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Abstract

Designing a Flexible Software Tool for RBF
Approximations Applied to PDEs

Danhua Xiang

This paper aims at addressing how to design a flexible software for RBF-based
numerical solution of partial differential equations (PDEs). In the process,
object-oriented analysis and design (OOAD) approach combined with feature
modeling, is adopted to construct object models of PDE solvers. This project was
implemented in Fortran 90, emulating object oriented constructs by encapsulating
particular data structures and subroutines in modules to represent classes.

The separation of mathematical domains and numerical domains as well as the
introduction of the workflow manager and operations gives a significant flexibility and
extendability for the software. For illustration, a solver for Dam seepage problem is
constructed with the new design, compared with the one by the pre-existing
reference code.
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1 Introduction
As we know, there are already some software for scientific computing. But most of them are
for specific numerical methods. To introduce some new flexibility or a particular solver in
an existing program for new test purposes will require a complete implementation effort and
high expense. To have a software library for fast development of test applications would be
the trend of scientific programming. In the last decade, a large number of frameworks for
flexible construction of Scientific Computing software have been developed, see for example
Diffpack [1] [19], Dune [8] [7], Overture [9], Cogito [32], PETSc [35], SAMRAI [18]. However,
none of these specifcally support methods based on Radial Basis Functions. The contribution
of the present report is a proposal for a design of a framework to support such methods.

The new framework should be much more maintainable and reusable than the existing one.
As proved in the previous frameworks, the object-oriented programming is able to approach
code re-use and now it becomes more and more popular. Thus, We will use Object-oriented
Analysis and Design (OOAD) method to model mathematic notions and use Fortran 90 as
implementing language.

Framework. A framework usually provides generic functionality, which is actually
a special case of software libraries. The framework code is reusable. In general, users can
extend the framework by selective overriding or specialize its functionality, but not modify
the framework code [2]. In an object-oriented environment, a framework consists of abstract
and concrete classes. Instantiation of such a framework consists of composing and subclassing
the existing classes [10].

PDE. A partial differential equation (PDE) is a mathematical relation involving an
unknown function of several independent variables and its partial derivatives with respect
to those variables [3]. By PDEs, many of the natural laws can be expressed, such as the
propagation of sound or heat, fluid flow etc. Usually, it is a hard task to solve a PDE
problem accurately, but numerically computing an approximate solution is relatively easy
and fast. In this paper, we will consider linear, second-order PDEs, where one of the common
representatives is Laplace’s equation, which in two dimension is the governing equation of our
test problem.

RBF. A radial basis function(RBF) is a function whose value depends on the dis-
tance to center points, so that �(x; c) = �(jjx � cjj). RBF-based method is a fairly new
approach for simulating the numerical solution of PDEs, but it has been concerned by many
researchers [16] [24] [25] [22] [23] [34] [12] [31]. A comparison with two standard techniques (a
second-order finite difference method and a pseudospectral method) has revealed that RBF-
based methods could yield higher accuracy [25].

Feature modeling and OOAD. Feature modeling is one of the most popular domain
analysis techniques [26] and is widely used in software product line (SPL) since feature models
, which define features and their dependencies, were first introduced by Kang in 1990 [21]. In
this project, we will use feature modeling to analyze common features and their variabilities
in the problem and numerical method domain.

Object-oriented analysis and design (OOAD) is an effective technique, which is widely
used in modern software enterprises. See [17] about all kinds of application of OOAD. OOAD
is fundamentally different from traditional structured design approaches, and it is a method
that leads us to consider object-oriented decomposition of a complex system. OOAD method
requires the design to map objects and entities in the specified problem region of the real
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world. This requires the design to be as close as possible to the real world, i.e. to represent
entities in the most natural way.

Fortran. Fortran is a portmanteau of Formula Translator and it is a computer pro-
gramming language. Fortran has been widely used by scientists and engineers for scientific
computing and numerical computation since it was developed in 1950s. The reasons why we
use Fortran 90 as implementation language are: the old code was written in Fortran 90 and
it is easy to write close to mathematics by Fortran with built-in support for mathematical
notations, such as complex numbers, high precision and matrices and so on. Although Fortran
90 is not an object-oriented language, it could implement object-oriented design by encapsu-
lating particular data structures and subroutines in modules to represent classes [33], which
are sets of objects that represent certain concepts or entities with the same characteristic.

The following outline of this paper: Section 2 briefly describes the test model, the Dam
seepage problem. Through feature modeling, section 3 illustrates relative features of the
problem domain and numerical method domain and analysis their possible variabilities. Then
in Section 4 object models based on the features are derived by the OOAD method and in
Section 5 the Dam seepage problem is used to test these models and evaluate flexibilities of
our new design by comparing with the previous one. Some implementation discussions and
concluding remarks as well as future works are followed in Section 6 and Section 7 respectively
.

2 Test problem

2.1 Background

A dam is a barrier that retains water. Dams are large structures used to control and to
store the runoff (surface flow) caused by the flood in order to prevent the destruction of
infrastructures or flooding land regions. Also the stored water could be utilized as a source
of water for irrigating farmland, generating electricity and urban uses. Since the earliest dam
was known in Jawa, Jordan, it has been 5000 years. Throughout the history, dams have
enormously pushed the development of human civilization. Without dams, modern life would
not be the same as we know it.

Based on structure and material used, dams are classified as timber dams, arch-gravity
dams, embankment dams or masonry dams. Embankment dams have two types: earth-fill
dams and rock-fill dams. Earth-fill dams or simply earth dams constructed of well compacted
earth are a sub-type of embankment dams which rely on their weight to hold back the force
of water [4].

The main body of earth dam is mainly made up from soil, sand or rocks. A zoned-earth
dam, which consists of distinct zones of dissimilar material, typically has a waterproof clay
core. The impounded water pushes against the upstream surface of the earth dam. The
pressure of water increases linearly with its depth. If the structures of an earth dam are not
enough stable, the dam would not stand up the pressure of water and eventually collapse. It
would cause disastrous flood and tragic economic loss. So the construction and safety of the
earth dams have become a common and important research area for civil engineers.
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2.2 Seepage in an earth dam

Since the body of earth dam is not rigid, water seeps in to the pores of the soil. The line of
seepage flow is called the phreatic line with almost a parabolic shape, as shown in Figure 1.

If the phreatic line overtops the break level threshold of the earth dam, it would cause
vast flooding through eventual failure of the earth dam. In order to decrease the pressure of
the seeping water, modern earth dams employ filter and drain to collect and remove the seep
water and to lower the level of phreatic line (Figure 2).

Figure 1: Seepage and potential lines in an earth dam

Figure 2: Drain installation as an alternative to control seepage
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2.3 Governing partial differential equation

In order to research the seepage problem or decrease the affect of seepage to the dam, a model
could be formulated in the form of a partial differential equation (PDE). The governing PDE
of seepage in porous media is Laplace’s equation as following:

@

@x
(kx

@h

@x
) + @

@y
(ky

@h

@y
) = 0 (1)

Where h is the water pressure on the dam, (x; y) represents a certain point on the dam, kx,
ky are coefficients with respect to x; y. When kx = ky it transforms to Equation 2:

@2h

@x2 + @2h

@y2 = 0 (2)

From Figure 2 above, we can see that it forms a region, which is the domain of this partial
differential equation, under the phreatic line and over the surface of the drain. Laplace’s
equation is a typical elliptic PDE, for which there is no exact analytical solution. I will
consider the seepage analysis as representative model in the process of software design. The
numbers around the domain represent the five different boundary conditions, expressed as :

0. ∆h = 0 (Interior points)

1. h = y

2. h = H (of Dirichlet type)

3. h = y (of Dirichlet type) and @h
@n

= 0 (of Neumann type), where n is the normal vector

4. @h
@y

= 0

3 Feature and variability modeling
The feature and variability modeling is used commonly in the area of product line design [20]
and has been applied to numerical software by Ljungberg [27]. It is a way to capture re-
quirements of the applications through explicitly establishing what kinds of features should
be included in an application and the desired variability of these features. In this context, we
focus mainly on features related to flexibilities. Generally, the variability of an application is
an implicit consequence of some implementation mechanism. It indicates the possibility to
modify the applications on the basis of features.

