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The discovery of integrability on both sides of the duality between planar N=4 super Yang-Mills
theory and free type IIB string theory in AdSs x S’ has lead to great progress in our understanding
of the AdS/CFT correspondence. Similar integrable structures also appear in the more recent
three-dimensional superconformal N=6 Chern-Simons-matter theory constructed by Aharony,
Bergman, Jafferis and Maldacena (ABJM), as well as in its gravity dual, type IIA string theory
on AdS, x CP’. However, new interesting complications arise in the AdS,/CFT; duality. In
the conjectured all-loop Bethe equations by Gromov and Vieira the dispersion relation of the
magnons has a non-trivial coupling dependence which is parametrized by a function that is only
known to the leading order at weak and strong coupling. In the first part of this thesis I discuss
our calculations of the next-to-leading correction to this function at weak coupling. We compute
this function from four-loop Feynman diagrams in the SU(2) x SU(2) sector of the ABJM model.
As a consistency check we have performed the calculation both in a component formalism and
using superspace techniques. At strong coupling the fundamental excitations of the integrable
model are the giant magnons. The topic of the second part of this thesis is the spectrum of
these giant magnons in CP’. Furthermore, I discuss our analyses of the finite-size corrections
beyond the asymptotic Bethe ansatz. At weak coupling we have computed the leading four-loop
wrapping diagrams in the ABJM model. At the strong coupling side of the duality I discuss our
results for the exponentially suppressed finite-size corrections to the energy of giant magnons.
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1. Introduction

There are many “revolutions” in theoretical physics.! Any text on the history
of superstring theory? will mention two of these: The first superstring revolu-
tion was initiated in 1984 by the discovery of anomaly cancellation for type
I superstrings. During the second superstring revolution, in the mid 1990s, it
was realized that there are various dualities that relate the five different types
of string theories’ to each other, as well as to the newly conjectured eleven-
dimensional M-theory. At first sight these theories look very different but they
actually all describe different regimes of the same physical system. Further-
more, it was realized that superstring theories contain higher-dimensional non-
perturbative objects — the D-branes and M-branes.

In the end of 1997, another revolution took place when Maldacena conjec-
tured that the low-energy physics of a stack of d-dimensional D-branes or M-
branes has two dual descriptions, either as a conformal quantum field theory
(CFT) in d dimensions or as string theory or M-theory in a space-time con-
taining (d 4 1)-dimensional anti-de Sitter space (AdS) [125]. The equivalence
between these totally different physical systems is known as the AdS/CFT
correspondence, and has been the subject of an enormous number of papers
during the last decade.*

The canonical realization of the AdS/CFT correspondence is the duality
between maximally supersymmetric four-dimensional Yang-Mills theory and
string theory in AdSs x S°. This duality is referred to as the AdSs/CFT4 cor-
respondence and gives two equivalent descriptions of the low-energy physics
of a stack of N D3-branes. In more detail, the conformal field theory here

1 At least according to the physics blogs.

See for example the string theory text book by Becker, Becker, and Schwarz [35].

3 The five different types of string theories are type IIA and type IIB superstrings, type I su-
perstrings and two kinds of heterotic string theories with gauge group SO(32) and Eg x Eg,
respectively.

In fact Maldacena’s original paper on AdS/CFT is now the secondly most cited high energy
physics paper ever. At the time of writing the SPIRES database of high energy physics papers
reports 7378 citations for Maldacena’s paper. The only paper in the database with more citations
is Steven Weinberg’s 1967 paper on electro-weak interactions [168] with a citation count of 7387.
Considering the number of citations these two papers have received in recent years it seems very
likely that Maldacena’s paper will pass the paper of Weinberg and conquer the top position in
the near future.



is N'= 4 super Yang-Mills (SYM) theory with gauge group SU(N) in four-
dimensional Minkowski space, and the gravity dual describes type IIB strings
propagating in a background of AdSs x S°.

During the last four years, i.e., during my time as a PhD student, a num-
ber of papers have appeared on the online preprint archive that have sparked
their own mini-revolutions. One such case was the construction by Jonathan
Bagger, Neil Lambert and, independently, Andreas Gustavsson of a three-
dimensional conformal field theory with N/ = 8 supersymmetry, proposed as
the world-volume action for two interacting M2-branes [25, 27, 26, 97]. Fol-
lowing these papers a vigorous search for a generalization to more than two
branes took place.

M?2 branes are three-dimensional objects embedded in an eleven-dimen-
sional background. Hence the world-volume theory on a stack of such branes
should be a three-dimensional gauge theory. In the low-energy limit, the the-
ory should flow to a non-trivial fixed point. This theory will not be a Yang-
Mills theory since the Yang-Mills coupling is dimensionful in three dimen-
sions. A more promising start is Chern-Simons theory. The Chern-Simons
coupling is automatically protected from any continuous quantum corrections
due to the gauge symmetry, ensuring conformal invariance. However, we also
expect the sought theory to be parity invariant, but the Chern-Simons term
changes sign under a parity transformation.

The solution to this problem is hidden in the Bagger-Lambert-Gustavsson
(BLG) construction. As first realized in [166, 33] we can obtain a parity in-
variant theory by considering a non-simple gauge group which is the product
of two subgroups. The action contains two Chern-Simons terms, one for each
factor in the gauge group, with a relative minus sign. Under a parity trans-
formation the role of the two gauge fields will be exchanged. This allows us
to write down a gauge invariant action that is invariant under both confor-
mal transformations and parity. Such an action was constructed by Aharony,
Bergman, Jafferis, and Maldacena (ABJM) [5]. This model is the primary sub-
ject of this thesis.

The ABJM model is a three-dimensional superconformal Chern-Simons-
matter theory with gauge group U(N) x U(N) and Chern-Simons levels k and
—k. In contrast to the BLG model, the ABJM model is not maximally super-
symmetric, but preserves N = 6 supersymmetries. In the special cases of k = 1
and k = 2 the supersymmetry is enhanced. In particular the theory obtained
by also setting N = 2 is equivalent to the BLG model [5]. In this thesis I will
mainly discuss the opposite limit where N and k are very large and their ratio
A = N/k finite. The parameter A then plays the role of a coupling constant,
and the field theory is weakly coupled when A is small. Since the number of
colors N is very large it can be analyzed perturbatively from planar Feynman
diagrams.



According to the AdS/CFT correspondence at low energy there is an al-
ternative description of a stack of M2-branes in terms of M-theory. If the
branes live in an asymptotically flat eleven-dimensional space-time the cor-
responding background is AdS4 x S’. However, the ABJM model describes
M2-branes in a Zj, oribifold. On the gravity side we therefore need to consider
the orbifold background AdS, x S” /Zy. For large values of k the action of the
orbifold shrinks a circle in the seven-sphere, and the M-theory dual reduces to
type IIA string theory in a ten-dimensional space-time AdSs x CP3.

The AdS/CFT correspondence give us a relation between the parameters N
and k of the gauge theory, and the string coupling constant and curvature of
the background in the dual string theory. In the planar limit the string coupling
goes to zero and the strings propagate freely in AdS, x CP?. For large values
of A the background is weakly curved and the world-sheet sigma model of the
string theory can be analyzed using perturbation theory.

Note that the perturbative regimes of the gauge theory and the dual string
theory correspond the coupling A being small and large, respectively. Hence
the AdS4/CFTj3 correspondence is a weak—strong coupling duality. From the
perturbative string theory sigma-model we obtain strong coupling results in
the gauge theory, and from the weakly coupled field theory we learn some-
thing about the spectrum of string theory in a strongly curved background.
This is a general feature of AdS/CFT and means that the correspondence pro-
vides us with a very powerful as a calculational tool. On the other hand it
makes it hard to prove the duality, since there is no region in the parameter
space of A where both the gauge theory and the sigma-model are weakly cou-
pled.

AdS/CFT and integrability

The AdS/CFT correspondence gives us a dictionary relating various observ-
ables on the gauge theory and gravity sides [96, 169]. A central class of
observables in a conformal field theory is the correlation functions of local
gauge invariant operators. In the planar limit the most important correlation
functions are the two-point functions. These are highly constrained by confor-
mal symmetry and depend on the coupling constant of the theory only via the
dimensions of the local operators. At the classical level the dimension of an
operator is easily obtained from the field content of the operator. However, in
an interacting quantum field theory this dimension in general receives quan-
tum corrections. Moreover these corrections introduce mixing among opera-
tors with equal classical quantum numbers. A primary step in understanding
the conformal field theory is to analyse the spectrum of local operators and
their dimensions.



The local operators of the planar gauge theory are dual to freely propagating
strings in the curved AdS background. The AdS/CFT dictionary tells us that
the dimension of an operator is to be identified with the energy of the corre-
sponding string state. Hence the spectral problem of the field theory is mapped
to the problem of determining the energy spectrum of strings propagating in
AdS.

In recent years a lot of progress have been made in understanding the spec-
trum of AdSs/CFT,4 on both strong and weak coupling. The basis for this
progress is the appearance of integrable structures at both sides of the dual-
ity.> In [134] it was discovered that the one-loop spectrum of A= 4 SYM can
be obtained from a particular integrable spin-chain, which can be solved using
the Bethe ansatz. At strong coupling classical string theory in AdSs x S° was
shown to contain an infinite number of higher conserved charges [41]. Over
the years these results have been generalized and refined. In [36] an all-loop
Bethe ansatz for AdSs/CFT4 was written down, yielding a set of equations
from which exact result for the spectrum in principle can be obtained.

Also in the AdS4/CFTj; correspondence the solution to the spectral problem
becomes feasible in the planar limit due to integrability. In weakly coupled
ABJM an operator can be interpreted as a state in the Hilbert space of an
integrable spin-chain, and the corresponding dimension is obtained using a
Bethe ansatz. The sigma-model of the dual string theory has also been shown
to be invariant under higher preserved charges. The integrability aspects of
AdS4/CFT3 will be discussed in much more detail in the rest of this thesis.

The fundamental excitations of an integrable spin-chain above a ferromag-
netic ground state are commonly referred to as magnons. The magnons hop
from site to site in the spin-chain, carrying some specific momentum and in-
teracting through local interactions. The higher preserved charges strongly
simplifies the dynamics of the magnons. In particular they ensure that the scat-
tering of three or more excitations factorizes into consecutive pair-wise scatter-
ing of the magnons. A fundamental ingredient in understanding an integrable
system is the two-particle S-matrix. By imposing periodic boundary condi-
tions on the spin-chain we can obtain a set of equations, the Bethe equations,
that give us the valid momentum configurations for a given set of magnons.
Furthermore, to obtain the energy of a given configuration we need to know
the dispersion relation of the magnons.

Both the two-particle S-matrix and magnon dispersion relation for the in-
tegrable models of AdSs/CFT4 and AdS4/CFT3 are determined by the sym-
metries of the models up to an undetermined function of the coupling con-

There is no definite definition of integrability in a quantum mechanical system. In this thesis
I will refer to a system as integrable if there exists a tower of higher momentum dependent
charges which generate additional symmetries of the system. These charges allow us to obtain
the (asymptotic) spectrum using a set of Bethe ansatz equations [46].
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stants. In AdSs/CFTy4 this function has turned out to be linear. However, in
AdS4/CFTj it is much more complicated. One of the main subjects of this
thesis is the origin and form of this function 4%(1).

At strong coupling the dual string states of the scalar spin-chain excitations
are the giant magnons. The second part of this thesis discusses the spectrum
of giant magnons in CP3.

In writing this thesis my goal has been to give a stand-alone review of how
integrability helps us solve the spectral problem of the planar ABJM model at
weak and strong coupling. The results discussed closely parallells the previ-
ous developments in the AdSs/CFT4 correspondence. Since I have chosen to
present these results as they appear in the ABJM model, rather than by com-
parison with NV = 4 super Yang-Mills or string theory in AdSs x S°, many
references to these earlier works are not included. For a general introduction
to integrability in AdS5/CFTy see the recent review in [39].

I will end this introduction with an outline of the rest of the thesis. The
ABJM model and the more general ABJ model are introduced in chapter 2. In
chapter 3 I discuss how perturbation theory leads us to an integrable spin-chain
describing the spectrum of operators. Chapter 4 contains a description of the
calculation of the four-loop magnon dispersion relation presented in Paper I
and Paper 1II.

The focus of chapter 5 and chapter 6 is on the strong coupling side of the
AdS4/CFTj duality. The type IIA string background is described in detail and
I show how the classical integrability of the string action leads to an algebraic
curve description of the string spectrum. Furthermore I discuss the spectrum
of giant magnons in CP? and their finite-size corrections, summarizing the
results of Paper IV and Paper V.

The last chapter of the thesis summarizes the results of the previous chap-
ters and contains a general discussion of the ABJ(M) magnon dispersion rela-
tion. In particular the all-loop expressions for /(1) proposed in Paper II and
Paper 111 are discussed.






2. The ABJM and ABJ models

In this chapter the ABJM and ABJ models are introduced. Since the two mod-
els are very closely related, with ABJ being a generalization of ABJM to a
more general gauge group, I will discuss them both at the same time and refer
to them collectively as the ABJ(M) model.

2.1 The field content

The ABJ(M) model is a three-dimensional Chern-Simons matter theory, which
is invariant under A/ = 6 superconformal symmetry.' The gauge group of the
model is the non-semisimple group U(N) x U(M), where M = N in the case
of ABJM.

The gauge sector of ABJ(M) consists of two Chern-Simons terms at oppo-
site Chern-Simons levels k and —k. The two gauge fields, A* and A/‘, transform
as connections under the U(N) and U(M) subgroups of the gauge group, re-
spectively. In the matter sector we have four complex scalars Y4 as well as four
Dirac fermions 4, with A = 1,...,4. The matter fields transform in the bifun-
damental representation (N, M) and their conjugates in the anti-bifundamental
representation (N,M). The gauge structure of ABJ(M) is visualized in the
quiver diagram in figure 2.1.

The ABJ(M) model is invariant under a global SO(6)g =2 SU(4)g symmetry,
referred to as R-symmetry. It takes the form of a flavor symmetry, under which
the scalars Y4 and fermions 4 transform as 4 and 4, respectively. For a further
discussion of the symmetries of ABJ(M), and the full representation theory of
the fields, see section 2.3 and section 2.4.

2.2 The action

There are various forms for the action of ABJ(M). Here I will write it down
in terms of N\ = 2 superspace, as well as in components. The full action first

The ABJM and ABJ models are special cases of N = 4 superconformal Chern-Simons theories
constructed in [75, 74, 105].



YA, yy

vy, u

Figure 2.1: Quiver diagram of the ABJ(M) model. The arrows indicate the gauge
group representations of the various fields, pointing from a fundamental to an anti-
fundamental representation.

appeared in [42]. There are also known expressions for the action in N =
1 [129], N'= 3 [54] and N = 6 [56] superspace.

In the N = 2 superspace form of the action, two of the supersymmetries
and an SU(2) x SU(2) subgroup of the SU(4)g flavor symmetry are manifest.
The two gauge fields sit in vector superfields V and V, and the bifundamental
matter is organized into four chiral superfields Z4 and W, which transform
as two doublets under the global SU(2) and SU(2), respectively. The action is
given by? [47, 48, 122]

S= % (Scs + Smat + Spot) + 2.1

Scs = / d’xd*0 / 1 ds tr [VD“(e"WDae‘W)
0 (2.2)

~ VD (e Dye”)]
Stnat = / Prd*o (ZAeVZAe—‘> n WAeVWAe—V) : (2.3)
Spot = / Exd?>0W(Z, W)+ % / dPxd>0W (Z,W). (2.4)
The superpotential W (Z,)V) is given by

W(Z,W) = éeABeAB tr ZAW, 2B W, 2.5)
W(ZW) = é&BeABtrzAWAzBWB. 2.6)

In the component form of the action, the SU(4)g flavor symmetry is mani-
fest. By expanding the superfields and integrating out the auxiliary fields in the
N = 2 action, we get, after a redefinition of the matter fields, the component
action

k
S=+ / & (Le—Vy—Vy), @.7)

The superspace conventions follow those of [77]. Due to differences in conventions, the action
here differs slightly from the one in [42].

8



where the kinetic term and potentials are given by

2i A T
ﬁk =1r [E/'Wp <A’uayAp + ?lA’uAvAp _A#avAp - ;A#AvAp>
(2.8)
A,
— DY DYy 4y zmA] :
1 .
Vp=—5tr [YAYAT Yy Yyl + YA v v By rCy,
2.9)
—6YAYYPY YOy + 42y Y Y] YBYCT] :
i ; ;
Vp=str [(YA VB Cyp —upy© YBYA’) (5253 — 25é5§>
(2.10)

+é BCDYX lﬁBYg Yp— €ABCDYA¢/TBYC¢TD] .

The covariant derivatives act as
DYA =9 YA +iA YA —iYAA,, DY =9 viAy] —iviA,. (2.11)

In addition to the Chern-Simons terms and the kinetic terms for the matter
fields, the action contains cubic gauge-matter interactions, quadratic interac-
tions between the scalars and fermions and sextic scalar interaction terms.

The ABJM model contains two parameters: the rank of the gauge group,
N, and the Chern-Simons level k. In ABJ there is an additional parameter,
namely the difference in rank between the two factors of the gauge group,
N — M. Without loss of generality, we can assume that N —M > 0.

Note that the Chern-Simons level k appears as an overall factor of the action,
see (2.1) or (2.7). Hence, it plays the role of a coupling constant g%s = 1/k.
As an alternative we rewrite the action so that the kinetic terms take a conven-
tional form, without any coupling constant, by rescaling the gauge and matter
fields by a factor /47 /k. This facilitates the counting of factors of gcy in per-
turbation theory, since the propagators now are independent of the coupling,
while the cubic, quartic and sextic interaction terms are proportional to gcs,
g%s and g4cs’ respectively.

While the complete action has been given above in both A/ = 2 superspace
and components, we need to complement it with a gauge fixing term in or-
der to use it in perturbation theory. The details of the gauge fixing will not
be discussed in this thesis. The reader is referred to Paper I and Paper II,
where gauge fixed actions are introduced in components and superspace, re-
spectively.



2.3 Gauge symmetry

As mentioned above, the gauge symmetry of ABJ(M) is U(N) x U(M), with
M = N in the ABJM model. Since the action for each gauge field consists
of a Chern-Simons term, gauge invariance requires the coupling constant k
to be integer valued [62, 63]. In this section the origin of this quantization is
discussed.

Under a gauge transformation by (U,U) € U(N) x U(M), the scalars and

gauge fields transform as

Y4 - UyAD", A, —UAU —iU9,UT,
. e (2.12)
Y, - 0Y/U", A, —UA0"—i09,07.

We will now consider the transformation of the Chern-Simons action for A,

2

Sho=— / dx P tr (A,,aVA,) + ;AMAVAP> , (2.13)
4n

and restrict to the case where U is in an SU(2) subgroup of U(N). Under the

transformation in (2.12), Sés transforms as

P / &x e (i, (AUTA,U))
(2.14)
3 T
—gﬂ/d e (UT9,UUTO,UUTIU) .
We will only consider gauge transformations that approach the identity at in-
finity,
Ux)—1, as x — oo, (2.15)

Since (2.14) is independent of the space-time metric, we can perform a Wick
rotation and evaluate it in Euclidean space. With the above condition on the
gauge transformation, we can also consider the Chern-Simons theory on S°
instead of in flat space. It is then clear that the first term in (2.14) vanishes.

The second term in (2.14) is more subtle. Let us rewrite it as —27kw(U),
where

w(U) = 5, 2/d3 " (UT9UuUT9,UUTIU) . (2.16)

I will now argue in a few steps, that w(U) is an integer for any gauge transfor-
mation U (x).3
(1) Let us consider two gauge transformations U (x) and U’(x) that only

differ infinitesimally,
U'(x) = U(x) =iT (x)U(x). (2.17)

The arguments given here closely follow Sidney Coleman’s discussion of instantons in four-
dimensional Yang-Mills theory [60].

10



The values of w for these two transformations differ by a total derivative

w(U") —w(U) =

24 2/d3 "t (d,UU,UUI,T) (2.18)

= 2/d3 e trd, (QUUUU'T) . (2.19)
More generally, w(U) = w(U’) for any two gauge transformations U (x) and
U’(x) that can be continuously deformed into each other. Hence w(U) only
depends on the homotopy class of U(x).

(2) A simple set of mappings from S> to SU(2) are given by the functions

U (x) = [u(x)]", u(x) = zo(x) +izi(x)o" . (2.20)

Here z; are embedding coordinates of S C R*, such that 23 + 23 + 23 +23 = 1.
The map u,, gives a n-fold cover of SU(2) and the integer n is known as the
wrapping number of upt

(3) Any map U (x) from S* to SU(2) is homotopic to one of the maps u,,
for some wrapping number n. Hence we can evaluate w(U) by choosing the
corresponding u, as a representative for the homotopy class.

(4) To calculate w(u;) we use spherical coordinates

w(up) = 241 2/ d@/ dgb dl// sin@sing = 1. (2.21)

Hence w(u ) gives the wrapping number of the map u;.

(5) We now consider two consecutive gauge transformations by U; and U,.
As noted above (see point (1)), continuous deformations of U; leave w(U;)
invariant. In particular, we can deform U; and U, to be equal to the identity on
the southern and northern hemisphere, respectively. We then get

w(UaUr) = w(Uz) +w(Uh). (2.22)
Using this additive property of w(U ), we can calculate w(u,) for any n # 1,
w(ig) = n. (2.23)

This shows that w(u,) calculates the wrapping number of the maps u,.

