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1. Introduction

Electrons and nuclei are the fundamental particles that determine the nature

of the matter of our world. The fundamental basis for understanding materials

and phenomena ultimately rests upon understanding electronic structure. In

1929 Paul Dirac wrote [1] that with the discovery of quantum mechanics:

“The underlying laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known, and the

difficulty is only that exact applications of these laws lead to equations

which are too complicated to be soluble”. Today it exists a very efficient

method to deal with these equations in solids by use of modern computers;

density functional theory (DFT) [2]. Within DFT approach the properties

of compounds can be determined by mapping the many-electron problem

to one-electron effective problem expressed in terms of functionals of the

electron density. Although ordinary DFT has proven to be very accurate for

a wide range of materials, it often fails to capture the fundamental physics

of systems with open d and f shells where the electrons are localized and

the Coulomb repulsion is large. In this case the electrons can no longer

be treated as independent and the movement of one electron strongly de-

pends on the position of the others; the electrons are called strongly correlated.

In material science, magnetism remains one of the essential areas
of study, although the properties of magnetic compounds have been used
for applications already for many years. The ongoing research remains
extensive and intense, as still to date revolutionary new effects related to
magnetic interactions are revealed. The competing couplings between
lattice, charge, spin and orbital degrees of freedom in crystals are related
in a complex equilibrium that in special cases results in fascinating and
novel phenomena. A class of compounds that shows a rich variety of exotic
magnetic properties are the actinides [3]. There are variations from itinerant
magnetic systems to systems showing characteristics of localized magnetism.
In the border between these extremes one have the so-called heavy fermions,
which show many anomalous properties, one of which is the coexistence of
superconductivity and magnetism [4]. One aspect that makes the magnetism
of the actinides unique is the co-existence of strong spin-orbit coupling
(SOC) and strong exchange interactions among the 5 f electrons, which
are the ones responsible for the magnetism. From a theoretical point of
view, a standard DFT approach, either in the local density approximation
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(LDA) or generalized gradient approximation (GGA), describes quite

well the equilibrium properties of metallic systems. However, in actinides

these functionals underestimate the orbital moments which are induced by

the strong SOC interaction [5, 6, 7]. This deficiency can be remedied by

allowing for the so-called orbital polarization [7], responsible for Hund’s

second rule in atomic physics, either through adding an appropriate orbital

depending term to the Hamiltonian or by adopting the so-called LDA+U
approach [8, 9, 10]. In the latter method a screened Hartree-Fock (HF)
interaction is included among the correlated electrons only.
Magnetic ordering is relatively abundant among actinide systems due to the
strong exchange interactions, but generally the spin moments are strongly
reduced compared to a fully spin polarized value. This work will focus on the
role of the local screened exchange interactions; it will aim to convincingly
argue that these interactions are responsible for the reduced spin polarizations
as well as for a large orbital moment in many actinide compounds. One of the
most controversial discussion in the field of actinides concerns the absence
of magnetic moments in the anomalous high-pressure δ -phase of Pu [3].
This study will provide an explanation of the vanishing of magnetism in
this material in terms of enhancement of the SOC channel in the exchange
energy (see papers IV and IX). This work will also focus on the mysterious
hidden order phase of the heavy-fermion superconductor URu2Si2 [11]. In
our study we find that a high multipole of the magnetization density, the
triakontadipole, is the main order parameter in URu2Si2 (see paper III). The
triakontadipole ordering is also determined to play an essential role in other
actinide superconductors, UPd2Al3, UNi2Al3 and UPt3 (see paper V) and in

the actinide dioxide insulators, UO2, NpO2 and PuO2 (see paper VII). These
results lead us to formulate a new set of rules, the Katt’s rules, that are valid
for the ground state of itinerant systems with strong SOC interaction, instead
of Hund’s rules (see paper VIII).
In order attack these problems we developed an efficient scheme to treat
electron correlation with LDA+U method and only one free parameter (see
paper II). This is accomplished by using Slater parameters screened by a
Yukawa potential together with an interpolating optimal double-counting
term [12]. This last degree of freedom can be chosen to be, for instance, the
lowest Slater integral U , which is used as a varying parameter. At the same
time we introduced an analysis method for the resulting ground state. This
analysis is based on an exact multipole decomposition of the density matrix
as well as of the HF exchange energy.

Another class of compounds that created a large interest in the
scientific community are the high critical temperature (TC) cuprate

superconductors because of the ambiguous coexistence and interplay between

superconductivity and magnetism. Recently, the discovery of a new class

of high-TC superconductors, the ferro-pnictides [13], has raised the hope of
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understanding the elusive mechanism of the high-TC superconductivity of the

cuprates [14]. Indeed there are many similarities between the two classes of

compounds; the fact that the parent compound is antiferromagnetic (AF), the

key role played by a transition-metal layer, the fact that the AF order quickly

disappears with doping and then is overtaken by a strong superconducting

state. However, some differences were also discovered. While the main

electrons in the cuprates are correlated and close to an insulating state, in the

ferro-pnictides they seems to be moderately correlated and metallic [15, 16].

With the increasing number of theoretical studies, it has been clarified that

DFT shows some difficulties in treating the iron pnictide compounds. The

calculations systematically predict unusually bad Fe-As bonding distances

and largely overestimate the ordered AF spin moment [17, 18]. This work

will show that, by including on-site correlation effects in the calculation of

ferro-pnictides electronic structure, a low-spin moment solution in agreement

with experiment [19] is stabilized due to polarization of higher multipole

moments of the spin density (see papers I and VI). It is also found that the

calculated equilibrium distance between the Fe plane and the As planes is in

good agreement with the measured value [19]. Finally, we will also make

a comparison with the LDA+U solution for an undoped cuprate, CaCuO2,
which reveals a striking similarity in the role played by magnetic multipoles.

The thesis is organized as follows: chapter 2 reviews the density

functional theory approach to treat many-electrons systems, chapter 3

describes the power of APW+lo basis set to solve the Kohn-Sham equation,

chapter 4 summarizes the treatment of non-collinear magnetism, and, finally,

chapter 5 deals with LDA+U method and its multipole expansion. The
applications of these methods to different actinide and pnictide systems
are discussed in chapter 6, for example, by observing several clear trends
regarding the favoured polarizations of exchange energy channels. Finally,
we draw our conclusions in chapter 7.
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2. Density Functional Theory

2.1 The Many Body Problem

The Hamiltonian for the system of electrons and nuclei in a solid can be writ-

ten as

H =
1

2
∑
i=1

∇2
i ∑

i,I

ZI

rrri RRRI
+

1

2
∑
i= j

1

rrri rrr j

1

2
∑

I

∇2
I

MI
+

1

2
∑
I=J

ZIZJ

RRRI RRRJ
,

(2.1)

where rrri are the positions of the electrons, RRRI and ZI are, respectively, the

nuclei positions and the atomic number, MI is the nucleus mass. Here, and in
what follows, atomic units are used.
The Hamiltonian in Eq. (2.1) can be written more schematically as

H = Te +VeI +Vee +TI +VII , (2.2)

where Te and TI are, respectively, the electronic and the nuclei kinetic energy,
while the terms Vee, VII, VeI correspond to Coulomb interaction between, re-
spectively, electrons, nuclei, electrons and nuclei. Because of the large differ-
ence in mass between electrons and nuclei, the electrons respond essentially
instantaneously to the motion of the nuclei. Therefore the many-body problem
is reduced to the solution of the electronic part in some frozen configuration
of the nuclei (or of atomic cores). This is the so-called Born-Oppenheimer ap-
proximation. Even with this simplifications, the many-body problem remains
formidable. Density functional theory (DFT) is a valuable tool to calculate an
approximate solution to the ground-state energy of N interacting electrons in

the external potential arising from the nuclei. Once the electrons have been

relaxed to their instantaneous ground-state, the interaction between the nuclei

VII (or between the atomic cores) is treated classically by means of Ewald
method [20]. For a given nuclei positions, the fundamental Hamiltonian for
the theory of electronic structure of matter is

H = Te +VeI +Vee . (2.3)
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The electronic structure is determined by the solutions of the Schrödinger

equation of N electrons

H Ψ =

{
1

2
∑

i
∇2

i +∑
i

v(rrri)+
1

2
∑
i= j

1

rrri rrr j

}
Ψ = EΨ , (2.4)

where Ψ = Ψ(x1,x2, . . .xN) is the N-electron wavefunction, with x’s indicat-
ing both spatial and spin coordinates and where v(rrri) refers to the potential
experienced by the electron i due to the nuclei,

v(rrri) = ∑
I

ZI

rrri RRRI
. (2.5)

In the Born-Oppenheimer approximation, all the physical properties of the
electrons depend parametrically on the nuclei positions RRRI . The electron den-

sity n(rrr) and the total energy E can be written as

n(rrr) = n(rrr;RRR1, ...RRRM), E = E(RRR1, ...RRRM) , (2.6)

where M indicates the number of nuclei.
As W. Kohn clearly emphasized in his Nobel lecture [2], the solution of prob-
lem (2.4) is not feasible by traditional wave-function methods in case of con-
densed matter systems, where N 1022/cm3 electrons. Let us consider a gen-

eral molecule consisting of M atoms with a total of N interacting electrons,
where M 10. Ideally we would like to find the ground-state energy E by
Rayleigh-Ritz variational principe,

E = min
Ψ

〈
Ψ H Ψ

〉
,

∫
Ψ(x1,x2...xN) 2dx1dx2...dxN = 1 . (2.7)

We should do this by including K parameters p1, p2...pK in a trial wave func-

tion Ψ̃, so that, for a given nuclei positions, the expectation value of the
Hamiltonian in Ψ̃, an upper bound to the true ground state energy, becomes a

function of parameters E = E(p1, p2...pK). Let’s guess that the number P of
parameters per variable needed for the desired accuracy is 3 P 10. The

energy needs to be minimized in the space of K parameters,

K = P3N , 3 P 10 . (2.8)

Call K̄ the maximum value feasible with the best computer software and hard-
ware, and N̄ the corresponding maximum number of electrons, then from
Eq. (2.8):

N̄ =
1

3

ln K̄
lnP

. (2.9)
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If we take optimistically K̄ 109 and P = 3, we obtain the shocking result N̄ =
6 electrons. The exponential in Eq. (2.8) represents a wall severely limiting
N̄. If we turn the question around and find what is the needed K for N =
100 electrons, taking P = 3, we obtain again a shocking result K 10150.

We conclude that traditional wave-function methods are generally limited to

molecules with a small total number of chemically active electrons, usually

N < 10. DFT provides a viable alternative for larger systems, less accurate
perhaps, but much more versatile.

2.2 The Hohenberg-Kohn Formulation of DFT

First theorem of Hohenberg and Kohn The ground-state density n(rrr) of a sys-

tem of interacting electrons in an external potential v(rrr) determines uniquely
this potential, up to an arbitrary constant [21].
In the case of a degenerate ground state, the theorem refers to any ground-
state density n(rrr). The proof for a non-degenerate ground state is by contra-
diction. Suppose there existed two potential v1(rrr) and v2(rrr) yielding the same

density n(rrr). There corresponds to these potential two different ground-state
wave functions Ψ1 and Ψ2. Let’s consider Ψ2 as trial wave function for the

potential v1(rrr). Then by the variational principe:〈
Ψ2 Te+Vee Ψ2

〉
+
∫

n2(rrr)v1(rrr)d3r
〈
Ψ1 Te+Vee Ψ1

〉
+
∫

n1(rrr)v1(rrr)d3r .

(2.10)
But since both wave functions have the same density:〈

Ψ2 Te +Vee Ψ2

〉 〈
Ψ1 Te +Vee Ψ1

〉
. (2.11)

But we can exchange wave function 1 with 2, reversing the inequality. This

leads to a contradiction, unless the total energy of the two wavefunctions is

the same, which implies they are the same wavefunction by the variational

principle and the assumption of non-degeneracy. The unique potential v(rrr)
can be then determined by inversion of the Schrödinger equation,

v(rrr) =
1

2

N

∑∇2
i Ψ/Ψ+

1

2
∑
i= j

1

rrri rrr j
. (2.12)

The theorem can be extended to degenerate ground state wave functions by
a constrained search method [22]. Let us denote by Ψα

n the class of wave
functions which yields a certain density n(rrr). Let us define the functional:

F [n(rrr)] = min
α

〈
Ψα

n Te +Vee Ψα
n
〉

, (2.13)

where the minimization is over all the antisymmetric Ψα
n yielding n(rrr). Let

us call Ψα0
n̄ the wave-function that minimize F [n] for a certain density n̄. F [n]
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requires no explicit knowledge of the external potential v(rrr), it is an universal

functional of the density. The ground-state energy E0 is then simply,

E0 = min
n

∫
v(rrr)n(rrr)d3r +F [n(rrr)] , (2.14)

where the minimization is over all the positive definite densities n(rrr). Once
the ground state density n0(rrr) has been determined from Eq. (2.14), the unique

correspondent potential is built from Ψα0
n0

through Eq. (2.12).

