
Managing cross layer information in OMNeT++
network simulations

Laura Marie Feeney
Swedish Institute of Computer Science and Uppsala University

lmfeeney@sics.se

Abstract—This paper describes a general approach to dealing
with cross layer information in OMNeT++-based network simu-
lations. Rather than prescribe a specific cross layer architecture,
this work is intended to address the software engineering problem
of passing information between simulation modules in a sound
way. An XML-based mechanism for passing information between
modules using OMNeT++’s controlInfo data structure is
presented. Because XML is an intermediate format for the
OMNeT++ network description language (NED), it is further
suggested that allowing NED files to be annotated with informa-
tion about cross layer interactions will enhance readability and
reuse-ability. A further goal of this paper is to initiate discussion
and collaboration in the Swedish (and international) OMNeT++
community.

I. INTRODUCTION

Cross layer optimizations have been widely studied for
communication networks, especially wireless networks. Ex-
amples of such optimizations include channel-aware ad hoc
routing protocols, content-aware encoding of video streams,
and application-aware power management protocols. There has
also been considerable effort directed toward the design of
architectures for managing cross layer information. Many of
the key challenges in developing general purpose cross layer
architectures relate to the practical context, where multiple
optimizations may interact in unexpected ways and where
maintainability and interoperability are of paramount concern.

There has been a corresponding need for simulation en-
vironments that support evaluation of cross layer techniques.
It is perhaps not too surprising that there are corresponding
difficulties in simulating cross layer optimizations in such
that the resulting code is maintainable and can be (re) used
to model interactions between independently developed opti-
mization strategies.

This work therefore presents an extension to the OMNeT++
[10] simulation environment that is intended to address the
software engineering problem of passing information between
simulation modules in a robust and flexible way. It is partic-
ularly suitable for situations where the modular structure of
the simulation software does not exactly mirror the layered
structure of protocol stack, where it is desirable to use a com-
bination of independently developed simulation modules, or
where potential interactions between cross layer optimizations
are of interest.

The paper describes limitations of the existing OMNeT++
mechanisms for passing information between simulation mod-
ules and presents a prototype implementation for treating the

controlInfo data structure as a structured XML element
that contains the inter-module information associated with a
given message. The choice of XML is motivated by OM-
NeT++’s existing support for XML as an intermediate format,
as well as broad knowledge and acceptance of this format.

The paper also suggests that OMNeT++ network description
(NED) language (which already supports XML as an interme-
diate format) be extended to include XML descriptions of all
information that is passed between modules. Such annotation
would make it easier for the user to identify potential conflicts
between cross layer mechanisms, especially when combining
or refactoring independently developed modules. It would also
make it possible to automatically generate code for some
minimal validation of simulation operation, as well as for
providing various utility routines.

II. BACKGROUND

Omnet++[10], [8] is a modular discrete event simulation
environment which has been used as the basis for a number of
network simulation tools, including the mobility-framework[2]
and the INET [6] framework.

In these simulation frameworks, OMNeT++’s NED network
description language is used to define each network host as a
collection of modules, which are connected to form a directed
multi-graph. Simulation messages (representing both data and
internal control) are passed along edges of the graph.

A communication data frame is generally represented by
an OMNeT++ message that passes through a sequence of
modules in the host, much as it does in the layered protocol
stack. Connectivity between hosts can be modeled using direct
links. For wireless networks, however, a specialized channel
module is generally used to model propagation effects on the
shared wireless channel.

In addition to the message data itself, there are two kinds of
information that can be passed between modules: The first is
information associated with a message that is passed from one
module to another via send(msg,...,controlInfo)
interface. The controlInfo parameter is a generic pointer
(cPolymorphic), which must be appropriately interpreted
by the receiver. The OMNeT++ documentation gives as an
example of this usage passing TCP/IP header information be-
tween the transport and network layer modules. It is limitations
of this interface that this work mostly intended to address.

The second kind of information is associated with a module,
rather than with a message that is passed between modules.

controlInfoB = 96

A sends 17 to C

C extracts A,B

send (msg,..., controlInfoA)

send (msg,..., controlInfo???)

handleMsg (msg,..., ???)

C
module

handleMsg (msg,..., controlInfoA) module
B

module
A

controlInfoA = 17

B sends 96 to C

Fig. 1. There is no common mechanism to pass information across modules
that are not directly connected.

