Calculation of Expected Shortfall via Filtered Historical Simulation

Huang Yuan
Contents

Abstract..2
Acknowledgement..3

1. Introduction..4
 1.1 Background...4
 1.2 Construction...8

2. ES (Expected Shortfall)...8
 2.1 Principle of Risk Measures Systems...8
 2.2 Coherent Risk Measures...10
 2.3 The Mean-Variance..12
 2.4 VaR (Value at Risk)..12
 2.5 TCE (Tail Conditional Expectation)..15
 2.6 ES...16

3. FHS (Filtered Historical Simulation)...17
 3.1 Estimating Approaches...17
 3.2 FHS..18

4. GJR-GARCH Model...21
 4.1 ARCH Model..22
 4.2 GARCH Model..23
 4.3 GJR-GARCH Model..23
 4.4 QMLE (Quasi Maximum Likelihood Estimation)......................................25

5. ES under FHS with GJR-GARCH Model...26

6. Empirical Analysis..30

References..44
Appendix: Matlab Source Codes...45
Abstract

In this thesis we describe an improved, effective and efficient approach which called Filtered Historical Simulation (FHS) for calculating the Expected Shortfall (ES) that is one coherent risk measure. We construct a GJR-GARCH model, which is widely applied in describing, fitting and forecasting the financial time series, to extract the residuals of logarithmic returns of Chinese securities index. We select the Shanghai Composite Index (SHCI) and do empirical analysis under two periods, 2000.1.1 ~ 2007.5.31 and 2008.1.1~2010.5.31, which are as the historical data samples. We calculate the ES for 1-day horizon, 5-day horizon, and 10-day horizon under FHS with GJR-GARCH model.

Keywords: Expected Shortfall; Filtered Historical Simulation; GJR-GARCH model
Acknowledgements

I would like to express my deep gratitude.

Firstly, I deeply acknowledge my outstanding supervisor, Professor Maciej Klimek, who has a profound knowledge. His valuable suggestions and patience help me a lot in my thesis. Thanks a lot for his constant guidance and encouragement.

Also, I want to thank professors, teachers, and classmates who did much favor for my study life in the department of mathematics at Uppsala University.

Finally, much thanks for my family’s supporting and encouragement.
1 Introduction

1.1 Background

In recent years, financial risk has a fast speed in growth. Since last century, the trend of economical globalization and financial integration significantly increases the interdependence between global economic and financial market. As modern financial theory and information technology etc., the global economic and financial market develop rapidly, along with speedy growth of financial innovation and credit derivatives, which transfer risk on one hand, but become a new source of risk on another hand because of their own complexity and particularity. All of these make financial institutions face the increasingly serious financial risk. The so-called financial risk, refers to the possibility of loss which generates as uncertainty in economic activities. Financial risks include market risk, credit risk, operational risk and liquidity risk etc. In all the financial risk, financial market risk has a special status. All financial assets are faced with the financial market risks, which is often the basic reasons why cause other types of financial risk. Financial risks mainly come from the price volatility of financial instruments. With the increasing diversification of financial instruments and derivatives, uncertainty is growing and so as the financial risks.

Financial risk management and risk measurement become so important for modern society. Risk management has been at the centre of attention of financial managers during past few years, especially after the financial crises in ‘90’s. And now, after the market failure in 2008, the demand for a precise risk measurement is even higher than before. [8] Importance of risk management and risk measurement are focused by international financial regulatory authorities and financial institutions. The design and development of "Basel Concordat" highlight the risk management and risk quantification as the center in order to improve the effectiveness of capital regulation. [10] Rapidly changing market determines the rapidly changing risk exposure. As the more complex structure of financial instruments, if we can not accurately identify and measure these risks, we could never manage market risks. How to accurately
measure a financial risk as a hot issue is paid much attention to by financial institution, policy and academic. The relationships between the financial markets become increasingly complex, showing more characteristics like non-linear, asymmetric and heavy tail. Financial volatility makes the risk measure model which aggregates risk management and analysis of dependencies in financial market become the focus of attention by the world.

Risk measurement models are mainly used in: (1) risk measurement and control. Banks and securities always accompany high-yield and high-risk and the stock market prices often have greater volatility. How to measure several, a dozen or even dozens of stocks risk in our hands? Risk measurement is the tool to calculate the economical capital, to optimize capital allocation. (2) financial regulation. Bank for International Settlements Basel Committee has a clear requirement on adequacy ratio of capital. In 1994, the Financial Accounting Standards Board (FASB), who is responsible for developing accounting standards, developed guidelines to encourage calculation and the timely disclosure of quantitative risk information. (3) performance evaluation. In the financial investment, high yield is always accompanied by high risk so that traders may be willing to take enormous risks to the pursuit of huge profits. As the needs for steady business of the company, traders must be possible to limit excessive speculation. Therefore, it is necessary to consider the performance evaluation of risk factors. For example, Bankers Trust's performance assessment indicates RAROC (Risk Adjusted Return on Capital). If the traders engage in high risk investments, even the higher profit, RAROC value and its performance evaluation are also not very high. It seems that, the risk measure is used for performance assessment, which can be more truly reflect the trading results of operations personnel, and limit excessive speculation. By calculating the risk-adjusted earnings of projects, it is enable for companies to better select the project with maximum benefits but under minimum risk.

Markowitz model created a new era for risk management. He proposed to measure the
risk using variance, which reflects the volatility of the value. In academia, scholars researched more on how to establish an effective measurement model. VaR (Value at Risk) was developed in the early 90s as a financial risk management tool. In 1994, J.P Morgan's asset risk management department provided the VaR method to the world. At that time, the world does not have a consistent risk management standard. VaR is reasonable in theory, and in practice, so it was quickly paid an attention to academia and industry. VaR has many advantages, but has the defects which can not be ignored. It ignored the tail risk and does not fit Subadditivity. It can only determine the maximum possible loss of the portfolio under a selected confidence level. Thus the provision of information may be misleading investors. These shortcomings make VaR can not match the investors’ real feelings. When conducting combinatorial optimization, local optimal solutions may not be the global optimal solutions, which is contrary to the theory of portfolio risk diversification principle. Therefore, in order to better adapt to the economic development and the request of technological progress, we should design more rational method for measuring risk and improve the measurement and control of complex financial risk.

