
����
����	
�������
����
�	����
�����
�

����

��������	
��
��������������
����
���������������
����
��
�

��������������
�������������������
�
������

����	
���
��to a
Software ����
�����

��������������
�������
��	
�������������
���
���

��������������

�������!�"�#��
�����$�%"$�"!!�"��%$"$
&��'�(�'�
'&&'��)
"�##�*�

����������	
������
�������
�������

����������	������������������
����
��		�������
�	����������
�����������
� ���
��������!�������"�
������# #���� $% &�'	���(���������	'
�	��	��	'��(��	�	�(�)�*(�������
���	
�+��������	
��������
�,
����()

��������

-	��������")��# #)�.
��(��/	����	���0	'�+������	'����	
)�0����
��1�,������
����	'�2	
�����
�
��*(���(���)�3����

������������
������
���)���������	
��
��������������
����
�
�������������
����
����

��������������
�������������������
�
���4$�)�� ���)�
������)�
�����54675 7&&�7446575)

/������(�(����(+
� �(��� �(������������� �
��
	+���������+��
�
�+���(������
���������
���
��	'����	
�����
���(����	���	'��(����������������������	��	
����������(�����(���	
������	'�	�8���
	���
����	
)�*(�����	�������
���(��'�����(����	����	�����������
�����8	���+�
���	�+	����
��(�
�	'�+�����
���������������	�9�����	
���������
��+(���(����������������
��(+������
�����
���
����������������'	���(����'�������������)�3���
����(���������	�
����(����(����������������+	��(���7
��������������������(���'	����	
������
��:����+��	'��	
�������
�2	�������0���
��)
*(��'������(���7�������������������
������������(��������
���	'��	��
�����*(���(���2	
�����

�
�2	�������0���
��)�0��(��	
�������(���������	�����	�������
�'	������������������������
�
�
���������)�;��������������(���(�������
����
���������
�����������������(�������
��	�������
�(�	��(�����7����������� �
������+����	
������������
��+�����
���	����)�*(���������� ���
��'���
�+	�*(���(���2	
��������������������������	�����
���(�
������������(��+�����
�+(��(��(���
�	
������(�������
�'	����������
��)
*(�����	
���(���7�������������������		�����(�
	��
	����(�������	��(��	�'�
���(���������	

�
�(+������
����
������
���	
�������������� �	� �(���	'�+������	'����	
)������+�����	�������
��������7������������
������+�)�<
�	
���������(���
������+��+����(�����
��	

����	
�+��(��	��7
�����
��+(���� �����
��� �		��	
� �(�� �	���	'� ��
�+��� (�������	�������)� *(�� �������� �(+� �
��������	'�+�����	��������
����(�������������(�
	��
���
��(�������
���	������������
��
��'�	�
�����'���������+���(���	'��
�(����������������
�������	��	����	�(�����������
������
��
����(��
��'�������(�����������	��(���
�����
������	'����	
����	�
��	'����+)
,�����	��� ��
� ���� �(�� �������� �	� ���(���=�� �	
������ �(��� ���� ���	���
�� '�	�� �����
��:

������������)�*(���(�
	��
	����(���	���	������������
�(���� ����(���� �	���'�������	
� �(���
	+
�+����	'�����
���	
��������+��(������
���	
�����	
�)�<�(�����
��������(+��������	
��(�	��
��
�������������	�	��
��	����	�(����������+����	'�����
���+(��(��
��(����	
���������������(�
��	'����	
������������	�(���������
�����������'	�����	��
����	'����	
����	'�+���������	����)

����

����-�	����(���������������������	�����������
����������	
���	�����������
��
�������	
��������(���	�����
���	
��������	
�����������	
��
���
��������(��(����������	
�
8�����
���'���������
�
���	�8����	���
����	
���(�
	��
	����(�����	������
����	��7�����
�	'�+���������	���
����	'�+������	'����	
���(���(����	
��������������	
��(�	��

�
����
������!�������
��
�������������	
�������!�
"�##$!��������������
����!��%&$'()'
�������!�������

>�"	
���-	��������# #

<00?� �& 7�� �
<0-?�54675 7&&�7446575
��
%
�
%��%��%����7 ��$#��@(���%AA��
)��)��A���	���B��
C��
%
�
%��%��%����7 ��$#�D

To the “Sweden Group” and the CSER community

List of Papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström, M. Ratcliffe,

K. Sanders, and C. Zander. (2007) Threshold Concepts in Computer

Science: Do they exist and are they useful? SIGCSE Bulletin, 39(1), pp.

504–508.
II K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström,

L. Thomas, and C. Zander. (2008) Student Understanding of Object-

Oriented Programming as Expressed in Concept Maps. In SIGCSE Bul-
letin, 40(1), pp. 332–336.

III J. E. Moström, J. Boustedt, A. Eckerdal, R. McCartney, K. Sanders,
L. Thomas, and C. Zander. (2008) Concrete Examples of Abstraction
as manifested in Students’ Transformative Experiences. In Proceeding
of the fourth international workshop on Computing education research,

pp. 125–136.
IV C. Zander, J. Boustedt, R. McCartney, J. E. Moström, K. Sanders, and

L. Thomas. (2009) Student Transformations: Are They Computer Sci-

entists Yet? In Proceeding of the fifth international workshop on Com-
puting education research, pp. 129–140.

V J. Boustedt. (2008) A Methodology for Exploring Students’ Experi-
ences and Interaction with Large-scale Software through Role-play and
Phenomenography. In Proceeding of the fourth international workshop
on Computing education research, pp. 27–38.

VI J. Boustedt. (2009) Students’ understanding of the concept of interface
in a situated context. Computer Science Education, 19(1), pp. 15–36.

VII J. Boustedt. (2010) A Student Perspective on Software Development

and Maintenance. Technical Report 2010-012, Department of Informa-

tion Technology, Uppsala University, Sweden.

VIII J. Boustedt. (2010) Ways to Understand Class Diagrams. Technical Re-
port 2010-013, Department of Information Technology, Uppsala Uni-
versity, Sweden.

Reprints were made with permission from the publishers.

Author’s Contributions

This section comments on the author’s contributions to the papers upon which

this thesis is based.

I When I joined the research group, known as the “Sweden Group”, in

March 2006, some data were already collected from instructors using

questionnaires and informal interviews. I was engaged in designing a

new study on students using semi-structured research interviews. All

seven authors worked together on design, data analysis, and writing the

paper. My particular contribution was sharing experiences from inter-

viewing and analysing interviews.
II The study was proposed and designed mainly by K. Sanders. All seven

authors worked together with data collection, graph coding, analysing

and writing the paper. My particular contribution was to make and run

software tools to analyse some aspects of the graph data.
III Originally, the idea to use biographies came from C. Zander who, to-

gether with L. Thomas, collected most of the data using assignments

in English writing classes. All seven authors worked together with data

analysis and writing the paper. I mainly focused on Design Patterns in

analysing the data and writing the paper.
IV This paper and Paper III were based on the same data set. All six au-

thors worked together with data analysis and writing the paper. I mainly

focused on analysing and writing about which types of concepts could

be associated to students’ transformational experiences.
V This methodology paper describes the research approach and methods

used in my first study on students’ experiences and understandings of

concepts and the practical work related to a situated context of work

with a larger software system. I am the sole author of this paper.

VI In this publication, I report the findings from the study described in
Paper V. I am the sole author of this paper.

VII This is a study where students’ understandings of software development
and software maintenance were explored. I designed the study, collected
and analysed the data, and wrote the paper.

VIII Students’ ways to understand class diagrams and related concepts were
investigated. The study used the same interview data and analysis meth-
ods as used in Paper VII. The paper was produced in sole authorship.

Contents

1 Introduction . 11

1.1 Research agenda . 11
1.2 The main research questions . 13

1.3 Outline . 14
2 Related work . 15

2.1 Learning the concepts necessary to program 15
2.2 Educating for a professional career in industry 18

3 Theory and approach . 23

3.1 Threshold concept theory . 23
3.2 Concept mapping . 24

3.3 Phenomenography . 26
3.4 Variation theory . 29

4 Collecting data . 31
4.1 Interviewing informants . 31
4.2 Doing role-play and interviews . 32

4.3 Collecting concept maps . 32
4.4 Collecting biographies . 33

5 Data analysis . 35
5.1 Phenomenographic analysis . 35

5.2 Content analysis . 37
5.3 Concept map analysis . 38
5.4 Trustworthiness . 38

6 The main results . 41
6.1 Learning and understanding concepts . 41

6.2 Understanding concepts related to the profession 45
6.3 On applying the results in teaching . 49

7 Conclusions . 51
Svensk sammanfattning . 53
Acknowledgements . 55

Bibliography . 57

1. Introduction

Computer Science Education Research is still a novelty in comparison to ed-

ucational research in more established academic subjects. Over the past thirty

years, research in this young discipline has been primarily engaged with prob-

lems related to students’ difficulties in learning programming. I have devoted

myself to trying to understand more about how students perceive and under-

stand concepts in Computer Science and aspects of the software profession.
This thesis presents my findings and it is my hope that they contribute to the
field of Computer Science Education Research.

1.1 Research agenda

In my research on student learning in Computer Science, I have focused on
two intertwined themes.

Student perspectives on concepts in Computer Science
The first theme involves finding out why it is so difficult to learn computer sci-

ence and aspects of object-oriented programming in particular. I have chosen

to approach this problem area by identifying various concepts in the subject

area that students perceive to be particularly distinctive, for example, by being

difficult or enriching. It is also an objective to investigate how students in all

stages of university education relate to these concepts and how they connect

some of the concepts to each other, see theme ‘A’ in Figure 1.1.
Inspired by a theory by Meyer and Land [44] which conjectures the exis-

tence of Threshold Concepts in academic disciplines, a group of researchers
including myself, took on the task to investigate whether such concepts ex-
ist in Computer Science, and given that they do exist, what they are and how
they affect students’ learning. In a series of studies, the researchers in this
international group have explored this matter to find empirical evidence.

Preparing to be a software professional
The second theme concerns how well students are preparing, or are prepared
by what they have learned, for a future career and the demands and expecta-
tions that will be placed on them in a professional context.

Earlier studies have pointed out knowledge gaps when comparing novice

employees to what experienced software professionals need to know [32], and

11

��������	 ���
�
��
�������
���� �������������

���������
����������	����

��	�����
���������	�
���
�����	��	����	������������	�����	

������ ������	� ��
�����
�	���

�

�

�������	�����	���	������	��	��

Figure 1.1: An illustration of the two research themes. Theme A is focused on trying

to identify concepts that are problematic and transforming seen from the university

students’ perspective. Theme B is focused on how education prepares university stu-

dents to become software professionals. This is addressed by investigating how last-

year students experience concepts that are related to professional perspectives. Note

that my research is not aimed at learning in upper secondary school although some

pupils study programming.

that the novice employees’ expectations often seem to mismatch the reality of

the profession [3]. The question is: “Why?”
The indications of substantial knowledge gaps concerning object-oriented

concepts, and that there may be knowledge gaps in other aspects, motivate the

study of how students majoring in computing are prepared for the future and

how they understand various concepts, processes and situations that relate to

the expectations that are imposed by the professional context.

I have investigated these matters by studying graduating students’ under-
standing of specific concepts that are important both for understanding the
discipline and for understanding the professional perspective. Moreover, I
have studied students’ understanding of broader phenomena and processes
with strong ties to a professional context, see theme ‘B’ in Figure 1.1.

How the themes are connected
Concepts can be understood in different ways by students – certain concepts
may never have been heard of while other concepts are well-known. Most
ways to understand are more or less correct, but some ways are more complete
than others seen in an educational and professional perspective. However, the
students that manage to get a degree in Computer Science or Computer En-
gineering bring along their understanding of concepts and expectations of the

12

profession into their first employment. Any gaps in necessary knowledge and

skills have to be filled when needed, learned by experience or by studies at

work. A better understanding of which concepts students experience as trou-

blesome and worthwhile, and how they understand these concepts, will help

educators in training better computer scientists as well as better preparing

students for becoming software professionals. As indicated by research [32],

software design and object-orientation are areas with a potential for improv-

ing formal learning of concepts to better prepare students for the expectations

of future employers.
One delicate problem for educators and education researchers is the balance

between the scientific subject-related and the professional point of view, and
whether the two perspectives are in conflict. In my opinion, it is common
that these two perspectives enrich, motivate and reinforce each other when it
comes to the understanding of concepts and practice in computer science.

1.2 The main research questions

The underlying key issue in Computer Science Education Research is: “How
can we improve learning and instruction in Computer Science?” In my re-

search, I have chosen to search for concepts in Computer Science that students

experienced as particularly difficult and important and that have changed the

students’ understanding of Computer Science. I have also examined the vari-

ability in how students understand concepts that represent essential knowledge

for those who want to work as software professionals. An overarching theme

is whether and in what ways we can improve education, to better prepare stu-

dents to become software professionals.

The overall research questions in this thesis are:
• Why are programming and Computer Science so difficult to learn – are

there concepts that both hinder and enable students to understand the big
picture? The question is made operational by finding which concepts in
Computer Science are the most meaningful to students in the sense of being
both hard-earned and rewarding, and in which ways they affect students
learning.

• What can we do to enhance the possibilities for students to become
well-prepared software professionals? The question is made operational
by searching for the different ways students understand various concepts
that software professionals need to master.

13

1.3 Outline

This thesis is a “comprehensive summary” of my research. For readers with a
background in Computer Science, this is a well-known format, whereas read-
ers with a background in Education Research are used to the monograph for-
mat. Unlike monographs in which research is presented as a single coherent
text, a comprehensive summary is structured by writing a text that presents
and summarizes research publications included in the thesis. Typically, this
text is relatively short and those who want to know more about the details of
research can find them in the included publications.

