
Block-Parallel Programming for Real-time Embedded Applications

David Black-Schaffer
Department of Information Technology

Uppsala University
Uppsala, Sweden

david.black-schaffer@it.uu.se

William J. Dally
Department of Computer Science

Stanford University
Palo Alto, USA

dally@stanford.edu

Abstract—Embedded media applications have traditionally used
custom ASICs to meet their real-time performance requirements.
However, the combination of increasing chip design cost and avail-
ability of commodity many-core processors is making programmable
devices increasingly attractive alternatives. Yet for these processors
to be successful in this role, programming systems are needed that
can automate the task of mapping the applications to the tens-to-
hundreds of cores on current and future many-core processors, while
simultaneously guaranteeing the real-time throughput constraints.

This paper presents a block-parallel program description for em-
bedded real-time media applications and automatic transformations
including buffering and parallelization to ensure the program meets
the throughput requirements. These transformations are enabled by
starting with a high-level, yet intuitive, application description. The
description builds on traditional stream programming structures by
adding simple control and serialization constructs to enable a greater
variety of applications. The result is an application description that
provides a balance of flexibility and power to the programmer, while
exposing the application structure to the compiler at a high enough
level to enable useful transformations without heroic analysis.

Keywords-parallel programming; synchronous data flow; image pro-
cessing; parallelization; real-time constraints;

I. INTRODUCTION

Typical embedded media applications (such as video codecs,
radio processing, and medical imaging) require vast amounts of
computational power and have hard real-time requirements. Tra-
ditionally, these have been implemented as fixed-function ASICs.
However, as semiconductor technology has scaled to smaller fea-
ture sizes, the cost of designing and verifying these ASICs has
increased to the point where they are only affordable for the highest
volume applications [1]. The fixed-function nature of these designs
also makes them extremely expensive in an environment where
standards are constantly evolving, as any change in the algorithm
requires a re-spin of the chip to accommodate it.

The same trends that are making ASICs prohibitively expensive
are making off-the-shelf many-core processors more affordable.
These architectures amortize the increased design cost by repli-
cating tens or hundreds of cores across a single chip [2], [3]. As
feature sizes scale down, many-core chips become both cheaper to
design (greater amortization of design effort across more cores) and
more powerful (increased total core count). This trend has led to
a strong desire to use commodity many-core architectures in place
of custom ASIC designs for computationally demanding embedded
applications.

Unfortunately, while the hardware is rapidly becoming capable
of supporting the computation rates required by these applications,
programming systems have not kept pace [3]. The current ad-hoc
SMP-derived programming models advocated for many-core pro-

cessors are based on manual parallelization via threads and manual
inter-process communication via either coherent shared memory or
explicit message passing. These approaches fail to incorporate any
notion of the physical location of data or processing resources and
the real-time requirements of the application. Programming in this
manner requires that the programmer have intimate knowledge of
the particularities of the architecture to ensure the application meets
its real-time constraints and uses its communication resources
efficiently. Additionally, these brittle manual approaches suffer
similar re-implementation costs as ASICs when algorithms change,
thereby losing much of the programmable benefit. As the number of
cores and the required throughput of the applications increase, the
current approach of manually partitioning, placing, and scheduling
threads and data to ensure the required throughput will rapidly
become untenable.

Stream languages [4], [5], [6], [7] have been proposed to meet
these challenges. Their application representation exposes and
parameterizes the data movement and computation at a high-level,
which enables straight-forward manipulation without the extreme
complexity of low-level analysis of imperative code. The stream
representation frees the programmer from having to determine
and implement the correct parallelization, as the data-, task-, and
pipeline-parallelism are explicit in the application description. By
providing a high-level parameterized view of the application, it
also enables automatic placement of the application’s tasks on a
many-core processor.

However, despite these advantages in program manipulation and
representation, streaming languages have not been widely adopted.
One reason for this is that they often provide a too Spartan interface
for the programmer (e.g., allowing only a single input/output per
kernel [7] or only one-dimensional data [7], [6]), or a too general
one (e.g., allowing fully n-dimensional data with complex access
and reuse patterns [4], [8], [9]). The former forces programmers to
write code in a complex manner which inhibits compiler analysis
and programmer understanding [10], while the latter makes the
compiler analysis fundamentally difficult [11], [4].

This paper presents:
• A block-parallel streaming language [12] with 2-dimensional

data streams, multiple kernel inputs and outputs, and explicit
throughput constraints,

• Compiler data-flow analyses for determining computation
requirements to meet the throughput constraints throughout
the program based on static input and computation rates,

• And automated methods for buffering and parallelizing the
application to meet the throughput constraints.

The approach presented here attempts to find a good balance

Input

3x3 Median

5x5 Conv

Subtract Histogram Output

(a) Block-parallel representation of an image processing application

Input

3x3 Median

5x5 Conv

MergeSubtract Histogram Output

(b) 1(a) with histogram manually split into parallel and serial portions

Figure 1. Example block-parallel application description for a simple
non-linear image processing application. In 1(b) the serial portion of the
histogram is explicitly annotated by a data dependency edge (see Section
IV-B) from the input, indicating a limit of one instance of the merge kernel
per input frame.

between providing a rich programming interface and one that
is readily analyzable by the compiler. To motivate the design
decisions, consider the stream-based application shown in Figure
1(a). This example is typical of a simple image processing task,
which takes a stream of 2D input images at a fixed rate, passes
it through two filters, takes the per-pixel difference of the result,
and then calculates a histogram over the resulting image. This is
a simple approximation of a real-time non-linear image analysis
task. In order to automatically compile and map this application
with hard real-time constraints to a many-core processor, several
analyses need to be undertaken.

The first analysis is with regards to serialization and control. The
histogram processing is partially data-parallel, and partially serial.
That is, individual partial histograms can be computed in parallel,
but the final combination is a serialization step. In addition, the
final histogram output is generated only once per input image. This
requires that the kernel receive appropriate control information to
know when it has finished an image so that it can output the results.
To implement this, the histogram kernel is manually divided into
parallel and serial portions, and this dependency is annotated in the
application graph, as seen in Figure 1(b). Adding this annotation to
the application graph enables automatic analysis and parallelization
while respecting the limited available parallelism, as described in
section IV-B.

