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Abstract

The paper presents new modeling and identification strategies to address the many difficulties in

the identification of anaesthesia dynamics. During generalanaesthesia procedures muscle relaxants are

drugs frequently administered. The most commonly used models for the effect of such drugs, called

NeuroMuscular Blockade (NMB), comprise a high number (greater than eight) of pharmacokinetic and

pharmacodynamic (PK/PD) parameters. The main issue concerning the NMB system identification is

that, in the clinical practice, the user cannot freely choose the system input signals (drug dose profiles

to be administered to the patients) to enable the identification of such a high number of parameters.

The limited amount of measurement data also indicates a needfor new identification strategies. A new

SISO Wiener model with two parameters is hence proposed to model the effect of the muscle relaxant

atracurium. A batch Prediction Error Method (PEM) was first developed tooptimize the model structure.

Secondly, an Extended Kalman Filter (EKF) approach was usedto perform the online identification of

the system parameters. Both approaches outperform conventional identification strategies, showing good

results regarding parameter identification and measured signal tracking, when evaluated on a large patient

database. The new methods proved to be adequate for the description of the system, even with the poor

input signal excitation and the few measured data samples present in this application. It turns out that

the methods are of general validity for the identification ofdrug dynamics in the human body.
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I. INTRODUCTION

The present paper considers nonlinear identification of thedynamics of drug effect in the

human body. For this purpose, new minimally parameterized models are proposed, overcoming

the poor excitation of such problems. Data collected in the surgery room from NeuroMuscular

Blockade (NMB) control cases during general anaesthesia isused to exemplify the ideas.

In the clinical practice, the term anaesthesia refers to a drug-induced reversible pharmaco-

logical state where three main variables must be kept in equilibrium: hypnosis, analgesiaand

areflexia. Hypnosisis defined as the level of unconciousness associated with theabsence of recall

after surgery regarding intraoperative events. Several univariate parameters computed using the

raw data from the electroencephalogram (EEG) have been usedto monitor the level of hypnosis

in patients, namely the spectral edge frequency [1], the auditory evoked potentials [2] and the

approximate entropy [3]. More recently the Bispectral Index Scale (BIS) [4] has taken the lead,

being the index most widely used by anesthetists and researchers in the field to infer the Depth

of Anaesthesia (DoA).Analgesiais defined as the absence of pain. However, quantitative and

a reliable index for the measurement of pain in patients has not yet been widely accepted and

validated. Clinicians use signs as tearing, changes in the heart rate and changes in the blood

pressure together to infer the analgesia condition of the patients.Areflexiais defined as the lack

of movement. It is induced and maintained by the use of musclerelaxants and it aims to achieve

an adequate level of paralysis to perform surgical procedures. The NMB level can be clinically

quantified by electrical stimulation of theadductor policiesmuscle in the patient’s hand. The

blockade level corresponds to the first single response calibrated by a reference twitch.

In order to address the balance of these three components, the anesthetists adjust the dose of the

corresponding drugs by integrating the NMB and DoA indices with all the other monitored phys-

iological variables. When comparing with manual drug administration, automated technologies
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may carry considerable advantages [5]. If reliable models of the patients’ pharmacokinetics (PK)

and pharmacodynamics (PD) are available, under or overdosing can be avoided by programming

the syringe pumps to target specific values of the drug effects. The need to have reliable models

for the patients’ PK/PD benefits from the automatic identification of the patient’s variability in

order to overcome the drawback of using standardized procedures in drug administration based

on population studies.

The application of system identification methodologies to identify the patient variability in

anaesthesia environments is not understood well enough. The main problem of DoA and NMB

control is the poor excitationi.e. the input signals (administered drug doses) are not rich enough

in frequency and amplitude to be able to excite all modes of the system [6], [7]. Unfortunately,

the excitatory pattern of the input cannot be chosen by the user to achieve a better performance of

the identification methodologies. In general anaesthesia procedures, the induction phase usually

comprises the administration ofbolusof drugs (considered as one finite impulse) and afterwards

the measured variables are kept at the desired target valuesby a low variance drug dose profile.

Moreover, the available data is limited by the sampling rates accepted by the clinical devices.

