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Abstract

The paper presents new modeling and identification stede@ address the many difficulties in
the identification of anaesthesia dynamics. During germmaksthesia procedures muscle relaxants are
drugs frequently administered. The most commonly used edde the effect of such drugs, called
NeuroMuscular Blockade (NMB), comprise a high number (grnethan eight) of pharmacokinetic and
pharmacodynamic (PK/PD) parameters. The main issue acoingethe NMB system identification is
that, in the clinical practice, the user cannot freely cleoth®e system input signals (drug dose profiles
to be administered to the patients) to enable the ideniificatf such a high number of parameters.
The limited amount of measurement data also indicates a foeetbw identification strategies. A new
SISO Wiener model with two parameters is hence proposed tiehtbe effect of the muscle relaxant
atracurium A batch Prediction Error Method (PEM) was first developedptimize the model structure.
Secondly, an Extended Kalman Filter (EKF) approach was tsgekrform the online identification of
the system parameters. Both approaches outperform céonahidentification strategies, showing good
results regarding parameter identification and measugegkiracking, when evaluated on a large patient
database. The new methods proved to be adequate for théptiescof the system, even with the poor
input signal excitation and the few measured data sampksept in this application. It turns out that

the methods are of general validity for the identificationdafig dynamics in the human body.
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I. INTRODUCTION

The present paper considers nonlinear identification ofdyr@amics of drug effect in the
human body. For this purpose, new minimally parameterizedeats are proposed, overcoming
the poor excitation of such problems. Data collected in tmgexy room from NeuroMuscular
Blockade (NMB) control cases during general anaesthesigas to exemplify the ideas.

In the clinical practice, the term anaesthesia refers toug-trduced reversible pharmaco-
logical state where three main variables must be kept inlibgum: hypnosis analgesiaand
areflexia Hypnosisis defined as the level of unconciousness associated withb$ence of recall
after surgery regarding intraoperative events. Sever@huate parameters computed using the
raw data from the electroencephalogram (EEG) have beentageadnitor the level of hypnosis
in patients, namely the spectral edge frequency [1], thet@ydevoked potentials [2] and the
approximate entropy [3]. More recently the Bispectral k@&eale (BIS) [4] has taken the lead,
being the index most widely used by anesthetists and rdssarin the field to infer the Depth
of Anaesthesia (DoA)Analgesiais defined as the absence of pain. However, quantitative and
a reliable index for the measurement of pain in patients lusyet been widely accepted and
validated. Clinicians use signs as tearing, changes in #aet hate and changes in the blood
pressure together to infer the analgesia condition of thiemts. Areflexiais defined as the lack
of movement. It is induced and maintained by the use of mustéxants and it aims to achieve
an adequate level of paralysis to perform surgical proe@siurhe NMB level can be clinically
guantified by electrical stimulation of thedductor policiesmuscle in the patient’s hand. The
blockade level corresponds to the first single responséretdid by a reference twitch.

In order to address the balance of these three componeatésthetists adjust the dose of the
corresponding drugs by integrating the NMB and DoA indicé all the other monitored phys-

iological variables. When comparing with manual drug adstration, automated technologies



may carry considerable advantages [5]. If reliable modeth@® patients’ pharmacokinetics (PK)
and pharmacodynamics (PD) are available, under or overgasin be avoided by programming
the syringe pumps to target specific values of the drug effddie need to have reliable models
for the patients’ PK/PD benefits from the automatic iderdtiien of the patient’s variability in

order to overcome the drawback of using standardized puvesdn drug administration based

on population studies.

The application of system identification methodologiesdentify the patient variability in
anaesthesia environments is not understood well enoughnidin problem of DoA and NMB
control is the poor excitatione. the input signals (administered drug doses) are not riclugmo
in frequency and amplitude to be able to excite all modes efsistem [6], [7]. Unfortunately,
the excitatory pattern of the input cannot be chosen by thetosachieve a better performance of
the identification methodologies. In general anaesthesiegdures, the induction phase usually
comprises the administration bblusof drugs (considered as one finite impulse) and afterwards
the measured variables are kept at the desired target ayuadow variance drug dose profile.