Such information can range from simply reading a state
variable (such as residual battery capacity) to initiating a
complex, asynchronous interaction (such as an on-demand
route discovery). Some existing mechanisms for dealing with
this case are discussed briefly in section IV, but the problem
is too general to be amenable to a single solution.

III. MESSAGE METADATA

In keeping with the idea of an cross layer architecture
“agnostic” model, the proposed mechanism is intended to
solve the problem of passing metadata information associated
with a message between simulation modules in a relatively
sound and user-friendly way. This separates the problem of
software engineering in the simulation environment from the
problem of designing a cross layer architecture for a specific
context.

In this context, the controlInfo model’s main flaw is
that it only allows one piece of information to be passed
between simulation modules that are directly connected via a
gate. There is no common mechanism for allowing information
to be passed between modules that are not directly connected
or for multiple modules to pass information to the same
module.

Consider the (simplified) example in Figure 1). Modules A
and B both associate metadata intended for use by module C
with a message that is sent along the marked edges of this
module graph. When module B handle’s the message, the
controlInfo parameter already refers to metadata set by
module A, so module B cannot simply set the controlInfo
parameter to refer its own metadata.

In order to pass both pieces of metadata to module C,
module B has to create a controlInfo structure that
contains the metadata information from both A and B as in
Figure 2. Further complexity arises if new metadata is added
to a module, or if there are multiple paths though the code
for modules A and B, such that different paths result in the
presence of different metadata.

In general, such ad hoc solutions are unsatisfactory, because
they require that each module take into account metadata that
previous modules may have included in the controlInfo

B = 96

A sends 17 to C

C extracts A,B

send (msg,..., controlInfoA)

send (msg,..., controlInfoA+B)

C
module

handleMsg (msg,..., controlInfoA) module
B

module
A

controlInfoA = 17

A = 17

controlInfoB = 96
controlInfoA+B = <17,96>

handleMsg (msg,..., controlInfoA+B)

B sends 96 to C

Fig. 2. Ad hoc mechanisms are unsatisfactory, as they result in code that is
difficult to maintain.

when creating an aggregated structure in which to include
its own metadata or when extracting metadata. These inter-
dependencies make it difficult to re-factor or re-use modules,
significantly reducing the usefulness and maintainability of the
resulting code.

A. Extending controlInfo

To address the limitations of the controlInfo mecha-
nism, there needs to be some way to allow the controlInfo
to accumulate structured information as the message is passed
from module to module. In addition, this model has to be
enforced (at least by convention) in all modules through which
annotated messages pass. One obvious way to do this would
be to re-implement controlInfo as an indexed list of
controlInfo elements, which each module could add to
or search and retrieve from as needed. Such a structure would
be not unlike an XML document. In fact, XML is a natural
mechanism for passing a structured and extensible collection
of data. Moreover, XML is a widely known data description
format and OMNeT++ already supports XML for various file
formats (NED, msg and parameter files) and a simple API for
manipulating XML fragments is provided via cXMLElement
class.

Therefore, rather than create an ad hoc extension to the
controlInfo data structure, we re-define controlInfo
to contain a cXMLElement that is the root of an XML
fragment that accumulates any metadata associated with the
message as it passes between modules. Each piece of infor-
mation that is intended for cross module access is added to
the XML document with an appropriate tag. The tag is made
up of two parts, the module path (its FullPath() in the
simulation host) and a module local name for the information.
To read the metadata, a module need only know the path to
the module in the host structure (which can be configured as
a module parameter in the Host NED file) and its name and
datatype (float, int, bool). If the simulation runs on a single
machine, the value may be stored as an untyped data buffer for
better performance, rather than be serialized. (In the case of
parallel simulation, all messages and metadata must, of course,
be serialized.)

</moduleB>

A sends 17 to C

C extracts A,B

C
module A = getByPath ("moduleA.dataA")

B = getByPath ("moduleB.dataB")

module
B

module
A <moduleA>

 <dataA>17</dataA>
</moduleA>

<moduleB>
 <dataB>96</dataB>

B sends 96 to C

Fig. 3. The previous example, using XML fragment to contain metadata.
Modules A and B add tagged data. Module C extracts data by tag.

Once the message is placed on the channel, the
controlInfo is deleted, as only information actually
present in a network frame’s payload can obtained by the
remote host.