2.3 The Self-Consistent Kohn-Sham Equations

The Kohn-Sham (KS) equations provide a convenient scheme to determine
the ground state energy and density of a system without performing the con-
strained search in Eq. (2.14), that is computationally very demanding. Let us
consider a system of N non-interacting electrons, with ground-state density

n0(rrr), moving in an external potential v(rrr). If we take a trial density n(rrr), it
follows

E[n(rrr)] =
∫

v(rrr)n(rrr)d3r +Ts[n(rrr)] ≥ E0 , (2.15)

where Ts[n(rrr)] is the kinetic energy of the ground state of non-interacting elec-

trons with density n(rrr). The Euler-Lagrange equations are obtained by min-
imization of functional E[n(rrr)] with respect to density, leaving the particle

number unchanged:

δTs[n(rrr)]
δn(rrr)

|n=n0
+ v(rrr)− ε = 0 , (2.16)

where n0(rrr) is the exact ground state density for v(rrr) and ε is a Lagrange mul-

tiplier to assure particle number conservation. In the non-interacting case we

know that the ground state density and energy can be determined by calculat-

ing the eigenfunctions Φi and eigenvalues εi of non-interacting single-particle
equations (

−1

2
∇2 + v(rrr)− εi

)
Φi(rrr) = 0 . (2.17)

Let us now consider the problem of interacting electrons, we can deliberately
write the functional F [n(rrr)] in Eq. (2.13) in the form

F [n(rrr)] = Ts[n(rrr)]+
1

2

∫ n(rrr)n(rrr′)
|rrr − rrr′| d3rd3r′ +Exc[n(rrr)] , (2.18)

where Ts[n(rrr)] is the kinetic energy functional for non-interacting electrons
and Exc[n(rrr)] is the so-called exchange-correlation energy functional. The cor-
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responding Euler-Lagrange equation for a fixed number of electrons has the

following form
δTs[n(rrr)]

δn(rrr)
|n=n0

+ veff(rrr)− ε = 0 , (2.19)

where

veff(rrr) = v(rrr)+
∫ n(rrr′)

|rrr − rrr′|d
3r′ + vxc(rrr) (2.20)

and

vxc(rrr) =
δExc[n(rrr)]

δn(rrr)
|n=n0

. (2.21)

The form of Eq. (2.19) is identical to that of Eq. (2.16) for non-interacting
particles moving in an effective external potential veff(rrr), so we conclude that
the ground-state density n0(rrr) can be obtained by solving the single particle

equation (
−1

2
∇2 + veff(rrr)− εi

)
Φi(rrr) = 0 , (2.22)

with

n0(rrr) =
N

∑
i=1

|Φi(rrr)|2 . (2.23)

The equations (2.20), (2.22) and (2.23) are the so-called KS equations. In prac-
tice, they are solved by iteration (self-consistent approach): a form is guessed
for the density n(rrr), a potential veff(rrr) is then calculated by Eq. (2.20), the KS
orbitals are obtained by Eq. (2.22) and finally a new density is calculated by
Eq. (2.23). The procedure is continued until further iterations do not materi-
ally alter the density or the potential. The ground-state energy is then given
by:

E0 = ∑
i

εi +Exc[n0(rrr)]−
∫

vxc(rrr)n0(rrr)d3r − 1

2

∫
n0(rrr)n0(rrr′)
|rrr − rrr′| . (2.24)

Ideally, with the exact Exc and vxc, all many-body effects would be in
principle included in the calculation.
In conclusion, the many-body problem has been mapped into an effective
single-particle problem of an electron moving into an effective potential
veff(rrr).
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2.4 Approximations for the Exchange-Correlation
Potential

The simplest and at the same time most successful approximation to Exc[n(rrr)]
is the local-density approximation (LDA),

ELDA
xc ≡

∫
εxc(n(rrr))n(rrr)d3r , (2.25)

where εxc(n(rrr)) is the exchange-correlation energy per particle of an uniform
electron gas of density n(rrr). The exchange part of εxc is elementary [23],

while the correlation part was first estimated in 1934 by E. Wigner [24] and

more recently with precision about 1% by Ceperley and Alder [25]. LDA has

been found to perform remarkably well for a range of applications incredi-

bly large. Experience has shown that LDA gives ionization energies of atoms,

dissociation energies of molecules and cohesive energies with an error typ-

ically within 10-20 % [26]. However LDA fails in strongly correlated elec-

tron systems, like heavy-fermion materials, since they lack any resemblance

to non-interacting electron gases. In many applications an improvement of

LDA method is achieved by the generalized gradient approximation (GGA)

to Exc[n(rrr)], by means of a functional of the density and its gradients that
fulfills a maximum number of exact relations,

EGGA
xc [n(rrr)] =

∫
f (n(rrr), |∇n(rrr))|d3r . (2.26)

In this case the exchange-correlation potential vxc(rrr) in Eq. (2.21) becomes

vxc[n(rrr)] =
δExc[n(rrr)]

δn(rrr)
−∇ · δExc[n(rrr)]

δ∇n(rrr)
. (2.27)

The gradient of the density is usually determined numerically. In practice
GGA approximation often improves LDA in the calculations of the structural
properties of metals, like equilibrium volume, bulk modulus and transition
pressure between solid phases [26]. One of the most common GGA approxi-
mation is, for example, the Perdew-Wang-91 functional [27].
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3. The APW+lo Basis Set

The practioners of density functional theory are divided in two communities:

those that are using plane-waves basis set, mathematically simple and conse-

quently easier to handle in programming but in principle less efficient; and

those that are utilizing more complex but more efficient basis sets, such as

the linearized muffin-tin orbital (LMTO) and augmented plane-wave (APW)

based basis sets. The latter methods do not need a pseudo-potential to treat

the electrons closer to the nucleus since they include all electrons explicitly in

the calculation. Experience has shown that the all-electron approach is more

accurate than pseudo-potentials in treating the properties of d and f -band ma-
terials, especially non-collinear magnetism [28, 29].

The APW+lo [30, 31, 32] method is a generalization and improvement of
the original APW method of Slater [33]. Hence we will first review the origi-
nal APW method and explain the motivations that lead to the APW+lo exten-
sion.

3.1 APW Method

Slater clearly explains the essence of the APW basis set in his 1937 pioneer-
ing paper [33]: near an atomic nucleus the potential and wave-functions are
similar to those in an atom, they are strongly varying and almost spherical. In
the interstitial space between the atoms both the potential and wave-functions
are smoother and slowly varying. Accordingly to this observation, it is con-
venient to divide space into two regions where different basis expansions are
used: radial solutions of Schrödinger’s equation inside spheres Sα centered
at atom α and planewaves in the remaining interstitial region I. The two sets

are then matched at the sphere boundary. Every sphere has a non-overlapping

muffin-tin (MT) radius RMT
α . The Kohn-Sham wave-function is then expanded

over basis functions φkkk+GGG(rrr) defined by

φkkk+GGG(rrr) =
1√
Ω

eikkk·rrr for rrr ∈ I , (3.1)

φkkk+GGG(rrr) = ∑
α�m

Aα
�m(kkk +GGG)u�m(rα)Y�m(r̂α) for rrr ∈ Sα . (3.2)
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Here Ω is the unit cell volume, rrrα = rrr − RRRα , with RRRα position of the sphere

α , Aα
lm(kkk+GGG) are the matching coefficients, Y�m(r̂α) are spherical harmonics,

and, finally, u�m(rα) are solutions of the radial Schrödinger equation:[
− d2

dr2
α

+
�(�+1)

r2
α

+ veff,α(rα)−E�

]
ru�(rα) = 0 . (3.3)

Here veff,α refers to the spherical component of the effective KS potential
inside the sphere α , E� is a parameter. In order to determine the matching

coefficients we expand Eq. (3.1) with Rayleigh formula,

eikkk·rrrα = 4π ∑
lm

il j�(krα)Y�m(r̂α)Y ∗
�m(k̂) , (3.4)

where j�(krα) are spherical Bessel functions and rrrα is a point on the surface of

the sphere. We write eikkk·rrr = eikkk·RRRα eikkk·rrrα , we multiply Eq. (3.4) by Y ∗
�m(r̂α) and

we integrate over the sphere. Inside the MT sphere we use Eq. (3.2), again we
multiply by Y ∗

�m(r̂α) and we integrate over the sphere. Finally the continuity

of the basis functions φkkk(rrr) at the sphere boundary gives us the following
condition for the matching coefficients:

Aα
lm(kkk +GGG) =

4π√
Ω

i� j�((k +G)RMT
α )Y ∗

�m( ̂k +G)
u�(RMT

α )
. (3.5)

If E� is taken as a fixed parameter, rather than a variational coefficient, the
APW method would simply amount to the use of the APWs as a basis. This
would result in a secular equation,

det[H −EO(E)] = 0 , (3.6)

that is non-linear in energy. Here H and O refer, respectively, to the Hamil-

tonian and the overlap matrix (the APW are not orthogonal hence O is non
trivial). The solution of this secular equation would then yield the band en-
ergies and wave-functions, but only at the energy E�. The lack of variational
freedom does not allow for changes in the wavefunction as the band energy
deviates from this reference. Accordingly, E� must be set equal to the band
energy. This means that the energy bands at a fixed k-point cannot be obtained
from a single diagonalization of Eq. (3.6). Rather it is necessary to determine
the secular determinant as function of energy and determine its roots, and this
a very computationally demanding procedure. A short-cut to this procedure is
given by the method of meta-eigenvalues of Sjöstedt and Nordström [34], but
still it would be needed more than one diagonalization of the secular matrix
for every k-point.
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3.2 Introduction of Local Orbitals

The secular equation Eq.(3.6) can be linearized by adding some local or-
bitals [30] (lo) to the APW basis functions,

φlo(rrr) = 0 for rrr ∈ I , (3.7)

φlo(rrr) = [aα
�muα

� (rα)+bα
�mu̇α

� (rα)]Y�m(r̂α) for rrr ∈ Sα . (3.8)

Here u̇(rα) refers to the spatial derivative of the solution u(rα) of the radial
Schrödinger equation. Usually the lo’s are evaluated at the same fixed energy
E� of the corresponding APW’s. The addition of these function removes the

strong energy dependence of the matrices H and O by making the secular
equation linear in energy within a certain region. All eigenvalues within this
region can then be found from a single diagonalization of the secular matrix.
The error in this procedure is of the order (ε −ε0)2 for the wavefunction, and,

consequently it goes (ε − ε0)4 for the band energies, where ε and ε0 indicate,
respectively, the chosen linearization energy and the exact solution. Finally,
the choice of the appropriate set of lo’s in the semi-core energy region (at the
boundary between the lowest lying states, the so-called core states, and the
valence ones) increases the flexibility of the basis set such that the semi-core
states are correctly described [31].

3.3 Treatment of Core Electrons

For large atoms with many electrons, the core states are well localized inside
the MT spheres. The APW+lo method is an all-electron method, this means
that the core electrons state are not replaced by a pseudo-potential but they are
explicitly included in the calculation [28]. The high kinetic energy of these
core electrons makes relativistic effects important and instead of solving the
Schrödinger equation for these states, we solve the Dirac equation with only
the spherical part of the potential. At the sphere boundary the core wave-
functions and their derivatives are assumed to vanish. Also the core wave-
functions are assumed to be orthogonal to any valence state.
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4. Intra-atomic Non-collinear
Magnetism

4.1 Spin-dependent DFT

Density functional theory has been generalized to the spin-dependent case by

Von Barth and Hedin [35]: the density ρ(rrr) becomes a 2x2 matrix

ρ(rrr) =
(n(rrr)I +mmm ·σσσ)

2
, (4.1)

where I is the 2x2 identity matrix and σσσ = (σx,σy,σz) refers to the Pauli ma-

trices. The new physical quantity, beside the charge density n(rrr), is the vector
magnetization density mmm(rrr). The effective Kohn-Sham (KS) potential, which

has been defined through functional derivatives of the total energy functional

by respect to the density, also becomes a 2x2 matrix,

Veff(rrr) = veff(rrr)I −bbb(rrr) ·σσσ . (4.2)

The non-magnetic part of the potential veff(rrr) includes the Hartree term, the
nuclei attraction and the exchange-correlation potential vxc(rrr), while the mag-

netic potential bbb(((rrr))) only receives contributions from the exchange-correlation
functional. In the spin-polarized version of LDA approximation the exchange-
correlation functional is expressed as [35]

Exc[n(rrr),mmm(rrr)] =
∫

n(rrr)εxc(n(rrr), |mmm(rrr)|)d3r , (4.3)

where εxc(n,m) is the exchange-correlation density for a spin-polarized homo-
geneous electron gas with charge density n and magnetization density of mag-

nitude m. The functional form of εxc(n,m) has been parametrized in different
ways [35, 25, 36]. The non-magnetic scalar exchange correlation potential is
derived from LDA exchange correlation energy as

vxc(rrr) =
δExc

δn(rrr)
= εxc(n(rrr), |mmm(rrr)|)+n(rrr)

[∂εxc(n,m)
∂n

]
n=n(rrr),m=|mmm(rrr)|

, (4.4)

and the magnetic potential, which now assumes the form of a magnetic field,

is derived as

bbb(rrr) = − δExc

δmmm(rrr)
= −m̂mm(rrr)n(rrr)

[∂εxc(n,m)
∂m

]
n=n(rrr),m=|mmm(rrr)|

, (4.5)
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where m̂(rrr) = δ |mmm(rrr)|
δmmm(rrr) is the direction of the magnetization density vector at

the point rrr. As it is clear from Eq. (4.5), the potential bbb(rrr) is constructed to be

parallel to the magnetization density mmm(rrr) at every point.
In the spin-polarized case the KS Hamiltonian [37] is expressed as

H = [−∇2/2+Veff(rrr)]I −bbb(rrr) ·σσσ . (4.6)

The charge density and magnetization are constructed by summing over the
occupied states,

n(rrr) =
occ

∑
i

Φ†
i (rrr)Φi(rrr) (4.7)

and

mmm(rrr) =
occ

∑
i

Φ†
i (rrr)σΦi(rrr) , (4.8)

where Φi are the eigenfunctions of the Hamiltonian in Eq. (4.6). A

self-consistent (SC) solution of the problem is obtained when the input

charge and magnetization density produce the same output charge and

magnetization density. We emphasize that also the non-collinearity of the

magnetization density is given by this SC procedure. This approach to

non-collinear magnetism is the most general, i.e. the magnetization density

is treated as a continuous vector both in direction and magnitude at every

point in space [29]. In Fig. 4.1 , as example, we show the non-collinear

magnetization density in US. Collinear magnetism can be interpreted as a

special case in which the magnetization density is parallel, at every point,

to a global direction ê. In this case we can define spin-up and spin-down
potentials and the KS Hamiltonian in Eq. (4.6) can be transformed into a
block diagonal form.