In this chapter, I described the background to my research interests and the

overall research questions, and in Chapter 2, I will describe previous research

related to my questions. Chapter 3 describes the theories and approaches I

have used in different ways in my research. Chapter 4 describes the various

methods used to collect empirical data, and Chapter 5 describes the methods

used to analyse the data. The main results are reported in Chapter 6, and finally

the conclusions of my research are summarized in Chapter 7. The publications

included in the thesis are placed at the end of this comprehensive summary.

14

2. Related work

In recent years, literature providing general overviews of Computer Science

Education Research has emerged. Clancy et al. [11], Holmboe [24], Pears

and Daniels [49] as well as Fincher and Petre [18] describe good examples,

models, areas and research agendas for such research. Berglund, Daniels and

Pears [5] describe examples of qualitative research projects in the area.

Randolph [52] investigated Computer Science Education Research on
meta-level which resulted in a methodological review based on journal
publications and conference proceedings. He concludes that up to now,
many hypotheses have been generated; however, it is now time to find more
evidence and establish stable results.

2.1 Learning the concepts necessary to program

The question of what it means to learn programming and why it is difficult
for beginners has been a main theme in research on computer science educa-
tion for nearly three decades. Several studies indicate that first year students
have poor programming skills. DuBoulay [13] stressed the need for under-
standing the mechanisms of an executing program and in this respect pointed
out the comprehension of the “notional machine” as one of the keys for learn-
ing programming. DuBoulay as well as Bonar and Soloway [6] reported that
students were confused by the discrepancy between programming languages
and natural languages. More recent results reveal that difficulties in learning
to program are still a major issue. McCracken et al. [42] asked if students can
write code, Lister et al. [34] investigated whether students can read and debug
code, and Eckerdal et al. [16] inquired students’ abilities to design code. In all
cases the answer was – No! Software design is an activity that requires a more
comprehensive view than just using a programmer focus, because it deals with
real world phenomena and requirements [43].

Robins et al. [53] have compiled a literature overview on studies of learn-
ing programming. They were mainly interested in how beginners learn to pro-
gram, and they took a cognitive perspective. They noticed that the research has
focused on understandings and development of programs, mental models, and
knowledge and skills that are required to be able to program. They claimed
that it takes 10 years for a novice to become an expert, and they classified five
developmental levels: novice, advanced beginner, competent, skilled, and ex-

15

pert. Five overlapping domains are involved in learning, namely: orientation,

the concept of machine, notation, structures and practical skills.
Pears et al. [50] have selected and compiled relevant literature on introduc-

tory programming. Their paper gives good advice for instructors faced with
issues regarding curricula design, pedagogical approaches, choice of program-
ming language, and teaching tools. They concluded that there is no evidence
to support any particular pedagogical approach. Instead, their study focused
on describing various proven approaches. This helps educators to make well-
informed decisions.

Booth pioneered in taking a phenomenographic approach to tackle ped-
agogical issues within Computer Science Education. In her classic work in
the area [7], she investigated how students learn and approach programming
through a study where the students’ descriptions of their conception of several
related phenomena and situations were analysed. The students learned a func-
tional programming language, and it is interesting to reflect on similarities
and differences compared to learning object-oriented programming, which is
problematic for many students and thereby is focused in my research.

Bruce et al. [10], used phenomenography to investigate how students go

about learning to program – what they called “the act of learning to program.”

The outcome of their research pointed out five distinctive ways in which the

students acted: following instructions, learning to code, understanding and in-

tegrating concepts, learning what it takes to solve problems, and finally, learn-

ing what it takes to be a part of the programming community. Then they dis-

cussed the possible implications the results have for teaching.
Similarly, Eckerdal [14][15] used a phenomenographic approach to study

how a group of novice students, involved in a Java programming course, in

different ways experienced learning to program and the object-oriented con-

cepts class and object. The results were later used by Thuné and Eckerdal [57]
in a discussion on how Variation Theory (Section 3.4) can be applied in teach-
ing to help students be aware of the more advanced ways to understand the
concepts and approaches that had emerged from the earlier study.

Hadjerrouit [22] claims that passive learning, where knowledge is transmit-

ted from the teacher to the learner, is not adequate for most students when it

comes to the object-oriented paradigm because the concepts are far more ab-

stract than in procedural programming. Instead, he advocates a constructivist

approach to learning object-oriented design and programming and claims that

learning must be an active process of construction. In a more recent publica-

tion [23], he brings this approach further and describes a general model for

how constructivism can be applied to teaching within software engineering.
My conclusion is that learners’ understanding of concepts is a central issue;

they can be viewed in many different ways and there are different ways to
learn them. One of my research aims is to understand the variation in ways of
seeing concepts. This knowledge can be used to help students see concepts in
advanced ways.

16

Threshold Concepts in computing
Inspired by the notion of Threshold Concepts (see Chapter 3.1), Flanagan

and Smith [20] divide programming thresholds in two kinds: (1) localized
Threshold Concepts, e.g., Java Interfaces, and (2) the programming language
itself as an overwhelming threshold. Their focus is on “operationally chal-

lenged students” for whom the programming language is troublesome. These
students are generally motivated, highly qualified and successful in other sub-
jects. The authors lend terminology from linguistics and identify “marked-
ness” of logically related contrasting attribute pairs in Java, e.g., true/false
and public/private. Asymmetric pairs may cause problems for the students,
especially if one of the words is only implied by the language, such as in the
pair static and “non-static”. Another problem they see is that students read
code as if it was natural language and as they do not understand the code,
they desperately need notes or templates to be able to mimic it. The authors
point out debugging as another problem for students being overwhelmed by
long error listings filled with unfamiliar words such as exception, symbol and
thread. They conclude that the language needs to be addressed much more.

Shinners-Kennedy [56] points out that everyday notion conceal important
Threshold Concepts within Computer Science. In the search for the concepts
believed to truly transform computer science students, we risk to miss funda-
mental ones because they are simple and obvious. For instance, the notions
“empty list” and “end of list” are the most troublesome parts for students
when they solve list problems, not the algorithms. “State” is another example
of a concealed every day life concept that can be very troublesome, because
in everyday life: “... we are not conscious of the fact that our next action is
determined by the current state or that our actions that change the state are the
critical ones.” However, in programming the understanding of “state” is cen-
tral, e.g., how it affects running programs: “Novice programmers are notori-
ously bad at what computer scientists describe as program debugging, despite
the fact that they have extensive experience of the activity in other contexts.”
(cf. [34]) To make students aware of this concept, Shinners-Kennedy advo-
cates a state based way to introduce several other related concepts. [56]

However, the definition of Threshold Concepts is not unchallenged. Row-

bottom [54] claims that the definition of Threshold Concepts is too vague to

be practical to use for empiric investigations. His point is that it is not possi-

ble to establish Threshold Concepts by studying students’ abilities – even if

Threshold Concepts exist – and that the thresholds are individual.

In our research, we have taken up the challenge to use the notion of Thresh-
old Concepts as a means for learning more about the relation between students
and concepts in computing, and we were excited to investigate the possibility
of finding such concepts in empirical data using the definition given by Meyer
and Land [44]. We believe this is a suitable approach towards understanding
more about concepts that play an important role for learning in computing in
various ways.

17

2.2 Educating for a professional career in industry

One of the main issues in my research deals with the question of how well
computing educations prepare the students for a software profession such
as developers and programmers, and this question takes its starting point in
the presumption that a considerable portion of the students that follow pro-
grammes in computer science or computer engineering strives for profes-
sion in the software industry. Being software professional requires a compre-
hensive view, including knowledge about computer systems, programming,
databases, project methodology, test methods, and good customer relations.
The object-oriented paradigm and its related development methods deals with
most of the topics mentioned above.

In an attempt to establish the relevance of formal education for software

professionals, Lethbridge [32] investigated the skills of active professional

software developers, how much of it originated from formal academic training

and how much were acquired after employment. He studied 168 professional

software developers in 24 countries. Among topics that the participants val-

ued highly, it turned out that knowledge in programming languages by large

came from formal education. However, there were a number of other highly

valued skills where the majority of learning occurred after formal education.

Object-oriented concepts, software design and patterns, architecture, design

of graphical interfaces, maintenance, refactoring, configuration, human com-

puter interaction, people skills, project management, release management and

requirements analysis are examples of such knowledge areas where the gap

between the formal competence and the needed competence was substan-

tial [32]. I take this as a challenge and I believe it is possible for education

researchers to help reduce these gaps!

Begel and Simon [3] focus mainly on how newcomers at work can be better
prepared as new software developers. They point out that newcomers in the

software industry had “significant mismatches between their job expectations

and reality” [3] which can lead to low self-efficacy and role ambiguity, but

on the other hand: “Newcomers with accurate expectations have higher self-

efficacy and lower role ambiguity.” [3][19] Hence, they suggest a number of

improvements to computing education. They emphasize social aspects, such

as confusion of roles and power hierarchies. Besides suggestions such as pair

programming, legitimate peripheral participation and mentoring, they propose

“new hire videos” that could tune in the students’ or new hires’ expectations

to a more realistic picture of what happens at work:

In these videos, new developers in industry could talk about their experiences,

reflections on their university education, expectations, and daily tasks. While

most software developers’ jobs would not be considered “sexy” they do in-

volve quite a bit more communication and social activity than pure functional

knowledge of programming, design and debugging. [3]

18

Tvedt et al. [59] suggest a Computer Science Curriculum that in their view

is better adapted to the needs of the industry. They point out that contem-

porary educational systems produce students with good technical skills, but

unfortunately, the students lack the required practical software engineering of

the profession. Their solution to this problem is their own proposed educa-

tional model, Software Factory. The students will learn more and consolidate

more of their knowledge by applying their new skills in an authentic develop-

ment environment. It would accordingly be of advantage to the students, the

teacher staff, the academic institution, and the industry. Their model has been

adapted and implemented.
An unconventional variant is project-based educations, or at least courses

that introduce realistic or even authentic projects where the students them-

selves choose which knowledge are required to fulfil the commissions. For an

example, see Jaccheri [26].
In contrast, Parnas [48] claims that educational programmes within com-

puter science should not focus on software engineering because software en-

gineering and computer science are different. His point is that programmes

that do focus on software engineering need to follow the structure of tradi-

tional engineering educations. I believe it is necessary to emphasize software

engineering in all computing educations, but I agree that much is to be learned

from other engineering traditions.
The research described above addresses the theme in which my second re-

search question is formulated. Some of the authors point right at the issues

related to the preparedness for – and the transition into a professional life;

their results support and motivate my research and how it has been designed.

A dialogue between university and industry is needed
Jaccheri and Morasca [27] point out the importance of a dialogue between the
industry and the educational institutions and identify possible connections be-
tween industry and education: (1) universities can arrange continuation train-
ing for employees, (2) former students facilitates direct communications chan-
nels between the companies and the universities, (3) companies are interested
of sharing the results of empirical research within the education and the in-
dustry, (4) companies can act as more or less authentic customers in student
projects, finally, (5) professional experts act as teachers when they share their
experiences with students in guest lectures.

Vaughn [60] reports results and experiences from an educational model
where students work in authentic projects towards authentic customers in an
industrial environment. Their experiences are mainly good and both the stu-
dents and the customers are happy with this way of working. The deliverables
that was the basis for examination was a conceptual model of operations, a
specification of system requirements, a design document, a test plan, system
documentation, and a formal delivery to the customer.

19

These experiences of attempts to improve learning by connecting teaching

to a relevant context are interesting examples of practical ways to make stu-

dent more aware of professional aspects. Other researchers have investigated

the possibility for students to learn computer science as apprentices.

Can education be based on apprenticeship?
Lave and Wenger [31] started from the idea to try preserving apprenticeship
– the traditional and ancient way of learning. They tried to investigate and
explain its relation to the concept situated learning. From this perspective,
they created a sociological and cultural epistemological theory based upon
the presumption that learning takes place in social forms.

In the beginning, the learners are allowed to take limited part of the cul-
ture, which is called Legitimate Peripheral Participation (LPP). Gradually,

the commitment gets deeper and more complex.
Ben-Ari [4] examined situated learning in the context of Computer Science.

He concludes that it in its proper sense is not applicable for the entire chain

of learning that must precede the high-technological knowledge that Com-

puter Science Education strives to reach. Generalization and models must be

utilized in order to make the education effective. On the other hand, it is pos-

sible to make use of and be inspired by this learning style when the content

of the education is designed and the literature is chosen. The teachers should

be well aware of the different Community of Practice (CoP) that the educa-

tion aims for and they should design courses that reflect authentic situations

taken from these CoPs. Ben-Ari is therefore sceptical of the effectiveness of

an entire education formed as an apprenticeship. Yet, for suitable courses, he

appreciates the idea of creating authentic environments and situations, e.g., he

has designed a course book based authentic documents.

Kölling and Barnes [29] suggest an integrated model for teaching that com-
bines apprenticeship with problem based learning and case studies. They de-
scribe how to do this in a first programming course in Java. First, the students
are acquainted with a software system, which is a game designed by experts.
The students explore the software interactively by running it and studying the
code while they describe the software to peer students. Then they discuss de-
sign of alternate versions of the game and improvements to the existing soft-
ware. The discussion soon moves from details in the code into code quality
and maintenance and the students develop the skill of being able to evaluate
code critically. Then the students work with exercises that gradually extend
the software in different ways. Finally, the students make their own versions
of the game as an assignment. During this activity, tutors discuss the solutions
with the students with focus on aspects such as maintenance and extendibility.