Artzner et al. (1997) proposed theory of coherent risk measure [1], which saying one risk measure should satisfy four conditions: Monotonicity, Subadditivity, Positive homogeneity, and Translational invariance. Acerbi et al. (2002) proposed that the ES (Expected Shortfall) is the most suitable coherent risk measure that can replace VaR. They [2] proposed that managing risk by VaR may fail to stimulate diversification. Moreover, VaR does not take into account the severity of an incurred damage event. They also showed that the ES definition in Acerbi et al. (2001) is complementary and even in some aspects superior to the other notions. Moreover, in a certain sense any law invariant coherent risk measure has a representation with ES as the main building block. The definition of ES is the expectation of worst 100 \(\alpha \) % of losses of the portfolio under confidence level \(\alpha \). ES measures the conditional expectation of losses over VaR, and is a risk measurement tool derived from VaR,
which is closer to the investors’ real feeling. Moreover, it's easy to calculate, and it is considered as a more reasonable and effective method for risk measurement and management.

It has been known that equity return volatility is stochastic and mean-reverting, return volatility responds to positive and negative returns asymmetrically and return innovations are non-normal (Ghysels, Harvey, and Renault, 1996) [6]. The stochastic volatility has been developed within the framework of autoregressive conditional heteroskedastic (ARCH) [7] process suggested by Engle (1982) and generalized by Bollerslev (1986) [3]. The GARCH model accounts for stochastic, mean-reverting volatility dynamics. It also assumes that positive and negative shocks of the same absolute magnitude should have the identical influence on the future conditional variances. However, the volatility of aggregate equity index return, in particular, has been shown to respond asymmetrically to past negative and positive return shocks, with negative returns resulting in larger future volatilities. This phenomenon is generally referred to as a “leverage” effect. To explain this phenomenon, there is GJR-GARCH model of Glosten, Jagannathan and Runkle (1993) used for describing this asymmetry.

Acerbi et al. (2002) presented the concept of ES, and proved that ES is on the coherence [2]. Attributed to the successful application of GARCH model to financial time series, studies have been written to incorporate GARCH model into risk simulation. GJR-GARCH Model of Glosten, Jagannathan and Runkle (1993) exists to explain ‘leverage’ effect. Barone-Adesi et al. (2000) introduce Filtered Historical Simulation algorithm in order to generate correlated pathways for a set of risky assets [4]. Barone-Adesi et al. (2002) provided Filtered Historical Simulation with GARCH model [5]. Giannopoulos et al. (2005) showed that the estimator of ES as calculated by FHS is a coherent measure and also show how the FHS can be used in estimating the ES. The methodology FHS proposed is quite flexible in a sense that it can handle individual securities and portfolio of securities [9].
1.2 Construction

This thesis is based on paper [9]. Taking into account in financial markets, negative news on the impact of the price of capital is often greater than that of positive ones, which is leverage effect, we choose GJR-GARCH Model with FHS method to estimate ES, in order to measure the risk of Shanghai securities market.

The rest of the paper is organized as follows.

Section 2 contains an overview of the principles of risk measures systems, coherent risk measure, the mean-variance, VaR (Value at Risk), TCE (Tail Conditional Expectation), and the explanation of ES.

Section 3 gives a short description of estimating approaches and the concept of FHS tool.

Section 4 is allocated to description of the ARCH model, GARCH model, and in particular GJR-GARCH model and the QMLE (Quasi Maximum Estimation) to estimate parameters of GARCH model.

We present how to build a FHS tool under GJR-GARCH model for estimating the ES in section 5.

In section 6 we provide empirical simulation exercises of Shanghai securities market in China. We calculate the ES for 1-day horizon, 5-day horizon, and 10-day horizon of Shanghai Composite Index (SHCI) under FHS with GIR-GARCH model.

2 ES (Expected Shortfall)

2.1 Principle of Financial Risk Measures

At present comprehensive risk measurement systems include as the followings [12]:

(1) WYP System
One critical application of risk measures is premium pricing in insurance field. That is, for an insurance risk \(X \), how to select a pricing function \(H(X) \) to calculate premiums, for payments to meet future requirements? It is clearly that premium pricing function \(H(X) \) is usually regarded as the risk measurement for \(X \). Pricing function \(H(.) \) should meet the following four axioms:

(i) Conditional State Independence: given market conditions, the pricing of insurance risk \(X \) is only on its own probability distribution;

(ii) Monotonicity: for two risk \(X, Y \), if there is \(X(\omega) \leq Y(\omega) \) for any state \(\omega \), then \(H(X) \leq H(Y) \).

(iii) Comonotonic Additive: if \(X \) and \(Y \) have comonotonic, which means there exists another stochastic variable \(Z \) and two real functions \(f \) and \(h \), that make \(X = f(Z) \), \(Y = h(Z) \), then \(H(X + Y) = H(X) + H(Y) \).

(iv) Continuity: for risk \(X \), \(H(.) \) should satisfies the following two equations (\(d \) is non-negative constant):

\[
\lim_{d \to 0} H \left(\max \left[(X - d), 0 \right] \right) = H(X),
\]

\[
\lim_{d \to +\infty} H \left[\min(X, d) \right] = H(X).
\]

The first formula above shows that when \(X \) occurs a small change, its pricing will change correspondingly. The second formula shows that the upper limit of \(X \) can be used to approximate value of measure.

