams. Table 2 contains performance measurements
only for 25000 events, i.e. one file.

The optimization overhead of the ungrouped strategy StatQP is only the time to
perform randomized optimization (29 seconds). The overhead of AttrSP (26 seconds)
is dominated by the randomized optimization (80%). The remaining time is spent on
collecting and monitoring statistics. The overheads of the grouped strategies (6.0
seconds for GroupSP and 4.5 seconds for 2PhaseSP) are dominated (75%) by
performing group profiling. To obtain the final execution plan GroupSP profiles only
the first 40 events of the stream. The overhead of profiling all groups for a single
event (0.15s) is substantial. The reason is that statistics are collected for all groups,
including the very complex and expensive ones to get a good cost model. Therefore, it
is necessary to disable profiling once stream statistics are stabilized. Notice that
overheads in both the ungrouped strategies are around four times higher than
overheads of the grouped strategies, because the grouped strategies use the greedy
optimization, which performs well, while for ungrouped strategies the greedy
optimization did not produce good plans. Therefore the slow randomized optimization
is used for ungrouped strategies.

Fig. 6(a) presents performance of the query processing strategies for the non-
selective query signalsixcuts (16% events selected). The impact of the different query
optimization strategies is less significant here. The best strategies (GroupSP and
2PhaseSP) are just four times faster than the slowest (NaiveQP). Using the aggregate

Table 2. Overhead times in seconds for query bkgsixcuts over events from one file

Strategy Total query
processing time

Final plan execution
time

Optimization
overhead

StatQP 253 224 29
AttrSP 136 110 26
GroupSP 9.4 1.9 7.5
2PhaseSP 7.9 1.9 6.0
FullQP 6.1 1.6 4.5

0

10

20

30

40

50

60

70

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

NaiveQP
StatQP
AttrSP
GroupSP
2PhaseSP
FullQP

(a)

0

0.5

1

1.5

2

2.5

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

FullQP
OptCPP
NaiveCPP

(b)

Fig. 6. Performance of different strategies for non-selective query signalsixcuts: (a) SQILSE
strategies, (b) performance of the best strategy (FullQP) and the C++ implementations.

cost model (StatQP) gives a query plan that performs 28% better than NaiveQP.
Using the attribute statistics profiling (AttrSP) gives a query plan that performs twice
better than the query plan obtained without collecting statistics (StatQP). GroupSP
and 2PhaseSP are 35% faster than the AttrSP. The difference between GroupSP and
2PhaseSP is again insignificant. We notice that query optimization has less impact on
non-selective queries. In this case, the rewrites (FullQP) improve performance of the
query by factor five compared to 2PhaseSP. The other non-selective query
signalfourcuts (58% events selected) performs similar to signalsixcuts.

Fig. 6(b) compares performance of the best query processing strategy (FullQP)
with performance of the C++ implementations (NaiveCPP and OptCPP) for the non-
selective query signalsixcuts. FullQP performs four times worse than both C++
implementations. The reason is that since the query is non-selective most operators
are executed. Here, the cost of interpreting an operator in SQISLE is higher than the
cost of executing machine instructions in C++, and we are comparing interpreted
SQISLE with compiled C++. Implementing a compiler for query plans will reduce the
interpretation overhead significantly.

In conclusion, query optimization, in particular runtime query optimization,
improves performance significantly for all kinds of queries. For selective queries the
improvements are dramatic. The impact of query rewrites is insignificant compared to
query optimization of selective queries. For non-selective queries the combination of
query optimization and query rewrite techniques significantly improves performance.

The evaluation demonstrates that query optimization techniques implemented in
SQISLE can achieve performance for large and complex scientific queries close to a
manually optimized C++ program.

5 Related Work

A visual query language for specifying HEP analyses is provided by the system
PHEASANT [25]. HEP analyses are there defined in queries, which are translated
into a general purpose programming language without any query optimization or
simplification. By contrast, our system rewrites and optimizes queries, which is
shown to give significant improvement in performance, approaching or surpassing
that of hard-coded C++ programs.

Most developed DSMSs (e.g., Aurora [2], STREAM [1], TelegraphCQ [17], and
XStream [10]) focus on infinite streams of rather simple objects and efficient
processing of time-series operations over the streams, including stream aggregates
and joins. The DSMSs are data driven and the continuous queries are rather simple. In
contrast, in SQISLE the elements of the streams are complex objects (each object can
be seen as a small database) and complex queries are applied on each streamed object
independently from other objects. Thus the queries in SQISLE do not contain time-
series operations and no join between streams is performed. Furthermore, SQISLE is
demand driven, since it controls the stream flow.

