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1. Introduction

This Thesis is a theoretical treatment of magnetization dynamics on atomic

length scales. The study is semiclassical in the regard that parameters are

extracted from quantum mechanical calculations and mapped onto a classi-

cal Hamiltonian, describing the magnetic interactions coarse grained over the

size of atoms. The equations of motion for this Hamiltonian are non-linear and

coupled. Algebraic solutions are possible for only a limited set of geometries

and interactions. To proceed further numerical simulations are an invaluable

tool to take on where algebraic treatment becomes cumbersome or impossible.

Maxwell’s equations for the electromagnetic fields [1] are the basis on
which many aspects of electricity and magnetism can be understood. Maxwell
theory explains the induced voltage of a generator, the propagation of light
and radio waves and that magnetic field lines always close. Augmented with
material specific constitutive relations they are the framework within many
aspects of magnetism in solids can be described. In a classical theory the
magnetization is expressed as a vectorfield. Its thermal equilibrium properties
can be described by Brown’s equations [2] which are derived from a gener-
alised Gibbs free energy. The solutions of the Brown’s equations constitute
metastable states reflecting that the Gibbs free energy has many local minima.
A metastable state is defined as a state where the magnetization in each point
is parallel to an effective magnetic field. The effective field is defined as the
functional derivative of the Gibbs free energy with regard to the magnetiza-
tion. When the local magnetization in a point of space is not parallel with the
effective effective field the magnetization is not anymore in equilibrium and
will evolve in time.

Landau and Lifshitz postulated [3] an equation for gyroscopic magnetic dy-
namics where the local magnetization precess around the local effective mag-
netic field. The Landau-Lifshitz (LL) equation has become a very important
tool for exploring magnetization dynamics of small particles, thin fims, and
nano-stripes [4]. In numerical simulations of the LL equation the magnetiza-
tion density is discretised into cells or finite elements that are small enough
compared to the length scales over which the magnetization changes direc-
tion. Depending on the problem at hand, the spatial resolution in a solution
of the micromagnetic problem can range from a few nanometers up to mi-
crometers. Simulations of magnetization dynamics can be motivated, not only
by scientific curiosity, but also as the simulations can be used to investigate
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the behaviour of components used for magnetic storage media and play an

important role in the design and specifications of new devices.
Magnetization that exist in solids can only be understood from quantum

mechanics. This is expressed in the Bohr van-Leeuven theorem [2] that proves
that a pure classical theory cannot lead to ferro- or paramagnetism. The reason
is that in a classical theory the electrons will not interact with a magnetic field,
or in other words, the susceptibility will be zero. On the microscopic level
magnetization is typically expressed in units of Bohr magnetons μB = h̄e

2mc .

Magnetization in a solid is carried mainly by electron magnetic moments that

are associated with orbital angular momentum l and spin angular momentum s
through the gyromagnetic ratio γl = gl

μB
h̄ . The electron g-factor takes the value

gs ≈ 2 for spin angular momentum and gl = 1 for orbital angular momentum.
The total magnetic moment μ = μs +μl for an electron can be expressed as

μ = −(γss+ γll) (1.1)

= −μB

h̄
(2s+ l). (1.2)

Also the nuclei carry angular momentum andmagnetic moment but these must
usually not be taken into account in theories of ferromagnetism and electronic
spin dynamics. As a consequence of the postulates of quantum mechanics, the
electronic spins will precess in an applied magnetic field. This can be seen by

calculating the Heisenberg equation of motion dÂ
dt = i

h̄ [Â,H ] for the spin an-
gular momentum operator and the Hamiltonian. This will be done in Chapter
3 for the single-particle Kohn-Sham Hamiltonian used in density functional
theory. By integrating the magnetization density over the volumes of atoms,
an equation of motion for the atomic magnetic moments, similar in form to
the micromagnetic Landau-Lifshitz equation, is obtained.
The physics of the solid state is a very rich field with a long tradition. The

theoretical framework that has been, and continue to be, worked out, aim to

describe various aspects of a solid such as the mechanical properties, crys-

talline phases, electrical and optical properties, presence of magnetism and

more. In order to understand and analyse different properties of a class of

solids, it is important to identify and try to model the essential mechanisms

that give rise to a certain behaviour. Most, if not all, of the microscopic inter-

actions that govern chemical and solid state physics have been known since

the early days of quantum mechanics. The macroscopic and mesoscopic be-

haviour of a solid emerge as the combined interaction of a very large number

of particles, even in a small piece of matter. A theory of solids therefore al-

ways needs to, in one way or the other, approach the many-body problem. A

large number of techniques are at hand and the interested reader is referred to

classical textbooks on general solid state physics [5, 6], on equilibrium statis-

tical physics [7], and to the recent textbook on electronic structure methods

written by Martin [8]. The concept of emergent behaviour and the importance

2



of symmetry breaking mechanisms in the theory of condensed matter are dis-

cussed in the lectures of Anderson [9] and Coleman [10].
Experiments are crucial in guiding the development of theory. It is of

course possible, within a purely theoretical context, to prove a freshly
proposed model or theory to be inconsistent or in contradiction with more
established results. The models used in solid state physics always rely on
some approximations and assumptions. It is most often the case that the
restrictions on applicability of the model cannot be known beforehand
by solely theoretical considerations, but need to be carefully investigated
in comparison with experimental results. To demonstrate the merits and
accuracy of a theory, it is therefore very important that the model shows
qualitative and quantitative correspondence to measurements. A good theory
can suggest new experiments to be ventured, and have predictive capability
on the outcome of these experiments. A model is also characterised by how it
compares with results from other theory that relies on fewer approximations
and assumptions.
Numerical simulations, often for systems with many degrees of freedom,

can be viewed as a class of experiments in their own right. The difference
to traditional experimental techniques is that here the experiments are per-
formed in the computers, instead of on the table in the laboratory. Numerical
simulation techniques are of increasing importance for research in all fields of
physics, in the other natural sciences, in medicine, social sciences and econ-
omy sciences. Simulation techniques are sometimes discussed as the third leg
of science, on par with the traditional pillars of theory and experiment.
Modern solid state theory often merges efforts to model some property or

behaviour of a class of solids with materials specific calculations from first

principles. The materials specific calculations can give not only quantitative

information but also shine light on which mechanisms, out of a few possi-

ble ones, are the more important ones to account for a certain behaviour. In

the discipline of magnetism of solids, this approach has proven very useful in

research on how magnetism is mediated in diluted magnetic semiconductors

[11, 12, 13] and how magnetic ordering can give rise to ferroelectric polariza-

tion in multiferroic materials [14, 15, 16].
The present Thesis is an example of a two-step approach for investiga-

tions on magnetization dynamics. First principles density functional theory

calculations for the electronic structure of a magnetic solid are used to ex-

tract quantitive information on the size of the atomic magnetic moments and

how they interact. The results are mapped onto a parametrized Hamiltonian,

for which the corresponding equation of motion is investigated in Langevin

dynamics simulations. Figure 1.1 show a snapshot from an atomistic spin dy-

namics simulation of GaAs doped with 5% Mn and no As antisites. At tem-

perature T = 100 K, the magnetization averaged over the magnetic moments
in the simulation cell is∼ 65% of the saturated magnetization at T = 0 K. The

magnetic moments are strongly correlated over short distances.
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Figure 1.1: Snapshot from an atomistic spin dynamics simulation of GaAs doped with

5%Mn and no As antisites. The blue spheres showMn atoms that randomly have sub-

stituted Ga atoms in the GaAs zincblende structure. The arrows show the direction of

the atomic magnetic moments. At temperature T = 100 K, the magnetization aver-

aged over the magnetic moments in the simulation cell is ∼ 65% of the saturated

magnetization at T = 0 K. The magnetic moments are strongly correlated over short

distances.

The theoretical foundations for the approach is well established, but as will
be developed throughout the Thesis, there are also many examples of where
the method would need to be further developed to be applicable. In a wider
scope the Thesis connects to ongoing developments in time-dependent density
functional theory, nonequilibrium statistical mechanics, simultaneous molec-
ular and spin dynamics and magnetooptic and optomagnetic mechanisms.

The outline of the Thesis is as follows: Magnetism in solids is discussed
in Chapter 2. The Atomistic Spin Dynamics method is developed in Chap-
ter 3, followed by observation on the Landau-Lifshitz equation in Chapter 4.
Details on how the method can be implemented as a software for numerical
simulations and some examples are given in Chapter 5. Chapter 6 introduces
Papers I-VIII. Atomic units are used in Chapter 3. SI-units are used in all other
chapters. The wording “magnetic field” refers to the electromagnetic B-field
throughout all the Thesis.
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2. Magnetism in solids

Only a few elements are ferromagnetically ordered in the solid state. The

density matrix of the electrons can be spin-polarised, but if the polarisation

direction varies over space the solid does not necessarily possess a net mag-

netic moment. This can be contrasted with the abundance of elements that

are magnetic as free atoms or in small molecules. In atoms a net magnetic

moment arises due to incomplete filling of the electron shells. The Pauli prin-

ciple expresses that two fermions cannot occupy the same state. Electrons are

fermions and the filling of electron shells in an atom can be understood as a

strive to minimise the ground state energy and at the same time respect the

Pauli principle. For most elements Hund’s rules [17] neatly expresses the or-

der into which the electron shells are filled and how the orbital and angular

momenta are coupled 1

In solids the situation is qualitatively different than in atoms and molecules.
The electrons low in energy close to the atomic core remain in atomic-like
shells whereas electrons further out hybridise with electrons from neighbour-
ing atoms, taking part in chemical bonding. In metals, the outer electrons
are itinerant (highly mobile) and they hop in the lattice sharing their time
between different atoms. In magnetic 3d-transition metals, the largest con-
tribution to the magnetization comes from the spin-polarisation of the itin-
erant 3d-electrons. The nature of ferromagnetism can be distinctly different
in other metals, as for instance the rare earth 4f metals. The textbook of
Chikazumi [17] covers important aspects of ferromagnetism and ferromag-
netic compounds. For an advanced level description of the theory of mag-
netism, the monograph of Yosida [19] is suggested reading.

That the ground state is ferromagnetic can in density functional theory cal-
culations be understood from a generalised Stoner criterion where the Stoner
exchange constant I is calculated as an integral over the exchange-correlation
and N is the density of states at the Fermi energy. If the product IN is larger
than 1, then the ferromagnetic state is stable. The monograph of Kübler [20],
with emphasises on the theory of on itinerant electrons magnetism, describes
how magnetization in the solid state can be investigated in the framework of
density functional theory.

1The breakdown of Hund’s rules in certain situations is a topic of active research. A new set of

rules, the Katt’s rules [18], has recently been proposed as a complement to Hund’s rules.
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2.1 FM ordering at zero and finite temperatures

In the T = 0 K ground state of an ideal ferromagnet, there exist a global di-
rection of the magnetization vector field over distances larger than the range
of the interatomic exchange interactions. The explanation for the ferromag-
netic ordering is the interatomic exchange interaction, a quantum mechanical
interaction with no classical counterpart, that favours parallel alignment of
the spins of neighbouring atoms. The long range magnetic ordering motivates
the definition of the ferromagnetic order parameter as the average of the lo-
cal magnetic moments over a finite volume extending over lengths long in
comparison to the exchange interactions. Over even longer length scales, the
magnetostatic interaction, which is solenoidal in nature, and of classical ori-
gin, will make the magnetization depart from a global direction. The bound-
ary conditions for the electromagnetic fields in the interface of the magnetic
sample and its environment combine with the magnetostatic interaction in the
interior of the sample to make it energetically favourable for the magnetic to
have a (degenerate) multi domain ground state [2].
At finite temperature, transversal and longitudinal fluctuations of the mag-

netization lower the magnetic moment. This is associated with an energy

penalty where the magnetic sample increases its internal energy in terms of ex-

change energy, magnetostatic energy and magnetocrystalline energy. The dis-

tribution function for the energies of individual atomic moments follow Boltz-

mann statistics [7]. With increasing temperature, the magnetization eventually

reaches the Curie temperature where the magnetization goes to zero. This is

most of the time a second order phase transition for the ferromagnetic or-

der parameter. There are some compounds, e.g. Fe2P, where the magnetiza-
tion abruptly crops to zero at a first order phase transition. The transversal
fluctuations are spin waves where the local magnetic moments have constant
magnitudes but directions prescribing a spiral ordering (of helical or cycloidal
form). The wave vectors of the fluctuations are restricted by the space group
symmetries of the lattice. For shorter wave lengths, the transversal spin waves
increase the exchange energy, but contribute less to the magnetostatic energy.
In the limit of long wave length, the penalty in exchange energy is negligible
but the magnetostatic contribution to the internal energy becomes of impor-
tance. The crystal structure determines not only the cut off in wave vector but
also the number of spin wave modes. If the crystal has one atom in the unit
cell, there is typically only one mode. With n atoms in the chemical unit cell
the ferromagnet will possess n spin wave modes manifested in experiments as
n spin wave dispersion relations2. The longitudinal fluctuations can be Stoner

single-electron excitations. Longitudinal fluctuations of the magnetization can

2The chemical and magnetic unit cells are equivalent for ferromagnets in the ground state.

There can be up to three spin wave modes per atom in the unit cells. Of these modes, the two

transversal modes are often degenerate and the longitudinal mode too high in energy to get

excited.
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also arise as superpositions of transversal spin waves, resulting in spin den-

sity waves. The Stoner excitations are high in energy which is associated with

short decay times. The transversal fluctuations can for large wave vectors have

energies of the order of the exchange splitting energy between the electron

bands. In materials where this condition is fulfilled, the spin waves can decay

into Stoner fluctuations. The decay of Stoner excitations can also be in form

of subsequent spin flips.

2.2 Collinear and noncollinear AFM ordering

In the case that some or all of the exchange interactions favour antiparallel

spins, the material can have a different ground state than the ferromagnetic

one. Antiferromagnetic ordering is sometimes used as an umbrella for all

types of longe range magnetic orderings that are not ferromagnetic ordering.

A more narrow definition of antiferromagnetism covers only collinear ground

states where the magnetic moments pairwise cancel each other. Incomplete

cancellation of the magnetic moments leave a net magnetic moment result-

ing in ferrimagnetic ordering. Among the noncollinear orderings, there are

orderings where the ground state is in a spin spiral configuration. The period-

icity of the spin spiral can coincide with an integer multiple (commensurate

spin-spiral) or a fractional multiple (incommensurate spin-spiral) of the lat-

tice constant(s) of the chemical unit cell. Spin spiral ground states can arise

as a consequence of frustration of isotropic exchange interactions [21]. Rela-

tivistic anisotropic exchange interaction, known as the Dzyaloshinskii-Moriya

interaction [22, 23] can perturb otherwise collinear antiferromagnetic config-

urations to have finite canting angles yielding a net ferromagnetic moment

[21]. Spin spiral and weak ferromagnetic ordering are of importance, not only

because of their intricate orderings in themselves. But, also as these order-

ings breaks the inversions symmetry of the crystal [21]. A broken inversion

symmetry allows for electric polarisation which in the case of multiferroic

materials coexists with magnetic ordering [14, 24, 21].

In modelling of the collinear and noncollinear antiferromagnetic orderings,
the primary variables can be taken to be the sublattice magnetization defined
as an average over all magnetic moments belonging to one sublattice [25].
The sublattice description is useful for modelling of magnetization dynamics,
such as in the theory of antiferromagnetic [26] and ferrimagnetic resonance
[27]. The temperature dependence of the sublattice magnetizations can here
be taken directly from experimental values or from Monte Carlo simulations
[7, 28] of a parametrized spin Hamiltonian. The dynamics can be modelled in
terms of coupled Landau-Lifshitz equations for the sublattice magnetization

vectors. That this approach is not always applicable is discussed in Papers
V,VI.
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2.3 Experimental techniques

The physicist who wants to investigate magnetization and magnetization dy-
namics in experiments has a wide range of experimental techniques to choose
from. The different techniques have their respective merits and shortcomings.
There is no single technique that allows for simultaneous insight in all as-
pects of what goes on in a magnetic solid. Among the specifications that are
relevant are the spatial resolution, the resolution in the time and frequency do-
main and element specificity. There are different probes that are good for bulk
measurements and for surface measurements.
The magnetic state, of the whole sample or a small part of it, can be read

off by measuring the magnetic stray field out from the sample. For precise

measurements superconducting quantum interference devices are often used.

Another technique is to read the magnetic state by measuring the resistivity,

either directly in the sample or in a probe that is magnetized by the stray field

from the sample. The latter is the working principle of readheads in hard-

drives. As the harddisk rotates under the readhead, the lower part of the read-

head device aligns with the magnetization in a domain, that represents one bit

of information in the harddisk. The signal is read out as a current, the strength

of which depends on the magnetization in lower part of the readhead through

the giant magnetoresistive effect [29, 30] or the tunnelling magnetoresistive

effect [31].

One of the more fundamental experiments is the hysteresis measurement
[17]. The protocol for a hysteresis measurement is as follows: starting from a
demagnetized state, an applied field drives the magnetization from low values
up to its saturation value, Ms. As the field is decreased a finite magnetization
remain also when the field has been decreased all the way to zero. This mag-
netization is called the remanent magnetization. Increasing the field, this time
in the antiparallel direction, the magnetization will eventually be zero. The
strength of the field for which this occur is called the coercive field. Increas-
ing the field still more, saturation of the magnetization is reached, this time in
the direction antiparallel to the first saturated state. Sweeping the field from
−Hs to Hs closes the hysteresis loop. The presence of a hysteresis loop which
enclose a finite area distinguish the ferromagnetic state from the paramagnetic
state and indicates that energy is dissipated each time the hysteresis loop is tra-
versed. The area of the loop represents how much energy is dissipated from
the magnetic system to the electrons and to the lattice. The mechanisms for
how energy and angular momentum can transfer from the magnetic system to
the electrons and the lattice are important both for micromagnetic as well as
for atomistic spin dynamics and will be discussed in Chapter 3.
There are numerous techniques that use photons in the form of light or x-

rays to investigate the magnetization of a sample. The techniques rely on mag-

netooptic phenomena, the mechanisms of which can be understood in terms

of the scattering mechanisms of photons incident on a magnetic material. Ex-
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amples of magnetooptic phenomena are the magnetooptical Kerr rotation [32]

where the polarisation of incoming light is rotated to give the reflected light

a different polarisation or the related Faraday rotation in transmission. The

Kerr and Faraday rotations are often probed with laser pulses. Higher ener-

getic photons in the soft or hard x-ray regime can probe the element specific

magnetization in x-ray magnetic dichroism measurements. Synchrotrons can

be used to produce coherent, short and bandwidth tuned x-ray pulses.
If rotating a magnetic sample to have a finite angle to an applied static

magnetic field, the magnetization will precess in a spiral motion to eventually

align with the axis of the applied field. In ferromagnetic resonance (FMR)

experiments [5], the magnetic sample is also exerted to an alternating elec-

tromagnetic field in the gigahertz regime. The ac-field feeds energy and an-

gular momentum to the magnetization, with the intensity of the absorption

dependent on the frequency of the driving field and the material and geo-

metric properties of the sample [33]. With the magnetocrystalline anisotropy

energy and the exchange interaction known from other measurements [17],

and the form factor for the magnetostatic demagnetizion field tabulated for

many geometries [33], FMR provides a mean to measure the strength of the

damping mechanisms acting in the precessing magnetic system. The reso-

nance peak in the absorption, plotted as a function of the driving frequency

of the AC-field, will broaden with increasing strength of the damping. The

hysteresis protocol indicate the presence of damping, FMR allows for it to be

measured. Magnetic resonance measurements can also be performed on an-

tiferromagnets [26] and ferrimagnets [27]. The theory here is more evolved

and the experiments can be more difficult to perform as the frequencies in-

volved here are even higher than in the FMR case. Magnetization resonance

can alternatively be probed with laser light or coherent x-rays. The response

can here be in the form of magnetooptical Faraday rotation or x-ray magnetic

circular dichroism (XMCD). In combined FMR and XMCD measurements,

Bailey et al [34], could get element-specific information on the ferromagnetic
resonances of Ni81Fe19 permalloy. The experiment of Stanciu et al. [35] is an
example of how one can use the resonance conditions for magnetic resonance
in analysis also of experiments where there was no driving ac-field.
Neutron scattering in magnetic compounds is an important technique for

characterisation of the magnetic ground state and the excitation spectra [36].

The energy and the wavelengths of the incoming neutrons can be changed,

to some degree independently of each other, which enable the energy and

wavelength dependent excitation spectra of the magnetization to be measured.

This information can be condensed into the dynamic structure factor S(q,ω).
For complicated magnetic compounds with competing interactions, a series
of measurements at different temperatures and sample composition can be
used to draw phase diagrams for the magnetic configurations dependent on
composition and temperature.
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3. Spin dynamics from first principles

In this chapter the equations of motion (EOM) for atomistic spin dynamics

(ASD) will be worked out. The description closely follows the book of Kübler

[20], one of the pioneers of first principles calculations on magnetic compound

with noncollinear ground state orderings [37]. An overview on modern elec-

tronic structure methods is given in the monograph by Martin [8]. A review

on calculation techniques for noncollinear magnets was written by Sandratskii

[38]. Important components for a first principles treatment of magnetism at fi-

nite temperature were worked out by Gyorffy et al. [39].
Atomic units me = 1/2, h̄ = 1, and e2 = 1 will be used throughout this

chapter.

3.1 Dynamics in the time or frequency domain

Spin dynamics from first principles is a relatively young development. In two
papers from the mid 1990’s, Antropov et al. [40, 41] developed in detail how
the time evolution of the magnetization at finite temperatures can be calcu-
lated within density functional theory (DFT), a popular method for electronic
structure calculation which will be introduced in this chapter. The scheme
was very extensive and included treatment of systems with substantial orbital
contribution to the magnetization and opened up for simultaneous spin and
molecular dynamics. Example calculations were done for γ-Fe, a crystalline

phase of iron known for its complicated magnetic structure. Stocks et al. [42]
realised the importance of constraining fields in self-consistent field computa-
tions on spin dynamics of noncollinear magnetic systems, which later enabled
them to [43] to calculate the magnetic ground state configuration of a finite
Co chain along a Pt(111) surface.
To extend the Landau-Lifshitz equation to the case of finite temperatures

Brown [44] and Kubo and Hashitsume [45] used Langevin dynamics and ob-
tained stochastic differential equations aimed to describe the dynamics of a
magnetic nanoparticle [44] or a single classical spin [45]. It was proposed [41]
that Langevin dynamics can be used to model finite temperature also within
a scheme for spin dynamics from first principles. The technique was used in
calculations of the paramagnetic state of Fe and Ni [46]. Langevin dynamics
is also what is used in the calculations presented in this Thesis.
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The computational effort for self consistent field spin dynamics simulations

is very large. For that reason different schemes to parametrize the magnetic

degrees of freedom have been proposed. Fähnle et al. proposed a scheme [47]

to parametrize the magnetic degrees of freedom in a spin cluster expansion,

inspired by the methods for cluster expansion used in alloy theory [48]. A

parametrization from electronic structure calculations to a magnetic Hamilto-

nian containing Heisenberg interactions was used to calculate the spin wave

spectra in bcc Fe in the paramagnetic state [49]. Here the standard classical

Heisenberg Hamiltonian was extended to include exchange interactions for

four coordinations shells of neighbouring atoms instead of only between the

nearest neighbours.