(2) PS System

Pedersen & Satchell (1998), through discussions of a series of risk measurement functions (such as variance), presented that the risk measure is the value of deviation degree from risk \(X \), and summarized four principles of risk measurement, which named PS system. It includes:

(i) non-negativity: \(H(X) \geq 0 \).

(ii) positive homogeneity: \(H(cX) \geq cH(X) \), \(c \geq 0 \).
(iii) subadditivity: \(H(X + Y) \leq H(X) + H(Y) \)

(iv) shift-invariance: \(H(X + c) \leq H(X) \), \(c \) is constant.

(3) ADEH System

Artzner, Delbean, Eber & Heath (1999) discussed the principle of risk measurement from another view, which proposed that risk measurement is the measure for capital requirement. That is named ADEH system which includes:

(i) Monotonicity: if for any \(X \leq Y \), then \(H(X) \leq H(Y) \). It shows that for any possible result, if one loss from a risk is bigger, then it’s risk level is higher. At the same time, for any \(X \), we have \(H(X) \geq 0 \).

(ii) Subadditivity: \(H(X + Y) \leq H(X) + H(Y) \). It shows that, a portfolio made up of subportfolios will risk less than the sum of their individual risks.

(iii) Positive Homogeneity: for any \(c \), we have \(H(cX) = cH(X) \). It shows that, the financial risk measure should not be influenced by measurement units.

(iv) Translation Invariance: for any be sure \(a \), there is \(H(X + a) \leq H(X) + a \), which means, with a increasing loss of risk \(X \), the level of risk will increase an equivalent value.

ADEH presents that if a risk measure function satisfies ADEH system requirements, then the risk measure function is called Coherent Risk Measure. So ADEH system is always as Coherent Principle of Risk Measure. ADEH is as a widely recognized and accepted system which is an indisputable fact. Szego (2002) thought ADEH system is the most complete and reasonable principle of risk measurement. To judge a risk measure method, whether it satisfies ADEH system requirements has become an important criteria of a "good" risk measure.

2.2 Coherent Risk Measures
We turn to the theory of coherent risk measures proposed by Artzner et al. (1997, 1999). Artzner et al. postulated a set of axioms – the axioms of coherency. Let X and Y represent any two portfolios’ Profit/Loss, and let $H(.)$ be a measure of risk over a chosen horizon. The risk measure $H(.)$ is said to be coherent if it satisfies the following properties:

(i) **Monotonicity**: $Y \geq X \Rightarrow H(Y) \leq H(X)$. It shows if the return of one investment is better than another investment, then the risk is relatively smaller.

(ii) **Subadditivity**: $H(X + Y) \leq H(X) + H(Y)$. It shows that the risk of the portfolio will not be greater than the sum of risk for individual assets. This is commonly referred to as the benefits of diversification.

(iii) **Positive homogeneity**: $H(hX) = hH(X)$, for $h > 0$. It shows that a single asset has the same nature. The size of the risk is in proportion with the amount of assets.

(iv) **Translational invariance**: $H(X + n) = H(X) - n$, for some certain amount n. It shows that if investment income increases n, it will lead risk reduce n.

Properties (i) Monotonicity, (iii) Positive homogeneity and (iv) Translational invariance are essential conditions. The most important property is (ii) subadditivity. Subadditivity ensures that the risk of the portfolio is less than or equal to the sum of each individual risk. That is to diversify our investments could reduce the risk of non-system. This tells us that a portfolio made up of subportfolios will risk less. It reflects that aggregating risks does not increase overall risk. It is not only the most important attributes for a risk measure model, but also has important significance in practice. First, subadditive in determining the bank's capital is important. For example, there are many branches of a bank, each which calculate their capital according to their own risk. In addition, subadditivity condition for solving the optimization of our portfolio is also of great significance. Under this condition, how to solve the optimal problem becomes a convex programming, which has the existence of uniqueness of
the solution. Furthermore, if regulators use non-subadditive risk measures to build regulatory capital requirements, then a financial firm might prefer to break up. Finally, if risks are subadditive, adding risks together would give an overestimate of combined risk which facilitates to disperse decision-making.

2.3 The mean – variance

If the risk is as "the deviation of actual results with the expected", then the use of standard deviation as the risk measure function seems to be reasonable. It is based on this idea. Markowitz (1952) proposed a "mean - variance" framework for the analysis of portfolio selection theory. In this theory, Markowitz presented the mean as a measure income level, and the variance (or standard deviation) as a measure of the risk level. It is thanks to this pioneering work, modern finance has made remarkable success. However, the standard deviation (or variance) does not satisfy two principles of coherence which are monotonicity and Translational invariance. So it is not a coherent risk measure.

2.4 VaR

In 1993, the Basel Committee on Banking Supervision advised to use VaR (Value at Risk) to monitor bank risks. As VaR is a measure which can fully and clearly reflect the risk of financial assets. It also overcomes the limitations of risk measurement methods which can only for a particular financial instrument or to be used in a specific range, but could not reflect a risk comprehensive. So soon after the presentation of VaR method which is widely welcomed, and has been widely used in financial risk management field in the world, VaR has become an important standard to measure risk.

VaR is the potential maximum loss under a certain probability. Let a random variable X represent the future change of value of an asset during the time period from the present time to time $T > 0$. Let $\alpha \in (0,1)$ be chosen. Let F denote the cumulative
distribution function of X, that is $F(x) = \Pr[X \leq x]$ for any x. The α-quantile of X is defined as

$$q_\alpha(X) = \inf \left\{ x : F(x) \geq \alpha \right\}.$$

In the case, when the function F has an inverse, this simply means that $q_\alpha(X) = F^{-1}(\alpha)$. Under a given confidence level α, the value-at-risk associated with X is defined by the formula

$$VaR_\alpha(X) = -q_\alpha(x).$$

It refers to the allowable maximum loss for holding financial assets within a specific future holding period, under the loss probability α. Or under confidence level $1 - \alpha$, we believe that losses of financial assets within the specified period will be less than or equal to the value-at-risk.