The second set of analyses are with regards to data movement.
The input to this application is defined as a two-dimensional image
which is processed by two windowed filters (a 3×3 median and a
5×5 convolution). The parameterized inputs and outputs are shown
on the application graph in Figure 2. In this example, the input data
arrives one pixel at a time, which implies that the data needs to
be appropriately buffered to provide enough rows of data for the
two filters. In addition, the two filters have different output “halos”,
such that the result of the median filter will be one pixel larger on
each side than the convolution filter. In order for it to make sense to
take the difference of the two outputs, the input to the convolution
filter needs to be padded or the output from the median filter needs
to be trimmed. (See Section III-C.) The result of applying these
automatic transformations for buffering and trimming is seen in
Figure 3.

The third analysis is for parallelization to meet the real-time
constraints imposed by the input. In this case the input is arriving
at a fixed rate. To ensure that the application processes data at this
rate, the computation kernels must be appropriately parallelized
to meet the throughput rates on the target hardware. For data-
parallel kernels, such as the image filters shown here, this requires
replicating the kernels across multiple processors and correctly
distributing and collecting the data from them. After parallelization
and insertion of split/join kernels (Section IV), the final application
is as seen in Figure 4.

To make this language successful, the aforementioned analyses
should be as automated as possible. That is, the programmer should
not have to address issues of buffering, data sizing, parallelization
for different input rates, and analysis of control and serialization.
Instead, the application description should expose the structure
of the application to the compiler in such a way as to facilitate
automated analysis and manipulation.

Figure 4 shows the result of these automated analyses and
manipulations when applied to the program in Figure 1(b). The data
has been appropriately buffered and the kernels parallelized to meet
the real-time constraints of the input. The final application was then
simulated on a timing-accurate functional simulator to verify the
throughput met the real-time requirements. This paper describes
how the block parallel programming language parameterizes the
application description to enable these automatic analyses and ma-
nipulations, while providing a flexible and intuitive programming
framework.

II. APPLICATION DESCRIPTION

The application definition for a stream language consists of
an application graph that connects computation kernels via data
stream channels1. The channels act as FIFOs, moving data in
streams between the kernels. When a kernel receives sufficient
data it executes its computation code on the data and produces
output which is fed to down-stream kernels. The block parallel pro-
gramming approach presented here extends this model by adding
data dependency edges to express limited parallelism, multiple
execution methods per kernel to allow for more flexible data
sharing and control handling, and control tokens to enable flexible
and analyzable control. As with most streaming languages, the
input sizes, rates, and kernel resource requirements are assumed
to be statically known at compilation.

A. Input/Output Parameterization

The application description presented here tries to make an
explicit tradeoff between overly simplistic [7], [6] and overly
general [4], [11] data stream representations. The result is a
data parameterization that supports two-dimensional windowed
accesses in a fixed (left-to-right, top-to-bottom) scan line order.
This approach provides programmers with significant flexibility,
without overcomplicating the compiler analysis. In particular, this
parameterization directly addresses the significant fraction of ap-
plications that process two-dimensional images, without inhibiting
one-dimensional signal handling.

The parameterization defines the two-dimensional size for each
input and output, as well as its step size, which determines how

1In SDF parlance kernels are referred to as “actors” which receive
“tokens”.

Input
out

(1x1)[1,1]

Merge

in
(3x3)[1,1]
[1.0,1.0]

in
(5x5)[1,1]
[2.0,2.0]

3x3 Median
out

(1x1)[1,1]

in1
(1x1)[1,1]
[0.0,0.0]

5x5 Conv
out

(1x1)[1,1]

coeff
(5x5)[5,5]
[2.0,2.0]

in0
(1x1)[1,1]
[0.0,0.0]

Subtract
out

(1x1)[1,1]

in
(1x1)[1,1]
[0.0,0.0]

Histogram
out

(32x1)[32,1]

bins
(32x1)[32,1]

[0.0,0.0]

in
(32x1)[32,1]

[0.0,0.0]

out
(32x1)[32,1]

in
(32x1)[32,1]

[0.0,0.0]
result

5x5 Coeff
out

(5x5)[5,5]

Hist Bins
out

(32x1)[32,1]

Figure 2. Partial application graph for the application from Figure 1(a) with the parameterized inputs and outputs annotated for each kernel. Note the
addition of the explicit coefficient and bin inputs to the convolution and histogram kernels, respectively, with dashed edges indicate they are replicated
inputs. Input/Output parameterization is discussed in Section II-A.

Input Merge

Buffer
(1x1)[1,1]-->(3x3)[1,1]

Buffer
(1x1)[1,1]-->(5x5)[1,1]

3x3 Median Buffer
(1x1)[1,1]-->(3x3)[1,1]

5x5 Conv

Subtract Histogram Output

Inset
(0,0)[1,1,1,1]

Figure 3. Application graph with automatically inserted buffers (parallelograms, see Section III-B) and inset kernels (inverted houses, see Section III-C).

Input

Merge

Split

Split Subtract
Histogram result

5x5 Coeff Replicate

Hist Bins

offset(in1)
(0,0)[1,1,1,1]

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Join Split

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [18x10]
(1x1)[1,1] -> (5x5](1,1)

Join Split

3x3 Median_0

3x3 Median_1

Join Split

5x5 Conv_0

5x5 Conv_1

5x5 Conv_2

Join

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Join

Figure 4. Application automatically parallelized for the given input size and rate and hardware capabilities. Parameterized split/join kernels (blue diamonds,
see Section IV) have been added to distribute and collect the data. Replicated inputs (dashed lines) have their inputs replicated rather than distributed.

far the input/output window moves on each iteration in X and Y
dimensions. Together, these specify the data usage and reuse for
regular windowed processing kernels, such as the convolution and
median filters discussed earlier. To complete the parameterization,
an offset from the input data to the output is also specified for each
input. This is required to enable correct padding or trimming, as
discussed in Section III-C. The inputs to the application as a whole
specify an input rate which determines the real-time constraint for
the overall application processing.

An example parameterization is shown for a 5× 5 convolution
kernel in Figure 5(a). Here the data input “in” is defined to have a
size of (5× 5) and a step size of (1, 1). For this kernel, the offset
is [2.0,2.0]2, which indicates that each output is generated 2 pixels
over and down from the upper-left input value, as seen in Figure
5(b). The output “out” is defined to have a size of (1 × 1) and a
step of (1,1) as each invocation of the kernel produces one output
result. The remaining input, “coeff”, is used to load coefficients
into the kernel, and is independent of the data input “in”. The
coefficient data is used to initialize the convolution, but can also
be reloaded whenever a change in filter is required. The coefficient
input’s size is (5× 5), as 5× 5 coefficients are needed for a 5× 5
convolution, but because new coefficients should replace the old,

2Fractional offsets may be required for downsampling kernels.

its step size is (5,5), indicating no data is reused. The “coeff” input
is further defined to be replicated, indicating that if the kernel is
parallelized, the data for the “coeff” input should not be split across
the parallel kernel instances but rather replicated. This ensures that
each parallel instance of the kernel receives the same coefficients.
Replicated inputs are indicated in the application graphs by dashed
edges.

