
A Software Technique for Reducing Cache Pollution

Andreas Sandberg
Department of Information

Technology
Uppsala University, Sweden

andreas.sandberg@it.uu.se

David Eklöv
Department of Information

Technology
Uppsala University, Sweden
david.eklov@it.uu.se

Erik Hagersten
Department of Information

Technology
Uppsala University, Sweden

eh@it.uu.se

ABSTRACT
Contention for shared cache resources has been recognized
as a major bottleneck for multicores—especially for mixed
workloads of independent applications. While most modern
processors implement instructions to manage caches, these
instructions are largely unused due to a lack of understand-
ing of how to best leverage them.

We propose an automatic, low-overhead, method to reduce
cache contention by finding instructions that are prone to
cache trashing and a method to automatically disable caching
for such instructions. Practical experiments demonstrate
that our software-only method can improve application per-
formance up to 35% on x86 multicore hardware.

1. INTRODUCTION
The introduction of multicore processors has significantly
changed the landscape for most applications. The literature
has mostly focused on parallel multithreaded applications.
However, multicores are often used to run several indepen-
dent applications. Such mixed workloads are common in a
wide range of systems, spanning from cell phones to HPC
servers.

When an application shares a multicore with other applica-
tions, new types of performance considerations are required
for good system throughput. Typically, the co-scheduled ap-
plications share resources with limited capacity and band-
width, such as a shared last-level cache (SLLC) and DRAM
interfaces. An application overusing any of these resources
can degrade the performance of the other applications shar-
ing the same multicore chip.

Consider a simple example: Application A has a working
set that barely fits in the SLLC, and application B traverses
a data structure much larger than the SLLC. When run
together, B will use a large portion of the SLLC and will
force A to miss much more than when run in isolation.

Several software techniques for managing caches have been
proposed in the past [11, 9, 13, 12]. However, most of these
methods require an expensive simulation. These techniques
assume the existence of heavily specialized instructions [11,
12], or extensions to the cache state and replacement pol-
icy [13], none of which can be found in today’s processors.
Several researchers have proposed improvements to the LRU
replacement algorithm [7, 3, 6, 4]. In general, such algo-
rithms tweak the LRU order by including additional predic-
tions about future re-references. Others have tried to pre-
dict [14] and quantify [10] interference due to cache sharing.

We propose an efficient and practical software-only tech-
nique to automatically manage cache sharing to improve
the performance of mixed workloads of common applica-
tions running on existing x86 hardware. Unlike previously
proposed methods, our technique does not rely on any hard-
ware modifications and can be applied to existing applica-
tions running on commodity hardware.

2. LOW-OVERHEAD CACHE MODELING
A natural starting point for modeling LRU caches is the
stack distance [5]. A stack distance is the number of unique
cache lines accessed between two successive memory accesses
to the same cache line. It can be directly used to determine
if a memory access results in a cache hit or a cache miss for
a fully-associative LRU cache: if the stack distance is less
than the cache size, the access will be a hit, otherwise it will
miss.

In this work, we need to differentiate between what we call
backward and forward stack distance. Let A and B be two
successive memory accesses to the same cache line. Suppose
that there are S unique cache lines accessed between A and
B. Here, we say that A has a forward stack distance of S,
and that B has a backward stack distance of S.

Measuring stack distances is generally very expensive. We
use StatStack [2] to estimate stack distances and miss ratios.
StatStack estimates an application’s stack distances using
only a sparse sample of the application’s reuse distances,
i.e. the number of memory accesses performed between two
accesses to the same cache line. This approach to modeling
caches has been shown to be several orders of magnitude
faster than full cache simulation, and almost as accurate.
The runtime profile of an application can be collected with
an overhead of only 40% [1].



bit not set
If ETM

D
R
A
M

C
ac

h
e 

S
ta

ck

Stack Distance

F
re

q
u
en

cy

dETM

L
R

U

ETM bit is set
Miss if the

Evicted early
if ETM bit set

M
R

U
Always Hit Always Miss

Evicted

dmax

Figure 1: LRU stack (top) and the forward stack
distance distribution of a memory accessing instruc-
tion (bottom). Cache lines are evicted earlier than
normal if the ETM bit is set. Stack distances within
the shaded area are memory accesses that will result
in misses if the ETM bit is set.

3. CLASSIFYING MEMORY ACCESSES
Using the stack distance profile of an application we can de-
termine which memory accesses do not benefit from caching.
We will refer to memory accessing instructions whose data
is never reused during its lifetime in the cache hierarchy as
non-temporal memory accesses. We use a use a compiler
post-processing step to disable caching for such memory ac-
cesses, which has the effect of eliminating cache pollution
caused by those instructions.