Calculations on spin dynamics often aim to investigate the evolution in time
of a magnetic system. Alternatively, concentrating on the frequency domain,
one can aim to calculate the spin wave spectra. The spectra is represented
by the dynamic structure factor S(q,ω), or in dispersion relations ω = ω(q)
extracted from S(q,ω). Halilov et al. [50, 51] made calculations for the 3d
metals Fe, Ni and Co and arrived at magnon dispersion relations that showed
good correspondence with experimental data. Investigated was also how the
magnetic moment would shrink from its maximum value when the atomic
moments were forced into a spin spiral configuration.

Central to both Antropov and Halilovs work were the adiabatic approxima-
tion and the atomic moment approximation. The method for atomistic spin
dynamic that has been used in the calculations presented in this Thesis rely
on both these approximations and a parametratization of the magnetic interac-
tions to an effective Hamiltonian for the magnetic degrees of freedom. There
are also methods to investigate spin dynamics from first principles without in-
corporating the approximations above. These approaches have been used pri-
marily in calculations of the spin waves spectra. Working within the adiabatic
approximation but without coarsegraining the magnetization to be collinear
within atomic cells Niu et al. [52, 53] used Berry phases terms to calculate
expression for the spin wave spectra. Using linear response DFT it is possible
also to do without the adiabatic approximation in calculations of S(q,ω). This
is important for systems where the transversal fluctuations, for high k-vectors
have energies that enter the Stoner continuum. Savrasov developed a tech-
nique [54] based on the Sternheimer method and successfully calculated the
spectra for paramagnetic bcc Cr. Linear response was later used in calculations
of S(q,ω for different (half-)Heusler alloys with up to three magnetic atoms in
the chemical unit cell [55] and in calculations for the antiferromagnetic phase
of the superconducting material CaFe2As2 [56]. The linear response calcu-
lations for systems with more than one magnetic atom in the chemical unit
cell is substantially more involved than the ones corresponding to only one
magnetic atom.
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3.2 The many-body problem

To solve the full many-body problem, is despite the present computing capa-
bilities, not feasible for anything but small systems. In quantum chemistry the
Dirac equation can be solved for atoms and also molecules by exact diagonal-
ization and quantum Monte Carlo methods. The time-dependent problem can
for small systems be treated by direct integration of the time-dependent Dirac-
or Schrödinger equation. In a crystalline solid, even when exploiting the space
group symmetries inherited in the lattice structure, the number of unknowns
remains too large for a direct solution. Effective low-energy model Hamilto-
nian has therefore been and continues to be very important in solid state and
condensed matter physics. Investigations of model Hamiltonians are arguably
important as they give insight into the general behaviour of individual interac-
tions in different situation such as different temperature and different dimen-
sionality of the solid. In the theory of magnetism, N-vector models such as
the quantum mechanical or classical Heisenberg, the XY and the Ising models
[7] have generated a large amount of work, often of a more theoretical nature
but still with immediate relevance for many magnetic materials. The Heisen-
berg model(s) corresponds to isotropic magnets, whereas the XY-model and
the Ising model represent the limits of strong in-plane or uniaxial anisotropy
respectively. For some magnetic systems, for example colossal magnetoresis-
tance materials, Hamiltonians containing both classical terms and quantum
mechanical operators are very useful [57]. An important example of a differ-
ent kind of Hamiltonian is the Anderson model [58] which is important in the
theory of how magnetic impurities affect otherwise nonmagnetic metals.

If the question at hand is to learn more about the properties for a specific
solid (or class of solids), electronic structure calculations from first principle
can give quantitative information that often compare very well with experi-
mental values. A hallmark of a good theory is that it not only shows good
correspondence with experimental data already at hand but also have predic-
tive power for the outcomes of experiments not yet performed. In materials
science, electronic structure calculations can for example suggest which new
materials it can be worth to synthesise, if a certain property is sought after.
A natural development has been the emergence of two-step procedures

where parameters are calculated in first principles electronic structure calcula-

tions to be used in effective Hamiltonians, typically in the same form as model

Hamiltonians. Such procedures can be used in investigations of the properties

of a system at finite temperatures.

3.3 Spin-polarized density functional theory

The development that enabled first principle calculations in solid state physics

with large but reasonable computational effort was the emergence of density
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functional theory. Hohenberg and Kohn [59] formulated a theorem that re-

duces the N-particle problem to the simplified one of finding the ground state
electronic density. The electron density is a function of only 3 variables which
can be compared with the many-body wave function that is a function of 3N
ordinary coordinates and also spin indices. To find the ground state electron

density the Kohn-Sham (KS) [60] equation, a Schrödinger like equation, is

solved. The KS equation is the basis for the vast majority of calculations on

the electronic structure of solids.

In density functional theory we assume that we can determine single par-
ticle functions with which the density matrix can be expressed as a sum over
occupied single particle states. In the simplest case allowing for magnetization
the wave functions are 2-component Pauli spinors Ψiα(r, t) where the spin in-
dex α takes the values 1 and 2. The density matrix is then expressed as a 2×2

matrix

ρ(r, t) =
N

∑
i=1

(
Ψi1(r, t)Ψ∗

i1(r, t) Ψi1(r, t)Ψ∗
i2(r, t)

Ψi2(r, t)Ψ∗
i1(r, t) Ψi2(r, t)Ψ∗

i2(r, t)

)
. (3.1)

The particle density and the magnetization density are calculated as traces of
the density matrix,

n(r, t) = Tr[ρ(r, t)], (3.2)

m(r, t) = Tr[σ̂ρ(r, t)], (3.3)

where σ̂ is a vector of Pauli matrices. Reciprocally the density matrix can be

expressed in terms of n(r, t) and m(r, t) as

ρ(r, t) =
1

2
[n(r, t)1+m(r, t) · σ̂ ] . (3.4)

The Kohn-Sham equation in TD-SDFT is a Schrödinger-type equation,

i
∂Ψiα(r, t)

∂ t
=

2

∑
β=1

[
−∇2δαβ + veffαβ (r)

]
Ψiβ (r, t), (3.5)

with the effective potential,

veffαβ (r, t) = vext(r, t)+2

∫
dr′

n(r′, t)
|r− r′|δαβ + vxcαβ (r, t)

+([Bext(r, t)+Bcon(r, t)] · σ̂)αβ . (3.6)

Here vext(r, t) is the Coulomb potential from the atomic nuclei, 2
∫

dr′ n(r′,t)
|r−r′| ,

is the Hartree potential, and vxcαβ (r) =
δExc[n(r,t)]

δn(r,t) is the exchange correlation

(xc) potential. Bext(r, t) is an external magnetic field and Bcon(r, t) is an op-
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tional constraining magnetic field. The role of the constraining field will be

discussed later.
If a global quantisation direction exist in the system, as is the case for a

ferromagnet and a collinear antiferromagnet, all terms that go into the KS
equations can be made diagonal. This allows for the equation to be separated
into one equation for the spin up electrons and one equation for the spin down
electrons. The case of noncollinear magnetism, where no global quantisation
direction exist, is for many reasons more complicated. One reason is that many
of the standard parametrizations for the generalised gradient approximations
to the exchange-correlation are applicable only for the case that the density
matrix is diagonal [20]. In order to proceed local coordinate systems are de-
fined by a unitary transformation of the density matrix,

∑
αβ

Uiα(θ(r),φ(r))nαβ (r)U
†
β j(θ(r),φ(r)) = δi jni(r), (3.7)

where (Uαβ ) is a spin-half rotation matrix,

Uαβ (θ(r),φ(r)) =

(
exp(i φ

2 )cos(
θ
2 ) exp(−iφ

2 )sin(
θ
2 )

−exp(i φ
2 )sin(

θ
2 ) exp(−iφ

2 )cos(
θ
2 )

)
. (3.8)

The transformation can in principle be made in every point r of space. What
has been commonly used is to partition space into regions for which it is as-
sumed that the magnetization density is reasonably collinear. The partition
can be into arbitrary shaped disjunct regions Ων centred around a lattice site ν
and spanning all space Ω. The partition can also be into overlapping spheres,
which comes natural in implementations of the KS equation where the tight-
binding linear muffin-tin orbital (TB-LMTO) [61, 62] or the Korringa-Kohn-
Rostoker (KKR) [63] formalism are used in combination with the atomic
sphere approximation (ASA) for the potential. Regardless of how the parti-
tioning of space is done, an atomic magnetic moment can be defined for each
lattice site ν as the integral of the magnetization density over the region Ων ,

mν =
∫

Ων
m(r) dr. (3.9)

Also the density matrix itself can be averaged over the atomic cell Ων ,

nν
αβ =

∫
Ων

nαβ (r) dr. (3.10)
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The rotation matrix U(θν ,φν) for each cell ν can be calculated from the aver-

aged elements of the density matrix,

tanφ = − Im(n12)
Re(n12)

, (3.11)

tanθ =
2
√

(Re(n12))2+(Im(n12))2

(n11−n22)
. (3.12)

The rotation of the density matrix allows for the xc-potential to be calculated

as a linear combination of the xc-potential for the spin-up and the spin-down

density,

vxcαβ (r, t) =
δExc[nba(r, t)]

δnαβ (r, t)
=

2

∑
i=1

δExc[n(r, t)]
δni(r, t)

δni(r, t)
δnβα(r, t)

=
2

∑
i=1

δExc[n(r, t)]
δni(r, t)

U(θν ,φν)iβU(θν ,φν)
†
αi. (3.13)

The effective potential can now be written as a sum,

(veffαβ (r, t)) = v0(r, t)δαβ +(Beff(r, t) · σ̂)αβ , (3.14)

of a diagonal, nonmagnetic potential,

v0(r, t) = vext(r, t)+2

∫
dr′

n(r′, t)
|r− r′| + vxc0 (r, t), (3.15)

vxc0 (r, t) =
1

2

(
δExc[n(r, t)]

δn1(r, t)
+

δExc[n(r, t)]
δn2(r, t)

)
, (3.16)

and a magnetic potential,

(σ̂ ·Beff(r, t))αβ = (σ̂ ·Bext(r, t)αβ +Bcon(r, t))αβ (3.17)

+Δv(r, t)U†(θν ,φν)iασzU(θν ,φν)β i

Δv(r, t) =
1

2

(
δExc[n(r, t)]

δn1(r, t)
− δExc[n(r, t)]

δn2(r, t)

)
. (3.18)

The resulting KS equation with the Hamiltonian split into a kinetic term, a

scalar potential, and a magnetic potential is written

i
∂Ψiα(r, t)

∂ t
=

2

∑
β=1

[
−∇2δαβ + v0(r, t)δαβ +(σ̂ ·Beff(r, t))αβ

]
Ψiβ (r, t).

(3.19)
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3.4 The adiabatic approximation

This is still a time-dependent Schrödinger-like equation, requiring a
parametrization of the exchange correlation potentials for the time-dependent
case. Whereas there are well established parametrization of the exchange
and correlation potentials for time-independent DFT, the development of
potentials for time dependent DFT has not come that far. The step taken
to avoid the complications with solving a time-dependent KS equation is
the adiabatic approximation that enables a separation of slower and faster
degrees of freedom. The slower developing variables are regarded as frozen
on time scales on which the faster degrees of freedom evolve. The most well
known example of the adiabatic approximation is the Born-Oppenheimer
approximation [64, 6] separating the time scale for electronic and ionic
motion in a crystal or molecule. The Born-Oppenheimer approximation relies
on the difference in mass of heavy ions and light electrons.
In the case of noncollinear magnetism, the slow variables are the local di-

rections of the magnetization. The fast moving variables are the electron den-

sity. The magnetization density fluctuates rapidly due to scattering of itinerant

electrons, which for 3d-transition metals are the main carriers of magnetic

moment. Averaging over the typical scattering time is an important step in the

atomic moment approximation [39, 41]. In contrast to the Born-Oppenheimer

approximation there is no large mass governing the slower evolution of the

magnetization directions and the adiabatic approximation cannot be as rigor-

ously justified as when separating electronic and ionic motion. The adiabatic

approximation is here plausible as the energies of transversal excitations of

the magnetization are of the the order of meV:s as compared with the energy

scale of the electronic structure of eV:s. Of relevance is here the bandwidth

of the spin-polarized electrons and also the exchange splitting of energy be-

tween the spin up and spin down bands. For the example of the 3d metal Fe,

Co and Ni, one can observe that the exchange splitting of Fe and Co are of the

order of 1 eV but only around 300 meV for Ni [20]. It also no surprise that the

construction of atomic moments work out better for Fe and Co than for Ni.

Given that the adiabatic approximation is applicable to the magnetic system
at hand, the task to solve the time-dependent KS is traded for the task to solve
a regular time-independent KS equation,

εiΨiα(r, t) =
2

∑
β=1

[
−∇2δαβ + v0(r)αβ +(Beff(r, t) · σ̂)αβ

]
Ψiβ (r, t), (3.20)

for the electronic structure with prescribed directions for the local magnetiza-
tion direction. The solution for the electronic density then serves as a potential
for the effective magnetic fields that will act as a torque on the magnetization.
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3.5 EOM for local magnetization directions

The equation of motion for the slow variables, or the directions of the atomic
magnetic moments, can be derived by evaluating the commutator between
the spin operator and the KS Hamiltonian. The equation will contain a term
involving spin currents J(r, t). The operator for the spin current is defined as

an outer product of the vector of Pauli matrices and the current ĵ(r, t) and
written

JKS(r, t) =
N

∑
i
〈Φ|σ ⊗ ji(r, t)|Φ〉, (3.21)

where the current operator is,

ĵ(r, t) =
1

i

N

∑
i

∇iδ (r− ri)+δ (r− ri)∇i. (3.22)

The commutator of the KS Hamiltonian and the spin operator are evaluated
term by term. In the absence of relativistic effects the spin operator ŝ = h̄

2 σ̂
commutes with the effective scalar potential [65]. The commutator with the

magnetic field potential gives the precession term and the commutator with the

kinetic energy gives a term involving spin currents. The final result is written

i

[
2

∑
β=1

−∇2δαβ + v0(r)αβ +(Beff(r, t) · σ̂)αβ , ŝ

]
=

−∇ · JKS(r, t)+
q

2mc
ŝ(r, t)×Beff(r, t). (3.23)

Taking the expectation values with the KS wave functions one arrives to a
continuity equation for the spin density,

ds(r, t)
dt

+∇ · J(r, t) = 2s(r, t)×Beff(r, t). (3.24)

The tensorial divergence of the spin current term can be discarded for systems

with negligible spin currents such as insulators. The action of the spin currents

on the magnetization is the mechanism behind the spin-transfer-torque [66] ef-

fect that have received much attention since the seminal work of Slonzewskci

[67] and Berger [68]. The mechanism is also important as it contributes to the

relaxation of the magnetization. If we omit the current term and integrate over

the atomic cells we arrive to an equation of motion for the atomic magnetic

moments,
dmν

dt
=−γmν ×Beff(r, t). (3.25)

The sign here has changed as the magnetic moment associated with spin an-

gular momentum is pointing in the negative direction.
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3.6 Constraining fields

A general noncollinear magnetic configuration does not constitute a ground
state within DFT. The iteration of Eq. 3.20 towards self consistency for
the electronic structure would by itself drift towards the ground state, e.g.
a collinear ferromagnetic state. To prevent this, constraining fields can be
included. The technique to tackle this problem is to use constrained DFT as
developed by Dederichs et al. [69]. Lagrangian multipliers are introduced to
constrain some quantity, such as the particle number within the muffin-tin or
the size of the magnetic moment. For self consistent field ASD the directions
of the atomic magnetic moments should be fixed during the calculation of the
electronic structure. This can be achieved by addition of a constraint∫

Ων
m(r, t)× econν dr = 0. (3.26)

The cross product form of the constraint ensures that the atomic magnetic
moment has no components normal to the direction of the prescribed mag-
netization direction econν . An important observation was done by Stocks et al.
[42]. They realised that the magnetic field that is used to constrain the direc-
tion of the magnetic moment can be used to construct the effective field that
give the correct precession torque on the local magnetic moment, a torque that
is needed to perform SCF spin dynamics simulations. The technique has been
used to investigate the canted magnetism of a finite Co chain along a Pt(111)
surface step edge [43]. In this study the aim was to calculate the magnetic
ground state configuration. For this it is actually possible to use the effective
field for a damping motion (see section 3.10.1) only, and to exclude the pre-
cession term in the equation of motion.

3.7 Self consistent field spin dynamics

The calculation of the evolution of the magnetization and charge densities
from a time t to t +Δt is hence a two-step procedure. The first step is to solve
the KS equation until self-consistency is obtained with constrained moment

directions. The second step is to evolve the magnetization according to the

equation of motions for the slow degrees of freedom in a time interval Δt.
With the new directions for the atomic magnetic moments, the KS equation is
solved anew. This procedure is then repeated. The bottleneck of this procedure
is that the electronic structure calculation is very time consuming. The com-
putational effort for most schemes to solve the KS equation scales badly with

the number of atoms in the simulation cell (quadratically or worse). The mag-
netization configurations of interest can span over distances much larger than

the chemical unit cell. This has as consequence that even a single sequence of
iterations to self consistency for the electronic structure with prescribed mag-
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netic moment directions can be computationally demanding. What has been

more common, and is the method used for the results presented in this The-

sis, is to parametrize the total energy as a function of the magnetic degrees of

freedom.

3.8 The magnetic Hamiltonian

Its quantum mechanical origin apart, the parametrized magnetic Hamiltonian

that will be described in the following paragraphs is purely classical as it does

not contain any quantum mechanical operators. The terms of the Hamiltonian

contain single or double sums over atom indices i. The presentation below is
limited to the case where the coupling constants Ji j are independent of the

atomic coordinates and the magnetic configuration. That is, the validity of

the Hamiltonian is restricted to problems where magnetostriction/exchange

striction is not of primary importance and the exchange interactions do not

change too much when the (local) magnetic configuration is changed. The

parametrized magnetic Hamiltonian consists of the following terms

H = Hiex+Hma+Hdd+Hext. (3.27)

The first term represents interatomic exchange interactions. The second term

represents onsite magnetocrystalline anisotropy energy. Magnetostatic dipole-

dipole-interaction is expressed in the third term. The fourth and final term is

the Zeeman energy. As will be developed below, the decomposition of the

magnetic Hamiltonian is not entirely unique.
At the heart of atomistic spin dynamics is the isotropic Heisenberg ex-

change interaction. Compared to other contributions to the internal energy it

is much stronger. One of the consequences is that it is mainly the Heisenberg

exchange that governs the the temperature dependence of the magnetic sys-

tem. A Heisenberg Hamiltonian expressing the exchange interaction between

atoms i and j is, to first order (bilinear in mi ·m j) written as

Hheis =−1

2
∑
i	= j

Ji jmi ·m j, (3.28)

where mi is the classical atomic magnetic moment and Ji j is the exchange

integral. Higher order terms J(n)i j (mi ·m j)
n can also be included. The minus

sign in Eq. 3.28 above indicate that the exchange integral is defined so that a
positive value correspond to ferromagnetic coupling and a negative value to
antiferromagnetic coupling.
The presence of onsite magnetocrystalline anisotropy energy is a rela-

tivistic effect that arise through spin-orbit coupling. The magnetocrystalline

anisotropy energy can be expressed as a series expansion of the angles of the
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magnetic moment to the crystallographic axes [5],

Hma = ∑
i

Ki(mi). (3.29)

The symmetry of the crystal determines the functional forms of these series

expansions [2]. For a uniaxial anisotropy the dominant contribution is of the

form,
Hma = ∑

i
K1,i(mi · eK)

2, (3.30)

where eK is the direction of the anisotropy axis and K the strength of the

anisotropy energy. A negative value of K corresponds to easy axis anisotropy,
a positive value to easy plane anisotropy.

In addition to the well known Heisenberg exchange interaction, also other
type of interatomic exchange interactions are possible. Symmetry considera-
tions restrict what contributions are allowed in various crystal structures. In an
expansion including terms up to second order the most general [70] spin-spin
exchange interaction can be written

Hiex =−1

2
∑
i j

miJi jm j. (3.31)

The matrices Ji j, linking the magnetic moment mi with the atomic moment

m j, are 3×3 matrices J rs
i j where the r,s indicies run over x,y,z. When inter-

changing the atomic indicies i, j the matrices are transposed, Ji j = J t
ji. The

matrices Ji j can be written as a sum of three terms,

Ji j = Ji j1+J S
i j +J A

i j , (3.32)

where 1 is the unit matrix and

Ji j =
1

3
Tr(Ji j)

J S
i j =

1

2
(Ji j +J t

i j)− Ji j1 (3.33)

J A
i j =

1

2
(Ji j−J t

i j)

The Ji j terms constitute isotropic exchange interactions and correspond

to Heisenberg exchange. The J S
i j terms are symmetric anisotropic

exchange interactions. These are also named pseudodipolar exchange
interactions as they have angular dependence similar to the magnetostatic
dipole-dipole-interaction [25]. The J A

i j terms are antisymmetric anisotropic
exchange interations and correspond to the Dzyaloshinskii-Moriya
interaction. Both anisotropic terms are traceless. The interatomic exchange
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interaction can also be written on the form

Hiex =−1

2
∑
i	= j

{
Ji jmi ·m j +miJ

S
i jm j +Di j · (mi×m j)

}
. (3.34)

Here the Dzyaloshinskii-Moriya vector Di j with elements

Dx
i j =

1

2
(J yz

i j −J zy
i j ),

Dy
i j =

1

2
(J xz

i j −J zx
i j ), (3.35)

Dz
i j =

1

2
(J xy

i j −J yx
i j ).

has been introduced. The sum in Eq. 3.31 above runs over i = j. The sum
in Eq. 3.34 is over i 	= j which is possible if we have transferred the onsite

anisotropy interactions miJ
A

i j mi to the term ∑i K(m̂i) for the onsite magne-
tocrystalline anisotropy energy. This is one example of that the decomposition
of the magnetic Hamiltonian is not unique. The third term, with implicit sum-
mation over μ and ν ,

Hdd =−1

2
∑
i	= j

Qμν
i j mμ

i mν
j , (3.36)

represents dipolar interactions. Here μ and ν are coordinate indices and the

quadrupole Qμν
i j is given by

Qμν
i j =

μ0

4π
(3Rμ

i jR
ν
i j−δμνR2

i j)R
−5
i j , (3.37)

where Ri j is the distance between atomic moments i and j. Dipolar interac-
tions are long ranged and important for the long wave length excitations [2].