VaR has many advantages: First, the concept is simple, and easy to understand. It gives the maximum loss of a portfolio under a certain confidence level within a specified time, and easy to communicate with shareholders. Second, VaR can measure the overall market risk exposure under different market factors, a complex portfolio constituted of different financial instruments, and different business units. Since VaR provides a unified way to measure risk, therefore, top managers can compare the exposure risk of different business units. It also provides a simple and feasible method for its performance evaluation based on risk-adjustment, capital allocation, setting amount of risk. Third, VaR fully think over correlation between changes in different asset. This may reflect the contribution of diversification in reducing portfolio risk.

We discussed some of the advantages of VaR above– the fact that it is a common, accessible, risk measure, etc. However, the VaR also has its drawbacks. From a statistical point of view, VaR is the corresponding quantile of cumulative probability α, and is a percentile of distribution of investment income. It only calculates a loss point, but not counts for the over values. Because it does not consider more losses may occur beyond the region, therefore, assessment of risk will
cause some problems. VaR estimates can be subject to error, which means that VaR systems can be subject to model risk or implementation risk. In the application of VaR in the practice of risk assessment, some theoretical flaws of VaR are gradually exposed, with further research.

If income distribution is not elliptical distribution, it will appear the following absurdity:

(1) The exceed loss value of VaR does not be measured. This important limitation is that the VaR only tells us the most we can lose if a tail event does not occur; if a tail event does occur, we can expect to lose more than the VaR, but the VaR itself gives us no indication of how much that might be. VaR for the Tail Risk measure is not sufficient. VaR can only measure loss of quantile for portfolio under a certain confidence level, but ignores what will be over the losses. That is ignoring the tail risk. This defect of VaR makes people ignore the small probability of large loss occurred, and even financial crisis. This causes the value of the VaR measure for risk can not match the real feelings of investors, which should be focused by financial regulatory departments.

(2) The decreasing value of VaR may lead to an extension of the tail of VaR.

(3) Non-subadditivity. VaR does not meet the coherent axioms. For non-normal situation, VaR risk measure does not satisfy the principles of coherence (ADEH system principles), and it’s not a coherent risk measure because of non-subadditivity. Otherwise the risk of the portfolio is greater than the sum of their risk for each asset. That is the VaR of a portfolio having two assets is larger than the sum of two respective VaR for each asset, which means that the diversified portfolio causes an increased risk. Clearly, the violation of subadditivity would possible bring system vulnerabilities to the financial regulatory, so we’d better not use VaR to optimize the portfolio. Artzner, Delbean, Eber & Heath (1997, 1999), Rootzen & Kluppelberg (1999) have proved that VaR does not satisfy subadditivity. We can only ‘make’ the VaR subadditive if we impose restrictions on the form of the P/L distribution which is elliptically distributed. But this is limited because in the real world non-elliptical
distributions are the norm.

(4) It does not have properties of a convex function. In addition, for the case of discrete distribution, optimize of VaR is very difficult. Because, at this time VaR as a function of investment position is non-convex and non-smooth, and there are multiple local optima, so it is difficult to calculate.

(5) VaR has many local extremes which lead to instability of VaR.

In addition, VaR methods have some more disadvantages. First, it is a backward-looking method. For future losses that is based on historical data, we assume that past relationships between the variables remain the same in the future, which is clearly, in many cases, does not meet reality. Second, VaR method is carried out under certain assumptions, such as normality of data distribution, etc. Sometimes these assumptions are unrealistic. Third, VaR method is efficient only under normal changes for market risk measurement. It can not handle situation under which the extremes of price movements in financial market, such as stock market crash, etc. In theory, the root which causes of these defects is not the VaR itself, but rather for based statistical methods.

In all, VaR has no claim to be regarded as a ‘proper’ risk measure. A VaR is merely a quantile, and it is very unsatisfactory as a risk measure.

2.5 TCE (Tail Conditional Expectation)
Because of the deficiencies and limitations of VaR methods, many scholars have undertaken extensive research, and explore the coherent risk measures of alternative VaR tool from different perspectives. At this time TailVaR emerged. Artzner et al. recommend the use of TCE (Tail Conditional Expectation) as an alternative to VaR. TCE is the conditional expectation loss which is over the loss distribution of α-quantile. It not only reflects the loss probability, also reflects the expected losses of exceeded VaR. Artzner et al. (1999) conducted a more rigorous definition under mathematic. For the continuous distribution function, the mathematical formula of
TailVaR(α):

$$TailVaR(\alpha) = E[X|X > VaR(\alpha)] = VaR(\alpha) + E[X - VaR(\alpha)|X > VaR(\alpha)].$$

If the loss distribution is a discrete function, it is likely due to \(Pr[X > VaR(\alpha)] < (1 - \alpha) \), so the formula would be more completed:

$$TailVaR(\alpha) = E[X|X > VaR(\alpha)] = VaR(\alpha) + \frac{Pr[X > VaR(\alpha)]}{(1 - \alpha)} E[X - VaR(\alpha)|X > VaR(\alpha)].$$

However, TCE is coherent risk measure only of the case which is that distribution function of loss is a continuous function. For discrete distribution function of loss, TailVaR does not satisfy subadditivity based on strict mathematical definition. Therefore, TailVaR measure is not appropriate when distribution is discrete.

2.6 ES (Expected Shortfall)

ES (Expected Shortfall) proposed by the Acerbi etc. (2001), is a more appropriate risk measurement tool as an alternative to VaR. Intuitive explanation of ES is that the conditional expectation of losses which exceed VaR. It also can be expressed as expectation of α tail losses under confidence level $(1 - \alpha)$ in a certain period. ES can clearly show the conditional expectation when the estimated loss is failed, so it also helps in-depth understanding of tail risk, and have a closer feeling to investor psychology.