Similar ideas inspired me when designing the study described in Paper V

and VI. In a role-play, the informants worked with large software and were

later interviewed. Also, after the study, the software was reused in program-

ming classes to help students get a more comprehensive view of what software

20

can look like. Other researchers [3] suggest that students would benefit from

experiences of working with legacy code. In my view, this has connections to

learning in apprenticeship.

Software maintenance as an important but often overlooked activity
Kajko-Mattson et al. [28] have pursued research on education within soft-

ware engineering and its relevance for the industry. In particular, they focus

on software maintenance and conclude that system maintenance is a job for

the beginners, whilst the experienced take care of system development. They

claim that maintenance has low status and quote Gunderman:

Maintenance has been viewed as a second class activity, with an admixture of

on-the-job training for beginners and low-status assignments for the outcast

and the fallen. [21]

On the contrary, they argue that software maintenance is important and re-
quires high competence in the form of skills and formal training. To achieve
the needed competence they suggest an education in large-scale software.

A highly skilled maintainer is the most important organizational asset pivotal

for achieving quality software, strategic for improving maintenance and devel-

opment processes, essential for remaining competitive and critical for business

survival. This requires that universities properly prepare students to enter the

maintenance workforce and that maintenance organizations actively build and

maintain their human knowledge and skill base. [28]

As also indicated by Begel and Simon [3], software maintenance seems to

be a potential task for new hires and that this is something that they are not

expecting nor preparing for during education.

Implications for my research
Previous research points out that novice students are poor at writing, read-
ing, and debugging programs. They have insufficient understanding of object-
oriented concepts and they have problems with designing programs. These
students are struggling with the overall understanding of the syntax and se-
mantics used in programming languages, and some are confused by what is
similar and what is not similar to natural languages.

Newly hired professionals experience a mismatch between their expecta-

tions of work and their experience of the reality. Their tasks often deals with

learning new tools, reading and writing documentations and specifications,

and fixing bugs and implementing features to existing software.

More experienced professionals describe in retrospect that there were major
knowledge gaps which they had to fill after being employed. Programming
languages as such, were not experienced to be an issue, but they experienced

21

Software
design

Knowledge
gap

Design patterns
Architecture
Maintenance

Requirements analysis
Communication

Ethics
Professionalism

Negotiation
OO Concepts

Project
management

Novice
software

professionals

Programming
Languages

Know
Experienced

software
professionals

 Will be

Reality

Expectations

Tasks Self-efficacy

Low

Roles

Ambiguity

Computer
Science
students

 Poor

 Will be

 Poor

 Poor

 Had Know

Documentation
Bug fixes

Implementing features

Tools
Specification

Testing

 Mismatch

Figure 2.1: A summary of interesting findings regarding students learning of Com-

puter Science and the relations to the software profession.

that they had learned much more about object-oriented concepts, software
design, maintenance, et cetera, at work.

These results stress the importance of identifying and addressing concepts
in computing that are problematic to students, especially the concepts that has
also been indicated by the research on software professionals. My research
intention is to contribute with more knowledge of first year and final year
students’ understanding of concepts that are important for the discipline, both
in academic and professional sense.

My research has two themes for investigation: (1) students’ experiences of

concepts that they themselves in different ways see as important, memorable

and sometimes troublesome, (2) the variation of the ways in which students

in the second half of their education view concepts connected to professional

conditions and known knowledge gaps [32] in this context. Object-oriented

concepts are central in both themes.
This chapter presented many interesting findings from Computer Science

Education Research. Figure 2.1 is an attempt to illustrate and summarize what

I believe is most interesting and inspiring for my research.

22

3. Theory and approach

This chapter gives an overview of the major theories and research traditions

that has inspired the research presented in this thesis.
Threshold Concept theory is a fairly recent theory about valuable concepts

within disciplines which act as portals to new learning dimensions, and how

knowledge about such Threshold Concepts can be used to improve instruction.

Concept mapping is a way to structure concepts and thoughts of how con-
cepts are related. It can be used as a means for learning and also as a tool for
understanding how people experience concepts and relations in some field.

Phenomenography is a way of seeing learning and it is also a qualitative
research approach to learning about learning from the learners’ perspective.

Variation Theory explains that variations in what the learner perceives is
needed for learning. For example, the concept of colour cannot be discerned
if everything in the viewer’s world has always been blue.

Finally, models for obtaining trustworthiness in qualitative research are dis-
cussed.

3.1 Threshold concept theory

Meyer and Land [44] mean that some concepts are experienced as dark mys-
teries that seem quite impossible to understand for the uninitiated to a disci-
pline. Compared with more straightforward concepts, these troublesome con-
cepts often play a major role in learning the subject. Large efforts are often
required to understand them, and for a while the learner may be stuck in a
conceptual limbo before he or she finally finds the gate that leads out of dark-
ness. Understanding of such concepts has transformed the learner forever into
seeing the world with new eyes; like pieces in a jigsaw puzzle, they integrate
other bits in the knowledge puzzle into a whole. This type of concept can
often be found among those learning topics that constitute the frontiers of a
discipline which distinguishes it from other sciences.

Fascinated by these “portals” that both prevent and enable learning, Meyer

and Land coined the term Threshold Concept, and began to do research on
this theme. In order to clarify more precisely what they meant by the new
term, they proposed a definition based on its distinguishing features. Thresh-
old Concepts are: (1) transformative, (2) probably irreversible, (3) integrative,
(4) possibly bounded to a discipline area, and (5) potentially troublesome [44].

23

Furthermore, Meyer and Land claim that it is easier to identify Threshold

Concepts in some subjects, such as Physics, and more difficult in others, such

as History. They argue that teachers’ knowledge of the Threshold Concepts

that exist in a discipline plays an important role in the evaluation and design of

effective learning environments, and their purpose is to create a debate about

this. By virtue of their strong transforming properties Threshold Concepts are

often difficult to learn. There is an obvious risk that those who do not really

understand these concepts will be detained in a state where they are forced

to imitate and remember by heart without getting familiar with the concept.

They are then stuck into what Meyer and Land denote liminal space [45].
Land et al. [30] encourage educators in various subjects to reflect on their

subjects by using threshold concepts as an analytical tool to better understand

learning in their subject and thus to improve education.

Threshold Concepts can be used to define potentially powerful transformative

points in the student’s learning experience. In this sense they may be viewed

as the ‘jewels in the curriculum’ inasmuch as they can serve to identify crucial

points in the framework of engagement that teachers may wish to construct in

order to provide opportunities for students to gain important conceptual under-

standings and hence gain richer and more complex insights into aspects of the

subjects they are studying. [30]

Shift in perspective leads to change of language (which may be natural,
formal or symbolic), discourse and personality [45]. This means that there is
potential to detect whether a threshold has been crossed by talking to learners
and study what they are talking about and how they use language.

3.2 Concept mapping

Concept maps can be used as a tool to graphically illustrate the perceptions of
concepts and how concepts are interrelated – a means for structuring and rep-
resenting knowledge visually. Concept mapping has been used for evaluation,
learning, teaching and research, for example in engineering [58].

A central notion in this context is concept, and what is meant by a con-

cept may vary in different contexts; however, Novak and Cañas, two ardent

advocates of concept maps, define the term in the following way:

Concept – a perceived regularity in events or objects, or records of events or

objects, designated by a label. [47]

A concept map consists of rectangles or ellipses containing a word that
identifies the concept, and hence these symbols represent the concepts. The
concepts are connected with lines that implicate that the concepts are related

24

Concept Map

Concept

 Organizes

Knowledge

Represents

Relation

Has at least one

Ellipse

 Is visualized by

Line

 Is visualized by

Label

 Contains a

Connects two

 Is annotated by

Proposition

Includes

 Includes

Figure 3.1: A meta concept map. This diagram organizes knowledge on concept maps.

The ellipses and their labels act as the concepts and the lines represent the relations

between the concepts. Text labels explain the nature of the relation. A proposition is

a statement that can be read from the graph, e.g., “A concept map represents knowl-

edge” or “A concept is visualized by an ellipse.”

and a textual label on the line explains the semantics, i.e., how they are related.

In addition, relations can be directed as indicated by arrows. Thus a network

of associated knowledge is built, often hierarchical by nature with general and

broad terms in the top and more specific concepts further down in the chart.

Figure 3.1 demonstrates a simple concept map that is an attempt to structure

knowledge on concept maps.

Concept maps can be used as tools for learning but also for the evaluation
of knowledge. One way to investigate knowledge which is represented by a
concept map is by looking at the “sentences”, or propositions, which can be
seen in the network:

Propositions are statements about some object or event in the universe, ei-

ther naturally occurring or constructed. Propositions contain two or more con-

cepts connected using linking words or phrases to form a meaningful statement.

Sometimes these are called semantic units, or units of meaning. [47]

For example, it is possible to determine whether the propositions are accu-

rate, and thus concept maps can be used to smoothly collect data and identify

25

common misconceptions among pupils and students [17, 47]. There are pro-

posals to teaching models based on concept mapping. Some of these ideas

suggest that a number of concepts related to a particular learning object are

given to learners who should organize them into a concept map. However, in

less directed learning situations, concepts need not be given in advance [47].

3.3 Phenomenography

Marton and Booth point out that people do things differently, and they learn to

do these things in different ways; some do it worse and some do it better [37].

Phenomenography originated in educational questions of how learning comes

about and how it is possible to improve the learning process. Amongst other

things, Marton and Säljö were interested in deep and surface approaches to

learning and gave contributions to that field of research, e.g., [39, 40].

It gradually evolved and matured into a research tradition that concerns how
different aspects of the world appear to some group of people. Essentially, the
studies within this approach are explorative and use empirical data, and they
all take a second order perspective on some phenomena. That is to say, the
phenomenographer does not study the phenomena as what they are (the first
order perspective), but the variation of what they are as experienced and ex-
pressed by people (the second order perspective). Marton, one of the pioneers
of Phenomenography, gives the following definition of this research special-
ization:

Phenomenography is a research method adapted for mapping the qualitatively

different ways in which people experience, conceptualize, perceive, and under-

stand various aspects of, and phenomena in, the world around them. [35]

Consequently, the object of study is the relation between a certain phe-
nomenon and a group of people and the variations of the relation. It is neither
the phenomenon nor the people it tries to explain; it is the group’s experience
of the phenomenon, see Figure 3.2.

The ontology of Phenomenography is non-dualistic, which means that it

does not separate the observer from the observed (object and subject). Mar-

ton [36] explains it in the following way:

There is only one world, a really existing world, which is experienced and

understood in different ways by human beings. It is simultaneously objective

and subjective. An experience is a relationship between object and subject,

encompassing both. The experience is as much an aspect of the object as it is

of the subject. [36]

26

�������������	
����

����

��

��	
���
���������

�
����������

��
���
�	�

��
������

������
���
���
��

���	�
������
���

������

Figure 3.2: The object of study for a phenomenographic researcher is the variation in

the relation between a certain phenomenon and a group of people. The primary result

of the analysis is a limited set of qualitatively distinct categories of description. The

categories and the relations between them constitute the outcome space.

In this non-dualistic world, the set of different ways to experience an object

is what actually constitutes it. Moreover, because the experiences all relate to

this constitution, they are all logically related. A prominent feature of Phe-

nomenography, compared to other qualitative research traditions, is thereby,

the way in which the results are structured.
Experiences from earlier studies had shown that different people described

phenomena in only a few different ways, and that led to a fundamental episte-

mological assumption, namely that there are only a limited set of qualitatively

distinct ways to experience and describe a phenomenon. Each qualitatively

distinct way to experience forms a category of description. In addition, there

is always a set of logical relations between the categories, and the logical

structure in combination with the categories of description constitutes the out-

come space. In this way, the outcome space contains a rich set of information

of how the phenomenon is experienced and how these experiences relate to

each other.

Moreover, there is no explicit connection to the experiences of any individ-
ual person in the outcome space. Each category describes a particular way to
experience a certain phenomenon, observed in the collective, and is thereby
constituted by merged fragments of meaning found in the individual’s descrip-
tion of the phenomenon. The collective outlook is a quality that distinguishes
Phenomenography from qualitative research in general, which is often de-
scribed as taking the individual’s perspective [12].

As in its origin, the most common application for the research approach
is still to study different aspects of learning and teaching. However, Phe-
nomenography is not restricted to that area only. Bowden [9] divides the re-

27

search approach into two forms: the applied (or developmental) form, and the

pure form, separated from institutional learning environments.

Phenomenographic research methods of data collection and analysis can be

used to study a range of issues, including approaches to learning, approaches

to teaching, understanding of scientific phenomena learned in school, or under-

standing of general issues in society unrelated to educational systems. [9]

Marton and Booth emphasize that all of the frequently used terms in phe-
nomenographic publications, such as “conceptions”, “conceptualizations”,
“ways of understanding”, “ways of comprehending”, are all synonyms for
“ways of experiencing”. One should not understand them as referring to the
internal mechanisms in the human brain. The phenomenographic researchers
always allude to the experiential sense of the words, all in line with the
non-dualistic approach [37].

The research process
Bowden [9] outlines the phenomenographic research process as having four

stages: plan, data collection, analysis and interpretation. In all of these stages,

the researcher must maintain focused on the purpose of the study. This is im-

portant to consider for obtaining trustworthy results. As in all research, it starts

with a plan that defines the purpose and the strategies. Naturally, what drives

the research is an underlying question that the research activity tries to answer.

Students’ difficulties in coping with physics gave Bowden a good reason to try

to make sense of the students’ understanding of important concepts in physics.