The interaction can be neglected in studies of short wave length excitations.

For finite systems, dipolar interactions lead to a shape anisotropy, in the form

of form factors that describe the demagnetization field [2]. The last term of

Eq. (3.27),
Hext =−Bext ·∑

i
mi, (3.38)

is the Zeeman term and describes the interaction of the magnetic system with
an external magnetic field. The magnetic field can in general depend both on
space and time. For small structures, an alternating applied electromagnetic
field, can be approximated to be spatially uniform over the sample. For short
wavelengths this approximation can be violated which e.g. complicates the
theory of ferromagnetic resonance.
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The contributions to the magnetic Hamiltonian sum up to a rather lengthy

expression, which is stated here for later reference,

Hmagn = −1

2
∑
i	= j

{
Ji jmi ·m j +miJ

S
i jm j +Di j · (mi×m j)

}
+∑

i
Ki(mi)

− μ0

8π ∑
i	= j

3(Ri j ·mi)(Ri j ·m j)−R2
i j(mi ·m j)

R−5i j
−Bext ·∑

i
mi.

(3.39)

Often only a subset of the terms of the Hamiltonian is used in a specific atom-
istic spin dynamics study. The sample geometry and the symmetry of the crys-
tal structure are important factors that can restrict which interactions can take
finite values and gives a hint on whetherthey will be large or not. More precise
quantitative information on the strength of interactions cannot be provided by
symmetry and geometry considerations alone but must be calculated or ob-
tained from experiments. The isotropic interatomic exchange interaction is
typically much stronger than the other energies in the Hamiltonian. Neverthe-
less, small but finite contributions in form of anisotropy or Dzyaloshinskii-
Moriya energies can influence the magnet ground configuration. An example
of this can be seen in Figs. 3.1 and 3.2 where the magnetic ground state con-
figurations for a monolayer of iron on tungsten, Fe/W(110), are shown. The
calculation of the Heisenberg interatomic exchange interactions is described
in Paper VII. In Fig. 3.1, only Heisenberg (isotropic) interatomic exchange is
present. The balance of ferromagnetic and antiferromagnetic exchange inter-
action makes a spin spiral configuration energetically favourable. By adding a
small uniaxial anisotropy, the balance is changed and a ferromagnetic ground
state has the lowest energy, as shown in Fig. 3.2. In calculations of the spin
wave spectra (See Paper VII), a small anisotropy was used in addition to the
Heisenberg exchange parameters. In experiments, Fe/W(110) has a ferromag-
netic groundstate. As demonstrated by Udvardi et al. [71], the Dzyaloshinskii-
Moriya interaction can cause a chiral asymmetry of the spin-wave spectra.

This is an example on that a small but finite contribution to the magnetic

Hamiltonian can change not only the ground state, but also the properties of

excitations.
It is also possible to go in the other direction and if necessary include even

more general terms. Higher order terms can be included in the expansion of

the interatomic exchange energy. The restriction to have the size of the mag-

netic moments fixed can be revoked. The applied magnetic field can in numer-

ical simulations have in principle arbitrary form. In reality there are geometric

restrictions for coils and other components that, governed by Maxwell’s equa-

tions, radiate an electromagnetic field when an alternating or direct current

flows through them. The mechanism for an effective applied magnetic field

can also be optomagnetic interactions, as e.g. the inverse Faraday effect [72].
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Figure 3.1: The magnetic ground state configuration for a monolayer of iron on tung-

sten, Fe/W(110).With only isotropic interatomic exchange parameters in the magnetic

Hamiltonian, the ground state is a spin spiral.

Figure 3.2: The magnetic ground state configuration for a monolayer of iron on tung-

sten, Fe/W(110). The same isotropic interatomic exchange parameters as in Fig. 3.1.

Here is present also a small magnetocrystalline anisotropy with a hard out of plane

axis. The anisotropy energy is small in comparison with the interatomic exchange pa-

rameters, but large enough to tip the balance and make a ferromagnetic groundstate

favourable.
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3.9 Calculation of interactions

The parametrization to a Heisenberg Hamiltonian can be performed within
an electronic structure calculation in several ways. Using a supercell, with
two or more repetitions of the chemical unit cell, it is possible to do a set of
total energy calculations for different magnetic configurations imposed with
constraining fields. Nearest and next nearest neighbour interactions can be
obtained in this way, but the technique is not practical to capture more long
ranged exchange interactions. Liechtenstein et al. [73] derived a method based

on the Andersen force theorem [74]. The method, which will be referred to as

the Liechtenstein formula, contains an expression for the intersite exchange

interactions Ji j,

Ji j =
Im

4π

∫ EF

−∞
dε Tr[δ M

i (ε)ḡM,M↑
i j (ε)δ M

j (ε)ḡM,M↓
ji (ε)], (3.40)

where Ji j is the pair exchange interaction between atoms i and j. The trace,
Tr, runs over the angular momentum variables L = lm, δ M

i (ε) is the exchange
splitting of energy for the magnetic atom M and ḡM,M↑

i j (ε) are the site off-

diagonal blocks of the Green function. The advantage with the Liechtenstein

formula compared to model Hamiltonians for the exchange is that no assump-

tions have to be made on the nature of the exchange. 1. The expression Eq. 3.40
has been implemented in numerous Green function electronic codes in the
KKR [63] or LMTO [61, 62] family. When using the Liechtenstein formula
the exchange parameters are usually calculated from a FM configuration by
making infinitesimal rotations away from the strict FM configuration (or from
DLM configurations, see below). In general the Ji j can be dependent on the
magnetization configurations, and implicitly or directly on temperature.

Exchange interaction parameters can also be calculated with the Gener-
alised Perturbation Method (GPM) by Ruban et al. [76]. This method is ar-

gued to give more realistic values for the parameters for systems that are in

the paramagnetic state. The paramagnetic state lacks long range ordering but

magnetic moments can be correlated on shorter distances. To calculate param-

eters the high temperature limit of completely uncorrelated spins is used. The

disordered local moments (DLM) configuration is defined as the state where

there are no correlation between the magnetic moments on any distance. The

GPM also provides a means to parametrize longitudinal fluctuations and in-

clude biquadratic and higher order terms in the expansion of the interatomic

exchange interaction.
An important alternative to the Liechtenstein formula and the GPM is the

so called frozen magnon approximation [50, 51, 77]. Here spin spiral config-

urations excitations are enforced in the electronic structure calculations with

1For a description of different exchange mechanisms such as direct exchange, RKKY, super-

exchange, see the monograph by Yosida [19] Exchange interactions in diluted magnetic semi-

conductors are discussed in the reviews Refs. [75, 13]
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the help of constraining fields. By calculating for a set of spin spirals the total

energy is obtained as function of the spin spiral wave vector q. From the min-
ima of the total energy one can immediately observe if the groundstate of the
system is ferromagnetic which it is if the total energy has a minima for q = 0.

The frozen magnon energies also often match well with the actual magnon

dispersion relations measured in experiments.

A more complete parametrization of the magnetic energy does also include
contributions from magnetocrystalline anisotropy energy and anisotropic in-
teratomic exchange energy. The TB-LMTO program [62] and KKR-program
[63] that were used in most calculations presented in this Thesis did not have
spin-orbit coupling included. Magnetocrystalline anisotropy is a relativistic
effect that cannot be captured in calculations without spin-orbit coupling. For
this reason the magnetocrystalline anisotropy energy was input with values
either from experiment or from calculations using other programs. It is not
uncommon that LMTO and KKR-programs lack spin-orbit coupling. When a
more general parametrization of the magnetic energy is needed it is necessary
to use full-potential programs and spin-orbit coupling. The LAPW method,
explained in detail in a monograph by Singh and Nordström [78], is suitable
for full potential calculations. Examples are FP-LAPW/FP-APW+lo, (+local
orbitals) programs as Wien2k [79], Fleur [80], ELK [81] or Exciting [82]. In
these programs the frozen magnon approximation can be used to parametrize
isotropic exchange, anisotropy and Dzyaloshinskii-Moriya interactions [83].
This has been used in combined experimental and theoretical investigations
[84, 85] of the magnetism of Mn/W(110), a monolayer of Mn on deposited on
a tungsten surface.

The full-potential LMTO method (FP-LMTO), described in the monograph
by Wills, Eriksson et al. [86] and Chapter 4 of Ref. [87], allows for very

precise calculation of total energies, important in accurate investigations of

magnetocrystalline anisotropy energies. Using the FP-LMTO program RSPt

[88], Burkert et al. calculated the giant magnetic anisotropy in tetragonal FeCo
Alloys [89] and the uniaxial magnetic anisotropy energy of tetragonal and
trigonal Fe, Co, and Ni [90]. The RSPt program is at present restricted to
collinear spin configurations, but the FP-LMTO method as such can be used
also for noncollinear magnetic configurations. For the FP-LAPW/FP-APW
and the FP-LMTOmethod alike, the computational effort increases drastically
for the case of noncollinear magnetic configuration. Methods without spin-
orbit coupling can use the generalised Bloch theorem [38], this is not possible
in the full potential formulation.

Udvardi et al. [70, 71] have developed a technique, based on infinitesimal
rotations and the Andersen force theorem, to map the magnetic energy to the
general interatomic exchange Hamiltonian, including relativistic contributions
as the Dzyaloshinskii-Moriya interaction, pseudo-dipolar interaction and on-
site anisotropy. This has been implemented into a program based on SKKR,
the screened KKR method [91, 92]. The technique comes to good use in in-
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vestigations on systems with reduced dimensionality and symmetry, where

Dzyaloshinskii-Moriya interactions and anisotropies can be larger and hence

more important, than in bulk systems. This was the case in calculations on

monolayers of iron on tungsten, Fe/W(110) [71], and of the spin interactions

and the magnetic ground states of Cr trimers on Au(111) [93].

3.10 Relaxation

The local moment equation Eq. 3.25 does only contain a term expressing the

precession of the local moment around the effective magnetic field. This de-

scribes the conservative dynamics of an ideal spin system that does not ex-

change energy with its environment. Unless initially in its (possibly degen-

erate) ground state, the spin system will remain in configurations that have

a constant, higher energy. The spin system cannot respond to changes in the

temperature of its environment. In Chapter 4 the characteristics of spin dy-

namics, with or without a mechanism for relaxation and at zero or finite tem-

perature is discussed. This section on relaxation will describe how damping

can be introduced phenomenologically and also the more recent developments

that strive to model damping from first principles.

3.10.1 Phenomenological damping

Landau and Lifshitz did, already in their first paper [3] on magnetization dy-

namics, include a term in the EOM that account for relaxation. They proposed

a double cross product damping term in addition to the precession term, yield-

ing the equation known as the Landau Lifshitz (LL) equation:

∂m
∂ t

= −γm×B− λ
m

m× (m×B). (3.41)

The damping torque is perpendicular to the precession torque. The motion of

a single spin exerted to an external magnetic field is a spiral motion where

the spin eventually aligns with the field. For a system of interacting spins the

motion is more complex but also here each spin momentarily exercise spiral

motion around the effective magnetic field acting on it.
In classical mechanics, the friction force acting on a particle moving

through a viscous media is to first order approximation proportional to,

and negative in direction to, its velocity [94]. Gilbert [95] introduced an

analogous damping force for magnetization dynamics resulting in the

Landau-Lifshitz-Gilbert (LLG) equation):

∂m
∂ t

= −γm×B+
α
m

m× ∂m
∂ t

. (3.42)
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Just as the LL damping torque, the Gilbert damping torque is perpendicular

to the precession torque. In the limit of small damping the solutions of the LL

and the LLG equations are close to each other. For larger damping the discrep-

ancy is substantial. 2 In the micromagnetic community, the Gilbert form of the

damping has been the more popular choice, and it was indeed shortcomings

of the LL for of damping that motivated Gilbert’s research.

3.10.2 Mechanisms for damping

The mechanisms for damping of the magnetic precession are manifold. At

first, it can be observed that for a closed magnetic system, the total angular

momentum and total energy are preserved quantities. With magnetic system

is here understood the whole magnetic solid, with spin, charge and lattice de-

grees of freedom. In the case of ideal precessional dynamics with only inter-

atomic exchange contributing to the effective field, the total angular momen-

tum and energy for the spin system are constants of motion. In the presence of

magnetocrystalline anisotropy, the spin exchange angular momentum with the

lattice. Describing the dynamics in terms of conjugate variables for magnons

(Holstein-Primakoff variables [96] or the analogues variables for classical

spins), this is an example of magnon scattering. This mechanism, relevant for

the phenomena of spin wave instabilities explored in Paper V, can result in

longitudinal damping of the magnetization averaged over a finite part of the

sample. This longitudinal damping of the average magnetization of a system

of local magnetic moments should be contrasted to the possible restriction that

the size of the local moment is constant.

The transfer of angular momentum to the lattice from the spin system is dis-
cussed mainly in terms of spin-orbit coupling. Magnetocrystalline anisotropy
energy is a caused by spin-orbit coupling, allowing for the pure precessional
torque dynamics described above to involve transfer of angular momentum.
The spin-orbit coupling is arguably also very important in mechanisms for
the damping torque on individual magnetic spins. Damping of magnons in
scattering with the lattice involves spin-orbit coupling. The damping can be
enhanced by impurities and other imperfections of the lattice.
Allowing for the magnetic system to interact with its environment opens

many channels for angular momentum and energy transfer. Conducting elec-

trons can drain or feed the magnetic system with angular momentum when

they flow in or out of the system. This is the mechanism behind the spin-

transfer-torque effect [68, 67, 66]. A dynamic magnetic system will, governed

by Maxwell’s equations, radiate electromagnetic fields, also here involving a

transfer of angular momentum. This effect is utilised in design of, and ex-

periments on, spin-torque oscillators [66]. Being in thermal contact with its

2As will be shown in Chapter 4 the LL and the LLG equations are identical in the case of

isotropic damping, provided a renormalized gyromagnetic ratio is introduced
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environment, the thermal motion of electrons and lattice connect to the spin

degrees of freedom, once again involving transfer of angular momentum.
When investigating the physical origins of damping it often comes natural

to use the spin wave picture and study how damping can occur for magnons.
This is the case for impurity scattering and also for damping due to radiation
of electromagnetic fields. In the following the formalism will however be in
the local moment picture. Eventually, this is what is needed for ASD as it
relies on an EOM for the local moments and not for the conjugate variables.

For an inhomogenously magnetized system one can assume that the
relaxation is dependent on the local magnetization. Furthermore, it can be
anisotropic with regard to the direction of the magnetization. Holding on to
the Gilbert form, the damping can be expressed as a tensorial quantity

A({mi})
m

mi× ∂mi

∂ t
, (3.43)

where A({mi}) is a 3×3 tensor in spin space. A tensorial formulation of the

Gilbert damping is useful in analysis of data from FMR for systems where

the relaxation is anisotropic. It is here important to observe that the damping

parameters extracted from the line widths of the resonance peaks, are for the

global magnetization. Regardless of whether the damping is isotropic or not,

it is in general the case that the damping parameter for a finite cell of the mag-

netic sample must not be identical with the damping parameter for the atomic

magnetic moments. This implies that values for the damping damping param-

eters obtained from FMR experiments cannot indiscriminately be adopted as

damping parameters for atomistic spin dynamics [97, 98, 99].

3.10.3 Damping from first principles

An important step towards a description of damping from first principles was

taken by Kambersky who introduced the so called breathing Fermi surface

(BFS) model [100]. In the adiabatic approximation for spin dynamics, it is

assumed that the electronic degrees of freedom respond so fast to changes of

the local magnetization directions that the system is always in a ground state.

In the BFS model the assumption of adiabacity is loosened, to describe the

situation where the electronic system does not respond instantaneously to the

evolution of the magnetization. The BFS model was originally developed for

electron band theory but was later [101, 47] combined with the single electron

wave function formalism in DFT. The non-adiabacity is here realised by keep-

ing the adiabatic single electron states but letting the occupation numbers relax

at a rate inversely proportional to a scattering time τ . The group of Fähnle has
extended the BFS model to allow for anisotropic damping and dependence
on the local magnetic configuration. In a recent paper [102] they arrive to ex-
pressions that treat the noncollinear and collinear case on the same footing.
An important difference between the collinear case and the noncollinear case
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is that the former is dependent on spin-orbit coupling. In the latter case also

electron kinetic energy associated with the noncollinear spin configurations

contribute to the damping. Angular momentum is here scattered within the

spin system. This contribution can be substantially stronger than contribution

from spin-orbit coupling, which compares well with experimental observa-

tions of strongly enhanced damping in highly noncollinear configurations as

domain walls or vortex cores. The BFS model combined with DFT can in-

corporate different source of relaxation through the calculation of energies

and occupation numbers. The scattering time τ can however not be calculated
from within DFT and remains a free parameter. This circumstance strongly
limits the predictive power of the BFS.

Expressions similar to the ones in the BFS model can also be derived within
the frame work of linear response. Kambersky [103] developed this method
which was latter given the name torque-correlation model (TCM). Gilmore
et al. concluded [104] that the BFS model actually is equivalent to the intra-

band contributions to the damping rate within the TCM. They demonstrated

in calculations for Fe, Co and Ni that whereas the intraband contributation

to damping dominates at low temperatures, it is the interband contribution,

which is captured by the TCM, that dominates at room temperature.
The models presented so far presupposes a Gilbert form of the damping

and are derived within a single electron formalism. Hickey andModera proved

with a non-relativistic expansion of the Dirac equation that the functional form
α
mm× ∂m

∂ t can be derived from first principles. The crucial step was to use the

Maxwell equation ∇×E =−∂B
∂ t to identify the connection between the time-

dependent magnetization and the curl of the electric field. The damping is

here connected too electromagnetic radiation, a concept earlier proposed by

Ho [105] and given the name radiation-spin-interaction. The expressions for

α does depend on the typical frequency of the magnetization precessing in
the exchange field. To incorporate these expressions within DFT would give
access to material specific properties for the frequency dependent damping.
However, this method also requires knowledge of a scattering time τ .
The are numerous other proposals on how to model damping. Some or them

are for specific geometries and some are for specific materials. Brataas et al.
developed [106] a scattering theory of Gilbert damping for a single domain

ferromagnet in contact with a heat bath. The method is an extension of previ-

ous work by the same authors on spin pumping and enhanced Gilbert damp-

ing [107]. Zhang et al., observing that the most significant source of damping
in conducting ferromagnets is due to conduction electrons carrying away an-
gular momentum, developed a model where conduction electron damping is
explicitly included. Fähnle et al. demonstrated in constrained DFT calcula-

tions how the directions of the polarisation of the itinerant s- and p-electrons
and the localized d-electrons can strongly deviate from each other and made
the point that the s-d-model for magnetization dynamics, as described by
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Zhang et al. [108], need to be extended to handle the situation where the dif-

ferent electrons are not collinear within the extent of an atom.
In conclusion, it can observed that although substantial progress has been

made, the efforts to develop schemes to calculate damping from first princi-
ples still have some way to go. In the framework of DFT, the question on
how to calculate damping (parameters) is connected to the developments of
exchange-correlation functionals for time-dependent DFT [65, 109]. Remark-
able is also, that there is an ongoing and lively discussion on the mechanisms
that can explain ultrafast demagnetization [110, 111, 112, 113] that can be
caused and probed with femtosecond lasers [114]. In the context of the present
Thesis it should be emphasized that some of the processes involved in ultra-
fast demagnetization violate the condition of adiabacity and therefore cannot
be captured by adiabatic atomistic spin dynamics.
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4. Properties of the LL equation

The Landau-Lifshitz equations are nonlinear coupled equations, for which

closed analytical solutions can only be obtained in a few cases. Analytical

solutions are rare, not only for the trajectories in time of the individual mag-

netic moments, but also for the trajectories in time of the average magnetiza-

tion and higher moments [115]. In early work on micromagnetics, techniques

were developed to solve the LL equations approximately so that a larger class

of problems could be handled. At a later stage, the possibility to perform large

scale numerical simulations on computers have enabled still more complex

geometries and problems to be investigated.
For ferromagnetic materials it is possible to define an exchange length over

which changes to the magnetization direction are negligible. The exchange

length determines how large elements can be used in finite difference and fi-

nite elements methods. For efficiency, adaptive meshes can be used, where for

domainwalls and vortices, with large gradients of the magnetization vector-

field, a higher resolution is necessary. For homogenously magnetized parts of

the magnetic sample, lower resolutions are possible. In simulations of the soft

magnetic permalloy, Fe20Ni80 a typical value for the spatial discretization is 3

nm [116].
For compounds with an antiferromagnetic, ferrimagnetic or noncollinear

ground state configuraation it is not possible to coarse grain the magnetization

in the same way as for ferromagnets. The length scale is here set by the lattice

parameters, which for small chemical unit cells are only a few Å. In com-

parison with the discretization lengths that can be used in micromagnetism, it

is clear that the computational effort per unit volume is drastically larger for

atomistic spin dynamics.

4.1 Spin systems at finite temperatures

The equilibrium properties of quantum mechanical and classical spin mod-

els is a very well established field of condensed matter and statistical physics.