The PK/PD of the effect of drugs in anaesthesia can be modeledas a Wiener model: a

linear block in series with a nonlinear static block [8]. Thelinear parts describe the way the

drug is diffused, accumulated and excreted by the human body. The nonlinear part models the

drug effect in the patient. Due to this structure, the use of linear models to predict human

response to anaesthesia is not completely adequate [9]. In [6] a first approach for reducing

the number of model parameters was proposed but a linear model was used to describe the PD

nonlinearity. Alternatives to the identification of linearmodels can be found in other publications.

For example, in [10] a hybrid method based on parameter estimation and an artificial neural

network coupled with a curve fitting algorithm was proposed.Good results were obtained but

the parameter redundacy is still present in the calculationof the steady-state drug dose prediction.

The algorithm proposed in [11] was also previously tested for the anaesthesia identification case

study. The black box model approach was modified to take into account the NMB Wiener system

specifications but it still failed in identifying the eight parameters present in theatracuriumeffect



4

model. More work in this direction is hence needed.

From the reasons stated above it is reasonable to assume that, by reducing the number

of parameters to describe the system, improved results may be achieved when new system

identification algorithms are designed. One strong reason for this modeling is that the input

pattern present in the real collected cases will no more be insufficiently persistently exciting,

making the identification possible to be carried out. The choice of the appropriate number of

parameters should match the parsimony principle [12], thatstates that the chosen model should

contain the smallest number of free parameters required to represent the true system adequately.

The main contribution of this paper is hence the use of a minimal number of parameters

to model the NMB input-output relation, consistent with thepoor excitation present in the

available data from real cases. A nonlinear Wiener model using only two free parameters is

proposed for this purpose. From this model a new batch algorithm for parameter identification

is derived, providing a second contribution. The good results obtained with this first strategy act

as a motivation for the development of an online adaptive algorithm by the use of the Extended

Kalman Filter (EKF). This is the third contribution of the paper. Experimental evaluation of the

new algorithms in a previouly collected database of sixty patients undergoing general surgery

proves the feasibility of the model and the algorithms. Due to parameter adaptation, the signals

achieve very good reference signal tracking in test cases, using the aforementioned database.

This paper is organized as follows. Section II describes theprinciples concerning the control

of anaesthesia. Section III presents the definition of both the linear and the non linear parts of

the new minimally parameterized model. In Section IV the batch identification algorithm using

the Prediction Error Method is presented, followed by the derivation of the EKF in Section V.

Sections VI and VII present optimization and simulation results, whereas Section VIII gives the

conclusions.
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II. CONTROL STRATEGIES

A. Control algorithms

The first successful attempt to commercialize a device designed to control drug dose admin-

istration to patients in a personalized way was ’Diprifusor’ [13]. The algorithm used by this

Target-Controlled Infusion (TCI) platform receives information about the patient and then ajusts

the drug dose profile in such a way as to achieve a specific predicted target effect concentration.

The set of PK/PD parameters that are used to compute the drug doses were selected based on

population models. Even with information regarding age, weight and height of the patient, a

certain inaccuracy remains, meaning that the anesthetist still needs to re-adjust the target effect

concentration every time the observed drug effect in the patient does not match the clinically

desired one. Following this trend several other strategieswere recently proposed. For example,

in [14] an adaptive approach is proposed to improve TCI basedstrategies. The method combines

a optimal variance constrained drug dose design with a hybrid identification of the individual

patient dynamics. The model on that study was based on the onedescribed in Section II-B.

Despite constituting a real improvement regarding the commonly used TCI strategies, the results

from the tests of the algorithm on the NMB control present some inaccuracies regarding reference

tracking. It is actually the patient intra and intervariabilities that plays the major role and indicates

a need for new models and identification algorithms.

B. State of the art models

The model used in the previous studies to describe the PK and PD of the drug effect, in the

special case of the non-depolarizing muscle relaxantatracurium, is presented in this subsection.

This will not be the model adopted for the development of thispaper, but it motivates and

supports the build up of the new proposed model and identification algorithms. To meet the

parsimony principle, the main design goal is then to performthe modeling with a minimal

number of parameters.