The ES is the average of the worst $100\% \alpha$ of losses:

$$ES_\alpha = ES_\alpha(X) = \frac{1}{\alpha} \int_0^\alpha q_x dp.$$

Acerbi & Tasche (2002) proved that the ES satisfies the principles of coherent risk measure. The subadditivity of ES follows below: if we have N equal-probability quantiles in a discrete P/L distribution, then,

$$ES_\alpha(X) + ES_\alpha(Y) = [\text{mean of } N\alpha \text{ highest losses of } X] + [\text{mean of } N\alpha \text{ highest}$$
losses of Y]
\[
\geq \text{mean of } N\alpha \text{ highest losses of } (X + Y)
\]
\[
= ES_{\alpha}(X + Y)
\]

A continuous loss distribution can be regarded as the limiting case as N gets large.

The ES is a better risk measure than the VaR for several reasons:

(1) The ES tells us what to expect in bad states.

(2) An ES-based risk expected return decision rule is valid under more general conditions than that of a VaR-based.

(3) The subadditivity of ES implies that the portfolio risk surface will be convex, which ensures portfolio optimization problems could be handled very efficiently using linear programming techniques. But for VaR measures, it always has a unique well-behaved optimum.

In short, the ES easily dominates the VaR as a risk measure

A more direct methodology to calculate ES makes use of order statistics. Suppose that a sample X_1, X_2, \ldots, X_n of Profit/Loss values is available and ES is calculated under confidence level $\alpha = A\%$. Then, the sample is ordered in an increasing order $X_{[1]} \leq X_{[2]} \leq \ldots \leq X_{[n]}$. The number of elements that we need to retain for further calculations is $\left\lfloor n\alpha \right\rfloor$, which is the integer part of $n\alpha$. The worst $\alpha = A\%$ losses are then $X_{[1]} \leq X_{[2]} \leq \ldots \leq X_{[n]}$ and the obvious ES estimator is the average of the highest $A\%$ losses from the set of X_1, X_2, \ldots, X_n. The formula is

$$ES_{\alpha}(X) = \frac{1}{\left\lfloor n\alpha \right\rfloor} \sum_{i=1}^{\left\lfloor n\alpha \right\rfloor} X_{[i]}.$$

3 FHS

3.1 Estimating Approaches
In application of risk measure functions, it is how to estimate financial risk measure (calculation for Estimator of Risk Measure), which is directly referred to "Risk Estimator" by Cotter & Dowd (2007). As in the real conditions, we can only get a limited sample, so Dowd & Blake (2006) proposed that there are mainly three types for statistical methods of risk estimation: parameter method, stochastic simulation method and the non-parametric method.

Parametric Approaches

The basic idea of parameter method can be summarized as the following three steps:

1. Collect and collate historical data of specific risks.
2. Fit distribution based on historical data. For example, fit historical data as a normal distribution, gamma distribution, lognormal distribution, etc. Then choose the most appropriate distribution.
3. Use the mathematical methods related to the distribution to calculate the risk measure.

Monte Carlo Simulation Methods

Stochastic Simulation can be called the "Monte Carlo simulation". The basic idea can be summarized as: beginning, under the distribution based on certain assumptions, use computer random number generator to generate a lot of "pseudo-random number", and then calculate the related risk measure by non-parametric methods.

Non-parametric Approaches

The basic idea of non-parametric method can be summarized in three steps:

1. Collect and collate historical data of specific risks.
2. Use historical data to do a series of treatments of non-parametric methods.
3. Compute related risk measures based on experienced distribution.

3.2 Filtered Historical Simulation

Barone-Adesi, Engle, and Mancini (2008) employ a nonparametric method to
represent the distribution of the underlying asset. They refer to it as the Filtered Historical Simulation (FHS). The essence of FHS is similar to the bootstrapping method, and is a generalized historical simulation. It uses historical return sample to simulate changes for each factor of risk. Then we can get different scenes to compute the value of the portfolio. The basic idea of HS or Bootstraping is sample information can be used repeatedly which is simulated by computer, for which can induce deviation of statistical inference. Rely on the critical value of the data, it could provide us more accurate and reliable test, and overcome the incremental non-distribution problem for traditional statistical test.

FHS technology has the good nature of the historical simulation method, and could overcome the shortcomings of the historical simulation method. FHS aims to combine the benefits of HS with the power and flexibility of conditional volatility models such as GARCH. The bootstrap preserves the non-parametric nature of HS through bootstrapping returns within a conditional volatility.

FHS first applies a suitable econometric model to historical data in order to filter out some stylized facts such as the leverage, heavy tail and volatility clustering which are commonly observed in real financial time series. FHS method relaxes the assumption on the sequence of balance. The volatility of daily return divided by the daily estimated residual, and we could get standard historical return. So it is called filtered historical simulation, which is

$$z_i = \frac{\varepsilon_i}{\sqrt{h_i}}.$$

Residuals of return time series after standardization are i.i.d (independent identically distribution). The series satisfies the requirements of HS (Historical Simulation). The remaining residual thus forms an empirical innovation of the asset. The residual is then used to generate future return path under the risk-neutral measure.

There are four main steps in implementing FHS. In a first step, a conditional volatility
model is fitted to historical data. The model should have a good forecasting ability. Secondly, by dividing each of the corresponding volatility, the realized returns are then standardized and should be i.i.d. The third step consists of bootstrapping from the above sample set of standardized returns. Thereafter each drawing is multiplied by the volatility forecast to obtain a sample of values, as large as needed. Finally, we can calculate any statistic through the sample of asset values. Once the sample of Profit/Loss values at a horizon is obtained by FHS, it is easy to estimate any coherent measure of risk which is described by a closed formula.