Moreover, the available data is limited by the samplinggatecepted by the clinical devices.

The PK/PD of the effect of drugs in anaesthesia can be modeded Wiener model: a
linear block in series with a nonlinear static block [8]. Thmear parts describe the way the
drug is diffused, accumulated and excreted by the human. biddy nonlinear part models the
drug effect in the patient. Due to this structure, the useirgar models to predict human
response to anaesthesia is not completely adequate [9F]la first approach for reducing
the number of model parameters was proposed but a linearimadeused to describe the PD
nonlinearity. Alternatives to the identification of lineaodels can be found in other publications.
For example, in [10] a hybrid method based on parameter astimand an artificial neural
network coupled with a curve fitting algorithm was proposéod results were obtained but
the parameter redundacy is still present in the calculaifdhe steady-state drug dose prediction.
The algorithm proposed in [11] was also previously testedHe anaesthesia identification case
study. The black box model approach was modified to take intownt the NMB Wiener system

specifications but it still failed in identifying the eightpameters present in tlagracuriumeffect



model. More work in this direction is hence needed.

From the reasons stated above it is reasonable to assumebyhaeducing the number
of parameters to describe the system, improved results reagchieved when new system
identification algorithms are designed. One strong reasorthis modeling is that the input
pattern present in the real collected cases will no more befficiently persistently exciting,
making the identification possible to be carried out. Theiahof the appropriate number of
parameters should match the parsimony principle [12], sketes that the chosen model should

contain the smallest number of free parameters requiredpi@sent the true system adequately.

The main contribution of this paper is hence the use of a nahinumber of parameters
to model the NMB input-output relation, consistent with theor excitation present in the
available data from real cases. A nonlinear Wiener modeigusinly two free parameters is
proposed for this purpose. From this model a new batch akgorfor parameter identification
is derived, providing a second contribution. The good tssoibtained with this first strategy act
as a motivation for the development of an online adaptiverélym by the use of the Extended
Kalman Filter (EKF). This is the third contribution of thegea. Experimental evaluation of the
new algorithms in a previouly collected database of sixtyigoés undergoing general surgery
proves the feasibility of the model and the algorithms. Du@arameter adaptation, the signals

achieve very good reference signal tracking in test casasguhe aforementioned database.

This paper is organized as follows. Section Il describesptigciples concerning the control
of anaesthesia. Section Il presents the definition of bbéhlinear and the non linear parts of
the new minimally parameterized model. In Section IV thecbatentification algorithm using
the Prediction Error Method is presented, followed by thevdéon of the EKF in Section V.
Sections VI and VII present optimization and simulatiorutess whereas Section VIl gives the

conclusions.



[I. CONTROL STRATEGIES
A. Control algorithms

The first successful attempt to commercialize a device desigo control drug dose admin-
istration to patients in a personalized way was ’'Diprifud@B]. The algorithm used by this
Target-Controlled Infusion (TCI) platform receives infmaition about the patient and then ajusts
the drug dose profile in such a way as to achieve a specificqbeeldiarget effect concentration.
The set of PK/PD parameters that are used to compute the dagp dvere selected based on
population models. Even with information regarding ageighkeand height of the patient, a
certain inaccuracy remains, meaning that the anesthétisteeds to re-adjust the target effect
concentration every time the observed drug effect in théepatloes not match the clinically
desired one. Following this trend several other strategie® recently proposed. For example,
in [14] an adaptive approach is proposed to improve TCI basadegies. The method combines
a optimal variance constrained drug dose design with a dyibgntification of the individual
patient dynamics. The model on that study was based on thedes&ibed in Section II-B.
Despite constituting a real improvement regarding the comynused TCI strategies, the results
from the tests of the algorithm on the NMB control present s@maccuracies regarding reference
tracking. It is actually the patient intra and intervarldlas that plays the major role and indicates

a need for new models and identification algorithms.