The above arguments show that w(U) is an integer for any mapping U (x)
from S3 to SU(2). Returning to the case of the Chern-Simons action (2.13), we
have now seen that we can write the result of the gauge transformation (2.12)
as

6S88¢ = —2rkw(U), (2.24)

Since the group SU(2) as a manifold is isomorphic to S3, the map u,, gives a w-fold mapping of
S3 to itself.
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where w(U) is an integer. Hence, the action is not invariant under generic
gauge transformations. In particular, under a large gauge transformation, i.e.,
a transformation that is not continuously connected to the identity, the action
is shifted by a constant. However, the central object in a quantum field theory
is not the action, but the path-integral

/ DA exp (iSgs) - (2.25)

Since the action sits in the exponential, a shift of the action by an integer
multiple of 27 leaves the path-integral invariant. This leads us to the conclu-
sion that gauge invariance requires the Chern-Simons coupling k to be an in-
teger [63, 62]

keZ. (2.26)

In the above derivation of the quantization of the Chern-Simons coupling
we restricted the gauge transformation to an SU(2) subgroup of U(N). How-
ever, the conclusion directly generalizes to the full gauge group. In particular
the homotopy groups 73(U(N)), 73(U(2)) and 73(SU(2)) are all isomorphic
to Z [141].

The requirement that & is integer valued is very important, since it protects
the coupling from being renormalized — the quantized coupling cannot vary
continuously with the energy scale.’ The above argument only involved the
action of the gauge fields, but the A" = 6 supersymmetry of ABJ(M) forces
all couplings in the action to be the same. Hence gauge symmetry and super-
symmetry together guaranties that the coupling constants of the model do not
receive any quantum corrections.®

2.4 Global symmetries

There are 12 supercharges that preserve the ABJ(M) action. In three dimen-
sions these combine into six real spinors, resulting in a total of N'= 6 super-
symmetries. These spinors transform in the vector representation 6 of the R-
symmetry group SO(6)g = SU(4)g. The supersymmetry relates the different
interaction terms of the action, and hence also the S-functions of the corre-
sponding coupling constants. Hence, the gauge symmetry and supersymmetry

In general the Chern-Simons coupling can be shifted by an integer at one-loop. In pure Chern-
Simons theory, this shift takes the form k — k+ c,, where ¢, is the quadratic Casimir in the
adjoint of the gauge group [57, 14, 22, 128]. However, the analysis in [112] showed that for
Chern-Simons theories with at least A/ = 2 supersymmetry, such a shift does not occur.

As shown in [75], there is a large class of exactly marginal Chern-Simons-matter theories with
N = 3 supersymmetry. At weak coupling, even A/ = 2 is enough to protect the Lagrangian from
quantum corrections.
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of ABJ(M) together ensure that the model is governed by a single coupling
constant, and that this constant does not receive any quantum corrections.

In addition to the gauge symmetry and supersymmetry, the classical ac-
tion of ABJ(M) is invariant under Lorentz transformations and space-time
translations, which make up the Poincaré group, as well as scale transforma-
tions. These symmetries combine into the three-dimensional conformal group,
which gives the full bosonic space-time symmetry of ABJ(M).’

For a generic model with classical conformal invariance, the scale invari-
ance, and hence the conformal invariance, is broken at the quantum level
through the renormalization of the coupling constant — the running coupling
induces a scale in the model, e.g., the energy at which the coupling is of order
one. However, in some models the coupling constant is protected from quan-
tum corrections and the quantum model is still conformally invariant. The
most well known case of such a finite theory is the maximally supersymmetric
Yang-Mills theory in four dimensions, where the A" = 4 symmetry protects the
coupling from renormalization [86, 126, 53]. As we noted above, the gauge
symmetry and supersymmetry of ABJ(M) together ensures that the S-function
vanishes to all orders in perturbation theory. Hence ABJ(M) gives another ex-
ample of a finite theory where the conformal symmetry is exact also at the
quantum level ®

The conformal symmetry, supersymmetry, and R-symmetry combine into
a larger symmetry group — the supergroup OSp(6|4). The structure of the
0sp(6/4) superalgebra will be discussed in more detail in section 2.5. There is
also a “baryonic” U(1), symmetry [42] under which the bifundamental fields
carry charge +1, the anti-bifundamentals —1, while the adjoint fields are un-
charged. The representations of the various ABJ(M) fields under the gauge
and global symmetries are collected in table 2.1.

In addition to the continuous local and global symmetries discussed so far,
the ABJM model is invariant under a parity symmetry. Neither the Chern-
Simons terms, nor the quartic potential is invariant under simple three-dimens-
ional parity transformation. However, in the case of ABJM, where the two
factors of the gauge group have the same rank, we can restore the symme-
try by combining the parity transformation by an exchange of the two factors
of the gauge group, i.e., we swap A* and A*, as well as the bifundamental
and anti-bifundamental matter. The ABJM action is invariant under this com-
bined transformation, which in the literature is referred to simply as parity,

The Poincaré group and scale transformations do not generate the conformal group on an alge-
braic level. However, almost all known scale and Poincaré invariant models are also conformally
invariant [69].

Other examples of finite field theories include classes of four-dimensional Yang-Mills theories
with N'=2 [106] and N =1 [148, 109, 114, 149] supersymmetry as well as A'= 3 Chern-
Simons-matter theories in three dimensions [75].
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Table 2.1: Field content of the ABJ(M) model. This table shows the representations
carried by the fields in the component action of ABJ(M) under the U(N) x U(M)
gauge symmetry, the SU(4)g R-symmetry, the Lorentz group SO(2, 1) as well as the
two U(1) charges — the dimension A and the “baryonic” charge.

U(N) UM) SU@)g SO(2,1) U(1)y U(1),
YA N M 4 1 z 1
Y/, N M 4 1 I -1
ya N M 4 2 1 1
y™ N M 4 2 1 —1
AR ad 1 1 3 1 0
A+ 1 adj 1 3 1 0

even though it has a structure that more resembles a combination of parity and
charge conjugation.

In the ABJ model the two subgroups of the gauge group do not have the
same rank, so if we exchange them, we do not get back to the original model.
Hence ABJ breaks the parity symmetry of ABJM. As we will see in chapter 5,
this breaking of parity appears as a non-perturbative effect on the string theory
side of the duality, and hence does not effect the perturbative string spectrum.
See also chapter 4 for a discussion of this parity symmetry in relation to the
spin-chain Hamiltonian.

2.5 The superconformal algebra osp(6|4)

The global symmetries of ABJ(M) combine to the superalgebra osp(6[4).°
The bosonic subalgebra of osp(6[4) is s0(6)g X sp(4) = su(4)g x s0(3,2).
The three-dimensional conformal algebra, s0(3,2), has ten generators. Of
these, six belong to the Poincaré algebra, which contains the Lorentz group
50(2,1) 2 s(2,R) with generators'® £/ (£,7 = 0), as well as three space-
time translations 33,3 = ‘Bg,. The additional generators are the dilatation, or
scaling, operator ®, as well as the generators of special conformal transforma-

9 05p(6|4) corresponds to D(3,2) in Kac [110] classification of classical Lie superalgebras. See
also [72]. The symmetry algebra of ABJ(M) corresponds to a real form of this algebra.
107 owercase greek indices a, 8, y and ¢ take the values + and —, while uppercase roman indices

take values 1, J, K, L =1,...,4. Symmetrization and anti-symmetrization of indices is defined

with a weighting factor, e.g., Pyqp = 1 (Pop +Bpo) and Qg” = 1@l —alh.
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tions % = RP®_ These ten generators satisfy the algebra [137, 175]

(28, Bys] = 28] By — 0 Fro, [ Fap] = +Fap,
(el 20 =de) -8 f, [©,8f] =0,
[£2, 8] = <26V 8P 1 L @0 . [D,8%) = —8F,

@ _astoa B yslag)
(8%, Pys] =46, 8 +46 755D

(2.27)

In 0sp(6[4), this algebra is extended by twelve supercharges, which com-
bine into six three-dimensional Dirac spinors Q¥ = —Q’I making up the
N = 6 superalgebra

{Q,Qf"} = —"K . (2.28)
Under Lorentz and scale transformations, the supercharges transform as
[ef.al] =#all - 1£al | [9,9Y] =+1aY . (2.29)

There are twelve additional odd charges &7, = —&Y,;, the superconformal
charges, which are generated in the commutator between the supercharges
Q! and the special conformal generators 8%,

(8% Q] = 1Kl &) . (2.30)
These charges satisfy

[Saﬁ7 CHIE _536/131 +18587,, [0,67] = 367,

2.31)
{6?]76§(L} = —eykL A, (B, 67,] = _GIJKL(%/QQ;{(}L .

The final set of generators, the R-symmetry generators SR/ J R! ;= 0), ap-
pear in the anti-commutator

{9V, &, } = a6, R} —258), 2 F —25]5], 0D (2.32)

The charges R/, generate the s1(4)g subalgebra of 05p(6|4), under which the
odd charges 9%/ and &Y, transform in the six-dimensional vector representa-
tion,
(%), RG] = 67 R — 19T,
(97, QK] = 26k fV — 15t kL (2.33)
(R}, 6%, = —26, 6%, + 36/6%.

15



2.5.1 Representations of 0sp(6|4): The field multiplets

Since the superalgebra osp(6]4) is non-compact, all unitary representations
are infinite dimensional.!! The relevant representations are of highest weight
type. The generators can be split into the raising operators

e, AP R, I1<J, &y, (2.34)
the lowering operators
et P, R, 1>7, Y, (2.35)
and the Cartan generators
w,, L 9. (2.36)

Note that there are no summations over the repeated indices in (2.36). The
tracelessness of £ and R reduces the number of Cartan elements to five.

Representations are labelled by the eigenvalues R';, L,® and A of the high-
est weight state under the Cartan generators R/, £.% and D, respectively, or
by the Dynkin labels

pr=R'1—R%», q=R»—-R3, pp=R5-R', (237)
s=3(LyT—L7).

The eigenvalue A is called the dimension of a state. The corresponding Dynkin

diagram for 05p(6/4) is shown in figure 2.2.!2 It is convenient to combine the

Cartan generators of SU(4), into the charges

~ 1
J: %]1—m44), in(mzz_%33>,

SR
—~

(2.38)
33 = mll —mzz - %33 +£R44 .

The eigenvalues of these charges are related to the Dynkin labels p{, ¢ and p;
by
_pitgtp q

=2 hB=p—p. 2.39
2,Q2,3p1pz (2.39)

J

The highest weight state of a superconformal algebra is known as a primary

state. By acting on the primary with the translations ‘B,z or the supercharges

QU we can construct states in the same multiplet with a higher dimension A.
Such states are descendants of the primary state.

1T Except for the trivial representation, which consists only of the identity.
12 The Dynkin diagram of a superalgebra is not unique, but depends on the choice of simple roots.
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P

q A+s A—s
P2

Figure 2.2: Dynkin diagram for osp(6]4).

The states that makes up a representation can be grouped into submodules
which are closed under the bosonic subgroup SO(3,2) x SU(4),. The differ-
ent submodules are related by the action of the supercharges Q. A generic
representation will consist of 2!? such submodules, since we can act with any
combination of the 12 supercharges. Such a representation is called typical.
For some particular representations the highest weight state is annihilated by
one or more supercharge. In such atypical representation the number of sub-
modules is reduced.

A particularly interesting case is a representation whose highest weight
state is annihilated by half of the supercharges. Such a representation is known
as a 1/2-BPS representation. As an example, let us consider a highest weight
state annihilated by the six charges Q!X, K =2, 3, 4. Being a state of highest
weight it is also annihilated by the raising operators, and in particular by the
superconformal charges &Y;. The algebra then implies that it is also killed by
the anti-commutator

{965} =£7. (2.40)

Hence this highest weight state is a Lorentz scalar. The action of the anti-
commutator between Q}FK and 6;51 on this state then reduces to

{alf. 6} } =2 - -R, K=123. (2.41)

For consistency of the algebra the Dynkin labels of the state has to be of the
form
[p1.4,p2:A,5] =[2J,0,05J,0], (2.42)

for some J. Equivalently, the R-charge J and the dimensionA satisfy the BPS
condition'?
A=J. (2.43)

Another set of important 1/2-BPS multiplets satisfying this condition have
Dynkin labels [0,0,2J;J,0], which corresponds to a highest weight state that
is annihilated by 12, Q1% and Q23

13 All unitary representations of OSp(6]4) satisfy the inequality [140]
A<ZJ.

A BPS operator has A = J and transform in an atypical representation.
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By setting J = 1/2 we get the representations of the matter fields of ABJ(M).
The bifundamental fields transform in the [1,0,0;1/2,0] representation. The
highest weight state is the scalar Y'!. By acting with the lowering operators we
generate the module!#

V={D"Y",D"y1.}, (2.44)

consisting of the scalars Y/ and the fermions y/;, with any number of covariant
derivatives D, acting on them. Similarly, the anti-bifundamental fields trans-
formin [0,0,1;1/2,0] representation and form the module

V={DY, D"y} (2.45)

The content of the field multiplets V and V is discussed in more detail in
section 2.8, see in particular table 2.2.

To construct more general representations we will consider tensor products
of V and V. In particular, the tensor product of L copies of each of these
representations, (V ® V)®L, contains a representation with a highest weight
state of the form (Y 1Y;)L. Since both Y! and YJ are annihilated by Q1% and
Q13,50 s (YIY;)L. By the same argument as above, the charges A and J of
this state satisfies (2.43). Since such a state is preserved by four of the twelve
supercharges it is a 1/3-BPS state. I will refer to it as a chiral primary.

At quantum level the dilatation operator and the supercharges receive quan-
tum corrections. In particular, the dimension of a generic state depends on the
coupling constants. This deviation from the classical, or bare, dimension is
known as the anomalous dimension. The generators of OSp(6]4) change the
dimension of a state in half-integer steps. Hence all the states in an irreducible
representation have the same anomalous dimension.

For a chiral primary state the classical dimension equals the R-charge J.
This relation between A and J must be true also when interactions are turned
on. The reason is that the chiral primary state must be annihilated by the same
supercharges at all values of the coupling. If this was not the case, the rep-
resentation would contain extra states as soon as the coupling was non-zero.
But the number of states of a particular dimension is a finite integer that can
not vary continuously with the coupling. Moreover, since the R-symmetry
group SU(4), is compact, the charge J can not be continuously deformed.
This means that the dimension of a chiral primary is protected and cannot
receive any quantum corrections.

14 The module V of the bifundamental fields should not be confused with the gauge vector superfield
in the /= 2 action in section 2.2.
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2.6 The planar limit

The ABJM model contains two parameters — the Chern-Simons level k and the
rank of the gauge group N — both taking integer values. The level k appears as
an overall factor in the action. Hence g%s = % plays the role of a coupling con-
stant in ABJM, and for k > 1 the theory is weakly coupled and can be treated
using perturbation theory. As we will see below, the perturbative expansion
simplifies considerably when we in addition to small coupling also have a
large number of colors. We can then define the ’t Hooft coupling constant

N
1= 8?:SN =% (2.46)
and take the planar limit, or 't Hooft limit, in which [165]
N — oo, k— oo, with 4 fixed. (2.47)

Since both N and k are positive integers, A is a rational number. However, in
the "t Hooft limit we can treat A as a continuous parameter.

Since the gauge group of the ABJ model has two factors of different rank,
ABJ contains an extra parameter compared to ABJM, N — M. This allows us
to introduce two 't Hooft couplings

N

A~ M
A= — A=— 2.48
= k’ (2.48)
and a corresponding 't Hooft limit in which k, N and M are sent to infinity in
such a way that A and A remain finite.

Instead of using A and A, it is convenient to introduce the couplings

1=+, and 0':#. (2.49)
Then A controls the overall perturbative expansion, while o~ describes the de-
viation away from the ABJM case of o = 0.

In [4] it was argued that the ABJ model is unitary only if [N — M| < k. In
terms of the ’t Hooft couplings this means that |1 — /Al\ < 1. Moreover, there
is an equivalence between models with gauge groups U(N); x U(M)_; and
U(M) x U(2M — N + k) _. In particular this means that the two cases M = N
and M = N + k describe the same theory.

2.7 Physical observables

Conformal invariance puts stringent constraints on which physical observables
are meaningful to consider. The basic observables are n-point functions of
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the operators in the theory. Since the ABJ(M) model is a gauge theory, only
the correlation functions of gauge invariant operators are physical. There are
several classes of gauge invariant operators, e.g., Wilson loops, which have
been studied in the context of ABJ(M) [100, 73, 113, 152, 67]. However, in
this thesis, the focus is on local gauge invariant operators.

In the planar limit, the structure of the n-point correlation functions simpli-
fies considerably. In fact, a quick counting reveals that the connected compo-
nent of an n-point function is proportional to 1/N ("=2) Hence, to the leading
order in large N, any correlation function with n > 2 is dominated by discon-
nected diagrams, and factors into a sum of two-point functions,

(0102--05) = > (O, Ohy) -+ (Ok,_,Op,) +O(1/N).  (2.50)
{ky,okn }

In particular, in the strict planar limit, any correlation function of an odd num-
ber of operators vanishes.

In a planar conformally invariant gauge theory, the study of two-point func-
tions of gauge invariant local operators is central. In fact, conformal invari-
ance gives strict restriction on the form of these correlation functions. It is
possible to choose a basis in which the two-point functions are diagonal. We
then get [79]

_ %
2A
el
where A is the dimension of the involved operator. Hence, only the dimension
of the operator depends on the dynamics of the theory and the central goal for
understanding a large N conformal gauge theory is to determine the spectrum
of local operators and their dimensions. This will be the focus of rest of this
chapter, as well as the following two chapters.

(0i(x)O,(y)) (2.51)

2.8 Gauge invariant local operators and spin-chains

As discussed above, gauge invariant local operators are central objects in the
study of the ABJ(M) model. To get a local operator we take any number of
the various fields in the model, as well as their covariant derivatives, all eval-
uated at the same space-time point, and multiply them together. However, to
ensure gauge invariance, we need to make sure all the gauge indices are fully
contracted. This leads in general to multi-trace operators of the form
ty x i i i

tr (XiIXiZXng . -Xl.nXin) ot (lesz . 'ijij) (2.52)
Here, the X; are any bifundamental field, such as ¥ L Y3 or DoY 4 while X,j
transform in the anti-bifundamental. An important property of the sequence
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of fields within each trace factor is that it is alternating, i.e., all the fields at
odd positions are in the (N, M) representation of the gauge group, while the
fields at even positions transform as (N, M).

In the planar limit, the most important class of gauge invariant operators
are the single trace operators. This is due to the same effect that suppresses
higher point functions — the leading contribution to the two-point function of
a general multi-trace operator with itself factorizes into terms involving the
individual trace factors.

An operator of length L consists of L fields from each of the two field multi-
plets V and V, and belongs to one of the irreducible representations that appear
in the L-fold tensor product between these multiplets, (V ® V)“E. Among all
the states appearing in this product there is a unique state with the highest
weight. This operator has Dynkin labels [L,0,L;0;L], and hence satisfy the
BPS condition A = J. I will denote it by

Ok =u(r'y))", (2.53)

where the subscripts stands for “ground state”, as explained below. This op-
erator is annihilated by the supercharges Q12 and !, and hence is a chiral
primary.

More complicated operators can be built from (’);;s by changing any of the
scalars Y (Y4T ) to any other field in the V (V) module. On the odd sites the
resulting operator will have any of the 45 + 8 fields Y/, /4, as well as any
number of covariant derivatives D,g. Similarly, the even sites will contain Y,T,

I with covariant derivatives acting on them.

Pictorially, we can represent these operators as a spin-chain with 2L sites.
At each site of the chain sits a spin transforming in the V or V representations
of OSp(6]4), with the two representations alternating between odd and even
sites. The operator OéL,s corresponds to the ground state of the spin-chain of
length 2L, with all spins “pointing up”:

e (VYY) e m

Other operators are represented by “flipping” one or more spins. This intro-
duces an impurity or excitation in the chain:

(YY) e m

The spin-chain ground state (2.53) preserves an SU(2|2) X U(1)exyra Sub-
group of OSp(6/4) [76]. The bosonic part of this SU(2|2) symmetry is given
by SU(2)g x SU(2), x U(1)g, where SU(2), = SO(2,1) is the Lorentz spin.
The SU(4)g R-symmetry group splits into SU(2)g X SU(2)g X U(1)extra, but
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only the two latter factors are unbroken. Finally, U(1)g is the spin-chain en-
ergy E = A—J, which involves the scaling dimension A and the Cartan charge
J of the broken SU(2)¢. The charges of the fields of the theory under these
groups are given in table 2.2.

SPIN-CHAIN EXCITATIONS. ~ As noted above, the ground state has E = A —J =0.
Adding an excitation to the chain (by replacing one of the vacuum fields by
some other field), will increase this classical energy by a half-integer. From ta-
ble 2.2 we see that there are 45 + 45 excitation with 6E = 1/2. The excitations
on the odd (“A”-particles) and even (“B”-particles) sites are [76]

“A”-particles: (Y273 \ar 0s) (2.54a)
“B”-particles: VAR AITANTB) (2.54b)

Under the SU(2|2) x U(1)exira Symmetry preserved by the spin-chain vacuum,
these two sets of excitations transform as (2|2)_ and (2|2), respectively.