The input data for a phenomenographic investigation is essentially people’s
statements of experiences of a phenomenon. The predominant method for col-
lecting this data is through semi-structured interviews with people, and the
researcher must select the persons carefully and consider why they are a good
choice. In semi-structured interviews, the interviewer poses open-ended ques-
tions that address the problem area or asks the subjects to talk about what the
phenomenon X means to them.

Even though the semi-structured interviews should be planned on before-
hand, they can take different directions and follow the spontaneous thoughts
that might appear differently from case to case. The next phase is the anal-
ysis of the data, which often starts by transcribing the recorded interviews.
The texts are then sought for different meanings and the contexts they appear
in. Sometimes phenomenographers decontextualize the fragments of mean-
ing, and sometimes not. In either way, the meanings constitute a pool, from
which the categories are condensed.

The categories should relate to each other logically. If not, the researcher

should reconsider the data again. Section 5.1 elaborates more on the analysis

process. Finally, the results should be interpreted according to the purpose of

the study. In applied, developmental Phenomenography, the interpretation is

28

a natural consequence of the posed research question. If the result tells how

students experience phenomena in an educational context, the teachers can use

the results to reflect upon their pedagogy and instruction. They can adapt their

way of how they present new concepts, or they can get a better understanding

of why students fail to do certain tasks.
A pure phenomenographic study, on the other hand, might have only the

purpose to describe the experience of a phenomenon, without any further im-

plications. In all cases the results of the study must be seen in the light of its

purpose, and if a researcher wants to use the results in a different context, this

issue must be taken in consideration.

3.4 Variation theory

In Paper V through VIII, a phenomenographic perspective is taken, which

makes the assumption that there is a limited number of qualitatively different

ways to experience a learning object in a certain group of people. Moreover,

phenomenographers mean that an important prerequisite for learning is the

ability to discern critical aspects of the learning object. Variation theory shares

the basic concepts of learning with Phenomenography and provides a theory

for how to give conditions for learners to identify critical aspects and thereby

get a richer understanding.

Above all, what should be learned must exist in a context that is meaning-
ful to the learner; that the proper relevance structure is provided [37, p.140,
p.155]. Then instruction can be enhanced by helping students to discern the
critical aspects of a particular learning object. However, a mere listing of facts
is not enough to ensure a rich understanding of complex phenomena; the
learner must be aware of the different aspects involved and how they inter-
act. This can be achieved by introducing carefully selected variations in what
the learner takes in through his or her senses [37, p.145, p.152].

The idea is to highlight relevant features of a learning object, for example
by altering the “value” of some aspects while others are kept unchanged. A
dimension of variation is spanned by all the possible values for some associ-
ated property or aspect of the learning object. Empirical research on teaching
has been able to discern four different patterns of variation that use different
combinations of invariance and variability: Contrast, Separation, Generaliza-
tion and Fusion [41][38]. In addition, the variations will help the learner to
break the natural attitude, which is required to start a reflection [37, p.148].

Variations can reach over long periods and must not necessarily be sudden.

One well known and practiced variation in computer science is the learning of

programming (in depth) by learning many different programming languages

and programming paradigms. It can be compared to what happens when a

young person learns a second language. The learner becomes aware of prop-

29

erties of languages that he or she never had to think about before and starts to

see how languages are structured and their differences and similarities.
By analysing the phenomenographic outcome spaces it is possible to iden-

tify critical aspects of learning a specific learning object, and then try to find
the corresponding dimensions of variation that allows to see the critical as-
pects. Thuné and Eckerdal [57] give suggestions for computer science teach-
ing based on Phenomenography and Variation Theory and report successful
results from a pilot study that used the suggested variations and then assessed
the learning experiences. Paper VI, VII, and VIII use phenomenographic out-
come spaces and Variation Theory to give some proposals for explicit varia-
tions in teaching.

30

4. Collecting data

My colleagues and I chose to study learning in Computer Science from the

student’s perspective. Using a number of methods we collected various types

of empirical data, which were analysed using different qualitative research ap-

proaches. The data provides information on how students themselves describe

aspects of the subject area of computer science; additional data are collected

solutions to assignments which students have undertaken.
In study I through IV, data were gathered from students in the UK, Swe-

den, and the United States. The Swedish material was translated into English
before its data were analysed.

In study V through VIII, data were gathered from students at Swedish uni-

versities. The interviews were conducted in Swedish and were also transcribed

and analysed in this language. Research findings were subsequently reported

in English.

4.1 Interviewing informants

A number of studies used semi-structured research interviews as data collec-

tion method (Paper I, V, VI, VII, and VIII). The interviews were recorded

and transcribed into written form. Semi-structured interviews are often based

on a few prepared themes and questions. In this interview technique, it is vi-

tal for the interviewer to be sensitive to the interviewee and to come up with

follow-up questions in response to answers from the interviewee, and it is not

possible to make a detailed plan for this [37, pp.129–132]. The interviewer

must be prepared to rearrange the order of the questions and bring in new

follow-up questions to catch the student’s spontaneous reflections. Due to the

dynamic nature of these interviews it is important to ensure that the interview

covers all of the prepared questions and themes.
The length of the interviews in the various studies has varied. In the studies

described in Paper V through VIII, the interviews took between 45 and 90

minutes to complete. The collected material is extensive and contains rich

data on the informants’ views on the phenomena that were addressed in the

studies.

31

4.2 Doing role-play and interviews

Paper V describes a methodology used in Paper VI to gather data on how
students handle a development assignment of professional character and how
they perceive related object-oriented concepts. The informants were partici-
pating in an experiment in the form of a role-play in which they were acting
as a new hired programmer at a company where they suddenly had to in-
dependently complete a software development project. After completing the
work, each informant was interviewed about how he or she had experienced
the situation, how the mission was conceived, and what kind of system they
had worked on and how they went about it. In addition, informants were inter-
viewed on a number of concepts that were central in this context. In addition,
the entire directory tree for the development environment that had been used
was saved, which means that it was possible to examine what and in what or-
der files had been added and changed, which scripts that the informants had
executed, et cetera. All events on the computer screen during their work were
also recorded on tape.

4.3 Collecting concept maps

In the study reported in Paper II, students and other informants were asked to
perform a task in which they would explain their view of object orientation
and how different concepts in object-oriented programming linked, through
designing concept maps (see Section 3.2). Data were collected primarily dur-
ing programming lessons, but also by recruiting informants otherwise. The
written instructions gave an example of how a person had developed his or
her thoughts on the concepts of “home” and “kitchen” by drawing a concept
map describing the concepts of “home” and how they could be associated with
one another. It was clear from the instruction that the concepts are drawn as
ellipses and that the relationships between concepts are drawn with arrows
that have labels explaining how these concepts are interrelated. In addition,
the instruction clarified that the example was not complete and it was not the
only way to describe a home.

Students were instructed to start with the concepts of “class” and “instance”
and build a concept map that would summarize their understanding of object
orientation and object-oriented concepts. In total, we collected concept maps
from 107 informants at six institutions in three countries. Among these there
were 71 beginners, 12 in the middle of their studies, 15 graduating students
and 9 teachers. All informants had studied object-oriented programming.

32

4.4 Collecting biographies

In the following, I use the terms “narrative” and “biography” synonymously,
and I have taken the liberty to use and interpret the terms without discussing
their connection to theories and research traditions in detail.

Ahlberg [1] used both written and oral narratives when she was investigat-

ing the possibilities to find “view-turns” – experiences of changing ways of

experiencing, among 126 final year students during practice in health service.

The students who agreed to participate in the first part of her study wrote their

narratives in connection with a lecture and they were given at least 20 min-

utes to accomplish the task. They were given a blank sheet of paper and an

instruction asking them to describe a situation in their clinical practice where

their view of this situation changed from seeing it as a problem to seeing it

as a success. Then they were also asked to reflect on what was of vital im-

portance for the change. In order to get richer narratives in the main part of

her study, she collected narratives using semi-structured interviews. In sev-

eral ways, her study relates to our research and methods in Paper I, III and

IV. She has a similar research question, she uses qualitative methods, and she

uses narratives (biographies) and semi-structured interviews. Finally she takes

a phenomenographic approach as I do in Paper V through VIII.

Narratives or biographies have also been used in studies related to Com-
puter Science Education Research. When Schulte and Knobelsdorf [55] ex-
plored how individuals recall and interpret their computing experiences in
retrospect, they used biographical research and their work inspired us when
we designed our study.

We have obtained data by collecting students’ own stories of how they have
experienced learning in computer science (Paper III and IV). Data were col-
lected by asking students to write and submit “transformation biographies”
that should describe a situation in their life where some aspect of computing
had changed them or their way to view the computing subject. Inspired by the
work of Schulte and Knobelsdorf, we gave the informants two made-up sto-
ries as a way to focus the structure of the student biographies. As most of the
biographies were collected as home assignments in English writing classes,
the students were given quite some time to reflect. We believed this should
allow the students to think about their experiences and remember important
learning episodes. In addition, the formal writing style was emphasized in the
classes and it was hoped that this requirement would make it easier to read
and compare biographies with each other. Data were collected from 86 com-
puting major students in the second half of their programs. They came from 5
institutions in 3 different countries. The majority were collected in the US and
the UK. The relatively few Swedish biographies were translated into English
prior to analysis.

33

5. Data analysis

In the quest for empirical evidence, the various collected data has been

analysed using different approaches, mainly of qualitative nature. These

approaches are described in the present chapter, and in the end trustworthiness

in qualitative research is discussed.

5.1 Phenomenographic analysis

In phenomenographic analysis, the researcher refines the primary source of

data by transcribing recorded interviews into a textual form where the partici-

pants’ quotes are anonymous. However, it is still possible to separate individ-

uals by using pseudo names. The next step is to search the texts for different

expressions of meaning that relate to a certain phenomenon.

Phenomenographic analysis - whether it is seen as construction or discovery

- focuses on the relationship between the interviewee and the phenomenon as

the transcripts reveal it. [61]

These manifestations of meaning can be identified in several places and dif-

ferent forms in the text. Meanings are found where the interviewee explicitly

describes her experience of the phenomenon as such. However, implicit de-

scriptions can also reveal meanings, as in descriptions of how she uses the

phenomenon, or which purposes, advantages or drawbacks this phenomenon

brings about.

The meanings are expressed by quotes that form a large collection of fur-
ther refined data. The quotes are usually decontextualized from the text, but
the reference to their context should be kept, to maintain the possibility to
re-interpret their meaning. The purpose of decontextualisation is to be able to
find qualitatively different meanings, experiences and understandings of the
focused phenomena, on a collective level. Some meanings stand out from oth-
ers, while some have something in common with other ways to experience.

The fragments of meaning are in this way condensed into clusters of mean-
ing that are abstracted and outlined in categories of description. It is important
to understand that the categories do not express any particular individual’s un-
derstanding; rather they are the result of an analytical categorization of the
meanings found on the collective level. In the process of forming categories,

35

one should search for different dimensions in such a way that each category

opens a new dimension of understanding the phenomenon and its meaning, or

new relations between dimensions. This avoids categories that are instances

or variations within the same dimension.

The phenomenographic outcome space is distinguished by the categories of
description and their mutual logical relations, usually the hierarchic inclusive-
ness which implies that the meaning of the categories include each other in
the sense that a certain understanding also includes or implies a similar, more
elementary understanding. As Phenomenography originated in studies that in
one way or another aimed to understand or improve formal learning, it is rea-
sonable to range the outcome space in a hierarchy where the quality of each
category is valued by some measure of compliance to the educational goals.

Thus, we seek an identifiably hierarchical structure of increasing complexity,

inclusivity, or specificity in the categories, according to which the quality of

each one can be weighted against that of the others. [37, p.126]

Consider the structured and interrelated outcome space in contrast to soci-

ological research traditions where it is usual to make categories without any

requirement of internal logical relations. It is important to emphasize the clear

and inevitable relation between the result and the subject field that includes or

views the phenomenon. This is an argument for taking a phenomenographic

perspective in educational research within a specific subject field.
On the other hand, it is vital to make clear that the analysis is not a mat-

ter of sorting the subjects’ conceptions into a predefined structure. One of the
fundamental epistemological assumptions within Phenomenography is the re-
lations between the categories of description. The various ways in which a
phenomenon can be experienced are logically connected to each other through
the phenomenon itself and the structure of the logical relations is typically hi-
erarchically inclusive.

Another property of the outcome space is the collective level of descriptions
constituted in the categories. It is not the case that all individuals or a specific
individual have a certain structure of their way to experience. Rather, the ana-
lyst tries to constitute the categories on a collective level and if successful, the
well-founded categories can be structured and interrelated. This is what the
phenomenographic researchers are striving to achieve.

Marton and Booth [37] describe three principal criteria for the expected
properties of an outcome space constituted of categories of description. The
first criterion is that each category should have a distinct and unique rela-
tion to the phenomenon according to a distinguished way of experiencing it.
This is motivated by the fact that Phenomenography is a pedagogical research
specialization, focused on learning, with the goal to obtain a clear picture of
qualitatively distinct ways to experience phenomena that have a connection to
learning.

36

The second criterion is that the categories must have a logical relation to

each other that often is hierarchical and often is inclusive as well. From a ped-

agogical perspective there is a norm that defines which ways of understanding

(experiencing) a certain phenomenon is preferable before others. The peda-

gogical goal is often that the learner should be able to experience phenomena

in a more extensive, complex or specialized way and therefore a hierarchical

structure of the categories is sought that corresponds to this goal.
The third criterion is that the system of categories should be as compact as

possible. This implies that there should not be more categories than necessary

to express the critical experiences and the differences between them. [37]

A definition of inclusive categories
As discussed in the previous section, the hierarchic structure of the outcome

space can be explained by inclusiveness of conceptions. Inclusiveness in this

context means that a certain way to experience a phenomenon also includes

another way of experiencing it.
However, the description of inclusiveness is a bit vague and we need to con-

sider what it means to say that one way of experiencing also includes another
way. I have proposed the following definition of inclusiveness for my studies.
Given that there is a category, A, that codes a particular way to experience and
describe a phenomena. Then category A is included in another category, B, if
their relation fulfils the following conditions:

• There is a non-contradictory relation between category A and B, and

• The relation is of the type B consists of A, or B is an augment of A, or

• Something in B assumes A.