By using this parameterization, and defining the data ordering
to be scan-line based (e.g., left-to-right, top-to-bottom), it becomes
straight forward to determine the data movement, reuse, and
iteration size for each kernel. For example, for the convolution
kernel, the parameterization implies that the window of inputs used
by the kernel moves over by one column in the X-direction for
each iteration (step size 1 in X), and therefore reuses the first
4 columns of data (width − step). In the steady-state, that is,
where the previous rows can be reused as well, this translates into
a maximum data-reuse of 24 of 25 elements, as shown in Figure
5(b).

B. Kernel Definitions

Computation kernels are defined by their input and output param-
eterizations, computation method(s), resource requirements (cycles
and memory), and mappings between inputs and methods, and
methods and outputs. These mappings and resource requirements

5x5 Conv out
(1x1)[1,1]

coeff
(5x5)[5,5]
[2.0,2.0]

in
(5x5)[1,1]
[2.0,2.0]

(a) Input/Output Parameterization

Old Data with Reuse Output Halo

New Data for this Iteration Output Data

Offset from Input to Output

Input Output

(b) Data Access and Reuse Patterns

Figure 5. Convolution kernel input/output parameterization and data access
patterns. The parameterization of the inputs and outputs, combined with the
fixed scan-line data input order, determines the data access and reuse. The
inputs and outputs contain implicit buffer space for one iteration, providing
a small amount of channel buffering.

are defined in the configureKernel method (see Figure 6)
which is called when the kernel is instantiated in the application
graph. The intent of this design is to provide more flexibility
than previous languages by permitting multiple inputs, outputs,
and methods, without inhibiting analysis. As will be seen in the
following examples, this added flexibility directly translates into
more intuitive and understandable code.

As with all stream processing languages, the core of a kernel
definition is the code, or method, that it executes on the incoming
data. The block-parallel programming model presented here ex-
tends this to allow multiple computation methods per kernel, each
of which can be triggered on a different set of disjoint inputs.
For example, the convolution kernel consists of two methods:
runConvolve, which executes when data arrives on the “in”
input, and loadCoeff which executes when new coefficients ar-
rive on the “coeff” input. Figure 6 shows how the runConvolve
method is registered as requiring the “in” input and generating
the “out” output, while the loadCoeff method only requires
the “coeff” input as it generates no output. However, since the
methods within a given kernel share data private to the kernel, the
loadCoeff method can set the kernel’s coefficients, which will
then be used on subsequent invocations of the runConvolve
method. By allowing different methods to execute on different
sets of inputs, but still share data, this language can more readily
encompass kernels that are not purely data-parallel and require
control of state or initialization.

Kernels must also specify the resources they require for each
execution of a method. This is necessary to allow the compilation
system to determine the degree of parallelism required given the in-
put rate and the processing resources. For this implementation, the
required resources (computation cycles, memory, and input/output
buffers) are specified in the configureKernel method by the
calls to register the methods and inputs/outputs, as shown in Figure

Page 1 of 1

ConvolutionKernel.java 1/23/08 4:53 PM

package kernelApplication.test.kernels;

import java.util.Arrays;

import kernelApplication.elements.kernels.Kernel;
import kernelApplication.run.GlobalClock;
import kernelApplication.trace.Trace;
import kernelApplication.trace.Trace.EventType;
import kernelApplication.util.Warnings;

/**
 * Implements a width x height convolution.
 * If there is no coeff input then 0s are used.
 * @author davidbbs
 *
 */

public class ConvolutionKernel extends Kernel {

int width;
int height;

public ConvolutionKernel(String name, int width, int height) {
super(name);
this.width = width;
this.height = height;

}

public void configureKernel() {
/*
 * Define the Inputs and Outputs, register the method, and assign
 * resources consumed.
 */
createInput("in", width, height, 1, 1,

Math.floor((double)width/2), Math.floor((double)height/2));
createOutput("out", 1,1);
registerMethod("runConvolve", 0, 3, 10, 10+3*height*width);
registerMethodInput("runConvolve", "in");
registerMethodOutput("runConvolve", "out");

/*
 * Define the Input for coefficient loading, register the
 * method called when the coefficients are present,
 * and mark that input as begin replicated. (I.e., inputs
 * to it should be copied, not parallelized.)
 */
createInput("coeff", width, height, width, height,

Math.floor((double)width/2), Math.floor((double)height/2));
registerMethod("loadCoeff", 0, 3, 10, 10+2*height*width);
registerMethodInput("loadCoeff", "coeff");

/*
 * When parallelizing, the coefficient input should be replicated,
 * not distributed.
 */
getInputByName("coeff").setReplicateInput(true);

}

private double[][] coeff;
private double[][] result = new double[1][1];

public void runConvolve(){
double[][] in = readInputData("in");
for (int x=0; x<width; x++)

for (int y=0; y<height; y++)
result[0][0] += in[x][y]*coeff[width-x-1][width-y-1];

writeOutputData("out", result);
}

public void loadCoeff() {
coeff = readInputData("coeff");

}

} Figure 6. Convolution kernel code. The configureKernel method
defines the inputs and outputs and mappings between them and the
methods when the kernel is instantiated. The two methods for this kernel,
runConvolve and loadCoeff access the shared private array coeff.

6. Here the resource requirements are explicitly specified, but they
could be estimated automatically [13] or determined from profiling.

C. Control Tokens

In addition to sending data between kernels via inputs and
outputs, the block-parallel programming approach supports sending
control tokens. These tokens allow kernels to send and receive
irregular (but still statically bound) control messages, either along
the same streams as the data or via separate kernel outputs.
Kernels are free to define their own control tokens as long as
they specify the maximum rate at which they can be generated,
which is necessary to allow the compilation system to allocate
sufficient resources to guarantee real-time execution. This differs
from other implementations [14] where control is treated as a
purely asynchronous event that is not analyzed by the compiler.
The benefit of enabling such compiler analysis of control signals is
that the compiler can account for the resources consumed handling
them. This allows programmers to write methods that handle the
control signals that do more than simply set local flags, as the time
and resources spent in them are appropriately accounted for.