A PDE solver is usually huge and accomplished via dividing it into smaller pieces. There
are many different ways to divide the PDE solver. A traditional approach is also dividing
the solver into parts, where each function represents a part of the algorithm. In this thesis,
we will divide it into two parts, i.e. mathematical problem and numerical method. The
features of each part will be addressed individually. According to different concerns, users
could also be categorized into problem oriented user and method oriented user. Also, these
two user categories plus developers lead to different level possibilities to vary the features of
this application. We could consider the variability for each feature from the perspective of
problem oriented users.
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� Problem oriented users are general users who just want to solve some problem using
this software tool without caring too much about the numerical method. They could
select or modify the features of the application via user interfaces.

Furthermore, method oriented users and developers can extend the framework by over-
riding or adding new modules. In other words, the framework allows two different levels of
extensibities with respect to the roles people play.

� Method oriented users or expert users are usually experts in this area, who want to
develop or demonstrate some numerical method. They are allowed to add new method
modules to extend this framework.

� Developers can decide to support features arbitrarily by modification of code or adding
modules. Usually, these features do not fit within the model and it requires significant
effort to add these features.

In the following section, we will exploit the features existed in this framework and their
variabilities, as well as possible extensibilities which will be covered with the variabilities.

3.1 Problem features

Scientists are used to model phenomenon by PDEs defined over a domain. PDEs include
governing equations representing the problem numerically, and boundary conditions which
could be different types, e.g. linear operator or complex conditions like Dirichlet-to-Neumann
map (DtN) radiation boundary condition [28]. And the domain is commonly in the form of a
geometry. For the time-dependent model, initial conditions also need to be considered, that
can be represented by means of equations.

3.1.1 Equation

Equations are mathematical description of the PDE problem, which represent governing equa-
tions, initial conditions and boundary conditions.

Subfeatures: An equation can be an algebraic equation or a differential equation such as

u� f = 0; (interpolation),

and Helmholtz equations:

8>>><
>>>:

∆u� �2u = 0 (Helmholtz equation, PDE)
�ux � i�u = �2i�sin(�x) (Left boundary condition, PDE)

ux � i�u = 0 (Right boundary condition, PDE)
u(x) = 0 (Top and bottom/Dirichlet boundary condition)

It can be linear as in the examples above or non-linear as

uux + uxx = 0:
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Equations can be time-dependent or time-independent. Whether the coefficients or the
unknown u is with time, we say the equation is time-dependent. If the u is time-
dependent, equations could have different order derivatives with respect to time. All
equations are considered to be space-dependent, but the coefficient functions can be
variable or constant. Our intention is not to offer specific equations, rather to allow
building any equation. The feature diagram is shown in Fig. 3.

Variability: We do not consider equations containing time derivatives and only support
linear equations. To add the non-linear feature, we would need to develop entirely new
code as developers. If it is time-dependent is implicitly determined by the coefficient
functions and can hence change during the build up of the equation. At the same time,
users can easily decide to choose a variable function or a constant for the coefficient at
run time.

Figure 3: Feature diagram of equation, FMN [11]

3.1.2 Geometry

Subfeatures: The feature geometry represents the domains of problem models. The domains
can be infinite or finite. When the problem model has enough boundary conditions, then
the infinite domains can be translated into finite.
Thus, the geometries can be regular or irregular multi-dimensional, i.e. the shape of
geometry is flexible. Moreover, the shape of geometries or the size of the domain could
be static or dynamic.

Variability: For time-independent model, the shape of geometry should be determined dur-
ing setup of the problem model. However, the geometrical shape can change with time
elapsing for time-dependent model, and it is determined once the time is chosen.
By developers, they should consider to support as many types of entities as possible
and allow users to freely utilize these entities to construct any reasonable geometry.
Otherwise, expert users are welcome to complement the entities if needs.
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3.2 Approximation features

The numerical method used in this thesis is RBF interpolation. So in this section, we will
discuss features associated with RBF approximation.

3.2.1 Basis function

Basis functions are used for computing approximations in the process of representing the
solution of the PDE or interpolation problem.

Subfeatures: A basis function could be a radial basis function or a non-radial basis function.
A radial basis function (RBF) only depends on the distance between points, i.e. r-
dependent (r is the distance between two node points) and is of the form �(r), such
as

�(r) = jrjn; n odd (Piecewise Polynomial(Rn)),

�(r) = jrjn ln jrj; n even (Thin Plate Spline(TPSn)),

The RBF may also have a shape parameter " and is of the form �(r; "), such as

�(r; ") =
q

1 + ("r)2; (Multiquadric(MQ)),

�(r; ") = e�("r)2
; (Gaussian(GS)),

Conversely, a non-radial basis function does not depend on distances, for instance poly-
nomial basis function and RBF-QR [14]. A polynomial basis function is x-dependent (x
is the placement of points) as

1 + �1x + �2x
2 + � � �

And the RBF-QR basis function has the same form as polynomial basis function, but
it is �� basis as Φ(x).
All the examples above are time-independent but basis functions can also be time-
dependent. See Fig. 4 about its features.

Variability: Which basis functions are supported (i.e. the leaves of the feature tree Fig. 4)
is determined by developers during implementation or added by expert users later. And
the other features e.g radial or non-radial basis function are activated by users once they
choose certain basis function for test purposes.
The matrix of interpolation and approximation could be singular when using inadequate
shape parameter for some RBFs. It is necessary to introduce the polynomial basis func-
tions in order to eliminate singularity. If the polynomial basis function is needed depends
on RBF itself. Thus, we would support both radial and non-radial basis functions in
our system.
With respect to implementation, each commonly used RBF would be hard coded. If a
new RBF need to be investigated, it still need hand code which has to be done. But
the polynomial basis function could be relatively flexible, supporting any order.
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Figure 4: Feature diagram of basis function

3.2.2 Shape parameter

There is a feature called shape parameter, commonly noted as " , which is involved in most
of RBFs �(r; "), such as MQ, GS, with distance r between node points.

Subfeatures: The data type of shape parameter could be real or complex. We could use
constant or variable shape parameter strategy which refers to uses a possibly different
value of the shape parameter at each center, i.e. each node point with its own constant
shape parameter value.
Moreover, if the shape parameter is variable, it could be determined randomly or by
some functions and can be changed before computing each RBF interpolant on all
node points. [30] compares four different types of shape parameter strategies (constant,
linearly varying, exponentially varying and random shape parameter) and also introduce
a new random variable shape parameter where "0 scaled with the inverse distance to
the nearest neighbor.