The system we model implements a non-temporal hint that
causes a cache line to be installed in the L1, but never in any
of the higher cache levels. We will describe our algorithm to
find non-temporal accesses in four steps. Each of the first
three steps adds more detail to the model and brings it closer
to the hardware, the fourth step is included to take effects
from sampled stack distances into account.

3.1 A first simplified approach
By looking at the forward stack distances of an instruction
we can easily determine if the next access to the data used
by that instruction will be a cache miss. An instruction
has non-temporal behavior if all forward stack distances are
larger or equal to the size of the cache. In that case, we
know that the next instruction to touch the same data will
be a cache miss.

This approach has a major drawback. Most applications,
even purely streaming ones that do not reuse data, usually
reuse cache lines. Since cache management is done at a cache
line granularity, this clearly restricts the number of possible
instructions that can be treated as non-temporal.

3.2 Refining the simple approach
Most hardware implementations of cache management in-
structions allow non-temporal data to live in parts of the
cache hierarchy, such as the L1, before it is evicted to mem-
ory. We can exploit this to accommodate short temporal
reuse. We assume that whenever a non-temporal memory

access touches a cache line, it is installed in the MRU-
position of the LRU stack, and a special bit on the cache
line, the evict to memory (ETM) bit, is set. Whenever a
normal memory access touches a cache line, the ETM bit is
cleared. Cache lines with the ETM bit set are evicted earlier
than other lines, see Figure 1. Instead of waiting for the line
to reach the depth dmax it is evicted when it reaches dETM .

The model with the ETM bit allows us to consider mem-
ory accesses as non-temporal even if they have short reuses
that hit in the small ETM area. Instead of requiring that
all forward stack distances are larger than the cache size,
we require that there is at least one such access and that
the number of accesses that reuse data in the area of the
LRU stack outside the ETM area, the gray area in Figure 1,
is small, i.e. the number of misses introduced if the access
is treated as non-temporal is small. We thus require that
one stack distance is greater or equal to dmax , and that the
number of stack distances that are larger or equal to dETM

but smaller than dmax is smaller than some threshold, tm.

The hardware we want to model does not, unfortunately,
reset the ETM bit when a temporal access reuses ETM data.
This new situation can be thought of as sticky ETM bits, as
they are only reset on cache line eviction.

3.3 Handling sticky ETM bits
When the ETM bit is retained for the cache lines’ entire
lifetime in the cache, the conditions for a memory accessing
instruction to be non-temporal developed in the previous
section are no longer sufficient. If instruction X sets the
ETM bit on a cache line, the ETM status applies to all
subsequent reuses of the cache line as well. To correctly
model this, we need to make sure that the non-temporal
condition from section 3.2 applies, not only to X, but also
to all instructions that reuse the cache lines accessed by X.

The sticky ETM bit is only a problem for non-temporal ac-
cesses that have forward reuse distances shorter than dETM .
For example, consider an instruction, Y, that reuses a cache
line previously accessed by a non-temporal access X (Y is
a cache hit). When Y accesses the cache line it is moved to
the MRU position of the LRU stack, and the sticky ETM
bit is retained. Since the ETM bit is still set after Y has
executed, the state of the cache is the same as if Y would
have set the ETM bit. Therefore, we have to apply the non-
temporal conditions to all instructions reusing the cache line
accessed by X.

3.4 Handling sampled data
To avoid the overhead of measuring exact stack distances,
we use StatStack to calculate stack distances from sampled
reuse distances. Sampled stack distances can generally be
used in place of a full stack distance trace with only a small
decrease in average accuracy. However, there is always a
risk of missing some critical behavior. This could potentially
lead to flagging an access as non-temporal, even though the
instruction in fact has some temporal behavior in some cases,
and thereby introducing an unwanted cache miss. In order to
reduce the likelihood of introducing misses due to sampling,
we introduce a sample threshold, ts, which is the smallest
number of samples originating from an instruction that can
be considered to be non-temporal.



Table 1: Cache properties of the model system
(AMD Phenom II X4 920)

Level Size (kB) Associativity Line Size (B) Shared
1 (data) 64 2 64 No
2 512 16 64 No
3 6144 48 64 Yes

4. EVALUATION METHODOLOGY
4.1 Model system
To evaluate our model we used an x86 based system with
an AMD Phenom II X4 920 processor with the AMD family
10h micro-architecture. The processor has 4-cores, each with
a private L1 and L2 cache and a shared L3 cache. The
processor enforces exclusion between L1 and L2, but not
always between L3 and the lower levels if data is shared
between cores.