During the data analysis, we used this definition to study and establish the
categories’ internal relations and plausibility related to the other categories in
the outcome space.

5.2 Content analysis

Similarly to the phenomenographic analysis process, content analysis is a
qualitative approach used to understand and categorize meanings in written
text. Fragments of meaning are coded and then the different codes are synthe-
sized into separate categories that represent different qualities of meaning. A
major difference from phenomenographic analysis is, however, that the cate-
gories that emerge from content analysis do not necessarily need to be related
to each other.

Content analysis can be used to analyse data with two different approaches,
either an inductive, data-driven – conventional content analysis, or with a de-

ductive, theory-driven – directed content analysis [25].
In the studies reported in Paper I, III and IV, we have analysed transcripts

of interviews and writing biographies based on the theory of Threshold Con-

37

cepts. We have mainly used a deductive approach where we have assumed that

Threshold Concepts related to learning of various subjects in computer science

exist. We have been looking for evidence in the collected texts by searching for

traces of the most important key characteristics that define threshold concepts:

transformative, integrative, irreversible, and that they are troublesome. On the

other hand, we have used inductive analysis to make interesting discoveries

in our data, for example, to find and explore concepts and other aspects that

came up in connection with transformations, such as how students reflects and

identify with the computing field.

5.3 Concept map analysis

We decided to analyse the concept maps after coding them to graphs. This

meant that each concept map was transformed into a graph with nodes and

edges. Then we analysed the graphs in a number of different ways. We calcu-

lated numerical characteristics, such as maximum depth and distance between

certain nodes. Naturally, we investigated how many different concepts that the

informants used and how these concepts were related. This was addressed,

e.g., by analysing and counting the propositions (see Section 3.2), which we

called “sentences”, i.e., the combination of the (directed) triplets node, edge,

node. The analysis was a mixture of quantitative and qualitative methods.

5.4 Trustworthiness

As in all research, the qualitative researcher wants to be heard and believed

by other researchers and receivers. The fundamental condition to achieve this

goal is to uphold trustworthiness and to deliver credible results. In qualitative

research, it is crucial to show that the chosen research methods reflect the

goals for the research in a suitable manner, and to show how to use the results.

Booth [7] discusses these matters through accounting for her own long
experience of programming and her familiarity and good relations with
the students who participated in her study. She describes the exhaustive
and open-ended interviews and declares that the transcripts are open for
other researchers to read. In this research, there are no absolute truths and
therefore, she claims, the researcher must argue convincingly for the chosen
methods, the results, and the interpretations. This can take place in seminars,
presentations and by peer-reviewed articles within the research tradition.

She explains that, due to the collective level of the results, the interviewees
seldom confirm credibility; the individual’s experience is not traceable, and
the researcher’s interpretations go further than the individual’s understanding
at the time of the interview [7, pp.64-69, 90-92].

38

The phenomenographic analysis has a subjective nature since it reflects the

researcher’s way to discover and experience the meanings within the text ma-

terial. For instance, Walsh [61] discusses openly and critically concerning the

logical relations between categories and whether the categories are discovered

or constructed and what the difference is between these approaches within the

phenomenographic analysis.

In a study on applied Phenomenography, Åkerlind [2] finds a common
conduct in the analytical process when it comes to keeping an open mind,
suppress own preconceptions, focus on the whole, the search for variations
in meanings and relations between them and the iterative process using re-
structuring and tentative categories. However, Åkerlind also identifies areas
within the analysis where there are variations in the practice. Some researchers
use de-contextualized fragments of meaning and others do not. The collected
data are handled in different manners and the principle of letting the logical
structure follow the data as close as possible is sometimes compromised by
the desire to reflect the researcher’s professional classifications. The collabo-
ration with other researchers varies from individual analysis to collaborative
analysis [2].

Lincoln and Guba discuss trustworthiness within qualitative research and
argue that this research, in contrast to positivist traditions, is inevitably asso-
ciated with subjective values [33, pp.37-38]. Hence, in order for the researcher
to be trustworthy, in the sense that the audience thinks it is worthwhile to take
part of the results, it is of great importance to communicate how the researcher
is reasoning and to account for both the data and the researcher’s interpreta-
tions. They point out that trustworthiness cannot be judged by the same mea-
sures as in the positivist science tradition. Instead, they suggest four alternate
terms that replace the traditional terminology.

The four terms ‘credibility,’ ‘transferability,’ ‘dependability’ and ‘confirmabil-

ity’ are, then, the naturalist’s equivalents for the conventional terms ‘internal

validity,’ ‘external validity,’ ‘reliability’ and ‘objectivity’. [33]

The credible researcher should persist long enough to ensure that a suf-
ficient and unbiased amount of data is gathered. The critical aspects should
be studied in depth using different angles, various data sources, methods, re-
searchers and theories (triangulation). The raw data must be available for re-
examinations and the informants should comment on the results.

The descriptions should be so rich and thick that someone who is interested
in making a transfer to another context should be able to decide if that is
possible or not. The data sources should be selected to maximize variations.

The dependability of the results can be increased if the research group is

split and each sub-group deals with data independently and compare the re-

sults (stepwise replication), or an auditor could examine the data, the process

and the produced results and then see if the conclusions are similar.

39

It should be possible to conduct a confirmability audit trail (log) by review-

ing the raw data, the analysis and synthesis, and the documentation of the

process and other documents. This ensures that the results are products of the

conducted investigation and are not products of the researcher’s preconcep-

tions [33].
Mulholland and Wallace [46] suggest a method to present results from nar-

rative studies in a legitimate and trustworthy manner, by dividing the presen-

tation in three stories. The first story shows the strength and credibility of the

study. It contains a story told by the subject of the research – the data. The sec-

ond story is told as the researcher’s interpretations of the first story. The third

story adds a theoretical model to the first two stories. The researchers give

suggestions for how the experiences of the inquiry can be useful, for example,

how they can improve educational matters for the participant, the researcher

and the reader. Finally, the researchers account for how the study has influ-

enced themselves and their view on teaching. Moreover, the first two stories

can be re-read using the new perspectives gained from the third story.
We can conclude that a very important asset in obtaining trustworthiness in

qualitative research is a rich set of data that can be shared with the reader in
various ways, together with the researcher’s interpretations and conclusions.

Trustworthiness in my research
In the research on Threshold Concepts, the analysis has been done in true

collaboration among the researchers in the research group. Sometimes indi-

vidual interpretations and ideas have been subject for discussions where it has

been important that all agree on a common interpretation. Our intention has

always been to present as much evidence and data as possible, and it is pos-

sible to contact us and discuss our interpretations by e-mail or otherwise. We

have also used different methods for obtaining data and for analysis. During

this research our results have been presented regularly at different conferences

and we have been open for discussions.
In the phenomenographic research, I have been supported and reviewed by

two other researchers with an interest in education, and sometimes my first
interpretations of data have been reconsidered after discussions and good ad-
vice. In my reports, I present quotes richly together with my interpretations,
which enables the reader to build an opinion of the data and how I have rea-
soned during the analysis. I have collected data from informants that represent
the type of students which I address in my research questions and when the
participants were recruited I aimed for a variation in age, gender and experi-
ence to avoid a one-sided view of the phenomena in question.

40

6. The main results

My research is all about learning concepts and the various ways in which con-

cepts and phenomena are experienced. All research and results are based on

empirical investigations and mainly on qualitative analysis. One theme tried

to answer the questions about if there are concepts in computer science that

transforms the students, what these concepts are, and in which ways they

transform students. The other theme concerns how prepared students are for a

future profession in the software industry, by learning how students see con-

cepts, tools and phenomena that are important for a profession in the software

industry, and how they respond to situations that are similar to what they can

expect at work. The following sections summarize the most important results

from the research in these themes. Brief overviews of the results are presented

in Table 6.1 and Table 6.2.

6.1 Learning and understanding concepts

This section presents the results that emerged from the research on questions

raised in my first research theme. Table 6.1 presents a summary of what is

addressed in the papers belonging to this theme and which kind of results they

show.

Are there Threshold Concepts in Computer Science – troublesome?
Early in our research on troublesome concepts, we could conclude that there
are certain concepts in Computer Science that, at least partly, meet the criteria
that define Threshold Concepts. In Paper I, the first in a series of studies re-
porting on Threshold Concepts in Computer Science, we could point out two
main concepts after analysing interviews with students. The first was labelled
as “pointers/memory”, which is a rather specific concept, and the second was
“object-oriented programming”, which is a broader concept. This relates to the
terms “localized threshold” and “overwhelming threshold”, used by Flanagan
and Smith [20].

In which ways is the concept “object orientation” integrative?
Due to the many underlying concepts that constitute the overarching “super
concept” object orientation, we decided to further investigate the ways in
which students perceive some of the concepts associated to object orientation.

41

Table 6.1: Summary of the results on Threshold Concepts.

Aims Paper Data Analysis Result

Orientation I Questionnaires

& interviewsa
Mixedb Potential thresholds, e.g.,

OO & abstraction

Find TCs I Interviewsc Contentd Indications of TCs in CS,

e.g., OO & pointers

OO views II Concept mapse Mixed Concepts in OO are not

integrated by students

Abstraction? III Biographies f Content Some abstract concepts

are TCs, not “abstraction”

Find TCs IV Biographies Content Long detailed list of con-

cepts divided in themes

Change IV Biographies Content Student identities: turning

professional

aQuestionnaires and informal interviews with instructors. bMixed methods described in paper.
cSemi-structured interviews with graduating students. dContent analysis. eConcept maps drawn

by novice students. f Biographies written by non-novice students.

As reported in Paper II, we studied how students understand object orien-

tation and object-oriented programming. We investigated which concepts the

students related to these topics and how they related these concepts to each

other. The data was collected by asking students to draw concept maps. They

were instructed to start by inserting the terms class and instance into the map
and then they should add any related concepts that they could think of, and
describe the relationship between all the concepts, using arrows and labels.
The results of this study show that the students describe a static perspective
on object orientation. There is nothing in the data that suggests any form of
interaction between objects in an executing program.

Only in a few cases, links to real objects in the outside world occurred,

indicating that the idea of creating a model of reality was not in the students’

foci. Neither could we find relations to tangible things such as users, hardware

and memory.
Although the object-oriented concept of “inheritance” was related to “class”

in a number of cases, it was only in a few cases that the informants related to

other central object-oriented concepts such as “encapsulation”, “abstraction”

and “polymorphism”. However, it turned out that the students connect both

data and behaviour to the class concept, which stands in contrast to previous

results indicating that students often only see the class as a data container.

The general impression was that most of the novice students in the study
had not crossed the threshold yet; they had not fully integrated the necessary
constituents into an understanding of object orientation as a whole.

42

�������	���

��
	����	����

�
�����

�����

�����
�
�

���
���	

���
�����	

��������

�������

���
�	����

������	

�

�

���

�

�

�

��
��

�

�

��
 !

�

"
! � ���

 ! �
��

���
��

 ! �

#"
 ! #

� !
 �

�

$ ���
$

� ! ��������

� ! $

�������� ! ���" ! $

��
�
�
�

$

� ! ��� ! �������� ! ��� ��%
 ! ��
��
�

#& ! #' ! (! $! $

� ! �� �

! �

� ! ���

! "

�
$

� ! �������� ! ���

" ! � ! $
�
$

� ! ��� ! ��������" ! � ! $

� ! ��������

(! �

�
$

Figure 6.1: This aggregated concept map represents the collective view of object ori-

ented concepts as expressed by the informants’ concept maps. The informants were

first and second year students in computer science. The aggregated map is built by the

most frequent propositions, including all with a frequency of four occurrences. The

concepts class and instance were given at the beginning.

Figure 6.1 summarizes many of the tabular results in Paper II, now rep-
resented by a synthesized concept map that includes all “propositions” (“sen-
tences”) that were represented in more than four cases in the data. For instance
we can see in the figure that class is related to inheritance in only five cases,

and that the relation between classes and methods in 16 cases is has, in 15
cases is contains, and in 8 cases have no label at all.

The results indicate that object-oriented programming teachers should take

some time to clearly explain the differences between class and instance/object,

and give many examples of how the objects in our environment can be mod-

elled with the class as a design, or blueprint of its instances, which are the

models’ representations of the real objects. We also noted that it should be a

very useful exercise for students to make concept maps. It is something they

could do several times during a course.

The transformative nature of concepts
After studying how students perceive the connections in one of the overall

Threshold Concept, object-oriented programming, which we had previously

43

identified, we wanted to go further and examine students’ own experiences of

things that had led to some form of transformation in education (or earlier).
As described in Paper III, we collected data from students through written
reports about something that changed their way of looking at or experienc-
ing Computer Science. The analysis showed that many of these stories in one
way or another could be linked to understanding or learning to use various
forms of abstraction. Previously, analysis of questionnaires and informal in-
terviews with teachers indicated that abstraction could be a likely candidate

for a Threshold Concept at a global level (Paper I). In Paper III, we exam-

ined things that change the students’ perspectives on Computer Science and

in which particular ways these things are related to abstraction. The empir-

ical results did provide that 47 out of 86 students’ stories discussed various

forms of abstraction, but only in one case abstraction was mentioned explic-

itly. We identified the following concepts: modularity (previously they wrote
long linear programs – now the programs were split in parts, abstracted into
distinct components), data abstraction (now, the data can be combined to form
various types of aggregations), OO-concepts (inheritance and polymorphism,
code reuse, design patterns), and complexity (algorithm analysis).