The physics that take place in the vicinity of phase transitions has for long time

been of particular interest [117]. A large body of theory and results have been

worked out, with important concepts as finite size scaling, universality classes

and the renormalization group [118, 119]. For less technical introductions to

these topics the papers of Stanley [120] and Delamotte [121] are suggested
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reading. For atomic spin dynamics, the theory of dynamic critical phenom-

ena [122] is relevant, connecting to phenomena such as critical slowing down

[123], and relaxation of frustrated systems [124].
The thermal equilibrium properties of a spin system modelled by a classical

Hamiltonian follow Boltzmann statistics [7]. Extensive Monte Carlo simula-

tions allowed Chen et al. to determine the exponents for the static critical

behaviour of the Heisenberg model for spins on the sites of a sc and a bcc

lattice. The Boltzmann statistics is an important starting point also for simula-

tions of atomistic spin dynamics at finite temperatures. Following up on their

study of static behaviour, Chen et al. [123] performed spin dynamics simula-
tions on the Heisenberg model. At first, thermalized spin configurations were
calculated in Monte Carlo simulations. In the subsequent spin dynamics sim-
ulations, no damping term was used. This being conservative dynamics, the
energy of the spin system is preserved during the simulation. A motivation,
for the choice not to include a damping term in the equation of motion, is
that the dynamic structure factor S(q,ω) typically is easier to sample in the
absence of damping.

4.2 Atomistic spin dynamics at finite temperatures

At finite temperature, the atomic magnetic moments will be excerted not only
to the deterministic precession torque and the damping torque connected to
the effective field Bi. In addition also stochastic torques will act on the atomic
magnetic moments, due to presence of fluctuating moments. The stochastic
torques can be included as fluctuating fields Bfl

i in the LL or LLG equations.
As will be developed in this section, the power of fluctuating torques needs
to be connected to the mechanisms for damping. That fluctuations and relax-
ations are intimitly connected is a very important result of equilibrium statisti-
cal physics that is expressed in the fluctuation-dissipation theorem [125, 126,
7].
The first investigations on how to include fluctuations in magnetization dy-

namics were undertaken by Brown [44] who let a stochastic torque contribute

to both the precessional and the damping motion. To find out a relation be-

tween the strength of the fluctuating field and the rate of damping, he formu-

lated the Fokker-Planck equation [127] for the stochastic version of the LLG

equation. The result is an equation that couples the amplitude of the stochastic

field Bfl
i to the damping parameter α and the temperature T . The size of the

magnetic moment mi and the gyromagnetic ratio γ also enters the expression.

The relation is of a form similar to the relation between the fluctuating forces
and the diffusion constant that Einstein derived in his theory of Brownian 1

motion [128]. Choosing to include the fluctuating fields only in the precession

1Named after the botanist Robert Brown who in the 19th century observed the seemingly ran-

dom movements of pollen particles floating in water.
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term, Kubo and Hashitsume [45] worked out a formalism similar to, but not

identical to, Brown’s expressions. Brown and Kubo were modelling single-

domain magnetic particles and single spins respectively. It was proposed by

Antropov et al. [41] that the same formalism is applicable to atomic magnetic

moments.
In the original works [44, 45] restrictions were made to the specific situa-

tion of spins precessing in an axially symmetric potential. Garcia-Palacios et
al. formulated the Fokker-Planck equation for a general system of spins. They

eventually arrived to the same relations between the fluctuating fields and the

rate of damping as Brown and Kubo, but had proven that the fluctuation-

dissipation relation is applicable also in the general case of a system of inter-

acting, or non-interacting, magnetic moments excerted to an external magnetic

field.

4.3 Langevin dynamics

Including stochastic fields in both the precession term and the damping term,

the stochastic Landau-Lifshitz (SLL) equation is written

dmi

dt
=−γmi× [Bi +Bfl

i (t)]− γ
α
m

mi×{mi× [Bi +Bfl
i (t)]}. (4.1)

This can be classified as a Langevin equation with multiplicative noise in-

troduced as Langevin forces [129]. The term multiplicative implies that the

Langevin forces enter the equation with coefficients depending on the system

variables. This indeed is the case for the SLL equation as Bfl
i (t) is a noise term

that occurs in a cross-product or double cross-product with the system variable
mi. The Langevin equation, stochastic differential equations and many other

aspects of stochastic processes in physics and chemistry are covered in the

textbook of van Kampen [129]. As will be discussed later, for every Langevin

equation there is an equivalent Fokker-Planck equation. The Fokker-Planck

equation and techniques for how to solve it is discussed in detail in the mono-

graph of Risken [127].
As the fluctuating fields are being caused by a large number of weakly

coupled microscopic events they are because of the central limit theorem de-
scribed by a Gaussian distribution. In principle the noise can be correlated
both in ordinary space and in spin space. In the following it is assumed that
the components Bfl

i,μ , with μ = {x,y,z}, are uncorrelated and that the fluc-
tuating field for different atomic magnetic moments mi is uncorrelated. The

autocorrelation function is denoted f (t,s). Assuming also that the average of
the fluctuation is zero, the two first moments of the fluctuating field are given
by the expressions

〈Bfl
i,μ(t)〉= 0, 〈Bfl

i,μ(t)B
fl
j,ν(s)〉= 2Dδμνδi j f (t,s). (4.2)
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Physical process that are stationary can be described with an autocorrelation

function f (t − s,0)→ f (t ′) that depends only on the difference of the time
arguments. A short, but finite, correlation in time can be modelled for example
by expontially correlated coloured noise [130],

〈Bfl
i,μ(t)〉= 0, 〈Bfl

i,μ(t)B
fl
j,ν(s)〉=

b2

2a
exp(−a|t−s|). (4.3)

Fluctuations that have finite correlation time are characterized by a noise
power that depends on frequency. This can be infered through the Wiener-
Khintchine theorem which states that the power spectrum of a stationary fluc-
tuating process can be calculated as the Fourier transform of the autocorrela-
tion function

S(ω) =
∫ ∞

−∞
f (t ′)eiωt ′ dt ′. (4.4)

If the stochastic process is very fast in comparison to the deterministic part of

the motion, the autocorrelation function is often approximated as the product
f (t ′) = qδ (t ′) of an amplitude q and a Dirac δ -function. Actual physical pro-
cesses always have a finite correlation time, and are never completely station-
ary. In that regard the assumption of a stationary process with zero correlation
time is a strong approximation. That noise with zero correlation time has a flat
power spectra, completely lacking a dependence of frequency, is easily shown

S(ω) =
∫ ∞

−∞
qδ (t ′)eiωt ′ dt ′

= 2q. (4.5)

This kind of noise is called white noise, as it has the same power for all fre-
quencies. For the reason that coloured noise is more difficult to handle mathe-
matically than white noise, the assumption of noise with zero correlation time
is often used in description of fluctuations in physical systems. The Langevin
forces that play a role in atomistic spin dynamics are caused by microscopic
events that can have a bandwith with finite power as high up in frequencies
as 1013 Hz. The shortest time scale in atomistic spin dynamics is given by the
precession of individual atomic moments in their exchange fields. These fre-
quencies can be very high. The exchange field can for bcc Fe be of the order
of 1000 T, corresponding to frequencies of the order 30 THz. This circum-
stance potentially render the approximation of white noise inappropriate. In
practice, many practitioners of atomistic spin dynamics are using white noise.
Three observations should here be stated: The first is that whereas the pre-
cession in the exchange field is very high in frequency, the precession of the
average magnetic moment in anisotropy and applied magnetic fields are typ-
ically orders of magnitude lower. The second observation is that white noise,
with the power prescribed by the appropriate fluctation dissipation relation, is
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good enough to ensure that the system of magnetic moment will evolve to-

wards the Boltzmann distribution. The third observation is based on the fact

that in the limit of low damping α , the damping and fluctuating part of the
motion can be regarded as a weak perturbation to the deterministic preces-
sional motion. This circumstance inspires a, somewhat speculative, assertion
that the influence of an imprecise treatment of the correlation time of the noise
matters less in the case of weak damping than in the case of stronger damping.
Finally, these observations do by no means imply that investigations, on how
the possible breakdown of the white noise assumption can affect the validity
of simulations, are not motivated. Rather, they can give a hint on why a white
noise Langevin dynamics approach seems to work fine for atomistic spin dy-

namics. Ultimately, the question is something that needs to be clarified in a

collaborative effort between theory and experiment.

For the results presented in this Thesis, all the data from atomistic spin dy-
namics simulations were obtained in simulations where the standard Gaussian
white noise was used. A Gaussian distribution can be specified uniquely by its
two first moments and a complete expression of the fluctuating field is given
by the expressions

〈Bfl
i,μ(t)〉= 0, 〈Bfl

i,μ(t)B
fl
j,ν(s)〉= 2Dδμνδi jδ (t− s). (4.6)

The first moment, 〈Bfl
i,μ(t)〉= 0, is the average value of the stochastic process

and the second moment, 〈Bfl
i,μ(t)B

fl
j,ν(s)〉, is its variance.

4.4 Stochastic differential equations

Introducing the Einstein convention, with summation over repeated indices
without writing the summation sign, the general form of a multidimensional
Langevin equation is written

∂Xi

∂ t
= hi({X}, t)+gi j({X}, t)Γ j(t). (4.7)

(4.8)

This is a stochastic differential equation (SDE) of the Ito form. The first
term, hi({X}, t) accounts for the deterministic drift, the second term repre-

sents stochastic diffusion. To solve a SDE, the techniques for solving ordinary
differential equations (ODE) must be extended with techniques for stochas-
tic processes. The reason is that the integral forms of SDEs are not directly
integrable in the standard Riemann or Lebesgue sense. The problem occurs
in the second term which contains the Langevin force Γ j(t), which is not a

continuous function, but a stochastic variable. In the following, small letters

denote specific values taken by the stochastic variables. Stating the Ito SDE in

37



integral equation form,

Xi(t + τ) = xi(t)+
∫ t+τ

t
hi({X(t ′)}, t ′)dt ′+

∫ t+τ

t
gi j({X(t ′)}, t ′)Γ j(t ′)dt ′,

(4.9)

the way forward is to replace the integral including the stochastic variable
Γ j(t ′) with an integral containing the increment dWj(t ′) =

∫ τ
0 Γ j(t ′)dt ′. This

transforms the second integral into a Riemann-Stiltjes integral,

Xi(t + τ) = xi(t)+
∫ t+τ

t
hi({X(t ′)}, t ′)dt ′+

∫ t+τ

t
gi j({X(t ′)}, t ′)dWj(t ′).

(4.10)

The distribution of the increment dWj(t ′) has the same form as the distribution
of the Langevin force. In the case of the Gaussian white noise in Eq. 4.6, the
moments of dWj(t ′) are given by

〈dWi,μ〉= 0, 〈dWi,μdWj,ν〉= 2Dτδμνδi j. (4.11)

The integral form of the SDE is still not a uniquely defined expression as the
stochastic calculus requires a prescription on how the second integral should
be evaluated. In informal wording, it must be specified for which times t ′, and
with which weights, the term gi j({X(t ′)}, t ′) should be multiplied with the

increment dWj(t ′). Stochastic integrals can be calculated as the mean square
limit of a sum over n terms with n→∞. In the notation of Kloeden [131], with
w denoting specific values of the stochastic variable W , the expression for the

integral is

(λ )
∫ T

0
f (t,w) dWt(w) (4.12)

= lim
n→∞

n

∑
j=1

{
(1−λ ) f

(
t(n)j ,w

)
+λ ) f

(
t(n)j+1,w

)}{
W

t(n)j+1

(w)−W
t(n)j

(w)
}
.

with evaluation points t(n)j for partitions 0 = t(n)1 < t(n)1 < · · · < t(n)n+1 < T for
which

δ (n) = max
1≤ j≤n

(
t(n)j+1− t(n)j

)
→ 0 when n→ ∞. (4.13)

The parameter λ specifies where in the interval
[
t(n)j , t(n)j+1

]
the integrand

should be evaluated. The two common choices for the stochastic integral
are the Ito and Stratonovich integrals. The Ito integral is defined by the
choice λ = 0, the Stratanovich integral by the choice λ = 1/2. For Langevin
equations of the form of Eq. 4.7, it is often, but not always, the Stratonovich

calculus that gives the solution that is related to a physical process [129, 131].
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Both definitions are remniscent to the standard Riemann integral in so far

they are the n→∞ limit of a sum of n terms. In the Ito integral, only the value

f
(

t(n)j ,w
)
of the integrand is included. In the Stratonovich integral also the

value f
(

t(n)j+1,w
)
is used, with the values at t(n)j and t(n)j+1 contributing with

equal weight. In terms of a physical process, the Ito definition describes the

situation where the stochastic contribution during the time interval
[
t(n)j+1, t

(n)
j

]
does not affect the deterministic contribution during the same time interval.

For many physical processes it is more appropriate to use the Stratonovich

calculus. Here the stochastic contribution for the time interval
[
t(n)j , t(n)j+1

]
does affect the deterministic contribution for the same time interval. At an
intermediate time t̃, with t(n)j < t̃ < t(n)j+1, the system variable xt̃ can have a

different value in the presence of the stochastic force than it would have

had in the absence of the stochastic force. The deterministic evolution of

the system variable from time t̃ and onwards depend on the value xt̃ and
its clear that the presence of a stochastic force can affect the deterministic
evolution. This contribution to the otherwise deterministic drift term is
called noise-induced drift, or alternatively, spurious noise. The calculation
of the noise-induced drift is not trivial but is well described in textbooks on
stochastic calculus [127, 131]. The final expressions for the drift coefficient
with noise-induced drift included, Di j({x}, t), and the diffusion coefficient

Di j({x}, t) of the multidimensional Langevin equation are written

Di({x}, t) = hi({x}, t)+gk j({x}, t)∂gi j({x}, t)
∂xk

, (4.14)

Di j({x}, t) = gik({x}, t)g jk({x}, t). (4.15)

It turns out that the Stratonovich integral, by construction, takes account for
the noise-induced drift. This implies that the integrands can be used as they are
with no explicit addition of a noise-induced part to the drift coefficient. It can
be shown [115] that for the SLL with Gaussian white noise, the Ito calculus
gives a solution that fails to reproduce the Boltzmann distribution for the en-
ergies of the magnetic moments in the effective field. Instead the Stratonovich
definition of the stochastic integral should be used. The expressions for the
drift coefficient with noise-induced drift and the diffusion constant are still
useful as they will be used in the Fokker-Planck equation.

4.5 Finite difference approximations to SDEs

The schemes that are used to solve ordinary differential equations (ODE) can
be extended to be applicable to the case of stochastic differential equations.
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In the following the solvers Euler and Heun will be discussed. These are both

Runge-Kutta type explicit schemes where time is discretized t0 < t1 < t2 <
.. . < tn and the solutions are obtained as sequences x0 < x1 < x2 < .. . < xn.
There are also semi-implicit and implicit schemes that have some attractive
properties for the LL equation, as will be commented in section 4.9. It is im-
portant to ensure that the stochastic counterpart to an ODE solver gives a so-
lution that converges to the kind of stochastic calculues that has been chosen
to apply to the SDE that is investigated. The properties of an ODE scheme can
be analysed in terms of the order of the local (one step) and the global (after n
steps) discretization error [131]. The corresponding analyses of the local and
global properties of an SDE is more involved and concepts as convergence
in the quadratic mean, weak convergence, strong convergence are introduced
[131].The stochastic extension of the Euler scheme for ODE is given as

xi(t + τ) = xi(t)+Ai({x}, t)τ +∑
k

Bik({y}, t)dWk, (4.16)

where τ is the time step and the moments of the stochastic increments are
given by Eq. 4.11. To obtain the value xi(t+τ), the Euler scheme uses only the

value of xi(t) at a time ti. By comparing with the definition of the Stratonovich
and the Ito integrals, it seems that the Euler scheme corresponds to the solution
given by the Ito integral, as the definition of the Ito integral uses the value

of the integrand only at
(

t(n)j

)
. In can indeed be proved [132, 133] that the

Euler solution converges to the Ito integral in the quadratic mean. The Euler
scheme can still be used to obtain the numerical solution in the Stratonovich
sense. This is achieved by explicitly adding the noise-induced drift to the SDE
which then takes the form of a Stratonovich SDE [131]. The Euler scheme
that converges in the quadratic mean to the Stratonovich solution can then be
written

xi(t + τ) = xi(t)+Di({x}, t)τ +Di j({x}, t)dWk. (4.17)

The stochastic extension of the Heun scheme,

xi(t + τ) = xi(t)+
1

2
[Ai({x̃}, t + τ)+Ai({x}, t)]τ (4.18)

+
1

2
∑
k
[Bik( ˜{x}, t + τ)+Bik({x}, t)]dWk, (4.19)

where x̃i are Euler-type supporting values,

x̃i(t + τ) = xi(t)+Ai({x}, t)τ +∑
k

Bik({x}, t)dWk, (4.20)

can be proved to converge to the Stratonovich integral. This means that one

does not need to introduce the noise-induced drift term in the SDE equation, it

40



can be integrated as it stands in the form of an Ito equation. For this reason, and

also the circumstance that yet higher order stochastic Runge-Kutta schemes

not necessarily converge to a higher order [132], as would be the case for

ODE:s, the stochastic Heun solver has among the explicit schemes been one

of, or the most, popular solver. For simulations where the fluctuating noise

is modelled with a finite correlation time, solvers developed for the case of

coloured noise should be used [130].

4.6 The Fokker-Planck equation

A system described by a Langevin equation can also be described with a

Fokker-Planck (FP) equation. The FP equation governs the time evolution of

the probability distribution of the states, or transition probabilities, of the sys-

tem [127]. The Fokker-Planck equation for the probability density P({x}, t),
is expressed in terms of the drift coefficient and the diffusion coefficient,

∂P({x}, t)
∂ t

=

[
− ∂

∂xi
Di({x}, t)+ ∂

∂xix j
Di j({x}, t)

]
P({x}, t).

(4.21)

The drift coefficient and the diffusion coefficient are here the ones given by

Eqs. 4.14,4.15. With the probability current J({x}, t) defined by

J({x}, t) =

[
Di({x}, t)− ∂

∂x j
Di j({x}, t)

]
P({x}, t), (4.22)

the Fokker-Planck equation can be written on the form of a continuity equation

for the probability density,

∂P({x}, t)
∂ t

+
∂J({x}, t)

∂xi
= 0. (4.23)

Inserting the expressions for the drift coefficient and the diffusion coefficient
the resulting Fokker-Planck equation for the multidimensional Langevin equa-
tion is written

∂P({x}, t)
∂ t

= − ∂
∂xi

[
hi({x}, t)+gk j({x}, t)∂gi j({x}, t)

∂xk

− ∂
∂x j

gik({x}, t)g jk({x}, t)
]

P({x}, t). (4.24)
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Following Garcia et al. [115], the terms of the FP equation are regrouped in a

form of the equation that will be suitable for the SLL equation,

∂P
∂ t

= −∑
i

∂
∂yi

[(
Ai +D∑

jk
B jk

∂Bik

∂y j

)
P

]
+∑

i j

∂ 2

∂yi∂y j

[(
D∑

k
BikB jk

)
P

]

= −∑
i

∂
∂yi

{[
Ai−D∑

k
Bik

(
∂B jk

∂y j

)
−D∑

jk
BikB jk

∂
∂y j

]
P

}
. (4.25)

4.7 The Fokker-Planck equation for the SLL equation

In dimensionless variables (See Chapter 5), the SLL equation is written

∂ êi

∂τ
=−êi× [bi +bfl

i ]−α êi× (êi× [bi +bfl
i ]), (4.26)

with,

〈bfli,μ(t)〉= 0, 〈bfli,μ(t)bflj,ν(s)〉= 2D̃δμνδi jδ (t− s). (4.27)

Here the dimensionless noise power D̃ is not the same as the noise power D in
Eq. 4.2 which has dimension (magnetic field)2. To write the SLL equation on
the form of a general Langevin equation, terms containing bi and bfl

i are sep-

arated. Details are given in Appendix B. After simplifications the expressions

are obtained as

Ai(ê,τ) = ∑
k
[(∑

j
−εi jke j)−αeiek +αδike2]bk, (4.28)

Bik(ê,τ) = (∑
j
−εi jke j)−αeiek +αδike2. (4.29)

The expressions for for Ai and Bik can be substituted into three terms in the
square brackets of the right hand side of the FP equation on the form of Eq.
4.25. The calculations are lengthy and given in full detail in Appendix B.
Eventually the FP equation for the SLL equation, on the form of a continuity
equation for the probability distribution, can be written

∂P
∂τ

= − ∂
∂ ê

{[
−ê×b−α ê× (ê×b)+D(1+α2)ê×

(
ê× ∂

∂ ê

)]
P
}
.

(4.30)

In equilibrium the time-derivative of the probability distribution P0 should

vanish, ∂P0
∂ t = 0, and the probability distribution should be a Boltzmann distri-
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bution, P0(m) = e−βH (m), where β = (kBT )−1. The spatial derivative in the

last term of the FP equation act on the probability distribution. Observing that

B =−∂H (m)
∂m , the derivative is swiftly calculated,

∂P0
∂m

=
∂
{

e−βH (m)
}

∂m
=−β

∂H (m)

∂m
e−βH (m) = βBP0. (4.31)

In terms of dimensionless variables, τ , m, ê and b, the corresponding expres-
sions are,

∂P0
∂ ê

= 0,

∂H (ê)
∂ ê

=
∂H (m)

∂m
∂m
∂ ê

=−μBmB0b, (4.32)

∂P0
∂τ

=
∂
{

e−βH (ê)
}

∂ ê
=−β

∂H (ê)
∂ ê

e−βH (ê) = β μBmB0bP0.

The last equation is inserted into the FP equation, resulting in an equation

from which it is possible to extract the relation between D̃, α and T that is
required for thermodynamic consistency,

∂P0
∂τ

(4.33)

= − ∂
∂ ê
{[−ê×B−α ê× (ê×B)+ D̃(1+α2)β μBmB0ê× (ê×B)

]
P0
}
.

The first term is divergence-less, hence the derivative of the probability distri-
bution will vanish when

α = D̃(1+α2)β μBmiB0. (4.34)

Solving for D̃ and substituting for β gives the relation

D̃ =
α

1+α2

kBT
μBmB0

. (4.35)

This equation is the Einstein type fluctuation dissipation relation for the SLL
equation. The noise power, D̃, turns out to be frequency independent, precisly

as the Wiener-Khintchine theorem had already revealed. Observing that m is
in the denominator, it follows that large magnetic moments are less suscep-

tible to fluctuations than small magnetic moments. The derivation above has
been the traditional one, involving the FP equation. The fluctuation dissipa-
tion relation Eq. 4.35 can also be derived without calculating the terms of the
Fokker-Planck equation. The suggested starting point is here to use linear re-
sponse and a general formulation of the fluctuation dissipation theorem [126].
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This approach is more general and in that regard a better choice, in particular

if a fluctuation dissipation relation for coloured noise is required.