B. State of the art models

The model used in the previous studies to describe the PK BndfRhe drug effect, in the
special case of the non-depolarizing muscle relaxtiagicurium is presented in this subsection.
This will not be the model adopted for the development of {héger, but it motivates and
supports the build up of the new proposed model and identditaalgorithms. To meet the
parsimony principle, the main design goal is then to perféh® modeling with a minimal
number of parameters.

Recalling the compartmental type models [15], the NMB madel be described as a Wiener
model as proposed in [16]. The PK is described by the lineaanyc block 1 in Fig. 1. The



physiological basis of this part consists of assuming twasmla compartments (central and
peripheric) both communicating with each other. The PD ipomates a linear dynamic part
(blocks 2 and 3 in Fig. 1) and a nonlinear static block (blodk #ig. 1). The relation between
the plasma concentratios),(t) and the effect concentration(t) was first described without
block 3 in Fig. 1 [17] but, as shown in [18], the inclusion ofstlequation allows a better fit
to the observed experimental responses. Block 4 in Fig. fesepts the PD static nonlinearity
and relates the effect concentration to the effect of thg dsuquantified by the measured signal

r(t). This model depends on eigth parameters that need to beadstirfrom clinical data.

u(t) 4, 4 c,(t) A c(t) I/t c,(t) 100C%, rt)

s+A s+4, s+A s+1l/t Cly + ce(t)

] 2] 2] <]

Fig. 1. Block diagram for the PK/PD of the muscle relaxatracurium

A state space description of the model of Fig. 1 is given by:

(1)
R M
¢(t)
Ce(t)
—)\1 0 0 0 xTq (t) ap

0 —X O 0 xo(t) N a9 u(®),

A A =X 0 c(t) 0

0 0 1/7 —1/7 ce(t) 0

where {a; [kgml™], \; [min~']}iz12, A [min~!], 7 [min] are patient-dependent parameters. In
turn, c.(t) is related with the expected NMB level(t) (%) by means of a nonlinear static Hill

equation [17],
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T‘(t) = m, (2)

where Cj [ugmlI~'] and v (dimensionless) are also patient-dependent parametete tRat
in practice the intermediate signal(t) is not accessible for measurement. The variatjte,
normalized between 0 and 100, measures the NMB |évebrresponding to full paralysis and

100 to full muscular activity.
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Fig. 2. NMB response (upper plot) and input drug dose (lowet) grom a real case collected in closed-loop control fa th
muscle relaxanatracurium Note that the scale in thgaxis of the lower plot has been split.

Fig. 2 represents the typical response of a closed-loopated real case for the adminis-
tration of atracuriumin the surgery room. The output sign&lt) is represented in the upper
plot whereas the input drug dos€t) is shown in the lower plot. As can be seen in the lower
plot, at the beginning of the surgery, in the induction phasbolus of atracurium typically
us = 5006(t) ug kg~! (in discrete time corresponding tq0) = us; At with At = 1/3min™") is
administered to the patient to enable a rapid drop of NMBIlgver control purposes, during
the period where théolusis acting, the value of the reference is fixed at a low leveindpe
gradually raised to the set-point 0% [16]. The output signat(t¢) represented in the upper

plot of Fig. 2 was then maintained around the reference prbfilthe administration of the input



drug doseu(t), calculated by a closed-loop control strategy [19].
As it is clear from Fig. 2 the input signal is not rich enoughmake the identification of the
eight parameters of the model (1), (2) possible. The poautiegcitation as well as the limited

experimental dataset hence motivate the present study.