This approach makes module code more maintainable, be-
cause each pair of modules can add and extract metadata in-
formation independently of other metadata and modules. This
also allows for greater flexibility in implementing modules,
since there need not be a directly mapping between software
modules and layers of the network architecture. Modules can
be re-factored into smaller submodules with requiring custom
controlInfo data structures in each intervening module. (It
is actually this case that motivated this work). Moreover, the
use of XML data tags makes code more readable and provides
additional information to OMNeT++’s visualization interfaces.

This mechanism can be used locally within any (locally
cooperating) set of modules; a prototype set of interfaces has
been implemented.

B. Extending NED

Unexpected interaction between cross layer optimizations is
a significant problem for their use in many practical contexts,
particularly environments where multiple protocols and appli-
cations are present. How such conflicts should be resolved is
a problem of cross layer architecture that is far outside the
scope of this work.

The proposed mechanism is intended to enable users of
OMNeT++-based simulation frameworks to implement mod-
ules in a way that they can be maintained and re-used: a
capacity that is particularly advantageous in an open source
environment. This flexibility also makes it easier to build
simulations that incorporate several, possibly independently
developed, optimization techniques, as well as to avoid doing
so inadvertently.

Consider (as an extreme example) a wireless host that
is composed of independently developed modules, some of
which make use of cross layer information. The protocol
stack includes: a routing protocol that sets the transmit power
based on neighbor density; a power save protocol that sets the

transmit power based on the remaining battery capacity; and a
MAC layer that sets the transmit power based on its estimate
of channel conditions at the receiver. The simulation results
are likely to be unexpected, at best. Highlighting the use of
cross module information in the NED files – the most user-
visible description of a simulation module – may be helpful
in this regard.

The internal description files used in OMNeT++ already
support XML as an intermediate format. It is therefore pro-
posed that the NED language be extended to include an XML
description of the out-of-band information that is passed be-
tween modules in the controlInfo structure. In particular,
each out: gate should include the XML tag(s) of any data
that is added to the controlInfo data structure.

This does not prevent the kinds of conflicts described above,
but it does make potential interactions more obvious to the
user. The NED files are the most compact and user-friendly
description of the modules and their interactions; they are far
easier to read than C++ internals. In our example, even if the
transmit power information is labeled with different XML tags
in each module, a user will probably see that the combination
of modules with out: gates with tags TxOut, PowOut, and
TxPower (for example) is a likely source of trouble.

Furthermore, because the NED files contain the description
of the module structure, it may be possible to generate
various kinds of utility code. One possibility is to generate
debugging code to validate whether controlInfo sent from
the relevant gates is actually present. Alternatively, it may be
possible to generate code to insert and extract XML elements
from the controlInfo structure. This possibility opens
questions as to whether the XML descriptions should include
type information (as in the OMNeT++ .msg format) or whether
module-local code should interpret polymorphic data.

This extension requires substantial addition to the public
NED interfaces, not to mention non-trivial programming ef-
fort. No prototype has been developed, as further discussion is
required within the community. (Note that the controlInfo
mechanism described in the previous section does not depend
on NED extension.)

C. Performance

This section discusses two aspects of the performance of the
proposed scheme: the first is re-usability and robustness and
the second is run-time speed of the simulation. To the extent
that computer time is cheaper than developer time, we focus
on the former.

Omnet++ does not provide any mechanism for passing
control info between other than between the module that
send()’s and the module that handleMessage()’s the
message. If an intervening module is added, or if one of
the modules is re-factored and implemented as two separate
module or if the module is re-used in a different context, then
there is no longer any well-defined way to pass information
between them.

In the proposed mechanism, only the module that creates
a piece of metadata and any modules that access the data

need to have any knowledge of its existence and format.
Access to cross layer information is independent of how the
message traverses the module graph. As a result, the proposed
mechanism is robust to nearly all changes in the host’s module
structure: modules can be re-used in new contexts, intervening
modules can be added, removed or replaced, a module can be
re-factored into submodules. The only change that is needed
is the text string that modules use to access the data. (e.g. a
module that uses SomeData from subModuleZ will only
need to change moduleA.subModuleZ/someData to
moduleA.newSubModuleB.subModuleZ/someData,
if moduleA is re-structured). These path strings can even be
specified as parameters in the relevant NED files, avoiding
code changes altogether.

It is hard to overstate the software engineering complexity of
building simulations with modules that need to pass metadata
information between modules that are not directly connected,
or in which there are multiple logical paths along which
messages and their controlInfo is passed.

If a single controlInfo structure (data structure or class)
is used, it must be able to reference all combinations of
metadata that can be added to a message and provide methods
for getting and setting it. This means that the code defining the
controlInfo needs to be revised when modules are used
in a new combination or context.