Variability: In terms of the flexibility, as developers, we prefer to implement both real and
complex data type, and support several strategies for the shape parameter to facilitate
users. More strategies are welcome to be added by developers or expert users.
If the data type is real or complex, and which strategy is used, are determined by users
while setting the shape parameter. However, the values of the shape parameter could
also be assigned automatically in the program according to the different RBFs.

3.2.3 Approximation

An approximation is an inexact representation of the unknown function u(t; x) that needs to
be solved in the problem, but there should be no significant deviation with the real form.

8



Subfeatures: When you use Radial Basis Functions, there are two formulas for computing
approximation depending on each part of the equation which is studied.

s(x; ") =
nX

j=1
�j�j(x; ") +

kX
i=1

�ipi(x) (3)

s(x; ") =
nX

j=1
�jLj�j(x; ") +

kX
i=1

�ipi(x) (4)

nX
j=1

�jLjpi(xj) = 0 i = 1 : : : k (constraint) (5)

where �j(x; ") is basis function and Lj is an operator,such as ∆; pi is polynomial basis
function. The polynomial part depends on radial basis function �j itself. And its degree
should be defaulted to zero.
Equation 5 represents constraints which define the feasible set of candidate solution
of the unknowns. The purpose of introducing constraints is to make the numbers of
equations and unknowns to be equal. Whether constraints are needed or not depends
on the particular problem.
Which formula should be used or which operator should be applied to the basis function
(RBF and polynomial basis) for each type of node points, depends on node-related
equations and this could be done pointing to the equations.
For an unknown function or more that need to be solved, different basis funtions and a
range of " values could be applied to get various approximations.

Variability: The approximation depends on RBFs, shape parameter and point sets and could
vary according to these three objects. The combination of them is quite variable and
flexible, which could form numerous approximations. Developers should consider how
to combine the RBFs and shape parameter values or strategies with each point set and
provide combination options for users. A flexible idea is to assign a different part of the
RBFs and " values to each type of point set, that arrives to an approximation whose
elements have totally no common. To ease the implementation, usually, a general and
simple rule may be to only share all the RBFs and " values.
Thus, the approximation can be determined once the users specify RBFs, shape param-
eter strategies or values , point sets, and the combination method if there is.

3.3 Methods

Lots of possible methods appeared in the RBF simulation of PDEs, for instance point sets
construction, collocation methods, and methods to solve the system, as well as all kinds of
evaluation operators and operations.

Features: The structure of points sampled from the domains could be global, stencil or
partition node point set. They will lead to different coefficient matrices. It should
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be possible to create stencils and partitions from global point sets. That means the
representation of points is flexible.
Collocation methods are a battery of methods by collocation to satisfy both PDE and
boundary conditions, which can be various based on point types: straightforward RBF-
based collocation [22] [23]; symmetric collocation [34] which modifies the basis functions
in the interpolant by using the operator in the PDE; direct collocation [12] which collo-
cates both with boundary condition and the PDE at the boundary points.
The method for solving the linear system could be direct solution method (Lu-factorization)
or least squares. Least squares is a method for seeking optimum function of data by
minimizing the sum of squares of residuals, a residual being difference between an ob-
served value and the value provided by a model. There are linear and nonlinear least
squares depending on whether or not the residuals are linear in all unknowns [5]. The
least squares method could combine with collocation methods.
When the number of collocation points equal to the number of basis functions (M = N),
only Lu-factorization needs; when M > N , then least squares is used; in other case,
the combination method of these two could be adopted, i.e. Lu-factorization for some
points and least squares for the other points.
There are still many methods which could be considered to extend the flexibility.
Cauchy method [15] allows numerically stable computations of radial basis function
interpolants for all shape parameter values by removing the restriction the " be a real
parameter and allowing " to be complex. But it is time-consuming.
Instead of the Cauchy method, we introduce RBF-QR which employs a change of basis
function to allow computation for arbitrarily small values of the shape parameter. This
method is perfectly stable and can be used for large number of node points [14].
Probably, we could use Galerkin method which converts a continuous operator problem
to a discrete problem [6] for computing interpolants. Also see [31] about the use of this
method.
Moreover, the software tool should support kinds of evaluations of the solution or its
derivatives, i.e. the evaluation operator can vary due to needs. And users should be
able to do many different operations on the same problem in any order, e.g. composing
matrices, computing coefficients and evaluating solutions etc.

Variability: From the user perspective, it is preferable that users are allowed to create
different structures of point sets via feature selection.
Whether or not a collocation method is used could also be determined by users or
problem models needs to be investigated while constructing the models. And which
method is applied to solve the system depends on the relation of collocation points and
basis functions. That is, it is activated after the user sets these two parameters.
In aspect of implementation, we would probably only support the first two methods
for solving the linear system, and the combination method could be supplemented by
developers or expert users in the future for more complex investigation. In the meantime,
the Cauchy method and the Galerkin method will not be included either.
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For the evaluation operators, developers should consider the supported maximum order
of the derivatives with respect to the space and time. And users is totally free to do
any evaluation as long as it does not exceed the limits.
The use of operations is much more flexible. The problem oriented users, are just re-
sponsible to make sure the involved operations in a correct order. And expert users or
developers could add any reasonable operations to extend the software for new require-
ments at any time.

4 Design
After the analysis of the relevant features in this framework, we come to the design phase,
which is extremely important and time-consuming in the whole process of developing the
framework. A good design will often lead to an unexpectedly flexible and easy-to-use product.
Before presenting our design outcome, we need to talk about some issues occurred during the
design and how we overcame them.

4.1 Design issues

1. Design philosophy.
The purpose of software development is to meet user requirements. So it is crucial
to design from the user perspective, i.e. considering what would be most natural for
the user. As a user, whether expert or non-expert, he would expect that the currently
used software is sufficiently efficient and flexible. For example, the user hopes that
this software is suitable for any problem and it is able to solve synchronously multiple
problems within an acceptable time. According to these requirements, we introduce the
ideas of parallelization, separation of problem and method, and the workflow manager
etc, which will be explained in detail below.

2. Separation of problem and method.
The old code has very low flexibility. Every time, the users try to solve a new type of
problem, they require changing the method part of the code, which is a hard work and
probably only possible for experts to do.
We think a better way is to allow the user to specify a new problem and apply existing
methods. In view of this, we got an idea that if it is possible to separate the mathematical
problem from the numerical method as Krister Åhlander did in [29]. Then the problems
and the methods could be combined arbitrarily, i.e. one problem could be solved by
different methods and vice versa. But the idea of separation requires an effort to give a
type of specification that allows the method part to automatically determine the details
of how to do it.

3. Consideration about the equations.
In the general procedure of solving PDE problems, PDEs and operators are essential
features. PDEs are the mathematic representations of the physical problems and op-
erators are necessary for the solution evaluation. These two are similar and should be
represented by the same class. The only big difference is with or without right hand
side. Should we seperate the left hand side of PDEs from the right hand side? And
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use two different classes to cover two sides of the equations? Do we really need the
right hand side class as did in the old code?
Maybe not. Actually, it is easy to make PDEs and operators be in the analogous form.
What we need to do is to move all terms to the left side and let the right sides of all
PDEs be zero. Then, both of PDEs and operators are without right hand side and could
possibly be involved in one class called expression. Furthermore, the right hand side
vectors could also acquired simultaneously during building the interpolation matrices
and the user does not need to bother his head about that.
Then, the consideration comes to the feature selection of the equations. Since to support
a non-linear system would be totally different, we would mainly focus on the linear
system. Sometimes, problems are time critical and the previous software tool can only
support some time-independet problems, that is indeed low flexible and limited. We
prefer to have time-dependent equations but no big changes to the current low-level
classes. Our suggested idea is to use RBF approximation for the spatial operator, but
typically an ODE (ordinary differential equation) time-stepping method for the time-
derivative. The time-operations needs to be added by an expert user. Furthermore, we
want to support both the constant and variable coefficients, this job is possible and easy
to do.