4.8 Relation between the LL and the LLG equations

The Landau-Lifshitz (LL) (Eq. 3.41) and the Landau-Lifshitz-Gilbert (LLG)

(Eq. 3.42) equations, are closely related. In the case of isotropic damping they

are identical if a renormalized gyromagnetic ratio is introduced. This will be

shown below. That the LL and the LLG equations are not identical in the case

of anisotropic damping is discussed by Steiauf et al. [134]. The precession

torque and the damping torque, wether on the LL form or the Gilbert form,

preserve the magnitude of the magnetization m. This is easily proved by scalar

multiplication with m, here for the LLG equation,

m · ∂m
∂ t

= −γm · (m×B)+
α
m

m ·
(

m× ∂m
∂ t

)
= {Use that a · (b× c) = c · (a×b)}
= −γB · (m×m)+

α
m

∂m
∂ t
· (m×m)

= 0. (4.36)

and observing that,

∂m2

∂ t
= 2m · ∂m

∂ t
= 0. (4.37)

The proof for the LL equation is very similar. Starting from the LLG equation,

the LL equation can be obtained after multiplication with m from the left,

m× ∂m
∂ t

= −γm× (m×B)+
α
m

m× (m× ∂m
∂ t

) (4.38)

= −γm× (m×B)+
α
m

[
m(m · ∂m

∂ t
− ∂m

∂ t
(m ·m)

]
.

Using now the relation m · ∂m
∂ t = 0, which was derived above,

m× ∂m
∂ t

= −γm× (m×B)−αm
∂m
∂ t

. (4.39)

This is substituted into the right hand side of the LLG equation,

∂m
∂ t

= −γm×B− α
m

[
γm× (m×B)+αm

∂m
∂ t

]

= −γm×B− α
m

γm× (m×B)−α2m
∂m
∂ t

. (4.40)
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The terms containing ∂m
∂ t are collected on the left to give,

(1+α2)
∂m
∂ t

= −γm×B− α
m

γm× (m×B), (4.41)

∂m
∂ t

= − γ
(1+α2)

m×B− α
(1+α2)m

γm× (m×B),

on the LL form with the relaxation expressed as a double cross product. Defin-
ing an effective gyromagnetic ratio γL and expressing the LL relaxation pa-

rameter λ in units of the Gilbert damping parameter α ,

γL =
γ

(1+α2)
, (4.42)

λL =
γα

(1+α2)
= γLα, (4.43)

the LL equation can be written,

∂m
∂ t

=−γLm×B− γL
α
m

m× (m×B). (4.44)

This expression is known as the LL equation in the Gilbert form. For isotropic
damping, the LL and the LLG equation differs only in the regard that γL 	= γ .
A common practice, that will be used in the remaining of the Thesis, is to use
the LL equation but specify the damping as a Gilbert damping parameter α .
In the limit of vanishing damping, α → 0, the gyromagnetic ratios become

equal, γL → γ . In studies of dynamics in the presence of a time-dependent
external field, it is important that the correct gyromagnetic ratio γL is used

during the simulation. In other cases it is also possible to rescale the time after

the simulation, corresponding to a different gyromagnetic ratio.

4.9 Conservation properties of the LL equation

The pure precessional motion of magnetic moments is conservative dynam-

ics where the total energy of the magnetic system is preserved. Energy can

however be transfered within the magnetic system. The precession torque of

the LL equation can be derived from a classical spin Hamiltonian through

Hamilton’s equations

ih̄
dÂ
dt

= [[Â,H ]] = i{A,H }. (4.45)

Here the classical analogue [[, ]] of the quantum mechanical commutator [, ] is
defined by a Poisson bracket {,} multiplied with i. To calculate the Poisson
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brackets [94] for classical spins one can use Mermin’s formula [135],

[[A,B]] = i∑
j

m · ∂A
∂m j

× ∂B
∂m j

. (4.46)

The time derivative of different parts of the magnetic energy can be calculated

from the commutator of Hp and the total magnetic Hamiltonian,

dHp

dt
= − i

h̄
[[Hp,Hiex+Hma+Hdd+Hext]]. (4.47)

Consider now magnetic systems where two out the four terms in the Hamilto-
nian are present. Calculating the commutator for pairs of different terms in the

parametrized magnetic Hamiltonian Eq. 3.39 gives insight in how energy can

be transfered within the magnetic system [136]. The discussion will here be

limited to the case of magnetic systems where all atomic magnetic moments

have the same gyromagnetic ratio. The commutator of the (Heisenberg part of

the) interatomic exchange energy and the Zeeman energy is always zero,

[[Hiex,Hext ]] = i∑
j

m · ∂Hiex

∂m j
× ∂Hext

∂m j

= i∑
j

m j ·
(

∑
i

Ji jmi×Bext

)

= i∑
i j

Ji jm j · (mi×Bext)

= i∑
i j

Ji jBext · (m j×mi) = {Jii = 0}

= i ∑
i	= j

Ji jBext · (m j×mi) = {Ji j = Jji}

= i ∑
i< j

Ji jBext · (m j×mi +mi×m j)

= 0. (4.48)

This has the important implication that the total exchange energy of the sys-
tem cannot be changed directly by an external magnetic field. All magnetic
moments precess with the same frequency around the external magnetic field
with all angles between the moments left unchanged. The commutator be-
tween Heisenberg exchange energy and the magnetocrystalline anistropy is
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calculated as

[[Hiex,Hext ]] = i∑
j

m · ∂Hiex

∂m j
× ∂Hani

∂m j

= −i∑
j

m j ·
(

∑
i

Ji jmi× ∂Hani

∂m j

)

= −i ∑
i	= j

Ji jm j ·
(

mi× ∂Hani

∂m j

)

= i ∑
i	= j

Ji j
∂Hani

∂m j
· (mi×m j)

= i ∑
i< j

Ji j

[
∂Hani

∂m j
· (mi×m j)+

∂Hani

∂mi
· (mi×m j)

]

= i ∑
i< j

Ji j

[
∂Hani

∂m j
− ∂Hani

∂mi

]
· (m j×mi) , (4.49)

which in general is not zero. This implies that energy can be transfered from

(to) magnetocrystalline anisotropy energy to (from) exchange energy also in

the case of conservative dynamics. The transfer of energy is accompanimented

by a transfer of angular momentum. It is the spin orbit coupling that enables

a transfer of energy and angular momentum from magnetocrystalline energy

to exchange energy. In the case that magnetocrystalline anisotropy energy and

an external field are present at the same time, energy can be transfered di-

rectly between magnetocrystalline anisotropy energy and Zeeman energy if

the applied field is not parallel with the anisotropy axis. Magnetocrystalline

anisotropy energy and exchange energy can also be transfered into eachother

via exchange energy.
Similarily, energy can flow between magnetostatic energy and exchange en-

ergy. Also in this case, the transfer of energy is accompanimented by a transfer

of angular momentum. The magnetostatic interaction energy is governed by

Maxwell’s equations and do not depend on spin orbit coupling. The coupling

between spin space and ordinary space is here possible due to the solenoidal

nature of the magnetic field lines. This is manifest in that the coordinates of the

magnetic atoms show up in the expression for the magnetostatic dipole-dipole

energy.

The flow of energy within a conservative magnetic system can be vizual-
ized as a graph with four vertices, all mutually connecte by in total six edges.
Out of the six energy channels, some channels are always closed (e.g. ex-
change energy↔ Zeeman energy), whereas some of the others can be opened
or closed depending on geometry, interactions and the magnetic configuration
at an instant of time. If all the four energy types are connected, directly or over
the other sorts of energy, the amount of energy of different types, will evolve
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over time, reflecting the nature of how the magnetic moments precess. This

evolution in time of the energies can be sampled during numerical simula-

tions. The measure is an important part of the μ-mag problem 4, a benchmark
problem for numerical solutions of the LL(G) equation [137]. The energies
are also sampled in studies of spin wave instabilities as in Paper V and in Ref.
[136].

Next the conservation properties for angular momentum are investigated.
Also here the dissipationless α = 0 dynamics is the starting point. If the mag-

netic Hamiltonian only includes isotropic exchange interactions, the total an-

gular momentum is a conserved property as no external torque acts on the sys-

tem. In precession in an external field the total angular momentum associated

with the magnetic moments also precess. This is the essence of gyroscopic

precession, angular momentum precess with the tangent vector for the motion

of the tip of the angular momentum vector parallel to the applied torque. Ob-

viously the total angular momentum is here not a preserved quantity, however,

the projection of the angular momentum in the direction of the applied field is

a constant of motion. Examples on how the conservation properties for angu-

lar momentum can be used to asses the performance of different SDE solvers

for the SLL equation can be found in Mentink et al. [138].
To conclude this section on the conservation properties of energy and angu-

lar momentum, three different cases of spin dynamics will be listed:
• α = 0→ T = 0: Conservative dynamics. The energy of the magnetic sys-

tems is preserved, also in the presence of an external field. No direct chan-

nel for transfer between Zeeman energy and exchange energy. A direct

channel between anisotropy energy and exchange energy is possible. See

examples in paper V on spin wave instabilities.
• α ≥ 0, T = 0: Dissipative dynamics. Energy is transfered out from the mag-

netic system. The dynamics have a Lyapunov structure, which means that

in the case that the external magnetic field does not depend on time, the free

energy is monotonously decreasing [137]. Dissipative dynamics without a

heatbath is the standard in micromagnetics simulations, but it is becom-

ing more and more common that heatbaths are included in micromagnetics

simulations.
• α ≥ 0, T ≥ 0: Dissipative dynamics in the presence of a heat bath, canon-

ical ensemble. This is the standard in atomistic spin dynamics. Averaging

over heat baths is essential, as the finite size of the simulation cells make

the evolution of the spin system sensitive to random-walk like drift of the

total angular momentum.

For small α the dynamics, in some sense for zero temperature, but particu-
larily for finite temperatures can be regarded as a perturbation to α = 0 dy-
namics. This is important to keep in mind, when analyzing and choosing SDE

solvers. For further reading, the monograph of Bertotti et al. [116], concen-
trating on ferromagnets, is a comprehensive description of the rich flora of the
dynamics and solutions that the LL equation give rise to for different geome-
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tries, anisotropies, driving fields and materials properties. The monograph of

Gurevihvc and Melkov [25], on magnetic oscillations and waves, covers the

dynamics of antiferromagnets and ferrimagnets.

4.10 The choice of SDE solver

The conservation properties for α = 0 spin dynamics, should be respected as

carefully as possible in numerical simulations, for the case of zero as well as

finite damping. It is well known that explicit solvers as Euler and Heun fail to

preserve the size of the individual magnetic moments. In implementations of

the Heun scheme for atomistic spin dynamics, an additional projection step is

needed, where the length of each spin is normalized. Furthermore, Heun does

not preserve the total angular momentum. Implicit and semi-implicit schemes

are better suited to respect the conservation properties of the LL equation. In

the case of finite temperature it is also important that the schemes converge to

the Stratonovich solution of the Langevin equations. An overview of differ-

ent solvers will not be given here, but can be found in detail in recent papers,

where also new solvers have been proposed. d’Aquino et al. have developed
a scheme for geometrical integration of the LLG equation based on the mid-
point rule [137] and a midpoint numerical technique for stochastic LLG dy-
namics [139]. Mentink et al. [138] have recently developed a semi-implicit

scheme for the SLL equation, a scheme sharing the conservation qualities

known from implicit solvers, with the lower computational effort known from

explicit solvers.

4.11 Recent developments

The Langevin dynamics approach requires the temperature of the heatbath

for the magnetic system to be specified. Phenomenological three-temperature

models with a magnetic, an electronic and a lattice heat reservoir were used

in the early experiments on ultrafast demagnetization [110]. The flow of heat

between the reservoirs is modelled in terms of heat capacities of dissipation

rates [140]. In Paper I, it is described how a two-temperature model can be

incorporated for the SLL equation, and how simulations with two heatbaths

compare with experiments. Recently, a method for how to measure the emper-

ature for a dynamic spin ensemble was proposed by Ma et al. [141]. Another
recent development is a method to model fluctuations with finite correlation

time proposed by Atxitia et al. [142].
For simulations of larger magnetic samples, the atomistic spin

dynamics method becomes computationally very expensive. To tackle this
dilemma, schemes for multiscale modelling have been suggested. The
Landau-Lifshitz-Bloch (LLB) equation, at first formulated for magnetic
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nanoparticles by Garanin et al. [143], and later generalised to systems

of interacting magnetic moments [144], is an alternative approach. The

magnetic system is here characterized by longitudinal and transversal

relaxation times and susceptibilities. Kazantseva et al. [145] developed a

two-step scheme, where at first atomistic spin dynamics simulations are used

to calculate the relaxation times and susceptibilities for a magnetic material.

In the second step the LLB equation can be used to investigate magnetization

on a larger length scale, e.g. domain wall motion and ultrafast switching. In

Ref. [145] simulations using multiple LLB macrospins were performed to

investigate the relaxation of FePt, in applied field and also impact of a heat

pulse. Recently the multiple macrospin formulation was used to simulate

how the magnetization switches [146] in the groundbreaking all-optical

magnetization switching experiments [147, 114].
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5. Implementation and examples

The atomistic spin dynamics simulations, for which results are presented in

this Thesis, have all been performed with the UppASD program [164]. The

implementation and the functionality of the program as of the year 2008 is

described in detail in Paper I. The present chapter serve to complement Pa-

per I and emphasizes new developments. In the first section, full details on

the expressions for the SLL equation, the Hamiltonian and the effective field

in dimensionless quantities are given. In the section on measurement, some

comments on how to sample correlation functions are given. Information on

the UppASD program is also given in Appendix A.

5.1 Dimensionless and normalized SLL equation

The terms on the left and right hand side of the SLL equation have dimension

energy/(magnetic field · time) and, using the SI-system, are in units of J/Ts.
This follows since the magnetic moments are in Bohr magnetons with dimen-

sion energy/magnetic field and are in units of J/T, the magnetic field is in units

of T and the gyromagnetic ratio with dimension 1/(magnetic field · time) is in
units of 1/Ts.
The atomic magnetic moments mi can be expressed as a product mi =

μBmiêi where mi =
|mi|
μB

are the sizes of the moments in multiples of Bohr

magnetons, and êi =
mi

μBmi
is the directions represented by unit vectors. Note

that in this notation |mi| 	= mi but |mi| = μBmi. A transformation of the SLL
equation into a set of dimension-less equations can now be done as follows:
A magnetic reference field strength B0 is introduced with the dimensionsless

magnetic field b defined as B = B0b. Together with the gyromagnetic ratio,
the reference field strength provides a dimensionless rescaled time τ = γB0t.
The size of the reference magnetic field B0 is arbitrary. With the unitary value,
B0 = 1 T, the conversion factor (γB0)

−1 = 5.7 ps, so that one unit of dimen-

sionless time Δτ = 1 corresponds to Δt = 5.7 ps. Alternatively, it is also pos-
sible to express time and temperature in terms of the exchange parameter(s) J.
This is common practice in spin dynamics simulations on model Hamiltoni-

ans. The conversion to and from dimension-less variables is presented in Table
5.1. The time derivative of the magnetization with regard to τ is calculated
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Table 5.1: Relations between the dimensionless variables and the original variables.

êi =
mi

μBmi

bi =
Bi

B0

τ = γB0t.

mi = μBmiêi

Bi = B0bi

t =
1

γB0
τ.

as
∂mi

∂ t
=

∂ (μBmiêi)

∂τ
∂τ
∂ t

= γB0μBmi
∂ êi

∂τ
. (5.1)

Using this relation and dividing the SLL equation with γB0μBmi,

1

γB0μBmi
γB0mi

∂ êi

∂τ
= − γ

γB0μBmi
B0μBmiêi×bi (5.2)

− γα
μBmi

1

γB0μBmi
B0μ2

Bm2
i êi× (êi×bi), (5.3)

the SLL equation on dimensionless form is written

∂ êi

∂τ
= −êi×bi−α êi× (êi×bi). (5.4)

A programmer can choose to have either {miex
i ,mie

y
i mi,ez

i} or {ex
i ,e

y
i ,e

z
i} as

primary variables for the magnetic configuration. In an implementation of

atomistic spin dynamics one can also work with spherical coordinates, with

the well known problems around the poles, or use generalised coordinates, as

in e.g. Ref. [136].

5.2 The effective magnetic field

The Heisenberg Hamiltonian can be formulated in slightly different but simi-

lar ways, depending on the choice to express it in terms of magnetic moments

or unit vectors. Three different choices are

Hiex = −1

2
∑
i	= j

Ji jmi ·m j (5.5)

= −1

2
∑
i	= j

J̃i jêi · ê j (5.6)

= −1

2
∑
i	= j

J′i jmim jêi · ê j, (5.7)
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where the relations between J, J̃ and J′ are J′i j = Ji jμ2
B and J̃ =

Ji jμ2
Bmim j. It is common that electronic structure programs output exchange

parameters where the sizes of the magnetic moments are included in the ex-
change parameters. The Heisenberg Hamiltonian is then expressed in unit vec-
tor spins. Using the notation above the exchange couplings are of the form J̃i j
and have dimension energy. To describe magnetic systems with more than one
type of magnetic moments it is convenient to work with exchange couplings of
the form J′i j. In an implementation of ASD one then reads J̃i j-values and eval-

uate and store away J′i j-values. These J′i j are then the variables that are used in
the subroutines that evaluate the effective fields. The Dzyaloshinskii-Moriya
vectors Di j are rescaled in the same way, D′i j = Di jμ2

B and D̃ =

Di jμ2
Bmim j. The onsite anisotropy energy for each atomic magnetic moment

depends only on the moment itself. When the anisotropy is calculated in an

electronic structure program it is typically obtained as a function of the di-

rection of the atomic moment with the size of the moment included in the

anisotropy constant(s) K̃. This constant is what is necessary in the ASD pro-
gram and there is no need for to also calculate a constant K′. Anisotropies
measured in experiments are often reported in units of J/m3 and have to be
converted to units of mRyd/atom. Expressed in unit vectors êi, the moment

sizes mi and the parameters J′, D′ and K̃ the Hamiltonian takes the form

Hmagn = −1

2
∑
i	= j

mim j

{
J′i jêi · ê j + êiJ

′S
i j ê j +D′i j · (êi× ê j)

}
+∑

i
K̃(êi)

− μ0

8π ∑
i	= j

mim j
3(Ri j · êi)(Ri j · ê j)−R2

i j(êi · ê j)

R−5i j
−Bext ·∑

i
μBmiêi.

The Hamiltonian is not dimensionless, it has the dimension of energy. The

effective magnetic field, in Tesla or in units of the reference field strength B0

can be calculated from the Hamiltonian as,

Bi = −∂Hmagn

∂mi
, (field in T) (5.8)

bi = − 1

μBmiB0

∂Hmagn

∂ êi
, (dimensionless field) (5.9)

It is straightforward to calculate the contributions to the effective magnetic
field one by one. The expressions will be given in form of the dimensionless
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field. The exchange field bi,iex is calculated as

bi,iex = − 1

μBmiB0

∂Hex

∂ êi
=

1

2μBmiB0
∑
i	= j

J′i jmim j
∂ [êi · êi]

∂ êi

=
1

2μBmiB0
∑
i	= j

J′i jmim j(
∂

∂ex
i
,

∂
∂ey

i
,

∂
∂ez

i
)(ex

i ex
j + ey

i ey
j + ez

i e
z
j)

=
1

2μBmiB0
∑
i	= j

J′i jmim j

[
∂ êi

∂ êi
ê j + êi

∂ ê j

∂ êi

]

=
1

2μBmiB0
∑
i	= j

J′i jmim j[ê j + êiδi j] = {summation is over i 	= j}

=
1

2μBmiB0
∑
i	= j

J′i jmim jê j = {note that Ji j = Jji and that Jii = 0}

=
1

μBB0
∑

j
J′i jm jê j. (5.10)

In order to calculate the expression for DM effective fields the scalar triple
product is permuted, HDM = 1

2 ∑i	= j mim jêi · (D′i j × ê j) so that the effective

field comes out immediately as

bi,DM = − 1

μBB0
∑

j
m jD′i j× ê j. (5.11)

In the case of easy axis anisotropy where K is negative, bi,ma the anisotropy

field has the same direction as the projection of the local moment in the

anisotropy axis,

bi,ma = − 1

μBmiB0

∂Hma

∂ êi
=− 1

μBmiB0
K ∑

j

∂ [(ê j · êK)
2]

∂ ê j)
(5.12)

= − 1

μBmiB0
K ∑

j
2(ê j · êK)êK

∂ ê j

∂ êi
(5.13)

= − 2K
μBmiB0

∑
j
(ê j · êK)êKδi j (5.14)

= − 2K
μBmiB0

(êi · êK)êK . (5.15)
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The magnetostatic dipole-dipole field is calculated as,

bi,dd (5.16)

= − 1

μBmiB0

∂Hdd

∂ êi

=
1

μBmiB0

μ0μ2
B

8π ∑
i	= j

mim j

R−5i j

∂
[
3(Ri j · êi)(Ri j · ê j)−R2

i j(êi · ê j)
]

∂ êi

=
μB

miB0

μ0

8π ∑
i	= j

mim j

R−5i j

[
3Ri j(Ri j · ê j)+3Ri j(Ri j · êi)

∂ ê j

∂ êi
−R2

i jê j−R2
i jêi

∂ ê j

∂ êi

]

=
μB

miB0

μ0

8π ∑
i	= j

mim j

R−5i j

[
3Ri j(Ri j · ê j)+3δi jRi j(Ri j · êi)−R2

i jê j−δi jR2
i jêi
]

=
μB

miB0

μ0

4π ∑
j

mim j

R−5i j

[
3Ri j(Ri j · ê j)−R2

i jê j
]

=
μ0μB

4πB0
∑

j
m j

[
3Ri j(Ri j · ê j)

R−5i j
− ê j

R−3i j

]
.