FHS has several attractions: (i) It allows us to combine the non-parametric attractions of HS with a conditional volatility models such as GARCH, and so take account of changing market volatility conditions. (ii) It maintains the correlation structure in our return data without relying on the conditional distribution of asset returns. (iii) It can be modified to take account of autocorrelation or past cross-correlations in asset returns. (iv) The risk estimates, which exceed the maximum historical loss in our data set, are enabled. (v) Even for large portfolios, it is fast.

The most obvious advantage for FHS method is that, filtered process expands of the range historical scenarios by a weighting factor. That is FHS provides a systematic approach to generate those extreme scenarios which are not included in the scenario of history, and also further improve the left and right tail of income distribution. So FHS approach needs less historical records than the HS method, but could simulate the income distribution or two tails. Because this process is a way over the sample out, so its effectiveness must be detailed examined. Adesi et al (2002) proved that this method applied in the field of risk management is effective. FHS method can simulate the entire distribution of stock returns, since it can also be used for stress testing. When carrying out the conventional bootstrap, it is not limited to the observed sample of returns. Thereby increasing simulation times, it makes the simulation of more multivariate distribution for extreme value of two tails possible. These stress tests for derivative portfolio are of great importance.
For a given portfolio, the most extreme situations may be time-consuming. Because the successful probability of a single simulated path is inversely proportional with the numbers of simulated paths. Thus, for linear portfolios, simulation for the most extreme scenario is relatively easy. The most extreme scenario is a simulation result in the highest or the lowest pre-revenue.

4 GJR — GARCH Model

Many financial time series do not have constant means. Most sequences showing a relatively stable stage, while accompanied by the sharp volatility. In a number of macroeconomic analysis, time series show a range of key characteristics, which are: the variance process is not only changing over time, but also changing very severely sometimes; observed by time, it shows "volatility clustering" feature, that is variance is relatively small in a certain period, and relatively large at another time; From the distribution of values, performance is "leptokurtosis and fat-tail" feature, which is the value of probability near mean and the end zone is larger than the normal distribution, but the remaining area is smaller than the normal distribution; It contains a clear trend; The impact of the sequence emerged a greater continuity. From the changes of daily index in stock market, we can find, the stock market sometimes looked calm, also rose or fell other time. That is volatility is both clustered and explosive. Then we said the time series exist heteroskedasticity. Such sequences with these characteristics are known as conditional heteroskedasticity sequences. Engle (1982) described the model which has such relationship as ARCH (Autoregressive conditional heteroskedasticity) Model.

The structure of ARCH model depends on the order of the moving average \(q \). To properly capture the market heteroskedasticity, we must increase the order of ARCH model. However, if \(q \) is large, the efficiency of parameter estimation will reduce. It will also lead to other problems such as multicollinearity of explanatory variables. To compensate for this weakness, Bollerslev (1986) increased \(p \) items of autoregressive
in the ARCH (q) model, which is as GARCH(p, q) model (generalized autoregressive conditional heteroskedasticity model). Using a relatively simple GARCH model to represent a higher order ARCH model, will greatly reduce the parameters to be estimated, which makes model identification and estimation become easier. It solves the inherent shortcomings of ARCH model. According to different return equations, different conditional variance equations, and different parameter assumptions, a variety of GARCH models are derived, which are called GARCH Type Models.

4.1 ARCH Model

ARCH (q) model - or more precisely AR(k)-ARCH(q) model - consists of two equations: one is the conditional mean equation, the other is the conditional variance equation, which is represented as follows.

\[y_i = a_0 + a_1 y_{i-1} + \ldots + a_k y_{i-k} + \varepsilon_i = a_0 + \sum_{j=1}^{k} a_j y_{i-j} + \varepsilon_i \]

\[\sigma_i^2 = \alpha_0 + \alpha_1 \varepsilon_{i-1}^2 + \ldots + \alpha_q \varepsilon_{i-q}^2 = \alpha_0 + \sum_{j=1}^{q} \alpha_j \varepsilon_{i-j}^2 \]

\[\varepsilon_i = \sigma_i z_i \]

\[\alpha_0 > 0, \alpha_i > 0, i > 0. \]

\(\varepsilon_i \) denotes the error terms (return residuals). \(\sigma_i^2 \) is the series conditional volatility.

The random variables \(z_i \) are independent and identically distributed with mean 0 and standard deviation 1. Often they are assumed to be Gaussian.

According to moving average of the squared error for historical returns, the model analyzes conditional heteroskedasticity for the rate of return of financial instruments. If the market has undergone substantial changes, square error will become larger, which leads to the increasing of current conditional variance. In other words, no matter which direction yields fluctuate of the return of financial instruments, the current market volatility will also be larger. Visible, ARCH models better characterize the effect of clustering yields.
4.2 GARCH Model

If an ARMA model (autoregressive moving average model) is assumed for the error variance, the model is a GARCH model (generalized autoregressive conditional heteroskedasticity model). When mixed with AR(k) model of the conditional mean, the GARCH(p,q) model has the form:

\[y_t = a_0 + a_1 y_{t-1} + \ldots + a_k y_{t-k} + \varepsilon_t = a_0 + \sum_{i=1}^{k} a_i y_{t-i} + \varepsilon_t \]

\[\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_q \varepsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \ldots + \beta_p \sigma_{t-p}^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2 \]

\[\varepsilon_t = \sigma_t z_t \]

where the random variables \(z_t \) are independent identically distributed with mean 0 and standard deviation 1. And p is the order of the GARCH terms \(\sigma^2 \) and q is the order of the ARCH terms \(\varepsilon^2 \).

4.3 A general form for GJR-GARCH model

For asset prices, an interesting feature is “bad” news on the impact of volatility is larger than “good” news. For many stocks, there is a strong negative correlation between current return and future volatility. The volatility reduces while return increases, and volatility increases when return declines. This trend is often referred to as leverage. The view for leverage is shown as Figure 1:
where the "new" information measures \(\varepsilon_t \), and any new information will increase volatility. However, if new information is "good" news (\(\varepsilon_t > 0 \)), volatility increases along the ab, while if new information is "bad" news (\(\varepsilon_t < 0 \)), volatility increases along the ac. It shows that ac is steeper than the ab. Therefore, the impact of a positive shock on the volatility is less than a same size negative one.