According to the documentation of the prefetchnta instruc-
tion, data fetched using the non-temporal prefetch is not in-
stalled in the L2 unless it was fetched from the L2 in the first
place. However, our experiments show that this is not the
case. It turns out that data fetched from the L2 cache using
the non-temporal prefetch instruction is never re-installed in
the L2. The system therefore works like the system modeled
in section 3.3 where the ETM-bit is sticky.

We used the performance counters in the processor to mea-
sure the cycles and instruction counts using the perf event
framework provided by recent Linux kernels.

4.2 Benchmark preparation
The benchmarks were first compiled normally for initial ref-
erence runs. Reuse distance sampling was done on each
benchmark running with the reference input set. Due to the
low overhead of the sampler, the benchmarks were run to
completion with the sampler attached throughout the entire
run. After the initial profile run, we analyzed the profile
using the algorithm in the previous section and generated a
list of non-temporal memory accesses.

The cache-managed versions of the benchmarks were com-
piled using a compiler wrapper script that hooked into the
compilation process before the assembler was called. The
assembly output was then modified before it was passed to
the assembler. Using the debug information from the binary
we were able to find the memory accesses in the assembly
output corresponding the instruction addresses in the non-
temporal list. Before each non-temporal memory access the
script inserted a prefetchnta instruction to the same mem-
ory location as the original access.

4.3 Algorithm parameters
We model the cache behavior of our benchmarks using Stat-
Stack and a reuse distance sample with 100 000 memory
access pairs per benchmark. We use a minimum samples
threshold, ts, of 50 samples. The maximum number of intro-
duced misses, tm, is set to 0 samples; this may seem strict at
first, but remember that we are sampling memory accesses
and one sample corresponds to several hundred thousand
memory accesses.

Cache exclusivity guarantees that there is at most one copy
of a cache line in the caches where exclusivity is enforced.
For example, an access to a cache line that resides in the
L2 of our system will cause that cache line to be removed
from the L2 and installed in the L1. A system where cache
exclusivity is not enforced would not remove the copy in the
L2. When the cache line is evicted from the L1 cache it is
installed in the L2 cache, i.e. it is transferred from the LRU
position of the L1 to the MRU position of the L2. This
behavior lets us merge the two caches and treat them as one
larger LRU stack where each cache level corresponds to a
contiguous section of the stack. In the model system, the
first 1 k lines correspond to the L1 cache, the next 8 k lines
correspond to the L2 and the last 96 k lines correspond to
the L3. This global stack has 105 k lines in total, i.e. the
total cache size in lines. We let dmax be the depth of the
global stack.

Since we are using StatStack we have made the implicit as-
sumption that caches can be modeled to be fully associative,
i.e. conflict misses are insignificant. In most cases this is a
valid assumption, especially for large caches with a high de-
gree of associativity. A notable case where this assumption
may break is for the L1 cache, which has a low degree of
associativity. We therefore have to be more conservative
when evaluating stack distances within this range. We use
different, conservative, values of dETM , when calculating the
number of introduced misses and handling the stickiness of
the ETM bits. We use a dETM value of twice the L1 size, i.e.
2048 lines, when handling stickiness and half the L1 size, i.e.
512 lines, when calculating the number of misses introduced.

5. RESULTS AND ANALYSIS
The results for runs of three mixes of four SPEC2006 bench-
marks each are shown in Table 2. The instructions per cy-
cle, IPC, is shown for each of the benchmarks, both when
running in isolation and when running in the mix and with
and without cache management. The cache management in-
structions are not included in the instruction counts when
calculating IPC for managed applications, including them
would give an unfair advantage to the managed applications.
The speedup is the improvement in IPC over the unmanaged
version.

As seen by comparing the IPC for managed and unmanaged
applications in isolation, inserting additional prefetchnta

instructions does not negatively impact performance in iso-
lation in most cases. In fact, the IPC of LBM is increased
by almost 12%. This effect is to be expected for certain
classes of applications where additional data can be reused
by removing non-temporal data from the cache. This sit-
uation is in many ways similar to having two applications
with different cache behavior competing for cache resources,
but instead having different applications competing, differ-
ent parts of the same application compete for shared re-
sources.