[1I. NEwW MODEL: MINIMAL NUMBER OF PARAMETERS

A new SISO Wiener model describirgfracurium PK/PD is presented in this section. Al-
gorithms for simultaneous identification of the linear dynes and the static non linearity are
then derived. Models are first constructed using a contiguone Wiener model. This model
is then sampled with a zero-order hold strategy [20]. Thigbées the derivation of algorithms
that estimate the underlying continuous time parametéeseby exploiting the fact that the

continous time parameters are of minimal number.

A. Linear block

For simulation purposes, and in order to cover a wide randgeebaviours, a bank of realistic
nonlinear dynamic models famtracurium PK/PD have been generated using the probabilistic
distribution discussed in [18]. It then constitutes a simbed database where the exact parame-
terization of model (1) is known for each simulated pati€ig. 3 shows the effect concentration
(output from the linear part) response from the model nun#fein the simulated bank after
administration of the drug dose profile represented in Figd&spite some differences on the
local behaviour of different patients’ effect concentrati the global trend of the represented
plot can be considered typical. A rapid raise is present atbébginning of the surgery due to
the bolusadministration, being then followed by a slower decrease tertain level around the
value corresponding to the steady-state.

By inspection of the output from the linear part in simulati@a model with amth-order
multiple pole located in-1/7 with unitary static gain was first proposed (3) to accountthar
dynamics in (1). Model order is denoted by the supersdcfipin the paper. For the sake of

simplicity « = 1/7 is defined. This gives
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Fig. 3. Effect concentration for model number 25 in the sited database after administration of the drug dose profile
represented in Fig. 2.

an

één)(&a) = m

U(s),{n=2,3,4}, 3)

where Cé”)(s,a) is the Laplace transform of the output from the model lineanainic part

¢ (t, o) and U(s) is the Laplace transform of the input signaft).

However, it was hypothesized that, by placing the model atedifferent locations, better
accuracy could be achieved. According to [21], it is possildl describe the model dynamics
using the limiting Laguerre approximations. It is this idbat is the basis for the next refinement.

Instead of having a pole with multiplicity located in—1/7, several combinations of multiples
of —1/7 are introduced for the pole locations. Hence, instead afgufie linear model (3), the

following is proposed:

]{71 l{?nOén

“i(n) -
€ (s,0) (s+kia)... (s+k,a)

U(s), {n=2,3,4}, (4)

Aiming for the best modeling, the parametdrs{: = 2,3,4} must be chosen, noting that

k1 = 1 needs to hold. A brute force search on the available reabtcieitl cases database was
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then performed. A detailed description and some resultd@nare present in Section VI.

B. Nonlinear block

The output from the non-linear block was modeled with thd eljuation:

100 C7,

y(t,0) = —>——,
9.9 = e o)

()

whered = (6, 6,)7 = (a )T,

Noting that the linear part contributes with a unit gain foe twhole system, the differential
static gain must be estimated by the parameter to be adaptked non-linear part [8]. According
to [10], in simulation studies on the previouly mentionechsiated database, the variability on
Cso does not stongly affect the identification results. Hengg was kept constant during this

study.~ adapts the shape or static differential gain of (5).

C. Sampling

In order to implement the proposed model structure in thetitieation algorithm, the continuous-
time representation (3) has to be sampled. For that purplesesystem (3) was represented in

a state-space form as shown in (6).

(t) = Aa)i(t) 4+ Ba)u(t)
(t) = Ca) &(t)

: (6)

whereu(t) € R is the input (piecewise constant drug dose infusiéf)) € R™! the continuous
model state-vector;(¢t) € R is the output (effect concentration of the drug)(a) € R'*",
A(a) € R™" and B(a) € R™!, being the system matrices. Note thgt are not shown
explicitely in (6) since they are determined in a single wmjitation step with respect to the
available data. After that, only affects the dynamics of the different patients.

