
Efficient detection of communication in multi-cores

Andreas Sandberg
Uppsala University

Department of Information Technology
Box 337, SE-751 05 Uppsala, Sweden

andreas.sandberg@it.uu.se

Stefanos Kaxiras
University of Patras

ECE Building
Rion Campus, Patras 26500, Greece

kaxiras@ece.upatras.gr

Abstract

Several methods have been proposed to model commu-
nication in systems with coherent caches, e.g. multi-cores,
however they usually incur a large overhead on the appli-
cation being analyzed. In this work we describe a low-
overhead statistical communication model that is driven by
a sparse sample of the memory accesses in the target ap-
plication. Our model allows detection of hot-spots where
coherence communication occurs between different threads
in an application. Preliminary results suggest that we are
able to detect most of the communication hot-spots in real
applications with lower overhead than previously proposed
models.

1. Introduction

The introduction of multi-cores is moving parallel pro-
gramming from the domain of experts to more novice pro-
grammers. As more and more programmers start to exploit
the parallelism offered by modern hardware, the need to un-
derstand the behavior of parallel applications increases.

Today we have a fairly good understanding of how to
analyze and optimize serial code in respect to cache behav-
ior. The most common approach is to use simulation, either
on-line or off-line. An on-line simulator is attached to the
target application and simulates the memory system as the
application runs, whereas an off-line simulator is run from
a stored memory access trace. There are several simulation
based cache analysis tools, for example Cachegrind in the
Valgrind[5] tool suite. Unfortunately, most such tools tend
to suffer from a large overhead; slowdowns of several orders
of magnitude are not uncommon.

Another drawback of on-line simulators is generally the
lack of flexibility. Once the analysis is done, there is no way
to change any of the cache parameters to simulate another
cache level or processor. A way to increase flexibility would
be to use an off-line simulator and only create a memory

access trace on-line. This would indeed be the most flexible
solution since all data relevant to a cache simulator exists
in the trace file, however the size of the such trace files is
usually prohibitively large.

To reduce overhead and improve flexibility some re-
searchers have turned to statistical models. One such
method, StatCache[2], uses a memory access sample to es-
timate the cache behavior of an application. Using a sparse
sample instead of a full memory trace has the benefit of re-
ducing the on-line overhead1 and at the same time reducing
the amount of data needed for the analysis. Furthermore,
StatCache allows the user to change the cache size in the
off-line phase of the algorithm. The authors of the origi-
nal StatCache model later extended it to StatCache MP[3]
which handles multiple processors with coherent caches.

The original StatCache algorithm uses a memory access
sample consisting of pairs of accesses to the same cache
line, for each such reuse pair the number of memory ac-
cesses to other cache lines is measured. In order to detect
invalidations StatCache MP modifies the original sampling
algorithm. The new sampling algorithm requires both ac-
cesses in a pair to come from the same thread. In addition
to the memory access counter StatCache MP maintains a
list of foreign threads writing to the cache line.

One of the drawbacks of the StatCache MP approach is
that it requires a more complex sampling policy than the
initial StatCache implementation. The stricter termination
condition for access pairs causes more long-running pairs;
this together with the additional complexity in the sampling
application is likely to have a negative impact on perfor-
mance.

We present an algorithm that detects communication
sites in full-scale applications using a sampling policy sim-
ilar, but somewhat simpler, to the one used in the original
StatCache algorithm.

1The authors of the StatCache algorithm report overheads as low as
40% in average.



2. The communication model

Our communication model can be divided into two dis-
tinct parts; data acquisition, or sampling, and data analysis.
Sampling is performed on-line by an application, the sam-
pler, which monitors the target application’s memory ac-
cesses. The output from the sampling phase is known as a
memory access sample. The analysis phase uses the mem-
ory access sample to predict where communication takes
place in the target application.

2.1. Sampling

Our communication model uses a sample of the target
application’s memory accesses. A memory access sample
consists of a set of pairs of accesses, reuse pairs, to the same
cache line. Each sampled memory access is annotated with
its instruction address (iaddr), thread number and access
type.

The first access in a reuse pair, PC1, is chosen randomly
by the sampler. The second access, PC2, is the first ac-
cess, from any thread, after PC1 that reuses the cache line
accessed by PC1.

The sampler starts to monitor a new memory access on
average every N memory accesses, where N is known as
the sample period.

2.2. Data analysis

Using the memory access sample, we build a weighted
directed graph of memory accesses. We start by building
a map between thread numbers and caches; we assume a
static mapping that is valid throughout the whole execu-
tion of the target application. Each vertex in the graph then
corresponds to one unique iaddr-cache pair in the memory
access sample. The edges in the graph represent sampled
PC1-PC2 connections, with the weight of an edge being the
number of times a particular pair has been sampled.

We assume that every branch in the application can be
modeled as an independent random event and that program
behavior is somewhat uniform throughout the execution.
Using these assumptions we calculate the probability for a
transition along an edge in the graph. Consider the vertex
v with the adjacent vertex w, and let W (v ! w) be the
weight of an edge and let Eout(v) be the set of all edges
originating from v. The probability for the transition along
the edge v ! w, P (v ! w), can then be calculated.

P (v ! w) = W (v ! w)P
e2Eout(v) W (e)

(1)

The probability P (v ! wa) should be interpreted as the
answer to the question “Given that an instruction v has just

executed, what is the probability that the next instruction is
w?”.