GJR-GARCH model is proposed by Glosten, Jagannathan and Runkle, based on ARCH model by Engle and GARCH model by Bofloerselev, which considers the different impact of volatility for bad news and good news. In a sense, \(\varepsilon_{t-1} = 0 \) is a threshold. Therefore, GJR GARCH model can handle a sequence of asset returns which is skewed. The general form of the GJR-GARCH(p,q) model (also as before mixed with the AR(k) model for the conditional mean) is given by the formulas:

\[
y_t = \alpha_0 + \alpha_1 y_{t-1} + \ldots + \alpha_k y_{t-k} + \varepsilon_t = \alpha_0 + \sum_{i=1}^{k} \alpha_i y_{t-i} + \varepsilon_t
\]

\[
\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2 + \sum_{j=1}^{q} \gamma_j I_{t-j} \varepsilon_{t-i}^2
\]
\[e_i = \sigma z_i \]

where the random variables \(z_i \) are independent identically distributed with mean 0 and standard deviation 1. Here

\[I_i = \begin{cases} 1, & e_i < 0 \\ 0, & e_i \geq 0 \end{cases}. \]

The other restrictions that are added mainly to guarantee stationarity are as follows:

\[\alpha_i \geq \max \{0, \gamma_i\} \]

\[\beta_i \geq 0 \]

\[1 > \sum_{i=1}^q \alpha_i + \sum_{j=1}^p \beta_i + 1 \sum_{i=1}^q \gamma_i. \]

4.4 QMLE (Quasi Maximum Likelihood Estimation)

Now, we introduce the QMLE (Quasi Maximum Likelihood Estimation), which is the method to estimate parameters of GARCH model. We would like to present GJR-GARCH(1,1) model for example. In comparison with the above description, we change the notation -from now on \(\alpha_0 = \mu, \ \alpha_0 = \omega, \ \sigma_i^2 = h_i \).

The model is

\[r_i = \mu + \varepsilon_i, \]

\[h_i = \omega + \beta h_{i-1} + \alpha \varepsilon_{i-1}^2 + \gamma I_{i-1} \varepsilon_{i-1}^2 \]

where \(\lambda = \{\mu, \omega, \beta, \alpha, \gamma\} \) is the set of parameters.

We have the likelihood function

\[L(\lambda) = \sum_{i=1}^n l_i, \]

where

\[l_i = \frac{r_i^2}{h_i^2(\lambda)} + \log(h_i(\lambda))^2. \]

If we define
\[\hat{\lambda} = \arg \max_{\lambda} L(\lambda), \]
then \(\hat{\lambda} \) will be the QMLE, and \(\hat{\lambda} = \{\hat{\mu}, \hat{\phi}, \hat{\beta}, \hat{\alpha}, \hat{\gamma}\} \) will be the estimated parameters.

5 ES under FHS with GJR-GARCH Model

We follow an asymmetric GARCH specification named GJR-GARCH model, based on Glosten, Jagannathan and Runkle (1993), with an empirical innovation density, to fit the equity index return. Then estimate the ES under FHS.

(1) Observed data

Considering a securities market, we have

\[r_t = \ln p_t - \ln p_{t-1} \]

where \(p_t \) is the equity index, \(r_t \) is the daily log return of equity index. So the observed data (returns) are \(\{r_1, r_2, \ldots, r_s\} \) for \(t = 1, 2, \ldots, s \), where \(t \) represents “days”.

(2) Set up GJR-GARCH(1,1) model

Here we fit a GJR-GARCH (1, 1) time series model in modeling the equity index return to our data set. Under the historical measure \(P \), the model is:

\[r_t = \mu + \varepsilon_t \quad (1) \]
\[h_t = \omega + \beta h_{t-1} + \alpha \varepsilon_{t-1}^2 + \gamma I_{t-1} \varepsilon_{t-1}^2 \quad (2) \]

The random variables \(\varepsilon_t \) (noises) are assumed to:

\[E[\varepsilon_t | F_{t-1}] = 0 \quad (3) \]
\[\text{Var}[\varepsilon_t | F_{t-1}] = \sigma_t^2 = h_t \quad (4) \]

where \(F_t \) symbolizes information available at time \(t \).
Such that the standard residuals are:

\[z_t = \frac{\epsilon_t}{\sqrt{h_t}} \]

(5)

where \(z_t \sim f(0,1) \) and \(z_t \) are i.i.d (independent identically distributed).

Here \(\mu \) is the constant expected return of the log return, \(\theta = \{ \omega, \beta, \alpha, \gamma \} \) is the parameters of the volatility equation (2). \(I_{t-1} = 1 \) when \(\epsilon_{t-1} < 0 \) and \(I_{t-1} = 0 \) otherwise.

It is clear that for \(\gamma > 0 \), past negative return shocks \((\epsilon_{t-1} < 0) \) will have more impact on future volatility. To ensure any solution \(h_t \) of equation (2) is positive, it is assumed that \(\omega, \beta, \alpha, \gamma > 0 \).