The zero-order hold method [20] was applied using the samgpfistantt, = kh. Normally,
h is equal to 20 seconds. This choice is due to the fact thahenstrgery environment, data

from NMB is acquired with a frequency df/20s~!. The discrete time model than becomes
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{:E(k;mh) — ®(a)2(kh) + D(a) u(kh) -
s(kh) = O(a) #(kh) |
where
o) = eAla)h
®(a) @)

Na) = foh e ds B(a)

Here, u(kh) € R is the input (piecewise constant drug dose infusiar{;h) € R™*! the
discrete model state-vectai(kh) € R is the output (effect concentration of the drug)w) €
R™" and B(«) € R™*}, being the sampled system matrices.

For the purpose of implementing the prediction error methbd polynomial counterpart to
(7) is more suitable to use. According to [20], the pulse gfanoperator corresponding to (7)

is given by

B(qg ', a)

-1 _ . -1 _
H(g™ a) = Cla)(q] — ®(a))” T'(a) Al Ta) ©)
wheregq is the shift operatorgu(kh) = u(kh + h)).
The model output from the linear part can then be represeaged
. B¢ a)
(n) - ’
eV (t, a) A La) u(t). (10)

The sampling does not affect the nonlinear block, hence ¢8)le used as it is.

IV. BATCH IDENTIFICATION ALGORITHM:

PREDICTION ERRORMETHOD

The linear dynamics and static nonlinearity will be joinitientified. Let

=01 6) =(a T (11)
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denote the parameter vector to be identified, where the parameter of the linear block and
the parameter of the nonlinearity.

The prediction error method determingso that the prediction error

et 0) = y(t) —4(t,0). (12)

becomes as small as possible. Note th@b is the measured output value an¢t, 6) is the

predicted output, based on parameter veétor

A. Gradient

The gradient of the prediction error (12) is of central intpace to the prediction error

identification method. It is given by:

(13)

B. Criterion and search direction

In order to derive the prediction error method, the follogvieriterion is introduced [12]:

N

V(9) = % > Ex(t,0), (14)

where N is the total number of data points aat, ) is the prediction error.

The minimization of (14) is then performed using the nunmar@auss-Newtomethod [12]:

é(k—i—l) _ é(k) N ﬁk[V”(é(’“))]_l V/(é(k))T’ (15)
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whered®) denotes théth iteration in the search. The sequence of scalars used to control

the step lenght. The derivatives &f(#) can be found as:

N
V() = —% ST (10 0T (1,6), (16)
t=1

Vi(9) = Ww(t,0) v (t,0)

=l
||M2

t

2
N

1

e(t,0) ﬁwT(t, 0)

+ 20

NE

t=1

Q

=| o

N
> w(t,0) v (t,6) (17)
t=1

The approximation in (17) is justified in [12] and is suppdrtey the fact that, at the global
minimum pointe(¢, #) becomes assymptotically white noise which is independegt(a 0). As
a consequence, theauss-Newtomethod has a linear convergence instead of quadratic, which
would be the case if the approximation had not been perforfnedising theNewton-Raphson

method).

C. Projection algorithm

Regarding the linear block of the Wiener model in study, tpeliaation of a projection
algorithm is needed to keep the model assymptotically stdfr that purpose, the poles of the
transfer function (10) are monitored by the use of the foitmyvprojection algorithm for the

parametei:

k1) if QD) S § >0

Q@ If o >0 >

ak+D) — 9§k+1) _ (18)
a®) if okt < §

For the nonlinear block (5), it is necessary to assure thdbes not reach negative values.

The following projection algorithm was used for the paragnet
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(k+1) (k+1)
(k+1) _ eékﬂ) _ Y if >0>0 (19)

7(k) if 7(k+1) )

y

Both updatings are hence stopped if the new parameter gpdateoutside the allowable

range.