4. Coupling of PDE and geometry.
The two features of the problem, PDE and geometry, should be separate but must have
links. when the user specifies the equations and the domain of the investigated problem,
the relations of these objects, i.e. which equation is associated with which geometrical
object, are not created yet. But the question is how to link them and who to make sure
the correct relations?
Our solution is to define two classes for PDEs and domains separately, and use the same
name as a mark for the relevant objects of these two parts. Then another problem class
is used to check their compatibilities, that is, to see if every equation has an associated
geometric object. Renaming might be needed for flexibility when PDEs and domains
are coupled.

5. The workflow manager and operations as well as the data manager.
Another deficiency that existed in the old code is that all of the problems are solved in
the same workflow scheme, from building matrices to evaluating the solutions. In other
words, the loops on operations are always in the same order, unchanged. Sometimes,
users probably do not want to run to the end directly and prefer to halt halfway or
try some new ways. Clearly, a single loop-order usually could not meet the frequently
changing needs.
The user should be able to set up workflow scheme by himself, i.e. easily changing
operations to a needed order. Thus, the idea of workflow manager and operations was
born. The workflow manager is in charge of organizing operations added by the user
in a proper sequence, and then execute all of the operations successively as the user
expects.
In order to allow for the reuse of data and improve the efficiency, we tend to use a data
structure in the workflow manager to keep trace of some data for instance distances.
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Since the workflow manager needs to call operations where lots of data will be delivered,
if we keep all the data in the workflow manager, it definitely would cause a circular
dependency problem. Namely, the workflow manger and the operations will need to use
each other. Therefore, we separated this data structure from the workflow manager as
a new data manager class to manage all of the input and output data.

6. Internal and external interfaces.
Usually, for each class, there are lots of methods. Some of them need to be invoked in
other classes or used by users to create objects or get some information, and the others
would only be for internal use in the class. The previous one could be defined as public
interfaces and the later are surly private.
Sometimes, users need to call some public interfaces in the low-level classes but we do
not expect users to be in touch with them directly. Besides, it is not necessary for users
to know the whole structure of the software and they would prefer to easily use some
interfaces in the high-level classes. Thus, as developer, we must think about how to ease
the difficulties of interfaces use and to provide nicer interfaces for the user.
The traditional solution is to define public interfaces in the high-level class for the
relevant interfaces of the low-level classes. This high-level class probably could be an
aggregate class of these low-level classes. These interfaces in the high-level classes are
called external interfaces, which are actually mirror images of the one in the low-level
classes, and could be accessed by users conveniently. But, if other classes need to call
these interfaces, it is preferable and more efficient to still use the one with the same
function in the low-level classes, which are called internal interfaces.

4.2 Object model

According to the OOAD method, in this section, we will identify suitable objects or classes
that together will cover the features space and provide desired variability. For each class,
we will describe what it does or which feature it associates with, part of implementation in
current code or interfaces provided in the new class. The main structure of classes follows as:

� Data structures for one kind of particular objects

� Constructors for allocating memory and producing objects, and destructor for releasing
memory.

� Query-functions for sizes etc

� Interfaces to methods which are provided if necessary and will be specifically described
in the individual class.

4.2.1 Expression

This class represents mathematical expressions involving an unknown solution function u(t; x)
and its spatial derivatives and known functions aj(t; x) and their derivatives. See the repre-
sentative class Expression in Fig 10.

Expression is the generalization of equation and operator, which represents only linear
expressions in this context. This expression class does not exist in the current version of the
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code. The PDE and the evaluation operator are hand coded in the operator class for each
problem. This leads to a large programming effort every time a new problem is investigated,
which is undesirable.

Specification: We will move all things to the left side of the equations. Then operators
and equations have the same form, without right side. The expression class could use just
one type of data structure (type expression) to represent them.

The expression can represent array of equations and each of its elements can have a dif-
ferent number of terms. Then we could define new data types equation and term to represent
one equation and one term respectively. Equations must be able to be identified by different
names. Namely, the equation should contain a variable for names, which is the connection to
geometric objects. And the data type term could be with operators, coefficient variables, sign
and flag variables for time-dependent or time-independent etc. This class should also have
some relative operations referring to the terms or expressions.

The following operations must be supported:

� A function for constructing expressions through adding terms into the expression in-
stances. This function could have different versions depending on if operator, coefficient,
coefficient function, or operator on coefficient function are present. And all the versions
will be integrated into a generic interface.

� It is necessary to have a function to compute coefficients of a certain term on particular
points. It might be with alternative parameter lists depending on if it is time-dependent.

Probably, some get methods or query methods are needed to find out how many equations
or terms and if they are time-dependent etc.

4.2.2 Geometry

This Geometry class keeps track of geometric objects in the problem, such as the domain,
boundary segments, corners, etc. Namely, the feature geometry is implemented clearly in this
class. We mainly consider finite domain. For boundary value problems, their domains are
usually decomposed into interior of computational domain and boundary segments. Thus,
the domain for a particular problem can be described by various geometrical entities, such as,
points, point sets, lines or closed curves.

Specification: This class should have a geometry data type, which at least has two
vectors, one for numerical or analytical representations of sub-domains or boundaries and the
other one for domain names as indexes. It might need various variables for keeping trace. It
can be extended for implementation requirements.

It should support operations as follows:

� An interface to specify the geometry entity for a domain via a friendly name or domain
index.

� An interface to produce points according to a given domain name or index.

� Also, it should have methods for computing normals.
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4.2.3 Problem

This problem class is an abstract class for all problem models, which refers to class Problem
in Fig 10. An investigated problem is commonly expressed by using numerical or analytical
representations, i.e. governing equations and domains.In other words, it is an aggregate class
of expression and geometry class, who keeps track of the relationship between equations and
geometric objects for the domain of a currently studied problem. It makes sure that each
equation is correctly associated with the right geometric object, i.e. the expression object and
the geometry object is compatible.

Specification: The purpose of this class is to check the compatibility between equations
and geometric object, interior of computational domain or boundary segment. Thus, we will
first define a problem data type with two vectors to trace objects of equation and geometry
individually. And The only operation needed in this class is an interface for checking the
relations of expression and geometry objects via the name comparison.

4.2.4 Basis function

Apparently, the basis function objects cover the feature basis function, which are expressed in
the abstract class Basis function. From this abstract class, we could derive other basis funtion
classes with specific features, for example radial basis function, polynomial basis function and
RBF-QR.

Specification: Currently, there are two derived classes: class Radial basis function for
radial basis functions and class polynomial basis function for polynomial basis functions. Also,
we want to create a class for RBF-QR method which could have a function to form basis
functions and a function to evaluate basis functions.

The base class Basis function probably consists of the common interface, i.e. the default
constructor and destructor. In addition to the common interfaces, the Radial basis function
class should be with

� A generic interface for evaluating RBFs or their derivatives. It should allow alternative
parameter lists depending on which types of derivatives are to be computed.