4.2 Spin-spirals

The formalism described above is applicable to cases where the magnetic unit
cell is identical to the unit cell utilized in the calculation. Herring [38] has
shown that non commensurate helical or cyclic waves, often referred as spin-
spirals, can be treated with the chemical unit cell, instead of the magnetic
one. This approach is valid only if the spin space can be decoupled to the
lattice, or real space, i.e. if the spin-orbit coupling (SOC) interaction can be
neglected [39]. A spin-spiral with wave-vector qqq is defined by its translational

properties,
T mmm(rrr) = mmm(rrr +RRR) = R(qqq ·RRR)mmm(rrr) , (4.9)
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Figure 4.1: Magnetization density in xy plane, mmmxy(rrr), of the cubic cell of US,

a = 10.36 a.u., with moments along [001] calculated with LDA+U method. The slice

corresponds to z = 0.55a and the U atom is at the center of the cell. The arrows indi-

cate the direction of mmmxy(rrr) and the colors indicate its magnitude, with red and blue

referring, respectively, to the largest and smallest value. The magnetization density is

treated as a continuos vector field [29].
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where R(φ) is a rotation by the angle φ = qqq ·RRR around a certain axis and RRR is

a lattice vector. It is convenient to take such axis parallel to qqq in real space and
parallel to z in spin space; we are allowed to do that since spin and real space
are not coupled in absence of SOC interaction. The x and y components of

the magnetization will continuously rotate while the spiral propagates along

qqq. If the z component of the magnetization is zero, we will refer to the spiral

as planar, otherwise as conical. We now introduce a generalized translation

operator, TR = R−1T such that TRmmm(rrr) = mmm(rrr). This relation will also hold

for the magnetic field bbb(rrr), that is constructed to be parallel to mmm(rrr) at every
point. In order to make efficiently use of fast Fourier transforms it is conve-
nient to define new complex densities u(rrr) and h(rrr) [29], which are invariant

under translation T by construction,

u(rrr) = e−iqqq·rrr[mx(rrr)+ imy(rrr)] (4.10)

and
h(rrr) = e−iqqq·rrr[bx(rrr)+ iby(rrr)]. (4.11)

The KS Hamiltonian is rewritten in terms of these new densities

H = [−∇2/2+ veff(rrr)]I − [eiqqq·rrrh(rrr)σ− +H.c.]−bz(rrr)σz, (4.12)

where σ± = 1
2(σx ± iσy). This Hamiltonian is diagonalized by the generalized

Bloch spinors [38]

Φ jkkk(rrr) =

(
ei(kkk−qqq/2)·rrrα jk(rrr)
ei(kkk+qqq/2)·rrrβ jk(rrr)

)
, (4.13)

where α and β are translationally invariant functions. From these wavefunc-
tions we can construct the new densities [29], for example

u(rrr) =
occ

∑
jkkk

Φ†
jkkk[2e−iqqq·rrrσ+]Φ jkkk. (4.14)

In Fig. 4.2 we show an example of SC spin-spiral calculation for Fe-fcc by
applying the method described above that we implemented in the full-potential
APW+lo code Elk [40].

4.3 Spin-orbit Interaction

The SOC term is important for the band structure and many properties of
materials containing heavier elements, as well as for some properties, like
the magneto-crystalline anisotropy, of lighter magnetic materials. The corre-
sponding SOC interaction that enters in the KS Hamiltonian is [41, 42, 43]:
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Figure 4.2: Energy difference (upper panel) and magnetic moment (lower panel) of

planar spin-spirals in Fe-fcc, a = 6.82 a.u., as function of the spin-spiral wave vector

qqq.

HSOC = ξ (r)lll · sss =
1

2α

(
1

r
dveff(r)

dr

)
lll · sss . (4.15)

Here α is the fine structure constant, veff is the spherical part of the KS effec-

tive potential and lll and sss are, respectively, the single particle spin and angular
momentum operators. There is some ambiguity about whether or not include
the contribution from the exchange potential vxc in the calculation of SOC
parameter ξ (r). However, in practice, the consequences of doing this are neg-
ligible and we decide to include it [41].

The term HSOC can be rewritten by using the raising (lowering) spin and
angular momentum operators, respectively, l+ (l−) and s+ ( s−),

HSOC =
1

4α

(
1

r
dveff(r)

dr

)
(l−s+ + l+s− +2lzsz). (4.16)

The SOC interaction couples spin-up and spin-down terms, i.e. a calculation
including SOC interaction has to necessarily include off-diagonal spin ele-
ments in the Hamiltonian.
In APW+lo method the SOC interaction is only applied inside the MT sphere,
where the basis function are expanded in spherical harmonics. An example
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of band structure calculated with SOC interaction is shown in Fig 4.3 for

PuCoGa5, where we can clearly observe an energy split between the j = 5/2
and j = 7/2 states of the order of 1 eV.
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Figure 4.3: Band structure of PuCoGa5 in AF-1kkk, kkk = (0,0,1/2), calculated with

LDA approximation. The fatness of bands indicates the amount of j = 5/2 character

(left panel) and j = 7/2 character (right panel). The zero of the energy is set at the

Fermi level.

4.4 Second-variational Approach to Magnetism

The non-magnetic KS Hamiltonian is set up with the full basis set of dimen-

sion N (first-variational step). Once this Hamiltonian is diagonalized, only
n 
 N states per spin channel are retained to set up the spin-polarized Hamil-

tonian (second-variational step) [28] with the inclusion of eventual SOC and

LDA+U terms. Since the matrix diagonalization time scales like the cube of

the matrix dimension, this method becomes computationally very convenient,

especially in a non-collinear calculation where spin-up and spin-down wave-

functions are coupled, as we show in Tab. 4.1. By adopting this approach we

are assuming that magnetism, SO coupling and LDA+U terms are perturbative
corrections to the non-magnetic Hamiltonian, i.e. that the new solution can be
well described with only a subset of the first-variational eigenvectors. As it is
shown in Fig. 4.4, the dimension of this subset n is a convergence parameter

that has to be checked in the calculation.
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Table 4.1: Comparison of time-scaling of Hamiltonian diagonalization in a calcula-
tion that makes use of the second-variational step and in one that performs a full
diagonalization in a single step. N indicates the full dimension of the basis set, while
n is the number of states per spin that are retained in the second-variational step.

Collinear calculation

Full diagonalization in one step Second-variational approach

2N3 N3 + 2n3

Non-collinear calculation

Full diagonalization in one step Second-variational approach

(2N)3 N3 + (2n)3
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Figure 4.4: Convergence of total energy and magnetic moment in Fe bcc, a =
5.416 a.u., by respect to parameter nempty that governs the dimension of the second-

variational Hamiltonian. The number n of second-variational states per spin is n =
nval/2+nempty, where nval = 16 is the valence charge used for Fe.
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4.5 Fixed Spin Moment Calculations

An effective magnetic field, bbbFSM, is required for fixing the spin moment to a
given value MMMFSM in the MT sphere or in the whole cell. This field is deter-

mined by adding a vector to the field which is proportional to the difference

between the moment calculated in the ith self-consistent loop, MMMi, and the

required moment MMMFSM:

bbbi+1
FSM = bbbi

FSM + γ
(
MMMi −MMMFSM

)
, (4.17)

where γ is a parameter to be adjusted in order to optimize the convergence.

For example, the total energy as function of collinear MMMFSM for NiO is plotted
in Fig. 4.5, where the minimum corresponds to M = 1.73 μB in agreement

with a non-constrained calculation.
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Figure 4.5: Total energy as function of constrained spin moment in NiO AF-II mag-

netic structure, a = 7.89 a.u., treated with LDA+U method (U=8 eV and J=0.9 eV).

Here the the convergence parameter γ in Eq. 4.17 is set equal to 0.01.
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5. A General Form of LDA+U Method

In the following chapter we will introduce the LDA+U scheme with one

single parameter and introduce its multipole decomposition, for reference see

also paper II.

In the most general version of LDA+U method [10, 9, 44], an Hartree-Fock
(HF) correction to the energy enters with the form

EHF =
1

2
∑

abcd
ρac [〈ab|g|cd〉−〈ab|g|dc〉]ρbd , (5.1)

where ρab is one element of the density matrix with dimension D = 2[�], with

[�] = 2(�+1), which acts as an occupation matrix and a, b, c and d are single
electron states. The interaction term is of the form

〈ab|g|cd〉 =
∫

ψ†
a (1)ψ†

b (2)g(r12)ψc(1)ψd(2)d(1)d(2) , (5.2)

with one-electron states a with wavefunction ψa(1) = R�(r1)Y�ma(Ω1)χsa(1),
where the relevant quantum numbers, m and s, are the magnetic quantum num-
ber and spin component, respectively. The interaction can be expanded in a
series

g(r12) =
∞

∑
k=0

gk(r1,r2)Pk(cosθ12) , (5.3)

where the Legendre function Pk in turn can be expanded by the use of the
addition theorem for spherical harmonics

Pk(cosθ12) =
4π

2k +1

k

∑
q=−k

Y ∗
kq(Ω1)Ykq(Ω2) . (5.4)

5.1 Slater Integrals Screened by Yukawa Potential

The radial part of the interaction is then contained in the Slater integrals

F(k) =
∫

dr1r2
1R2

�(r1)gk(r1,r2)R2
�(r2)r2

2dr2 . (5.5)
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For a f shell there are four independent parameters, F(0) = U , F(2), F(4) and

F(6). It is very unpractical to stay with these four parameters. A common prac-
tice within LDA+U or HF calculations [9, 44, 45] is to have the screened Slater
parameters determined by the choice of two linear combinations of parame-
ters, U and J, and by fixing two ratios, A1 = F(4)/F(2) and A2 = F(6)/F(2). In
the present work we will instead follow the ideas of Norman [46] and calcu-
late the Slater parameters directly from a screened Coulomb interaction in the
form of a Yukawa potential g(r1,r2) = e−λ r12/r12. Then

gk(r1,r2,λ ) = −[k]λ jk(iλ r<)h(1)
k (iλ r>) , (5.6)

where jk is a spherical Bessel function, h(1)
k is spherical Hankel function of

the first kind and r< and r> are, respectively, the smaller and the larger radius
entering in the double integral in Eq. (5.5). This type of approach has two ad-
vantages; it determines the ratio between the different Slater parameters in a
more physical way than by choosing U and J individually, and there is only

one independent parameter, the screening length λ . Since in the APW+lo basis
set R�(r,ε) is energy dependent, we decide to use the energy ε at the center of

the band of the localized shell �. We also set the atomic muffin-tin (MT) radius
to a value large enough such that the integrals in Eq. (5.5) are well converged.
In the upper part of Fig. 5.1 we plot the calculated Slater parameters for US.
These values are in perfect agreement with ones calculated for the ion U4+ by
Norman [46] with the same screened potential. In the lower part of Fig. 5.1 we
compare the Slater integrals ratios A1 and A2 obtained for US with the fixed
ratios commonly used in most LDA+U studies [9, 47]. There is a good agree-

ment only at small values of the screening length. For λ ≥ 0.5 a.u.−1 there
start to be a significative difference that turns out to be relevant in the calcula-
tion of magnetic moments of US. If the F(k)s are calculated individually with

Eq. (5.5) and Eq. (5.6), the spin moment (Msp) and orbital moment (Morb)
show a more dramatic variation as function of U (or λ ) than ones determined

by fixing A1 and A2 to values of Ref. [9, 47] (see Fig. 5.2). This fact indi-
cates how relevant the individual determination of every Slater integral might
be in many systems. Finally, another advantage of this approach is that in the
limit of large λ one recovers the LDA results. Another parameter-free method

to screen the Slater parameter has been suggested by Brooks [48], where the

screening parameter λ is identified as the Thomas-Fermi screening, which
depends on the local charge density. A more accurate but time-consuming
way to calculate the Slater parameters from the screened Coulomb potential is
within the RPA approach, as it has been recently accomplished by Solovyev
in Ref. [49].
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Figure 5.1: Upper panel: Slater parameters F(0) (full black line), F(2) (red line with

squares), F(4) (green line with diamonds), F(6) (blue line with circles) and parameter J
times 10 (dashed black line) as function of screening length λ of the Yukawa potential

in US. Lower panel: comparison of Slater parameters ratios A1 = F(4)/F(2) (red lines)

and A2 = F(6)/F(2) (black lines) calculated by a screened Yukawa potential (full line

with squares for A1, full line with circles for A2) with the fixed ones of Ref. [9, 47]

(full line for A1, dashed line for A2) and of Ref. [45, 46] (dashed-dotted line for A1,

dotted line for A2).