The other fields of the field multiplets do not correspond to elementary ex-
citations of the spin-chain, but are composite excitations that mix with states
involving more than one of the above excitations. For a discussion about these
multi-excitations see, e.g., [119].

Sussectors. There are a number of closed sectors of the theory. To find a
closed sector, we want to find a linear combination 7" of the conserved charges
of the theory that is positive semi-definite on the field multiplets. The sector
then consists of all fields for which this combined charge vanishes. Any com-
bination of such fields will have a vanishing T, and since T is conserved, this
will be true also when quantum corrections are included. For example, all
fields have T = A —J > 0, and only the fields Y! and Y; have A = J. This is
the 1/3-BPS sector consisting only of the ground states. To get a more inter-
esting sector, we can take T = A —J — Q. The fields that have T = 0 are Yl
Y2, Y; and Y, 4T . This sector is usually called the SU(2) x SU(2) sector, since it
is made up of two sets of fields, on the odd and even sites, that transform as
(2,1) and (1,2) under an SU(2) x SU(2) subgroup of SU(4)g."

Another interesting charge is A — L, where L is half the spin-chain length.
L is 1/2 for the scalars and fermions, and O for the derivatives. The vanishing
of this charge gives rise to the SU(4) sector consisting of operators built out
of the scalars Y/ and YIT. However, L does not appear among the conserved
charges in table 2.2, since it is not conserved beyond two-loop order in pertur-
bation theory. As we will see in chapter 3, the SU(4) sector is a closed sector

15 Note that the two SU(2) subgroups transforming the fields in the SU(2) x SU(2) sector are not
SU2)g x SU(2)¢.
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Table 2.2: Classical charges of the fields of ABJ(M). For the spin-chain ground
state (2.53), the SU(4)g R-symmetry group is split into SU(2) g x SU(2) G X U(1)extras
and the conformal group SO(3,2) is broken to SU(1,1), x U(1)A. The remaining sym-
metry is given by SU(2|2) X U(1)extra D SU(2)6 x SU(1,1), x U(1)g X U(1)extra [76].
The spin-chain energy E = A —J is given by the dimension A and the eigenvalue of
the Cartan generator of the broken SU(2)s/. The charges of the broken SU(4)g are
related to the Dynkin labels [py,q, p2] as J = W#, Q=% and J3 = p; — p>. The
table is adapted from [119].

SU(4)r SU2)e¢ SUR2)¢ U(Dexwra SU(1, 1),  U(1)a U(l)g

[P1,49: 2] J 0 J3 s A E=A-J
y! [1,0,0] +1/2 0 +1 0 1/2 0
Y? [-1,1,0] 0 +1/2 —1 0 1/2 1/2
Y3 [0,—1,1] 0 —1/2 -1 0 1/2 1/2
v4 [0,0,—1] —1/2 0 +1 0 1/2 1
i [-1,0,0]  —1/2 0 -1 +1/2 1 3/2
vor  [1,-1,0] 0 ~1/2 +1 +1/2 1 1
Yz [0,1,—1] 0 +1/2 +1 +1/2 1 1
Yar  [0,0,1]  +1/2 0 -1 +1/2 1 1/2
Dy [0,0,0] 0 0 0 0 1 1
Dii [0,0,0] 0 0 0 +1 1 1
Y, [-1,0,0] —1/2 0 ~1 0 1/2 1
Y, [1,-1,0] 0 -1/2 +1 0 1/2 1/2
Yy [0,1,—1] 0 +1/2 +1 0 1/2 12
Y, [0,0,1] 12 0 ~1 0 1/2 0
yi' [1,0,0] 4172 0 +1 +1/2 1 1/2
w2 [-1,1,0] 0 +1/2 -1 +1/2 1 1
v 0,-1,1] 0 ~1/2 ~1 +1/2 1 1
vi 10,011 —1/2 0 +1 +1/2 1 3/2
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of the two-loop spin-chain Hamiltonian, but at higher orders the operators of
this sector start to mix with operators outside the sector. For a more complete
list of closed subsectors above the ground state considered here see the review
article [119].
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3. The integrable ABJ(M) spin-chain

3.1 Two-point functions

In this section we will consider the perturbative calculation of two-point func-
tions, and the relation to the renormalization of the involved operators.

As discussed in chapter 2, in the planar limit, we are mainly interested in
single trace operators. Let us start by considering the two-point function of
the ground-state operator

Ok =cu(r'y)), (3.1)

where we have introduced a normalization contant C. The scalar propagator
in position space is given by

16,6964

Y (x)% Y] (v)P) = 3.2
< ('x) a ](y) b> k |x_y| ) ( )
where the color indices have been written out explicitly (a,b = 1,...,N and
a,b=1,...,M). The tree-level diagrams that contribute to the correlation func-
tion
(05 (x) O (), (3.3)

are schematically given in figure 3.1. Here, the thick horizontal lines indicate
the two operators, and the thin lines are the propagators between the individual
fields inside the traces. The ordering of the propagators, and hence of the
constituent fields, indicate the ordering of the gauge indices in the traces.

The first two diagrams in figure 3.1 are related by a relative shift of the fields
by two sites in one operator compared to the other operator. Since the operator
(’)g;s is invariant under this shift, we get L equivalent diagrams contributing to
the two-point function. For each face of the diagram the two propagators on
either side of the face gives a factor of §%,6”, = N or §;°6 ,;ﬁ = M, depending
on whether the first field is in the bifundamental or anti-bifundamental repre-
sentation. In total there are L + L such pairs of propagators, so the total color
factor for each diagram is (NM)F.

In the third diagram in figure 3.1 the ordering of two of the propagators
has been swapped. By carefully evaluating the traces over color indices result-
ing from this diagram, we see that this diagram is proportional to (NM)L—1.
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77, TX

(a) (c)

Figure 3.1: Tree-level diagrams contributing to the two-point function of two scalar
operators O and O'. Note that there are no interaction vertex in diagram (c), the three
propagator simply cross at the midpoint. Diagram (a) and (b) give planar contributions
while the diagram in (c) is non-planar and hence suppressed in the large N limit.

Hence diagram (c) is suppressed by a factor 1 /(NM) compared to the first two
diagrams in figure 3.1, and in the ’t Hooft limit where NM > 1, we only need
to consider the contribution of planar diagrams.!

The planar diagrams give a total contribution of

> 1 L(NM)E P L(A)E
kZL ‘ ‘ZL - |X—y|2L :

(0% (x) O () = IC| (3.4)

X=Y

By choosing the normalization constant to be C = (11)"%/2L~1/2, we can
write the above expression as

1
Ok (x) OLT = 3.5
(06 OF ) = T — (3.5)

where Ag = L is the classical dimension of the operator O{IS;S. This result agrees
with the expected form in (2.51).

The above calculation can be straightforwardly generalized to the more gen-
eral operators

LI Lytyhyt .. . ylyt
Oflfz-A-IAL =CturY 1YilY 2Yi2 Y LY&' 3.6)

By the same argument as above, the planar diagrams will dominate the corre-
lation function o
LI, i1

<Oili2---iL O Iip---Ip, > : (37)

In principle there could now be a contribution from diagrams involving self-

contractions between, say, Y/! and Y. iT' Such a diagram contains an ultraviolet

1
divergence, and need to be regularized. However, if we use dimensional regu-
larization, any such tadpole diagram vanishes identically. Hence, we still only

The restriction to planar diagrams is only valid for operators with L < N. In general there are
of the order of L! Feynman diagrams in total. Out of these, L are planar. For L of the order
of N, the suppression in 1/(NM) is cancelled by the huge number of contributing non-planar
diagrams [139].
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need to consider planar diagrams of the kind represented in figures 3.1 (a)
and (b). These diagrams give the contribution

L. . R ML

Iy -1, ‘{'J]'“JL o 2(cl oIy 17, 192 . Jr </l/l)
(O 1 OT1E) = ICP(6],87, -+ 6], 671677 -+ 67" + eyel.) P~ (3-8)
where the flavor structure includes a sum over cyclic permutations of flavors
of one of the operators. By the choice of the normalization factor C this can

again be written in the form of (2.51).

Loop correcTiONS. Consider now the structure of the loop corrections to the
two-point function. By conformal invariance, it will still have the form [79]

©Ewo'm = Lo

(3.9)
The quantum corrections in the numerator can be absorbed by a A dependent
rescaling of the operators.> Hence, the physically interesting corrections ap-
pear in the dimension A(A) of the operator. Expanding the above expression
we then get

1

= P (1—6A2% log|ux|+---) , (3.10)

where 0A is the two-loop anomalous dimension. In order to make the argu-
ment of the logarithm dimensionless, we had to introduce the dimensionful
constant u. How does this constant arise in perturbation theory? Since the
ABJ(M) model is scale invariant, it does not contain any dimensionful param-
eters. Hence, the only possibility is that u is the renormalization scale, which
appears in the perturbative calculation from the regularization of ultraviolet
divergences.

In a generic field theory, such divergences can appear in any region of a
Feynman diagram that contributes to the two-point function. This is not true
in a conformal theory such as ABJ(M). In particular, a divergence at a generic
point in space-time, not associated to the involved operators, is cancelled by a
renormalization of the coupling constants in the theory. However, we know
that due to gauge symmetry and supersymmetry, the coupling constant of
ABJ(M) are inverse integers that do not renormalize. Hence, the only possi-
ble divergences appear in the ultraviolet regions close to the operators, and
are associated with the renormalization of the operators themselves.

To simplify the notation I will in this section only write out the coupling constant A. In the ABJ
model, coupling dependent terms generally depends on the second coupling o~ as well.
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Figure 3.2: One-loop diagrams. These diagrams are not divergent, and hence do not
contribute to the anomalous dimension of the involved operators.

-~ e:::i::m

Figure 3.3: Two-loop diagrams. These diagrams are divergent, and hence contribute to
the anomalous dimension of the involved operator. However, only first two diagrams
are planar, so in the large N limit, we can ignore the third diagram.

In equation (3.10), the leading order correction to the dimension of the op-
erator is proportional to A%. This corresponds to a two-loop contribution in
perturbation theory. There are one-loop diagrams that potentially could con-
tribute to the two-point function. Two such diagrams are shown in figure 3.2.
However, a simple power counting argument shows that in three dimensions
only diagrams with an even number of loops can have an ultraviolet diver-
gence, and hence contribute to the anomalous dimension. This means that the
first correction to the dimension of an operator is a two loops.

Some of the diagrams that contributes to the two-loop correction of the
two-point function between two scalar operators are shown in figure 3.3. The
third of these diagram is non-planar, and hence suppressed in 1/(NM). The
other two diagrams will give non-vanishing contributions.

The first diagram in figure 3.3 involves the sextic scalar interaction vertex
of ABJ(M). This vertex has a non-trivial flavor structure. For example, this
diagram will give a non-zero contribution to the two-point function between
operators of the form

(tr(--- Y'Yy ) w2y ytTy (3.11)

where the two SU(4) indices 1 and 2 have been exchanged in the second oper-
ator. The tree-level two-point function (3.8) is diagonal, in the sense that only
the correlator between an operator @ and its conjugate O is non-vanishing.
As the above example shows, turning on quantum corrections introduces mix-
ing between different operators. Note that the superconformal symmetry of
the theory ensures that only operators with the same bare dimension, spin and
R-charge can mix. Still, for operators consisting of many fields, this mixing is
in general highly non-trivial.
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In the next section we will calculate the two-loop contribution of scalar
operators in a general form, and discuss the mixing problem in more detail.

3.2 The dilatation operator of ABJ(M)

All physically relevant quantum corrections to two-point functions of local
operators are captured by the coupling dependence of the scaling dimensions
of the operators. The most straightforward way of calculating these correc-
tions perturbatively is not by calculating the full two-point function, but by
calculating how the operators are affected by renormalization.

To study the renormalization of a local operator O,, we need to extract any
ultraviolet divergences appearing in the loop corrections to the operator. To
compensate for these divergences we introduce counter terms in the action.
The renormalized operator takes the form

Ogren) _ Zab(,)l(jbare) : (3.12)

where the matrix Z depends on the coupling constants and on the renormaliza-
tion scale u. The fact that Z is a matrix, and not scalar, indicates that different
bare operators mix under renormalization. The renormalization factor has the
perturbative expansion

Z=141Z+1Zs+..., (3.13)

where, for instance, 2, is given by the negative of the divergent part of the
two-loop correction to the operator.

Once we know Z, it is straightforward to extract the mixing matrix of
anomalous dimensions of the involved operators. However, let us first take
a step back and try to understand what we are actually calculating. As we saw
in chapter 2, the scaling dimension of an operator is measured by the dilatation
operator ®. On an operator O with definite dimension A, © acts as

[D,0(x)] = <A—x#aiﬂ) O(x). (3.14)

In particular, if we evaluate the operator at x = 0 the eigenvalue of 2 is A.
The dimension can be split into two parts: the classical, or bare, dimension Ay,
and the anomalous dimension 0A. To calculate the bare dimension of O, we
just need to sum up the dimensions of the fundamental fields that make up the
operator. The bare dimension is measured by the operator D). The anoma-
lous dimension, on the other hand, is a function of the coupling constants, and
hence strongly depends on the dynamics of the theory. It is measured by the
operator 69 =0 — D),
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Once we turn on the interactions of the theory, most operators will not be
eigenstates of the dilatation operator. As noted above, this is due to mixing
between operators with equal quantum numbers under renormalization.

In a perturbative calculation, we can extract the anomalous dimension part
of dilatation operator from renormalization factor Z by

_dlogZ
~ dlogu’

(3.15)

where p is the renormalization scale. As we will see below, this formula pro-
vides a very explicit expression for the action of §© on local operators. The
matrix elements of ¢ in some basis of operators gives a matrix whose eigen-
values are the anomalous dimensions of the operators in the theory. In general,
it is a non-trivial problem to diagonalize this matrix.

Expanding Z as in (3.13), we get

- - 1 -
logZ =22, + 2% (24—2222) +0(2%). (3.16)

Since the ABJ(M) model is renormalizable and conformally invariant, anoma-
lous dimensions should be independent of the renormalization scale y. Hence
log Z will depend linearly on log u.

In a planar gauge theory, we can restrict ourselves to diagrams that only
involve a number of neighboring fields. It is easy to see that a diagram with k
loops can involve at most k+ 1 external fields. Hence, in the spin-chain picture
the resulting dilatation operator can be written as a sum of terms acting locally
on consecutive spin-chain sites:

D= ZZ"Z@E"), (3.17)

where ”Dl(k) acts on the fields at the k+ 1 neighboring sites / to [ + k.
To find the spectrum of anomalous dimensions we need to solve the eigen-
value equation

[6D,0] =6A0. (3.18)

This equation has the form of a time-independent Schrédinger equation, where
0% plays the role of the Hamiltonian. Instead of 69, it is convenient to intro-
duce the charge

H=D-3, (3.19)

where J is given by the R-charge generators J = E)f{ll — 9%44. Since the SU(4)g
R-symmetry group is compact, J will not receive any quantum corrections.
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Hence 7 is related to ® by a shift at the classical level, but their quantum
corrections coincide:

H= ZikH<k> =00 _34 sz(s;a(k) . (3.20)
k=0 k=1

It is natural to interpret H as the Hamiltonian of the spin-chain, and the corre-
sponding eigenvalues E = A — J as the energy of a spin-chain state.

In the rest of this chapter, as well as in the next chapter, we will consider
perturbative corrections to the dilatation operator. Since these coincide with
the corrections to the spin-chain Hamiltonian we will not make a distinction
between the two.

DmMEensIONAL REDUCTION.  As noted above, we can perturbatively compute the
dilatation operator by considering the renormalization of local operators. This
renormalization is associated to the appearance of ultraviolet divergences in
the perturbative calculation. To extract useful information from divergent in-
tegrals, we need to regulate them in a sensible way. We will do this by using
dimensional reduction. This procedure is similar to dimensional regulariza-
tion, in that all integrals are performed by analytically continuing the number
of space-time dimensions to D = 3 — 2e. Divergences then appear as poles in
1/e.

In dimensional regularization [163] all the Feynman rules are treated in
D dimensions. However, this procedure is known to break the Slavnov-Taylor
identity of pure Chern-Simons theory at two loops [58]. Intuitively, we can un-
derstand this breaking from the difficulty of continuing the three-dimensional
anti-symmetric tensor €,,, away from D = 3. As we have seen in chapter 2,
the gauge invariance of the Chern-Simons terms strongly relies on the three-
dimensional structure of the theory.

We can overcome this problem by not continuing €,,,. Instead we will use
the three-dimensional Feynman rules and perform all tensor algebra in D =
3. The analytic continuation to 3 — 2¢ dimensions is instead performed on
the level of scalar integrals. In [58], it was shown that the Slavnov-Taylor
identities are then satisfied.

Away from three dimensions, the coupling constants become dimensionful.
We absorb this by a rescaling A — ©%¢1. The renormalization constant Z is
then a function of the coupling 4?1 and of € (and of the coupling o, but
we suppress this dependence since o~ remains dimensionless). The dilatation
operator is given by

dlog Z (121 dlog Z(1
6 — lim 11082 5 dloeZ(de) 3.21)
e—0 d log,u e—0 d 10g A
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Figure 3.4: Feynman diagrams contributing to the two-loop dilatation operator of
ABJ(M) in the SU(4) sector. The shaded circle in the last diagram indicates a sum
of scalar self-energy diagrams. These diagrams are given, e.g., in [135, 30, 31]. The
first three diagrams depend only on A1, while the last two diagrams also give contri-
butions depending on A% and A%. The diagrams also differ in the flavor structure — the
second and third diagrams gives flavor traces, the last two diagrams act as the identity
in flavor space, and the first diagram contains parts acting as the trace, the identity,
and as a next-to-nearest neighbor permutation.

At loop order [, the last expression effectively extracts the coefficient of the
1 /€ pole multiplied by 2/. For the € — 0 limit to be convergent, Z cannot con-
tain any higher poles in 1/e. This requirement is equivalent to the statement
above that Z is linear in logu.

THE TWO-LOOP DILATATION OPERATOR. There are essentially four different Feyn-
man diagrams that contribute to the two-loop dilatation operator in the SU(4)
sector of ABJ(M). These diagrams are shown in figure 3.4, and only involve
a single operator, depicted by the thick horizontal line at the bottom. We also
suppress any propagators that are not connected to an interaction vertex. The
last diagram in figure 3.4, is not a single Feynman diagram. Instead the bubble
indicates the scalar self-energy. The exact form of the diagrams contributing
to the scalar self-energy can be found, e.g., in Paper 1.

Only the first three diagrams in figure 3.4 act non-trivially on the flavors of
the operator. It will be enough to focus on these diagrams, since the rest of the
dilatation operator can be reconstructed using supersymmetry.

To capture the flavor structure of the diagrams we introduce two operators
acting in flavor space: the permutation operator P: V®V — VRV (or P :
VoV —-V®V),andthetrace K : VRV - VRV (or K: VRV = VRV),
which are defined as

1/1/
Py —5 6 ”—5,6, (3.22)

We can represent these operators graphically as

r=>< k=
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The first diagram involves the sextic scalar vertex. Using the momentum
space Feynman rules from [138],

RURTY RN S

T2 kkJ @lg—k2k-pr s '
22L

:——ZH,JFO (3.24)

where &; is the flavor structure obtained from the sextic vertex
B =1-2P 1+ K 1Ps2+ K1 142Piiso — 5K — %Kl+1,z+2 . (3.25)
The second and third diagram in figure 3.4 are given by

NM k- (
= 2(4r)2 /dD e s ZZK”H (3.26)
/—12 2L
=i K1, (3.27)
61:1
_ p, 0.4 (k—q)(p— k 61
>< = —(4n)? k/d P Zsz
(3.28)
/—12 2L
— gZKlJH _ (3.29)

The total contribution to the dilatation operator is then

2L
0D =22 Z (3+c—Pso+3Kis1Pyso + 3K i42Py2) - (3.30)
=1
Note that the terms that act only as a trace on two neighboring fields have
completely cancelled. c is the contribution from the last two diagrams in fig-
ure 3.4. These were directly calculated in, e.g., [30, 31], and also as part of
the four-loop calculation in Paper I. However, to determine the two-loop di-
latation operator, we only need to consider the action of the above operator
on any chiral primary operator. Chiral primaries transform in a symmetric,
traceless representation of SU(4). Hence, they are annihilated by K and have
eigenvalue one under P. Acting with the above expression for 6 on a chiral
primary operator Oy, of length L then gives

[6D,0.] =2L2? <c—;) Op. (3.31)
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Since the dimension of Oy, is protected to all orders in perturbation theory,
supersymmetry requires ¢ = 1 /2. Our final expression for the two-loop dilata-
tion operator of ABJ(M) is then

2L

0D =23 (1=Puja+ 3K P+ 3KioPun) . (332)
=1

In the next section we will study this Hamiltonian in more detail.