D. Prediction error algorithm

The Prediction error algorithm can now be summarized usigformulas defined above.
Note that a numerical differentiation is used. The reasotihas the mathematical expressions

for the derivatives of (10) with respect to become very complicated.

for k=0to K

b—®

sy = Bl )
Ce(tva) - A(q_l,&) U(t)
o 1007
y(t,0) >

Ol +éE(ta)

0j(t,0) 10054 é(t, &)
t,a) (Coy + éclt, @)’

D6,(t,6)  Eolt, G+ AG) — Gt 4)

oo A&
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0§(t.0)  100C%In(Cs) 100 CY,

0y Cho + Ce(t, &) (O + cu(t, 6))

2

X [In(Cso) Coy 4 In(ée(t, &) é(t, @)

end

The stepAd& used for the differentiation is selected to be small.

V. RECURSIVE IDENTIFICATION ALGORITHM:

EXTENDED KALMAN FILTER

In order to enable the incorporation of a nonlinear ideratfan algorithm in an online platform
for control of NMB, recursive identification methodologiased to be developed. This is e.g.
a prerequisite when adaptive control is introduced [22]e Bxtended Kalman Filter (EKF) is
then a natural choice since it is well suited for adaptivetiadrstructures like Model Predictive
Control (MPC). Moreover, depending on its formulation, léaprovides values for the state

estimates in every iteration step, these being needed f& btidtrol. The idea of the EKF is to
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use the Kalman filter [23] for a nonlinear problem. The EKFcamtrast to the Kalman filter for

linear systems, is not an optimal filter. Neverthless, itstiates a powerful tool for recursively

identifying the model parameters. In contrast to other r&@ea identification techniques, it also

has the advantage of independent tuning using the covariaratrix of both the process and

measurement noise, thereby enabling a tuning of the speednwergence for each parameter

separately. For EKF purposes, the general discrete noarlmedel is

z(t+1)

y(t)

= St 2(t),u(t)) + g(t, £(t)) v(t)

= h(t,z(t)) +e(t),

(21)

whereuv(t) ande(t) are mutually independent Gaussian white noise sequentlesz&rio means

and covariancest, (t) and Ry(t), respectively. The EKF algorithm can then be summarized as

follows [23]:

Pt+1)t) =

In the next subsection, the recursive identification sgtohthe EKF is derived.

Oh(t, x)
Ox r=2(t|t—1)
P(t|t — 1)H(t)

X[H(t)P(t|t — 1)HT (t) + Ry(t)] ™
T(tlt —1) + K(t)[y(t) — h(t, 2(t|t — 1))]
P(tlt—1)— K(t)H(t)P(t|t — 1)

St 2(t[t), u(?))
af (t, z)

ox

e=a(t|t)

g(t,x) }x::?:(t\t)

FOPHOFT(t)+ Gt R.(H)GT (1)

(22)
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A. Model structural aspects

To enable the estimation of the model parameters with the BKBupled identification model
must be defined. The model merges the sampled model (7) anmddamawalk model for the

parameter estimate [12]:

z(kh+h) = To(kh+h) | = | n(kh+h)
Tpy1(kh 4 h) 01(kh + h)
Tnyo(kh + h) O(kh + h)

(23)

Hence, the extended state-space model is the following:
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=

) 0 0 (gs(k;h))
(kh+h) — +

+ 1 0 |u(kh)+ w(kh)

fi(kh, T(kh), u(kh))

~

fa(kh,T(kh),u(kh))

+ gw(kh)

fos2(kh, T (kh), u(kh))

f(kh,T(kh),u(kh)) + gw(kh) (24)

100 CZor+2(0)

j(kh) = —
y< ) C§0n+2(kh)_l_(é(a)%(kh))inw(kh)

= h(kh,T(kh)) + e(kh). (25)
Cla) = (C(a) 0 0) (26)

B. Linearization

In the EKF algorithm structure (22), it is necessary to lnemboth f(¢, ) and h(t, x).
The linearization off (kh, Z(kh), u(kh)) was performed analytically. The formula fét(kh)

is not shown here due to its complexity.
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The linearization ofu(kh, Z(kh)) (24) was performed numerically:

sy = PHUT) @)
h(kh,Z(kh) + AZ(kh)) — h(kh, Z(kh))

AZ(kh)

where AZ(kh) is the step for the differentation and chosen to be small.