5.2 Calculation of LDA+U Potential

The contribution to the orbital potential from the LDA+U correction is defined

as

Vi j =
δEHF

δρ ji
= ∑

ab
[〈 ja|g|ib〉−〈 ja|g|bi〉]ρab . (5.7)

We note that the potential so defined is the complex conjugate of the one

sometimes stated in literature.The correct definition becomes crucial to evalu-

ate off-diagonal spin terms in all calculations in which the coordinate system

is not rotated to the local one, i.e. in all calculations in which the density ma-

trix is not diagonal.

5.3 Double-Counting Corrections

A major obstacle in the LDA+U approach is that the electron-electron interac-
tion has already been included in LDA potential, thus a simple addition of the
orbital dependent HF potential would lead to DC terms. One may want to in-
dividuate those terms in the LDA potential that correspond to the interaction
already considered in the HF Hamiltonian and subtract them. A direct con-

35



0.5

1

1.5

M
sp

 (
μ Β

)

∞ 5.7 3.9 3.1 2.6 2.2
λ (a.u.

 -1
)

0 0.4 0.8 1.2 1.6 2
U  (eV)

-2.5

-2

-1.5
M

or
b

(μ
Β
)

Figure 5.2: Spin (upper panel) and orbital magnetic moment (lower panel) of US,

a = 10.36 a.u., calculated with LDA+U approach and INT DC (see section 5.3). We

compare the results obtained by calculating the F(k)s with a screened Yukawa po-

tential (full black line, screening length in the upper axis) with ones obtained by

fixing the ratios A1 and A2 to ones of Ref. [9, 47] (dashed red line) and to ones of

Ref. [45, 46] (dashed-dotted blue line). In the fixed ratios calculations we fixed the

parameter J=0.46 eV to one of Ref. [45].

nection between the two formalisms is not possible and in addition it would

not be useful. In fact LDA approximation treats very accurately spatial vari-

ations of the Hartree and exchange correlation potential but it neglects the

orbital dependence of the Coulomb interaction. Thus the best recipe would

be to identify the mean-field part of the HF potential and subtract it, leaving

only an orbital dependent correction to the mean-field type LDA potential.

Czyżyk and Sawatzky [50] suggested a prescription that is exact in the case
of uniform occupancies (around-mean-field, AMF) and that would be realistic
for weakly correlated systems, however not exact because of the presence of
the crystalline field. The AMF correction is implemented by redefining a new
density matrix without the charge n and the magnetization mmm contributions

n = Trρ (5.8)

mmm = Trσσσρ , (5.9)

in the following way

ρ̃ab = ρab − (δabn+σσσab ·mmm)/D . (5.10)
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The AMF-double-counting corrected LDA+U energy and potential terms be-

come in our formalism

EAMF
HF−dc =

1

2
∑

abcd
ρ̃ac [〈ab|g|cd〉−〈ab|g|dc〉] ρ̃bd , (5.11)

V AFM
i j =Vi j −∑

ab
[〈 ja|g|ib〉−〈 ja|g|bi〉] (δabn+σσσab ·mmm)/D =

∑
ab

[〈 ja|g|ib〉−〈 ja|g|bi〉] ρ̃ab .
(5.12)

For strongly correlated systems it exists another prescription, the fully-
localized-limit (FLL) double-counting [9], that would correspond to subtract
the average effect for a localized state, with integer occupation number. The
most general expressions for energy and potential are

EFLL
dc = {2Un(n−1)−2Jn(n/2−1)− Jmmm ·mmm}/4 , (5.13)

V FLL
i j = Vi j −

[
U(2n−1)

2
− J(n−1)

2

]
δi j +

Jmmm ·σσσ i j

2
. (5.14)

Most of LDA+U calculations use one of these approaches, while the real oc-
cupation numbers lie somewhere between the two limits. Petukhov et al. [12]
proposed a linear interpolation between these two limits (INT DC),

EINT
HF−dc = αEFLL

U−dc +(1−α)EAMF
U−dc , (5.15)

V INT
i j = αV FLL

i j +(1−α)V AMF
i j , (5.16)

in which the parameter α is a material dependent constant determined in a
self-consistent (SC) way following a constrained-DFT philosophy. In our for-
malism the expression of α of Ref. [12] is generalized to take into account the
off-diagonal spin terms of the density matrix,

α =
DTr ρ̃2

Dn−n2 −m2
, (5.17)

where n and m are defined in Eq. (5.8).

In the present study we prefer to use the INT DC approach for two rea-
sons. Firstly, it reduces one further free parameter. The results do depend on
the choice of DC, but if we stay consequently with the INT DC this degree
of freedom is gone since we can in principle treat both more itinerant and
more localized system. Secondly, it turns out that the use of the INT DC is
very important to reproduce the correct magnetic structure of monopnictides
Pu compounds. In Fig. 5.3 we compare Msp and Morb calculated for the fer-
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romagnetic PuS [51] with ones calculated for the paramagnet PuP [51]. For

AMF type of DC, Msp and Morb of both compounds decrease dramatically un-
til they disappear at U ≈ 2.0 eV. Instead, by using FLL DC, Msp and Morb de-
crease significantly but they never disappear for any value of U . Finally, only

by using the INT type of DC, we find a range of values for U (U � 4.0 eV) in
which PuS is magnetic and PuP is non-magnetic. In conclusion we have im-
plemented the LDA+U method in the most general form in the full-potential
APW+lo code ELK [40], taking into account the off-diagonal spin terms of
the density matrix and the correct definition of the potential for those terms.
By using the interpolated DC of Petukhov et al. [12] and by calculating SC
the F(k)s with a Yukawa potential, our LDA+U approach has only one free

parameter left, i.e. the screening length λ , or if preferable U .

5.4 Multipole Representation of LDA+U Energy

The formalism up to now is standard and have been used several times be-
fore, although some studies have neglected the spin-mixing terms in Eq. (5.1).
Within this formalism the density matrix plays a crucial role. The density
matrix is a complex 2[�]× 2[�] hermitian matrix, this means that it has 4[�]2

independent elements. In order to analyze this fairly large matrix, we will
decompose it into the most important and physical relevant terms. We will
find that this decomposition largely simplifies the analysis, as well as it gives
many new insights into the magnetism of the actinides, where the SOC plays
a crucial role. The interaction term in Eq. (5.1) have been studied in detail, for
example by Slater [52], Racah [53, 54, 55, 56] and Condon and Shortly [43].
By expanding the interaction in spherical harmonics and by making use of the
Wigner-3j symbols [43] the interaction can be expressed as

〈ab|g|cd〉 =δsascδsbsd [�]
2

2�

∑
k=0

k

∑
q=−k

(−1)ma+mb+q

×
(

� k �

0 0 0

)2(
� k �

−ma −q mc

)
F(k)

(
� k �

−mb q md

)
.

(5.18)

The spin dependence is given by the two delta functions of the spin quantum
numbers of states a, b, c and d. The radial dependence is confined in the Slater
integrals F(k) and the Wigner-3j symbols take care of the angular part of the

integral. We now introduce a multipole momentum tensor wwwk defined as the
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Figure 5.3: Msp (red lines) and orbital Morb (blue lines) magnetic moments of para-

magnetic PuS (full line with squares for Msp, full line with circles for Morb), a =
10.46 a.u., and ferromagnetic PuP (dashed line for Msp, dashed-dotted line for Morb),

a = 10.49 a.u., as function of U for different types of DC. The Slater parameters are

calculated SC by using a Yukawa potential with screening length λ reported in the

upper axis. For AMF DC the moments vanish in both compounds at U ≈ 2.0 eV, for

FLL DC both compounds stay magnetic for all values of U . Only for the INT DC

there is a range of U (U � 4.0 eV) for which we obtain the experimental magnetic

structure of both compounds [51]; PuS becomes non magnetic while PuP stays mag-

netic. The green lines refer to the 5 f charge of PuS (full line with triangles) and PuP

(dotted line). The black lines refer to INT DC factor α of PuS (full line) and PuP

(dashed-two-dots line).

39



expectation values of a tensor operator vvvk,

wk
x = Trvk

xρ , (5.19)

vk
x ≡

〈
mb|vk

x|ma

〉
= (−1)�−mb

(
� k �

−mb x ma

)
n−1

�k , (5.20)

n�k =
(2�)!√

(2�− k)!(2�+ k +1)!
. (5.21)

If we view Eq. (5.19) as a transformation from ρ to wwwk , we can see that it is
possible to invert it by utilizing an orthogonality property of 3j-symbols,

∑
kx

[k]

(
� k �

−ma x mb

)(
� k �

−mc x md

)
= δ (ma,mc)δ (mb,md) . (5.22)

The inverse of Eq. (5.19) is then

ρab = (−)mb−� ∑
kx

[k]

(
� k �

−mb x ma

)
n�kwk

x . (5.23)

The spin independent part of the HF energy (the Hartree term) is defined as

EH =
1

2
∑

abcd
ρac 〈ab|g|cd〉ρbd . (5.24)

By now substituting in this expression Eq. (5.23) and Eq. (5.18) and by using

the orthogonality relation

∑
bd

(−)mb+md [k1]

(
� k1 �

−md x mb

)
×

(
� k2 �

−mb q md

)
= δ (k1,k2)δ (x,q) ,

(5.25)

we obtain a simple expression of the Hartree term in terms of tensor moments,

EH =
[�]2

2

2�

∑
k=0

n2
�k

(
� k �

0 0 0

)2

F(k)wwwk ·wwwk , (5.26)

where the scalar product is defined as

wwwk ·wwwk =
k

∑
q=−k

wk
qwk

−q . (5.27)
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In order to take care of the spin dependence we may introduce a double

tensor

wkp
xy = Trvk

xt p
y ρ (5.28)

t p
y = (−1)s−sb

(
s p s

−sb y sa

)
n−1

sp . (5.29)

It is easy to verify that wwwk0 = wwwk. Again Eq. (5.28) can be inverted in a com-
pletely analogous way to Eq. (5.19),

ρac =∑
kx

[k]nlk(−)mc−�

(
� k �

−mc x ma

)
∑
py

[p]nsp(−)sc−s

×
(

s p s
−sc y sa

)
wkp

xy .

(5.30)

The transformations Eqs. (5.28) and (5.30) are one-to-one, as we can easily
verify that the number of parameters are kept. The dimension of ρ is 2[�]×2[�]
which gives (4� + 2)2 independent occupation numbers, since it is complex

hermitian. The new occupation numbers are
[
∑2�

k=0[k]
]× [∑2s

p=0[p]
]

= (4�+

1 + 1)(2�+ 1)/2 × (4s + 1 + 1)(2s + 1)/2 = (4�+ 2)2, with s = 1/2. So we

keep the same degrees of freedom, but now distributed on [�][s] independent
double tensors.
The exchange energy can also be written as function of the tensor components
rather than the density matrix (see Appendix),

EX = −
4�

∑
2k=0

F(k)
2�

∑
k1=0

J(�,k,k1)
1

∑
p=0

wwwk1 p ·wwwk1 p , (5.31)

where the interaction strength J(�,k,k1) is defined as

J(�,k,k1) =
1

4
[�]2[k1](−)k1n2

�k1

(
� k �

0 0 0

)2{
� � k1

� � k

}
. (5.32)

Here the {...} symbol is the Wigner 6 j-symbol. Notice that the 3 j-symbols are
defined such that the contribution from odd k vanish, so only Slater parameters

of even k are needed. This type of expression was derived by Racah [54].
However, since it was derived for atomic configurations only, it has not been
fully realized that it is as valid for non-integer occupations.
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5.5 The Coupling of Indices - Irreducible Spherical
Tensor

It is convenient to introduce the irreducible spherical tensors wwwkpr from the

double tensors wwwkp for two reasons. Firstly, the double tensors are not true
spherical tensors and, secondly, in the presence of SOC the spin and orbital
degrees of freedom are not longer decoupled. The three-index tensors wwwkpr is
defined through a coupling of the indices of the double tensor wwwkp,

wkpr
t = n−1

kpr ∑
xy

(−)k−x+p−y

(
k r p

−x t −y

)
wkp

xy , (5.33)

where the index r runs from |k − p| to |k + p|, and where the normalization
factor nabc is given, as in Ref. [57], by

nabc = ig
[
(g−2a)!(g−2b)!(g−2c)!