The class Polynomial basis function has two public functions and one interface.

� A function for getting the number of polynomial basis functions applied for probably
eliminating singularity.

� Another funtion for getting the powers of the basis polynomials.

� A interface with alternative parameter lists for evaluating a polynomial basis at node
points or evaluation points.

4.2.5 Shape parameter

There is a shape parameter class, which covers the feature shape parameter, in the current
program (see class Shape parameter of Fig 10). Users can create shape parameter instances
of this class with values. And the instance indexes should be used as input parameters of
some subroutine or function in the approximation class to define approximations.
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Specification: This class supports two types of shape parameter, real and complex. It
consists of a data type epsilon and lots of functions.

The data type epsilon has four one-dimensional vectors for storing data on each component
of the different coordinate systems, Cartesian or Polar.

There are three different versions of generators for producing batches of shape parameter
values. Two of them refer to coordinates and another is for the small value " on a circular
path.

� An interface to get one shape parameter value according to a given place index or to
get all the data on one component of the given coordinate system . Similarly, it must
have several versions for different data types and coordinates.

� An interface to get the minimal value of the shape parameter set. The minimum is
needed in the process of shape parameter range partition, to decide whether or not
Cauchy method is used for computing approximation.

4.2.6 Point sets

Points sampled from the domain and used in RBFs can be represented by the Point set class
which has been implemented currently. This class is enough flexible to support any large
number of points with multi-dimensionality.

Specification: In this class, there is a data type called point set and some interfaces.The
data type includes two fields which are sets of the array with different sizes , another embedded
data type for dimensional matrices. One is as index for tracing points of different types, and
the other one is as the points storage.

� An interface for getting a part of points from an existing point set. It should have
several versions refer to different dimensions.

� An interface for getting the relative place range of certain type of points in the point
set.

4.2.7 Approximation

This class (class Approximation in Fig 10) describes what kind of approximation is used for
the unknown function u(t; x) in the expression class as mentioned above. It does not actually
contain numerical data. That is, it only has to do with how we represent our solution function.

This class covers the approximation feature and its subfeatures. It’s a new developed class.
In the previous code, approximation computation is implemented in the solver class by calling
some functions in the operator class. Currently, we would like to acquire multi-approximations
for the same problem with respect to different basis functions and shape parameters.

Specification: A approximation class should have a data type approximation with a
list of node point type for each approximation element, and variables refer to RBFs, shape
parameter objects and polynomial, constraint etc.

Every approximation element, which relates to one of the geometric objects (interior or
boundary segments) or equations, allows to connect to a few basis functions and a range of
shape parameter values. From the implementation aspect, it means to call and use approxi-
mation block by block during composing matrix blocks.
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4.2.8 Operations

This class is related to the subfeature operations of the methods (see class Operation in
Fig 10). There are lots of operations needed in the process of constructing PDE solvers.
Thus, an abstract operation class will be introduced to aggregate them. We will illustrate
each operation in an independent class and then gather into a so-called operation component.
This method makes it easy to develop new operations in order to extend this component and
efficient to reuse existing operations. The introduction of some basic operations combined
into the entire procedure of solving PDEs is covered in the following subsections.

1. Compose (build RBF matrices)
The compose operation is actually a matrix builder, being responsible to create the
matrices A and B or their blocks in the equation A� = f or B� = Lu, where A

is matrices for collocation points and B are matrices for evaluation points, L is an
operator. This operation should be able to take input in vector form and generate many
blocks. These blocks could be floating (to be kept as individual blocks) or assembled
into one matrix. The number of blocks depends on the type number of point sets. And
the number of matrices is determined by the numbers of RBFs and epsilons or their
collocation.
By old code, this process of composing the matrix A or B is implemented in the class
solver by calling the assign operator function of the class operator. The reason we
separate this process from the solver class as an independent module is that it is more
flexible to call and to implement parallel computing later. Especially also that we want
to be able to assemble several matrices at the same time and then do something with
them.
Specification: Probably, we will define a data type block with the point type to store
parts of a matrix for each type of node points. Then this class could have another data
type with blocks via assembling blocks to form a matrix. Other index or size variables
need to be figured out during the implementation process.
The only function is to compute all blocks of the matrices for different points colloca-
tions. Any auxiliary functions could be introduced if needed, such as to merge operators
for each type of node points and center points.

2. Compose (build right hand side vectors)
This compose operation is to compute function values f on node points in the equation
A� = f . The right hand side could be used to compute the coefficients �j for the RBF
interpolant. However, the right hand side vectors are determined by the node points,
terms without unknown function u(t; x) and operators of these terms in PDEs.
There is a right hand side class currently. It supports multiple right hand sides through
combination with one other class function value which is hard coded to compute the
enumerated function values. However, it always needs to add new test functions for the
right hand side to satisfy any new requirement. If it could support several user specified
functions at a time to form multiple right hand sides, it will be more flexible.
Specification: To implement this operation, we just need a function to get node points
and terms for the right hand side in the expression object as input parameters, and then
produce the output vectors via calling functions in the function value class.
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Figure 5: Operation Compose

3. Solve (compute coefficients �)
The solve operation takes matrix A, right hand side vector f as inputs and use them to
compute the coefficient � as output, i.e. � = A�1 � f . It is related to the feature solving
method, Lu-factorization and least squares. see Fig 6.
For the current code, there is also a function called solve in the solution class. But,
it actually gets the solution of the PDE problem. Of course, the process of computing
coefficients � is included and just the first step in that function.
Specification: This operation is also relatively simple and it follows the compose op-
eration. After the user adds the operations for building matrix A and vector f , this
operation only needs some linear algebra subroutines for instance LU-factorization or
least squares, to get coefficient � with matrix A and vector f as inputs.

4. Solve (compute the differentiation matrix C)
The second functionality of the solve operation is to get the differentiation matrix C

with these two matrices A and B as inputs , i.e. C = B � A�1, where the matrix A�1

could be considered as multiple right hand side. See Fig 7 for the operation procedure.
The purpose of this operation is to avoid computing the coefficient � explicitly.
Specification: To compute C is typically done as a multiple right hand side transposed
solve operation. Namely, this function could be implemented by calling the previous
solve operation for computing �.
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Figure 6: Operation Solve for computing �

5. Evaluate (evaluate operators)
The evaluate operation is primely used to get solution of the problem and evaluate
its other properties on evaluation points, such as various derivatives of the RBF-based
simulation solution or residuals. see Fig 8.
The current software just supports to evaluate the fundamental solution of PDEs, not
other properties. It is not enough and lacks of flexibilities for research purpose. This
is done through the use of solve function in the solution class as mentioned in the
computing coefficient � operation.
Specification: The main task of this operation is actually matrix-vector multiplication.
For different cases, the matrix-vector multiplication could be B � � or C � u (here, u is
equal to f above) for evaluating operators finally.

4.2.9 Workflow manager

This class (Workflow Manager of Fig 10) is used to set up workflow schemes by the user
and then it works as the scheme by means of combining all the things. It means that users
can do operations in any reasonable order they would like, not just as regular flow process.
Researchers are allowed to map items of a certain problem directly into code through the use
of this class. They should provide all inputs including scheme and specify output at the end of
the pipe-line. Then the workflow manager will process the operations one by one and produce
output as expected. The idea of workflow manager mainly derives from the observation that
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Figure 7: Operation Solve for computing C

the change of loop order can significantly improve memory utilization.The main process of
this class see Fig 9

In the previous software tool, the operations, coefficient computation and solution eval-
uation are integrated. And the user could only evaluate the solution. There is no option to
arrange the order of operations and to evaluate other properties of the solution. This class is
a brand new idea and it’s very nice and flexible for users.