Recalling the compartmental type models [15], the NMB modelcan be described as a Wiener

model as proposed in [16]. The PK is described by the linear dynamic block 1 in Fig. 1. The
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physiological basis of this part consists of assuming two plasma compartments (central and

peripheric) both communicating with each other. The PD incorporates a linear dynamic part

(blocks 2 and 3 in Fig. 1) and a nonlinear static block (block 4in Fig. 1). The relation between

the plasma concentrationcp(t) and the effect concentrationce(t) was first described without

block 3 in Fig. 1 [17] but, as shown in [18], the inclusion of this equation allows a better fit

to the observed experimental responses. Block 4 in Fig. 1 represents the PD static nonlinearity

and relates the effect concentration to the effect of the drug as quantified by the measured signal

r(t). This model depends on eigth parameters that need to be estimated from clinical data.

Fig. 1. Block diagram for the PK/PD of the muscle relaxantatracurium.

A state space description of the model of Fig. 1 is given by:
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where{ai [kg ml
−1], λi [min

−1]}i=1,2, λ [min−1], τ [min] are patient-dependent parameters. In

turn, ce(t) is related with the expected NMB levelr(t) (%) by means of a nonlinear static Hill

equation [17],
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r(t) =
100Cγ

50

Cγ
50 + cγe (t)

, (2)

whereC50 [µgml−1] and γ (dimensionless) are also patient-dependent parameters. Note that

in practice the intermediate signalce(t) is not accessible for measurement. The variabler(t),

normalized between 0 and 100, measures the NMB level,0 corresponding to full paralysis and

100 to full muscular activity.
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Fig. 2. NMB response (upper plot) and input drug dose (lower plot) from a real case collected in closed-loop control for the
muscle relaxantatracurium. Note that the scale in they-axis of the lower plot has been split.

Fig. 2 represents the typical response of a closed-loop controlled real case for the adminis-

tration of atracurium in the surgery room. The output signalr(t) is represented in the upper

plot whereas the input drug doseu(t) is shown in the lower plot. As can be seen in the lower

plot, at the beginning of the surgery, in the induction phase, a bolus of atracurium, typically

uδ = 500 δ(t)µg kg−1 (in discrete time corresponding tou(0) = uδ ∆t with ∆t = 1/3min−1) is

administered to the patient to enable a rapid drop of NMB level. For control purposes, during

the period where thebolus is acting, the value of the reference is fixed at a low level, being

gradually raised to the set-point of10% [16]. The output signalr(t) represented in the upper

plot of Fig. 2 was then maintained around the reference profile by the administration of the input
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drug doseu(t), calculated by a closed-loop control strategy [19].

As it is clear from Fig. 2 the input signal is not rich enough tomake the identification of the

eight parameters of the model (1), (2) possible. The poor input excitation as well as the limited

experimental dataset hence motivate the present study.

III. N EW MODEL: MINIMAL NUMBER OF PARAMETERS

A new SISO Wiener model describingatracurium PK/PD is presented in this section. Al-

gorithms for simultaneous identification of the linear dynamics and the static non linearity are

then derived. Models are first constructed using a continuous time Wiener model. This model

is then sampled with a zero-order hold strategy [20]. This enables the derivation of algorithms

that estimate the underlying continuous time parameters, thereby exploiting the fact that the

continous time parameters are of minimal number.

A. Linear block

For simulation purposes, and in order to cover a wide range ofbehaviours, a bank of realistic

nonlinear dynamic models foratracurium PK/PD have been generated using the probabilistic

distribution discussed in [18]. It then constitutes a simulated database where the exact parame-

terization of model (1) is known for each simulated patient.Fig. 3 shows the effect concentration

(output from the linear part) response from the model number25 in the simulated bank after

administration of the drug dose profile represented in Fig. 2. Despite some differences on the

local behaviour of different patients’ effect concentration, the global trend of the represented

plot can be considered typical. A rapid raise is present at the beginning of the surgery due to

the bolusadministration, being then followed by a slower decrease toa certain level around the

value corresponding to the steady-state.

By inspection of the output from the linear part in simulation, a model with annth-order

multiple pole located in−1/τ with unitary static gain was first proposed (3) to account forthe

dynamics in (1). Model order is denoted by the superscript(n) in the paper. For the sake of

simplicity α = 1/τ is defined. This gives
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Fig. 3. Effect concentration for model number 25 in the simulated database after administration of the drug dose profile
represented in Fig. 2.