3.3 Bethe equations for scalar sectors of ABJ(M)

Tue SU(2) x SU(2) sector. The spin-chain Hamiltonian (3.32) was first
studied in [135]. Let us restrict to operators in the closed SU(2) x SU(2) sub-
sector, where the operators are built up of the fields Y!, Y2, Y; and YI LIt
is clear that the trace operator K acts trivially on any operator in the sector.
Hence the two-loop Hamiltonian takes the form

2L

Hg(mxw(z) = Z(l —Pliy2)- (3.33)
=1

Note that the permutation operator acts on either two odd or two even sites.
Hence, the fields on the even and odd sites are completely decoupled. The
structure of the SU(2) x SU(2) Hamiltonian is that of two independent Heisen-
berg XXX/, spin-chains of length L.

The Heisenberg spin-chain is one of the most well known integrable quan-
tum models. For a simple introduction see, e.g., the recent review by Minahan
[139]. Here I will just recollect some basic results. The spectrum of the Heisen-

berg model is given by a set of Bethe roots, or rapidities, u;, i = 1,...,K with
K < L/2. The roots are solutions to the Bethe equations
u; + é k K ui—uj+ i
=) =]]——. i=1,....K. (3.34)
uj—35 A Ui U

Given a solution to these equations, the corresponding momentum P and two-
loop correction to the energy E can be calculated as

z+2 RS 1
:_lng —, 5A:mZ i (3.35)

i=1 wi—g

These expressions lead to the energy and momentum of a single magnon

i+ 4 -
2 e(p;) = 44%sin’

(3.36)

Di
= —il —.
Di 110g 3

u; 2
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These results can be directly imported to the ABJ(M) model. The spectrum
of gauge invariant operators in the SU(2) x SU(2) sector is described by two
sets of Bethe roots, u; and v;, satisfying the equations

N\ L
i K, .
) :I—”[u,-—uj+z i1 %
M—L ! .M'—M'—l.7 IR R
) JAETE
N\ L
vits K vi—vj+i

(3.37)

—% =11, — = i=1,...,K,.
vima) o AV

A solution to these equations corresponds to an operator with anomalous di-
mension

Ky K,

I I I 1
-— |+ —— . (338

oA = id? :
ui+z U—jz Vitg Vi—g

i=1 i=1

Not all solutions to (3.37) correspond to a gauge invariant operator. The
reason is that the gauge invariant operators we consider are given by the trace
of a product of fields. The trace is invariant under a shift by two sites. For a
state of the spin-chain to actually correspond to a gauge invariant operator, it
needs to possess this symmetry. This requires

PP =1 or  P,+P €2nZ, (3.39)
where < _ < _
R u; + é I~ Vi + é

P,=—i) log = P,=—i) log = (3.40)
it R s

are the total momenta of the two SU(2) sectors.

Tue SU(4) sector. The Hamiltonian in the SU(2) x SU(2) sector turns out
to be integrable. However, this result is fairly trivial, since any SU(2) spin-
chain with spin-1/2 sites and only nearest-neighbor interactions is integrable.’
Let us therefore instead study the full SU(4) Hamiltonian. There are several
ways to try and answer the question of whether a given spin-chain Hamilto-
nian is integrable. In [139, 30] the authors directly construct the correspond-
ing R-matrix. As a complement to these derivations I will now check that the
Hamiltonian gives the same spectrum as the Bethe equations of an integrable
alternating spin-chain with su(4) symmetry.

A nearest-neighbor Hamiltonian for a spin-chain with sites in the fundamental representation of
SU(N) is given by an identity term and a permutation. By shifting the energy of the ferromagnetic
ground state, we can always write it in the conventional form for the Heisenberg spin-chain:
1—-P.
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From the construction in [144], it is possible to write down a set of Bethe
equations for any spin-chain with a symmetry algebra given by a simple Lie-
algebra, and where the sites of the chain transform in fundamental represen-
tations, or symmetric tensor products of such representations. The only ingre-
dients that go into the construction are the Cartan matrix of the algebra, and
the weights of the representations. For a spin-chain with su(4) symmetry and
with alternative sites transforming in the fundamental and antifundamental
representations, this construction gives the Bethe equations

.\ L ,

Ui+ 3 Ko u,-—uj+iK’ U—rj—s
. :” - -, (3.41a)

u;— 1L U — U — o — A

1 2 j7él J Jfl L J 2

K '

lznri—rj+l:Ku (TS § ri_vj_ﬁ, (3.41b)

e R ) oy d
RN T iUy i = Vit g

. L .
Vi—F% LS vi—vj—i—iK’ v,-—rj—é
) ] (3.41¢)

i Cyi—i e L
L j;éiv’ Vj lj:lvt r]—|—2

Vi—2

As for the SU(2) x SU(2) case, the energy of a state is related to the Bethe
roots as in (3.38). A state with excitation numbers K,,, K, and K, describe a
state in the su(4) representation with Dynkin labels [L — 2K, + K, K, + K, —
2K,,L—2K,+K,].

We will now reconstruct a Hamiltonian that produces the spectrum we get
from these equations. The Hamiltonian should be acting on three consecutive
spins. The tensor product of three alternating spins, where the first spin is at
an odd site, decomposes into the representations

42424=404020336. (3.42)

Starting with an even site, the set of representations appearing in the tensor
product is the conjugate of the above. A general SU(4) invariant Hamiltonian
acting on the alternating spin-chain can be written as

H =2 Z (coPl(36) + c1731(20) +cz73,(4) +C3731(4/)>
l even
_ ’ i ; N (3.43)
+2 ) (aP +a P + P +apY),
I odd

where PI(R) projects the sites /, / 4+ 1 and / 4- 2 onto the representation R. The

prime in the last projector is included to distinguish the two projectors onto
the two four-dimensional representations. For simplicity I will assume that the
Hamiltonian is parity invariant, and hence that ¢; = ¢;.* The projectors can be

The same argument goes through without this assumptions, though we have to consider all
spin-chain states of length four, not only those corresponding to physical operators.
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Table 3.1: The anomalous dimensions of scalar operators with L = 2, calculated from
the SU(4) Bethe equations (3.41). These results were obtained in [135].

SU(4) representation 84 20" 15 15 1 1
Anomalous dimension 04> 82% 61> 64 21> 104°

expressed in terms of the operators P and K as

P36 _ p(3) _

(1= 35 (K + Kigr42)) (14 Pga)

~
N —

!
77,(20) = 77,(20) =1 (1= 3 (K1 + Kir42)) (1= Prigr)

@ _ @ _ 1 | 7 BRI
P =P =1 (Kl 1+1 + Kit1 l+2) (1 +Pl,l+1) )

731(4/) :73,@/) ¢ (Kiuv1+Kivii12) (1=Prya) -

To determine the coefficients c¢;, we will use the Bethe equations (3.41) to
calculate the energy of a few simple states of length L = 2. The length two
states fall in the irreducible representations’

4242424=1"015*®20 450450 84. (3.45)

Not all of these representations correspond to gauge invariant operators, since
they do not satisfy the zero-momentum condition (3.39). In [135], the spec-
trum of dimension two operators was analysed from the Bethe ansatz. The
result is summarized in table 3.1

To analyse the spectrum of the Hamiltonian (3.43), we will start by consid-
ering the four operators

Ogs =te (Y'¥[Y'Y{). (3.46)
O =t (Y'Vj¥2¥] ) —ue (v'¥Viv?y) | (3.47)
Oy = tr <Y Y, v’ YT) fur (Y’Yj y’ Y,T) : (3.48)
O =u (Y Yy )~ (Yvjy'y)) | (3.49)

This choice is very convenient, since each of these operators is annihilated by
all but one of the projectors in the Hamiltonian:
HOgy =410 Ogq, HOpy =41%c1 Oy,

o o (3.50)
H01+ =41 6201+, HOI— =41 0301—.

The representation 20’ that appears in this tensor product is not the same as the 20 in (3.42). For
instance, the former is real while the latter is complex.
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To reproduce the spectrum in table 3.1, we need to have cg = 0 and ¢; = 2.
Since there are two singlets with different energies, there are two possibilities
for the coefficients ¢; and cj3:

Cz:%’Q:%’ or ‘32230325 (3.51)
Let us define the corresponding two Hamiltonians
2, =12 Z (27;](20) +1 771(4) n %Pl(m))
+l;2vei (27;;2'0) +lp@ s Pl(a')) | (3.52)
[ odd
Hy =12 Z <2P1(20) Lip@ L 731(4')>
* lﬂzz (2P +3PY + 1P} . (339
[ odd

Both H and H; give the correct spectrum for the above four operators. Hence,
we need an additional operator to distinguish them. A good choice is the oper-
ator

Os = tr (Ylyjy’ 1/,*) —tr (Y1Y,TY’ Y) ) : (3.54)
in the adjoint representation 15. Acting with the two Hamiltonians, we get

2612 -
H] 015 - T 015 3 Hz 015 - 6A 015 . (355)

Hence the spectrum from the Bethe equations is correctly reproduced only by
H>. To compare this Hamiltonian with the perturbative result of last section,
we write out the projectors in terms of the operators P and K using (3.44). The
result,

Hy = 12 Z (1=Psa+ %KIJ-&—IPZ,HZ + %Kz+1,z+2P1,z+2) ; (3.56)
]

exactly agrees with the two-loop dilatation operator (3.32). This shows that
the two-loop spin-chain Hamiltonian in the SU(4) sector is integrable.

3.4 More fields

In the last two sections we concentrated on the scalar SU(4) sector of ABJ(M).
It is straightforward to conjecture a set of two-loop Bethe equations for the full
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theory, by applying the construction of Ogievetsky and Wiegmann [144] to the
symmetry algebra 0sp(6|4).® The resulting equations were given in [135].

In [137] the two-loop Hamiltonian of a spin-chain containing one fermionic
excitation, in addition to scalar excitations, was computed. The spectrum of
this Hamiltonian exactly agrees with the prediction from the osp(6(4) Bethe
equations. An extension of the perturbative calculation to the full theory would
require a lot of work. Fortunately, we do not need to obtain the full Hamilto-
nian from perturbation theory to check the validity of the Bethe equations.
In [175], the Hamiltonian of the osp(4|2) subsector of the theory was shown
to possess an extended Yangian symmetry. This guarantees that the Hamilto-
nian of the sector is integrable.” Moreover, the 0sp(4|2) Hamiltonian can be
constructed using the R-matrix formalism, and uniquely lifts to the full theory.
A similar construction of the osp(4(2) dilatation operator from the R-matrix
was also performed in [137]. The obtained Hamiltonian agrees with the known
perturbative results.

3.5 More loops and the power of s1(2|2)

In [92], a conjectured all-loop extension of the Bethe equations discussed
above was put forward. The structure of these equations in many ways mim-
ics the all-loop Bethe equations of the AdSs/CFTy duality [36]. As discussed
in section 2.8, the spin-chain ground state breaks the osp(6]4) symmetry to
su(2|2). This symmetry is an essential ingredient in the extension of the inte-
grable two-loop Hamiltonian to higher loops.
Two of the most important components in understanding the spectrum of

an integrable quantum model are

1. the S-matrix describing the scattering of two excitations; and

2. the dispersion relation relating the momentum of a single excitation

to its energy.

The two-particle S-matrix enters the right-hand-side of the Bethe equations,
which in turn determines the quantization of the momenta of the excitations.
The dispersion relation give us the energy carried by the excitations. As we
will now see, both the S-matrix and the dispersion relation for the ABJ(M)
spin-chain are highly constrained by the su(2|2) symmetry.

THE S-maTrIX. Since the excitations of the ABJ(M) spin-chain can be di-
vided into those sitting on odd (A-particles) and even (B-particles) sites, it is

Only Lie-algebras are treated in detail in [144], but the construction has been shown to work also
for many superalgebras, see, e.g., [134, 135]

A similar argument showing the integrability of the one-loop spin-chain Hamiltonian of N'= 4
super Yang-Mills was given in [64].
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natural to split the two-particle S-matrix into three parts: scattering of two A-
particles, of two B-particles, and of one particle of each kind. This structure
was analyzed in [8]. The su(2|2) symmetry forces each of these parts to be
proportional to the S-matrix of AdSs/CFT4 [40, 21]. The phases of the dif-
ferent terms are constrained by unitarity and crossing symmetry [108]. The
authors of [8] found a solution based on the BES dressing phase [38]. The
resulting two-particle S-matrix reproduces the all-loop Bethe equations de-
scribed above [8]. Hence the S-matrix of ABJ(M) is very closely related to
that of A= 4 super Yang-Mills. The differences between the two theories is
in the coupling constant dependence. The S-matrix in [40, 21] depends on
the "t Hooft coupling Ayy = g%MN . In ABJ(M) this coupling is not directly
replaced by the A, but by a function of the couplings A and o

Adyy — 4n*h* (A, 0). (3.57)

An interesting property of the proposed S-matrix of ABJ(M) is that the
mixed scattering between A- and B-particles is reflectionless [9, 12]. This
has been checked perturbatively at both weak [10] and strong [173] coupling.
The S-matrix of ABJ(M) is discussed in more detail in Paper IV and in sec-
tion 6.5.3.

THE DISPERSION RELATION. ~ As a consequence of su(2|2) symmetry, the disper-
sion relation of a magnon with R-charge Q is given by [40]

e(p) = \/ Q2 +4h%(A,0) sin® g. (3.58)

Note again the appearance of the function /%(1,0), replacing the simple de-
pendence on Ayy in /=4 SYM. For the fundamental magnon in ABJM
QO = 1/2, while the magnon of A'=4 SYM has Q = 1. The magnons of the
two theories transform in the same representation of SU(2|2). The different
values of Q for the dispersion relations can be traced back to a difference
in the way the central charge A —J of su(2|2) is embedded in 0sp(6|4) and
psu(2,24).

Both the S-matrix and magnon dispersion relation of ABJ(M) depend on the
coupling constants of the theory through the function 4?(1, ). Also the Bethe
equations depend on the couplings via this function. Hence, an anomalous
dimension calculated from these equations is given as a function of 4, and not
of A and A. To express such results in terms of the parameters of the action,
we need to determine the form of #2(2,0).
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By comparing the general form (3.58) with the weak coupling result (3.36)
we see that the leading expansion of /#%(1,0) is given by

R (A,0)=212+01%). (3.59)

In chapter 6 we will see that the strong coupling behavior is different,

= A
W (A,0) = 5 o). (3.60)
Hence, there is a non-trivial change in the coupling dependence between weak
and strong coupling. The next chapter, as well as Paper I, Paper III and Pa-
per 11, is devoted to the perturbative calculation of the next term in the above
expansion.
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4. The four-loop dispersion relation of ABJ(M)

In the last chapter we saw that both the magnon dispersion relation and the
two-particle S-matrix have a non-trivial dependence on the coupling constants
A and o, parametrized by the function /%(1, ). Since only Feynman diagrams
with an even number of loops are divergent in three dimensions, the next-to-
leading correction to the dilatation operator will appear at four loops. Provided
the ABJ(M) spin-chain is integrable, these corrections should be captured by
the next term in the weak coupling expansion of the function 4?(1,0).

In Paper I and Paper II this four-loop correction to 4*(1,07) was calculated
using perturbation theory. The perturbative calculations were performed both
in a component formalism (Paper I) and using A/ = 2 superfields (Paper 1I)
and result in the expansion

W(A,o) =1 -1 4+02)oH+0(29). @.1)

The four-loop coefficient of this expansion has a few interesting properties:

e Both terms in (4.1) are proportional to ;. In general we would expect a
four-loop result to also contain a rational part. Such terms appear in indi-
vidual diagrams but cancel, leaving a final result of “maximal transcenden-
tality”. In the component calculation this cancelation seems almost mirac-
ulous, but in the superspace calculation there is a correlation between the
rational coefficient of single and double poles of each diagram. Renormal-
ization requires the double poles to cancel, which also removes the rational
part of the single poles that contribute to the final result.

e Both coefficients are integer valued. Individual diagrams contain terms
where (, is multiplied by various rational numbers, but in the final result
these add up to integers.

e The result (4.1) is even in o and hence preserves parity. From both the
gauge theory side and string theory side of the AdS4/CFT3 duality we ex-
pect parity to be broken in the ABJ model where o # 0. Moreover, in [55]
it was shown that the non-planar corrections to the two-loop dilatation op-
erator of ABJ does not preserve parity. It remains to see if parity is an
accidental symmetry of the planar four-loop operator or remains preserved
at higher loops.
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e The result for 4%(1,07) up to four loops can be written in a particularly
simple form if we rewrite it in terms of the couplings A and A,

R (A,0) = AA(1 — (A+2)%5) + 0(29). (4.2)

At higher loops each term appearing in the expansion of 4*(1,0) should
contain a factor A1 times some combination of the two couplings. The rea-
son for this structure is that in the SU(2) x SU(2) sector all diagrams with
non-trivial flavor structure involves at least three neighboring fields. Hence
the color loops in the diagram will always give a factor NM times some
combination of N and M. In terms of the couplings this translates to an
overall factor of A1. However, there does not seem to be a reason to expect
the rest of the coupling dependence to combine into powers of A+ A.

The rest of this chapter contains some comments on various aspects of the

perturbative calculations presented in Paper I and Paper I1.

4.1 Extraction of h*(2,0)

To find the magnon dispersion relation it is enough to focus on the closed
SU(2) x SU(2) sector of ABJ(M). In this sector there are two different types
of magnons — corresponding to the two factors of SU(2) — which sit at even
and odd sites of the spin-chain, respectively. From the SU(2|2) symmetry it
follows that the dispersion relation of a magnon sitting at an odd site should
have the form

1 _
€oad(p) = \/ i 4h2(A, o) sin? g . (4.3)

The dispersion relation of the even magnon has the same form, but with the
parameter o replaced by —o:

Eeven(p) = 6Odd(p)|o-—>—o- > 4.4)

This difference is easy to understand in a perturbative calculation, where we
get the diagrams contributing to €yen by taking the diagrams for €,44 and shift-
ing them one spin-chain site. This shift corresponds to an exchange of the
couplings A and A, and hence to a change in the sign of ¢. This relation is
discussed in [138].

The expansion of 4?(1,0) can be written as

R (A,0) = 224 1*hy(0) + O(2°). (4.5)

Inserting this into (4.3) gives

1 ] _
oaa(p) = 5 +422 sin2§—/l4 (16sin4§—4h4(a) sin? g) +O). (4.6)
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We also expand the dilatation operator

D =204 22900 L 1*0® 1L 0(2%). 4.7)
Each term in this expansion can further be split into parts acting on a number
of sites with the first site being odd or even

D) — @U Jr@()

even *

(4.8)

The only flavor structures that can appear in the SU(2) x SU(2) sector di-
latation operator are permutations. In Paper I and Paper II we use the notation
L
{ar,a0,....an} = ZPZH—LII,21+al+2P21+a2721+a2+2 “Prta, 2itant2, (4.9)
=1
where the operator P, ; is the two-site permutation operator used in the last
chapter. Note that if all the coefficients a; are odd (even) the above structure
only contains permutations acting on odd (even) sites. At four loops the di-
latation operator acts on at most five consecutive sites. However, due to su-
persymmetry we know that the anomalous dimension of any chiral primary
operator should vanish. Hence we can restrict ourselves to combinations of
permutations that annihilate such operators. Such structures, or chiral func-
tions, were used in the four-loop calculation of wrapping interactions in N'= 4
SYM [70, 71], and in the superspace calculation in Paper II. Here we will need
the structures

x(a,b) ={a,b} —{a} —{b}+{},  x(a)={a}—{}, (4.10)
in terms of which the two-loop dilatation operator can be written as
D% = _22(x(1) +x(2)). (4.11)

This has the same form as the Hamiltonian of the Heisenberg spin-chain
The dispersion relation (4.6) can be reproduced by acting with the dilatation
operator (4.7) on the single magnon state'

0, = S P (YY) (2 (v e (4.12)
=0
provided
((Jdd = —x(
even = ~X(2),
odd = —x(1,3) —x(3,1) + (2 — ha(0) x (1),
Dl = —x(2,4) —x(4.2) + (2 — ha(—)x (2).

The singel magnon operator for a spin-chain of length L, O,, is not gauge invariant unless p = 0.
Still we can consider it as a state of the spin-chain.

1,

(4.13)
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We can now extract the function /4 (o) by comparing the results of the pertur-
bative calculations with (4.13).

Note that the above dilatation operator does not contain any flavor struc-
tures involving both odd and even sites. Hence the two types of magnons are
decoupled at this order of perturbation theory. This feature is explicitly veri-
fied in Paper I and Paper II, and was also previously noted in [32]. From the
Bethe equation we expect the magnons to interact through the dressing phase
which appears at eight loops [92].

4.2 Comments on the perturbative calculations

The perturbative calculations of 44 (o) using component and superspace Feyn-
man diagrams are presented in Paper I and Paper II, respectively.? Here I will
not go into the full details of the calculations, but only discuss a few central
points.

COMPONENTS VERSUS SUPERSPACE. A big advantage of performing the calcula-
tion of renormalization factors in superspace is that the Feynman diagrams
behave better in the ultraviolet. This greatly reduces the number of diagrams
that we need to consider. For example, the component calculation in Paper I
involves on the order of 100 diagrams, while 15 diagrams are needed in the
superspace calculation in Paper I1.