Two types of control tokens are generated automatically by
the data inputs to an application: end-of-line and end-of-frame.
These tokens are sent out in order with the data from the input
at appropriate times. To process these tokens, a kernel defines a
method which is triggered when an input receives the appropriate
token. For example, Figure 7(b) shows the code for the histogram
kernel. It invokes one method (count) when it receives data on the
input “in” and another (finishCount) when it receives an end-
of-frame token on the same input. The finishCount method
generates the final output and resets the bin counts while the

Histogram out
(32x1)[32,1]

bins
(32x1)[32,1]
[0.0,0.0]

in
(1x1)[1,1]
[0.0,0.0]

(a) Input/Output Parameterization

Invoked on: data received on “in”
Generates: no output

Page 1 of 1

HistogramKernel.java 4/14/08 9:25 AM

public class HistogramKernel extends Kernel {

private int numberOfBins;
private int[]counts;
private double[][] finalCounts = new double[numberOfBins][1];

public void init() {
super.init();
Arrays.fill(counts, 0);

}

public void configureKernel() {
createInput("in", 1,1,1,1);
createOutput("out", numberOfBins, 1);

// init() method clears the bins, so it takes some time and memory.
registerMethod("init", numberOfBins, 0, 5, numberOfBins*2+3);

// count() runs when we get new data
// On average we search half way, so the run time is ~bins/2
registerMethod("count", 0, 4, 15, numberOfBins/2+5);
registerMethodInput("count", "in");

// finishCount() runs when we get an End-of-frame Token.
registerMethod("finishCount", 0, 4, 6, numberOfBins*3+3);
registerMethodInput("finishCount", "in", EOFToken.class);
registerMethodOutput("finishCount", "out");

}

/**
 * Does the counting.
 */
public void count() {

double[][] input = readInputData("in");
double value = input[0][0];
counts[findBin(value)]++;

}

/**
 * Finishes the count by dumping the results and resetting the counts.
 */
public void finishCount() {

for (int i=0; i<numberOfBins;i++) {
finalCounts[i][0] = counts[i];
counts[i] = 0;

}
writeOutputData("out", finalCounts);

}

}

public class HistogramKernel extends Kernel {

Invoked on: end-of-frame received on “in”
Generates: final count on “out”

Page 1 of 1

HistogramKernel.java 4/14/08 9:25 AM

public class HistogramKernel extends Kernel {

private int numberOfBins;
private int[]counts;
private double[][] finalCounts = new double[numberOfBins][1];

public void init() {
super.init();
Arrays.fill(counts, 0);

}

public void configureKernel() {
createInput("in", 1,1,1,1);
createOutput("out", numberOfBins, 1);

// init() method clears the bins, so it takes some time and memory.
registerMethod("init", numberOfBins, 0, 5, numberOfBins*2+3);

// count() runs when we get new data
// On average we search half way, so the run time is ~bins/2
registerMethod("count", 0, 4, 15, numberOfBins/2+5);
registerMethodInput("count", "in");

// finishCount() runs when we get an End-of-frame Token.
registerMethod("finishCount", 0, 4, 6, numberOfBins*3+3);
registerMethodInput("finishCount", "in", EOFToken.class);
registerMethodOutput("finishCount", "out");

}

/**
 * Does the counting.
 */
public void count() {

double[][] input = readInputData("in");
double value = input[0][0];
counts[findBin(value)]++;

}

/**
 * Finishes the count by dumping the results and resetting the counts.
 */
public void finishCount() {

for (int i=0; i<numberOfBins;i++) {
finalCounts[i][0] = counts[i];
counts[i] = 0;

}
writeOutputData("out", finalCounts);

}

}

public class HistogramKernel extends Kernel {

Invoked on: data received on “bins”
Generates: no output

Page 1 of 1

HistogramKernel.java 4/30/08 1:17 PM

public class HistogramKernel extends Kernel {

private int numberOfBins;
private int[]counts;
private double[][] finalCounts = new double[numberOfBins][1];

public void init() {
super.init();
Arrays.fill(counts, 0);

}

public void configureKernel() {
createInput("in", 1,1,1,1);
createOutput("out", numberOfBins, 1);

// init() method clears the bins, so it takes some time and memory.
registerMethod("init", numberOfBins, 0, 5, numberOfBins*2+3);

// count() runs when we get new data
// On average we search half way, so the run time is ~bins/2
registerMethod("count", 0, 4, 15, numberOfBins/2+5);
registerMethodInput("count", "in");

// finishCount() runs when we get an End-of-frame Token.
registerMethod("finishCount", 0, 4, 6, numberOfBins*3+3);
registerMethodInput("finishCount", "in", EOFToken.class);
registerMethodOutput("finishCount", "out");

}

/**
 * Does the counting.
 */
public void count() {

double[][] input = readInputData("in");
double value = input[0][0];
counts[findBin(value)]++;

}

/**
 * Finishes the count by dumping the results and resetting the counts.
 */
public void finishCount() {

for (int i=0; i<numberOfBins;i++) {
finalCounts[i][0] = counts[i];
counts[i] = 0;

}
writeOutputData("out", finalCounts);

}

/**
 * Configures the bin ranges.
 */
public void configureBins() {

double[][] binInput = readInputData("bins");
for (int i=0; i<binRanges.length; i++) {

binRanges[i] = binInput[i][0];
counts[i] = 0;

}
}

}
(b) Kernel Methods

Figure 7. Histogram kernel definition. Two methods are mapped as being
invoked by the same input (“in”), but finishCount executes when an
end-of-frame control token is received and count when data is received.
The configureBins method is mapped as being invoked when data is
received on the “bins” input. Only the finishCount method generates
data on the kernel’s “out” output. By making this mapping explicit, the
compiler can appropriately allocate resources for handling each method
within the real-time constraints of the application.

count method only increments the appropriate bin count. This
approach conveniently separates the control and data processing
code within the kernel, but allows them to communicate through
private variables.

While control tokens enable significant flexibility by adding a
simple, analyzable control model to data-parallel stream process-
ing, most kernels will not have any need to deal with most control
tokens. For these kernels, such as the convolution kernel discussed
earlier, the unhanded control tokens are automatically passed on
to the appropriate outputs for the given input in order with the
received data. This effectively means that kernels need only pay
attention to the control tokens they care about, and can safely ignore
any others. In the case where two inputs trigger the same method,
such as the subtract kernel in Figure 1(a), the same control token
must arrive on both inputs for it to be passed to the output.

III. APPLICATION ANALYSIS

The static nature of the application description, that is, the
static input sizes and rates combined with the known kernel
resource requirements and application graph, enables a straight-
forward data flow analysis to determine the required computation
at each kernel within an application. This data analysis propagates
the application’s inputs’ size and rate information through the
application graph and returns the iteration size and rate at each
kernel in the application, as well as the inset from its input data
to each original application input. The iteration size and rate allow
the compiler to calculate the degree of parallelism and amount
buffering required to meet the input sizes and rates, while the inset
enables analysis for automatic padding or trimming adjustment to
ensure appropriate data alignment across inputs.