In DBMSs, and in particular in DSMSs, precise statistics on data are not always
available. Therefore, adaptive query processing (AQP) techniques are developed to
improve query processing at query execution time by utilizing runtime feedback.

AQP systems (e.g. [1,2,3,6,13,17,19,20]) continuously adapt the execution plan of a
query to reflect significant changes in data statistics. By contrast SQISLE profiles a
stream until statistical properties of the streamed objects are stabilized, and then
reoptimizes the query using the stable statistics. This works well for our scientific
applications where large numbers of complex objects having similar statistical
properties (run conditions) are processed. After the statistics are stabilized, the rest of
a stream is efficiently processed without profiling overhead.

Usually DSMSs (e.g. Aurora [2], STREAM [1], and TelegraphCQ [17]) schedule
operators continuously per tuple and change the execution plan if significant flow
changes are detected. Such monitoring for each simple data element adds significant
overhead for large queries over complex objects. For Eddies [3] this overhead is even
more significant, since optimization is performed whenever a tuple is scheduled for a
next operator. To avoid the high cost of monitoring individual data elements, in
SQISLE the profile-controller operator monitors the execution of an entire plan once
per complex input stream object until sufficient statistics are collected about the
objects, after which the plan is dynamically replaced with a final plan.

Some systems [6,13,19] generate several query execution plans and adaptively
switch between them during query execution. Generating many execution plans
during initial optimization is not feasible for large and complex queries. By contrast
SQISLE generates only one initial query execution plan which is reoptimized at
runtime using collected statistics to obtain a more efficient final execution plan.

The demand driven DBMS in [20] reoptimizes the entire query at runtime and then
restarts the query based on already computed materialized intermediate results.
SQISLE is also demand driven but need not restart the entire query since it
reoptimizes only the processing query fragment that is applied on each subsequent
streamed complex object produced by the static source access plan.

Query rewrites before cost-based query optimization has been demonstrated to
improve performance for different kinds of applications in, e.g., engineering [28],
image processing [21], and business processing [30]. SQISLE implements several
rewrite rules and shows that they are particularly important for non-selective queries.

An example of implementing a complex scientific application in a DBMS with the
loading approach is the Sloan Digital Sky Survey (SDSS) project [29]. In the project
huge amounts of astronomical data from the SDSS telescope are loaded into a cluster
of SQL Server databases and indexed. In our application efficient query specific
indexes are required for calculating query dependent aggregated properties, e.g. based
on number of isolated leptons, and static query independent indexing is not sufficient.
Furthermore, the performance of first loading the data into a database and then
processing them as queries is shown to be around ten times slower than processing the
same data in one pass by SQISLE.

6 Summary and Future Work

The implementation was presented of a data stream management system SQISLE
targeted to scientific applications where data are independent objects with complex
structures selected by complex queries. SQISLE reads complex objects from files

through a streamed wrapper interface and processes them in one pass efficiently by
utilizing novel query processing techniques. Runtime query optimization methods
collect stream statistics and reoptimize queries during execution. During query
execution a profile-controller operator monitors collected statistics, reoptimizes the
processing query fragment, and switches to another strategy, e.g. into non-profiled
execution. Since the complex objects contain measurements produced in controlled
experiments, we assume that statistical properties of complex objects, such as average
number of different kinds of particles per event, produced in the same experiment are
the same. Therefore profiling is performed only at the beginning of the one-pass data
processing and then disabled to reduce profiling overhead.

To verify the approach, a scientific application from the ATLAS experiment [5,11]
was implemented in SQISLE. The implementation demonstrated that performance of
application analysis queries in SQISLE is close to a hard-coded and manually
optimized C++ implementation of the same analysis, which requires a significant
effort to develop.

In summary, the following techniques in SQISLE provide efficient processing of
queries over streams of complex objects:
• The profile-controller operator enables more efficient execution plans for streamed

queries than static cost-based query optimization, by choosing different query
optimization strategies at runtime and then disabling the profiling.

• The query optimization techniques are shown to significantly improve performance
of all kinds of queries.

• The query rewrite techniques are shown to improve performance significantly for
non-selective queries, while being less effective for selective queries.
SQISLE currently interprets the generated query execution plans. By compiling the

executions plans into C or machine code, the performance will be significantly better
than the current implementation. Further improvements can be achieved by
eliminating copying data from structures used in the ROOT files and structures used
in SQISLE. It can be done either by storing collision event data in the ROOT files
using data format used by SQISLE or by rewriting data management in SQISLE to
operate on data having the same structure as in the ROOT files. Since the
performance of SQISLE is already close to C++, these changes are likely to make
SQISLE perform at least as well as a C++ program manually written by a physicist.