However, the better ultraviolet behavior of the superspace diagrams comes
at the expense of worse behavior in the infrared. In the component calculation
all infrared divergences can be avoided by an insertion of non-zero external
momentum in two vertices. In the superspace calculation there are diagrams
that contain both ultraviolet and infrared divergences. To ensure that the final
result is free of infrared divergences we need to include extra diagrams that are
finite in the ultraviolet region but divergent in the infrared, thus canceling the
overall infrared divergence. Another possibility for taking care of the infrared
divergences would be to use a non-standard gauge fixing procedure. For the
ABJ(M) case this was analysed in [122], based on a four-dimensional proce-
dure introduced in [2]. While this would get rid of the infrared divergences, it
would complicate the Feynman diagrams involving gauge fields.

ReNorMALIZATION SCHEME. In both Paper I and Paper II local operators are
renormalized using minimal subtraction [164]. To perform the regularization

Reference [138] gives the full details of the component calculation, including the calculation of
the involved scalar integrals. Paper I contains the results for the relevant Feynman diagrams, as
well as a discussion of the final results.
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we use the BPH procedure, in which we take care of the subdivergences
of each diagram in order to extract only the overall divergence of the dia-
gram [49, 101, 174].3 This means that we never need to introduce explicit
counter terms in the action. In particular we do not distinguish between sub-
divergences appearing at a vertex and at a local operator. The ABJ(M) model
is conformal and therefore has zero beta-function. Hence all subdivergences
related to a particular vertex should cancel in the final result. As a check of
our calculation we show in Paper I that the two-loop beta-function of the six-
vertex indeed vanishes.

Fravor sTRucTURES.  In order to reduce to number of diagrams we can make
use of supersymmetry. The dimension of a chiral primary does not receive any
quantum corrections. Hence the four-loop corrections to the dilatation opera-
tor should annihilate such states. In the SU(2) x SU(2) sector the only flavor
structures that appear in the dilatation operator are permutations. In partic-
ular there is a term proportional to the trivial permutation, i.e., the identity
operator. In the component formalism there are many Feynman diagrams that
contribute to this term. However, we do not need to calculate these diagrams
explicitly. Instead we calculate the part of the dilatation operator that involves
non-trivial permutations, and act with it on a chiral primary. The condition that
the total four-loop result vanishes for such operators allows us to determine
the coefficient of the identity term.

Due to the structure of the superpotential, chiral primary operators are an-
nihilated by each individual diagram in the superspace calculation. Hence we
automatically get the identity part when we calculate the non-trivial permuta-
tions in this formalism.

CoupLING DEPENDENCE. The ABJ model contains two 't Hooft coupling con-
stants, 1 = N/k and 1 = M /k. In a diagrammatic calculation the factors of
N and M that contribute to these couplings come from color traces in the di-
agrams. In a planar theory these factors can be read off directly from each
diagram. Each face of the diagram gives a factor N or M. Any two loops that
share a matter propagator will give rise to a factor NM, since the matter fields
of ABJ transform in the bifundamental representation of the gauge group and
the color traces in the two loops are taken over the fundamental representa-
tion of U(N) and U(M), respectively. On the other hand, if two loops share
a gauge propagator they will give a factor of either N> or M?, depending on
which gauge boson appears in the loops.

3 See [61] for a nice introduction to the BPH procedure.
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CANCELATION OF DOUBLE POLES. In dimensional reduction we perform all inte-
grals in D = 3 — 2¢ dimensions and extract the dilatation operator from the
renormalization of the local operators using the prescription

dlog Z(,¢)

— 4.14
dlogAd ( )

09 = lim2e
e—0
For this limit to be convergent, log Z cannot contain higher poles in 1/e. Up
to four loops log Z has the expansion

- - 1 -
logZ =122, 4+ 2% <z4 — 2222) +0(29). (4.15)

The two-loop result Z, contains only single poles while Z; contains both
single and double poles. From the above expression we see that the double
poles are not arbitrary, but should be proportional to the square of the two-loop
result. We can use this requirement as a consistency check on the four-loop
calculation. For the superspace calculation this is presented in Paper II. The
check for the component calculation is not included in Paper I, but in the
extended paper [138].

Note that Z, and Z4 are operators acting on the spin-chain. Hence the above
equation should be read as an operator equation and the term quadratic in 2,
should be interpreted as the result of acting twice with Z; on a spin-chain
state.

4.3  Wrapping interactions

The range of the spin-chain Hamiltonian grows with each order in perturbation
theory. The two-loop Hamiltonian presented in the last chapter acts on three
consecutive spin-chain sites, and the four-loop corrections discussed in this
chapter involve up to five neighboring sites. This means that we need to be
careful if we want to calculate the anomalous dimension of short operators.
Consider for example the operator

Oa = trY“Y[ZYZ]Yﬂ ,
of length four and in the 20 representation of SU(4). This operator is in the
SU(2) x SU(2) sector, but since it is made of only four fields we need to be
careful when applying the four-loop dilatation operator D@ to it. Some of
the Feynman diagrams contributing to ©) involve five neighboring fields,
but when we consider (O these diagrams should not be included. On the
other hand we need to consider additional diagrams called the wrapping dia-
grams [37, 157]. These are diagrams that would be non-planar if the operator
had length larger than four, but become planar for short operators.

(4.16)
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The calculations in Paper I and Paper II show that the anomalous dimension
of Oz() iS4
Y20 = 812 — (484, +8L,0%) A+ O(1Y). (4.17)

This result agrees with a prediction by Gromov, Kazakov, and Vieira [94],
provided we plug in the expansion of #%(1,c) from (4.1) in their result. These
authors find their prediction from the Thermodynamic Bethe ansatz (TBA),
which is based on the asymptotic Bethe equations [92]. The TBA was origi-
nally introduced in the AdSs/CFTy case in [15, 16]. Using the string hypothe-
sis for the mirror theory [19], the TBA can be formulated as a set of difference
equations, known as the Y-system [95, 51, 18, 52, 89], which can efficiently
be solved order by order.

4.4  An interesting limit.

The appearance of two coupling constants in the ABJ limit enables us to ex-
plore various limits of the theory. In particular in Paper I we discuss the case

l<ikl. (4.18)

In this limit we can keep only the leading order terms in A and perform a per-
turbative expansion in 4. We can then consider the rescaled dilatation operator
1
A

D=5690=-21-02)(x(1)+x(2)+ 0. (4.19)
Note that D has the form of the Heisenberg XXXj /, spin-chain Hamiltonian
and that the effect of the four-loop result is captured by the overall normaliza-
tion of D without any new interactions appearing. In particular it only acts on
three sites in the spin-chain at a time. From the structure of the Feynman dia-
grams we expect this structure to continue to higher loops. For a diagram to
be proportional to A, as opposed to higher powers of A, it can involve at most
three neighboring fields. The only flavor structures that can appear is then the
identity operator and next-to-neighbor permutations. As discussed above, su-
persymmetry fixes the coefficient of the identity term to be minus that of the
permutation. Hence we end up with a result of the form

D =—=af()x(1)+x(2)). (4.20)

Since this Hamiltonian has range three there are no wrapping interactions
for states with four or more sites even at higher orders in 4. Moreover, since

Note that the result of the wrapping diagrams by themselves differ in the two calculation, while
the results for the physical dimension ;g agree. The reason is that the contribution to the
asymptotic dilatation operator from diagrams of range five is different in the two formalisms.
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D is proportional to the XXX, Hamiltonian the system is integrable to any
order of perturbation theory.

At first sight the absence of wrapping interactions seems to be a very strong
result, since the asymptotic Bethe equations now give the full answer. How-
ever, the couplings A and A can not take arbitrary independent values. As noted
in chapter 2 consistency of the ABJ model requires |1 — 1| < 1. At weak cou-
pling this still allows us to take the limit (4.18), but at strong coupling A and
A are always required to be of the same order. Hence it is not consistent to
take the limit 1 < A when A and A are large and the absence of wrapping
corrections is a purely weak coupling result.
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5. String theory on AdS, x CP?

Planar ABJM theory is dual to free type IIA string theory in a background
of AdS, x CP3. A nice way to understand this background is from M-theory,
where it arises in the low energy limit of the world-sheet theory on a stack
of N M2-branes at a C*/Z; orbifold point. This M-theory description clari-
fies the origin of the parameters N and k and explains some of the numerical
factors that appear in the string theory formulation. However, since the focus
of this thesis is on the integrable aspects of the AdS4/CFT3 duality, which on
the gravity side only appear in the string theory limit, I will first give a brief
introduction to type IIA string theory in AdS4 x CP?, and come back to the
M-theory picture in section 5.5.

5.1 The background

Four-dimensional anti-de Sitter space is a solution to the equations of mo-
tion of Einstein gravity in vacuum with a negative cosmological constant. The
space has a constant negative curvature and can be embedded as AdS; C R??
by imposing the constraint

P=g =)+ + D)+ () =1, (5.1

on the embedding coordinates Z. We can solve this constraint by

7= coshp sint, L= coshp cost,

2= sinhp sin¢ siné, 2= sinhp cos¢ sinf, 2= sinhp cosé,

(5.2)
which gives the metric
dsigs, = —cosh’pdt® +dp® +sinh® p(d6® +sin® 0d¢?) . (5.3)

The coordinates take values! —co <t < 00,0 <p <o0,0< < mand0< ¢ <
2.

Note that the time direction ¢ appears to be compact in these coordinates. We will always consider
AdS; to be the universal cover of this space, where ¢ can take on any real value.
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To obtain the complex projective space CP" we consider C"**!\ {0}, which
we write in terms of the coordinates

V=012 ecrt {0}, (5.4)
and identify points that are related by multiplication by an overall constant.

n+1)

Oy (' k%", ke C\{0} (5.5)

By a suitable choice of « we can rescale the coordinates ¥ so that
57 =y'5 4+ Y e =1 (5.6)

This defines an S?**! submanifold of C"*!. To get CP" we still need to iden-
tify points related by an overall phase. Hence we can write CP" as the quotient
g2t / S!, where S! indicates simultaneous rotation of all coordinates y’ by the
same phase. CPP" is a Kéihler manifold [141], with Kdhler metric

- — 2
dy'dyr  |y'dy|
=12 -4
¥l 5]

dS(C]P)n = (5 7)

This is called the Fubini-Study metric of CP". The corresponding Kéhler form

is given by
¥
dw—zd( )/\d( ) (5.8)
1y v

In the case of CP? we can parametrize y in terms of the six angles 0 < & <
5.0<n<2r,0<9; <mand 0 < ¢; <2, withi=1,2, as

y! = siné& cos ’922 tig2/2 p=in/2

y = cosé COS +up1/2 +m/2
1‘} —ip1/2 +in/2 (59)
Y =cosésin G e WSS
y* = siné sin % e 92/2 omin/2
The metric in these coordinates is given by
1 1 1 :
ds? Seps = = d&? +7s1n 26 dn+ = cost dp; — = costhdpr
1 2 1 2 (5.10)
+7 cos® & (d97 +sin* 9 det) + 1 sin*¢ (d03 + sin® 9, dy3) |,
and the Kihler form by
1
dw = Ed (cos2§dn+cos2§ costh dp; + sin2§ cosﬁzdtpz) . (5.11)
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The angles ; and ¢; parametrize two two-spheres inside CP?. We will discuss
various other submanifolds in chapter 6.
The full metric of the background is now

R2
ds® = stZAd& + R dsgps (5.12)
where R is the CP3 radius. Note that the AdS radius is half of that of CP3. The

radius is related to the integer parameters N and k as

322N
R = ’]TC — 4722, (5.13)

where we again have introduced the "t Hooft coupling 1 = N /k.

IsomeTrIES. From the form of the metric on AdS4 and CP? in (5.3)and (5.10)
it is clear that this background admits five Killing vectors

A=—id, S=—ids, Q=—idy, J=—i0y, J3=—idy. (5.14)

These generators make up the Cartan subalgebra of the isometries of the back-
ground. The notation for the charges has been chosen to match the notation
for the OSp(6|4) charges in chapter 2. We can read off the full isometry from
the embedding AdS4 x CP?  R%3 x C*. The conditions in (5.1) and (5.6) are
preserved by SO(3,2) and SU(4) rotations of the coordinates, respectively.

From (5.14) we see that the charge A gives the space-time energy of a string
state. In the AdS/CFT correspondence this is dual to the dimension of the cor-
responding operator on the gauge theory side. In chapter 2 we also introduced
the spin-chain energy A —J. In the string theory this charge plays the role of
the world-sheet Hamiltonian, provided we use light-cone gauge.

In addition to the isometries the AdS4 x CP? background is preserved by
24 supersymmetries [142]. Together these charges generate the supergroup
OSp(6/4).

THE DILATON AND STRING COUPLING. The background contains a constant dila-
ton, which can be expressed in terms of the parameters of the theory as

27\ L/4
=R (32” N) _ VT )54, (5.15)

k K N

Since the string coupling is given by the dilaton, g; = %, we note that the pla-
nar limit N, k — oo with A fixed (see also (2.47)), is a weak coupling limit on
the string theory side. To leading order in 1/N, we only need to consider freely
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propagating strings. Note that this still is a highly non-trivial problem, espe-
cially when the coupling A is small and hence the curvature of the background
large.

If we do not consider the planar limit, but let k£ be a small number, the theory
becomes strongly coupled for any value of N. But strongly coupled IIA string
theory has a more natural description in terms of M-theory. Hence, the above
expression for the dilaton gives us a hint about the M-theory origin of the
theory. This will be explored in more detail in section 5.5.

FIELD STRENGTH FLUXEs. In addition to the metric and the dilaton, the back-
ground contains non-trivial Ramond—Ramond field strength fluxes. There are
N units of four-form flux F*) through AdS4, with F (4) proportional to the
volume form,

3kR? 37N
FW = g EAds; = EEAdm- (5.16)

The two-form F () wraps a CP! inside CPP? and is proportional to the Kihler
form

FY = kdw. (5.17)

There is also a non-vanishing Neveu-Schwarz—Neveu-Schwarz B-field, which
will be discussed in section 5.4.

5.2 The Green-Schwarz action

So far we have only discussed the bosonic sectors of the string theory. The
AdS4 x CP? background contains non-trivial Ramond-Ramond fields, and
hence it is useful to describe the full string theory by a Green-Schwarz ac-
tion [83]. The Green-Schwarz action for IIA superstrings in an arbitrary back-
ground was written down in [87], but the general expression is very compli-
cated to work with, since it contains terms up to 32" order in the fermions.
Still, some progress has been made in the formulation of the AdS; x CP?
case [81, 82], see also [160].

The Green-Schwarz action contains two Majorana-Weyl fermions, with a
total of 32 degrees of freedom, but half of these are unphysical, and can be
gauged away by gauge fixing the k-symmetry. Hence we end up with 16 phys-
ical fermionic degrees of freedom.
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5.3 The coset sigma-model

The manifold AdSy is equivalent to the coset SO(3,2)/SO(3,1). Similarly,
CP? is the coset SO(6) /U(3). Since SO(3,2) x SO(6) is the bosonic subgroup
of OSp(6[4) it is natural to consider the super-coset [17, 161]

G  OSp(64)

Hy SO(3,1)xU(3)’ (5.18)

in close analogy to the description of superstrings in AdSs x S° by the coset
PSU(2,2|4)/SO(4,1) x SO(5) [132].

The supergroup OSp(6|4) is semi-symmetric, i.e., it is invariant under a
Z4 automorphism. This invariance allows us to introduce a grading of the
generators of the algebra

0sp(6]4) =ho®h1 B hadbs3. (5.19)

This grading is consistent with the commutation relations

[bmv bn} C b(m—l—n) mod 4 - (5.20)

The elements of b; have eigenvalue i’ under the automorphism. The bosonic
subalgebra lives in ho & b, while the generators in h; & h3 are fermionic. The
Z4-invariant subgroup Hy coincides with the denominator of the coset (5.18).
The main object in the coset sigma-model are the Lie-algebra valued cur-

rents
j=g g =0+ jV+ [P+ 0. (5.21)

Here g is a group element of OSp(6|4). On the right hand side in the above
equation j has been decomposed into components of definite Z4 charge, i.e.,
i ep,. By construction j is a flat current

dj+jNnj=0. (5.22)
The coset sigma-model action can now be written as [17, 161]
S=-v21 / do-dt STr [\/ —hhP ) i B O (5.23)
This action possesses a gauge symmetry
(o, 7) = g(o,7)h(0,7), (5.24)

where h(o,7) takes values in Hy. It is also invariant under global multiplica-
tion from the left with any group element of OSp(6]4).

The group OSp(6|4) contains 24 odd generators, corresponding in the coset
sigma-model to 24 fermionic degrees of freedom. This means that it can not
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be equivalent to the Green-Schwarz action, which contains 32 fermions. How-
ever, like the Green-Schwarz action, the coset sigma-model is invariant under
a fermionic k-symmetry. By gauge fixing this symmetry, we get rid of eight of
the fermions. Hence, the coset sigma-model also contains 16 physical degrees
of freedom [17, 161].

For generic string configurations, the Green-Schwarz action and the coset
sigma-model are equivalent. However, for certain singular backgrounds, such
as a string moving only in AdSy, the rank of the x-gauge symmetry is enhanced
from eight to twelve [17]. For such classical solutions, the coset sigma-model
only contains twelve physical fermions, and hence can not be used in a semi-
classical quantization of the string.

5.3.1 The algebraic curve

We will now concentrate on the bosonic part of the coset sigma-model, so that
Jj takes values in h,. The equations of motion following from (5.23) are

d%j=0. (5.25)

The flatness condition (5.22) for j together with (5.25) implies that the Lax
connection

L(x)

|
j+—=xj, xeC, (5.26)
X

T2 1=
is flat for any value of the parameter x, known as the spectral parameter.
Using L(x) we define the monodromy matrix

Qx) = Pexp/dO'LU(x), (5.27)

where we integrate over a closed loop at constant 7. Since L(x) is flat, the
eigenvalues of Q(x) are independent of 7 for any x. Hence the eigenvalues
of Q(x) generate an infinite set of conserved charges, showing the classical
integrability of the model [17, 91, 161].3

Let us denote the eigenvalues for the CP? part of Q(x) by ¢, i=1,...,4
and those for the AdS4 part as ePi, i =1,...,4* The functions p; and p;

Note that the folded string spinning in AdS4 provides an example of such a singular string
background. In [13] it was shown that the correct one-loop result can be obtained from the coset
sigma-model by considering a more general solution with a non-zero angular momentum J on
CP? and taking the smooth J — 0 limit. See also [130, 120, 90, 131].

The construction of an infinite tower of conserved charges can be straightforwardly extended to
the full OSp(6]4) sigma-model [17, 91, 161]. In [159], a Lax connection for the AdSy sector of
the Green-Schwarz action, which is not contained in the coset, was constructed, indicating that
the classical integrability extends to the full string theory.

In addition to the eigenvalues ¢ the AdS part of Q(x) always has a fifth eigenvalue of value
one.
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are referred to as quasimomenta. The quasimomenta are not independent but
satisfies [91]

Pr+pr+p3+pa=0, p1+ps=0, pr+p3=0. (5.28)
It is convenient to combine p; and p; into the ten functions g; defined by

g =%5P1+p2), @=x5p1—p2),
G=p1+p2, qa=p1+p3, qs=pi+ps, (5.29)
‘110—(1'—1):_‘11'7 1:1775

These ten function define a ten-sheeted Riemann surface, or algebraic curve.

In [91], a number of properties of these functions were derived:

1. Along a square root branch cut C;; connecting the sheets i and j, continuity
of the eigenvalues of Q(x) requires g;" (x) — q; (x) € 2nZ, where the super-
script & indicate that the functions are to be evaluated just above/below the
cut.

2. The Noether charges corresponding to a solution can be read off from them
large x behavior of the quasimomenta:

q1 A+S
q2 | A—S§
a|=2\7]/+2 +0O(1/x%). (5.30)
qa J-0
qs J3

3. The functions g1, g2, g3 and g4 have poles at x = +1, while g5 does not.
The Virasoro constraint requires all these poles to have the same residue
a+ / 2.

4. Different sheets of the Riemann surface are related by inversion: ¢ (1/x) =
—q2(x), g3(1/x) = 2mtm — g4 (x) (m € Z), and g5(1/x) = gs(x).

In chapter 6 we will use the algebraic curve to find giant magnon solutions

in CP? and calculate the leading correction to their classical energy at finite

angular momentum.

5.4 Discrete torsion and the ABJ model

The string theory background described above is parametrized by the two inte-
gers N and k, and is the gravity dual of the ABJM model. As noted by Aharony,
Bergman, and Jafferis [4], we can construct a more general background where
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the Neveu-Schwarz—Neveu-Schwarz two-form B(?) acquire a non-trivial holo-
nomy on a CP! inside CP [6],

o_ 1 y _M-N 1
b >_2ﬂ/(cplcm33<>_ —+5 (5.31)
The additional parameter M is integer valued and b(®) takes values in Z;.
Hence configurations that differ in an integer shift of b should be consid-
ered equivalent. Note that the B-field is non-vanishing even for N = M, i.e.,
in the gravity dual of ABJM. As will be discussed in the next section, in M-
theory the B-field originates from fractional M2-branes which gives rise to a
discrete torsion.

Under world-sheet parity b changes sign. Hence a non-vanishing B-field
generally breaks the world-sheet parity symmetry of the theory. In the ABIM
case of b(2) = 1/2, parity takes b(2) — —b(2) = —1/2. But we can aways shift
b by one, so the result of the parity transformation is equivalent to 5(2) = 1 /2
and for this value the theory is parity invariant.