Using the equation above we construct the cache state
function, that is, the probability that a piece of data is avail-
able in a local cache at a given point in the program. We
actually compute two functions, the incoming state and the
outgoing state, i.e. the state before the instruction executes
and the state after the instruction executes respectively. We
denote the incoming probability for a cache line to be valid
in cache c at vertex v by P I

c (v), the outgoing probability is
denoted by PO

c (v), as described in Equation 2 and Equa-
tion 3 respectively where C(v) is the cache that v is execut-
ing in.

P
I

c (v) =
X
w

P
O

c (w)P (w ! v) (2)

P
O

c (v) =

8>><
>>:

1 C(v) = c

0 C(v) 6= c ^

v is a write
P I
c (v) otherwise

(3)

Equation 3 transforms the incoming cache probability
into an outgoing cache probability. For an instruction v

executing on a core with the local cache c, the outgoing
probability is always 1, i.e. reading from memory installs
the cache line in the local cache. In case the probability is
not calculated for the local cache, the outgoing probability
is always 0 if v is a write, a read on the other hand only
propagates the incoming state.

Note that Equation 2 and Equation 3 are dependent and
requires solving of a linear equation system. In all practi-
cal cases we have encountered so far, the system has been
satisfied or over-satisfied and thus solvable.

Using the equations defined above we can compute the
probability of a miss, M(v), as the complement probability
of a data item being in the local cache before an instruction,
v, executes.

M(v) = 1� P I

C(v)(v) (4)

The probability of sending an invalidating to foreign
cache, Ic(v), can also be expressed using the cache state
functions.

Ic(v) =
�
P I
c (v)� PO

c (v) c 6= C(v)
0 otherwise (5)

To calculate the expected number of misses for a spe-
cific instruction we need to know the number of times that
instruction has been executed. This is calculated by mul-
tiplying the sample period, N , with the total weight of all
edges originating from the vertex.

N(v) =
X

e2Eout(v)

W (e)N (6)



Sample pairs
Benchmark Accesses 100 1000
BT 260 000 000 2 623 000 264 000
GS 360 000 000 3 645 000 366 000
Raytrace 120 000 000 1 209 000 121 000

Table 1: Number of accesses in the traces and the number of
access pairs sampled from the traces using a sample period
of 100 and 1000.

We then utilize the miss probability, M(v), to calculate the
expected number of misses, NM (v), for an instruction.

NM (v) = N(v)M(v) (7)
NU (v) = N(v)U(v) (8)

3. Preliminary evaluation

To evaluate the algorithm we counted the number of in-
validation misses in the target applications using a trace
driven cache simulator. We used the following benchmarks
in the evaluation:

BT Implicit solver for 3-dimensional Navier-Stokes equa-
tion from the OpenMP implementation[4] of the NAS
Parallel Benchmarks[1]. We used the class S version
of the benchmark.

GS A naı̈ve parallel implementation of a Gauss-Seidel
smoother working on a 256 � 256 matrix of doubles.
The algorithm was parallelized such that each core
works on a set of columns and communication only
occurs along the borders of a column.

Raytrace Ray-tracer from the SPLASH-2 benchmark
suite[6]. We used the classical teapot scene included
with the benchmark as input data.

We compiled all the benchmarks using GCC version
4.2.1 for x86-64 with -O2 optimizations. All of the bench-
marks were run with 2 worker threads.

The model was driven by a sparse sample taken from the
trace used to drive the simulator, see Table 1 for a summary
of the number of accesses in the trace and the number of
access pairs in the sample files. We simulated a reference
system with two private 4MB caches and 64B cache lines.
To reduce noise in the model, we didn’t include predictions
for instructions having fewer than 10 sampled accesses or
were based on less than 5 sampled accesses per vertex in
average. We classified instructions having more than 50 000
invalidation misses as hot-spots.

Comparing the results from the simulator and commu-
nication in Table 2, we see that using a couple of million
of access pairs we find most of the hot-spots in all of the

Benchmark Simulator Model Overlap
BT 13 30 3
GS 5 6 3
Raytrace 6 12 6

(a) Sample period 1000

Benchmark Simulator Model Overlap
BT 13 39 12
GS 5 8 5
Raytrace 6 11 6

(b) Sample period 100

Table 2: Breakdown of communication hot-spots detected
in the benchmarks. The simulator column is the number of
hot-spots that were detected by the simulator and the model
column corresponds to the number of hot-spots detected by
our model. The actual overlap between the two is in the
overlap column.

benchmarks. Using a few hundred thousand access pairs
we still detect all of the hot-spots in Raytrace and more than
half of the hot-spots in GS, BT however proves to be much
more elusive and we only detected a tenth of the actual hot-
spots.

In all of the benchmarks our model detected additional
communication hot-spots that weren’t detected by the sim-
ulator. We believe that most of these were actual communi-
cation sites, but with a slightly overestimated communica-
tion rate.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, et al. The Nas Parallel Benchmarks. Interna-
tional Journal of High Performance Computing Applications,
5(3):63, 1991.

[2] E. Berg and E. Hagersten. Fast data-locality profiling of native
execution. SIGMETRICS Perform. Eval. Rev., 33(1):169–180,
2005.

[3] E. Berg, H. Zeffer, and E. Hagersten. A statistical multipro-
cessor cache model. 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 89–99,
2006.

[4] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementa-
tion of NAS Parallel Benchmarks and its Performance. NASA
Ames Research Center, editor, Technical Report NAS-99-01,
1999.

[5] N. Nethercote. Dynamic Binary Analysis and Instrumenta-
tion. PhD thesis, University of Cambridge, UK, 2004.

[6] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and methodolog-
icalconsiderations. Computer Architecture, 1995. Proceed-
ings. 22nd Annual International Symposium on, pages 24–36,
1995.