Specification: Since the high flexibility, this class could be quite complicated. This class
has two main tasks, to establish workflow shcemes and to execute all the operations according
to the scheme.

The supported external interfaces are:

� A subroutine to add operations into the data manager.

� A manager to take care of all the operations, which includes getting other input for each
operation, executing each operation and extracting outputs.
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Figure 8: Operation Evaluate

4.2.10 Data manager

As indicated in the design issues section, the separation of data is to eliminate circular de-
pendency between the Operation class and the workflow manager. This Data Manager class
is used for storing sequent operations, problem and approximation objects, and all the inputs
from users and outputs from the execution results of operations.

Specification: This class does not indeed need any methods and in fact it is a data
structure to comprise all the data involved in the process of simulation to PDEs.

After the analysis above, we get a preliminary structure of object models about the frame-
work, shown in Fig 10.

4.3 Parallelization

Since a PDE solver usually involves large scale of computation, parallel computing is extremely
necessary in order to advance the performance efficiency. Additionally, most computers now
are parallel computers with multi-core processors, that provides the potential and feasibility
for parallel programming.

There are two parallel programming models available and supported in Fortran: the shared
name space model (OpenMP) and the local memory or message passing model (MPI). In this
work, we prefer to add OpenMP directives for high level parallelization of independent opera-
tions. Probably, two-level or multi-level parallelization schemes will be introduced depending
on the algorithm and code implementation as well as the number of cores available.

Below it is a simple example to show how to use OpenMP to implement parallel computing
in the Fortran. The parallel region starts with the !$OMP PARALLEL and ends at !$OMP
END PARALLEL. This region is to be executed by multiple threads in parallel. We also

21



Figure 9: Workflow manager

use nested parallelism for the loops of RBFs and shape parameters to arrive to the two-level
parallelization scheme. It is still possible to parallel the loop of operations synchronously.

subroutine execute(DM)
.
.

c Enable nested parallelism
call OMP_SET_NESTED(.true.)

c Start parallel region
!$OMP PARALLEL
!$OMP DO

do i=1,nphi ! Loop for RBFs
......get RBF(phi)........
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Figure 10: The overall object model

!$OMP PARALLEL
!$OMP DO

do j=1,nep ! Loop for epsilons
.....get epsilon(ep)......

do n=1,nop ! Loop for operations
.......get operation(op)......

call execute_operation(op, phi, ep)
end do
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end do
!$OMP END PARALLEL

end do
!$OMP END PARALLEL

end subroutine execute

5 Evaluation of design
In this section, we will discuss how to construct a PDE solver in this framework using Dam
seepage problem described in section 2 as a motivating example. Comparison to the previous
version will be accompanied with the explanation. Through the evaluation to our design,
users could feel the ease to solve a PDE problem and the flexibility to extend this framework.

5.1 New problem

As illustrated in the object model section, the problem class is the aggregate class of equations
and domains. so, equations and domains need to be defined before we create the problem
object.

5.1.1 New equations

We call the new express function of expression class to create an object ( pde) for PDEs and
then add five equations representing the five conditions of Dam seepage problem (see the
conditions 0-4 in section 2.3) into pde. See the following program 1.

-----------------------------
Program 1

-----------------------------
type(expression) :: pde
character(len=80) :: fun
real(kind=rfp), parameter :: co_r = 1.0_rfp
!
! Create an expression object with 5 equations
pde = new_express(6) ! Specify 6 for extension later
!
! Set a user friendly name and add two terms for equation 0
call set_equation(pde, 1, ’interior’, 2)
call add_term(pde, 1, ’L’, co_r)
fun = ’zero’
call add_term(pde, 1, fun)

! Set a user-friendly name and add two terms for equation 1
call set_equation(pde, 2, ’b1’, 2)
call add_term(pde, 2, ’0’, co_r)
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fun = ’y’
call add_term(pde, 2, fun)

! Set a user-friendly name and add two terms for equation 2
call set_equation(pde, 3, ’b2’, 2)
call add_term(pde, 3, ’0’, co_r)
fun = ’Height30’
call add_term(pde, 3, fun)

! Set a user-friendly name and add three terms for equation 3
call set_equation(pde, 4, ’b3’, 3)
fun = ’Normalx’
call add_term(pde, 4, ’X’, co_r, COEFF_F=fun)
fun = ’Normaly’
call add_term(pde, 4, ’Y’, co_r, COEFF_F=fun)
fun = ’zero’
call add_term(pde, 4, fun)

! Set a user-friendly name and add two terms for equation 4
call set_equation(pde, 5, ’b4’, 2)
call add_term(pde, 5, ’Y’, co_r)
fun = ’zero’
call add_term(pde, 5, fun)

5.1.2 New geometry object

In this test example, we use sets of points sampled in the domain and along its sides to
represent geometric objects(domain and its boundaries). It’s easy to create a geometry object
from a outside file with categorized points via calling the geom new interface as below:

type(geometry) :: geom
!
geom = geom_new(’x.dat’)

It also possible to create a geometry object for the domain through adding geometric
entities manually by users. To simplify the code, we will create an echelon domain for the
example case instead, see program 2.

-----------------------------
Program 2

-----------------------------
type(geomPoint) :: p1, p2, p3, p4
type(geomEntity) :: l1, l2, l3, l4
type(geomDomain) :: d
type(geometry) :: geom
!
real(kind=rfp), dimension(1:2), parameter :: point1 = (/ 0.0_rfp, 0.0_rfp /)
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real(kind=rfp), dimension(1:2), parameter :: point2 = (/ 5.0_rfp, 30.0_rfp /)
real(kind=rfp), dimension(1:2), parameter :: point3 = (/ 25.0_rfp, 30.0_rfp /)
real(kind=rfp), dimension(1:2), parameter :: point4 = (/ 30.0_rfp, 0.0_rfp /)

! Create square domain
p1 = geomPoint_new(point1)
p2 = geomPoint_new(point2)
p3 = geomPoint_new(point3)
p4 = geomPoint_new(point4)

l1 = geomLine_new(p3, p4, ’[’, ’)’) ! boundary 1
l2 = geomLine_new(p1, p2, ’[’, ’)’) ! boundary 2
l3 = geomLine_new(p2, p3, ’[’, ’)’) ! boundary 3
l4 = geomLine_new(p4, p1, ’[’, ’)’) ! boundary 4
d = geomDomain_new([l1, l2, l3, l4]) ! interior

geom = geom_new(5) ! Specify 5 for extension later
call geom_setDomain(geom, ’b1’, l1)
call geom_setDomain(geom, ’b2’, l2)
call geom_setDomain(geom, ’b3’, l3)
call geom_setDomain(geom, ’b4’, l4)
call geom_setDomain(geom, ’interior’, d)

Program 2: First, we define four points (p1,p2,p3,p4) at the corner of the domain and
then use them as endpoints to create lines (l1,l2,l3,l4) for the border of the domain. And the
domain (d) is currently specified by a list of lines by creating a simple closed oriented curve.
The square bracket ’[]’ means the endpoints are included when creating lines and not for the
parentheses ’()’, for each point on the border of a domain can only belong to a single point or
line. This is to solve the problem that if two adjacent edges have different boundary conditions,
it is unspecified what happens in the common point. At last, we add the boundaries and the
domain with specified names into the geometry object geom.