(g+1)!

]1/2 g!!

(g−2a)!!(g−2b)!!(g−2c)!!
,

(5.34)

with g = a+b+c. After having introduced the tensor wkpr the transformations
Eqs. (5.28) and (5.30) can be rewritten in a simplified matrix form,

wwwkpr = TrΓΓΓkprρ , (5.35)

and

ρab = ∑
kpr

ΛΛΛkpr
ab ·wwwkpr , (5.36)

where the tensor matrices ΓΓΓ and ΛΛΛ are, respectively, defined as

Γkpr
t,ab =N−1

kpr�s(−)−ma+�−sa+s+k+p ∑
xy

(−)−x−y

(
� k �

−ma x mb

)
×

(
s p s

−sa y sb

)(
k r p

−x t −y

)
,

(5.37)

and

Λkpr
t,ab =Nkpr�s[kpr](−)mb−�+sb−s+r ∑

xy

(
� k �

−mb x ma

)
×

(
s p s

−sb y sa

)(
k r p
x t y

)
.

(5.38)
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Here Nkpr�s = nkprnk�nsp. The reversibility of the transformations is clear from

the fact

TrΓkpr
t Λk′ p′r′

t = (−1)tδkk′δpp′δrr′δtt ′ . (5.39)

The Hartree energy EH of the shell � in terms of the irreducible spherical
tensor moments can be now written as

EH =
[�]2

2

2�

∑
k=0

k

∑
r=−k

n2
�k

(
� k �

0 0 0

)2

F(k)wwwk0r ·wwwk0r . (5.40)

The exchange energy EX of the shell � in terms of the irreducible spherical
tensor moments is now

EX = −
4�

∑
2k=0

F(k)
2�

∑
k1=0

J(�,k,k1)
1

∑
p=0

∑
r

[r](−)k1+p+rn2
k1 prwww

k1 pr ·wwwk1 pr. (5.41)

It is convenient to rewrite Eq. (5.41) in a simplified form,

EX = ∑
k1 pr

Ek1 pr
X = ∑

k1 pr
Kk1 prwwwk1 pr ·wwwk1 pr , (5.42)

where

Kk1 pr =−
4�

∑
2k=0

F(k)J(�,k,k1)[r](−)k1+p+rn2
k1 pr

=−
4�

∑
2k=0

F(k) [�]
2[k1][r]

4
(−)k1 |nk1 pr|2n2

�k1

×
(

� k �

0 0 0

)2{
� � k1

� � k

}
.

(5.43)

Here we substituted the interaction strength J(�,k,k1) defined in Eq. (5.32)
and we used (−)k1+p+rn2

k1 pr = |nk1 pr|2. In Eq. (5.42) the exchange energy
of the shell � is expressed as a sum of independent terms involving different

spherical tensors. We will refer to these terms as different exchange channels.
In Fig 5.4 we plot an example of decomposition of the EX in kpr-channels

for US. In this case we identify three main contributions: the spin polarization

(SP) term 011, the orbital polarization (OP) even term 110 and finally the

high multipole of the magnetization, 615. These results are similar to ones we

obtained in other uranium compounds that will be discussed in chapter 6.
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Figure 5.4: Relevant exchange energy channels Ek1 pr
X in Eq. (5.42) of US calculated

with LDA+U method and INT DC. The Slater parameters are calculated SC by using

a screened Yukawa potential with screening length λ reported in the upper axis.

5.6 Physical Interpretation of Tensor Moments

The tensor moments can be related to a well-defined physical quantities, since
they are proportional to the moment expansions of the charge (k even and

p = 0), spin magnetization (k even and p = 1), current (k odd and p = 0)
and spin current (k odd and p = 1) densities [58]. In table 5.1 we show some
examples. The time reversal parity of wwwkpr is given by (−1)k+p. Hence www101

is also referred to as odd OP, since it breaks the time-reversal symmetry, while
www110 does not and, consequently, it is referred as OP-even polarization and it

is thus compatible with a non magnetic solution, as clarified in paper IV.

5.7 Polarization Channels

The exchange energy channels are not completely independent, since the

spherical tensors have to describe a physical density matrix ρ . Then there is a

restriction that the density matrix needs to have positive eigenvalues between

zero and one, or equivalently

Trρ ≥ Trρ2 . (5.44)
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Table 5.1: Relation between some tensor operators wwwkpr and standard ground state
operators [58].

wkpr
t �-shell

Number operator w000
0 n�

Isotropic SO coupling w110
0 (�s) 1 ∑i llli sssi

Anisotropic SO coupling w112
0 3� 1 ∑i(lzsz

1
3 lll sss)i

Orbital moment w101
0 � 1 ∑i lz,i

Spin moment w011
0 s 1 ∑i sz,i

Charge quadrupole moment w202
0 3[�(2� 1)] 1 ∑i(l2

z
1
3 lll2)i

Magnetic dipole moment w211
0 (2�+3)� 1Tz

When the tensors take as large values as this restriction allows, we say that the
corresponding channel is saturated. A completely unpolarized density matrix
is proportional to the identity matrix, it corresponds to that all spherical ten-
sors are zero except for www00. That makes it natural to talk about polarization
channels, when the spherical tensors acquire non-zero magnitudes. When the
density matrix has integer eigenvalues, i.e. zero or one, we refer to it as fully
polarized or localized. Only in this limit we have the equality in Eq. (5.44). In
order to study general polarizations, we will expand the terms in Eq. (5.44) in
spherical tensors.

By using the representation of the density matrix in Eq. (5.30), the

properties of the Wigner-3j symbols and the fact that www00 = Trρ , we rewrite
Eq. (5.44) in terms of double tensor moments

www00 ∑
kp

[k][p]n2
�kn2

spwwwkp wwwkp . (5.45)

Let us now rewrite Eq. (5.45) in terms of the irreducible spherical tensor wwwkpr,
as defined in Eq. (5.33)

www000 ∑
kpr

[k][p][r]( )k1+p+rN2
kpr�swww

kpr wwwkpr = ∑
kpr

[k][r]
2

nkpr
2n2

lkwwwkpr wwwkpr ,

(5.46)

since [p]nsp = 1/2 for s = 1/2 and p = 0,1. We now subtract the 000 term

from the sum on the RHS and, by considering that www000 = Trρ = n, with n
number of occupied electrons, that n2

�0 = [�] 1 and that n2
000=1, we obtain

www000 1

2[�]
www000 www000 + ∑

kpr=000

[k][r]
2

nkpr
2n2

�k wwwkpr wwwkpr . (5.47)
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Multiplying both sides by 2[�] and rearranging the terms, we obtain

n(2[�] n) = nnh ∑
kpr=000

[�][k][r] nkpr
2n2

�kwwwkpr wwwkpr = ∑
kpr=000

ckpr ,

(5.48)

where nh is the number of holes and ckpr refers to the polarization of channel

kpr. Now the equality corresponds to a fully polarized system, while the un-
polarized case has a vanishing RHS. In the case of itinerant systems the sum
of polarizations is always smaller than nnh since the system is not localized
but only partially polarized. The corresponding exchange energy that is gained
by polarizing these channels can be obtained from Eq. (5.41),

EX = ∑
kpr

Ekpr
X = ∑

kpr
Akprckpr , (5.49)

where

Akpr =
4�

∑
2n=0

[�]
4

(
� n �

0 0 0

)2{
� � k
� � n

}
F(n) . (5.50)

One of the most relevant types of polarization is the so-called spin polarization

(SP), often referred to as Stoner exchange or Hund’s first rule, which corre-

sponds to a polarization of channel 011. Since c011 = m2
spin, we get that the SP

energy ESP is given by,

ESP = A011m2
spin =

1

4

(
U J
2�+1

+ J
)

m2
spin . (5.51)

The so-called Stoner parameter I, defined by ESP = 1
4 Im2

spin, is given by

I =
U J
2�+1

+ J , (5.52)

as it is well known [12]. In this expressions we have adopted the convention
to use the “Hubbard”-parameters, that are a linear combination of Slater pa-
rameters. For d and f electrons U = F(0) and J is expressed respectively as

Jd =
1

14
(F(2) +F(4)) , (5.53)

J f =
2F(2)

45
+

F(4)

33
+

50F(6)

1287
. (5.54)

In Fig. 5.5 we compare for US the relative SP 011, with the polarization of
615-channel, that corresponds to an high multipole of the magnetization. It
is interesting to note that while 011 component is decreasing with increas-
ing U , the 615 component rapidly increases. In our multipole expansion in
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Figure 5.5: Relative polarization of 011 (upper panel) and 615 (lower panel) compo-

nents of tensor moment in US (a = 10.36 a.u.) calculated with LDA+U approach. We

compare the results obtained by calculating the F(k)s with a screened Yukawa poten-

tial (black line, screening length in the upper axis) with ones obtained by fixing the

ratios A1 and A2 to ones of Ref. [47, 9] (red dashed line) and to ones of Ref. [45, 46]

(blue dashed-dotted line). In the calculations with fixed ratios the parameter J has

been set to 0.46 eV [45].

Eq. (5.42) it is also included an exact formulation of the orbital polarization

(OP) exchange energy EOP,

EOP = E101
X +E110

X = K101www101 ·www101 +K110www110 ·www110 , (5.55)

where K101 = 3K110 and www101 · www101 = m2
orb/�2. This expression is a sum of

two terms, the OP-odd 101 term and the OP-even 110 term. Finally the pre-

factor K101 has a simple expression in terms of Racah parameters [47]. For d
and for f electrons K101 is expressed respectively as

Kd
101 = −E0 +21E2

10
, (5.56)

K f
101 = −9E0 +297E3

112
. (5.57)
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6. Analysis of Results and Discussion

In this chapter we shall apply the methods described in the previous sections

to different actinide and Fe-pnictide compounds and discuss the results. In

section 6.1 we will main focus on the explanation of the non-magnetic phase

of δ -Pu (see papers IV and IX). In section 6.2 we will show results for ura-
nium compounds with their large triakontadipole exchange energy channel
(see papers II, III and VIII). Then in section 6.3 we will provide argumen-
tations that this large multipole of the magnetization density constitutes the
HO parameter in the heavy-fermion superconductor URu2Si2 (see paper III).

In sections 6.4 and 6.5, we will underline the central role played by the tri-

akontadipole moments in hexagonal actinide superconductors (paper V) and

in the actinide dioxide insulators (paper VII), respectively. In section 6.6 we

will discuss how these results lead to a formulation of a new set of rules, the

Katt’s rules, that are valid for itinerant systems in case of large spin-orbit cou-

pling (SOC), instead of those of Hund (see paper VIII). Finally, in section 6.7

we show that for the ferro-pnictides, a new class of high-TC superconductors,

a low-spin moment solution is stabilized over a large moment solution, due to

the gain in exchange energy in the formation of large multipoles of the spin

magnetization density (see paper VI).

6.1 Enhancement of Orbital Spin Currents in δ -Pu

In the recent years there have been many attempts to understand the phase
diagram of Pu, especially the formation of its high-temperature and large
volume δ -phase. It was observed that the experimental volume of this
phase could be reproduced in spin-polarized calculations [59, 60]. However
the prediction of any magnetic moment contradicts a large number of
experiments [61]. Recently it was found that a non-magnetic phase with the
correct experimental volume could be obtained by utilizing the LDA+U
approach, with inclusion of the off-diagonal spin terms in the density

matrix [44]. This is a counter-intuitive finding, since the moment of δ -Pu

vanishes by increasing the exchange energy. In this work we applied the

multipole decomposition of the screened Hartree-Fock (HF) exchange

energy in order to understand how the non-magnetic state is stabilized by

the LDA+U approach, as described in paper IV. In Fig. 6.1 we show the

moments and exchange energy channels Ekpr
X , Eq. (5.42), from LDA+U
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calculations of Pu with AMF type of double-counting (DC). Starting from the

magnetic LDA solution with large moments, spin and orbital moments vanish

already for U = 0.8 eV (J=0.68 eV). At the same time, in the exchange
energy the spin polarization (SP) channel 011 is taken over by the orbital
polarization (OP) even channel 110. The OP-odd term 101, related to the
presence of an orbital moment, is barely detectable for low U , and it also

completely vanishes once the 110 channel takes over. We would like to stress

that although there is a small increase in the 5 f occupancy from 5.2-5.5

electrons, it has little influence, in contrast to what has been assumed in other

studies [44, 62]. It is clear from Fig. 6.1 that it is the increase of www110, and
its corresponding energy channel, that stabilizes a non-magnetic solution. As
explained in chapter 5, the time-reversal-even order parameter www110 arises
from spin currents and it is proportional to the spin-orbit-like operator lll · sss.