Ĉ(n)
e (s, α) =

αn

(s+ α)n
U(s) , {n = 2, 3, 4}, (3)

where Ĉ(n)
e (s, α) is the Laplace transform of the output from the model linear dynamic part

ĉ
(n)
e (t, α) andU(s) is the Laplace transform of the input signalu(t).

However, it was hypothesized that, by placing the model poles in different locations, better

accuracy could be achieved. According to [21], it is possible to describe the model dynamics

using the limiting Laguerre approximations. It is this ideathat is the basis for the next refinement.

Instead of having a pole with multiplicityn located in−1/τ , several combinations of multiples

of −1/τ are introduced for the pole locations. Hence, instead of using the linear model (3), the

following is proposed:

Ĉ(n)
e (s, α) =

k1 . . . kn α
n

(s+ k1 α) . . . (s+ kn α)
U(s), {n = 2, 3, 4}, (4)

Aiming for the best modeling, the parameterski, {i = 2, 3, 4} must be chosen, noting that

k1 = 1 needs to hold. A brute force search on the available real collected cases database was
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then performed. A detailed description and some results on this are present in Section VI.

B. Nonlinear block

The output from the non-linear block was modeled with the Hill equation:

ŷ(t, θ) =
100Cγ

50

Cγ
50 + ĉγe (t, α)

, (5)

whereθ = (θ1 θ2)
T = (α γ) T .

Noting that the linear part contributes with a unit gain for the whole system, the differential

static gain must be estimated by the parameter to be adapted in the non-linear part [8]. According

to [10], in simulation studies on the previouly mentioned simulated database, the variability on

C50 does not stongly affect the identification results. HenceC50 was kept constant during this

study.γ adapts the shape or static differential gain of (5).

C. Sampling

In order to implement the proposed model structure in the identification algorithm, the continuous-

time representation (3) has to be sampled. For that purpose,the system (3) was represented in

a state-space form as shown in (6).







˙̂x(t) = A(α) x̂(t) +B(α) u(t)

ẑ(t) = C(α) x̂(t)
, (6)

whereu(t) ∈ R is the input (piecewise constant drug dose infusion),x̂(t) ∈ R
n×1 the continuous

model state-vector,̂z(t) ∈ R is the output (effect concentration of the drug),C(α) ∈ R
1×n,

A(α) ∈ R
n×n and B(α) ∈ R

n×1, being the system matrices. Note thatk′is are not shown

explicitely in (6) since they are determined in a single optimization step with respect to the

available data. After that, onlyα affects the dynamics of the different patients.

The zero-order hold method [20] was applied using the sampling instanttk = kh. Normally,

h is equal to 20 seconds. This choice is due to the fact that, in the surgery environment, data

from NMB is acquired with a frequency of1/20s−1. The discrete time model than becomes
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





x̂(kh+ h) = Φ(α) x̂(kh) + Γ(α) u(kh)

ẑ(kh) = C(α) x̂(kh)
, (7)

where

Φ(α) = eA(α)h

Γ(α) =
∫ h

0
eA(α)s dsB(α)

(8)

Here, u(kh) ∈ R is the input (piecewise constant drug dose infusion),x̂(kh) ∈ R
n×1 the

discrete model state-vector,ẑ(kh) ∈ R is the output (effect concentration of the drug),Γ(α) ∈

R
n×n andB(α) ∈ R

n×1, being the sampled system matrices.

For the purpose of implementing the prediction error method, the polynomial counterpart to

(7) is more suitable to use. According to [20], the pulse transfer operator corresponding to (7)

is given by

H(q−1, α) = C(α)(qI − Φ(α))−1Γ(α) =
B(q−1, α)

A(q−1α)
. (9)

whereq is the shift operator (qu(kh) = u(kh+ h)).

The model output from the linear part can then be representedas

ĉ(n)
e (t, α) =

B(q−1, α)

A(q−1, α)
u(t) . (10)

The sampling does not affect the nonlinear block, hence (5) can be used as it is.

IV. BATCH IDENTIFICATION ALGORITHM :

PREDICTION ERROR METHOD

The linear dynamics and static nonlinearity will be jointlyidentified. Let

θ = (θ1 θ2)
T = (α γ) T (11)
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denote the parameter vector to be identified, whereα is the parameter of the linear block andγ

the parameter of the nonlinearity.