In the Green-Schwarz action this B-field enters as a #-angle, which only
affects the D-brane spectrum and the world-sheet instantons. These are sup-
pressed by exp(—+/1), and hence the perturbative analysis of the string the-
ory is unaffected by the inclusion of the B-field. However, in the full non-
perturbative theory it becomes important. In particular the question of whether
the integrability of the model holds at quantum level could depend on the value
of the 6-angle. This happens in the O(N) sigma-model, which is known to be
integrable for the two parity preserving cases of 8 = 0 and 8 = &. The physics
at low energy is very different for these two values of ¢ and there is no known
model that interpolates between these two points. Hence the question of the
integrability of the O(N) model for generic 6 is unresolved.

5.5 From M-theory to IIA strings

As mentioned in the beginning of this chapter, the gravity dual of the ABJM
theory at small £ has a natural description in terms of M-theory. Let us con-
sider a stack of N M2-branes in flat space. The near horizon geometry of these
branes is AdS4 x S” [125]. This background is maximally supersymmetric,
preserving 32 supersymmetries. The seven-sphere can be written as a Hopf
fibration with an S! fiber over CIP?. The metric on S’ then takes the form

dsly = dstps + (df +w)?, (5.32)
where 0 < ¢ < 27 In terms of the coordinates y' the last term is

iy dy —yidy'

(5.33)
2 P

dy+w=
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Note that

d (df +w) = do = id <dy >/\d<dy1> (5.34)
1y v
s0 w is the one-form potential for the Kéhler form (5.8).

In the beginning of this chapter we also introduced a set of angular coordi-
nates on CP?. We can extend these coordinate to the seven-sphere by simply
introducing an overall phase ¢ to all four complex coordinates y'.

The full eleven-dimensional metric is

L2
ds}, = stm +L7dsy; . (5.35)

In units of the eleven-dimensional Planck length, the radius of the sphere is
related to the number of M2-branes N as [125]

L= (327°N)"/°. (5.36)
The M-theory background also contains N units of four-form field strength

303

where €gs, is the unit radius volume form on AdS;.

OrBIFOLDING. We now want to deform the above setup by introducing an Z;
orbifold identification in the directions transverse to the M2-branes. In the
coordinates y' the orbifold action is

2mi I

Y —eky, keZ, (5.38)

i.e., we perform an simultaneous rotation in the four orthogonal planes span-
ned by y’. Since the total phase of ¥ is § we introduce a rescaled coordinate
W = /k, which has period 2. The resulting geometry is AdS4 x S’ /Z; with
the metric

2
Sy 4s, xs7 127, =

dsAdS4 +12 dsCP3 + (dw +kw)?. (5.39)
Since the S! fiber is shortened by a factor 1/k the total volume is decreased
the same factor. To ensure that the four-form flux is properly quantized, we
need the integer N to be an integer multiple of k: N = Nk for some integer N.

The background metric now contains two scales — the CP? radius L o
(Nk)'/%, and the radius of the S!, L/k o< (N/k>)'/%. For k> < N, the circle is
large and M-theory provides a good description. However, when k> > N, the
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geometry becomes essentially ten-dimensional, and hence the theory reduces
to weakly coupled IIA string theory.

In general, the metric of eleven-dimensional supergravity compactified on
a circle is written in terms of ten-dimensional quantities as [150]

ds?, = e Fdshy+e 7 (dy+AD)?. (5.40)

Comparing (5.39) and (5.40) we identify the string frame metric, dilaton and
two-form field strength as

» D1, p w L ) (1)
dS]]A = ? ZdSAdS4+dS(C]P’3 y e = k73, F :dA :kda)
(5.41)
We also note that the radius of CP* can be expressed as
L’ 3272N 3272N
R B _ V3N _ \/ TN 4rv22. (5.42)
k k k
The four-form flux remains the same as in eleven dimensions
303 3kR?
F® = g EAdS, = o €Ads, - (5.43)

These results exactly match the expressions given in section 5.1.

The above derivation of the IIA background form M-theory explains the
origin of the parameters N and k, as well as some of the numerical coefficients
appearing in the first part of this chapter.

SupErRsYMMETRY. As noted above the AdS4 x S’ solution in eleven-dimen-
sional supergravity is maximally supersymmetric, preserving 32 supersymme-
tries [125]. The isometries of AdS4 and S” are generated by so(8) and sp(4),
respectively. Including also the supersymmetries, the full symmetry of the
background is the supergroup OSp(84).

The orbifold action (5.38) breaks SO(8) to SU(4) x U(1). An SO(8) spinor
transform under Z;, as

\I,_>eZRi(.Y1+sz+5'3+S4)/k\P7 (5.44)

where s; = +1/2 are the spinor weights. Due to chirality, the sum of s; has
to be even, leaving the 8, representation of SO(8). For a spinor to survive the
orbifold projection it must satisfy

D si=0 (mod k). (5.45)

i=1
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For k > 2, six of the eight spinors are left invariant under the orbifold action,
and hence the A= 8 supersymmetry is broken to V= 6.5 For k = 1 and k = 2
all eight supersymmetries remain unbroken [5].

FractionarL M2-BraNEs. As already mentioned, a more general M-theory
background was introduced in [4]. In addition to the N M2-branes, the authors
considered M — N fractional M2-branes at the orbifold point.® This results in
a discrete torsion for the three-form gauge field C (3)

1 co_M-N 1

— —+ . 5.46
2n /53 /Z4CS7 7 k 2 (5:46)
In local coordinates C®) can be expressed as
M—-N
C®) o doNdy. (5.47)

Since one of the legs of C (3) points along the M-theory circle it reduces to
the NS-NS two-form B in the string theory limit, explaining the origin of the
non-trivial B-field in the ABJ theory.

An interesting consequence of the brane construction of the background
is the equivalence between the Chern-Simons theories with gauge groups
U(N)g x UM)_x and UM); x U(2M — N + k) _y, see [4]. In terms of the
’t Hooft couplings A and A this corresponds to the equivalence between the
theories with couplings (4,1) and (1,22 —A+1).

As mentioned in chapter 2 unitarity on the gauge theory side requires that
the integers M and N satisfy the inequality |M — N| < k. As a simple consis-
tency check let us consider the case k = 1. The gauge theory constraint means
that M and N can differ by at most one. But according to the above identifi-
cation the cases M = N+ 1 and M = N are equivalent for k = 1, and there
is only a single configuration. In the brane picture kK = 1 corresponds to M2-
branes in flat C*. In this case there are no orbifold point and hence there can
be no fractional branes, so also from this point of view we only expect a single
configuration for a given N.

GAUGE THEORY, STRING THEORY AND M-THEORY. M-theory in the orbifold back-
ground AdS4 x S7/ Z7 is parametrized by the integers N and k. In different
regions of this parameter space different description of this theory become
natural. Table 5.1 summarizes the condition these parameters have to satisfy
for the respective description to be weakly coupled.

If we use the other spinor representation of SO(8) all the supersymmetries are broken [142].
The fractional M2-branes are obtained by wrapping M5-branes on a vanishing three-cycle at the
orbifold point.

61



Table 5.1: An overview of the different regions of the parameters N and k where the
AdS4/CFTj correspondence is described by weakly coupled field theory, string theory
or M-theory.

Region Weakly coupled theory

IKNLE Planar gauge theory
1 <N'5 <k« N 1A string theory
1< k< N/ 11D suGra
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6. Magnons at strong coupling

In this chapter I discuss the world-sheet excitation in AdS, x CP?, focusing on
the giant magnon regime first studied in AdSs x S by Hofman and Maldacena
[102]. These string states can be seen as gravity duals of gauge theory states
represented by a spin-chain with a single magnon excitation.

The basic giant magnon is a classical string living in R x S? and carries a
large angular momentum J. In space-time the string is rigidly moving with
the center of mass of the string traveling around the equator, and on the world-
sheet the solution is solitonic. It can be embedded in AdSs x S’ in a unique
way up to global rotations of the five-sphere. In AdS; x CP3, on the other
hand, there are several inequivalent giant magnon solutions. The different pos-
sibilities are discussed below, together with various dyonic generalizations of
these solutions by including an additional non-zero angular momentum, as
well as the finite-size corrections for finite, but large, angular momentum J.
The results in this chapter are based on Paper IV and Paper V.

6.1 The string theory ground state and the Penrose limit

The bosonic part of the string Lagrangian reads!
1
= 1V hhP G, XM 9px” (©.1)

‘ﬁ\/ h”ﬁ( Guy0az Ipz” + G110ay' Iy ) (6.2)

where the metric has been split into the AdS4 part (G) and the CP? part G,
and a factor of the CP3 radius R? has been pulled out, here expressed in terms
of the ’t Hooft parameter A.

Let us start by considering a classical string solution consisting of a point-
like string moving along a null-geodesic in AdS4 x CP?. The geodesic sits
in the center of AdSs (o = 0) and I use a timelike conformal gauge with

1 We use units where o/ = 1.
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t = 21.2 The CP? part of the solution is given in terms of the embedding
coordinates (5.6) as

¥=5(e7,0,0,e77), (6.3)
9

or in terms of the angles (5.9)

§:l91:192: T]:t,Dl:O, g02:2‘1'. (64)

NI N

It is easy to check that this is a solution to the equations of motion and the
Virasoro constraints obtained from (6.1).
The energy A and angular momentum J of this solution is given by

A_/daaﬁ.—\/ﬁ/da, J—/daa/,:—\/ﬁ/da, 6.5)
of ¢

while the charges S, Q and J3 all vanish. Hence this string solution satisfies
the BPS condition
A—J=0. (6.6)

The charges of the point-like string are right for it to be the string theory dual
of the ground state operator (2.53) in the gauge theory. Hence we can think
of this solution as a ground state on the string side. Note that the energy, as
well as the angular momentum, of this string is proportional to the length of
the world-sheet.

The string state above is very similar to the point-like string in AdSs x S°
studied by Berenstein, Maldacena, and Nastase [44]. In that paper, the authors
studied fluctuations around the point-like string in the limit J, 1 — o keep-
ing J?/A fixed, known today as the BMN limit. The corresponding limit of
the AdS4 x CP? solution studied here was considered in [143, 76, 85] (see
also [1]). The resulting spectrum consists of four light bosons on CP? with

dispersion relation
e(p) =1/5+131", 6.7)

as well as four heavy bosons — one on CPP? and three on AdS, — with

e(p) =/1+4p2. (6.8)

The fermionic spectrum matches the bosonic one, with four light fermions
with mass 1/2, and four heavy fermions with mass 1. The world-sheet mo-
mentum of the BMN excitations takes the form p = 2zn/J, for an integer n.
Since the angular momentum J is very large the momentum is small: p < 1.

As we will see, the length of the world-sheet is not fixed to 27 in this gauge, but proportional to
the energy A.
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Hence the above dispersion relations (6.7) and (6.8) are compatible with the
small momentum limit of the general SU(2|2) dispersion relation

e(p) = \/ 02 + 412 () sin g , 6.9)

for Q =1/2 and Q = 1, respectively, provided the leading order expansion of
h(A) at strong coupling is given by

h(d) = \/§+ o(1). (6.10)

Note that the leading term in this strong coupling expansion differs from the
weak coupling result found in chapter 3, indicating that the function A(Q) is
far more non-trivial in ABJ(M) than in A/ = 4 super Yang-Mills.

6.2 The giant magnon

In the previous section we considered the BMN limit, where J and A are taken
to be large with J? /1 fixed and the momentum p of excitations scaling as 1/J.
Hofman and Maldacena [102] considered another limit, where the angular
momentum J is again taken to be very large, but with the ’t Hooft coupling 4,
as well as the world-sheet momentum p, kept fixed.

In the timelike conformal gauge, the length of the world-sheet is propor-
tional to the energy of the string state. In the above limit, the energy, and
hence the world-sheet, is infinitely large. It then makes sense to consider an
open string state. To get a physical, closed, string we can glue several such
open strings together at the end-points. Since these are infinitely far apart on
the world-sheet, there will be no interactions between the various components.
For finite J, on the other hand, such interactions are important.

To find the giant magnon solution, we consider a sigma-model on R x S? in
the Hofman-Maldacena limit, and look for solutions with A —J finite. For our
purpose, it is convenient to write the solution by embedding S* C C2. It then
reads

. (eiqﬁmag(a',‘r) siné?mag(cr,r)> _ <eif (Cos§’+i8in’2’tanhu)> 61D

08 Omag (07, 7) sin £ sechu
with
—in? P
€08 Omag (07, T) =sin 5 sechu, tan(Pmag (07, 7) —7) =tan 5 tanhu. (6.12)
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Here the coordinate u is the spatial coordinate boosted with velocity v = cos g,
u =y(o-— vt). Hence the solution contains as a single parameter the momen-
tum p, which now has a geometrical interpretation as the opening angle be-
tween the two end-points of the string along the equator of the sphere:

A(‘l)mag = ¢mag (0' — +°°77') - ¢mag(0- — —09, T) =p-. (6.13)
Calculating the charges of this string we get

Ag=""gin? (6.14)
T 2

where R is the radius of the two-sphere. We note that the same periodicity of
the momentum dependence that we found for the spin-chain in chapter 3.

6.2.1 The dyonic giant magnon

The giant magnon can be extended to a solution on R x S, by introducing
an additional angular momentum Q that is large but finite [59, 66]. In terms
of embedding coordinates S* C C2, this dyonic giant magnon can be written

as [1]
5 e’ (co§ £ + isin§ tanhU) 7 6.15)
" sin & sechU
where
. 2r . p
U = (0coshB—1sinhB)cosa, cota = sin =,
1—r2 2
2y (6.16)
V = (rcoshB —osinhB)sine, tanhfB = 57 cos 5 -

The momentum p still has the interpretation of the opening angle between the
end-points along the equator in the wy plane, though the world-sheet velocity
is not given by cos p/2. The extra parameter r parametrizes the additional an-
gular momentum. When » — 1, V vanishes and U becomes identical with the
u in (6.12). The dyonic solution then reduces to the non-dyonic giant magnon.

As with the ordinary giant magnon, the energy A and the angular momen-
tum J diverge, but their difference, as well as Q, remain finite

RZ1+r2 p R21—72 p
A—J=— in - =— in—. 17
/ x 2r g 0 x 2 g ©.17
These two relations can be combined to give
R4
A—J =10+ =5sin? L. (6.18)
/s 2
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We recognize the form of this relation from the general SU(2|2) dispersion
relation discussed in chapter 3.

For the dyonic giant magnon to make sense as a classical string solution, Q
can not be arbitrary, but needs to be much large than one. For Q of order one,
the additional angular momentum is not visible for the classical string, and the
dispersion relation reduces to that for the giant magnon.

6.3 Giant magnons in CP?

To construct a giant magnon solution in R x CP3, we need to find a suitable

two-dimensional subspace of CP? for it to live in. There are two inequivalent

possibilities, CP! and RP?. For a nice discussion of these solutions see [1].

o The CP' magnon. By setting y> = y> = 0, or & = /2, we get a CP! = §?
submanifold inside CPP?. The resulting metric reads

1
dsgp = 7 (d93 +sin®> 9 dy3) . (6.19)

Se
Since this sphere has radius 1/2, conformal gauge requires us to set

©2 = Pmag (207, 27), 92 = Omag (207, 27).. (6.20)
This solution was first found in [76]. It has the dispersion relation

A—J= \/2/lsin§. 6.21)

e The RP? magnon. We get another interesting submanifold by setting * =
y' and 3 =2, or n =0, 9 = 0%, = x/2. This gives an RP*>  CP>. We can
further reduce this space by requiring y* to be real, i.e., ¢; = 0, to obtain
RP? C CP3. The giant magnon solution (6.11) can then be embedded as

yZ(Wl,Wz,Wz,Wl), or fzemag(UaT)7 ‘P2:¢mag(0_>7')- (6.22)

The RP? giant magnon was studied in [76, 85], and has the dispersion
relation
A—J =2/21sin g . (6.23)

An interesting feature of this solution is that since it is embedded in RP?
and not S a magnon with momentum p = 7 describes a closed string.

By setting the momentum of the two magnons to zero, we see that both solu-
tions reduce to the point-like string (6.3). Hence it is natural to consider them
both to be excitations above the same ground state.
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6.3.1 Dyonic giant magnons in CP?

There are several extensions of the giant magnon solutions in CP*. For both
the RP? and CP! magnon an additional angular momentum can be introduced
producing dyonic magnons similar to the R x S* solution by Dorey et al. [59].
In addition, there is an extension of the RP? magnon which introduces an extra
parameter in the solutions, but still only has a single non-vanishing angular
momentum. This solution has no correspondence in AdSs x S°.
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The RP3 magnon. As we saw in the last section, there is an RP? subman-
ifold of CP?. The dyonic giant magnon solution of Dorey er al. [59] can
straightforwardly be embedded in this space by setting

Y=d=w, Y =F=w, (6.24)

where w; are the C? embedding coordinates in (6.15). Its dispersion relation

reads
A—J:1/Q2+8/lsin2§. (6.25)

This solution was studied in the CP? case in [11, 154]. Like the RP?
magnon, its dyonic sibling corresponds to a closed string when p = 7.

The CPP?> magnon. There is no way to extend the CP' submanifold to a
three-dimensional space in which the ordinary dyonic magnon can be em-
bedded. Still there are many reasons to expect a solution with an additional
angular momentum to exist. In Paper V we found a special case of such
a magnon for the particular momentum configuration p = . This solution
lives in the CP? obtained by setting y> = 0, and is charged under both Q and
J3, with the two charges related by J3 = 20. We conjectured the dispersion
relation of the general CPP? magnon to be

A—J:,/Q2+2Asin2123. (6.26)

A second solution is obtained if we instead set y> = 0. This solution has
J3 = —20, but is otherwise identical to the first.

The full CP? magnon was later constructed by Hollowood and Miramontes
[103], using the dressing method [170, 171], a method for constructing
multi-soliton solutions in integrable field theories, confirming the above
charges. The explicit form of the solution is not very illuminating, so I
refer to [103] for the full details.

The dressed magnon. There is another two-parameter solution living in
CP? ¢ CP?. This solution was obtained more or less simultaneously by



three different groups [104, 111, 162] using the dressing method. In con-
trast to the CIP?> magnon above, this solution is not charged under Q nor
under J3. The solution is written down in Paper V. Parametrizing the solu-
tion by the parameter’ Oy introduced in that paper, the dispersion relation

reads
A—J:MQ;Jrsminzg. (6.27)

Hence the dispersion relation of the dressed magnon has the same form as
that for the RP®> magnon. However, the other CP? charges differ between
the two solutions. Since this solution only has a single non-vanishing angu-
lar momentum, it is not really correct to refer to it as “dyonic”.
The properties of the various giant magnon solutions presented here (except
for the full CIP? dyonic magnon), are summarized in Table I of Paper V.#

6.4 Giant magnons in the algebraic curve

Giant magnons in S were first studied in the algebraic curve formalism by Mi-
nahan, Tirziu, and Tseytlin [136]. These authors showed that the magnon cor-
responds to a logarithmic branch cut connecting two sheets. Later an alterna-
tive description was found, in which the magnon is obtained starting with a
two square root branch cuts configuration and taking the singular limit where
the endpoints of the cuts coincide Vicedo [167]. As we will see later, a combi-
nation of the two pictures is very useful for finite-J giant magnons.

6.4.1 Embedding giant magnons in the algebraic curve

In Paper IV an ansatz for an algebraic curve for strings moving non-trivially
on CP? was introduced

q1(x) = %7
q2(x) = )%’
43(¥) = 5 +Gr(x) + Ge(1/2) = Gu(1/x) = Gu(1/x) (6.28)

—G(0)+ Gy (0) + Gu(0),

0a() = 5+ Gulx) + Gulx) = Gy (x) = G (1/x) + Gil0).

gs(x) = =Gy (x) + G, (x) — G,(1/x) + G, (1 /x) + G, (0) — G, (0).

3 The subscript f stands for “false”, indicating that Qy is not an angular momentum, but a
parameter of the solution.
4 Note that the charges J and Q used in Paper V are twice the charges used in this summary.
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The ansatz contains three functions G, (x), G,(x) and G,(x), called resolvents,
which describe the different ways we can introduce cuts that connect the dif-
ferent sheets of the Riemann surface. The various inversion symmetries of the
curve are automatically satisfied provided G,(0) + G,(0) = 2zxm for some in-
teger m. This can be interpreted as a level matching condition. In the giant
magnon limit we will however relax this condition, and introduce the magnon
momentum p = 27m.

THE GROUND STATE. The simplest possibility is to set
G,(x) = Gy(x) = G,(x) =0. (6.29)

We then obtain the quasimomenta

ax

0 =W =Bl =al) =5, a@=0. (630
Expanding this at large x, and comparing with the expected asymptotics from

section 5.3.1 we get
A=, S=0=J3=0, (6.31)

corresponding to the point-like string considered in section 6.1. Hence the
above solution can be thought of as a ground state of the algebraic curve.