It corresponds to the situation in which the three components of the spin

current orbit with same magnitude around their respective quantization axis.

Recently there have been indirect measurements of the magnitude of www110 for
several actinides [63, 64] by using a sum rule [65] applied to the branching
ratios from d to f transition. These studies report very large values, not least

for α-Pu and they attribute this to the strong SOC bringing the 5 f states close
to a j j coupling limit. In this work we would like to change this analysis.

While the SOC is important in the actinides, it is not strong enough to bring

by itself the 5 f in the j j scheme. In fact without the screened HF term in

Eq. (5.1) we calculated www110 to be equal to -2.3. While in the presence of
the HF term www110 gets enhanced values between -4.4 and -7.2. These values
have to be compared with the measured value of -5.1 for α-Pu, assuming

a f 5 configuration [65]. The exchange term is then essential to bring the
theoretical www110 to the same magnitude of the experimental value, i.e. to

give rise to enhanced values of the orbital spin currents, www110, obtained in
recent experiments [63, 64]. This finding is also confirmed by a DMFT study
presented in paper IX.
In Fig. 6.2 we plot the magnitude of www110 for other elements of the actinide
series by obtaining a good agreement with the measured ones [3]. The
largest www110 is obtained for non-magnetic Pu and Am, with a value very
close to saturation. Cm shows a much smaller value, in according with the
pronounced shift in the coupling mechanism of 5 f states toward a more
LS-like behaviour [3, 66].

The determination of the equilibrium volume in δ -Pu turned out to be very
sensitive to the choice of the linearization energies of the APWs and of the
local orbitals. If these energies are wisely chosen in the correct energy region
corresponding to j = 5/2 states, we obtain a very good agreement with the
experimental equilibrium volume, as we illustrate in Tab. 6.1 and in Fig. 6.3.
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Figure 6.1: Moments and exchange energies from LDA+U-AMF calculations of fcc

Pu (a = 8.76 a.u) within the FP-APW+lo method. The spin (up-pointing triangles)

and orbital (squares) moments are shown in the bottom part for a varying U but a

constant J = 0.68 eV. Filled symbols indicate the LDA results. Also displayed is the

5 f occupation number (circles) as well as www110 (down-pointing triangles) where the

dashed line indicates the corresponding saturation limit − 4
3 w000

0 . At the top, the most

significant channels of the exchange energy , Ekpr
X , are displayed as lines, with same

notational scheme as for the moments, with the tensor rank identifying each, given in

the legend.

Table 6.1: Comparison of theoretical and experimental equilibrium volume V0 and
bulk modulus B0 of δ -Pu. In our calculations the linearization energies of f -APW+lo

are chosen equal to 3/4 of the Fermi energy in order to accurately describe the j =
5/2 states. We determined the Slater integrals individually through a Yukawa potential
with screening length corresponding to U=4 eV. Fo this U we obtained vanishing
moments both in AMF and in INT LDA+U at all volumes in the range 140-210 a.u.3.
For INT type of DC, the interpolation constant α is fixed to the one obtained at the
experimental volume.

Method V0 [a.u.3] B0 [GPa]

This work AMF LDA+U 169 462

This work INT LDA+U (α=0.8) 174 552

Shick et al. [44] AMF LDA+U 181.5 314

Ledbetter et al. [68] Expt. 168 299
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6.2 Triakontadipoles in Uranium Magnetic
Compounds

In this study we apply the LDA+U method and its multipole decomposition

to a few different magnetic uranium systems (see papers II, III and VIII);

three supposedly normal systems; UAs, US and USb in the NaCl-structure,

and URu2Si2 with its enigmatic HO in the tetragonal ThCr2Si2 structure. We
display the calculated magnetic moments in Fig. 6.4 as unpolarized the pa-
rameter U . We observe that we have a good agreement with the experimental
moments [69] for U in the range 0.6-1.0 eV, which is the range of reason-
able values for the 5 f states of uranium. The magnetic moments are also of

the same magnitude of other studies that go beyond LDA [49, 70]. The cal-

culated spin and orbital moments (Msp and Morb) present slightly different

behaviour for the different compounds. For UAs Morb increases with U in a
monotonous way and Msp is constant, while, for US and USb, Morb reaches

a maximum value around 0.6 eV and Msp decreases in a monotonous way.
The last behaviour is again counter-intuitive as in case of δ -Pu; Msp decreases
by increasing the exchange energy. To better understand this fact we decom-

pose the exchange energy in tensor moment contributions Ekpr
X in Fig. 6.4.

Like in δ -Pu we observe that the SOC-like multipole www110 has a large con-
tribution to the total exchange energy. However, the most surprising effect is
that a non-trivial high multipole of the magnetization density, the tensor www615,
becomes very large. More specifically, we can observe that, with increasing

U , the 615 contributions completely dominates the exchange energy when the
SP term 011 decreases to small values. This trend is particular clear in case of
URu2Si2, whose spin moment crosses zero at U ≈ 1.25 eV. In Figs. 6.5 and 6.6

we plot the shape of the magnetization density mmm615(rrr) associated with www615.
We can observe that mmm615(rrr) is highly non-collinear: it is closely related to

the intra-atomic non-collinear spin density that always arise in the presence

of SOC [71]. Since the exchange coupling enhances substantially the effec-

tive SOC, the resulting 615-polarization becomes more important than the

ordinary SP. For all cases, except UAs, the 615 contribution to the exchange

energy bypasses the one of SP 011 for values of U around 1 eV. A large 615

term is also detected in few Np compounds, for example in NpN, while in

Pu magnetic compounds, like PuP, the calculated 615 contribution is much

smaller. A systematic explanation of this trend is given in section 6.6 and in

Fig. 6.13.

6.3 Triakontadipoles Moments as the Hidden Order in
URu2Si2
The nature of the hidden order (HO) parameter in URu2Si2 is still an un-
solved mystery. At 17.5 K this compound undergoes a second-order phase
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Figure 6.5: The angular variation of the direction of the spin density for the two non-

vanishing components of the triakontadipole in URu2Si2, w615
0 and w615

±4 in tesseral

form [72]. The green (red) colour indicates the regions where the spin axis is outward

(inward) normal.

Figure 6.6: Isosurfaces of the x-component (left panel) and z-component (right panel)

of the magnetization density arising from the 615-multipole in antiferromagnetic 1-

kkk structure of UAs with spin quantization axis along [001], which is upwards in the

figure. The red and negative lobes correspond, respectively, to positive and negative

isosurfaces of magnitude 0.005 μB/a.u.3.
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transition that shows a sharp variation of bulk properties, in particular spe-

cific heat [73], linear and non-linear susceptibilities [73, 74, 75, 76], resis-

tivity [77] and thermal expansion [78]. The exponential dependence of the

specific heat [78] and the gap in magnetic excitation spectra [79, 80] clearly

indicate a magnetic transition, however the size of the observed moment is

very small (0.03 μB) [81]. Many theories, more or less exotic, have been pro-

posed to explain the HO in this material. Some of these explanations are of

localized nature e.g. quadrupoles [82] or octupoles [83], and some of itiner-

ant nature as e.g. spin nematics [84], orbital currents [85], helicity order [86],

or fluctuating moments [87]; but none of them have been consistent with all

experimental observation in a satisfactory way. In this study, as illustrated in

paper III, we find that the non-trivial magnetic triakontadipole moments, asso-

ciated with the tensor moments www615, constitute the HO parameter in URu2Si2.

Our calculations, which treat the 5 f states as itinerant with large Coulomb
interaction, show that what makes URu2Si2 unique is the very large triakon-

tadipole moment which forces both spin and orbital dipole moments to van-

ish. In Fig. 6.4 we observe two striking differences compared to other uranium

compounds. Firstly, the polarization of the 615-channels is even more promi-

nent and, secondly, at large U (1.2 eV) the Msp switches sign and becomes
parallel to the Morb and both moments become very small. These properties

signal some anomaly, and we proceed to study this phase under pressure. From

careful analysis of the results of experiments under uni-axial stress, one can

conclude that the main variation in the pressure experiments arises from the

contraction of the tetragonal a-axis [88]. Therefore we perform calculations
with varying lattice constant a, to mimic the effect of pressure. The results for

U = 0.9 eV are shown in Fig. 6.7, where we see a dramatic effect on the mag-
netic moments from small variations in lattice constant a away from a critical

value, slightly larger (1.4 %) than the experimental value a0. At this critical
value both Msp and Morb vanish, while simultaneously the 615 contribution to

the exchange energy almost diverges. In fact all the vector contributions, 011,

101 and 211, go to zero at this point.

Can the 615-tensor order parameter be observed at this critical lattice point

where dipole tensors vanish? Due to its high rank it is indeed a well hidden

order parameter, but since there is a magnetization density associated with it,

as in Figs. 6.5 and 6.6, it will give rise to magnetic scattering in e.g. neutron

diffraction experiments although the integrated moment is zero. One problem

though is that it belongs to the same point group representation as any non-

vanishing dipole order [11], so very careful analysis on high accuracy exper-

iments is needed to distinguish this pure HO case from a tiny dipole moment

case.
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6.4 Triakontadipoles in Hexagonal Actinide
Superconductors

As presented in paper V, we investigate the ground state of the heavy-fermion

actinide compounds UPd2Al3, UNi2Al3 and UPt3 by means of electronic
structure calculations including on-site correlation. In case of UPd2Al3 and

UNi2Al3, we stabilize a solution with an antiferromagnetic arrangement
of triakontadipoles with ordering vectors, respectively, qqq = (0,0, 1

2) and

qqq = (1
2 ,0, 1

2), whose total magnetic moment agrees with the experimental

value [89, 90]. In case of UPt3 we identify a solution with a triakontadipole
order whose symmetry is not compatible with the presence of a magnetic
moment, in accordance with experiments that detect a very small value of
the moment [91]. The Fermi surfaces of the multipole-dominated solutions
have many common features with those obtained by conventional density
functional methods [92, 93]. Finally, for URu2Si2 we are able to stabilize a
new solution characterized by a qqq = (0,0, 1

2) ordering of triakontadipoles and

a symmetry that forbids a magnetic moment on uranium sites. The Fermi

surface of this solution is surprisingly similar to the one of the magnetic AF

1-qqq case, in agreement with recent measurements [94].
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6.5 Multipolar Magnetic Ordering in Actinide
Dioxides

As illustrated in paper VII, the LDA+U method and its multipole decompo-

sition are applied to investigate the ground state of the actinide dioxide insu-

lators UO2, NpO2 and PuO2. In case of UO2, an antiferromagnetic 3-kkk type

ordering of U moments is identified as one of the lowest energy solutions,

in agreement with experiments [95] and recent calculations [96]. For NpO2, a

magnetic multipolar 3-kkk ordering of triakontadipoles, with a zero net magnetic
moment on Np atoms, is found to be one of the most stable solutions. This is
in agreement with recent investigations that predict the triakontadipoles to be

the hidden order parameter in NpO2 [97]. Also in case of the non-magnetic
insulator PuO2, the ground-state is predicted to be described by a multipolar

1-kkk ordering of triakontadipoles associated with a magnetization density that
integrates to zero on Pu sites.

6.6 Time Reversal Symmetry Breaking in Itinerant
Systems

Spontaneous polarization of the density matrix is related to symmetry break-
ing. For atoms in a crystal some polarizations of charge multipoles are always
present due to directional bonds. The presence of a spontaneous polarization
in the system is the result of a subtle competition between gain in exchange
energy and loss of kinetic energy. In case of itinerant systems the most im-
portant symmetry breaking is the one of time-reversal (TR) symmetry. In its
presence all electronic states are doubly degenerate. This corresponds to a spin
degeneracy in absence of SOC. However, in presence of finite SOC interaction
the degeneracy is more complicate with a mixed character of both spin states.

6.6.1 Hund’s Rules

In the limit of weak SOC the TR symmetry is effectively broken by the SP. In
the tensor moment formalism this corresponds to a polarization of the chan-
nel 011. The saturation of 011 channel, or Hund’s first rule, corresponds to a
density matrix with this form,

ρ =
n
[�]

diag{1[�],0} , (6.1)

for n < [�], with n number of electrons and [�] = 2�+ 1. Hund’s second rule
then corresponds to saturate the 101 channel, by maximizing the orbital mo-
ment. This is the OP-odd channel [7]. Hund’s second rule arises from atomic
physics, where it was observed that the terms with maximum L, or equiv-
alently orbital moment, were lowest in energy if the system was fully spin
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polarized. However, this is true for localized systems where we have full po-

larization, i.e. where many channels contribute to a maximum polarization.