The prediction error method determinesθ so that the prediction error

ε(t, θ) = y(t) − ŷ(t, θ). (12)

becomes as small as possible. Note thaty(t) is the measured output value andŷ(t, θ) is the

predicted output, based on parameter vectorθ.

A. Gradient

The gradient of the prediction error (12) is of central importance to the prediction error

identification method. It is given by:

ψ(t, θ) = −

(

∂ε(t, θ)

∂θ

)T

=

(

∂ŷ(t, θ)

∂θ

)T

=

(

∂ŷ(t, θ)

∂α

∂ŷ(t, θ)

∂γ

)T

=

(

∂ŷ(t, θ)

∂ĉe(t, α)

∂ĉe(t, α)

∂α

∂ŷ(t, θ)

∂γ

)T

. (13)

B. Criterion and search direction

In order to derive the prediction error method, the following criterion is introduced [12]:

V (θ) =
1

N

N
∑

t=1

ε2(t, θ), (14)

whereN is the total number of data points andε(t, θ) is the prediction error.

The minimization of (14) is then performed using the numerical Gauss-Newtonmethod [12]:

θ̂(k+1) = θ̂(k) − βk[V
′′(θ̂(k))]−1 V ′(θ̂(k))T , (15)
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whereθ̂(k) denotes thekth iteration in the search. The sequence of scalarsβk is used to control

the step lenght. The derivatives ofV (θ) can be found as:

V ′(θ) = −
2

N

N
∑

t=1

εT (t, θ)ψT (t, θ) , (16)

V ′′(θ) =
2

N

N
∑

t=1

ψ(t, θ) ψT (t, θ)

+
2

N

N
∑

t=1

ε(t, θ)
∂

∂θ
ψT (t, θ)

≈
2

N

N
∑

t=1

ψ(t, θ) ψT (t, θ) (17)

The approximation in (17) is justified in [12] and is supported by the fact that, at the global

minimum pointε(t, θ) becomes assymptotically white noise which is independent of ψ(t, θ). As

a consequence, theGauss-Newtonmethod has a linear convergence instead of quadratic, which

would be the case if the approximation had not been performed(i.e. using theNewton-Raphson

method).

C. Projection algorithm

Regarding the linear block of the Wiener model in study, the application of a projection

algorithm is needed to keep the model assymptotically stable. For that purpose, the poles of the

transfer function (10) are monitored by the use of the following projection algorithm for the

parameterα:

α(k+1) = θ
(k+1)
1 =







α(k+1) if α(k+1) > δ > 0

α(k) if α(k+1) ≤ δ
(18)

For the nonlinear block (5), it is necessary to assure thatγ does not reach negative values.

The following projection algorithm was used for the parameter γ:
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γ(k+1) = θ
(k+1)
2 =







γ(k+1) if γ(k+1) > δ > 0

γ(k) if γ(k+1) ≤ δ
(19)

Both updatings are hence stopped if the new parameter updates are outside the allowable

range.

D. Prediction error algorithm

The Prediction error algorithm can now be summarized using the formulas defined above.

Note that a numerical differentiation is used. The reason isthat the mathematical expressions

for the derivatives of (10) with respect toα become very complicated.

for k = 0 to K

θ̂ = θ̂(k)

ĉe(t, α̂) =
B(q−1, α̂)

A(q−1, α̂)
u(t)

ŷ(t, θ̂) =
100C γ̂

50

C γ̂
50 + ĉγ̂e(t, α̂)

ε(t, θ̂) = y(t) − ŷ(t, θ̂)

∂ŷ(t, θ̂)

∂ĉe(t, α̂)
= −

100C γ̂
50 γ̂ ĉe(t, α̂)γ̂−1

(C γ̂
50 + ĉe(t, α̂)γ̂)

2

∂ĉe(t, α̂)

∂α̂
=
ĉe(t, α̂+ ∆α̂) − ĉe(t, α̂)

∆α̂
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∂ŷ(t, θ̂)

∂γ̂
=

100C γ̂
50 ln(C50)

C γ̂
50 + ĉe(t, α̂)γ̂

−
100C γ̂

50

(C γ̂
50 + ĉe(t, α̂)γ̂)