THE SMALL MAGNON. We can now add excitations to the above ground state
by turning on one or more of the resolvents. To get a giant magnon we use the
resolvent

x—X"
x—X—~
This function has a logarithmic cut with endpoints X*, where X~ is the com-
plex conjugate of X .. Let us choose

Gmag(x) = —ilog (6.32)

Gy (x) = Gmag(x) , Gu(x) =Gr(x) =0, (6.33)

corresponding to a cut connecting the sheets g4 and gs. This solution was
first studied by Shenderovich [156], who named it the small giant magnon. It
carries the charges

i 2 1 1 X+
Ad=1 0 (x -  x — _ilogor
/ 2\f2< X+ +X>’ p=rloe x>

i [ 1 1
= L xt e x - _20.
Q 2\5( Tx+ X)’ =20

(6.34)
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Solving this for X* we get

.2
Xi_Q—i- Q% +2asin” §

, (6.35)

@T
&

H

R
(SIS

which leads to the dispersion relation

A—J:,/Q2+2asin2§, (6.36)

The charges of this solution perfectly matches those of the dyonic CP? dyonic
magnon. Note that in the Q — 0 limit the two branch points X* approach et 7
and hence the unit circle. In this limit we get a solution with the same charges
as the CP! magnon.

Another option is to set

Gu(x) = Gmag(x) G,(x) =G,(x) =0. (6.37)

Now the cut connects the sheets gg and g4. The only difference in the charges
is that J3 changes sign. Hence this solution corresponds to the second orienta-
tion of the CP? magnon.

Two more magnons can be constructed by also turning on the G,(x) resol-
vent. The resulting solutions are closely related to the small magnons above,
but the charge Q has the opposite sign. Such solutions, or “anti-magnons”
were also found in [103] using the dressing method. These excitations cor-
respond a different choice SU(2) x SU(2) subgroup of the SU(4) isometry
group of CP? [65].

A PAIR OF SMALL MAGNONS.  We can also turn on both kinds of small magnons
at the same time, by setting

Gu(x) = Gy(x) = Gmag(x), G,(x)=0. (6.38)

All the charges A, J, Q, J3 and p will now be a sum of the charges from the
two small magnons that make up the solution. Hence the total charges are

A—J:,/Q2+81sin2§, J3=0. (6.39)

This is almost the same as for the RP* magnon, except for a factor of two in
the momentum dependence. However, since the above solution is constructed
as a sum of two small magnons with equal momentum, it is natural to instead
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write the charges in terms of the momentum p of one of them, so that the

dispersion relation is
A—J:\/Q2+8/lsin2§, (6.40)

matching the RP? magnon.

THE BIG MAGNON. Reference [156] contains yet another solution, which is
obtained by setting

Gu(x) = G, (x) = Gy(x) = Ginag(x) - (6.41)

For this solution both the charges Q and J3 vanish. However, we can still
introduce a parameter Q, that is related to the branch points X* in the same
way as in (6.34). The dispersion relation can then be written as

A—J:,/Q5+8/1sin2§. (6.42)

As with the solution in the previous paragraph, the big magnon is constructed
as the sum of two small magnons, but in this case both Q and J3 of the two
magnons have different signs. We can again introduce the momentum of a
single magnon, p = p/2, in terms of which the dispersion relation reads

A—J:,/Q5+81sin2§, (6.43)

matching the “dressed” magnon in CP?, provided we identify the parameters

Q, and Qy.

6.5 Finite-size corrections

In the giant magnon limit, we send both the energy A and the angular momen-
tum J to infinity, keeping their difference finite. For finite, but large, A and
J we expect A —J to receive corrections. Since the size of the world-sheet
in the gauge we use is proportional to the energy, we refer to these correc-
tions as finite-size corrections. In [15] it was argued that these corrections
arise due to virtual particles circling the world-sheet, and that their contribu-
tion to the energy is exponentially suppressed. The finite-size giant magnon
was first analyzed in detail in AdSs x S by Arutyunov, Frolov, and Zamak-
lar [20], who found exponentially suppressed corrections to the energy. They
also found these corrections to be gauge dependent. This should, however, not
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come as a surprise. When we consider a single giant magnon with an arbitrary
momentum, we describe an open string which in the infinite-J limit we can
consider as a building block of closed strings. This cutting of the world-sheet
works since the size of world-sheet is infinite in the giant magnon limit. For
a finite-/ magnon there is no way to cut the world-sheet without breaking
reparametrization invariance, and hence gauge invariance. A gauge invariant
configuration can be obtained by considering magnons on a Z, orbifold of the
sphere [23, 151], or by considering strings consisting of several magnons with
the total momentum vanishing [133, 116, 145].

6.5.1 String theory solutions

The analysis in [20] was based on an explicita solution to the equations of
motion for the string in AdSs x S° describing a giant magnon with finite J. In
the same spirit, the finite-size version of the RP? magnon was derived in [84].
The resulting leading exponential correction to the dispersion relation reads’

S(A—J) = —4(A —J)sin? ge—% . (6.44)

This expression has exactly the same form as in the S° case in [20]. Also the
finite version of the CP' magnon has been found [121]. In terms of A and J,
the correction again takes the same form as the expression above.

The dyonic RP* magnon is very similar to the corresponding S* solution,
and this similarity remains for finite J. The energy correction in the S* case
was first computed in [98], though the result is implicitly given already in [20].
The RP? case was studied in [11, 7], and the results in the two backgrounds
were found to agree perfectly.

At the moment, finite-size solutions of the CP? and dressed giant magnons
are not known. However, as we will see below, we can calculate the energy
corrections for these magnons using the algebraic curve.

6.5.2 Algebraic curve

To describe a giant magnon with finite angular momentum J using the alge-
braic curve we need to generalize the resolvent (6.32). To see how this can be
done, we need to better understand the appearance of the logarithmic cut. The
full algebraic curve for the giant magnon was analysed in detail by Vicedo
[167]. Let us consider an algebraic curve that has two square root branch cuts
connecting the sheets g4 and ¢s, with branch points X* and Y=, respectively.®

The correction given here is obtained in conformal gauge and coincide with the physical result
in [23].

Due to the symmetries of the curve discussed in section 5.3.1, there will also be two cuts between
the sheets g3 and gg with branch points inside the unit circle.
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Figure 6.1: The periods Aj, A, and B. A| and A, lie in the sheet g5 while B goes
through the two square root branch cuts, crossing from g5 to g4 and back to gs.

For the function g5 to be single valued, the integral of’dq around any single
cut needs to vanish. Introducing the periods A| and A, circling the two cuts in
gs (see figure 6.1) we find

}1{ dg=0. (6.45)
JA;

In section 5.3.1 we saw that the value of the quasimomenta can jump with an
integer multiple of 27 when we cross a cut from one sheet to another. Hence
the integral of dg around the period B circling two branch points X and Y
should give

%dq =2n, née. (6.46)
B

As argued in [167], the giant magnon is obtained from the general two cut
solution above in the singular limit where Y* — X*. To satisfy (6.46) in this
limit, dq has to have a simple pole with residue —in at X . The charges of the
giant magnon are straightforwardly reproduced from this solution [167, 147].
Thus a single giant magnon can be seen as a singular limit of an elliptic string
state.

I have now presented two configurations corresponding to a giant magnon
— a single logarithmic cut or two square root cuts in a singular limit. To see
the relation between these descriptions we note that the choice of which two
branch points are associated to a particular branch cut is arbitrary. In particular
we could have chosen to let one of the square root cuts above connect X
and Y, with the other sitting between X~ and Y ~. But this change does not
preserve the integrals of dg around the periods A, A> and B. To compensate
for this difference we need to add a logarithmic cut to gs. In the limit X ™ — Y
we then reproduce the resolvent (6.32).

From the above construction of the giant magnon in the algebraic curve
there is a natural generalization for finite values of J: we need to consider a

In this section dq indicates the differential on the Riemann surface spanned by the sheets g;.

74



solution with two square root branch cuts whose branch points are very close
to each other but do not coincide. By the same argument as above we can
rewrite such a solution as a function with a single logarithmic cut which has
a square root branch cut attached at each end. A solution with the correct
analytical properties was constructed in [133] (see also [93]). It can be written
in terms of the resolvent [145]

Vax—Xt+x—Y+
g\/x—X_—i—\/x—Y_.

Gﬁnite ()C) = —2ilo (647)

As a simple check of this solution we note that by setting Y= = X* we get
back the original giant magnon solution (6.32).

It is now straightforward to construct finite-size magnons in CP* — we just
need to go back to the different cases we considered in the last section and
replace the infinite-J resolvent with (6.47). Since we are interested in the lead-
ing correction for large but finite / we can do the calculation perturbatively
by expanding in the size of the square root branch cuts, which we consider to
be small. The details of the calculation are given in Paper IV and Paper V. In
summary the calculation consists of the following steps:

1. The branch points Y+ are given by®

Y* = X*(1+iee™™), (6.48)

with € < 1. The phase ¢ is discussed below.

2. We want to consider a magnon with given R-charge Q and momentum p.
From the expression of these charges in terms of the quasimomenta we
determine the location of X*.

3. The charge A —J is obtained from the asymptotic behavior of the quasimo-
menta as an expansion in €.

4. To fix the parameter € in terms of the charges we require that the cut be-
tween X+ and Y really is a square root branch cut connecting the sheets g;
and g;. As mentioned in section 5.3.1, for x on such a cut the quasimomenta
should satisfy

qi(xT) — qj(x™) =2nmn, (6.49)

where the subscript &+ indicates evaluation just above or below the cut. Plug-
ging the obtained expression for € back into A —J we can read off the lead-
ing correction to the dispersion relation.
I will now briefly discussed the finite-size corrections to the different magnons
discussed in section 6.5.2.

8 The small parameter € is called & in Paper IV and Paper V.
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THE sMaLL MAGNON.  Using the above procedure for the small dyonic magnon
we get

8

Q . 3P ~525 24
————sin” = cos2¢e SW) Sk) (6.50)
Ep)Slp) 2

where £(p) is the dispersion relation at infinite J,

E(p) = /0 +24sin? g, (6.51)

2
S(p):\/ o +2/lsin2§. (6.52)

S(A—J)=—84

and S(p) is given by

sin? 2

In the non-dyonic limit Q — O this correction vanishes. This result was
given in Paper IV. But the non-dyonic small magnon is supposed to describe
the Hofman-Maldacena magnon embedded in CP'. Since CP! is a two-sphere,
we would expect the finite-size corrections to be the same as in AdSs x S, as
first derived by Arutyunov, Frolov, and Zamaklar [20]. In Paper V we show
that the above result is valid only for Q on the order of v/A. The reason is that
when the algebraic curve is expanded in € there is an implicit assumption that
e<x 0/ V/A. Hence we cannot expect to get the correct result by just setting
Q = 0in the above expression. Instead we need to do a more careful expansion
assuming that Q is of the same size as e. This leads to the expected AFZ form

S(A—J) = —4(A—J)sin? g cos2pe a7, (6.53)

matching the result of [121]. The difference in the order of the limits Q — 0
and € — 0 explains the discrepancy between the results of the algebraic curve
calculations for the non-dyonic small magnon in Paper IV and Paper V.

This problem does not appear in the AdSs x S° analysis in [133]. The differ-
ence between the two cases is that in the algebraic curve for the small magnon
the quasimomentum gs contains extra cuts inside the unit circle which appear
due to the inversion symmetry of the curve. When Q — 0 all cuts approach
the unit circle. The approximation used above assumes that all we can isolate
the cut between X and Y since all other cuts are far away in the complex
plane. This is not necessarily true in the Q — 0 limit and hence we need to
do a more careful analysis. The algebraic curve for AdSs x S° also contains
an inversion symmetry that leads to extra cuts inside the unit circle, but these
cuts always appear on a different sheet than where we put the magnon. Hence
the limit Q — 0 in that case is well behaved.

To understand origin of the phase ¢ appearing in the above expressions
we can consider a string state consisting of several magnons with the same
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charge Q and momentum p. For M magnons the total momentum vanishes
provided the momentum of each magnon is of the form p = 27m/M for some
integer m. In Paper IV we show that we then can choose the integer n in
(6.49) in such a way that the phase ¢ vanishes. For multi-magnon states this
phase can be interpreted as the relative angle between neighboring magnons,
with cos2¢ = 31 corresponding to the two types of helical strings considered
in [146, 98].

A PAIR OF SMALL MAGNONS.  The finite-size algebraic curve for a pair of small
magnons with opposite charges J3 is simpler than that for a single small
magnon. The reason is that the additional cuts that appear inside the unit circle
due to the inversion symmetry of the curve cancel on the sheet gs. This leads
to a solution that is essentially identical to the AdSs x S° case. The resulting
correction to the energy is given by (see Paper IV and Paper V)

I . 4p __A £
sin” = cos2¢e S») Sk) | (6.54)
Ep) 4

where p is the momentum of one of the small magnons and

2
E(p) = 0?+81 sin? p , S(p) = Q +81sin? p . (6.55)
V 2 s1n2§ 2

This matches the result for the RP3 magnon in [11, 7]. In this case there is
no problem in taking the Q — 0 limit, which again reproduces the AFZ result
and matches the results for the RP? magnon [84].

S(A—J)=-324

THE BIG MAGNON.  The big magnon is only considered in Paper V. The solution
is very similar to a single small magnon. In particular there are cuts within
the unit circle and we need to be careful when taking the Q — 0 limit.” The
resulting correction takes the form

S(p)? _ A Ep)
5(A—J)=—128/1ﬂsm23e S S | (6.56)

Q*€(p) 2
where the functions £ and S take the same form as for the pair of small
magnons. The above result is again expressed in terms of the momentum p
of one of the small magnons that make up the full solution.

Remember that for the big magnon Q is not an angular momentum but an additional parameter
of the solution. If we consider the big magnon as consisting of two small magnons with opposite
sign of the charge Q, the parameter can be interpreted as the angular momentum of one of the
small magnons.
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(a) u-term (b) F-term

Figure 6.2: The Liischer formulae arise due to virtual particles wrapping the world-
sheet. In the u-term the incoming particle splits into two on-shell particles that travel
around the world-sheet and then recombine. The F'-term is given by diagrams in which
a single virtual particle travel around the circumference of the cylinder.

A careful study of the Q — 0 limit shows that the RP? result from the pair of
small magnons is again reproduced. This is expected since in this limit there
is no way of distinguishing the different charges Q carried by the two small
magnons that make up these two solutions.

6.5.3 The Liischer u-term

For finite values of the energy A the world-sheet of the giant magnon has a
finite length. Hence the world-sheet no longer has the topology of a plane, but
rather that of a cylinder. A general approach for studying the leading order
effects of putting a two-dimensional quantum field theory on a finite world-
sheet is by using the so called Liischer formulae. Physically these corrections
appear due to processes where virtual particles travel around the circumfer-
ence of the cylinder. There are two different kinds of processes that can oc-
cur. Figure 6.2 (a) depicts a particle splitting into two on-shell particle, which
travel around the world-sheet before they recombine. The resulting correction
is known as the y-term. In figure 6.2 (b) the physical particle interacts with a
single virtual particle that travels around the cylinder, leading to the F-term
correction. Since the u-term arises from an on-shell process it leads to a cor-
rection to the classical energy of the incoming state. The F-term involves an
off-shell virtual particle and hence gives a quantum correction to the energy.'®
Since I only discuss finite-size effects for classical giant magnons in this the-
sis, I will only consider the y-term.

The original derivation by Liischer [123] is valid for a particle with a rel-
ativistic dispersion relation and relates the corrections of the energy to the

10The F-term is suppressed in 1/1/A compared to the u-term. Still the F-term can be more
important since the exponential suppression of the two terms differ [93].
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two-particle S-matrix [115]. The generalization to a non-relativistic disper-
sion relation was first discussed by Ambjgrn, Janik, and Kristjansen [15] and
later analyzed in detail by Janik and Lukowski [107], who calculated the lead-
ing correction to the classical finite-size giant magnon in AdSs x S° using the
p-term. The original Liischer formulae give the shift of the mass for a single
physical particle. Here we will also need a more general y-term formula for
multi-particle states, which was independently derived in [99] and in [28].

THE S-maTrRIX. Before we can use the u-term to calculate corrections to the
energies of giant magnons in CP* we need some facts about the S-matrix of
ABIJ(M). As explained in chapter 3 there are two kinds of excitations that enter
the S-matrix. I will refer to them as A- and B-particles. For each kind of par-
ticle there are two bosonic and two fermionic excitations transforming in the
fundamental representation of SU(2|2). The S-matrix can be divided into four
parts depending on the type of particles involved — the matrices S and $58
describing scattering of particles of the same type, and the matrices S48 and
§BA describing scattering of particles of different types. The matrix structure
of these matrices is the same in all four cases [8] and is fully determined by
the SU(2|2) symmetry [40]. Hence they only differ in the overall scalar factor.
We can write these S-matrices as

S (p1,p2) = SPB(p1,p2) = So(p1,p2)S(p1,p2), (6.57)
S8 (p1,p2) = S (p1,p2) = So(p1,p2)S(p1,p2) . (6.58)

Here S is the common SU(2|2) matrix part and the two scalars Sy and Sy are
given by!!

- - X, =)
So(p17p2)=71 S0 (p1,p2), 50(P17P2)=x1+ XZJT(Pl,Pz), (6.59)
T oo 1M
X1 X

where o (p1,p2) is the BES dressing phase [38]. The S-matrix of ABJ(M)
is closely related to that of N'=4 SYM. In the latter case the excitations
form a single multiplet of SU(2|2) ® SU(2|2) and the S-matrix consists of
two copies of the SU(2|2) matrix S(pi,p>) with the scalar factor equaling

So(p1,p2)S0(p1,p2)-

1 The complex parameters xii are related to the momentum p; by

- +
P D 5) 5
X+ =% ——==—7, —=e.
X; X ﬁ X;
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Tre RP? MmagNoN.  As we have seen above, we can think of the RP? magnon
as being composed of two fundamental magnons, with one from each SU(2)
sector. Hence we need to use the two-excitation u-term of Hatsuda and Suzuki
[98]. I will not write down the full expression here, but refer to Paper IV. The
pU-term contains a sum over all intermediate states and depends on the residue
of the S-matrix for scattering between the incoming particle and the interme-
diate particle at any poles that correspond to physical bound states. Since the
RP? magnon is constructed from one A-particle and one B-particle there will
be two copies of the fundamental S-matrix discussed above. Depending on the
type of the intermediate particle, one of the S-matrix factors will be of type
$44 or §48 while the other will be either S48 or SBB. In both cases we need to
consider the poles of a factor of the form

S*(p,q)S**(p,q) = $*®(p,q)S"® (p.q) = So(p,9)So(p.4)S(p,4)S(p,q).-

This factor has precisely the same form as a single copy of the S-matrix of
N =4 SYM. Hence we can directly import the results from the AdSs x S°
calculation in [107]. The result is given in Paper IV, and independently in [50],
and agrees with corresponding results in the previous sections of this thesis.

Also for the dyonic RP* magnon the u-term takes the same form as in the
corresponding calculation in A’ =4 SYM, as shown in [7].

Tue CP! magNoN.  In Paper IV we also considered the CP! magnon. Since
there is now just a single fundamental magnon we can use the one-particle
p-term of Janik and Lukowski [107]. If the magnon is a particle of type A the
only S-matrix that enters the calculation is $44. The result of the calculation
in Paper IV (see also [50]) is

(A —J) = 2iasin ge*ﬁ : (6.60)

where the factor @ formula depends on whether we use the string frame (« = 1)
or spin-chain frame (@ = e~/ 2) of the S-matrix [21].!2 Note that this correc-
tion is not real valued. The same thing was observed in the calculation of the
correction to the dyonic magnon in AdSs x S° from the p-term in [98]. In that
paper it was argued that the physical correction is obtained as the real part
of the u-term. Even with that modification, the above result does not match
the results of the algebraic curve and sigma-model, for any of the values of
a. It does however match the result of the algebraic curve calculation for the
small magnon in Paper IV, which is obtained by setting O = 1/2 in (6.50).

12 The two cases differ in the phase of various S-matrix elements. In the first case the S-matrix
satisfies the ordinary Yang-Baxter equation while the second case satisfies a twisted Yang-Baxter
equation [21].
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As we noted above and in Paper V, this result is incorrect since there is an

order-of-limits problem in the expansion of the curve.

At the moment this discrepancy between the u-term and the algebraic curve
and sigma model is unresolved. I will end this section with a few remarks on
this result.

e Comparing the result (6.60) with the expected form (6.44) there are two
main differences: Firstly, the prefactor of the former correction is of lower
order in 1/ v/A. Hence the corrections in (6.60) has the form of a quantum
correction rather than a classical correction. Secondly the two expressions
differ by a factor of two in the exponential, with (6.44) being more strongly
suppressed than (6.60).

e In the AdSs x S° case the result for the finite-size giant magnon obtained
from the u-term agrees with the AFZ result [21] only if the string frame of
the S-matrix is used [107]. This corresponds to @ = 1, and makes the real
part of (6.60) vanish.

One possible way of explaining the discrepancy is to trust the string frame

result that the correction calculated in Paper IV and [50] vanishes. Then the

leading correction should come from another pole in the S-matrix that was
not considered in these papers. Such a pole would give a stronger exponential

suppression, in accordance with (6.44).