C. Algorithm and Initialization
After having formulated all the quantities needed to sethgEKF, the initial values for the

variables must be specified. For the third order model, tii@lirvalues for the states were

Z(0] — 1) = (0.000 0.000 0.000 0.030 1.000)” (28)

Using simulations performed on the available databaseastfound that, the matriR (¢|t — 1)

could be initialized as:

1 0 0 0 0
000l 0 0 0

PO[-1) = |0 0 00001 0 0 (29)
0 0 0 010
0 0 0 0 1

Performing a similar empirical analysis on the simulatephals, the values for the covariance

matrices?; and R, were set to:
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1020 0 0 0
0 12 0 0 0
R = [0 0012 0 0 (30)
0 0 0 12 0
0 0 0 0 1002
Ry, = 108 (31)

VI. OPTIMIZATION OF THE POLE LOCATION FOR THE NEW MODEL

For the remaining parts of this paper, model ordet 3 in (4) and (23) was chosen. Tests
for n = 2,3,4 were performed (results not shown) and= 3 proved to give better results
concerning the fitting of the system output signal.

In order to choose a combination éfs (Section IlI-A) that leads to the best identification
results, the PEM described in Section IV-D was applied testhrals from the sixty real collected
cases present in the available database. The signal timgowifor evaluation (of lenghf\/)
started on minute 30 (after the transient phase wherédahesis acting) and stopped at the end
of the infusion { = t*). For the same patient, a combination(ét, k3) ranging fromk; = 1 to
k; = 10, {i = 2,3} was tested. The same procedure was applied to every palieatnumber
of total algorithm iterations in each trial was 1000, to emsuonvergence of the identified
parameters. The normalized sum of the squared predictiam e(rt,é) for each combination

(ko, k3) and for each identified patieritwas calculated:

k) = 12 0 (e(t,0)2. (32)

t=31min
To perform a statistical analysis of the results coming fimulations with differentk,, ks3)
combinations, a normalized sum among the total number eématwas calculated to obtain a

single performance error valuk(k,, k3) for each(k,, k3) combination:
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60
1
‘I’(k?2,k3) = @ E 5;’(/{?27/{?3) (33)
Jj=1

A graphical representation of the(k,, k3) behaviour in three-dimensional space is shown in

Fig. 4.

Fig. 4. Normalized performance error values for all combores of (k2, k3) from 1 to 10. The values come from simulations
with a third-order model (4) in the database of sixty reaiguas with the PEM described in Section IV.

By analyzing the surface in Fig. 4 it was found that the mimmuoormalized error for each
(ka, k3) combination in the patient database appearedifor 4 and k3 = 10 or vice-versa.
From here on, all the tests performed on the database wilthese values fok, and ks.

The real case presented in Fig. 2 was used to exemplify tiferpeance of the PEM for a
minimally parameterized model. A third order model was usedescribe the linear part (4).
The results of the simulated output signal together withrdbed measured signal are presented
in Fig. 5. The simulated effect concentratior(, §), i.e. the output from the linear block, is
represented in Fig. 6. Note that, as mentioned before, ffesteconcentration is scaled when
compared with the one in Fig. 3 due to the fact that the syst¢ah gain is only adjusted by the
parameter from the nonlinear block. However, the signabbigtur in Fig. 6 follows the same

pattern as the one in Fig. 3, showing that the strategy oksgmting the system by a minimally
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parameterized model was successful. The algorithm waslinégd with

6 = (0.500 2.000)7. (34)

The chosen value fap, in (15) was:

0.1 0
B =
0 1
(35)
After 1000 samples, the following estimates were obtained:
910 — (0.036  2.688)". (36)

The result is illustrated in Fig. 7. These figures show thatdlgorithm manages to produce
parameter estimates such that the simulated si@(ﬁa@moo) calculated with the parameter
estimates obtained at the end of the run and the real outgnalgj(¢) almost coincide. The
initial drop iny(¢) was modeled by the simulated signal and the recovery of thalated signal
coincides with the recovery of the real signal. Most imputitg it should be stressed that the

simulated output captured the oscillations that are ptesetie real signal(t).