The biographies show that students often connect their learning (transfor-
mation) to concrete examples of problems they used to have and that they have
made generalizations from these experiences. Other students have learned
some abstract concept, but did not fully understand or appreciate it before they
had implemented it. The transformations have in most cases led to a change
of behaviour and they seem to be connected with an understanding of why
rather that what. In spite of the variety of different topics in computing, most
of the transformations occurred when the students were involved in designing
software and making programs.

The conclusion is that we have no evidence to claim that abstraction in itself
is a Threshold Concept, even if it is a key concept and a necessary ability.
However, some of the identified concepts that we related to abstraction may
be thresholds.

In Paper IV, we wanted to further study the collected biographies to inves-

tigate in which ways the students have been transformed, if they have started

to think, act and identify themselves more as a Computer Scientist, if they re-

flect on their own knowledge, and which of the concepts are those that have

transformed them.

The empirical results indicate that thresholds are very individual. The anal-
ysis resulted in a large number of different concepts, at least 75 different ex-
amples. It was quite difficult, but we could find a thematic categorization:
programming, software design and engineering, object orientation, efficiency,
technology, and personal development. We could confirm that the overall pic-
ture is that the students, who wrote the biographies really had begun to think,
act, and identify themselves as computer scientists.

44

Table 6.2: Summary of the results on students’ views of concepts related to profession.

Phenomena Paper Data Analysis Result

Java Interface VI Interviewsa Phenomen.b 4 P-categoriesc

Plugin concept [8]d Interviews Phenomen. 2 P-categories

A software system VI Interviews Phenomen. 3 P-categories

Problem solving VI Interviewse Content an. f 3 C-categoriesg

Software development VII Interviews Phenomen. 4 P-categories

Software maintenance VII Interviews Phenomen. 4 P-categories

Class diagram use VIII Interviews Phenomen. 3 P-categories

Class diagram VIII Interviews Phenomen. 3 P-categories

Class diagram symbols VIII Interviews Phenomen. 4 P-categories

aSemi-structured interviews. bPhenomenographic analysis. cPhenomenographic inclusive cat-

egories of description. dExcluded in Paper VI. eInterviews and “traces” left in the computers’

file system. f Content analysis of interviews and analysis of the file system. gContent analysis

categories.

6.2 Understanding concepts related to the profession

Paper V, VI, VII, and VIII used a phenomenographic approach to explore the
ways in which students see a number of concepts and phenomena that are
related to the realities for software professionals. The concepts Java inter-
face, plugin, and software system were addressed in a situated context, while
the concepts software development, software maintenance, and class diagram
were not. Table 6.2 gives an overview of the addressed concepts and the result-

ing phenomenographic outcome spaces that emerged from the phenomeno-

graphic analysis.
In Paper VI, VII, and VIII, the outcome spaces are extensively described

using quotes and interpretations. Each outcome space is also briefly described

in tabular form that enables the reader to get an overview. All outcome spaces

are briefly described in the following text, and one outcome space from each

study is presented in tabular form.

Students’ understanding of software concepts in a situated context
The results give a picture of the students’ different ways of seeing these con-

cepts which in itself is interesting, but above all they can give useful impli-

cations for teaching. In Paper V and VI for example, the collective of infor-

mants who role-played around working with “large scale” software as “rookie

developers”, saw Java interfaces in a variety of ways (see Table 6.3). These

different ways of seeing have varying relevance for the context of the soft-

ware. The least relevant way of seeing is the interface as a “to-do list”. The

more advanced ways of understanding interfaces connect to the advanced un-

derstandings of the concept of plugins; the dynamic features of plugins can

45

Table 6.3: Summary of the outcome space for students’ views of the Java Interface.

Cat. How the concept Interface is described

1 The Interface is a text, in the form of a to-do list, that tells the program-

mer what to do; what operations he or she should write. It is an uncom-

pleted program, skeleton code, or a template, to start from when a new

class should be written.

2 The Interface is certainly defined by a text; however, the text constitutes

an abstract “thing” that can be bound to a class by referring to the inter-

face’s name. The class is thereby obliged to have implementations for all

the operations specified by the interface. In this way, the interface becomes

a forcing contract. The programmer must implement the interface, and the

interface has a name.

3 The interface is a data type for reference variables and thereby indirectly

for objects. The interface, defined by text, has a name for the data type it

represents. The data type can be used to create variables that can handle

those objects that fit the content declaration. This is an expression of a

meaningful relation between interface, class and object.

4 The interface is an open connection to new and unknown objects. The pur-

pose of interface type handles is that they represent an open connection

towards arbitrary objects that implement the same interface. Hence, the

same handle can connect to several objects, defined by different classes.

According to the descriptions, it is possible to replace objects and use dif-

ferent object types without having to change the rest of the software. Using

interfaces allow objects to communicate with each other even though they

are “strangers.”

be obtained using interfaces and this requires an advanced understanding of
interfaces.

Faced with the task, the students acted in three qualitatively different ways.
One response was to read the documentation over and over again, but never
doing anything concrete about the code. This was labelled as “Hands off”.
Another way, “Waterfall”, was to read the documentation and after a while
start to write program code in a new source file. However, they started from
scratch and they did not compile the code. The third and most successful way
used, “Prototype”, was to identify and copy a source file with content simi-
lar to what they were supposed to develop. Then they inserted the new piece
of software as a prototype which they could test and further develop itera-
tively. These results resemble what Perkins et al. categorized as “stoppers”
and “movers” [51].

How students experience software development and software maintenance
Paper VII reports results from a study on how students experience software

development and software maintenance. These broad concepts were chosen

46

Table 6.4: Summary of the outcome space for students’ views of software development.

Cat. How software development is described

1 Software development is described, mostly from a subjective perspective,

as finding a solution to a problem or creating or building a computer pro-

gram that solves a problem, that meets a need or realizes an idea.

2 Software development is described as finding out which functions and parts

should be included in a program to meet the need and how they should be

designed. Different design methods are described to achieve the goals.

3 Software development is described from a professional perspective as de-

signing for the future; it is important that the software can handle future

changes, be reused and that the design is documented so it can be under-

stood.

4 Software development is described from a professional perspective as de-

signing software and understanding what the customers and end users need,

what can be achieved, the time frame, the economic aspects, and which

methods to use.

with the aim to study how students experience “the big picture” and possible

connections to the software profession. The informants’ ways of talking about
software development was divided in four distinct categories of description,
see Table 6.4. A straightforward and relatively introvert way to see the concept
is that software development is problem solving. The next category describes
software development in terms of aspects of design of code, user interfaces
and design methods. The third category includes a more advanced way to
describe software development which brings in the future perspectives and the
focus is on how to make the software reusable and maintainable. In Category
four, the most advanced way of seeing software development is more extrovert
and brings in the understanding of the importance of knowing and considering
the needs from the end-users, the customers and the business requirements.

The basic understanding of software maintenance among the informants in

the study is seeing maintenance as “debugging”. Next level includes the un-

derstanding that maintenance is to add features to a piece of software required

by a customer. Next category adds the understanding that software needs to

be adapted to changes in the world around the software. The most advanced

way to describe maintenance involves the understanding that maintenance is

a natural and continuous part of the job as software professional.

How students understand class diagrams
The ability to represent design solutions using graphical notations is an im-

portant skill in professional contexts. It requires an understanding of object-

oriented concepts as well as how they are manifested in a modelling language.

In Paper VIII, it was investigated how students experience class diagrams in

47

Table 6.5: Summary of the outcome space for students’ views of class diagrams use.

Cat. How the use and purpose of class diagrams are described

1 Class diagrams are used as a documentation of existing program code

which is good for someone who wants to learn about the software and

perhaps is going to make changes to the program.

2 Class diagrams are used as a way to develop software designs. It is a tool

that can be used to model a solution to a problem and therefore it also

documents existing or non-existing program code.

3 Class diagrams are used as a way to design software and are used as a

means for a dialogue with team members in a dynamic design process that

will end up in program code. They are perfect to use as a tool to develop,

discuss and test models on a whiteboard together with the team.

the notation used in the Unified Modelling Language (UML). The informants
were presented with a set of class diagrams and in the interview these class
diagrams were discussed in different ways. The analysis gave the results as
summarized below.

Three different categories of description emerged for the purpose and use

of class diagrams, see Table 6.5. The most elementary way to describe it was

using class diagrams as documentation of code. A more advanced way to see

was using class diagrams as a tool for software design. The most advanced

way of seeing was class diagrams as a means for dialogue between, e.g., soft-

ware developers.

Also the ways of seeing class diagrams per se was categorized in three
categories. The straightforward way is to describe class diagrams as a diagram
that shows classes and connections. A more sophisticated way is to see class
diagrams as a diagram that shows in which ways classes are related. In the
most advanced category, a class diagram is described as a diagram that shows
how classes are related in hierarchies and structures.

The relation types symbolized by diamonds were described as relations

(only), as something which means that one class “has” another, as something

that means that one class contains or consists of other classes, and finally that

there are differences between the white and black diamonds that indicate ag-

gregation and composition.

Only few informants talked about the diamond symbols and related con-
cepts in an advanced way. This can be contrasted with the observation that
most students could identify the inheritance symbol (also indicated by Pa-
per II), and that education seems to have succeeded in that particular sense.

Software professionals need to work with design models; however, some of

the graduating students told me that they did not know much about UML. This

may indicate that more emphasis should be put on learning the fundamentals

of UML in programming and design classes.

48

6.3 On applying the results in teaching

One of the most important objectives for my research is to apply the findings
in education. These aspects have been addressed in the enclosed papers and in
this section I will try to give a brief summary.

Implications for teaching from the findings on Threshold Concepts
Pointers and memory are often problematic for students who learn older pro-
gramming languages. The lack of pointers in Java, where objects are always
“by reference”, is often regarded to be an advantage of learning and using Java
because of simplicity and less errors. Dereferencing is always done in one step
and there is only one such operator.

However, the mental effort required to understand pointers may open up

certain ways of seeing. Without pointers, the “notional machine” [13] may

be more vague as well as the notion of memory. I do not suggest that Java

should be abandoned; however, while eliminating troublesome concepts, the

“portals” to a more comprehensive understanding of computers and program-

ming may never be crossed. We should consider the risk of doing the students

a disservice if the conceptual machine is totally abstracted away in education.

Feasible assignments may be a substitute, e.g., to construct an object-oriented

model of a computer.
The results also indicate that object orientation is a Threshold Concept, and

previous research points out that understanding of object-oriented concepts

needs to be strengthened after graduation [32]. These concepts need to be

motivated by good examples closely connected to realistic software issues. A

hypothesis of mine is that the mechanisms involved in object-orientated pro-

gramming are easier to motivate and understand in depth if they are explained

in a situated context, where the advantages and features appear naturally.

Creating connections to realistic situations
I assume that students, teachers, and the industry, have an interest in prepar-
ing students for a professional career. This includes good understanding of
software development, in a wider perspective than what it takes to pass in a
beginner’s course in object-oriented programming. An education that targets
people who want to work with system development and programming, or per-
haps with administration of such activities as a manager, needs to give the
students profound insights in aspects of software development.

To achieve this, what should be learned must exist in a context that is mean-
ingful to the learner, that the learning situation has a proper relevance struc-
ture [37]. For a student who wants to be a software developer in the future,
every new experience of working with software will contribute to learning.
New situations give incentives for the individual to widen perspectives and
reflect on previous experiences.

49

The participants in the study described in Paper V showed a constructive

attitude to the situation during the role-play experiment and most of them said

that they had learned from participating. This experiment has shown that it is

possible to let students work with large and advanced software, that they can

get into it, achieve tasks in a limited time frame, and learn. This indicates that

it may be worthwhile to let students spend more time on doing the same kind

of things as the professionals do, and actually elaborate on authentic software

from the industry, or other communities.

However, learning using the “real thing” may require good basic skills and
self-confidence. Not all students have the same prerequisites. If this is used
in teaching, the instructor must carefully ensure that the students have a con-
structive attitude, and that they have the required basic knowledge. Neglecting
to do so could discourage the students and affect their self-esteem negatively.
A way to neutralize this could be to let the students work in pairs, as also
suggested by [3].

My conclusion is that we should discuss these matters with local companies
and try to find good examples of authentic software and tasks that would be
encouraging and instructive for students. In the best of worlds, representatives
from companies could give guest lectures and tell the real story about being a
software professional. In Paper VII, the importance this may have for students
is indicated by one of the informants.

Opening possibilities to discern new ways of seeing
Sometimes certain ways to understand tend to cement in the learner and then
we must challenge these ways of seeing. Hence, we should consider how we
introduce, motivate and discuss new concepts, and how we construct exer-
cises. In Paper VI, VII and VIII I have tried to give examples on how Variation
Theory (see Section 3.4) can be applied to the phenomenographic findings. In
the resulting outcome spaces there are certain ways of seeing the concepts
in question that are more valuable than the more concrete and surface under-
standings. These advanced understandings are the ones that we want to help
the students to recognize. Looking carefully into which dimensions of varia-
tion that are needed to enable the desired understanding will give a foundation
to build variations upon. Depending on the nature of the specific way to un-
derstand the concept, different patterns of variations can be used.