2

×[ln(C50)C
γ̂
50 + ln(ĉe(t, α̂)) ĉe(t, α̂)γ̂]

ψ(t, θ̂) =

(

∂ŷ(t, θ̂)

∂ĉe(t, α̂)

∂ĉe(t, α̂)

∂α̂

∂ŷ(t, θ̂)

∂γ̂

)T

V ′(θ̂) = −
2

N

N
∑

t=1

εT (t, θ̂)ψT (t, θ̂)

V ′′(θ̂) ≈
2

N

N
∑

t=1

ψ(t, θ̂)ψT (t, θ̂)

θ̂(k+1) = θ̂(k) − βk[V
′′(θ̂(k))]−1 V ′(θ̂(k))T . (20)

end

The step∆α̂ used for the differentiation is selected to be small.

V. RECURSIVE IDENTIFICATION ALGORITHM:

EXTENDED KALMAN FILTER

In order to enable the incorporation of a nonlinear identification algorithm in an online platform

for control of NMB, recursive identification methodologiesneed to be developed. This is e.g.

a prerequisite when adaptive control is introduced [22]. The Extended Kalman Filter (EKF) is

then a natural choice since it is well suited for adaptive control structures like Model Predictive

Control (MPC). Moreover, depending on its formulation, it also provides values for the state

estimates in every iteration step, these being needed for MPC control. The idea of the EKF is to
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use the Kalman filter [23] for a nonlinear problem. The EKF, incontrast to the Kalman filter for

linear systems, is not an optimal filter. Neverthless, it constitutes a powerful tool for recursively

identifying the model parameters. In contrast to other recursive identification techniques, it also

has the advantage of independent tuning using the covariance matrix of both the process and

measurement noise, thereby enabling a tuning of the speed ofconvergence for each parameter

separately. For EKF purposes, the general discrete non linear model is

x̂(t+ 1) = f(t, x̂(t), u(t)) + g(t, x̂(t)) v(t)

ŷ(t) = h(t, x̂(t)) + e(t) , (21)

wherev(t) ande(t) are mutually independent Gaussian white noise sequences with zero means

and covariancesR1(t) andR2(t), respectively. The EKF algorithm can then be summarized as

follows [23]:

H(t) =
∂h(t, x)

∂x

∣

∣

∣

∣

x=x̂(t|t−1)

K(t) = P (t|t− 1)HT (t)

×[H(t)P (t|t− 1)HT (t) +R2(t)]
−1

x̂(t|t) = x̂(t|t− 1) +K(t)[y(t) − h(t, x̂(t|t− 1))]

P (t|t) = P (t|t− 1) −K(t)H(t)P (t|t− 1)

x̂(t+ 1|t) = f(t, x̂(t|t), u(t))

F (t) =
∂f(t, x)

∂x

∣

∣

∣

∣

x=x̂(t|t)

(22)

G(t) = g(t, x)
∣

∣

x=x̂(t|t)

P (t+ 1|t) = F (t)P (t|t)F T (t) +G(t)R1(t)G
T (t)

In the next subsection, the recursive identification setting of the EKF is derived.
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A. Model structural aspects

To enable the estimation of the model parameters with the EKF, a coupled identification model

must be defined. The model merges the sampled model (7) and a random walk model for the

parameter estimate [12]:

x̂(kh+ h) =

























x1(kh + h)

...

x̂n(kh+ h)

x̂n+1(kh + h)

x̂n+2(kh + h)

























=

























x1(kh+ h)

...

x̂n(kh+ h)

θ̂1(kh+ h)

θ̂2(kh+ h)

























.

(23)

Hence, the extended state-space model is the following:
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x̂(kh+ h) =



















Φ(α)
0 0

0 0

0 0

0 0
I























x̂(kh)

θ̂(kh)



 +

+











Γ(α)

0

0











u(kh) +



















I
0 0

0 0

0 0

0 0
I



















w(kh)

≡



















f1(kh, x̂(kh), u(kh))

f2(kh, x̂(kh), u(kh))

...

fn+2(kh, x̂(kh), u(kh))



















+ g w(kh)

≡ f(kh, x̂(kh), u(kh)) + g w(kh) (24)

ŷ(kh) =
100 C

x̂n+2(kh)
50

C
x̂n+2(kh)
50 + (C(α)x̂(kh))x̂n+2(kh)

≡ h(kh, x̂(kh)) + e(kh) . (25)

C(α) = (C(α) 0 0) (26)

B. Linearization

In the EKF algorithm structure (22), it is necessary to linearize bothf(t, x) andh(t, x).