In this study we are more interested in itinerant systems, for which the den-

sity matrix is not idempotent, i.e. the equality in Eq. (5.44) is not fulfilled

and, consequently, only a few exchange channels polarize. However, for a

fully spin polarized system, the 101-channel cannot polarize by itself since

that would give arise to a non-physical density matrix, i.e. one that breaks

the condition of Eq. (5.44). Instead a straight-forward analysis gives that a

combined polarization of 101, 110 and 112 gives rise to an optimal orbital

moment slightly smaller than that of a localized fully polarized system. This

combination of fully polarized spin moments and optimally polarized orbital

moments, more relevant for itinerant solid state systems, will be called modi-

fied Hund’s rules. These polarizations are summarized in Fig. 6.8, where the

SP 011 and OP-odd 101 are given separately. We observe that especially for

low occupation numbers we are far below the fully polarized limit. In the

case of half-filled shell, however, the SP corresponds to the localized, fully

polarized limit. In the actinide compounds we consider in this work, Hund’s

rules are far away from fulfilled, since the SP does not play the dominant

role as always assumed. In Figs. 6.9 and 6.10 we present the polarizations

of the density matrices for LDA calculations (U = 0) and those for LDA+U
calculations, respectively. They summarize quite well the main observation

of this study. On one hand the LDA calculations show large SP which leads

to an overestimation of the spin moments. At the other hand, when includ-

ing the extra interactions of the LDA+U calculations, the total polarization
increases but, more importantly, another polarization channel dominates, the
one of spin-orbital currents, the OP-even 110 channel. This channel is even
close to saturation for all systems. This corresponds to a large enhancement
of SOC interaction in all these compounds. The SP 011, however, decreases
drastically, and in some Pu compounds even disappears. The only exception
is Cm where the SP 011 dominates over the OP-even 110, in accordance with
the expected LS-coupling mechanism of 5 f electrons in this material [3]. As
already mentioned, to some surprise, a third polarization plays a larger role,
the 615-channel. These results have influenced to formulate a set of new rules
to be valid in the case of stronger SOC, instead of those of Hund, as shown in
paper VIII.

6.6.2 Katt’s Rules

In the non-relativistic limit it is the double degeneracy in the spin degrees of
freedom, which is so simple to break, that makes Hund’s first rule so effective.
In the actinide case, with the fairly strong SOC interaction, this simple spin
degeneracy does not exist in the un-polarized case. In the presence of SOC our
analysis arrives at an alternative set of rules, which we will denote as Katt’s
rules (see paper VIII). These rules are summarized in Fig. 6.13. Firstly, the
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tensor moments assuming full localization: 000 (black line), 011 (red line), 101 (blue

line, assuming Hund’s first rule fulfilled) and 110 (green line).The latter value is ob-

tained from the saturation value of www110 equal to − 4
3 n5/2 +n7/2, where n5/2 and n7/2

indicate, respectively, the occupation of j = 5/2 and j = 7/2 states.

0 1 2 3 4 5 6 7
n

 5f

0

10

20

30

40

50

Po
la

ri
za

tio
n 

ck 
p 

r

0 0 0
0 1 1
1 0 1
1 1 0
1 1 2
2 1 1
6 1 5
Pu
PuCoGa

5

PuS
PuSb
PuP
NpN
NpSb
US
Am
Cm

Figure 6.9: The polarization of the density matrix ckpr resulting from a LDA calcula-
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Figure 6.11: Formulation of Hund’s and Katt’s rules for a f -electrons system in the

present formalism. For the KII rule the polarizations are given for an f -occupation of

less (larger) than 6.
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system will enhance the SOC in order to gain energy by polarizing the 110

channel; this is referred to as OP-even. The resulting state is still double de-

generate due to TR symmetry. Secondly, this degeneracy can then efficiently

be split by a polarization of the 615 channel (617 for more than half-filled f
shell, as shown in Fig. 6.12). Since this is a rank-5 tensor, there are 11 inde-

pendent components. In the case of tetragonal symmetry as in URu2Si2, there

are only two independent components allowed; w615
0 and w615

4 + w615
−4 . It can

be shown that the most optimal polarization in this case is a full polarization
of the 0 component and a partial polarization of the ±4 components. In ad-
dition small polarizations of 415 and 505 are requested in order to keep the
density matrix physical. These polarizations of Katt’s first and second rule are
displayed in Fig. 6.13. In the calculations of magnetic uranium compounds
we generally find a coexistence of polarizations of the 615 channel and the
011 channel. An analysis gives that a 011 polarization is always permitted,
and usually favourable, whenever full saturation of the other channels have
not been reached. However, most importantly, we obtain that when Katt’s first
and second rule are completely fulfilled, with a fully saturated w615

±4 tensor
component, the SP is forbidden. Hence, these two types of polarizations are
competing, in accordance with our results for URu2Si2 in Fig. 6.7. In this re-
spect, the observation of a HO of URu2Si2 is the effect of the nearly optimal

polarization of w615
±4 that prevents the usual SP.
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Figure 6.12: Exchange energy channels in ferromagnetic Cf in fcc structure, a =
10.87 a.u., as unpolarized parameter U . The following channels are the most rele-

vant: 617, associated with an high multipole of the magnetization, 516, related to an

high multipole of spin-currents, and the SOC-like term 110.
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Figure 6.13: Comparison of Katt’s and Hund’s rule in terms of polarizations. The

black line gives the maximum polarization. The red curves indicate the polarization

according to Hund’s rules: first the 011 polarization (dashed line) and then the 101 po-

larization (full line). The total polarization involved in the second rule, i.e. including

the induced channels, is given by the dotted curve. The green curves give the polar-

izations according to Katt’s rules; first the 110 polarization (dashed line) and then the

615 polarization (full line). The dotted line gives the total polarization involved in the

second rule.

6.7 Low Spin Moment due to Hidden Multipole Order
in ferro-pnictides

The discovery of a new family of materials with an high critical temperature

(TC) [13], the ferro-pnictides, has led to a resurgence of interest in supercon-
ductivity. In particular a hope was quickly raised that these compounds would
finally lead to an understanding of the elusive mechanism of the supercon-
ductivity of the high-TC cuprates. Indeed there are many common aspects; the

fact that the parent compound is AF, the important role played by a transition-

metal layer, the disappearance of the AF state with doping and the consequent

transition to a superconducting state. However, some differences were also

discovered, in particular the fact that the Fe d electrons in cuprates are corre-
lated and close to an insulating state, while in the ferro-pnictides, they seem
moderately correlated and metallic. This difference between the two types of
materials is also underlined by the fact that first-principles calculations of the
undoped ferro-pnictides obtain the correct AF order, while in the undoped
cuprates they obtain a wrong non-magnetic metallic state. However, with the
increasing number of theoretical studies, it has been clarified that DFT faces
some difficulties in describing also the iron pnictide parent compounds. The
calculations overestimates the ordered AF spin-moment, which is 0.35 μB in

LaOFeAs [19]. For example GGA calculations overestimate the spin moment

63



by at least a factor 5, giving 2.0-2.5 μB [17, 18]. In this work we perform

LDA+U calculations for the AF parent compound LaOFeAs. As described in
paper I, the obtained results show that, for realistic U parameters, a low spin
moment solution is stabilized due to polarization of higher multipole moments
of the spin density. These terms can be analyzed as a spin orbital ordering
among mainly the xz and yz d-orbitals at the Fe sites. It is also found that the

calculated equilibrium distance between the Fe plane and the As planes is in

good agreement with the experimental value [19]. Finally we make a com-

parison with the LDA+U solution for an undoped cuprate, CaCuO2, which
reveals a striking similarity in the role played by magnetic multipoles. The
total energy as functionof the spin moment, as calculated by constraining the
staggered spin moments [98] of the stripe ordered AF state, and as functionof
U , is displayed in Fig. 6.14. In agreement with earlier studies [17] the GGA

curve (U = 0) has a clear deep minimum at m = 2.2 μB. This minimum moves
slightly to larger moments by increasing U . However, when the spin moment

is constrained in the scan for other solutions, we can observe that a second so-

lution starts to develop at a smaller moment. At U ≈ 2 eV this has evolved to
a local minimum, which becomes the global minimum for U � 2.5 eV, a value

close to the estimated one [99]. Hence there are several competing metasta-

bles states found, among which the low-moment solution is most stable in the

case of LaOFeAs and for U > 2 eV. Both these magnetic solutions have an
equilibrium Fe-As bonding distance in close agreement with experiments in
contrast to the U=0 result, as shown in the inset of Fig. 6.14 for the case of
U=2.75 eV. Hence, for physical values of U around 2.75 eV the calculations
obtain a moment of 0.35 μB and zAs = 0.650, both in excellent agreement

with experiment [19]. The exchange contribution to the total energy curve for
U=2.5 eV of Fig. 6.14 is decomposed in the contributions from the multipoles

wwwkp according to Eq. (5.31). Besides the spin polarization energy, which is
of course quadratic with the moment, there is a large exchange contribution
from the magnetic multipole www41. Since this multipole has the largest mag-
nitude for small moments where it dominates, it is the one that stabilizes the
small and intermediate moment solutions for large enough U in Fig. 6.14.

The most significant multipole tensor components www41 as functionof the con-
strained moment are also displayed in Fig. 6.15 in their tesseral form [72].
These large multipoles result in a very anisotropic magnetization density as
seen in Fig. 6.16 for the case of U=2.75 eV, where the magnetization den-

sity has both large positive and negative values but integrates to a small value

of 0.35 μB. Finally, we want to underline the fact that the multipole needed to

stabilize the low moment solution, instead of the large moment solution as pre-

dicted by GGA, also plays a fundemental role in the formation of an insulating

AF solution in the cuprates, as e.g. CaCuO2. The multipoles and their energies

for CaCuO2 calculated with U=7.0 eV are shown in Fig. 6.15. In this case the
existence of the multipole is easier to understand as it is essentially a pure
x2 − y2 orbital that polarizes, giving arise to a non-spherical charge and mag-
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netization density. However, the magnitude of the multipoles are of the same

order as in LaOFeAs, and in fact, without these multipoles, the non-magnetic

solution is more stable. This finding is in accordance with the fact that more

exchange energy goes into the formation of the multipole than that of the spin

moment. Hence, in both types of compounds it is the neglect of these mul-

tipole exchange channels in LDA and GGA that leads to the wrong ground

state, with either too large (LaOFeAs) or too small moments (CaCuO2). Then
a crucial issue remains wide open; how do these spin and spin-orbital ordered
AF ground states of the parent compound, with their significant formation en-
ergies, vanish already with a small doping, which eventually leads to a high
TC superconductivity? One can speculate that the multipole order in some

form remains beyond the doping where the AF order is destroyed, and then

constitutes the hidden order of the so-called pseudogap region, which is well

established in the cuprates [100] and has been observed recently for the pnic-

tides [101].

As presented in paper VI, after this first investigation, we performed a sec-

ond study by evaluating the stability of different solutions corresponding to

various arrangement of magnetic rank-4 multipoles for the most well-studied

ferro-pnictides. For LaOFeAs, the lowest energy solution is then identified

with a multipolar ordering of w41
−20 and w41

20 (tesseral form [72]) which, also

in this case, gives raise to the correct value of experimental moment [19]. The

same procedure is applied to BaFe2As2 and CaFe2As2 where the lowest en-

ergy solution correspond again to a combination of w41
20 and w41

−20 multipoles,
but with a magnetic moment lower than the experimental value [102, 103].
However, for these compounds, our calculated moment constitutes a signif-
icant improvement over previous ab-initio calculations that largely overesti-
mate the Fe moment [17, 104]. Moreover for BaFe2As2 and CaFe2As2, in the

total energy curves as unpolarized constrained spin moment, we identify a

local minima close to the experimental moment.
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Figure 6.14: Total energy per magnetic unit cell (4 formula units) as functionof con-

strained staggered spin moment per Fe calculated with varying 0 ≤ U ≤ 4 eV in steps

of 0.5 eV (some values are indicated), with solid curves for integer values. The energy

shifts between the curves are arbitrary and chosen in order to simplify the comparison.

In the inset the energy is plotted as functionof zAs for U=0 (red) with minima at lower

zAs, non-magnetic (dashed) and magnetic (full) solutions, and for U=2.75 eV (blue),

low (dashed) and high spin (full) solutions. The experimental value [19] is indicated

by a vertical line.