In summary, a Computer Science teacher informed by the different ways

students may experience involved concepts and processes, can use this knowl-

edge and create strategies for helping students with shallow ways of seeing to

be aware of more profound views. Teachers’ meditation upon students ways

of seeing may also start reflections on their own perspectives on the subject

and perhaps also open up new ways of seeing. In combination with knowledge

of potential threshold concepts in the subject and variation theory, the teacher

will have powerful tools.

50

7. Conclusions

Why are programming and Computer Science so difficult to learn – are there
concepts that both hinder and enable students to understand the big picture?
Many concepts in computer science are truly complicated. Our studies on stu-
dents’ learning experiences have provided us with a number of examples of
concepts that in the students’ view were troublesome, hard to integrate and
transforming. Some concepts were very specific and others had a more overar-
ching character. Perhaps the most important lesson learned from this research
is that we should not take for granted that all concepts introduced in teaching
are easily adopted by the students or that their learning progresses in the way
we may expect.

The students talked mostly about concepts related to programming, ob-

ject orientation and software design, and in the narratives we saw that stu-

dents often experienced problems when they were working with programming

projects. Programming assignments and problem solving are natural parts of

the computer science education tradition and our results stress their impor-

tance for conceptual understanding.

An implication is that more empirical research should be done on the ways
in which students reach an impasse during such activities, how we can develop
effective methods to detect when it happens and how we can help students to
discover their way over the thresholds without giving them solutions. Using
the definition given by Mayer and Land [44], we can now say that Thresh-
old Concepts exist in Computer Science and that some of these concepts are
closely involved in the process of transforming the students into thinking and
acting like computer scientists. Teachers can use the notion of Threshold Con-
cepts as a powerful tool to discuss and reflect on learning and teaching.

Traditionally, a syllabus reflects an expert view of which concepts should
be included and emphasized in a course in Computer Science. Our empiri-
cal research on threshold concepts among students reflects the learners’ view
of which concepts they experience as learning challenges in different ways.
A natural and interesting continuation of the research on threshold concepts
and conceptions would be to closer study the different ways in which stu-
dents experience the concepts we have identified as potential thresholds. A
phenomenographic approach would be a natural way to investigate this. In
combination with the expert view, such research could provide results that can
be used for design of course syllabuses, and variation theory can be applied to
help learners overcome the thresholds.

51

What can we do to enhance the possibilities for students to become well-
prepared software professionals?
I have used phenomenography to identify different ways to understand a num-
ber of concepts which are important to master in order to be well-prepared for
the software profession. My results reflect that the more advanced ways of see-

ing connect to each other. The uniting link is the expressed overall view and

the connection to professional perspectives. The “high quality” descriptions

all express an integrated understanding of important principles.
While the more advanced categories converge, the less advanced categories

diverge and get more specific. An imaginary student, hypothetically equipped

with only a concrete perspective, would not have the apprehensive view that

ties the concepts together. Such fragmented understanding does not comprise

a professional point of view! This student would be forced to catch up on these

matters later, and this may of course be an obstacle for success at work.

As it is likely that similar ways of seeing would appear among students in
comparable contexts, the findings are useful to teachers. I hope that those who
read this thesis reflect on their own ways of seeing the concepts addressed
in my research and which ways of seeing that are the most valuable in their
opinion. Perhaps the studies presented here will inspire open-minded teachers
to learn more about how their students understand these concepts and how
the students experience their learning. Such knowledge will enable teachers
to help students to discover advanced ways of understanding.

Knowing that most computer science majors are becoming software pro-

fessionals, I hope that educators will consider the professional perspective.

Teachers without experience of the software profession may be interested in

company visits and inviting guest lecturers to their classes. For certain, stu-

dents need the purely intellectual challenges, but they also need the opportu-

nity to reflect upon the academic content in relation to its professional aspects.

I argue that professional perspectives should be a recurrent theme in teach-
ing, as this would help students to better understand many computing con-
cepts. Learning should take place in relevant contexts and it is not sufficient
to just tell students how to think about things. It cannot be expected that all
students understand intellectually challenging features which are only implic-
itly addressed in assignments and lectures. On the contrary, teachers should
explicitly help students to see the advanced aspects of what they are teaching.
To reach this goal, a teacher has to provoke their current views. I have sug-
gested how to take advantage of my phenomenographic results using variation
theory, which provides effective patterns for how teachers can help students
to discover new ways of seeing by introducing variations.

In this way we can better match the students’ expectations to the reality of

the business. This may actually improve the efficiency of education regarding

the society as a whole. Using this approach, we will increase the possibilities

of providing students with the self-confidence and power needed to be well-

prepared for being successful at work as software professionals!

52

Svensk sammanfattning

På väg mot en profession som utvecklare av mjukvara

Tidigare studier har visat att det är vanligt att universitetsstudenter har problem

med att lära sig ämnet datavetenskap. Framförallt har forskningen intresserat

sig för studenters svårigheter med att lära sig programmering vilket är ett äm-

nesområde som förutsätter god förståelse av en mängd begrepp samt praktiska

färdigheter. Det har bland annat visat sig att studenter har problem med att

skriva, läsa, korrigera och designa programkod. Framförallt har studierna in-

tresserat sig för studenters förmågor och problem under den tidigare delen av

sin utbildning.

De flesta som studerar på utbildningsprogram med datavetenskap som hu-
vudämne är inriktade mot att arbeta professionellt med programvara när de är
färdiga med sin utbildning. Forskning på akademiskt utbildade professionella
programmerare har påvisat att de som nyanställda hade kunskapsluckor som
de var tvungna att komplettera på egen hand. Det är alltså viktigt att under-
söka hur de studenter som studerar dataämnen kan förberedas bättre inför sin
framtida profession, för att underlätta övergången till yrkeslivet.

För att öka förståelsen om lärande i datavetenskap och hur man bättre kan
förbereda studenter för de krav som ställs i det professionella yrkeslivet,
har två olika ansatser använts för att studera studenters relation till olika
datavetenskapliga begrepp.

I det första temat har en internationellt sammansatt forskargrupp undersökt

vilka begrepp och företeelser inom datavetenskap som studenter uppfattar

som särskilt utmärkande. Som teoretisk inramning använde gruppen en

relativt oprövad teori om lärande och undervisning som framför en hypotes

om förekomsten av så kallade tröskelbegrepp inom olika discipliner. Dessa

karakteriseras av att de kan upplevas som problematiska, transformerande,

oåterkalleliga, integrerande för den som ska lära sig och ibland markerar

de ut ämnets gränser gentemot andra discipliner. Med denna definition som

verktyg söktes empiriska belägg för existensen av sådana begrepp inom

ämnet datavetenskap. Huvudsakligen har kvalitativa metoder använts och

data samlades in genom enkäter, informella och semistrukturerade intervjuer,

begreppsdiagram, samt skrivna berättelser om studenters erfarenheter av

lärande inom datavetenskap.
Det andra temat knyter nära an till studierna om tröskelbegrepp, men här har

istället ett fenomenografiskt angreppssätt använts för att försöka förstå varia-
tionen i hur studenter uppfattar begrepp och andra företeelser. Fenomenografi

53

är en kvalitativ forskningsansats som vill förstå på vilka kvalitativt skilda sätt

ett fenomen beskrivs av en grupp av individer, och syftet är bland annat att

kunna använda resultaten i undervisningssammanhang. Till skillnad från det

första temat har den här forskningen inriktat sig på att undersöka på vilka

olika sätt som studenter ser på olika yrkesmässigt relaterade fenomen för att

bilda en uppfattning om hur förberedda studenterna är för yrkeslivets krav.

De begrepp som valdes ut relaterar till utveckling och underhåll av program-

vara, mjukvarusystem, objektorientering, klassdiagram, samt Java-interface.

Flera av dessa begrepp tillhör de områden där den tidigare forskningen hade

påvisat kunskapsluckor hos nyanställda programmerare. För att samla in data

om studenters olika uppfattningar har framförallt semistrukturerade forskn-

ingsintervjuer använts. I en av studierna utvecklades denna datainsamlingsme-

tod genom att använda ett rollspel som skulle påminna deltagarna om en pro-

fessionell situation. Genom att spela rollen av en nyanställd programmerare

fick informanterna i uppdrag att lösa ett problem som innebar att de skulle

vidareutveckla en omfattande programvara.
Genom att använda idén om tröskelbegrepp har studierna lyckats påvisa att

det finns begrepp inom datavetenskap som ur studenters perspektiv är särskilt
problematiska och betydelsefulla. Efter flera olika analyser av vad studenter
själva berättar har ett antal sådana begrepp kunnat identifieras. Objektorienter-
ing och objektorienterad programmering var ofta återkommande begrepp. I en
av undersökningarna studerades i vilken mån studenter kunde identifiera och
integrera de underbegrepp som ingår i dessa övergripande områden det visade
sig att en helhetsförståelse saknades. Ur data från studenter i slutet av utbild-
ningen kunde det däremot påvisas att många av studenterna faktiskt förändras
mot att börja tänka och agera mer som datavetare. Ett sätt att använda resul-
taten är att ta mer hänsyn till vilka begrepp som är särskilt viktiga ur studen-
tens perspektiv. Exempelvis kan resultaten användas till att formulera läran-
demål och i samband med att lärarresurser och undervisningstid ska fördelas.

De fenomenografiska resultaten visar att studenterna erfor de fenomen
som diskuterades i intervjuerna på ett antal kvalitativt distinkta sätt. Bland de
kollektiva uppfattningar som framkom framträdde en variation, från ytliga
synsätt som ofta hade en konkret karaktär, till mer avancerade förståelser
som avspeglar både ett djup och ett helhetsperspektiv vilket även inbegriper
yrkesmässiga aspekter. Resultaten kan användas av lärare som vill förstå
hur det stoff som de lär ut kan uppfattas av sina studenter vilket leder
till en kritisk reflektion över det egna sättet att se. De här insikterna kan
också utnyttjas av lärare som vill hjälpa sina studenter att nå de djupare
förståelsenivåerna. Jag har visat exempel på hur man kan åstadkomma detta
genom att använda variationsteori, som genom att variera olika aspekter av
ett fenomen hjälper den lärande att varsebli detta på nya, mer avancerade sätt.
I det sammanhanget är det viktigt att överväga de professionella aspekterna
av begreppen för att hjälpa studenterna att bli bättre förberedda inför sin
framtida roll som professionella utvecklare av programvara.

54

Acknowledgements

My PhD project has been ongoing for several years and many people have

become involved in my work in different ways. There are some people who I

would like to acknowledge in particular.

First, let me mention my supervisors Michael Thuné, Shirley Booth and
Roy Nilsson. Michael has been my main mentor from the very beginning and
has taken an interest in my research with indefatigable energy and great pa-
tience. Shirley was the one who introduced me to phenomenography and her
expertise in the field was invaluable. She supervised me during the early years
as a PhD student. Roy has been my local mentor at University of Gävle. He
has coached me since 2005 and his expertise in didactics and his advice has
been most valuable to me.

Anita Hussénius, head of department at University of Gävle, gave important

support in my balancing act between research and teaching. She showed a

genuine interest in my welfare when I occasionally had moments of lack of

faith in my own ability. Some of my work colleagues have kindly supported

me by taking over parts of my teaching so that I could focus on completing

my thesis. It was especially Magnus Hjelmblom, Fredrik Bökman and Bengt

Östberg who helped in that regard.
Anna Eckerdal has been my closest PhD student friend. She is almost like

a big sister to me; always one step ahead and constantly creating new connec-

tions to people. She introduced me to the “Sweden Group”. In this group we

have worked together with Carol Zander, Jan Erik Moström, Kate Sanders,

Lynda Thomas, Mark Ratcliffe and Robert McCartney. These friends have

certainly been a great source of inspiration, and they have opened my eyes to

the strength and joy in working with others in research, even across national

borders. I sincerely hope that we will continue with the exciting research and

that we will have many fun moments together in the future.
If Anna is my sister in research, then the persons involved in Uppsala Com-

puting Education Research Group (UpCERG) has been my research family; a
group that makes you feel at home.

My own family has always inspired me to keep the spirit going. They have

been very understanding and flexible in situations such as the Friday evening

on-line meetings that kept me away from the weekend dinner table.

The thesis and the papers are in English. For me, as a non-native English
writer, it is sometimes hard to get it right. Dan and Sharon Lazenby, Douglas
Howie and Alan Shima have made valuable contributions by proofreading

55

the thesis. Kate Sanders, Carol Zander and Annica Gullberg helped me with

proofreading Paper VI.
Finally, I would like to address the persons who accepted to be informants in

experiments and interviews. Without the students’ contributions, there would
be no results at all.

Uppsala University and the Swedish Research Council have funded the greater

part of my research. University of Gävle, Nordea and Sandvik AB have helped

with funding to carry out my interviews and share experiences with other re-

searchers at conferences both in Sweden and abroad.

Thank you all for your efforts, your kindness, and your patience!

56

Bibliography

[1] K. Ahlberg. View-Turns: University students’ Narratives of Qualitative Changes
in Ways of Experiencing Meaning of situations during Educational placement.
PhD thesis, Acta Universitatis Gothoburgensis 206, University of Gothenburg,

Sweden, 2004.

[2] G. S. Åkerlind. Variation and commonality in phenomenographic research

methods. Higher Education Research & Development, 24(4):321–334, 2005.

[3] A. Begel and B. Simon. Novice Software Developers, All Over Again. In ICER
’08: Proceeding of the Fourth international Workshop on Computing Education
Research, pages 3–14, New York, NY, USA, 2008. ACM.

[4] M. Ben-Ari. Situated Learning in Computer Science Education. Computer
Science Education, 14(2):85–100, 2004.