Keeping metadata local to each module and accessing it via
a callback mechanism faces even greater complications: If an
intervening module implements buffering, then there may be
more than one message present in the system. This means that
the value of the crossLayerInformation for each message has to
be buffered in the source module until it has been accessed by
all reading modules. To operate correctly, the source module
must therefore take into account the internal implementation of
any intervening modules (e.g. timeouts, potential reordering of
messages) to ensure that it correctly caches the right metadata
values for each message.

However, using XML based controlInfo does pose a signif-
icant performance penalty: it is about a factor of eight times
slower to use XML-structured controlInfo to set and get
metadata, than it is to simply pass the data directly via an
untyped controlInfo buffer.

Note that this increase reflects only the cost of using
controlInfo: In this case, the simulation modules are
only setting and getting control information. In practical
simulations, the effect will be considerably less, because
other simulation processing, particularly mobility modeling
and simulation of wireless propagation and interference, is a
significant cost. Moreover, the cXMLElement implementa-
tion in OMNeT++ is currently not optimized. An optimized
implementation, particularly one specialized for using with
controlInfo, might provide much better performance.

IV. MODULE STATE INFORMATION

A second kind of cross layer information is not associated
with a particular simulation message, but is maintained by a
simulation module. Examples of such information include the

state of some hardware component of the host (such as a radio
receiver or battery) or some data structure that is maintained
and updated by the host (such as a neighbor table). There
are a broad range of existing mechanisms for handling these
cases; the most complex do not seem amenable to the simple
strategies outlined above.

Existing frameworks explicitly support synchronous notifi-
cation mechanisms such as the mobility-fw’s Blackboard,
which provides a interface such that a callback routine in one
or more subscriber modules are invoked when when an event
is published.

By contrast, there is no single mechanism for one module to
read the state information of another module. An appropriate
sequence of parentModule() and submodule(name)
calls (or even cSimulation::moduleByPath()) can be
used to access any simulation module. Given a module, a caller
can access any public data and methods of the associated
C++ class. Such an interaction could be quite simple (e.g.
Battery::getResidualEnergy()) or quite complex,
as in the case of activating significant functionality in the
called module.

Alternatively, if there is an explicit connection between the
two modules, a pair of request-reply messages can be used
to exchange information. Even if reply involves no delay,
the reply message may not be guaranteed to be the next
message that is received (on some gate) by the requester and
some kind of buffering is needed. Again, in more complex
cases potentially involving long delays (e.g. on-demand route
discovery), the logic for buffering and timeout may be quite
complex.

V. RELATED WORK

In addition to being a potentially useful bit of software
engineering, the proposed mechanism differs from some ex-
isting solutions in focusing on allowing information to be
shared between simulation modules in a way that promotes
maintenance and reuse. It is cross layer architecture “agnostic”
and hence very general, while at the same time providing
a robust structure and good readability. Related work found
in various open source simulation environments is discussed
below.

The PAWiS [4] project has developed an OMNeT++ frame-
work for cross-layer optimization in sensor networks. The
work seems to address the problem of modeling interaction
between multiple optimization parameters by performing re-
finement cycles to find configurations and parameters that
give good performance. Little has been published about the
internals of this system.

Ns-2 [3], [7] remains the most widely used network simu-
lation environment, particularly in academic research environ-
ments. There are at least two efforts to provide support for
managing cross-layer information in ns-2.

The Multi-Interface Cross Layer Extension for ns-2 (MIR-
ACLE) [1] is intended for simulation of next generation com-
munication networks, especially multi-radio wireless systems.
MIRACLE defines a cross layer communication architecture

where multiple instantiations of the same functionality (e.g.
multiple radio interfaces) may present in a given layer. All
modules are connected to a message bus, the NodeCore, and
cross layer processing is performed by PlugIn’s attached to
the bus.

Informal reports[9] describe extensions to ns-2 that simulate
a general purpose cross-layer architecture, which is described
in terms of a matrix of “knobs” passing control down and
“dials” passing information up. Little has been published about
the internals of this system.

Ns-3 [5], [7] is the successor to the ns-2 simulation en-
vironment and is still very much still under development. In
the current version of ns-3, each packet is modeled as a byte
buffer representing the packet’s serialized (wire) format and a
set of fixed-size tags that can be associated with some or all
of the bytes in the packet. To date, there does not seem to be
any structured convention for using tags.