VIl. EKF PERFORMANCE EVALUATION

The purpose of the following section is to illustrate theqpi@al performance of the EKF
algorithm for the model in (24) that describes the effectefheuromuscular relaxaatracurium
Simulations were performed using the real collected NMBesda the database.

The EKF simulated output sign@l(t,é) and the real measured NMB output sigpél) are
illustrated in Fig. 8. The results show that the simulateghal follows the real output throughout
time, catching the behaviour of the measured signal in boghiritial bolusresponse, and the

recovery, transient and steady-state phases. The algovitis able to discard the noise effects
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Fig. 5. The real measured NMB data (in dashed line) plottgdtteer with the simulated output model response (in satiel)}i
using the parameter estimates obtained at the end of the REM r
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Fig. 6. The simulated (scaled) effect concentratiorit, &1°°?)), using the parameter estimates obtained at the end of the
PEM run.

present in the measured NMB signal, giving raise to a filtsigdal able to follow the real signal
time evolution. This behaviour is due to the parameter edesiupdate provided by the EKF
algorithm. The evolution in time of the updated parameteend+ are illustrated in Fig. 9 and
10, respectively. At the beginning of the simulation thesaisignificant change in the updates

in every iteration. However, afterwards the estimatesilstab Despite the initial estimates for
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Fig. 7. The parameter estimates generated by the PEM.
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Fig. 8. The real measured NMB data (in dashed line) plottgétteer with the simulated output model response (in satiel)}i
using the parameter estimates updated by the EKF algorithm.

both parameters are far from the final ones, the algorithnvgutdo be able to adapt both
and 4. (Interestingly, the median values of both parameter edts calculated with the EKF

approach are near the final estimates in the PEM run (36).)

It can be concluded from the plots that the proposed EKF dlguoris capable of accurately

identifying the newly proposed Wiener model structure, imadly parameterized, for the drug
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Fig. 9. The estimates of parameterupdated by the EKF algorithm.
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Fig. 10. The estimates of parameteupdated by the EKF algorithm.

effect in the NMB case study.

VIIl. CONCLUSION

The paper has presented a new strategy of modeling andfidegtoverparameterized physi-
ological models. The example of NeuroMuscular Blockadellexas used. The newly developed

minimally parameterized Wiener model for the effect of thescle relaxanatracuriumproved
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to satisfactory describe the output signal behaviour osgstem. System identification strategies
were also developed for the new proposed model.

The most commonly used SISO model describing the effecteofrthscle relaxardtracurium
relies on eight parameters to be identified. The major drawlbar the application of system
identification techniques for the identification of such anfer of parameters is due to the
presence of poor input excitation and lack of enough avi@lalitput data. To overcome these
two issues, a new third-order model was proposed with onty parameters to be identified. A
batch Prediction Error Method was first developed to optinitee model structure. Secondly, a
Extended Kalman Filter was derived, aiming for the develeptof online system identification
routines to be implemented in control devices. Both systdemtification approaches showed
good results regarding parameter adaptation and measigedl sracking. Thus, the newly
proposed method proved to be adequate for the descriptidgheofystem, even for the input
signal present in this case study.

These results point to the possiblility of further work orstgm identification techniques for
minimally parameterized models in anaesthesia, namelyattaptation of these algorithms to
the DoA case, using the BIS signal. Further studies on li@éiion algorithms as well as on
the convergence properties of the developed methods asered®mmended to ensure a safe

incorporation of such system identification strategiesnaesthesia integrated control platforms.
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