6.6 Identification of magnons

In this chapter I have listed a number of different giant magnon solutions in
CP? that have been obtained both from the sigma-model and from the alge-
braic curve. By comparing the charges carried by the different solutions it is
straightforward to match the magnons in the various subspaces of CP? to the
corresponding algebraic curve solution. The result is collected in table 6.1.
We can also compare the charges of the giant magnons to the charges of
the spin-chain excitations considered in chapter 2. As noted in the beginning
of this chapter, the point-like string considered here is dual to the spin-chain
ground state Ogs =tr(Y lYJ)L. To excite the spin-chain we replace a pair of

fields Y1Y44r by some other combination of one bifundamental and one anti-
bifundamental field. The charges of these excitations can be read off from ta-
ble 2.2 of chapter 2. We can then make the identifications given in table 6.2.
Note in particular that the small giant magnon corresponds to fundamental
excitations of the spin-chain while the big magnon and a pair of small giant
magnons are interpreted as multi-excitations on the gauge theory side. The
parameter O of the big magnon counts the number of scalars ¥ 2 (or Y3 in
the spin-chain excitation. The total charge Q vanishes since the state contains
an additional Q scalars Y; (Y;).
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Table 6.1: Various giant magnon solutions in CP?. This table shows the different
magnons in the algebraic curve and the corresponding subspace of CP? that the
magnon lives in. For the big magnon and the pair of magnons, which can be con-
sidered to be two-magnon states, the dispersion relation is expressed in terms of the
momentum of one small magnons.

Curve solution  Subspace A—J 0 J3
CP! V24asin§ 0 0
Small magnon CP? \/Q2+2—/1s1112% 0 20
CP? Q2 +2asin’L  Q -20
Big magnon RP” m sin g 0
CP? \/ Q7 +84 sin?2 0
Pair of small RP? V81sin 4 0
magnons RP \/Q2+8—/1sinz§ 0

Table 6.2: Giant magnons and spin-chain excitations. From the charges of each giant
magnon solution in CP? we can identify the corresponding spin-chain excitation. The
CP! giant magnon corresponds to a single excitation while all other giant magnons
correspond to multi-excitations of the spin-chain.

Curve Magnon Spin-chain excitation
Small magnon CP' / CP? Y2y, or vV'y]
Pair of small magnons RP? / RP? Y2Y3Jr

Big magnon Dressed CP? Y 2Y; orY 3Y3T
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7. Epilogue

The focus of this thesis has been the planar spectrum of the ABJ(M) theory
at weak and strong coupling, and in particular the dimensions of local gauge
invariant operators and the energies of their dual string states. At both sides of
the AdS4/CFTj3 duality the determination of the spectrum is greatly simplified
by the appearance of integrable structures, which allow us to compute the
dimensions of long operators consisting of many fields and the energies of
strings with large angular momenta.

The fundamental excitations of the integrable model of AdS4/CFTj3 are the
magnons. In chapter 3 and 4 I discussed the dynamics of weakly coupled
magnons in the spin-chain picture of the local operators. When we go to the
strong coupling side the spin-chain magnons evolve to world-sheet solitons
known as giant magnons. The giant magnons appearing in CP? were discussed
in chapter 6.

7.1 The function #?(1,0)

The most important ingredients in understanding the spectrum of an integrable
model are the two-particle S-matrix and the magnon dispersion relation. In
ABJ(M) both these objects are highly constrained by the SU(2|2) symmetry
of the system. In particular the dispersion relation takes the form

1 _
A—J:\/4+4h2(/l,a)sin212). (7.1)

The only quantity that is not fixed by symmetry is the function 4%(1,0) that
encodes the dependence on the coupling constants. The same function also
appears in the ABJ(M) S-matrix.

The weak coupling expansion 42(,0) starts with

W (A,0) =2 -1 4+0H)na+0(2°, (7.2)

and at strong coupling, it takes the form

h(A,0) = \/§+c+ (@] (\%) ) (7.3)
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Hence the function 4?(,0) interpolates non-trivially between the weak and

strong coupling limits. In particular, since the weak coupling expansion is

even in A there should be a square root branch cut along the negative real axis.
The constant term ¢ in (7.3) corresponds to a one-loop correction in the
string theory. Calculations of such corrections to spinning folded strings in

AdS4 have been performed both from the sigma-model [130, 13, 120, 131]

and from the algebraic curve [90]. However, the resulting coefficient ¢ dif-

fer in the two approaches, taking a value of ¢ = —% or ¢ = 0, respectively.

The origin of this discrepancy is a difference in regularization prescriptions

in the sum over mode numbers [90, 33, 3]. In the sigma-model analyses all

modes are treated equally, while the algebraic curve calculation distinguishes
between light and heavy excitations, with the motivation that the heavy modes

do not correspond to fundamental excitations but are composite states [173].

This leads to different cutoffs for the light and heavy modes. The same two pre-

scriptions have also been used to study one-loop corrections to giant magnons

and result in the same values for ¢ as above [156, 3]. The calculation of the
finite size corrections to the pp-wave Hamiltonian in [24] seems to favor the
¢ = Oresult. There are two possibile resolutions of the discrepancy in the value

of c:

1. One of the two prescriptions used in the literature could be unphysical. For
example it might break some of the symmetries of the model. The other
prescription would then be physically favored and would give a unique
value for the one-loop coefficient c.

2. The alternative is that both methods of regularizing are valid and that the
function 4?(A,0) is regularization dependent. This might seem like a sur-
prising conclusion, since the magnon dispersion relation is closely related
to the dimensions of gauge invariant operators and string energies, which
both are physical quantities. However, the form of the perturbative expan-
sion is not unique but depends on how the coupling constants are defined.
One way of avoiding this ambiguity is to define the couplings in terms of a
particular physical quantity, such as the cusp anomalous dimension [131].

The magnon dispersion relation in = 4 super Yang-Mills is also constrained

by the SU(2|2) symmetry of the spin-chain ground state, which forces it to

take the form

\/ Q%+ 4y (V) sin? £ (7.4)

However, in this case the coupling dependence is much simpler and all in-
dications point to the function h3yy,(2) taking the form h3yy (1) = A/4n>.
This has been confirmed in perturbation theory to three-loops at weak cou-
pling [158] and to two-loops at strong coupling [153, 80]. Moreover, argu-
ments have been given for why the all-loop function should have this form
from both the string theory [43] and the gauge theory [155].
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Another difference between ABJ(M) and A/ =4 SYM is that the radius
of CIP? receives quantum corrections [45], while the S radius is protected by
supersymmetry [132]. These corrections are relevant for two-loop calculations
at strong coupling.

7.1.1 Possible scenarios for an all-loop function

In Paper II and Paper III we discuss two possible all-loop expressions for
the function 4*(1,0) for two different regions of the parameter space of the
couplings.

For the ABJM case of oo = 0 it is convenient to define ¢t = 2mid, which
naturally appear also in the expressions for supersymmetric Wilson loops
in ABJ(M) [113, 127, 68], and to introduce the rescaled function g(1) =
(27)2h?(A). The proposed function is then given by

g(t) = —(1—1)log(1—1) — (1 +1)log(1+1). (1.5)

The weak coupling expansion of this function matches the perturbative two-
and four-loop results and the leading strong coupling behavior on the string
theory side, while the one-loop correction vanishes. Hence this function cor-
responds to the ¢ = 0 result in (7.3) observed in [90] and [24].

There does not seem to be a apparent way of generalizing this function to
the case A # 1. However the extra parameter gives us more information on the
structure of the function. In particular it should be symmetric under [4]

A=A, A—=21—A+1. (7.6)

Moreover the ABJ model is only physically consistent for |1 — ;1| <l1.
In Paper IIT we consider the limit A < A. As we have seen in chapter 4 the
dilatation operator simplifies considerably in this limit, taking the form

0D ~ £ () (x (1) +x(2)), (7.7)

where the function f(1) now encodes the remaining coupling dependence. Up
to four-loops we have

2
T
JfOR1-628=1-"22, (7.8)
which suggest an all-loop function
L.
f) = - sin(7) . (7.9
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This function has several of the features we expect from the full answer. Firstly
f(2) becomes negative for A > 1. But then the anomalous dimensions also be-
comes negative. In particular some short operators such as trY’Y, ¥, with clas-
sical dimension one will get a dimension slightly less then one. This how-
ever breaks the unitary bound for superconformal theories in three dimen-
sions [140], and hence the theory becomes unphysical. In the limit under con-
sideration this perfectly agrees with the constraint |4 — | ~ 1 < 1.

The expansion of 4?(,07) up to four loops is parity invariant. Let us assume
that this will hold also at higher orders. Then the full function should be sym-
metric under exchange of A and A. Combining this with the symmetry (7.6)
we get the transformation

A—=21—2+1, 1= A. (7.10)

For 1 < A this reduces to A — 1 — A, which is consistent with the function

f(A) in (7.9).

7.2  Wrapping interactions

If our final goal was to determine the spectrum of operator consisting of in-
finitely many fields or of strings for which the world-sheet was the complex
plane, integrability would give us the full answer and the only remaining task
would be to determine the function 4% (1, o). However, physical operators con-
sists of a finite number of fields and string theory in AdS4 x CP? is a theory of
closed strings. To obtain the full answer we therefore need to add finite-size
corrections to the result we get from the asymptotic Bethe equations.

In this thesis I have discussed the explicit calculation of such corrections
in two different regimes. At weak coupling they take the form of wrapping
Feynman diagrams, which are planar only for short operators. In Paper I and
Paper II we calculate the contribution from these diagrams at four loops. At
strong coupling there are corrections due to intermediate states wrapping the
world-sheet cylinder. Their leading, exponentially suppressed, contribution to
the classical energy of giant magnons in CP? was computed in Paper IV and
Paper V.

The methods for obtaining finite-size corrections that I have discussed in
this thesis are useful at the leading few orders in perturbation theory at weak
or strong coupling. To get beyond this we need some other approach. Recently
there has been a lot of progress in understanding the full planar spectrum of
the AdSs5/CFT4 using the Thermodynamic Bethe Ansatz (TBA) [172], see for
example the recent reviews by Bajnok [29] and by Gromov and Kazakov [88],
and references therein. Also in the case of ABJ(M) some progress towards a
formulation of the TBA have been made. In [94] a set of Y-system equations
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were conjectured and using these equations the leading wrapping corrections
to a scalar operator of length four in the 20 representation of SU(4)g was cal-
culated. Furthermore, the TBA equations for both the ground-state and excited
states have been formulated in [52] and in [89].

7.3 Future work

Writing a thesis is an exercise in looking back. Still I want to end this summary
with a few remarks on possible extensions of the results described here.

The four-loop calculation discussed in chapter 4 only involved the closed
SU(2) x SU(2) sector. The resulting dilatation operator is trivially integrable,
in the sense that any result we could have obtained would have been compati-
ble with integrability [34]. To actually get a check of integrability of ABJ(M)
at four loops we would need to consider a larger sector. Such a calculation
will in general require the evaluation of a very large number of additional
Feynman diagrams. A more tractable problem is obtained in the limit A < A,
where we only need to consider diagrams contributing to the 243 term of the
dilatation operator. The result would give us a check on the integrability of the
ABJ model, under the assumption that ABJM is integrable.

In section 6.5.3 we saw that the leading finite-size correction to the en-
ergy of the giant magnon in CIP! obtained from the Liischer formula does not
have the expected form. The difference between the algebraic curve results in
Paper IV and Paper V arises due to an order-of-limits problem. It would be
interesting to see if there is a similar problem in the y-term calculation.

No direct tests of quantum integrability at the strong coupling side of the
duality have been performed. One possibility would be to check that the world-
sheet three-particle S-matrix factorizes. For the full sigma-model such a cal-
culation would be very involved, but it should be doable in a simplifying limit
such as the near-flat-space limit [124]. In the case of AdSs x S° we performed
such a check in [78]. It would also be interesting to calculate the corrections
to the dispersion relation in this limit. For related calculations in AdSs/CFT4
see [117, 118].

Further investigations of the one-loop corrections at strong coupling are
needed in order to understand the origin of the regularization scheme depen-
dence discussed above.

Finally the function 4?(1, o) calls for further investigation. A six-loop calcu-
lation is a daunting task, but may be feasible using the superspace techniques
from Paper II, in particular in the extreme ABJ limit discussed above. How-
ever, it is not clear that another coefficient in the weak coupling expansion
would help us find the full function. It would be interesting to examine in
more detail the constraints put on the function 4%(1,0) from the equivalence
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of the ABJ model at various values of the parameters M, N and k discussed
in this section. Perhaps these symmetries together with the information on the
asymptotic behavior will allow us to obtain an exact result.
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Summary in Swedish

Fundamentala excitationer i ABJM-modellen

En central fraga i modern teoretisk fysik ar hur kvantmekanik och gravitation
kan forenas i en teori. En sadan beskrivning behovs om vi vill forsta oss pa
hur vart universum sag ut nér det var mycket ungt, eller hur ett svart hal ser ut
pa nira hall.

Kvantmekaniken ger en beskrivning av fysik pa mycket korta avstand. I syn-
nerhet &r partikelfysikens standardmodell en kvantfiltteori som beskriver hur
punktformiga elementarpariklar, till exempel elektroner och kvarkar, vixelver-
kar med varandra genom tre av de fundamentala krafterna: de starka och svaga
kdrnkrafterna och den elektromagnetiska kraften. Vixelverkan férmedlas ge-
nom utbyte av budbérarpartiklar — gluoner, W- och Z-bosoner, och fotoner.

Den fjarde fundamentala kraften, gravitationen, ger upphov till attraktion
mellan massiva kroppar. Denna kraft 4r mycket svagare én de dvriga tre natur-
krafterna, men #r viktig pa stora avstand. De tva kidrnkrafterna har en mycket
kort rdckvidd. Bade gravitationen och elektromagnetismen nar ddremot langt.
Elektriska laddningar kan vara bade positiva och negativa. En stor kropp, som
en planet eller en katt, bestar av en stor midngd partiklar vars totala elektriska
laddning dr mycket ndra noll. Den elektromagnetiska attraktionen eller repel-
lationen mellan katten och planeten dr dirfor forsumbar. En massa édr ddremot
alltid positiv och gravitationen dr alltid attraktiv och drar darfor katten och
planeten mot varandra. Gravitationen beskrivs av Einsteins allménna relativi-
tetsteori.

Den idag dominerande teorin for kvantgravitation &r strdngteorin. De fun-
damentala objekten dr hir inte punktformiga partiklar utan vibrerande string-
ar. Beroende pa hur de vibrerar kan de tolkas som olika partiklar. Bland dessa
aterfinner vi alla partiklar fran standardmodellen, men ocksa gravitonen — bud-
birarpartikeln for gravitation.

En annan viktig olost fraga dr hur vi effektivt kan beskriva kvantfiltteori vid
stark koppling, det vill sdga nir partiklarna véxelverkar starkt med varandra.
Protonerna och neutronerna i en atomkérna #r uppbyggda av kvarkar och halls
samman av den starka kdrnkraften, vilken beskrivs av kvantkromodynamiken
(QCD), en kvantfiltteori som &r en del av den ovan nimnda standardmodellen.
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Med hjdlp av QCD kan vi forsta resultaten fran experiment dir tva protoner
krockar med varandra med mycket hog hastighet, som vid den nyss startade
acceleratorn LHC vid Cern i Schweiz. En annan fraga som QCD borde kunna
ge oss svaret pa dr hur kiarnpartiklar som protoner och neutroner far sin massa.
Hir stoter vi dock pa problem. Anledningen till detta ir att de gluoner som
overfor vixelverkan mellan kvarkarna vixelverkar mycket starkt med varand-
ra inuti kédrnpartiklarna. Detta medfor att de giingse metoderna for att utféra
berikningar i en kvantfiltteori, sisom storningsteori, bryter ihop. En full for-
staelse av fysiken inuti en atomkirna kraver darfor helt nya berdkningstekni-
ker.

Dessa tva fragor — beskrivningen av kvantgravitation och av starkt kopp-
lad kvantfiltteori — mots i AdS/CFT-dualiteten. Tva duala fysikaliska teorier
tycks pa ytan beskriva tva helt olika system men ger i sjdlva verket tva oli-
ka beskrivningar av ett och samma system. De tva teorier som relateras till
varandra i AdS/CFT-dualiteten &r stringteori i ett visst krokt rum och kvant-
faltteori med sa kallad konform symmetri.

Forkortningen “AdS” star for anti-de Sitter-rum, en 16sning till Einsteins
rorelseekvationer som har formen av en hyperboloid. P4 den ena sidan av
AdS/CFT-dualiteten har vi supersymmetriska strdngar som ror sig i ett tiodi-
mensionellt rum som delvis utgors av just ett anti-de Sitter-rum. Ett sadant
rum &r odndligt stort men har dnda en rand. Pa denna rand lever den duala falt-
teorin. En konform filtteori (CFT) ser likadan ut oavsett fran vilken skala vi
betraktar den. En sddan symmetri begrinsar starkt hur teorin kan bete sig. De
centrala objekten dr inte lingre partiklar utan lokala operatorer som fas som
en produkt av de olika fdlten i teorin. En viktig egenskap hos dessa operatorer
dr deras dimension, som sédger hur de beter sig nér vi gor en omskalning av
teorin. Nar vi tar med kvanteffekter kan en operators dimension fa korrektio-
ner — en anomal dimension. Lokala operatorer dr enligt AdS/CFT duala till
stringtillstand i AdS-rummet och operatorernas dimensioner motsvarar ener-
gin hos dessa tillstand. Det forsta steget for att i detalj forsta teorierna pa béada
sidorna av AdS/CFT-dualiteten dr att beridkna spektrumet av operatorer och
deras dimensioner samt energin hos de motsvarande stridngarna.

Den mest studerade konkretiseringen av AdS/CFT-dualiteten brukar kallas
AdSs/CFTy. Siffran fyra anger att filtteorin dr fyrdimensionell. Ndrmare be-
stamt har vi att géra med maximalt supersymmetrisk Yang-Mills-teori med
gaugegrupp SU(N). Den duala stringteorin dr av typ IIB och lever i ett rum
bestdende av femdimensionellt anti-de Sitter-rum, AdSs, samt en femdimen-
sionell sfar, S°.

Ett annat exempel pa AdS/CFT foreslogs sommaren 2008 av Aharony, Berg-
man, Jafferis och Maldacena: AdS4/CFT3. Denna dualitet 4r i fokus i denna
avhandling. Filtteorin, som kallas for ABJM-modellen efter de ursprungli-
ga forfattarna, dr nu en tredimensionell supersymmetrisk Chern-Simons-teori
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med gaugegrupp U(N) x U(N). Denna lever pa randen av ett rum vars geo-
metri dr AdS4 x CPP3 och som beskrivs av supersymmetrisk stréngteori av typ
ITA. AdS4 idr igen ett anti-de Sitter-rum, men av en dimension ldgre 4n ovan
och CP? ir en sexdimensionell generalisering av en sfir.

En viktig egenskap hos AdS/CFT-dualiteten 4r att den relaterar en starkt
kopplad och en svagt kopplad teori till varandra. Detta kan anvidndas som ett
kraftfullt verktyg for att utfora berdkningar. Genom att anvéinda stérningsteori
i strangteori kan vi ldra oss nagot om starkt kopplad kvantféltteori, och en
perturbativ analys av féltteorin oss information om kvantgravitation i ett starkt
krokt rum. Denna egenskap gor dock duliteten svar att bevisa — det finns ingen
regim dér vi kan hantera bade stringteorin och filtteorin fullt ut.

Trots detta har det under de senaste aren gjorts stora framsteg nér det giller
att forsta bade AdSs/CFT4 och AdS4/CFT3. Anledningen till att detta har varit
mojligt &r att teorierna pa bada sidorna av dessa dualiteterna i den sa kallade
plandra grénsen dr integrerbara. 1 en integrerbar teori finns det, utover rorel-
semingd och energi, en odndlig midngd extra bevarade storheter. Med dessa
till hjdlp kan vi i princip 16sa modellen exakt. De strukturer som leder till in-
tegrerbarhet i AdSs/CFT4 och AdS4/CFTj liknar varandra i mycket, men det
senare fallet 4r mer komplicerat och inte lika vil forstatt.

Min avhandling bestér av fem av artiklar dir vi undersoker dessa strukturer
bade i ABJM-modellen och i den duala stréingteorin pi AdS4 x CP3. I synner-
het studerar vi de fundamentala excitationerna i de integrerbara modellerna, sa
kallade magnoner. Dessa ar mer komplicerade i AdS4/CFT3 dn i AdSs/CFTy,
dels for att det finns olika typer av magnoner med olika massor, och dels for
att magnonernas dispersionsrelation, det vill siga relationen mellan rorelse-
méngd och energi, far kvantmekaniska korrektioner.

I artikel I-TII presenteras tva perturbativa berdkningar av dessa korrektioner
till dispersionsrelationen hos magnonerna i ABJM-modellen. Berdkningarna
ar gjorda till fjairde ordningen i storningsteori. Jag finner att véra resultat &dr en
viktig utgdngspunkt for att forsta hur operatorerna i teorin fordndras nar vi gar
fran svag till stark koppling.

Artikel IV och V handlar om magnoner pa stringteorisidan av dualiteten,
sa kallade “giant magnons”. I AdS4/CFTj3 finns det flera olika typer av sadana
tillstand. Genom att berikna deras energier med flera olika metoder klassifi-
cerar vi dessa 16sningar och identifierar vilken excitation pa filtteorisidan av
dualiteten de motsvarar. Denna identifikation &r central for att forsta relationen
mellan stringteori i AdS; x CP? och ABJM-modellen.
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