It’s worth noting that all benchmarks are not equally af-
fected by competition for the shared cache. For example,
Gamess and Perlbench are both insensitive to competition
for the shared resource. A likely explanation for this is that
both benchmarks have a relatively small working set that
fits well within the private caches. Benchmarks which ex-



Table 2: Benchmark performance
IPC Mix IPC Isolation

Unmanaged Managed Speedup Unmanaged Managed Speedup

Mix 1

401.bzip2 0.78 0.93 19.0% 1.12 1.12 0.1%
470.lbm 0.38 0.51 34.8% 0.67 0.74 11.6%
462.libquantum 0.37 0.44 19.0% 0.64 0.66 2.8%
416.gamess 1.59 1.59 0.3% 1.59 1.61 1.0%

Mix 2

433.milc 0.45 0.46 3.5% 0.60 0.60 −1.2%
462.libquantum 0.46 0.48 5.0% 0.64 0.66 2.8%
416.gamess 1.60 1.60 0.3% 1.59 1.61 1.0%
400.perlbench 1.51 1.51 −0.1% 1.52 1.56 2.7%

Mix 3

433.milc 0.28 0.29 5.4% 0.60 0.60 −1.2%
462.libquantum 0.27 0.29 6.0% 0.64 0.66 2.8%
470.lbm 0.28 0.29 6.4% 0.67 0.74 11.6%
437.leslie3d 0.67 0.70 4.7% 1.15 1.16 0.3%

perience a larger change IPC due to competition generally
have a working set that is slightly smaller than the available
cache when running in isolation. One notable exception is
libquantum, which has a working set that is much larger
than the available cache. In this case, most of the speedup
in the mix runs can likely be attributed to a decrease in
bandwidth usage from the rest of the mix. An in-depth dis-
cussion of how applications affect each other and how this
can be changed by software cache management is provided
in [8].

6. REFERENCES
[1] E. Berg and E. Hagersten. Fast Data-Locality

Profiling of Native Execution. SIGMETRICS
Perform. Eval. Rev., 33(1):169–180, 2005.

[2] D. Eklöv and E. Hagersten. StatStack: Efficient
Modeling of LRU Caches. In Proceedings of the 2010
IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS-2010),
New York, New York, USA, Mar. 2010.

[3] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, J. S.
Steely, and J. Emer. Adaptive Insertion Policies for
Managing Shared Caches. In Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, pages 208–219, Toronto,
Ontario, Canada, 2008. ACM.

[4] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and
J. Emer. High Performance Cache Replacement Using
Re-Reference Interval Prediction (RRIP). In ISCA
’10: Proceedings of the 37th annual international
symposium on Computer architecture, pages 60–71,
New York, NY, USA, 2010. ACM.

[5] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation techniques in storage hierarchies.
IBM Journal of Research and Development,
9(2):78–117, 1970.

[6] P. Petoumenos, G. Keramidas, and S. Kaxiras.
Instruction-based Reuse-Distance Prediction for
Effective Cache Management. In Proceedings of the
9th international conference on Systems, architectures,
modeling and simulation, pages 49–58, Samos, Greece,
2009. IEEE Press.

[7] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive Insertion Policies for High
Performance Caching. In Proceedings of the 34th

annual international symposium on Computer
architecture, pages 381–391, San Diego, California,
USA, 2007. ACM.

[8] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing
Cache Pollution Through Detection and Elimination
of Non-Temporal Memory Accesses. In
Proc. ACM/IEEE Conf. Supercomputing (SC), New
Orleans, LA, USA, Nov. 2010. (to appear).

[9] T. Sherwood, B. Calder, and J. Emer. Reducing
Cache Misses Using Hardware and Software Page
Placement. In Proceedings of the 13th international
conference on Supercomputing, pages 155–164,
Rhodes, Greece, 1999. ACM.

[10] D. Tam, R. Azimi, L. Soares, and M. Stumm.
Managing Shared L2 Caches on Multicore Systems in
Software. In Proc. of the Workshop on the Interaction
between Operating Systems and Computer Architectur,
San Diego, California, USA, 2007.

[11] G. Tyson, M. Farrens, J. Matthews, and A. Pleszkun.
A Modified Approach to Data Cache Management. In
Microarchitecture, 1995. Proceedings of the 28th
Annual International Symposium on, pages 93–103,
1995.

[12] Z. Wang, K. McKinley, A. Rosenberg, and C. Weems.
Using the Compiler to Improve Cache Replacement
Decisions. In Parallel Architectures and Compilation
Techniques, 2002. Proceedings. 2002 International
Conference on, pages 199–208, 2002.

[13] W. Wong and J. Baer. Modified LRU Policies for
Improving Second-Level Cache Behavior. In
High-Performance Computer Architecture, 2000.
HPCA-6. Proceedings. Sixth International Symposium
on, pages 49–60, 2000.

[14] Y. Xie and G. H. Loh. Dynamic Classification of
Program Memory Behaviors in CMPs. In Proc. of
CMP-MSI, June 2008.


	Introduction
	Low-overhead cache modeling
	Classifying memory accesses
	A first simplified approach
	Refining the simple approach
	Handling sticky ETM bits
	Handling sampled data

	Evaluation methodology
	Model system
	Benchmark preparation
	Algorithm parameters

	Results and analysis
	References