Alternatively, the expression for the magnetostatic field can be calculated from

the magnetostatic energy on the form of Eq. 3.36. The magnetostatic interac-

tion is the only term in the parametrized Hamiltonian that explicitly depends

on the coordinates of the atomic magnetic moments. The proper lattice con-

stants and vectors Ri j must therefore be used in order to get the right strength
of the dipole-dipole field. The calculation of the dipole-dipole field for all
atoms magnetic moments ei constitutes a double summation over all sites in
the simulation cell. In the limit of a large number of atomic magnetic mo-
ments, the computational effort for this operation can dominate the execu-
tion time in simulations of the SLL equation. Different techniques building on
Ewald summation [6] or convolution and Fourier transforms [137] are com-
monly used in micromagnetics simulations. Similar techniques can be used
also for atomistic spin dynamics. The external magnetic field in dimension-
less units is simply bext =Bext/B0. Omitting the contribution from the pseudo-
dipolar interaction, the complete expression for the dimensionless effective
magnetic field bi acting on the atomic magnetic moment êi is written as

bi =
1

μBB0
∑

j

{
J′i jm jê j−D′i j× ê j− 2K

mi
(êi · êK)êK (5.17)

μ0μ2
B

4π
m j

[
3Ri j(Ri j · ê j)

R−5i j
− ê j

R−3i j

]}
+

Bext

B0
, (5.18)

where here the magnetocrystalline anisotropy field is for the lowest order con-
tribution to a uniaxial anisotropy.
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5.3 Implementation and examples

The implementation of the SLL for atomistic spin dynamics simulations
within UppASD allows for the magnetic sample to have in principle arbitrary
geometry. The hard restrictions are mainly in form of memory and execution
time limitations. To describe a highly irregular structure, in form of a
nanoscale magnetic heterostructure or device, is possible. The limitation is
here mainly of a practical nature as coordinates and couplings, in the limiting
case of irregularity, has to be specified individually for each atomic magnetic
moment in the simulation cell. The atomic moments {ei} are referred to
primarily through the index i. If the dipole-dipole field is included in a

simulation, the coordinates {ri} have to be provided. The coordinates are
also needed in sampling the space- and time-displaced connected correlation
function and in calculating the dynamic structure factor S(q,ω).
The Bloch theorem enables for the electronic structure of a bulk compound

to be investigated in calculations on the chemical unit cell. Band structure

methods and density functional theory calculations almost always make use

of the Bloch theorem. An example of methods that do not use the Bloch theo-

rem are real-space methods, for instance the linear scaling real space method

developed and described in the PhD thesis of Bergman [148]. This method is

suitable for investigations of the non-collinear magnetic behaviour of nanos-

tructured materials.

Most of the time, the atomistic spin dynamics simulations are performed
for magnetic samples with a crystal structure. The compound is represented
in a simulation cell by duplication of the chemical unit cell. In simulations of
the bulk phase of a material, the duplication is in the direction of the three
lattice translation vectors, complemented with periodic boundary conditions.
In simulations of a layered system, the duplication is in the directions of two
of the lattice translation vectors. For a multilayer system it is possible to have
different interatomic exchange interaction and magnetocrystalline anisotropy
constants for each layer. Electronic structure programs that use surface Green
functions are particularly suited for these semi-infite geometries [62, 70].

Chemically disordered systems are challenging as they break the transla-
tional symmetry of the lattice. The chemical disorder can be modelled in su-
percells, where a local chemical disorder can be taken into account. An effi-
cient scheme for how to set up the disordered supercells is the technique of
special quasirandom structures [149], An alternative is to use the coherent po-
tential approximation, as described in e.g. Ref. [62]. The applications of the
coherent potential approximation will be discussed in Chapter 6 in connection
to Papers II-IV.
Event more complicated for first principles methods are amorphous com-

pounds. There are methods [150] for how to investigate amourphous com-

pounds within a electronic structure framework, but there is no immediate

procedure how to combine this with mapping to a magnetic Hamiltonian of
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the form of Eq. 3.39. In solid state magnetism, a strong motivation for interest

in amorphous materials is the opportunity they offer for tuning of the mag-

netization and angular momentum compensation points in ferrimagnetic rare

earth-transition metal alloys [151].

5.4 Thermal equilibrium and ergodicity

To equilibrate the system, either spin dynamics simulation evolution in pres-

ence of a heatbath or Monte Carlo techniques can be used. 1 Different mea-
sures are available to determine if a system of atomic magnetic moments have
reached thermal equilibrium.
The crudest measure is the magnetic order parameter, in simulations calcu-

lated as the average of all magnetic moments in the simulation cell. In equi-

librium the energy distribution of the spin-moments follows a Boltzmann dis-

tribution. The energy of spin i is given by

Ei =−mi ·Bi + |mi||Bi|. (5.19)

In this expression parallel coupling between the moment and the local effec-
tive field is set to zero energy. During dynamical processes the distribution
changes. In analog with the spin wave content one may calculate the change
in the energy distribution at different points in times during a dynamic process.
Averages of an observable can be obtained either by averaging over time

or by averaging over the magnetic moments in the simulation cell. The er-

godic hypotheses [7] in statistical mechanics states that in the thermodynamic

limit of long measuring times and large simulations cells, the average over

time and over the simulation cell are equivalent. As a consequence, there is

a certain freedom in how averages can be calculated for a system in thermal

equilibrium. In simulations, where the number of magnetic moments, and the

number of times steps, with necessity both are limited, the thermodynamic

limit cannot be approached. Rather the choice is between a small or medium

cell and simulation time invervals typically shorter than one nanosecond. It is

then important to observe that the dynamics, also in the steady state of ther-

mal equilibrium, is of different nature for simulations cell of varying size. The

theory of finite-size scaling and the renormalization group [119] make it pos-

sible to extract qualitative and quantitive results in the thermodynamic limit

from data collected in simulations on finite cells. This is very useful in order

to investigate phase transitions. As mentioned already in Chapter 4, the the-

ory of dynamic critical phenomena is important for atomistc spin dynamics.

Whether a simulation aims to actually calculate dynamical critical exponents

1Bloch spin algorithms, such as the Wolff algorithm, are used in Monte Carlo simulations to

speed up the approach to equilibrium. A similar method could be developed for Langevin dy-

namics of spin systems. That would then be the Björn algorithm.

57



or simulate e.g. the switching of a magnetic heterostructure, the mechanism

of critical slowing down can potentially influence the evolution of the system.

A consequence, with immediate relevance for simulations on switching be-

haviour, is that the time scale in simulation is not absolute. Not only is precise

knowledge of the microscopic damping parameter typically not at hand, it is

in principle also necessary to account for finite size effects when trying to

determine the speed of reversal and relaxation as accurately as possible.

5.5 Measurements

5.5.1 Average magnetization and sublattice magnetization

As primary quantities, the average magnetization M and its Cartesian compo-
nents Mk, are calculated as averages over the magnetic moments in the simu-

lation cell,

Mk =
1

N ∑
i

mk
i (5.20)

M =
√

Mx +My +Mz (5.21)

at an instant of time during the simulation. Here mk
i , with k = x,y,z, are the

Cartesian components of the atomic magnetic moments and N is the number
of atoms in the simulation cell. For antiferromagnets, ferrimagnets, and ma-
terials with a complicated crystal structure, averages can be calculated over
individual sublattices. When sampling a dynamic process over a time interval,
the time scales of the dynamics for a specific system determines the appro-
priate sampling rate of the components Mk. A typical value of the sampling
periodicity time is 10 ps, corresponding to a sampling frequency of 100 THz.
It is also possible to write to file sequences in time of the individual atomic
magnetic moments mk

i . This provide information that can be used, together

with conservation laws as described in Section 4.9, for testing and debugging

of software implementing atomistic spin dynamics. In simulations of the SLL

equation, averaging over different realisations of the heat bath, i.e. starting

the random number generator with different seeds, is important. For geomet-

rically disordered systems such as dilute magnetic semiconductors, also av-

eraging over different configurations of the magnetic atoms in the lattice is

important.

If a system has reached thermal equilibrium, averaging can be performed
also over time. This is typically done for the average magnetization and the av-
erage sublattice magnetization over a range of temperatures. It is also possible
to calculate higher order moments and cumulants as described in textbooks on
Monte Carlo simulations in statistical physics, e.g. Ref. [28].
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Figure 5.1: The magnetization M(T ) and sublattice magnetizations M1(T ),M2(T )
versus temperature for the B2 model ferrimagnet described in the text. A simulation

cell sized L = 32 was used in simulations with 20 heat bath averages.

5.5.2 An example: Ferrimagnetic resonance

Simulations have been performed for a model Ferrimagnet with B2 Caesium

Chloride crystal structure. The magnetic moments were M1 = 2.0 μB
and M2 = 1.0 μB. The exchange interactions were J11 = 1.00 mRy,
J22 = 0.05 mRy, and J12 = −0.10 mRy. At first simulations were run to

obtain magnetic moment configurations in thermal equilibrium at different

temperatures. Here 20 realisations of the heat bath were used. As can be

seen in the error bars for the graphs, the standard deviation of the average

magnetization in the 20 samples is small. The M(T )-graphs are shown in

Fig. 5.1. At a temperature T ≈ 180 K the magnetization of the M1 and M2

sublattices cancel each other. The temperature TM where this happen is
called the magnetization compensation temperature. If the atomic magnetic
moments on the different sublattices have the same gyromagnetic ratio,
the magnetization compensation temperature coincide with the angular
momentum compensation temperature TA. If the gyromagnetic ratios are
different, the compensation of magnetization and angular moment occur
at different temperatures TM 	= TA. In the present simulations, the steps in
temperature was T = 10 in the interval T = 150 to T = 250 K. No particular
effort was made to pinpoint the magnetic compensation temperature to a
very precise value. It should be remarked that not all ferrimagnets have
a compensation point. If the exchange couplings between the sublattices
are too strong, the sublattice with the stronger magnetic moment at low
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temperature will prevail over the other sublattice all the way up to the Curie

temperature TC.
The magnetic configurations in equilibrium at different temperatures were

used as starting configurations for simulations of precession in a uniaxial
anisotropy with the strength K = −0.02 mRy/atom. The anisotropy axis is
along the z-direction. The magnetic configurations were rotated to have an

initial angle of 10◦ to the anisotropy axis. The simulations were performed
using the damping parameters α = 0.00 or α = 0.01. For the simulations

with α = 0.01 averaging was performed over 20 heat baths. For M1 atoms
the Lande g-factor was kept to g1 = 2.0 in all simulations. For M2 atoms two
different values of the g factor was used, g2 = 2.0 and g2 = 2.2. In all simu-

lations a precession of the average magnetization around the anisotropy axis

could be observed. This constitutes a ferrimagnetic precession mode. What

distinguises this as a ferrimagnetic mode is its dependence of the precession

frequency on the temperature. In Fig. 5.2 are shown the graphs of the magneti-

zation components at temperature T = 10 K. Far away from the compensation
points, the evolution of the average magnetization is similar to that of a ferro-
magnet. In Fig 5.3 are shown the graphs of the magnetization components at
temperature T = 100 K. The precession of the sublattice magnetization vector
around the anisotropy axis is here much faster than for low temperatures.

The trajectories of the average magnetization and the magnetization for
each sublattice were analysed by Fourier transforms. At first the Mx,Mx

1,M
x
2

and My,My
1,M

y
2 components were analysed. For most temperatures two res-

onance frequencies can be found. The Fourier transforms reveal that the fre-
quencies present in the α = 0.01 and the α = 0.00 simulations are similar.

These frequencies are the same for the average magnetization and for the sub-

lattice magnetizations. The frequencies are associated with the ferromagnetic

mode and the exchange mode respectively [26, 27]. Close to the compensation

temperature, the frequencies are close together and it is hard to distinguish if

there are two distinct frequencies or only one frequency. This corresponds to

the theory of ferrimagnetic resonance, where the frequencies of the ferromag-

netic mode and exchange mode coincide at the angular momentum compen-

sation temperature.
Next the Mz,Mz

1,M
z
2 components and M,M1,M2 were analysed. The ex-

change interactions within each sublattice ensure that the average sublattice

magnetizations M1 and M2 are almost unaffected by the precession around the

the anisotropy axis. This can be seen directly in the trajectories for M1 and
M2 and also in their respective Fourier spectra. On the other hand, the total

magnetization M oscillate in time. As the sublattice magnetizations are stable,
an oscillation of M must be associated with an oscillation of the angle θ12
between M1 and M2. The angle can be calculated and analysed, but one can

also observe oscillations directly in the Mz
1 and ,Mz

2 components. These are
more pronounced in the beginning of the 50 ps long simulation interval when
the angles θ1 and θ2 of the sublattice magnetizations to the anisotropy axis are
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Figure 5.2: The sublattice magnetization M1(T ) during precession at T = 10 K in a

uniaxial anisotropy. A simulation cell sized L = 32 was used in simulations with 20

heat bath averages and α = 0.01, g1 = 2.0, and g2 = 2.0.

Figure 5.3: The sublattice magnetization M1(T ) during precession at T = 100 K in a

uniaxial anisotropy. A simulation cell sized L = 32 was used in simulations with 20

heat bath averages and α = 0.01, g1 = 2.0, and g2 = 2.0.
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Figure 5.4: The resonance frequencies for the B2 model ferrimagnet. The frequencies

of the ferromagnetic mode and the lower exchange mode were obtained from Fourier

transforms of the My
1-component. The frequencies of the upper exchange mode were

obtained from Fourier transforms of the Mz
1-component. The frequencies are shown

for two sets of simulations, one set where g1 = g2 = 2.0 and one set where g1 = 2.0,
g2 = 2.2.

close to 10◦. At a later point, when the sublattice magnetizations both align

close to the z-axis, all motion is mainly in the xy-plane and oscillations in the
z-direction are small in magnitude. That the frequencies are close is indicative

of that the oscillation in M is connected to the oscillation of Mz
1 and Mz

2. This
can also be confirmed by calculation of the angle θ12. When comparing the

graph for θ12 with the graphs for Mz
1, Mz

2, and the magnetization M, it is seen
that they all have the same dependence on time.
The peak values of the frequencies have been plotted versus temperature in

Figs. 5.4. Around TA the lower lying frequency, connected to the precession
around the anistropy axis, is seen to diverge. This corresponds to a diver-
gence of the effective gyromagnetic ratio. Also in the case of equal g factors
a divergence of the effective gyromagnetic ratio can be seen around TA. The

divergence is not very strong but the trend is clear. Remarkable is here that

the frequency does not drop to zero around TM. This is precisely what was

observed in the experiments on ferrimagnetic resonance of GdFeCo by Stan-

ciu et al. [35]. The lower exchange branch has a minima close to TA. In the
vicinity of the compensation temperatures this branch takes values close in

magnitude to those of the ferromagnetic branch.
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5.5.3 The autocorrelation function

It can be tempting to try to determine how well equilibrated a spin configu-
ration is by optical inspection of the magnetic order parameter plotted as a
function of time. This measure gives a hint on how far the system has evolved
towards thermal equilibrium, but it can be misleading. For small systems, ther-
mal fluctuations make the order parameter oscillate. This is to some part re-
lieved by averaging over heatbaths, but if the order parameter only slowly ap-
proaches a limiting value it can be problematic nevertheless. A dynamic sys-
tem that is out of equilibrium has physical observables that break time trans-
lation invariance during the relaxation towards thermal equilibrium. Two-time
observables can sample the characteristics of the approach to equilibrium. The
spin autocorrelation function,

C0(tw + t, tw) = 〈mi(tw) ·mi(tw + t)〉, (5.22)

is an important quantity as it provides a good measure to see how well equili-
brated the spin system is. The autocorrelation function is used extensively in
Papers II-IV to investigate the pace of relaxation. In Fig. 15 of Paper II the
relaxation for plain bcc Fe is plotted. These relaxation of Fe provides a refer-
ence for which the relaxation of GaMaAs, with different rates of As antisites,
is compared in Figs. 12-14 in the same paper. In Paper III on the archetypical
spin glass alloy CuMn, the dependence of the relaxation on the α parameter is

discussed. In Fig. 5.5 is shown the autocorrelation function from a simulation

of the frustrated magnet (Zn1−xMnx)Se. In contrast to the waiting times used

in Papers II-IV, the waiting times here are completely regularly distributed on

the logarithmic time axis.

The autocorrelation can also be misleading. The reason is that, for isotropic
spin systems, there is no energy cost associated with global rotations of the
whole spin simulation cell. As discussed in Section 4.9, it is important that
the solver of the LL equation preserves the total angular momentum for a
system described by only a Heisenberg Hamiltonian and α = 0 dynamics.

In the case of finite temperature and finite damping, there will always be a

random walk like drift due to the fluctuating fields. To suppress this drift is

yet another reason that it is important to average over different heatbaths.

5.5.4 Spatial correlation functions

In addition to the trajectories of the atomic moments, and the autocorrelations

function, spatial correlations between atomic moments, provide fundamental

information on the system. The connected correlation function is defined as

Ck(r− r′, t, t ′) = 〈mk
r(t)m

k
r′(t

′)〉−〈mk
r(t)〉〈mk

r′(t
′)〉, (5.23)
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Figure 5.5: Sampling of the autocorrelation function for the diluted magnetic semi-

conductor (Zn1−xMnxSe, x=0.25. An ensemble of 20 configurations of the Mn atoms

was used. The simulation is following a quenching protocal where the initial magne-

tization configuration is random. At time t0 = 0 the temperature is set to 10 K. This

is below the spinn glas ordering temperature. The system relaxes over many orders of

magnitude in time.

Figure 5.6: Sampling of the disconnected equal time spatial correlation function

G(r− r′, t = t ′)for the diluted magnetic semiconductor (Ga1−xMnx)As, x = 0.05.
The system is in thermal equilibrium at T = 100 K. The simulation cell has size

L = 20. The correlation is plotted for arguments [−L/2,L/2] in direction (100),√
2 · [−L/2,L/2] in direction (110),

√
3 · [−L/2,L/2] in direction (111)

64



where 〈...〉 denotes ensemble averages over heatbaths. The first term on the

right hand side is the disconnected correlation function,

Gk(r− r′, t, t ′) = 〈mk
r(t)m

k
r′(t

′)〉, (5.24)

which contains information on the magnetic order of the system. It will also

prove useful to plot,

G(r− r′, t = t ′) = 〈mr(t) ·mr′(t
′)〉, (5.25)

which will be refered to as the disconnected equal time spatial correlation
function. This simple measure has been used in Figs. 5-7 in Paper II to deter-
mine and vizualize how the correlation of spin grows with time in relaxation
from either the ferromagnetic T = 0 K state or from a completely disordered

state, i.e. the limit of infinite temperature, towards the equilibrium correlation.

As the memory footprint for the space- and time-displaced correlation func-

tions are high, in particular if they are sampled for all sites r and r’ and also at

different times, it is possible to write the correlation functions to file for a sub-

set of all possible directions in the crystal structure. The data in Fig. 5.6 is for

T = 100 K, L = 20 and no As antisites and shows the values of G(r−r′, t = t ′)
along the 100, 110 and 111 high symmetry directions in the lattice. It is com-
plementary to the black line for the correlation in thermal equilibrium shown
in Fig. 5 in Paper II. The correlation function was sampled for distances r up to
half the the edge length, L/2. The sampling of correlation functions can also

be performed within or between individual sublattices, allowing for insight

into how the dynamics can evolve on different timescales for atomic magnetic

moments on chemically and magnetically inequivalent sites.

5.5.5 The dynamic structure factor

In order to evaluate the spin wave density of a system one may calculate the

dynamics structure factor S(q,ω) by performing a space and time Fourier
transform of the connected correlation function[123],

Sk(q,ω) =
1

N
√
2π ∑

r,r′
eiq·(r−r′)

∫ +∞

−∞
eiωtCk(r− r′, t)dt, (5.26)

where N is the number of terms in the summation. In Figs. 5.7 and 5.8 the

dynamic structure is sampled for a model Heisenberg Ferromagnet with bcc

lattice structure. Shown in the figures are here the intensity as a function of

frequency f , for the q-value q = 5(π/Na). N = 20 is the edge length of the
simulation cell. In the initial step of the simulation, the spin systems were
equilibrated with a heat bath at T=100 K. The sampling of S(q, f ) was in Fig.
5.7 performed with ’microcanonical’ ensemble where α = 0. The peak in the
structure factor is sharp. That carries over to the case of finite damping α =
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0.01 in Fig. 5.8, where the peak is still well defined but a certain broadening

occur. This is as expected.
In Fig. 5.9 the dynamic structure factor is measure for GaMnAs. The numer-

ical effort to produce this data is substantial. An average over 20 realizations
of the chemical disorder of the lattice was used. For a diluted system, the tech-
niques that are applicable for stochiometric systems are hard to apply. A direct
Fourier transform of the realspace interatomic exchange interactions give lim-
ited information as this fails to take into account that the system is diluted.
The frozen magnon approximation is here not very practical as the necessary
supercells would be large. This in combination with that a large number of
individual calculations for different realizations of disorder are necessary ren-
ders the computational effort unwieldy. Direct sampling of Ck(r− r′, t, t ′) in
spin dynamics simulations followed by Fourier transforms seems to be one of
the few tractable means to calculate the spin wave spectra of diluted systems.
There is at least one other technique at hand, the self-consistent local random
phase approximation. This has recently been used by Bouzerar in a calcula-
tion on GaMnAs [152]. The data of Fig. 5.9 is from preliminary atomistic
spin dynamics simulations. It shows resemblence with Fig. 2 of Ref. [152],
and future more careful comparisons are motivated. It should be pointed out
that the systems are not identical as they are for Mn concentration x = 0.05,
and x = 0.03, respectively.

5.5.6 The susceptibility

In thermal equilibrium, the response to external perturbations can to first or-

der be calculated in the formalism of linear response. For magnetism, one of

the more important response functions is the susceptibility. It can be readily

sampled in simulations as,

χ =
1

NkBT
〈(m−〈m〉)2〉. (5.27)

The requirement that a system actually is in thermal equilibriumwhen measur-
ing a response function or susceptibility is the same in numerical simulations
as in experimental measurements. The simplest case is when a system is in
proper thermal equilibrium, with all correlations in time being stationary. For
systems that relax over many orders of magnitude in time, and actually never
reaches complete equilibrium, response functions can still be described by
linear response if the driving perturbation is slow with regard to the dynamics
[124].
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Figure 5.7: Sampling of the dynamic structure factor S(q, f ) for a model Heisenberg

ferromagnet with bcc crystal structure. Shown is here the intensity as a function of

frequency f , for the q-value q = 5(π/Na) where here N = 20 is the edge length of the

simulation cell. In the initial step of the simulation, the spin system was equilibrated to

a heat bath at T=100 K. The sampling of S(q, f )was performed with ’microcanonical’

ensemble where α = 0.