5.1.3 New problem object

Once equations and their related domain (pde and geom above) are created, it is pretty simple
to produce problem object to check the compatibility between the expression object and the
geometry object. Namely, to find out if these two objects are correctly associated by the
means of checking names of their each parts. This check operation could be done in the
problem constructor.

type(problem) :: problem

! Check compatibility and then create a problem object
problem = new_problem(pde, geom)
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5.2 New approximation object

Here, we show how to define an approximation for the dam seepage problem through describing
separately how to create other objects of the relative classes. The following Program 3 explains
how the process is done.

5.2.1 New RBF object

For this dam seepage problem, we choose the infinitely smooth ’gauss’(GS) RBF to simulate
its solution. See part a) of Program 3.

5.2.2 New shape parameter object

Users can define the range of shape parameter value in which they would like to test or shape
parameter is well defined. Additionally, they would also need to indicate the number of shape
parameter value and choose means of producing these values. Now we use real data type for
shape parameter with a range of 3.5 to 4.2 and use logarithmic distribution along an interval
method to produce 200 shape parameter values. See part b) of Program 3.

5.2.3 New point sets

We get the collocation point sets from an outside file and then produce center points according
to the collocation points. By nak = 0; dupl = :false:, we do not use the generalized Not-a-
Knot(NaK) boundary condition [13]. This condition could be imposed with a positive integer
for nak and a TRUE for dupl. Here, nak represents the percentage of centers which are moved
out of the domain. See part c) of Program 3.

5.2.4 Specify other information

As we have discussed in the feature section, the approximation encompasses two subfeatures:
polynomial and constraint. For this example, we do not introduce polynomial and constraint
to the coefficient matrices by setting the degree of polynomial to zero and assigning False to
variable constr. See part d) of Program 3.

5.2.5 New approximation object

After we create all kinds of approximation-related objects or define needed information, it
is of obvious simple to produce an approximation object by just invoking the constructor as
done in part e) of Program 3.

----------------------------------
Program 3

----------------------------------
!
! Declare variables first
!
logical :: dupl, logl, constr
character(len=80) :: fname
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character(len=80), dimension(:), allocatable :: phi
integer :: pdeg, nak
real(kind=rfp), dimension(1:2) :: rgx
!
type(point_set) :: x, c
type(epsilon) :: ep
type(approximation) :: approx
!
! a. Create RBFs
!

allocate(phi(1:1))
phi(1) = ’gauss’

!
! b. Create the set of epsilon values
!

logl = .true.
rgx(1) = 3.5_rfp; rgx(2) = 4.2_rfp;
ep = new_eps(logl,rgx,200)

!
! c.Create the collocation point set, and the center points.
! RBF boundary conditions. None are used.

nak = 0
dupl = .false.
fname = ’x.dat’
x = new_pts(fname)
c = new_center_pts(x,.true.,nak,dupl)

!
! d. Specify the degree of the polynomial basis (if there is one)
! And if need constraint(None).

pdeg = -1
constr = .false.

!
! e.Create approximation

approx = new_approx(phi, ep, c, pdeg, constr)
!

5.3 New workflow manager

The third and also the last step is to build a workflow scheme for the dam seepage application.
First, we call the constructor new WFManager of workflow manager class to create a manager
and then set the entire procedure by adding operations into this manager. Program 4 gives
two different workflow schemes: one is for the commonly used standard elliptic case and the
other shows the process for partition of unity case.

The only difference between standard and partition case is the third step. For the standard
elliptic case, it needs to compute coefficient � first; but in the partition of unity case, we do
not work with � explicitly and get the solution by means of matrices transformation. Figure
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11 and Figure 12 separately show the main part of the workflow schemes for these two cases,
from building the interpolation matrix to the evaluation of the solutions.

Figure 11: Workflow for standard case

--------------------------------------
Program 4

--------------------------------------
type(wfmanager) :: wfm ! Workflow manager
type(expression) :: oper ! Evalutation operator
type(point_set) :: x, xe ! Collocation and evaluation point sets
!
! Create a workflow manager and add operations
!

write(*,*) ’Give the number of steps needed for the work flow: ’
read(*,*) n
wfm = new_WFManager(prob, approx, n)

!
! example: work flow for standard elliptic case
!

call add_operation(wfm, ’compose’, ’matrixA’, x) ! compose matrix A
call add_operation(wfm, ’compose’, ’rhs’) ! compose f
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Figure 12: Workflow for partition case

call add_operation(wfm, ’solve’, ’lam’) ! compute lambda = f/A
call add_operation(wfm, ’compose’, ’matrixB’, xe, oper) ! compose matrix B
call add_operation(wfm, ’evaluate’, ’standard’) ! get Lu = B*lambda
call add_operation(wfm, ’solve’, ’residual’) ! get residual = Lu - f(xe)
call add_operation(wfm, ’output’, ’lambda’) ! output lambda
call add_operation(wfm, ’output’, ’solution’) ! output Lu
call add_operation(wfm, ’output’, ’error’) ! output error

!
! example: work flow for partition of unity case
!

call add_operation(wfm, ’compose’, ’matrixA’, x) ! compose matrix A
call add_operation(wfm, ’compose’, ’rhs’) ! compose u = f
call add_operation(wfm, ’compose’, ’matrixB’, xe, oper) ! compose matrix B
call add_operation(wfm, ’solve’, ’c’) !compute C = B*A(-1)
call add_operation(wfm, ’evaluate’, ’partition’) ! get Lu = C*u
call add_operation(wfm, ’solve’, ’residual’) ! get residual = Lu - f(xe), xe = xs
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call add_operation(wfm, ’output’, ’solution’) ! output Lu
call add_operation(wfm, ’output’, ’error’) ! output error

!

5.4 Comparisons

Comparison to how to solve this motivating example in the previous code will be addressed
in this section. Through the followed explanation, we could feel what’s the flexibility about
our new design and the limitation of this currently existing application.

This old software tool supports to solve seven sorts of problems: three of them are for
Helmholtz equation with different dimensionality or domain; another three, actually are three
collocation methods mentioned in [25] which are implemented as different problem models;
the last one is the standard case corresponding to the three collocation methods, for PDEs
with a disk unit domain.

Apparently, every time extending this software to solve a new problem, for instance dam
seepage problem, users need put great effort into understanding the code and into modify-
ing class operator and class rhs, that is certainly the job of developers. It is totally time-
consuming and not reusable for non-expert users. Program 5 and Program 6 describe how to
extend class operator and class rhs class respectively in order to construct a new PDE solver
for the dam seepage problem.

----------------------------------------
Program 5

----------------------------------------
function new_rhs(funcs,op,x) result(rhs)
.
.
.

select case (trim(oper))
.
.
case (’dam’)

if (id == 1) then ! condition 1: h = y
nprime = ’Y’

else if(id == 2) then
nprime = ’0’ ! Dirichlet condition

else
nprime = ’L’

end if

if (reel) then ! For real data type
call evalf(funcs(k),nprime,xp(rg(1):rg(2),:), fp_r(fpos+1:fpos+xsz,k))

else ! For complex data type
call evalf(funcs(k),nprime,xp(rg(1):rg(2),:), fp_c(fpos+1:fpos+xsz,k))

end if
fpos = fpos + xsz
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.