Figure 6.15: Exchange energy per Fe atom decomposed into multipole wwwkp contri-

butions (top, where the number indicates kp) and multipole tensor components w41
q0

(bottom, with numbers indicating q) as functionof the constrained spin moment per

atom for a fixed U=2.5 eV. In addition the same quantities are shown with symbols

obtained by a corresponding calculation for CaCuO2 with U=7.0 eV and calculated

m=0.59 μB.
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Figure 6.16: Isosurface plots of the magnetization density around the Fe sites for the

striped AF order and U=2.75 eV are displayed with positive value indicated with

dark/blue and negative with light/yellow. The arrows show the directions of the small

integrated atomic dipole moments. The As atoms situated below and above the Fe-

plane are displayed with spheres.
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7. Conclusions

In this work we propose a convenient scheme to optimize the LDA+U proce-

dure by reducing the number of free parameters to one. This is done by deter-

mining individually the Slater parameters through a screened Yukawa poten-

tial. In addition we argue to systematically use the interpolation approach [12]

to double-counting (DC), which takes away the ever existing choice between

AMF or FLL, especially since the results depend on the choice of DC. This

approach ought to facilitate fast and systematic LDA+U calculations. The re-
sults of which would be comparable between different computations, without
having to discuss on the used values of parameters. A combination of these
two approaches has showed to be working very well in many actinide systems;
it is able, for example to distinguish between magnetic and non-magnetic Pu
compounds. Secondly, we present a method, the decomposition in tensor mo-
ments of the density matrix, that facilitates the analyzes of the results from
an LDA+U study. This is an exact approach which gives both the different
polarization channels as well as the corresponding Hartree and exchange en-
ergies. We apply these combined approaches to different actinide compounds
in order to increase our understanding of the complicate behaviour of these
systems, in particular the absence of magnetic moment in δ -Pu and the hid-
den order (HO) phase of the heavy-fermion superconductor URu2Si2. In case

of δ -Pu we stabilize a non-magnetic solution in which the spin polarization
(SP) channel 011 in the exchange energy is taken over by the orbital polariza-
tion (OP) even channel, 110. The magnitude of www110 is comparable to recent

experiments for α-Pu [65]. In URu2Si2 we find that the non-trivial magnetic
triakontadipole moments, associated with the tensor moments www615, consti-

tute the HO parameter. We vary the in-plane lattice constant a to simulate the
effect of pressure and we determine a critical value of a at which both spin

and orbital moment disappear, while simultaneously the 615 contribution to

the exchange energy almost diverges. The 615 channel is significant also in

other uranium compounds, however what is unique in the case of URu2Si2 is

that its polarization is so large that the usual dipole polarizations, e.g. SP, are

forced to vanish. Our findings imply that there is always an HO in the magnetic

actinides, but it is only when it forces the dipoles to vanish that it becomes per-

ceptible. Moreover, the triakontadipole magnetic order is also found to play

an essential roles in the hexagonal-based superconductors UPd2Al3, UNi2Al3
and UPt3 and in the insulators dioxides UO2, NpO2 and PuO2. In all actinide
compounds we consider, except Cm, Hund’s rules are far away from fulfilled,
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since the SP does not play the dominant role as always assumed. We formulate

an alternative set of rules, the Katt’s rules, valid for itinerant systems in case

of strong SOC interaction instead of those of Hund; one should first maximize

the OP-even 110 channel, then saturate 615 channel, and only at the end try to

maximize the SP 011, if still allowed.

Finally, we apply the method to the ferro-pnictides, a new class of high-TC
superconductors; in this case a low spin moment solution in agreement with

experiment [19] is stabilized due to polarization of higher multipole moments

of the spin density and parallels can be drawn to the stabilization of the anti-

ferromagnetic order in cuprates, for example in CaCuO2. One can speculate
that the multipole order in some form remains beyond the doping where the
antiferromagnetic order is destroyed, and then constitutes the HO of the so-
called pseudogap region, which is well established in the cuprates [105] and
has been observed recently for the ferro-pnictides [106].
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Appendix

When Eq. (5.30) together with Eq. (5.18) are inserted in the exchange part of

Eq. (5.1), we get an expression where the complications essentially arise from

the orbital summations in the factor

Q = ∑
mambmcmdq

(−1)q

(
� k1 �

−mc x1 ma

)(
� k �

−ma −q md

)
(

� k2 �

−md x2 mb

)(
� k �

−mb q mc

)
,

(7.1)

where the indices on k and x stem from the two different density matrix ex-

pansions. The spin dependence of the exchange energy is simpler due to the

Kronecker delta-symbols in Eq. (5.18), i.e. the relevant factor becomes

S = ∑
sasbscsd

(−1)−sc−sd

(
s p1 s

−sc y1 sa

)
δsasd

(
s p2 s

−sd y2 sb

)
δsbsc

= ∑
sasb

(−1)1+sa−sb

(
s p1 s

−sa −y1 sb

)(
s p2 s

−sa y2 sb

)
=

(−1)1−y1 [p1]−1δp1 p2
δy1−y2

,

(7.2)

by use of orthogonality relations. To simplify Q we start with an identity for
the 6j-symbol, see e.g. Ref. [47], and we reshuffle a little,{

� � k1

� � k

}(
� � k1

mb −mc −x1

)
= ∑

mamdq
(−1)�+�+k+ma+md+q

×
(

� k �

−md −q mb

)(
� k �

−mc q ma

)(
� k1 �

md −x1 −ma

)
.

(7.3)
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Then we multiply by

(
� � k2

mb −mc x2

)
and sum over mb and mc, by ob-

taining{
� � k1

� � k

}
∑

mbmc

(
� � k1

mb −mc −x1

)(
� � k2

mb −mc x2

)

= ∑
mambmcmdq

(−1)k1+k+x1+q

(
� k1 �

−md x1 ma

)(
� k �

−ma −q mc

)
(

� k2 �

−mc x2 mb

)(
� k �

−mb q md

)
.

(7.4)

On the LHS we use an orthogonality relation for the 3j-symbol and on the

RHS we identify Q from Eq. (7.1){
� � k1

� � k

}
[k1]−1δk1k2

δx1−x2
= (−1)k1+x1+k Q . (7.5)

The phase factors of Eqs. (7.2) and (7.5) are then used to form the scalar
product of the double tensors in the final form of the exchange energy EX, Eq.

(5.42), as

wwwk1 p1 ·wwwk1 p1 = ∑
x1y1

(−1)x1+y1wk1 p1
x1y1

wk1 p1−x1−y1
. (7.6)
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8. Sammanfattning på svenska

Elektroner och kärnor är de grundläggande partiklar som bestämmer
egenskaperna hos ett material. Grunden för förståelsen av materia vilar
således på förståelsen av dess elektronstruktur. Paul Dirac skrev 1929 [1] i
och med upptäckten av kvantmekaniken
“De grundläggande lagarna nödvändiga för den matematiska teorin
som beskriver en stor del av fysiken samt all kemi är härmed helt
kända. Svårigheten ligger nu i att applikationen av dessa lagar leder till
ekvationer alltför komplicerade för att vara möjliga att lösa”. Idag finns en
effektiv metod där dessa ekvationer kan lösas med hjälp av superdatorer:
densitetsfunktionalteori (DFT) [2]. I DFT omformuleras den explicita
växelverkan mellan elektronerna så att varje elektron istället växelverkar med
elektrondensiteten. Standard DFT har visat sig fungera utmärkt för många
grupper av material, men misslyckas ofta med att beskriva system med öppna
d och f skal, där elektronerna är lokaliserade och Coulomb repulsionen

stark. För dessa materialen uppkommer problem med beskrivningen av

elektronernas växelverkan som oberoende av varandra då en elektron beror på

andra elektroners position; detta kallas att elektronerna är starkt korrelerade.

Trots att de magnetiska egenskaperna hos material har tillämpats i många
år utgör forskningen kring magnetism ett viktigt fält inom materialvetenskap.
Forskningen på detta område är mycket intensiv och fortfarande upptäcks
revolutionerande effekter som beror på magnetiska interaktioner. Kampen
mellan gitter, laddnig, spin och orbitala frihetsgrader leder till ett komplicerat
jämviktstillstånd där ibland fascinerande fenomen uppstår. En grupp av
material som påvisar rikligt med extraordinära magnetiska egenskaper
är aktiniderna [3]. Här återfinns allt från itineranta magnetiska system
till system som påvisar lokaliserad magnetism. I gränslandet mellan
dessa extremer har vi material där elektronerna blir tunga, s.k. tunga
fermioner. Detta ger en mängd avvikande fenomen, som t.ex. samexistens
av supraledning och magnetism [4]. En av anledningarna till att så många
exotiska magnetiska fenomen uppträder hos just aktiniderna är att vi har
både stark spin-bankoppling (SBK) och stark utbytesväxelverkan mellan
5 f -elektronerna, som ger upphov till magnetismen. Teoretiska beräkningar
där lokala densitets approximationen (LDA), eller den generaliserade gradient
approximationen (GGA) används ger ofta bra grundtillståndsegenskaper
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för metalliska system, men tenderar att underskatta det orbitalmoment

som SBK ger upphov till [5, 6, 7]. Detta kan avhjälpas genom användning

av t.ex. orbital polarization [7], som kommer av Hund’s andra regel i

atomfysik. Alternativt läggs en orbitalberoende potential till hamiltonianen,

eller så används det så kallade LDA+U tillvägagångssättet [8, 9, 10].
Här används en skärmad Hartree-Fock (HF) interaktion endast för 5 f
elektronerna. Magnetism är vanligt bland aktiniderna, men vanligtvis är spin-

momentet kraftigt reducerat i jämförelse med det fullt spinpolarizerade värdet.

Den här avhandlingen fokuserar på den roll de skärmade interak-
tionerna har och argumenterar för att de är orsaken till både det reducerade
spinmomentet och det förstärkta orbitalmomentet i många aktinidföreningar.
Ett av dom mest diskuterade fallen inom aktinidforskningen är avsaknaden
av magnetiskt moment i den avvikande δ -fasen av Pu [3]. En förklaring till
detta visas här vara att utbytesväxelverkan i SBKkanalen förstärks. I studien
av tungfermionssupraledaren URu2Si2i en fas där ordningsparametern än så
länge är dold för alla experiment [11] återfinns en högre ordningens multipol
av magnetiseringsdensiteten, en triakontadipol, som den dominerande
ordningsparametern. Triakondadipolen visar sig också spela en avgörande
roll hos anda aktinidsupraledare, UPd2Al3, UNi2Al3 och UPt3 och i

isolatorerna UO2, NpO2 och PuO2. Dessa resultat har lett fram till Katts
regler, som ersätter Hunds regler för grundtillståndet hos itineranta system
där SBK är stark. För att hantera dessa system har vi utvecklat ett effektivt
tillvägagångssätt att behandla elektron korrelationen inom LDA+U metoden
med endast en fri parameter. Det kan vi åstadkomma genom att använda
slater parametrar skärmade med Yukawa potentialen samt genom att
behnadla dubbelräkningen med en interpolationsmetod [12]. Den fria
parametern kan vara t.ex. den lägsta Slater integralen U . Vi introducerar
också en analysmetod för grundtillståndet i form av en exakt expansion av
densitetsmatrisen och HF utbytesväxelverkan i termer av multipoler.

En annan grupp av material som har rönt enormt intresse är kuprat-
supraledare med hög kritisk temperatur (TC), där ett märkligt samspel mellan

supraledning och magnetism finns. Nyligen upptäcktes en ny grupp av

hög-TC supraledare baserade på järnpniktider [13]. Detta har ingett hopp

om ökad förståelse även för hög-TC kupraterna [14]. Likheterna mellan
materialen är många: Grundföreningarna är båda antiferromagnetiska (AF),
ett lager av övergångsmetall spelar en viktig roll i båda materialen samt att
AF ordningen snabbt övergår till ett supraledande tillstånd då materialet
dopas. Väsentliga skilldnader återfinns också: Kupraterna är isolatorer och
elektronerna är starkt korrelerade, medans järnpniktiderna påvisar måttligt
korrelerade elektroner och är metalliska [15, 16]. Av de många teoretiska
studier som gjorts av järnpniktidsupraledarna är det uppenbart att DFT
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har problem med beskrivningen, då en synnerligen dålig beskrivning av

Fe-As bindningsavstånded erhålls, samt att AF spinmomentet överskattas

grovt [17, 18]. Genom att tillämpa LDA+U metoden på järnpniktiderna
erhålls en lösning med lågt spinmoment i enlighet med experiment
[19]. Detta stabiliseras av högre multipoler av magnetiseringsdensiteten.
Bindningsavståndet mellan Fe och As stämmer också det överens med
experimentella värden [19]. Slutligen jämför vi med LDA+U lösningen av
en odopad kuprat, CaCuO2, som påvisar en mängd likheter i den roll som

utspelas av dom magnetiska multipolerna.

Avhandligen är organiserad enligt följande: kapitel 2 går igenom densitets-
funktionalteorin för behandling av flerelektronsproblemet, kapitel 3 beskriver
kraften hos APW+lo bassettet for att lösa Kohn-Sham ekvationerna, kapi-
tel 4 summerar ickekollineär magnetism och kapitel 5 härleder LDA+U meto-

den och multipolexpansionen. Tillämpningen av dessa metoder på diverse

aktinid- och pniktidföreningar diskuteras i kapitel 6, där vi observerar flera

tydliga trender i vilken utbytesväxelverkanskanal som favoriseras. Slutligen

summeras avhandlingen i kapitel 7.
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