Figure 5.8: Same magnetic system as in Fig. 5.7 but here the sampling of S(q, f ) was
performed with a finite damping of α = 0.01 and a heatbath of T = 100 K. In com-

parison, the peak is broader in this graph, as expected for finite damping versus zero

damping. In both this graph and the graph of Fig. 5.7 the S(q, f ) data was normalized

to its respective peak value.
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Figure 5.9: Sampling of the dynamic structure factor S(q,ω) for the diluted magnetic

semiconductor (Ga1−xMnx)As, x=0.05. An ensemble of 20 configurations of the Mn

atoms was used. In the initial step of the simulation, the spin system was equilibrated

to a heat bath at T=10 K. The sampling of S(q,w) was performed with ’microcanoni-

cal’ ensemble where α = 0.
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6. Introduction to the papers

This section introduces Paper I.

Paper I describes the method for, and implementation of, a scheme for
atomistic spin dynamics. See also comments in the opening of Chapter 5 and
Appendix A.

6.1 Chemically disordered magnets

This section introduces Papers II-IV.
In order to model chemically disordered magnets within the framework of

density functional theory, special care is necessary. One approach is to set

up a supercell, as large as possible depending on the available computing re-

sources. The supercell approach has the advantage that it provides a local

environment for the magnetic atoms. It is possible to investigate how chem-

ical, structural and magnetic properties differs in the case of homogeneously

distributed magnetic atoms as compared to the case where clustering occurs.

This can be done by imposing different magnetic configurations in the solu-

tion of the electronic structure and calculate the total energy. The total ener-

gies for a set of different magnetic configurations can be used in an equation

system to calculate nearest neighbour and possibly next nearest neighbour in-

teractions. If the concentration of magnetic impurities is small, the supercell

method faces the problem that a larger number of host atoms in the semicon-

ductor needs to go into the calculation in order for the ratio of the atoms in the

supercell to come close to the chemical composition that one wants to calcu-

late for. A large supercell obviously also increases the computational effort.
The coherent potential approximation, briefly discussed in Chapter 5, is one

of the techniques that can be used instead. This techique works very well for

many problems in alloy theory. When applied to magnetic alloys with the goal

in mind to extract interatomic exchange parameters and atomic magnetic mo-

ments, that can be used in subsequent Monte Carlo or spin dynamics simula-

tions, two things need to be taken into account. One is whether the compound

is known to be a homogeneous alloy or if clustering occur. The second is to

what extent the magnetic exchange interaction depends on the local environ-

ment. In the investigations of the diluted magnetic compounds in Papers II-IV,

the assumption was always that the compounds could be regarded as homo-
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Figure 6.1: Histogram of the atomic pair correlation for a simulation cell L = 40 of

the diluted magnetic semiconductor (Ga1−xMnx)As, x = 0.05. The Mn atoms have

here homogeneously substituted 5% of the Ga atoms. A consequence of this atomic

pair correlation is that the combined effect of interactions over larger distances will

be stronger than their individual values would indicate.

geneous and that the magnetic exchange interactions would not be too much
dependent on the local environment.

To arrive to longe range magnetic ordering, the diluted magnetic
compounds must have a mechanism to couple the magnetization throughout
the sample. The mechanism is often exchange interactions, but also
magnetic-dipole-dipole interactions can play a role. The exchange parameters
used for the spin dynamics simulation on the diluted magnetic semiconductor
(Ga1−xMnx)As, x = 0.05, presented in Paper II, are displayed in Fig. 1 of that
paper. As the Mn atoms occupy only 5% of the sites of one fcc lattice, it

is clear that also exchange interactions for larger distances can play a role,

as the number of such couplings can be larger than the numbers of nearest

neighbour couplings. In Fig. 6.1 is shown a histogram of the atomic pair

correlation. This histogram is for a homogenous substitution with 12800

Mn atoms distributed over the 256000 sites of the Ga lattice in a L = 40
simulation cell.

In materials with antiferromagnetic interatomic exchange interactions, it
can happen that not all antiferromagnetic couplings can minimize their en-
ergy simultaneously. This effect is called frustration. The cause of frustra-
tion can be purely geometrical [153], as is the case for a triangular lattice,
a Kagome lattice or the Pyrochlore lattice [154]. If a lattice of this type is
occupied with chemically equivalent elements, all antiferromagnetically cou-
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Figure 6.2: Time evolution of the pair correlation function Gi j(t) starting from ferro-

magnetic (blue) respective random (red) configurations and with L = 40 in the sim-

ulation. Values are obtained for y = 0.25 % and T = 100 K. The equilibrium pair

correlation is shown in black.

pled to each other, the groundstate will be highly degenerate. Such materials

have particular thermodynamic properties that are investigated in experiments

[154] and also in numerical simulations [155]

In the case that frustration is combined with chemical disorder, it can be that
the materials will belong to the class of spin glasses [156, 124]. The disorder
can be in form of bond disorder, where the exchange couplings take different
values, or in form of site order, where the atoms are chemically essentially
equivalent, but occupy the lattice sites randomly. Spin glasses are related to
the frustrated magnets mentioned above, but also possess some distinct char-
acteristics. One of them is that a spin glass will in experiments relax over
a large order of times scales, potentially reaching geological time spans. In
simulations of finite cells, it is possible to sample the phase space in order to
explore the degenerate groundstates. This is computationally very demanding,
and refined algorithms such as the heatbath algorithm and parallel tempering
come to good use. For an introduction to the theory of slow dynamics and
aging in spin glasses see e.g. Vincent et al, [157], Nordblad and Svedlindh in
Chapter 1 of Ref. [124] and Bouchaud et al. in Chapter 6 of Ref. [124]. The

PhD thesis of Peil [158] explores in detail how research on spin glasses can be

performed combining materials specific density functional theory calculations

and advanced Monte Carlo methods.
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In the simulations that are reported in Papers II-IV the aim was not to sam-

ple the groundstates. Instead the emphasisis was on investigations on the re-

laxation and the aging over a continuum of time scales by means of sampling

of the autocorrelation function. Direct comparisons with experiment are diffi-

cult as the section of the logarithmic time axis that can be targeted in numerical

simulations are in the interval 10−14−10−9 s. This can be contrasted with the
time scales of 10−5−105 s in experimental protocols, such as e.g. thermore-
manence magnetization measurements and susceptibility measurements.

6.1.1 Spin dynamics of Mn doped GaAs

Dilute magnetic semiconductors (DMS)constitute a class of materials where
magnetic atoms, possessing stable magnetic moments, are doped into oth-
erwise nonmagnetic semiconductors. The dopand element is typically a 3d-
metal such as Mn, Fe or Co and the semiconductor is either of the III-V or
II-VI class. The amount of dopand element that can be dissolved into the host
material before chemical segregation and structural deformation occurs is de-
pendent on the chemical properties of the dopand and host elements. The dif-
ference between II-VI and III-V semiconductors is large in this regard. In a
II-VI semiconductor such as ZnTe it was possible to dissolve up to 50% of Mn
[159]. In experiments the magnetic properties of a DMS often show a clear de-
pendence on the concentration of the magnetic dopand. The blue spheres in
Fig. 1.1 show how 5% of the Ga atoms are randomly substituted by Mn atoms
in Mn-doped GaAs.
The sample preparation technique named Molecular Beam Epitaxy (MBE)

allow III-V semiconductors to be doped with concentrations up to 10% with-

out segregation. Other techniques have failed to achieve this as segregation

occured for even lower concentrations. With higher concentrations of mag-

netic atoms these DMS materials showed FM at low temperatures. The quest

for a dilute magnetic semiconductor that would remain FM at room tempera-

tures intensified [160] in the 90s. The driving force is the potential use of DMS

in spintronics [161] where spin and charge are information carriers. This is an

extension of traditional semiconductor based electronics where information is

carried only by the charge.

Theoretical efforts to calculate and simulate the properties of DMS is an
example of the how calculations, from first principles but also from model
Hamiltonians, play an important role in design of new materials. The im-
portance of interplay between experiment and theory for succesful research
in this field should however be emphasized. First-principles theory of dilute
magnetic semiconductors is discussed in detail the recent review by Sato et al.
[13]. The review of Jungwirth et al. [75] covers theoretical frameworks as the

k−d model, and effective tight-binding models.
The calculations presented in Paper II constitutes an ASD study of the

magnetization dynamics of the III-V DMS GaAs doped with 5% Mn. The
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Figure 6.3: Autocorrelation C0(tw + t, tw) for 5 % Mn doped GaAs, with 0.25 % As

antisite concentration. The simulation is following a quenching protocal where the

initial magnetization configuration is random. At time t0 = 0 the temperature is set to

10 K. Simulations were made with α = 0.03 (top panel) and α = 0.10 (bottom panel).
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relaxation from DLM or FM states to thermally equilibrated magnetic con-

figurations is investigated by sampling of the magnetic ordering function,

the time evolution of pair correlation functions and the autocorrelation. Fig-

ure 6.2 shows that the pair correlation reaches thermally equilibrated values

faster when a simulation is started from a FM configuration than when it

is started from a DLM configuration, for the As antisite concentration y =
0.25 % and a temperature T = 100 K. The dynamics between nearest neigh-
bour Mn atoms is, as revealed by the pair correlation function, considerably
faster than the more long ranged interaction. In simulations at the same tem-
perature for higher As antisite concentrations, it was found that short ranged
order exists up to and even above the ordering temperature. Starting from ran-
dom configurations the pair correlation function, for distances up to 4a (a =
lattice parameter), reaches equilibrium on a time scale of 10-20 ps.

As discussed in Chapter 5 the autocorrelation is a suitable quantity for anal-
ysis of the dynamical response and possible spin glass behaviour. Sampling of
the autocorrelation shows that Mn doped GaAs does not display spin glass be-
haviour, for moderate (y = 0%−1.75%) concentrations of As antisites. Com-
parisons are made with the relaxation behaviour of the archetypical ferromag-
netic bcc Fe. For the highest defect concentration, y= 2.00%, the nature of the
phase transition (ferromagnetic or spin glass) of the simulation cell cannot be
accurately determined from the data. The autocorrelation function for antisite
concentration y = 0.25 % at temperature T = 10 K is shown in Fig. 6.3.

6.1.2 The spin glass alloy CuMn

That CuMn is a spin glass is well established. In Paper III comparisons are
done between a Hamiltonian with parameters for CuMn calculated in density
functional theory electronic structure programs, and the Heisenberg general-
isation of the Edwards-Anderson model. It is investigated how the aging is
affected by the size of the damping parameter α .

6.2 Dynamics of FM and AFM

This section introduces Papers V and VI.
For a large set of problems within micromagnetism, it is possible to describe

small domains or nanoparticles with one large effective magnetic moment.

This macrospin approximation is one of the techniques that makes it possible

to investigate some switching and relaxation phenomena without unduly com-

putational effort. Antiferromagnets and ferrimagnets can be described with

one lattice spin representing the magnetization of all magnetic moments resid-

ing on one sublattice. This construction is similar to, but clearly not identical

to the macrospin approximation. The chief difference is that antiferromagnets
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and ferrimagnets have more degrees of freedom that allows for complicated

spin wave modes, typically more complex than the modes of ferromagnets.

6.2.1 Spin wave instabilities

Thermally stable magnetic domains with well defined spatial extensions are

the building blocks for information in magnetic storage media. Magnetocrys-

talline anisotropies and shape anisotropy for thin films causes the magnetic

domains either to lie along an easy axis in the plane of the film or to be per-

pendicular to the film. Switching of a magnetization domain (i.e. changing the

bit stored from 0 to 1 or vice versa) can be initiated by external magnetic fields

from a permanent magnet or a current coil, by magneto-optical mechanisms

with a laser pulse or with spinpolarized currents. After the external excitation,

the magnetization relaxes in the presence of anisotropies to eventually lay

to rest in the new direction. Relaxation processes of magnetization dynam-

ics involve transfer of energy and angular momentum, either to the lattice,

the electrons or within the magnons (the low energy magnetic excitations).

Phenomenological models such as Gilbert damping and Bloch-Bloembergen

damping have been used to describe relaxation on the macroscopic level (see

Fig. 6.4). In the micromagnetic approach magnetization is treated as a contin-

uum m(r, t). The concept of macrospin arises by coarse graining the magneti-
zation over distances on which the magnetization is reasonably collinear. The
macrospin, M, represents the direction and magnitude of the magnetization in
an element of e.g. a thin film. The initial rotation of the magnetization of a
ferromagnet in an external field can be seen as an excitation of a large num-
ber of uniform k=0 magnons. During the relaxation process these magnons
interact, dissipating energy and angular momentum. Relaxation can occur via
two processes, one where both energy and angular momentum are transfered
out of the magnetic system and the second where energy is transfered within
the magnetic system, to other non-uniform k 	= 0 magnons. The first process,
which describes a dissipative damping in the equations of motion for magne-
tization dynamics, results in a Gilbert like relaxation,

∂M
∂ t

=−γM×H+
α
M

M× ∂M
∂ t

, (6.1)

where M is the macro moment, H the effective field and α a damping pa-

rameter. The second process, which is described by the precessional term in

the equations of motion, results in a special case (|Mz| constant) of the Bloch-
Bloembergen damping,

∂M
∂ t

=−γM×H−Mx

R
êx−My

R
êy, (6.2)

where the effective field is assumed to lie in the z-direction and R is a re-

laxation parameter. This second process is the focus of Paper VI. Here a
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Figure 6.4: The figures illustrate the Bloch-Bloembergen (a) damping and the Gilbert

(b) damping for a macro moment precessing in an effective magnetic field along the z-
axis. In the former (a) case the x- and y-components of the macrospin vanish whereas

the z-component is preserved. For the latter (b) the macrospin magnitude is preserved.

macrospin, constructed as the average of the atomic magnetic moments in

a 20×20×20 bcc Fe simulation cell, is relaxed in the presence of an external
magnetic field or a magnetocrystalline anisotropy. The main result is that the
macrospin, even in the absence of Gilbert like damping (i.e. α = 0 in the ASD

equation of motion Eq. 4.1) can shrink to very small values or even disappear.

This process was investigated for longer length scales of the magnetization

within the micromagnetic approach by Kashuba [162] and is refered to as a

spin wave instability (SWI). That this phenomena is present also on shorter

length scales is demonstrated in a series of ASD simulations. The conditions

for a SWI to occur are shown to be: A finite temperature to initiate the devia-

tions from k = 0 magnons, and the presence of magnetocrystalline anisotropy.

Figure 6.5 shows how the distribution of atomic magnetic moments is changed

under influence of an external magnetic field and an anisotropy axis. Further

details on the simulations and the results are found in Paper V.

6.2.2 Switching of an artificial antiferromagnet

In Paper VI it is investigated how fast the magnetization direction can be

switched in an artificial antiferromagnet. Through a favourable cooperation

of the torques from the external magnetic field, and the torque that act from

one sublattice to the other, a very rapid switching is demonstrated. The time

scale of the switching is investigated for different damping parameters and at

different temperatures.
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Figure 6.5: Figures (a) and (b) show the distribution of atomic moments of the spin

dynamics simulations. At finite temperature the orientations of the atomic spins are

distributed around a common axis (b). Figures (c) and (d) show the evolution of the

spin distribution, as given by the evolution of the circular grey disc representing the

distribution of magnetic moments defined in (b). The system is at finite temperature

in an external field (c) and in a uniaxial anisotropy (d).
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6.3 Dynamics of 1D and 2D magnetic systems

This section introduces Papers VII and VIII.
Dimensionality plays a determining role in all kinds of physics, so also in

the physics of magnetism. The magnetic properties of a solid are changed
drastically in the transition from extension in three dimensions to extension in

two or only in one extension. One consequence of the lower dimensionality is

that the coordination numbers for neighbouring atoms get lower. Due to this,

the total coupling strength, of interatomic exchange interactions but also of

other interactions, will be lower per atom in a thin film compared to bulk. This

is a purely geometric effect and is present even in the case that the chemistry

remains the same. In reality, the chemical and structural properties of a thin

film on a substrate can differ substantially from the bulk properties of the

same material. The film can be strained in the plane of the substrate, due to

missmatch of lattice constants, it can also relax in the direction perpendicular

to the substrate. In Paper VII investigations are done for an Fe monolayer

on a W(110) substrate. Here two different electronic structure methods are

used. The first program can handle the relaxation of the structure, the second

program then uses these relaxed coordinates for calculations on the magnetic

properties. The study aims to investigate how the magnon modes softens, i.e.

get reduced in energy for a given wavevector. Often the energies obtained in

frozen magnon calculations correspond very well to experiment. It turns out

that in the case of Fe/W(110) also the effect of temperature is important. This

is not automatically captured by the frozen magnon approach. Temperature

can enter in form of the heatbath used in the atomistic spin dynamics method.

But, the effects of temperature can also be come in at an earlier stage by using

a partial disordered local moments configuration for the electronic structure

calculation. More details can be found in Paper VII.
In Paper VIII the magnetization of nanothreads of Pt is investigated.

Anisotropy energies are usually stronger, per atom, in reduced dimensions

compared to bulk. It has recently been suggested that the local magnetic

moment can collapse alltogether if the magnetic moments are forced into

a hard direction. It is investigated in spin dynamics simulations how this

so called colossal magnetic anisotropi compares with regular uniaxial

anisotropy. Magnetic order is not stable in one-dimensional magnets,

as already insignificant fluctuations can break up the ferromagnetic

order. In the simulations are investigated how an enforced ferromagnetic

start-configuration decays with time. It turns out that presence of colossal

magnetic anisotropy makes this decay even faster than in the case of regular

anisotropy.
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6.4 Comments on my contributions to the papers

I This paper describes the method for, and implementation of, a scheme
for atomistic spin dynamics. I did some of the simulations, contributed
to the interpretatation of results and came with comments on the paper.
For comments on the program package UppASD, see Appendix A

II I suggested some of the questions for the project. I did all the ASD
simulations, analysed the results, did literature search, and wrote the
paper.

III I took part in the interpretation of results and in writing of the paper.
IV Conference proceedings paper, complementary to papers II and III. I

did all the ASD simulations, the analyses and wrote the paper.
V I took part in the formulation of the problem and contributed to the

interpretation of the first results. I did a second set of simulations and

wrote the second version of the paper.
VI I assisted in some of the ASD simulations, took part in the interpretation

of results and came with comments on the paper.
VII I assisted in some of the ASD simulations, took part in the interpretation

of results, and took part in writing of the paper
VIII I took part in the interpretation of results and came with coments on the

manuscript.
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7. Conclusions and outlook

The method for atomistic spin dynamics simulations is a general technique

with various applications. The method has here been used in a number of

studies that in the previous Chapter 6 were grouped into three parts. This clos-

ing section will briefly comment on what could be possible future develop-

ments for these categories. At first some comments should be made on the

method itself. The different bits and pieces for the method are all well es-

tablished in general solid state theory, statistical physics, and first principles

density functional theory. In that regard, the main achievement in the pursuit

of the research that has lead to this Thesis, has been to obtain and compile

the necessary skills and knowledge necessary from different fields of physics

and mathematics. More or less all the results in the Papers rely on numerical

simulations. The implementation of, and continuous development of, a soft-

ware package to enable these simulations is an ambitious task that requires the

combined efforts of younger and senior scientists.
Among the chemically disordered systems that were the subject of Papers

II-IV, the III-V diluted magnetic semiconductor GaMnAs stands out for one

reaon. It is a candidate material for applications in spintronics and therefore

attracts large interest from the scientific community and also from industry.

One of the challenges, for GaMnAs but also for related compounds, is to ar-

rive to compositions that with some margin remain ferromagnetic at room

temperature. The frustrated, chemically disordered spin glass materials on the

other hand, are an example of materials where research is driven not so much

by the quest for possible applications but by scientific curiosity. The statistical

physics aspects of spin glasses are intriguing, but also often very complicated.

If Langevin dynamics with material specific parameters for exchange interac-

tions, possibly with anisotropic contributions, and optional inclusion of mag-

netostatic interactions, is a fruitful way to go, or more of a parenthesis, in the

research on spin glasses remains to see.
Papers V and VI have in common that they investigate mechanisms for

fast switching. In Paper V simulations are performed to investigate spin wave

instabilities. The anisotropy values used are as such unrealistic, but the mech-

anism for the instabilities can be relevant also for smaller, realistic values of

the parameters.

The reduced dimensions of thin films and nanowires renders their magnetic
properties drastically different than for bulk materials. In Paper VIII are in-
vestigated the very fast relaxation mechanisms for the magnetic order in one-
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dimensional wires of Pt. For an experimental technique to be able to address

such wires, it requires extraordinary spatial and temporal resolution. There

are a number of experimental techniques that are suitable particularly for thin

films. The calculations and simulations in Paper VII aimed to reproduce the

results in recent experiments on magnon softening in Fe monolayers on W

substrates [163]. The outcome of the simulations were that they indeed could

do so. Among the already published Papers included in this Thesis, the results

in Paper VII stands out for their immediate relevance to a recent experiment.
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9. Sammanfattning på svenska

Ämnet för denna avhandling är magnetiseringsdynamik på atomära

längdskalor. Metoden är semiklassisk så tillvida att parametrar extraheras

från kvantmekaniska beräkningar och används for att formulera en klassisk

Hamiltonian. Rörelsekvationerna för Hamiltonianen är ickelinjära och

kopplade differentialekvationer. Exakta analytiska lösningar är möjliga

endast för en högst begränsad mängd problem. Det finns ett antal metoder för

att lösa rörelsekvationerna approximativt. Detta inbegriper ofta linjärisering

av tidsberoende fält och begränsning till små vinklar mot symmetriaxlar.

Numeriska beräkningar och simuleringar utgör i praktiken den mest

framkomliga metoden för att undersöka magnetiseringsdynamik. Resultaten

som presenteras i denna avhandling baseras huvudsakligen på data från

numeriska simuleringar.
Att fasta material kan vara magnetiserade går endast att förklara genom att

inbegripa kvantmekanik. Att en rent klassisk teori inte kan förklara förekom-

sten av magnetisering är en konsekvens av Bohr-van Leuven-satsen. I denna

bevisas att susceptibiliteten χ alltid kommer att vara noll då elektronernas
laddning inte är en tillräcklig egenskap för att ge ett nettomässigt bidrag till

χ . Därmed kan vare sig förekomst av para- eller ferromagnetism förklaras.
Det är endast genom att introducera spinnfrihetsgrader som en mekanism
för magnetism i fasta material är möjlig. Elektroner bär på ett inneboende
spinrörelsemängdsmoment s och ett banrörelsemängdsmoment l. En elektrons
magnetiska moment är relaterat till dess rörelsemängdsmoment genom den
gyromagnetiska faktorn γl = gl

μB
h̄ . Elektronens g-faktor är gs ≈ 2 för spin-

nrörelsemängdsmoment och gl = 1 för banrörelsemängdsmoment. Det totala

magnetiska momentet för en elektron kan uttryckas som

μ = −(γss+ γll) (9.1)

= −μB

h̄
(2s+ l). (9.2)

Även kärnpartiklarna bär på rörelsemängdsmoment och magnetiskt moment.