Allowing a tag to refer to a subset of byes is intended
to help address the problem of how tags are handled across
fragmentation and re-assembly (though some issues still seem
to be open). In fact, the proposed OMNeT++ mechanism has
similar issues: For example, consider a network packet that is
fragmented at the MAC layer and a different received signal
strengths (RSS) are observed for each frame at the receiver.
It is not clear how the RSS value(s) would be represented
in the de-fragmented packet that is passed on to a higher
layer protocol (e.g. a routing protocol that used signal strength
information in its routing decisions).

In general, the mechanism proposed in this paper seems to
be similar in spirit to the tags mechanism proposed in ns-3,
but takes advantage of the structured environment provided
by XML. It should be emphasized that, as some of these
systems are actively under development, relatively few formal
references are available. This discussion therefore includes a
substantial amount information from informal sources, like
web documents, mailing list archives, and code documenta-
tion, which may quickly become out of date.

VI. FUTURE WORK

The paper presented a simple XML-based mecha-
nism for using OMNeT++’s existing controlInfo and
cXMLElement structures to provide a flexible way to allow
information to be passed along with messages traversing the
OMNeT++ modules defining a protocol stack. This convention
can be adopted fairly easily in a network simulation package,
without modification to underlying the OMNeT++ software.

The more general extensions that have been proposed re-
quire changes to support annotating modules and gates in the
NED file format, which is OMNeT++’s most visible public
interface. Further discussion in the OMNeT++ community is
needed to determine whether there is sufficient acceptance of
the general principle of using XML to managing cross module
information passing to warrant further activity.

Another possible extension of this approach is data col-
lection, which another natural target for passing and storing
information in XML format. Currently, the controlInfo is

deleted from a packet when it reaches the channel and passes
to another host, since information can be passed from one
host to another only if it is included the transmitted packet.
However, it might be interesting to consider the possibility of
providing a similar, persistent XML-based structure for data
collection, especially for data that is naturally multihop, such
as end-to-end delay.

VII. CONCLUSION

This paper describes a mechanism to better support passing
metadata information between modules in OMNeT++ based
network simulations. The controlInfo parameter is de-
fined as an XML fragments, which allows metadata to be
passed between arbitrary modules in a structured manner. The
modification to the controlInfo data structure can be used
locally among a group of cooperating modules. In addition, it
is suggested that NED files be annotated with a corresponding
XML description, making relevant interactions more visible to
the user.

Providing better support for passing information between
OMNeT++ modules make it easier to develop and re-use
modules in a sound and maintainable way. Such support
potentially makes it easier to study cross layer protocols and
architectures, even in the case of complex interactions.

It is hoped that this paper will initiate discussion and
collaboration in the Swedish (and international) OMNeT++
community.

VIII. ACKNOWLEDGMENTS

Parts of this study were carried out within the VINN
Excellence Center WISENET, partially funded by VINNOVA,
the Swedish Governmental Agency for Innovation Systems.

REFERENCES

[1] N. Baldo, F. Maguolo, M. Miozzo, M. Rossi, and M. Zorzi. ns2-
MIRACLE: a modular framework for multi-technology and cross-layer
support in network simulator 2. In ValueTools ’07: Proceedings of the
2nd International Conference on Performance Evaluation Methodologies
and Tools, 2007.

[2] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl. A
mobility framework for OMNeT++. In 3rd International OMNeT++
Workshop, Jan. 2003.

[3] K. Fall and K. Varadhan, editors. The ns Manual. The VINT Project,
2000-2008.

[4] J. Glaser and D. Weber. Poster abstract: Simulation framework for power
aware wireless sensors. In Fourth European Wireless Sensor Networks
Conference, (EWSN), Jan. 2007.

[5] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. B. Kopena.
Network simulations with the ns-3 simulator. Demo at SIGCOMM,
2008.

[6] INET framework for OMNeT++. http://www.omnetpp.org/doc/INET.
[7] The nsnam homepage. http://www.nsnam.org.
[8] The omnet++ homepage. http://www.omnetpp.org.
[9] S. Varatharajan, A. Jabbar, A. Mohammad, R. Naidu, J. P. Rohrer,

P. Upadhyay, and J. P. Sterbenz. Cross-layer framework for the ns-2
simulator. ITTC IAB poster (unpublished), University of Kansas., June
2008.

[10] A. Varga. The OMNeT++ discrete event simulation system. In
Proceedings of the European Simulation Multiconference, June 2001.