.

.
end function new_rhs

Program 5: Modify the new rhs function of class rhs through adding a case option for
dam seepage model in order to obtain right hand side vector f of equation A� = f .

----------------------------------------
Program 6

----------------------------------------
function new_operator(oper,x,c,xb,pdeg,rtype) result(op)
.
.
.

select case (trim(oper))
.
.
case (’dam’)

call build_dam()
.
.

Contains
.
.

!
!----------- Build matrices for Dam Seepage model ----------------
!
subroutine build_dam()

integer :: k,curr,nn
character(len=80) :: fname
type(point_set) :: norm
real(kind=rfp), dimension(:,:), pointer :: np

!
co_r = 1.0_rfp

!
! get the normal vector from file
!

fname = ’nhat.dat’
norm = new_pts(fname)
np => get_pts_ptr(norm)
nn = ubound(np,1)

!
allocate(op%bl_A(1:nxt))
allocate(op%bl_B(1:1))
! All columns in each block
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mc(1) = psize+1; mc(2) = nc + psize
rc(1) = 1; rc(2) = nc

do k=1,nxt
! extract information from xtype to get r and rr
call get\_pts\_id(k,x,curr,rr)
mr = rr + psize
if (curr==3*BOUNDARY\_POINT) then

op%bl_A(k) = new_block(2,mr,mc,rr,rc) ! 2 terms for Neumannn type
else

op%bl_A(k) = new_block(1,mr,mc,rr,rc) ! 1 term for other points
end if
!
! Compute the interpolate matrix A
!
if (curr==INTERIOR_POINT) then ! For left side of equation 0

op%bl_A(k)%terms(1) = new_term(’L’,1,co_r)
else if (curr==BOUNDARY_POINT) then ! For left side of equation 1

op%bl_A(k)%terms(1) = new_term(’0’,1,co_r)
else if (curr==2*BOUNDARY_POINT) then ! For left side of equation 2

op%bl_A(k)%terms(1) = new_term(’0’,1,co_r)
else if (curr==3*BOUNDARY_POINT) then ! For left side of equation 3
! dh/dn = n1*(dh/dx) + n2*(dh/dy)

dim(1:2) = (/1,2/)
prime(1:2) = (/1,1/)
op%bl_A(k)%terms(1) = new_term(dim(1:1),prime(1:1),nn,np(:,1))
op%bl_A(k)%terms(2) = new_term(dim(2:2),prime(2:2),nn,np(:,2))

else if (curr==4*BOUNDARY_POINT) then ! For left side of equation 4
! dh/dy

dim(1) = 2
prime(1) = 1
op%bl_A(k)%terms(1) = new_term(dim(1:1),prime(1:1),1,co_r)

end if
!
! Compute the corresponding block in the polynomial part
!
if (psize > 0) then ! We know that the op is complex

call fill_poly_block_r(’n’,op%pbase_a%r%r2(rr(1):rr(2),:), &
xp(rr(1):rr(2),:),op%bl_A(k)%terms)

end if
end do

mr(1) = 1; mr(2) = nxb
mc(1) = psize+1; mc(2) = nc + psize
rr(1) = 1; rr(2) = nxb
rc(1) = 1; rc(2) = nc
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op%bl_B(1) = new_block(1,mr,mc,rr,rc)
op%bl_B(1)%terms(1) = new_term(’0’,1,co_r)

!
! Compute the constraint block and the polyblock in evaluation matrix B
!
if (psize > 0) then

call fill_poly_block_r(’y’,op%pconstr%r%r2, cp,constr)
call fill_poly_block_r(’n’,op%pbase_b%r%r2,xbp,op%bl_B(1)%terms)

end if

end subroutine build_dam
! -------------------------------------------------------------
.
.

end function new_operator

Program 6: Modify the new operator function of class operator through adding a case option
for dam seepage model in order to obtain interpolate matrix A of equation A� = f and
evaluation matrix B.

The extension for solving the dam seepage problem seems easier in the old code than the
one in our new design, but this is a false image. We can see that a few subroutines or functions
are invoked by new rhs and new operator function, that means, as we have already discussed
at the beginning, we must be exactly clear about the roles of these subroutines or functions
which are likely to be private. However, according to our suggested design, the user just needs
to learn how to use public interfaces which are extremely easy to know. The following four
aspects succeed in extending the flexibility:

1. Extend pre-existing objects. We could add new equations and geometric objects into
existing PDEs and geometries to arrive to new expression and geometry objects. For
example, add an initial condition for the problem and add a decomposed subdomain.

! Set a friendly name and add two terms for equation 6
call set_equation(pde, 6, ’init’, 2)
call add_term(pde, 6, ’0’, co_r, COEFF_F= f(x,t))
fun = ’zero’
call add_term(pde, 6, fun)

! Set a friendly name and add two terms for equation 6
type(domain) :: d2

d2 = new_domain(3)
.
.
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.
call geom_setDomain(geom, ’subdomain’, d2)

2. Allow to change object features. As expressed in 1), we add a time-dependent equa-
tion this time, that makes the time-independent equation systems or PDEs into time-
dependent.

3. Reuse objects. Here, we do not mean to extend the objects as 1), but to use existed
objects for new problem. Now, for instance, there are one geometry object G1 and two
expression objects PDE1, PDE2 which are equations for different problem but with the
same domain. So we could combine G1 with PDE1 and PDE2 separately to cover two
problem models.

4. Introduction of the workflow manager. Users have the initiative to set their desired
workflow through adding orderly operations into workflow manager. In addition, it also
allows the introduction of new operations for instance time-stepping method.

6 Implementation
We use Fortran 90 as implementation language which is competitive in scientific computation.
Now, most of the new classes are not finished yet and they could be implemented diversely ac-
cording the interfaces we suggested. In order to improve the computational efficiency, we read
and write data using a column-oriented method that is in line with the memory management
mechanism of Fortran 90. And to avoid data re-computing, e.g. distances between node points
and center points, we introduce a data structure Data manager to manage all of the data. In
terms of implementation, we separate this Data manager from workflow manager in case the
workflow manager and the class operation call each other and cause a cyclic dependency.

7 Conclusion
First, in this paper, we have presented object models of our framework by application of
object-oriented analysis and design(OOAD) combined with feature modeling. Then we use
a dam seepage problem to discuss how to construct a RBF based PDE solver according to
these models. Moreover, a comparison was made between our new design and the existing
reference code to show how flexible and reusable the proposed design is.

The separation of mathematic domains and numerical domains and the introduction of
operations provide greater possibility for users with different concerns to extend this frame-
work. Problem oriented users could vary the features of objects by using public interfaces
and changing their relevant parameter values; however, method oriented users are allowed
to add new method classes or operations into their corresponding component to extend the
framework.

In the future, we could pursue higher degree of computational efficiency via parallelization
computing. Also, we can consider how to more reasonably separate classes into multi-level
and maximumly avoid users to access low level classes. Furthermore, we could aim to extend
the code to allow for equations with derivatives regarding to time. Or to investigate the RBF
method for nonlinear partial differential equations, which needs a totally new solver. But some
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of the basic classes or components are reusable. We could extend the existing framework to
construct new PDE solvers through combination of old classes and new developed classes,
for instance to extend the operation class. To construct a reusable and flexible framework is
always a permanent aim.
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