The linearization off(kh, x̂(kh), u(kh)) was performed analytically. The formula forF (kh)

is not shown here due to its complexity.
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The linearization ofh(kh, x̂(kh)) (24) was performed numerically:

H(kh) =
∂h(kh, x̂(kh))

∂x̂(kh)
(27)

=
h(kh, x̂(kh) + ∆x̂(kh)) − h(kh, x̂(kh))

∆x̂(kh)
,

where∆x̂(kh) is the step for the differentation and chosen to be small.

C. Algorithm and Initialization

After having formulated all the quantities needed to set up the EKF, the initial values for the

variables must be specified. For the third order model, the initial values for the states were

x̂(0| − 1) = (0.000 0.000 0.000 0.030 1.000)T (28)

Using simulations performed on the available database, it was found that, the matrixP (t|t−1)

could be initialized as:

P (0| − 1) =

























1 0 0 0 0

0 0.01 0 0 0

0 0 0.0001 0 0

0 0 0 0.1 0

0 0 0 0 1

























(29)

Performing a similar empirical analysis on the simulated signals, the values for the covariance

matricesR1 andR2 were set to:
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R1 =

























102 0 0 0 0

0 12 0 0 0

0 0 0.12 0 0

0 0 0 12 0

0 0 0 0 1002

























(30)

R2 = 108 (31)

VI. OPTIMIZATION OF THE POLE LOCATION FOR THE NEW MODEL

For the remaining parts of this paper, model ordern = 3 in (4) and (23) was chosen. Tests

for n = 2, 3, 4 were performed (results not shown) andn = 3 proved to give better results

concerning the fitting of the system output signal.

In order to choose a combination ofk′is (Section III-A) that leads to the best identification

results, the PEM described in Section IV-D was applied to thesignals from the sixty real collected

cases present in the available database. The signal time window for evaluation (of lenghtM)

started on minute 30 (after the transient phase where thebolus is acting) and stopped at the end

of the infusion (t = t∗). For the same patient, a combination of(k2, k3) ranging fromki = 1 to

ki = 10, {i = 2, 3} was tested. The same procedure was applied to every patient.The number

of total algorithm iterations in each trial was 1000, to ensure convergence of the identified

parameters. The normalized sum of the squared prediction error ε(t, θ̂) for each combination

(k2, k3) and for each identified patientj was calculated:

εj(k2, k3) =
1

M

t∗
∑

t=31min

(ε(t, θ̂))2 . (32)

To perform a statistical analysis of the results coming fromsimulations with different(k2, k3)

combinations, a normalized sum among the total number of patients was calculated to obtain a

single performance error valueΨ(k2, k3) for each(k2, k3) combination:
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Ψ(k2, k3) =
1

60

60
∑

j=1

εj(k2, k3) (33)

A graphical representation of theΨ(k2, k3) behaviour in three-dimensional space is shown in

Fig. 4.
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Fig. 4. Normalized performance error values for all combinations of (k2, k3) from 1 to 10. The values come from simulations
with a third-order model (4) in the database of sixty real patients with the PEM described in Section IV.

By analyzing the surface in Fig. 4 it was found that the minimum normalized error for each

(k2, k3) combination in the patient database appeared fork2 = 4 and k3 = 10 or vice-versa.

From here on, all the tests performed on the database will usethese values fork2 andk3.

The real case presented in Fig. 2 was used to exemplify the performance of the PEM for a

minimally parameterized model. A third order model was usedto describe the linear part (4).