[5] A. Berglund, M. Daniels, and A. Pears. Qualitative Research Projects in Com-

puting Education Research: An Overview. Australian Computer Science Com-
munications, 28(5):25–34, 2006.

[6] J. Bonar and E. Soloway. Preprogramming Knowledge: A Major Source of Mis-

conceptions in Novice Programmers. Human-Computer Interaction, 1(2):133–

161, 1985.

[7] S. Booth. Learning to program: A phenomenographic perspective. PhD thesis,

Acta Universitatis Gothoburgensis 89, University of Gothenburg, Sweden, 1992.

[8] J. Boustedt. Students working with a Large Software System: Experiences and
Understandings. Licentiate thesis, Department of Information Technology, Up-

psala University, Sweden, 2007.

[9] J. Bowden. The nature of phenomenographic research. In J. Bowden and

E. Walsh, editors, Phenomenography, Qualitative research methods series, pages

1–12. RMIT University Press, Melbourne, 1st edition, 2000.

[10] C. Bruce, L. Buckingham, J. Hynd, C. McMahon, M. Roggenkamp, and

I. Stoodley. Ways of Experiencing the Act of Learning to Program: A Phe-

nomenographic Study of Introductionary Programming Students at University.

Journal of Information Technology Education, 3:143–160, 2004.

[11] M. Clancy, J. Stasko, M. Guzdial, S. Fincher, and N. Dale. Models and areas for

CS Education Research. Computer Science Education, 11(4):323–341, 2001.

57

[12] N. Denzin and Y. S. Lincoln, editors. Handbook of qualitative research. Sage

Publications, London, 1994.

[13] B. DuBoulay. Some difficulties of learning to program. In E. Soloway and J. C.

Sphorer, editors, Studying the novice programmer, pages 283–300. Lawrence

Erlbaum, New Jersey, 1989.

[14] A. Eckerdal. Novice Students’ Learning of Object-Oriented Programming.

Licentiate thesis, Department of Information Technology, Uppsala University,

Sweden, 2006.

[15] A. Eckerdal. Novice Programming Students’ Learning of Concepts and Practise.

PhD thesis, Digital Comprehensive Summaries of Uppsala Dissertations from

the Faculty of Science and Technology 600, Uppsala University, Sweden, 2009.

[16] A. Eckerdal, R. McCartney, J. E. Moström, M. Ratcliffe, and C. Zander. Catego-

rizing student software designs: Methods, results, and implications. Computer
Science Education, 16(3):197–209, 2006.

[17] J. Edwards and K. Fraser. Concept maps as reflectors of conceptual understand-

ing. Research in Science Education, 13(1):19–26, December 1983.

[18] S. Fincher and M. Petre. Computer Science Education Research. Taylor and

Francis Group, London, 2004.

[19] C. Fisher. Social support and adjustment to work: A longitudinal study. Journal
of Management, 11:39–53, 1985.

[20] M. T. Flanagan and J. Smith. From Playing to Understanding: The Transforma-

tive Potential of Discourse Versus Syntax in Learning to Program. In R. Land,

J. H. F. Meyer, and J. Smith, editors, Threshold Concepts Within the Disciplines,

chapter 7, pages 91–103. Sense Publishers, Rotterdam, 2008.

[21] R. E. Gunderman. A glimpse into a program maintenance. In G. Parikh, editor,

Techniques of program and system maintenance. QED Information Sciences,

Inc, Wellesley, MA, 1988.

[22] S. Hadjerrouit. A constructivist approach to object-oriented design and pro-

gramming. ACM SIGCSE Bulletin, 30(3):171–174, 1999.

[23] S. Hadjerrouit. Constructivism as Guiding Philosophy for Software Engineering

Education. ACM SIGCSE Bulletin, 37(4):45–49, 2005.

[24] C. Holmboe, L. McIver, and G. Carlisle. Research agenda for Computer Sci-

ence Education. In G. Kadoda, editor, Proceedings of the 13th Workshop of
the Psychology of Programming Interest Group, pages 207–223, Bournemouth,

UK, 2001.

[25] H.-F. Hsieh and S. E. Shannon. Three approaches to qualitative content analysis.

Qualitative Health Research, 15(9):1277–1288, 2005.

58

[26] L. Jaccheri. Software quality and software process improvement course based

on interaction with the local software industry. Computer Applications in Engi-
neering Education, 9(4):265–272, 2001.

[27] L. Jaccheri and S. Morasca. On the importance of dialogue with industry about

software engineering education. In J. B. Thompson and H. M. Edwards, edi-

tors, SSEE ’06: Proceedings of the 2006 international workshop on Summit on
software engineering education, pages 5–8, New York, NY, USA, 2006. ACM.

[28] M. Kajko-Mattsson, S. Forssander, G. Andersson, and U. Olsson. Developing

CM3: Maintainers’ Education and Training at ABB. Computer Science Educa-
tion, 12(1–2):57–89, 2002.

[29] M. Kölling and D. J. Barnes. Enhancing Apprentice-Based Learning of Java.

ACM SIGCSE Bulletin, 36(1):286–290, 2004.

[30] R. Land, G. Cousin, J. H. F. Meyer, and P. Davies. Threshold Concepts and

Troublesome Knowledge (3): implications for course design and evaluation. In

C. Rust, editor, Improving Student Learning Diversity and Inclusivity. Oxford

Centre for Staff and Learning Development, Oxford, 2005.

[31] J. Lave and E. Wenger. Situated Learning: Legitimate peripheral participation.

Cambridge University Press, Cambridge, 1991.

[32] T. C. Lethbridge. What knowledge is important to a software professional?

Computer, 33(5):44–50, May 2000.

[33] Y. S. Lincoln and E. G. Guba. Naturalistic inquiry. Sage, Newbury Park, CA,

1985.

[34] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. Mc-

Cartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon, and L. Thomas. A

multi-national study of reading and tracing skills in novice programmers. In

ITiCSE-WGR ’04: Working group reports from ITiCSE on Innovation and tech-
nology in computer science education, pages 119–150, New York, NY, USA,

2004. ACM.

[35] F. Marton. Phenomenography – a research approach to investigating different

understandings of reality. Journal of Thought, 21(3):28–49, 1986.

[36] F. Marton. The structure of awareness. In J. Bowden and E. Walsh, editors, Phe-
nomenography, Qualitative research methods series, pages 70–79. RMIT Uni-

versity Press, Melbourne, 1st edition, 2000.

[37] F. Marton and S. Booth. Learning and Awareness. Lawrence Erlbaum Asso-

ciates, Inc, Mahwah, New Jersey, 1997.

[38] F. Marton and M. F. Pang. On Some Necessary Conditions of Learning. The
Journal of Learning Sciences, 15(2):193–220, 2006.

[39] F. Marton and R. Säljö. On Qualitative Differences in Learning – 1: Outcome

and Process. British Journal of Educational Psychology, 46:4–11, 1976.

59

[40] F. Marton and R. Säljö. On Qualitative Differences in Learning – 2: Outcome as

a function of the learner’s conception of the task. British Journal of Educational
Psychology, 46:115–127, 1976.

[41] F. Marton and A. B. M. Tsui. Classroom discourse and the Space of Learning.

Lawrence Erlbaum Associates, Inc, Mahwah, New Jersey, 2004.

[42] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Ko-

likant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz. A multi-national, multi-

institutional study of assessment of Programming skills of first-year CS students.

SIGCSE Bulletin, 33(4):125–180, 2001.

[43] W. M. McCracken. Research on learning to design software. In S. Fincher and

M. Petre, editors, Computer Science Education Research. Taylor and Francis

Group, London, 2004.

[44] J. H. F. Meyer and R. Land. Threshold Concepts and Troublesome Knowl-

edge (1): Linkages to ways of thinking and practising within the disciplines. In

C. Rust, editor, Improving Student Learning: Improving Student Learning The-
ory and Practice – Ten Years On. Oxford Centre for Staff and Learning Devel-

opment, Oxford, 2003.

[45] J. H. F. Meyer and R. Land. Threshold Concepts and Troublesome Knowledge

(2): Epistemological considerations and a conceptual framework for teaching

and learning. Higher Education, 49:373–388, 2005.

[46] J. Mulholland and J. Wallace. Strength, Sharing and Service: restorying and the

legitimation of research texts. British Educational Research Journal, 29(1):5–

23, 2003.

[47] J. D. Novak and A. J. Cañas. The Theory Underlying Concept Maps and How

to Construct and Use Them. Technical Report IHMC CmapTools 2006-01 Rev

01-2008, Florida Institute for Human and Machine Cognition, 2008. URL:

http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.

[48] D. L. Parnas. Software Engineering programmes are not computer science pro-

grammes. Annals of Software Engineering, 6(1–4):19–37, 1998.

[49] A. Pears and M. Daniels. Structuring CSEd Research Studies: Connecting the

Pieces. ACM Conference on Innovation and Technology into Computer Science
Education, 35(3):149–153, 2003.

[50] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen, M. De-

vlin, and J. Paterson. A Survey of Literature on the Teaching of Introductory

Programming. ACM SIGCSE Bulletin, 39(4):204–223, 2007.

[51] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons. Conditions

of learning in novice programmers. In S. E. and S. J. C., editors, Studying the
Novice Programmer. Lawrence Erlbaum Associates, Hillsdale NJ, 1989.

60

[52] J. Randolph. Computer Science Education Research at the Crossroads: A
Methodological Review of Computer Science Education Research. VDM Verlag

Dr. Müller, Saarbrücken, Germany, 2008.

[53] A. Robins, J. Rountree, and N. Rountree. Learning and Teaching Programming:

A Review and Discussion. Computer Science Education, 13(2):137–172, 2003.

[54] D. P. Rowbottom. Demystifying Threshold Concepts. Journal of Philosophy of
Education, 41(2):263–270, 2007.

[55] C. Schulte and M. Knobelsdorf. Attitudes towards computer science-computing

experiences as a starting point and barrier to computer science. In ICER ’07:
Proceedings of the third international workshop on Computing education re-
search, pages 27–38, New York, NY, USA, 2007. ACM.

[56] D. Shinners-Kennedy. The Everydayness of Threshold Concepts: State as an

Example from Computer Science. In R. Land, J. H. F. Meyer, and J. Smith,

editors, Threshold Concepts Within the Disciplines, chapter 9, pages 119–128.

Sense Publishers, Rotterdam, 2008.

[57] M. Thuné and A. Eckerdal. Variation Theory Applied to Students’ Concep-

tions of Computer Programming. Europeean Journal of Engineering Education,

34(4):339–347, 2009.

[58] J. Turns, C. J. Atman, and R. Adams. Concept maps for engineering education:

a cognitively motivated tool supporting varied assessment functions. Education,
IEEE Transactions on, 43(2):164–173, May 2000.

[59] J. D. Tvedt, R. Tesoriero, and K. A. Gary. The Software Factory: An Undergrad-

uate Computer Science Curriculum. Computer Science Education, 12(1–2):91–

117, 2002.

[60] J. R. B. Vaughn. Teaching Industrial Practices in an Undergraduate Software

Engineering Course. Computer Science Education, 11(1):21–32, 2001.

[61] E. Walsh. Phenomenographic analysis of interview transcripts. In J. Bowden

and E. Walsh, editors, Phenomenography, Qualitative research methods series,

pages 13–23. RMIT University Press, Melbourne, 1st edition, 2000.

61

�+�
����)
����
�����,�
-�
����
��������	
��
��������������
����
���������������
����
��
�

��������������
�������������������
�
������

������'��	
��

������	
�.
+&-�/�����+�
�+
�
����
+	��-�0/

����+���
-�����
��
��������1��	
�.
+&-�/�����+�
�+
�
��
�
+	��-�0/2��,,�
-
����)
����/2����&�&
--/�
��&11
�/����

�&1(
�����,
,
��3����
4�+�,�
������	
�+�1,-
�
�����
��
����

�
�5
,��
��1
6����4
���	��
�

�+	�-�(�
��
�2�4	�-
��	

�&11
�/�
-��
����������(&�
�����
��
����
--/��	��&0	
�	
��
��
����0��
-�7�1,�
	
���)
��&11
��
������,,�
-

����
��
���������1��	
�.
+&-�/�����+�
�+
�
����
+	��-�0/3
8����������
�&
�/2�#**!2��	
��
��
��4
��,&(-��	
��&��
���	

���-
�97�1,�
	
���)
��&11
��
������,,�
-
�����
��
�����
���1��	
�.
+&-�/�����+�
�+
�
����
+	��-�0/:3;

������(&����'�,&(-�+
�����3&&3�

&��'�(�'�
'&&'��)
"�##�*�

����
����	
�������
����
�	����
�����
�

����

	Abstract

	List of Papers
	Author’s Contributions
	Contents
	1. Introduction
	1.1 Research agenda
	1.2 The main research questions
	1.3 Outline

	2. Related work
	2.1 Learning the concepts necessary to program
	2.2 Educating for a professional career in industry

	3. Theory and approach
	3.1 Threshold concept theory
	3.2 Concept mapping
	3.3 Phenomenography
	3.4 Variation theory

	4. Collecting data
	4.1 Interviewing informants
	4.2 Doing role-play and interviews
	4.3 Collecting concept maps
	4.4 Collecting biographies

	5. Data analysis
	5.1 Phenomenographic analysis
	5.2 Content analysis
	5.3 Concept map analysis
	5.4 Trustworthiness

	6. The main results
	6.1 Learning and understanding concepts
	6.2 Understanding concepts related to the profession
	6.3 On applying the results in teaching

	7. Conclusions
	Svensk sammanfattning
	Acknowledgements
	Bibliography