A. Iteration Sizes and Rates

The iteration size and rate for each kernel define the number
of times each kernel needs to be executed for each input frame
given the inputs’ sizes and rates. To determine this, the application’s
inputs’ sizes and rates are propagated through the application graph
via a data flow analysis that calculates the iteration size and rate
at each kernel, and then propagates this on to subsequent kernels
using the parameterization of the kernel’s outputs.

For example, if the input to a 5× 5 convolution is a 100× 100
image at 50Hz, the kernel will have an iteration size of 96× 96 at
50Hz (the kernel has a 4× 4 halo, as calculated by subtracting the
input step (1,1) from the input size (5×5)). The size of the output
can then be calculated by multiplying the iteration size (96×96) by
the output size (1× 1), which for this example will be 96× 96, at
the input rate of 50Hz. This output size can then be propagated to
the next downstream kernel to determine its iteration size and rate.
Once this information has been propagated through the application,
the required iteration sizes, data sizes, and rates are known at each
kernel.

B. Buffering

The only channel buffering implicitly included in the application
model comes from the single iteration buffers in each kernel input
and output. The calculation of iteration sizes at each kernel in the
application enables the automatic insertion of buffers to match the
output data size of the source kernel to the input size of the sink
kernel. This can be seen in Figure 2, where the data coming out of
the application’s data input is in 1 × 1 chunks, while the median
kernel needs to process it in 3 × 3 chunks. This implies that a
buffer must be inserted to buffer a sufficient number of rows of
the input data to allow the kernel to run.

The buffering is accomplished by inserting a parameterized
buffer kernel, which is a regular computation kernel that imple-
ments a two-dimensional circular buffer. The buffers are sized such
that they can double-buffer the larger of either the input or output,
since the two may be differently sized. The required buffer size
is readily determined from the parameterization of the input and
outputs and the data-flow analysis. (See [12] for more details.)
The result of automatically buffering the application in Figure 2 is
shown in Figure 3.

3x3 and 5x5 Outputs Aligned

5x5 Convolution Output

3x3 Median Output3x3 Median Input

5x5 Convolution Input

Figure 8. The different insets resulting from the convolution and median
kernels are shown here overlaid. For the subtraction kernel to be consistent,
both inputs to it must be of the same size. This requires either insetting
the larger median output or zero-padding the input to the convolution filter
to make its output larger. The resulting application with an automatically
inserted inset kernel is shown in Figure 3.

C. Trimming and Padding

In addition to calculating the iteration size and rate at each
kernel, the application analysis must determine how much each
output is offset from the original application input. This consists
of propagating each input’s offset through the application, and is
necessary to detect when data is unaligned across multiple inputs.
For example, the output from the convolution and median kernels
in Figure 2 are of different sizes due to their different halos (Figure
8). Feeding these two different sized results into the inputs to the
“subtract” kernel is inconsistent, as the “subtract” kernel takes a
per-pixel difference, and therefore requires that the inputs be the
same size.

In order to automatically adjust the application to correct this
inconsistency the compiler needs to know both the different sizes of
the output, and how they relate to any shared inputs that generated
them. The compiler can then choose to either zero-pad or mirror
the input to the convolution filter to make its output larger, or
discard output from the median filter to make its output smaller. In
this case the insets for the median and convolution filters are (1,1)
and (2,2), so the compiler can determine that the outputs should
line up as shown in Figure 8. From this analysis the compiler can
either pad evenly around the input to the convolution filter by 1
pixel on each side, or trim 1 pixel of the output from the median
filter on each side. The result of this transformation can be seen in
the added inset kernel (inverted house) in Figure 3. The choice as
to whether to pad or trim must be made by the programmer as it
effects the final result, but the details can be handled automatically
by the compiler.

D. Feedback

Implementing support for feedback in the framework described
here requires two main modifications: changing the data-flow
analysis to handle loops in the application graph and providing
the programmer with the ability to define the initial values for
data held in the feedback loops. The modifications to the data-flow
analysis can be accomplished by breaking the feedback loops in the
graph using special feedback kernels and/or by using a work-list
to traverse the graph. Providing the initial values for a feedback
loop can be accomplished by using an initialization kernel which
outputs the initial values once and then passes on its input values
thereafter. Such modifications would enable feedback at the cost
of a more complex application analysis.

IV. PARALLELIZATION

From the kernel resource parameterization, the rate information
gathered from the data flow analysis, and the resources available on
each processing element, the degree of parallelization required for
each kernel to meet the real time requirements can be determined.
To a first-order this calculation simply takes the required execution
rate for the kernel (from the data-flow analysis) times the resources
required per iteration (computation cycles and memory) and divides
it by the resources provided by a processing element in the chosen
architecture. This gives a rough estimate of the number of kernels
that must be run in parallel to meet the required rates. However, in
order to parallelize the kernels appropriately, the compiler must
insure that the data is distributed to the parallel kernels and
collected in order.

A. Data-parallel Kernels

For fully data-parallel kernels, parallelization is quite straightfor-
ward: the kernels are replicated and data is distributed to them in a
round-robin fashion. To implement this, the compiler replicates the
computation kernel as needed, and adds the replicated kernels to
the application graph using split and join kernels to appropriately
distribute and collect the data from the now-parallelized computa-
tion kernels.

The split and join kernels are regular kernels that implement a
finite state machine for collecting or distributing data. In the case
of data-parallel kernels, the split kernel simply sends each input to
the appropriate instance of the parallelized kernel in round-robin
order, and the corresponding join kernel collects the results from
the kernels in the same order. While this simple-minded approach
is correct, it ignores the possible data reuse that can occur at the
computation kernel if iterations are executed in order. However,
to take advantage of this reuse, sufficient data must be buffered
on both sides of the kernel to ensure that all of the parallelized
kernels can run at the same time, or the application will not meet
its real-time requirement. This latter transformation is described in
Figure 9, but was not implemented for the results presented here.

B. Limiting Data-Parallelism with Data Dependency Edges

By default all kernels in the application graph are assumed to be
data-parallel. However, the application graph allows the addition of
data dependency edges which enable the programmer to explicitly
limit the allowed degree of parallelism in an application.