The results of the simulated output signal together with thereal measured signal are presented

in Fig. 5. The simulated effect concentrationĉe(t, θ̂), i.e. the output from the linear block, is

represented in Fig. 6. Note that, as mentioned before, this effect concentration is scaled when

compared with the one in Fig. 3 due to the fact that the system total gain is only adjusted by the

parameter from the nonlinear block. However, the signal behaviour in Fig. 6 follows the same

pattern as the one in Fig. 3, showing that the strategy of representing the system by a minimally
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parameterized model was successful. The algorithm was initialized with

θ̂(0) = (0.500 2.000)T . (34)

The chosen value forβk in (15) was:

βk =





0.1 0

0 1





(35)

After 1000 samples, the following estimates were obtained:

θ̂(1000) = (0.036 2.688)T . (36)

The result is illustrated in Fig. 7. These figures show that the algorithm manages to produce

parameter estimates such that the simulated signalŷ(t, θ̂1000) calculated with the parameter

estimates obtained at the end of the run and the real output signal y(t) almost coincide. The

initial drop in y(t) was modeled by the simulated signal and the recovery of the simulated signal

coincides with the recovery of the real signal. Most importantly, it should be stressed that the

simulated output captured the oscillations that are present in the real signaly(t).

VII. EKF PERFORMANCE EVALUATION

The purpose of the following section is to illustrate the practical performance of the EKF

algorithm for the model in (24) that describes the effect of the neuromuscular relaxantatracurium.

Simulations were performed using the real collected NMB cases in the database.

The EKF simulated output signal̂y(t, θ̂) and the real measured NMB output signaly(t) are

illustrated in Fig. 8. The results show that the simulated signal follows the real output throughout

time, catching the behaviour of the measured signal in both the initial bolus response, and the

recovery, transient and steady-state phases. The algorithm was able to discard the noise effects
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Fig. 5. The real measured NMB data (in dashed line) plotted together with the simulated output model response (in solid line),
using the parameter estimates obtained at the end of the PEM run.
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Fig. 6. The simulated (scaled) effect concentrationĉe(t, α̂
(1000)), using the parameter estimates obtained at the end of the

PEM run.

present in the measured NMB signal, giving raise to a filteredsignal able to follow the real signal

time evolution. This behaviour is due to the parameter estimates update provided by the EKF

algorithm. The evolution in time of the updated parametersα̂ and γ̂ are illustrated in Fig. 9 and

10, respectively. At the beginning of the simulation there is a significant change in the updates

in every iteration. However, afterwards the estimates stabilize. Despite the initial estimates for
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Fig. 7. The parameter estimates generated by the PEM.
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ŷ (t, θ̂)

Fig. 8. The real measured NMB data (in dashed line) plotted together with the simulated output model response (in solid line),
using the parameter estimates updated by the EKF algorithm.

both parameters are far from the final ones, the algorithm proved to be able to adapt botĥα

and γ̂. (Interestingly, the median values of both parameter estimates calculated with the EKF

approach are near the final estimates in the PEM run (36).)

It can be concluded from the plots that the proposed EKF algorithm is capable of accurately

identifying the newly proposed Wiener model structure, minimally parameterized, for the drug
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Fig. 9. The estimates of parameterα updated by the EKF algorithm.
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Fig. 10. The estimates of parameterγ updated by the EKF algorithm.

effect in the NMB case study.

VIII. C ONCLUSION

The paper has presented a new strategy of modeling and identifying overparameterized physi-

ological models. The example of NeuroMuscular Blockade level was used. The newly developed

minimally parameterized Wiener model for the effect of the muscle relaxantatracuriumproved
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to satisfactory describe the output signal behaviour of thesystem. System identification strategies

were also developed for the new proposed model.

The most commonly used SISO model describing the effect of the muscle relaxantatracurium

relies on eight parameters to be identified. The major drawback for the application of system

identification techniques for the identification of such a number of parameters is due to the

presence of poor input excitation and lack of enough available output data. To overcome these

two issues, a new third-order model was proposed with only two parameters to be identified. A

batch Prediction Error Method was first developed to optimize the model structure. Secondly, a

Extended Kalman Filter was derived, aiming for the development of online system identification

routines to be implemented in control devices. Both system identification approaches showed

good results regarding parameter adaptation and measured signal tracking. Thus, the newly

proposed method proved to be adequate for the description ofthe system, even for the input

signal present in this case study.

These results point to the possiblility of further work on system identification techniques for

minimally parameterized models in anaesthesia, namely theadaptation of these algorithms to

the DoA case, using the BIS signal. Further studies on initialization algorithms as well as on

the convergence properties of the developed methods are also recommended to ensure a safe

incorporation of such system identification strategies in anaesthesia integrated control platforms.
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