References

1. Arasu, A., et al.: STREAM: The Stanford Stream Data Manager. In: IEEE Data Eng. Bull.,
vol. 26, pp. 19-26 (2003)

2. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream management. In:
VLDB J., vol. 12, pp. 120-139 (2003)

3. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In:
SIGMOD Conference, pp. 261-272 (2000)

4. The ATLAS experiment, http://atlasexperiment.org/
5. Bisset, M., Moortgat, F., Moretti, S.: Trilepton+top signal from chargino-neutralino decays

of MSSM charged Higgs bosons at the LHC. In: Eur.Phys.J. C, vol. 30, pp. 419-434 (2003)

6. Babu, S., et al.: Adaptive Ordering of Pipelined Stream Filters. In: SIGMOD, pp. 407-418
(2004)

7. Brun, R., Rademakers, F.: ROOT - An Object Oriented Data Analysis Framework. In:
AIHENP'96 Workshop, Nucl. Inst. & Meth. in Phys. Res. A 389, pp. 81-86 (1997).

8. Fomkin, R.: Optimization and Execution of Complex Scientific Queries. Uppsala
Dissertations from the Faculty of Science and Technology 80 (2009)

9. Fomkin, R., Risch, T.: Cost-based Optimization of Complex Scientific Queries. In:
SSDBM, p. 1 (2007)

10. Girod, L., et al.. XStream: a Signal-Oriented Data Stream Management System. In ICDE,
pp. 1180-1189 (2008)

11. Hansen, C., Gollub, N., Assamagan, K., Ekelöf, T.: Discovery potential for a charged Higgs
boson decaying in the chargino-neutralino channel of the ATLAS detector at the LHC. In:
Eur.Phys.J. C, vol. 44, pp. 1-9 (2005)

12. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join
Results. In: SIGMOD, pp. 268-277 (1991)

13. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data
Integration Queries. In: SIGMOD, pp. 395-406 (2004)

14. Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join Queries.
In: SIGMOD, pp. 312-321 (1990)

15. Jones, N.D.: An Introduction to Partial Evaluation. In: ACM Comput. Surv., vol. 28, pp.
480-503 (1996)

16. Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of Nonrecursive Queries. In:
VLDB, pp. 128-137 (1986)

17. Krishnamurthy, S., et al.: TelegraphCQ: An Architectural Status Report. In: IEEE Data
Eng. Bull., vol. 26, pp. 11-18 (2003)

18. Litwin, W., Risch, T.: Main Memory Oriented Optimization of OO Queries Using Typed
Datalog with Foreign Predicates. In: IEEE Trans. Knowl. Data Eng., vol. 4, 517-528 (1992)

19. Li, Q., et al.: Adaptively Reordering Joins during Query Execution. In: ICDE, 26-35 (2007)
20. Markl, V., et al.: Robust Query Processing through Progressive Optimization. In:

SIGMOD, pp. 659-670 (2004)
21. Marathe, A.P., Salem, K.: Query processing techniques for arrays. In: VLDB J. , vol. 11,

pp. 68-91 (2002)
22. Näs, J.: Randomized optimization of object oriented queries in a main memory database

management system. Master's Thesis. http://user.it.uu.se/~udbl/Theses/JoakimNasMSc.pdf
23. Petrini, J.: Querying RDF Schema Views of Relational Databases. Uppsala Dissertations

from the Faculty of Science and Technology 75 (2008)
24. Risch, T., Josifovski, V., Katchaounov, T.: Functional data integration in a distributed

mediator system. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.)
The Functional Approach to Data Management: Modeling, Analyzing, and Integrating
Heterogeneous Data. SpringerVerlag (2003)

25. Sousa, V., Amaral, V., Barroca, B.: Towards a full implementation of a robust solution of a
domain specific visual query language for HEP physics analysis. In: J. Phys.: Conf. Ser.
119 (2007)

26. Selinger, P.G., et al.: Access Path Selection in a Relational Database Management System.
In: SIGMOD, pp. 23-34 (1979)

27. Swami, A.N., Gupta, A.: Optimization of Large Join Queries. In SIGMOD, pp. 8-17 (1988)
28. Sellis, T.K., Shapiro, L.D.: Query Optimization for Nontraditional Database Applications.

In IEEE Trans. Software Eng., vol. 17, pp. 77-86 (1991)
29. Szalay, A.S.: The Sloan Digital Sky Survey and beyond. In: SIGMOD Rec., vol. 37, pp. 61-

66 (2008)
30. Vrhovnik, M., et al.: An Approach to Optimize Data Processing in Business Processes. In:

VLDB, pp. 615-626 (2007)