For example, for the histogram kernel in Figure 1(b), multiple
instances of the kernel may be instantiated and build up partial

Input
buffer

(1x1)[1,1]-->(5x5)[1,1] (0)
buffer[20x10]()

split

conv5x5_0

conv5x5_1

join Output

(a) Reuse Un-optimized Input Buffer

Input split

b0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

b1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

conv5x5_0

join

conv5x5_1

Output

(b) Reuse Optimized Input Buffer with Insufficient Output Buffer-
ing

Input split

b0
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

b1
(1x1)[1,1]-->(5x5)[1,1] (0)

buffer[12x10]()

conv5x5_0
bo0

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

conv5x5_1
bo1

(1x1)[1,1]-->(1x1)[1,1] (0)
buffer[8x3]()

Outputjoin

(c) Reuse Optimized Input Buffer with Correct Output Buffering

Figure 9. Replicating the input buffer to a kernel sufficiently can enable
higher reuse of the data from the buffer to the kernel for windowed filters.
However, such optimizations may require parallelizing the buffers more
than is needed given the processor resources. In order to ensure that the
kernels do not stall, however, sufficient output buffering must also be
provided to enable each kernel to run continuously. More detail can be
found in [12].

histograms in parallel, but the final reduction step of merging
them into one histogram must be done serially, once per frame.
This limited-parallelism, or data-dependency, is specified in the
application graph by adding a data dependency edge from the
input to the application to the histogram’s merge kernel, as shown
in Figure 1(b), thereby limiting the parallelism of the sink (the
merge kernel) to that of the source (per-frame input), as seen in
the parallelization in Figure 4.

Data-dependency edges can also be used to define pipelines of
kernels where the parallelism of the kernels within the pipeline
is limited, but where the whole pipeline can be parallelized as
required. This can be done by adding a data-dependency edge
between each kernel in the pipeline, but allowing the first kernel in
the pipeline to be data-parallel. The compiler can then instantiate
multiple instances of the first kernel to meet the computation
requirements, but the data-dependency edges will limit the paral-
lelization of the subsequent pipeline stages, leading to the creation
of multiple parallel pipelines.

C. Non-data-parallel Kernels

Unlike data-parallel kernels, parallelization and data distribution
and collection for non-data-parallel kernels is not straightforward.
The compiler handles such kernels by allowing the programmer
to specify how a given kernel should be parallelized either man-
ually (e.g., instantiating and connecting kernels when defining the
program) or programmatically (e.g., by providing a routine that
implements the parallelization in a parameterized fashion).

One example of this flexibility is in the parallelization of buffer
kernels. While these kernels are unlikely to be CPU-bound (as
they do very little computation) they are likely to be limited by
the available storage at a the processor element. This results in the
need to split a buffer across multiple processing elements to allocate
sufficient storage. However, distributing data to the buffers in the
same round-robin fashion as is used for data-parallel kernels would
result in out-of-order data and incorrect execution. Instead the
buffers need to be parallelized by splitting them in a column-wise
manner, and possibly replicating shared data at the split point. This

Original Buffer

Split Buffer 1

Split Buffer 2

Split FSM:

-> Buffer 1

-> Buffer 1 & 2

-> Buffer 2

11

2

10

Figure 10. Parallelizing a buffer requires replicating data between the
parallelized buffers. Here the data shared between the last output of the first
buffer and the first output of the last buffer (shown shaded) is replicated
between the two due to the kernel’s need to access the overlapping data.
The FSM for the split kernel is shown, demonstrating that 2 samples for
each line are sent to both buffers.

is illustrated in Figure 10, where the split kernel for the parallelized
buffer must send the data shared between the last output of the first
buffer and the first output of the second buffer to both. The buffer
splitting is implemented by providing a specialized parallelization
routine to the compiler that is called when buffers need to be split.

D. Results of Automatic Transformations to Meet Real-Time Con-
straints

The image processing application from Figure 1(b) is shown
automatically parallelized to meet the requirements imposed by a
variety of different input sizes and rates in Figures 11a-d. As the
input size is increased (“Small/Slow” to “Big/Slow”) the required
buffering increases, and the buffers are automatically replicated
to handle the larger input within the fixed resources of the target
architecture. When the input rate is increased (“Small/Slow” to
“Small/Fast”) the computation kernels are automatically paral-
lelized to handle the increased computation requirement. And,
as expected, when both the input rate and size are increased
(“Big/Fast”) the resulting application has both more buffers and
computation kernels.

The four different parallelizations in Figure 11 were simulated
to verify that they meet their real-time constraints on a functional
simulator that took into account execution time, data access time,
buffer transfer time, and scheduling, but not placement and commu-
nication delays. This is a reasonable simplification for a throughput-
based application where communication delays will only increase
the latency for the first output, but will not impact the throughput.
The problem of optimal placement is complicated by the interaction
between parallelization and placement decisions. (E.g., increasing
the number of kernels beyond what is required to meet the real-
time rate may allow a more optimal placement, resulting in a lower
overall energy consumption.) Several of the related tradeoffs in
this regard are discussed in [13]. A simulated annealing approach
to placement has been implemented, but not integrated within the
simulator.

Input

MergeBuffer [20x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Subtract
Histogram result

5x5 Coeff Replicate

Hist Bins

offset(in1)
(0,0)[1,1,1,1]Split

Split

Buffer [18x6]
(1x1)[1,1] -> (3x3](1,1)

3x3 Median_0

3x3 Median_1 Join

5x5 Conv_0

5x5 Conv_1 Join

(a) Small/Slow

Input

Merge

Split

Split Subtract
Histogram result

5x5 Coeff Replicate

Hist Bins

offset(in1)
(0,0)[1,1,1,1]

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Join Split

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [18x10]
(1x1)[1,1] -> (5x5](1,1)

Join Split

3x3 Median_0

3x3 Median_1

Join Split

5x5 Conv_0

5x5 Conv_1

5x5 Conv_2

Join

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Join

(b) Big/Slow

Input
Merge

Buffer [20x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Subtract Split

result

5x5 Coeff Replicate

Hist Bins Replicate

offset(in1)
(0,0)[1,1,1,1]

Split

Split

Buffer [18x6]
(1x1)[1,1] -> (3x3](1,1)

3x3 Median_0

3x3 Median_1

3x3 Median_2

3x3 Median_3

Join

5x5 Conv_0

5x5 Conv_1

5x5 Conv_2

5x5 Conv_3

5x5 Conv_4

5x5 Conv_5

Join

Histogram_0

Histogram_1

Join

(c) Small/Fast

Input

Merge

Split

Split

Subtract Split

result

5x5 Coeff Replicate

Hist Bins Replicate

offset(in1)
(0,0)[1,1,1,1]

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1) Join

Split

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Buffer [18x10]
(1x1)[1,1] -> (5x5](1,1)

Join

Split

3x3 Median_0

3x3 Median_1

3x3 Median_2

3x3 Median_3 Join
Split

5x5 Conv_0

5x5 Conv_1

5x5 Conv_2

5x5 Conv_3

5x5 Conv_4

5x5 Conv_5

5x5 Conv_6

5x5 Conv_7

Join

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Join

Histogram_0

Histogram_1

Join

(d) Big/Fast
Figure 11. Automatic parallelization and buffering of the image processing application for different input sizes and rates. (“Small/Slow” indicates a small
input at a low rate; “Big/Fast” indicates a large input at a high rate.) As the input size is increased, the required buffering increases and the compiler
automatically replicates them. As the input rate is increased, the required throughput increases and the compiler automatically replicates the computation
kernels.