Dessa behöver oftast inte betraktas i teorin för magnetism i fasta material.

Till en följd av de kvantmekaniska postulaten kommer elektronernas spinn

att precessera runt ett effektivt magnetiskt fält. Detta fält kan utgöras av dels

magnetiska fält, från de magnetiska momenten i materialet och från ett ex-

ternt magnetfält, och dels av interna effektiva bidrag från kvantmekanisk ut-

bytesväxelverkan och magnetoskristallin anisotropienergi. Rörelsekvationen
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fås fram genom att ställa upp Heisenbergs rörelseekvation dÂ
dt = i

h̄ [Â,H ]. för
spinnrörelsmängdsoperatorn och Hamiltonianen. Detta görs i Kapitel 3 för
den en-partikel Kohn-ShamHamiltonian som används inom täthetsfunktional-

teori. Genom att integrera magnetiseringstätheten över de atomära volymerna

erhålls en rörelsekvation för de atomära magnetiska momenten, av samma

form som de mikromagnetiska Landau-Lifshitz-ekvationerna.
Den metod som i denna Avhandling har använts för beräkningar på

spinndynamik är en två-stegs-procedur. Materialspecifika värden på atomära

magnetiska moment och kvantmekaniska utbytesväxelverkningar har

beräknats med elektronstrukturprogram baserade på täthetsfunktionalteori.

Dessa värden har använts för att ställa upp en parametriserad magnetisk

Hamiltonian. Det andra steget består av numeriska simuleringar

av spinndynamiken genom integrering över tid av den stokastiska

Landau-Lifshitz-ekvationen. Inverkan av ändlig temperatur modelleras

genom Langevin-dynamik. I några simuleringar har även magnetokristallin

anisotropi och relativistiska Dzyaloshinskii-Moriya växelverkningar ingått.

I de föreliggande resultaten har dessa varit värden som uppskattats från

kännedom av typiska värden från experimentella mätningar. Men, det går

att beräkna även dessa värden i elektronstrukturberäkningar. De numeriska

simuleringarna har utförts med programpaketet UppASD, Uppsala Atomistic

Spin Dynamics, ett programpaket som utvecklas inom Avdelningen för

Materialteori, Institutionen för Fysik och Astronomi, Uppsala Universitet

alltsedan år 2005.
De artiklar som ingår i avhandlingen kan grupperas efter olika teman. Ar-

tikel I beskriver metoden och innehåller exempel på beräkningar av mag-

netiseringsdynamik till följd av starka magnetiska fält, beräkning av spin-

nvågsspektra och hur en två-temperatur-modell kan användas för att modellera

hur energi överförs från magnetiska frihetsgrader till fononer i kristallen. I Ar-

tiklarna II-IV studeras dynamiken hos kemiskt oordnade material. I Artiklarna

V och VI studeras dynamiken hos en vanlig ferromagnet och för en artificiell

antiferromagnet. I Artiklarna VII och VIII studeras dynamiken hos magneter

med rumslig utsträckning i två eller endast i en dimension.
I antiferromagneter är de lokal magnetiska momenten kopplade med

växelverkningar vars energier minimeras om momenten är antiparallella till

de grannar som de växelverkar med. För vissa material kan det hända att

det, till följd av kristallstrukturen, inte går att samtidigt minimera energin

för samtliga utbytesväxelverkningar. Detta fenomen benämns frustration,

och magneter av det slaget benämns sålunda frustrerade magneter. Antalet

degenererade energiminima för en frustrerad magnet tilltar exponentiellt

med antalet atomer vilket medför besynnerliga termodynamiska egenskaper.

När frustration förekommer tillsammans med oordning, antingen som

nod- eller bindningssoordning, hävs degenereringen i energilandskapet.

Experimentellt sett befinner sig ett sådant system aldrig i termodynamisk

jämnvikt, det kan åldras över geologiska tidsskalor. Denna klass av

86



material benämns spinnglas och har, som namnet antyder, flera egenskaper

gemensamma med vanligt glas. I en simulering av en ändlig cell går det i

princip alltid att utforska fasrymden för att i stickprov mäta de degenererade

grundtillstånden. Detta är tidskrävande beräkningar för vilka särskilda

algoritmer, såsom värmebads-algoritmen och parallel-temporering, kommer

till god användning. I de simuleringar som rapporteras i Artiklarna II-IV

eftersträvas inte en utforskning av grundtillstånden. Istället utforskas hur

materialen åldras över ett kontinuum av tidsskalor genom mätning av

autokorrelationsfunktionen. Direkta jämnförelser med experiment är svårt då

den del av den logaritmiska tidsaxeln som utforskas i numerisk simulering är

i intervallet 10−14−10−9 s. Detta kan jämföras med tidsskalor på 10−5−105

för experimentella protokoll, som exempelvis termoremanent magnetisering
och susceptibilitetsmätningar. Att CuMn är ett spinnglas är väl känt. I
Artikel III görs jämförelser mellan en Hamiltonian med parametrar för
CuMn erhållna från första-princips-beräkningar och Heisenbergvarianten av
Edwards-Anderson-modellen. Det undersöks även hur åldringen påverkas av
värdet på den mikroskopiska dämpningsparametern α . I Kapitel 5 rapporteras
preliminära resultat för den frustrerade magnetiska halvledaren ZnMnSe. Till
följd av alltmer kraftfulla datorer och vidareutveckling av UppASD kommer
avsevärt större simuleringar att kunna genomföras för ZnMnSe och CdMnTe
än vad som var fallet i studien på CuMn. Detta öppnar upp för en mer
avancerad analys av simulerade rådata med tekniker från teorin för dynamisk
kritisk skalning och renormaliseringsgruppen.
Den utspädda magnetiska halvledaren GaMnAs är ett högintressant mate-

rial då det ses som en kandidat för att ingå i spinntroniska konstruktioner.
På tillämpningssidan är spinntroniken, med några undantag, ännu i sin linda.
En av förhoppningarna är att kunna utveckla en ny sorts komponenter där
en kombination av traditionell halvledarteknologi kombineras med de möj-
ligheter som öppnas då även spinnfrihetsgraden kan användas för att rep-
resentera information inom logiska kretsar eller minneskretsar. I Artikel II
presenteras simuleringar på GaMaAs med 5% dopningsgrad, olika halter av
As-orenheter på Ga-positioner i kristallen, och vid olika temperaturer. I simu-
leringar från ett helt ordnat lågtemperaturtillstånd, alternativt från ett oord-
nat högtemperaturtillstånd, till temperaturer strax under eller ovanför Curie-
temperaturen framgår att de atomära magnetiska momenten är korrelerade
över korta avstånd även i det paramagnetiska tillståndet. Med ökande kon-
centration av As-orenheter introduceras allteftersom antiferromagnetiska väx-
elverkningar i materialet. Detta ger sig tillkänna som frustration, dock inte i
tillnärmelsevis lika stor omfattning som för de ovan nämnda spinnglasen. Ef-
fekten är dock tillräcklig för att ge sig tillkänna i autokorrelationsfunktionen,
från vilken det framgår att relaxeringstiden tilltar med ökande halt av As-
orenheter.
För en stor mängd problem inom klassisk magnetiseringsdynamik går det

att beskriva små domäner eller nanopartiklar med ett enda stort magnetiskt
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moment. Denna makrospinn-metodologi är en de förenklingar som kan

möjliggöra studier av switchnings- och relaxeringförlopp utan att tyngre

beräkningar behöver utföras. För de fall då kortvågiga excitationer gör

att det lokala magnetiska momentet minskar är makrospinnmetoden inte

användbar. I Artikel V studeras hur makrospinnmodellen bryter samman

i simulering av precession av en ferromagnet runt en magnetokristallin

anisotropiaxel. Att effekten kan uppstå till följd av geometriberoende

magnetostatisk anisotropi är känt sedan länge. I Artikel V används ett starkt

anisotropifält för att demonstrera att effekten mycket väl kan uppkomma till

följd av magnetokristallin anisotropi. En direkt jämförelse med experiment

är dock inte möjligt på grund av att det ansatta värdet på anisotropin är

storleksordningar större än de som kan förekomma ens i de hårdaste av

magnetiska material.

De tidsskalor över vilka magnetiseringsriktningen kan ändras i en
ferromagnet begränsas nedifrån av vilka styrkor hos pålagda magnetfält
och strömtätheter som går att använda utan att det material som ska
magnetiseras tar skada. Det kan även vara svårt att uppnå erforderliga
fältstyrkor och strömtätheter även om det magnetiska materialet i sig skulle
kunna klara av det. Med sikte på att under kontrollerade former kunna
ändra magnetiseringsriktningen på pikosekundnivå har mycket intresse
ägnats mekanismer för ultrasnabb magnetisering i antiferromagneter och
ferrimagneter. I Artikel VI undersöks i simuleringar hur snabbt det går att
ändra magnetiseringsriktningen hos en syntetisk antiferromagnet. Genom
gynnsam samverkan av kraftmomentet från det pålagda magnetfältet och
de kraftmoment som verkar från det ena magnetiska delgittret på det andra
delgittret går mycket snabba ändringar av magnetiseringsriktningen att
uppnå. Simuleringarna genomförs med olika värden på dämpningsparameter
och vid olika temperaturer.
I nyligen utförda experiment har för första gången demonstrerats hur

magnetiseringsriktningen kan fås att vända hundraåttio grader till följd av en

ultrasnabb puls av cirkulärpolariserat ljus. Detta möjliggörs genom att som

magnetiskt material välja en ferrimagnetisk legering. Ferrimagnetisk ordning

liknar kollinjär antiferromagnetisk ordning men skiljer sig åt såtillvida att

de atomära momenten inte kompenserar varandra fullt ut, resulterande i

nettomässig magnetisering. I Kapitel 5 redovisas de första resultaten från

ett pågående projekt om ferrimagneter. Här undersöks dynamiken hos en

enkel ferrimagnet vid precession i en uniaxiell anistropi-axel. Vid låga

temperaturer beter sig magneten likt en vanlig ferromagnet. I ett känsligt

temperaturintervall runt den magnetiska kompensationspunkten respektive

rörelsemängdsmoments-kompensationspunkten ger sig den distinkta

karaktären hos en ferrimagnet tillkänna. I simuleringar undersöks hur

precessionsrörelsen påverkas runt kompensationspunkterna. Den kvalitativa

överensstämmelsen med experiment på ferrimagneter är god. Likt studien i

Artikel V visar det sig att makrospinnmetoder kan komma till korta och att
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modellering med en ändlig simuleringscell kan vara avgörande för att kunna

reproducera de beteenden som kan observeras i experiment.
Dimensionalitet spelar en avgörande roll inom all slags fysik, så även inom

magnetismens fysik. De magnetiska egenskaperna hos ett fast material ändras
drastiskt vid övergången från att ett objekt har utsträckning i tre dimensioner
till att ha utsträckning i två, eller endast i en dimension. En minskning av rum-
slig dimension har som konsekvens att koordinationstalen för antalet närlig-
gande atomer blir lägre. Därmed blir de totala kopplingarna per atom, lägre
än i fallet för bulk. Detta är en rent geometrisk effekt och kan studeras med
modell-Hamiltonianer. I Artikeln VII beräknas de interatomära utbytesväx-
elverkningarna för ett monolager av järn på ett wolframsubstrat, Fe/(110), i
elektronstrukturberäkningar. Till följd av skillnaden i kemiska egenskaper hos
järnatomer i ytlager och i bulk skiljer sig utbytesväxelverkningarna för mono-
lagret åt från de för järn i bulkfas. Med kännedom om dessa materialspeci-
fika parametrar möjliggörs beräkningar av spinnvågsspektrat i vilka det går
att åtskilja effekter av geometri, kemi och även temperatur. Resultaten från
simuleringarna jämförs med nyligen utförda experiment utförda med spin-
polariserad elektronemissions-spektroskopi. I Artikel VIII studeras magnetis-
eringen hos nanotrådar av platina. Anisotropienergier är i regel starkare per
atom i reducerade dimensioner är för bulk. Det har dessutom nyligen föres-
lagits att de lokala magnetiska momenten kan kollapsa helt om de tvingas att
ligga i en hård anisotropiriktning. I spinndynamiksimuleringar jämförs effek-
ten av denna så kallade kolossala magnetisk anisotropi med vanlig uniaxiell
anisotropi. I endimensionella magneter är spontan magnetisk ordning inte sta-
bil då redan obetydliga termiska fluktuationer bryter upp ordningen till att
endast vara korrelerad över korta avstånd. I simuleringarna studeras hur, ut-
gående från ett påtvingat ferromagnetiskt grundtillstånd, den långräckviddiga
magnetiska ordningen avtar. Det visar sig att förekomst av kolossal magnetisk
anisotropi får denna process att gå än snabbare än i fallet med vanlig uniaxiell
anisotropi.
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A. History of development of UppASD

The atomistic spin dynamics simulations presented in this thesis have been

performed with UppASD [164], a software developed in the Materials

Theory Division, Department of Physics and Astronomy, Uppsala University.

The name UppASD is an acronym for Uppsala Atomistic Spin Dynamics.

Research on atomistic spin dynamics in the Materials Theory Division was

initiated in 2005 by Prof. Olle Eriksson and Associate Prof. Lars Nordström.

The PhD students Björn Skubic and Johan Hellsvik were involved from the

start.

The following developers have been and are contributing to the program:
• Björn Skubic (UU) 2005-2007
• Johan Hellsvik (UU) 2005-

• Anders Bergman (UU) 2008-
• Johan Mentink (Radboud U. Nijmegen) 2009-
• Andrea Taroni (UU) 2009-

The first versions of the program were written in close collaboration between

BS and JH, with BS contributing more lines of source code than JH. Shared

memory parallelization, optimizations, inclusion of Dzyaloshinskii-Moriya

interactions and magnetostatic interactions was done by AB. The new semi-

implicit differential equation solver SIB for the stochastic LL equation was

recently developed by JM et al [138]). JM has implemented this solver as a

subroutine in UppASD. The solver allows for a larger time step in the evolu-

tion of the magnetic moments and thus enables larger and longer simulations.

The functionality for chemically disordered magnets has been improved and

extended by JH. Revisions of subroutines for Monte Carlo was done by AT

and AB. Since 2008, JH and AB have shared the responsibility as main de-

velopers, including program design, documentation and distribution to users

other than the developers. With the aim to improve source code quality in

general, AB has during the third quarter of 2010 performed a complete over-

haul of the code. Data structures and subroutines are now more transparent,

accessable and better documented.
With the exception of the inclusion of standard random number generators,

all lines of source code has been written by the developers. The program is

written in Fortran 90. No specific libraries are necessary in order to run the

program. The program has successfully been compiled and used on a large
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number of different hardware and operative systems. As of Oct 2010 there

are, in addition to the developers, around ten users of the program.
In revisions into the year 2009 the implementation of the Heun differen-

tial equation solver was found to be expedient. The effective magnetic field
was not recalculated between the calculation of the predictor and the calcu-
lation of the corrector. This scheme has less good properties than the Heun
scheme. As a consequence, the time step used in simulations was kept very
short (10−18−10−17 s) to ensure numerical stability. The results in Papers I-

V were calculated with this solver. A sample of these simulations have been

recalculated with the Heun scheme where the effective field is recalculated

between the calculation of the predictor and the corrector. The conclusion of

the tests is that the results of Papers I-V hold. The comments on necessary size

of the time step in Fig. 8 of Paper I refers to the less efficient scheme where

the effective field was not updated inbetween the predictor and the corrector

step.

From the start of 2010 the program contains two carefully tested differential
equation solvers, the explicit Heun [132], and the semi-implicit SIB solver
[138]. Depending on the strength and range of the exchange interactions, the
SIB solver can be used with a time step in the range 10−15−10−16 s.
As mentioned in Chapter 5, the program is designed to be able to cope

with arbitrary geometry and chemical disorder. Output files from the

electronic structure programs, The Prague TB-LMTO-CPA code [62], The

Linköping/Stockholm KKR Bulk Greens Function Method code (BGFM)

[63] and The Stockholm/Uppsala exact muffin tin orbital (EMTO) program

[165] can easily be transfered into the input files needed for UppASD. These

three programs have all implemented the coherent potential approximation,

used to calculate the exchange parameters in Papers II-IV and VII. Values for

the interatomic exchange interaction tensor Ji j can be read from calculations
performed with The Budapest/Vienna SKKR program [91, 92].
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B. The Fokker-Planck equation

B.1 Dimensionless SLL equation on Langevin form

Starting from the dimensionless form of the SLL equation,

∂ êi

∂τ
=−êi× [bi +bfl

i ]−α êi× (êi× [bi +bfl
i ]), (B.1)

with,

〈bfli,μ(t)〉= 0, 〈bfli,μ(t)bflj,ν(s)〉= 2D̃δμνδi jδ (t− s). (B.2)

it can be recasted in the general form of a multidimensional Langevin equa-

tion,

∂ êi

∂τ
= −êi×bi−α êi× (êi×bi)

−êi×bfl
i −α êi× (êi×bfl

i )

= −êi×bi−α êi(êi ·bi)+αbi(êi · êi)

−êi×bfl
i −α êi(êi ·bfl

i )+αbfl
i (êi · êi)

= −∑
k
[(∑

j
εi jke j)bk−α(eiekbk−δike2bk)]

−∑
k
[(∑

j
εi jke j)bflk −α(eiekbflk −δike2bflk )]. (B.3)

The scalar products êi · êi were kept as e2. The Ai(ê,τ) and Bik(ê,τ) are then
identified as,

Ai(ê,τ) = ∑
k
[(∑

j
−εi jke j)−αeiek +αδike2]bk, (B.4)

Bik(ê,τ) = (∑
j
−εi jke j)−αeiek +αδike2. (B.5)

B.2 The Fokker-Planck equation

The following discussion on how to calculate the terms of the Fokker-Planck

equation for the SLL closely follow Garcia et al. [115]. The purpose of the
present appendix is to provide the intermediate expressions that were not in-
cluded in Appendix B of Ref. [115]. The starting point is the Fokker-Planck
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equation on the form of a conservation equation for the probability distribu-

tion,

∂P
∂ t

= −∑
i

∂
∂yi

[(
Ai +D∑

jk
B jk

∂Bik

∂y j

)
P

]
+∑

i j

∂ 2

∂yi∂y j

[(
D∑

k
BikB jk

)
P

]

= −∑
i

∂
∂yi

{[
Ai−D∑

k
Bik

(
∂B jk

∂y j

)
−D∑

jk
BikB jk

∂
∂y j

]
P

}
. (B.6)

The three parts of the right hand side of the Fokker-Planck equation are calcu-
lated one by on. The first term Ai trivially carries over, but can preferably be

written on the original LL form,

∂ êi

∂τ
=−êi×bi−α êi× (êi×bi). (B.7)

For the second term, by first evaluating the derivative

∂Bik

∂e j
=

∂ [(∑ j−εi jke j)−αeiek +αδike2]
∂e j

= −εi jk−αδi jek−αeiδ jk +αδike j +αδike j (B.8)

= −εi jk +α(2δike j−δi jek−δ jkei),

(B.9)

and specifically,

∑
j

∂B jk

∂e j
= ∑

j

[−ε j jk +α(2δ jke j−δ j jek−δ jke j)
]

= ∑
j
[α(2ek−3ek− ek)]

= −2αek, (B.10)
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and,

∑
k

Bik

(
∑

j

∂B jk

∂e j

)

= ∑
k
{[(∑

j
−εi jke j)−αeiek +αδike2](−2αek)}

= 2α ∑
k
[(∑

j
−εi jke j)ek−αeiekek +αδike2ek]

= 2α ê× ê+2α2∑
k
[−eiekek +δike2ek]

= 0. (B.11)

The last part contains double cross products. After expanding the cross prod-
ucts, the terms are sorted in powers of α ,

−D∑
jk

BikB jk
∂P
∂ ê

= −D∑
jk

{[(
−∑

m
εimkem

)
−αeiek +αδik

][(
−∑

n
ε jnken

)
−αe jek +αδ jk

]}
∂P
∂ ê

= −D∑
jk

{(
∑
mn

εimkε jnkemen

)}
∂P
∂ ê

+αD∑
jk

{
(∑

m
εimkem)(eiek−δik)−α(∑

n
ε jnken)(eiek−δik)

}
∂P
∂ ê

−α2D∑
jk

{
eie j− eiekδ jk− e jekδik + ekekδikδ jk

} ∂P
∂ ê

= −D∑
jk

{(
∑
mn

εimkε jnkemen

)}
∂P
∂ ê

+αD

{
∑
jm

εimkem(eiek− ekei)−∑
jn

ε jnken(eiek− ekei)

}
∂P
∂ ê

−α2D∑
j

{
eie j− eie j− e jei + e je jδi j

} ∂P
∂ ê

= D
[

ê×
(
(ê× ∂P

∂ ê

)]
i
−α2D∑

j

{−eie j + e je jδi j
} ∂P

∂ ê
. (B.12)

(B.13)
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where terms that contains α have canceled. Terms with α0 and α2 remain,

= D∑
j

{
eie j− e je jδi j

} ∂P
∂ ê

+α2D∑
j

{
eie j− e je jδi j

} ∂P
∂ ê

= (1+α2)D∑
j

{
eie j− e je jδi j

} ∂P
∂ ê

= (1+α2)D
[

ê×
(
(ê× ∂P

∂ ê

)]
i
. (B.14)

The result for the third part can be written on compact form,

−D∑
jk

BikB jk
∂P
∂e j

= (1+α2)D
[

ê×
(

ê× ∂P
∂ ê

)]
i
. (B.15)

Collecting the first and third part, the final equation for the Fokker-Planck
equation for the SLL equation is

∂P
∂τ

= − ∂
∂ ê

{[
−ê×b−α ê× (ê×b)+D(1+α2)ê×

(
ê× ∂

∂ ê

)]
P
}
.

(B.16)
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