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1) Join

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Join

Split Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Join

Subtract

Buffer [18x10]
(1x1)[1,1] -> (5x5](1,1)

offset(in1)
(0,0)[1,1,1,1]

Replicate

5x5 Conv_0

5x5 Conv_2

5x5 Conv_1

Join Split

Split

Histogram

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

3x3 Median_0

Join Split

Merge result

Split

3x3 Median_1

Input

5x5 Coeff

Hist Bins

(a) 1:1 Kernel-to-Processor Mapping

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Join

Split

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [26x6]
(1x1)[1,1] -> (3x3](1,1)

Join Split 3x3 Median_0

3x3 Median_1 Join

5x5 Conv_2

Join

Replicate 5x5 Conv_0

5x5 Conv_1

Buffer [18x10]
(1x1)[1,1] -> (5x5](1,1) SplitSplit

Buffer [20x10]
(1x1)[1,1] -> (5x5](1,1)

Merge resultHistogramSubtractoffset(in1)
(0,0)[1,1,1,1]

JoinBuffer [25x6]
(1x1)[1,1] -> (3x3](1,1)

Buffer [25x6]
(1x1)[1,1] -> (3x3](1,1)Split

Input

5x5 Coeff

Hist Bins

(b) Greedy Kernel-to-Processor Mapping

Figure 12. Kernel-to-processor mappings for the application from Figure 4. Each box encloses the kernels that will run on a single processor core. The
high-utilization computation kernels in Figure 12(a) are shown with dark backgrounds. In Figure 12(b), the low-utilization kernels have been merged to
run in a time-multiplexed manner with other kernels on a single core to increase overall utilization. The initial input buffers are not multiplexed because
they may block the input if they are not serviced in time to handle the input.

V. MULTIPLEXING

The parallelization techniques discussed in Section IV result in
an application that is properly parallelized to meet the real-time
requirements of the inputs given the specifications of the kernels
and the target architecture. However, with a naive 1:1 kernel-to-
processor mapping, the processors are inefficiently utilized. The
reason for this can be seen in Figure 12(a) where a large number
of low CPU-utilization buffers and split/join kernels have been
inserted into the application. When these are each mapped to
their own CPU, the overall utilization, and hence efficiency, of

the application decreases.

To overcome this inefficiency, a simple algorithm was imple-
mented which attempts to greedily time-multiplex low-utilization
kernels on a single processor. The algorithm looks at neighboring
kernels and merges them onto the same processor if their combined
CPU/memory utilization does not exceed that of the processor. For
the example discussed here, this increases the CPU utilization from
20% to 37%, resulting in the kernel-to-processor mapping as shown
in Figure 12(b). This simple algorithm improves the utilization by
1.5× across a variety of test programs ranging in size from fewer

0%

25%

50%

75%

100%
1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1
:1

G
M

1 1F 2 2F 3 4 SS SF BS BF 5 Avg.

Run Read Write

Figure 13. Processor utilization for applications mapped to multiple
processor cores using one-to-one kernel-to-core (1:1) and greedy mappings
(GM). Utilization is broken down by kernel execution time (run) and
time spent accessing kernel inputs/outputs (read/write). Average utilization
improvement is 1.5× for the greedy mapping over the 1:1 mapping.
(Benchmarks: 1 & 1F: Bayer demosaicing with baseline and faster input
rates; 2 & 2F: Image histogram with baseline and faster input rates; 3:
parallel buffer test; 4: multiple convolutions test; SS, SF, BS, BF: image
processing example (Figure 11) with small/big input size and slow/fast input
rates; 5: application from Figure 1(b).)

than 10 kernels to more than 50, as seen in Figure 13.

VI. RELATED WORK

The most similar programming system to the one presented
here is the MIT StreamIt[7] system developed for the Raw [15]
processor. This programming model set out to explicitly develop
an efficient, easy-to-use system that would allow programs to be
automatically mapped to many processors. The compiler systems
for StreamIt explored a variety of sophisticated application-level
and kernel-level optimizations for throughput, communications,
and load-balancing.

StreamIt and the Raw backend focus on a slightly different
problem than the one chosen here. Rather than finding the min-
imum number of processors to meet a fixed rate, they try to use
a fixed number of processors to obtain the highest rate possible.
Here the minimum number of processors is set by the real-time
requirements, but the optimal number may be greater. StreamIt
further provides explicit hierarchy in its applications through the
use of pipeline, feedback, and splitjoin constructs. These constructs
were intended to provide an intuitive textual program description,
but it is unclear how useful this truly was as later generations
of the compiler spent a great deal of effort determining how to
appropriately flatten the hierarchy.

The StreamIt programming model suffers from two deficiencies:
it allows only a single input/output pair for each kernel, and
it permits only one-dimensional data. These two design choices
make it unintuitive to write many basic applications, in particular
anything that manipulates two-dimensional images or uses multiple
streams of data. Furthermore, and perhaps more importantly, the
contortions needed to map image processing to a one-dimensional
data stream and manually multiplex multiple data streams into one
prohibit the compiler from readily analyzing the data movement
and usage.

Along similar lines, the StreamC/KernelC [6] language devel-
oped for the Stanford Imagine [16] project suffered from its use of
one-dimensional data. While it did allow multiple stream inputs and

outputs for each kernel, its target architecture forced it to take an
explicitly SIMD approach to processing. GPGPU languages, such
as Brook [17], have similar single-kernel, SIMD-style approaches
to throughput. This focus makes it difficult to take advantage of
pipeline and task-level parallelism in the application, and instead
shifts the focus to data staging to keep a single kernel maximally
productive. This model is a poor match for the MIMD capabilities
of many-core architectures, and the diverse types of parallelism
found in embedded applications.

The synchronous data flow (SDF) [5] approach has been very
successful in frameworks such as MATLAB’s Simulink envi-
ronment, particularly for targeting DSPs, but primarily for one-
dimensional data. The extensions to SDF to multiple dimensions
in the form of MDSDF [8], GMDSDF [11], and Array-OL [4]
are more general, including explicit support for re-sampling and
complex access patterns within the data, at the cost of significantly
more complex compiler analysis. Windowed SDF [9] introduces
a simpler approach that provides significant flexibility without
much of the complexity of the other approaches. However, with
these approaches the compilation system must both analyze and
understand a wide range of data access and tiling patterns and
also determine the correct ordering for the data and processing.
This extensive flexibility does enable very sophisticated application
description, but its lack of adoption and exploration suggests that
it is not a good tradeoff for the complexity it incurs in compiler
analysis. Similar problems are found with the cyclostatic extensions
to SDF which enable control flow within the application, but at the
cost of exponentially increased complexity.

Apart from work on languages there has been much work
on optimal assessment and mapping of task and data-parallel
computations. Subholk and Vodran have presented a dynamic
programming approach to determine the optimal division of data-
and pipeline-parallelism in an application to meet throughput and
latency constraints [18]. This work uses a slightly more restrictive
programming model of a single pipeline of tasks, but demonstrates
a more complete analytical analysis than that presented here or in
StreamIt [13].

VII. CONCLUSIONS

This work uses a high-level parameterized description of the
application in terms of computation kernels, data streams, de-
pendencies, and control patterns to enable automatic application
manipulation and parallelization. By parameterizing the input and
output data and choosing a scan-line input order, the analysis of
data use, reuse, and movement is significantly simplified, while
remaining relevant to many image- and signal-processing algo-
rithms. The effectiveness of this approach can be seen in the
ability to automatically adjust programs to meet different real-
time requirements, and the intuitive manner in which control and
serialization are handled through control tokens and multiple kernel
methods. These capabilities enable the programmer to focus on the
application and leave the details of parallelization for a particular
set of processors to the compiler system.

For this approach to be more broadly applicable, however, the
requirement that all data sizes, rates, and kernel resources be
statically known at compilation time must be addressed. This
limitation makes analysis straight forward, and enables an accurate
hard real-time guarantee, but inhibits a range of useful applications.

A canonical example might be a motion vector search, where the
number of motion vectors, the data required to process them, and
the processing time per motion vector vary from frame to frame.
Incorporating such a kernel into this framework requires extending
the system to support bounds on real-time processing requirements
and runtime exceptions to indicate when a kernel has exceeded its
allocated resources.

While there is still much work to be done to make this pro-
gramming model sufficiently general to handle the broad range
of embedded applications in use today, the lesson from this
system is significant: by exposing the application structure and data
movement at such a high-level, the task of mapping processing and
communications to an array of processors can be greatly simplified.
This can ensure efficient usage of the distributed computational
and storage resources on many-core chips, and by making real-
time constraints an integral part of the program description, the
programmer can be relieved of the task of having to understand
the details of the hardware to ensure real-time performance.

ACKNOWLEDGMENT

This work was funded by SRC Contract 2007-HJ-1591, Intel,
and the Stanford Center for Integrated Systems, with additional
support provided by the CoDeR-MP project.

REFERENCES

[1] M. Lapedus. (2007, March) Sockets scant
for costly asics. [Online]. Available:
http://www.eetimes.com/showArticle.jhtml?articleID=198500400

[2] (2008, June). [Online]. Available:
http://www.clearspeed.com/products/csx700.php

[3] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agar-
wal, “On-chip interconnection architecture of the tile processor,”
Micro, IEEE, vol. 27, no. 5, pp. 15–31, Sept.-Oct. 2007.

[4] A. Amar, P. Boulet, and P. Dumont, “Projection of the Array-
OL specification language onto the kahn process network com-
putation model,” Parallel Architectures,Algorithms and Networks,
2005. ISPAN 2005. Proceedings. 8th International Symposium on
Parallel Architectures, Algorithms and Networks, pp. 6 pp.–, 7-9
Dec. 2005.

[5] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-
chronous data flow programs for digital signal processing,” IEEE
Trans. Comput., vol. 36, no. 1, pp. 24–35, 1987.

[6] P. Mattson, “A programming system for the imagine media
processor,” Ph.D. dissertation, Stanford University, March 2002.

[7] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit:
A language for streaming applications,” in CC ’02: Proceedings
of the 11th International Conference on Compiler Construction.
London, UK: Springer-Verlag, 2002, pp. 179–196.

[8] E. Murthy, P.K.; Lee, “Multidimensional synchronous dataflow,”
Signal Processing, IEEE Transactions on [see also Acoustics,
Speech, and Signal Processing, IEEE Transactions on], vol. 50,
no. 8, pp. 2064–2079, Aug 2002.

[9] J. Keinert, C. Haubelt, and J. Teich, “Windowed syncrhonous data
flow (WSDF),” University of Erlangen-Nuremberg, Institute for
Hardware-Software-Co-Design, Germany, Technical Report 02-
2005, 2005.

[10] M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe,
“MPEG-2 decoding in a stream programming language,” Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pp. 10 pp.–, 25-29 April 2006.

[11] P. Murthy and E. Lee, “An extension of multidimensional syn-
chronous dataflow to handle arbitrary sampling lattices,” Acous-
tics, Speech, and Signal Processing, 1996. ICASSP-96. Con-
ference Proceedings., 1996 IEEE International Conference on,
vol. 6, pp. 3306–3309 vol. 6, 7-10 May 1996.

[12] D. Black-Schaffer, “Block parallel programming for real-time ap-
plications on multi-core processors,” Ph.D. dissertation, Stanford
University, April 2008.

[13] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,”
in ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and oper-
ating systems. New York, NY, USA: ACM, 2006, pp. 151–162.

[14] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Ama-
rasinghe, “Teleport messaging for distributed stream programs,”
in PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. New
York, NY, USA: ACM, 2005, pp. 224–235.

[15] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,
and A. Agarwal, “Baring it all to software: Raw machines,”
Computer, vol. 30, no. 9, pp. 86–93, Sep 1997.

[16] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong,
J. Owens, B. Towles, A. Chang, and S. Rixner, “Imagine: media
processing with streams,” Micro, IEEE, vol. 21, no. 2, pp. 35–46,
Mar/Apr 2001.

[17] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hous-
ton, and P. Hanrahan, “Brook for GPUs: stream computing on
graphics hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–
786, 2004.

[18] J. Subholk and G. Vondran, “Optimal use of mixed task and data
parallelism for pipelined computations,” Journal of Parallel and
Distributed Computing, no. 60, pp. 297–319, 2000.