(3) Calibration of the model

We use QMLE (Quasi Maximum Likelihood Estimation) method to find coefficients of the model based on the empirical observed data \(\{r_1, r_2, ..., r_s\} \). After estimating the parameters of the model, we can get the estimated value:

\[\hat{\lambda} = \{ \hat{\mu}, \hat{\omega}, \hat{\beta}, \hat{\alpha}, \hat{\gamma} \} \]

So under P measure we get the calibrated model for \(t = 1, 2, ..., s \):

\[\hat{r}_t = \hat{\mu} + \hat{\epsilon}_t \]

(6)

\[\hat{h}_t = \hat{\omega} + \hat{\beta}{\hat{h}_{t-1}} + \hat{\alpha}{\hat{\epsilon}_{t-1}}^2 + \hat{\gamma}{I_{t-1}}\hat{\epsilon}_{t-1}^2 \]

(7)

\[\hat{z}_t = \frac{\hat{\epsilon}_t}{\sqrt{\hat{h}_t}} \]

(8)

(4) Calculation of historical standard residuals

Using the calibrated model and the empirical observed data \(\{\hat{r}_1, \hat{r}_2, ..., \hat{r}_s\} \) (the same as
\{r_t, r_s, \ldots, r_s\} \) for \(t = 1, 2, \ldots, s \), we calculate and get historical standard residuals \(\{\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_s\} \).

The algorithm contains the following steps.

Step 1

Assumed initial values:

\[
\hat{\epsilon}_0 = 0, \quad \hat{h}_0 = \frac{\hat{\phi}}{1 - \hat{\alpha} - \hat{\beta} - \hat{\gamma}/2}
\]

Initial standard residual:

\[
\hat{z}_0 = \frac{\hat{\epsilon}_0}{\sqrt{\hat{h}_0}} = 0
\]

Step 2

Set up for \(t = 1, 2, \ldots, s \):

(a) According to equation (6), we can get \(\hat{\epsilon}_t \). That is \(\hat{\epsilon}_t \xrightarrow{\text{equation (6)}} \hat{\epsilon}_t \).

(b) Put \(\hat{\epsilon}_{t-1} \) and \(\hat{h}_{t-1} \) in equation (7) and receive \(\hat{h}_t \). That is \(\hat{\epsilon}_{t-1}, \hat{h}_{t-1} \xrightarrow{\text{equation (7)}} \hat{h}_t \).

(c) By equation (8) and get \(\hat{z}_t \). That is \(\hat{z}_t = \frac{\hat{\epsilon}_t}{\sqrt{\hat{h}_t}} \).

(d) Repeat the (a) (b) (c) steps above for \(t = 1, 2, \ldots, s \) and get the result \(\{\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_s\} \).

(5) Filtered Historical Simulation

Suppose that at time \(s \), we want to simulate the returns for the next \(T \) days. We select \(\{\hat{z}_{s+1}, \hat{z}_{s+2}, \ldots, \hat{z}_{s+T}\} \) at random with replacement from the set \(\{\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_s\} \). The data for time \(s \) is known. Using the model to calculate future returns in \(T \) days for the dates \(t = s + 1, s + 2, \ldots, s + T \) is as below:

\[
\begin{align*}
\hat{h}_t^* &= \hat{\omega} + \hat{\beta} \hat{h}_{t-1}^* + \hat{\alpha} \hat{e}_{t-1}^* + \hat{\gamma} \hat{I}_{t-1} \hat{e}_{t-1}^* \\
\hat{e}_t^* &= \hat{z}_t \sqrt{\hat{h}_t^*}
\end{align*}
\]

(9) (10)
\[r_t^* = \hat{\mu} + \epsilon_t^* \] \hspace{1cm} (11)

The algorithm contains the following steps.

Step 1
Select a set
\[\{z_{s+1}^*, z_{s+2}^*, ..., z_{s+T}^* \} \]
which has T elements, and is chosen randomly with replacement from \(\{ \hat{\varepsilon}_1, \hat{\varepsilon}_2, ..., \hat{\varepsilon}_s \} \).

Step 2
Assumed initial value:
\[h_s^* = \hat{h}_s, \quad \epsilon_s^* = \hat{\varepsilon}_s \]

Step 3
Set up for \(t = s + 1, s + 2, ..., s + T \):
(a) Put \(h_{t-1}^* \) and \(\epsilon_{t-1}^* \) in equation (9) and get \(h_t^* \). That is \(h_{t-1}^*, \epsilon_{t-1}^* \xrightarrow{\text{equation (9)}} h_t^* \).
(b) Through equation (10) we receive \(\epsilon_t^* \). That is \(\epsilon_t^* = \sqrt{z_t^*} \).
(c) Put \(\epsilon_t^* \) in equation (11), we can get \(r_t^* \). That is \(\epsilon_t^* \xrightarrow{\text{equation (11)}} r_t^* \).

Step 4
This procedure is repeated N times which is as the number of simulations. Then we can obtain N simulated returns:
\[\{ r_{s+1}^*[1], r_{s+2}^*[2], ..., r_{s+T}^*[N] \}, \text{ for } t = s + 1, s + 2, ..., s + T. \]

These predicted returns allow us to calculate predicted simulated values of the index in T days:
\[p_{s+T}^*[j] = \exp\left(\sum_{i=s+1}^{s+T} r_i^*[j]p_s\right), j = 1, 2, ..., N. \]

The values
\[X_j = p_{s+T}^*[j] - p_s, j = 1, 2, ..., N \]
will be used in the calculation of the expected shortfall.

We can denote these predictions by
\[\{X_1, X_2, \ldots, X_N\} \] .

(6) ES (Estimating expected shortfall)

Let \(\{X_1, X_2, \ldots, X_N\} \) be \(N \) independent samples drawn from the same probability distribution. The same sequence reordered increasingly is denoted as
\[\{X_1^*, X_2^*, \ldots, X_N^*\} . \]

Then an estimate of ES at level \(\alpha \) is given by
\[
ES_\alpha = -\frac{1}{\lceil \alpha N \rceil} \sum_{i=1}^{\lceil \alpha N \rceil} X_i^*
\]
where \(\lfloor \alpha N \rfloor \) denotes the integer part of \(\alpha N \) that is rather big.

6 Empirical Analysis

We select the Shanghai Composite Index (SHCI), which is so important for Chinese securities market. The data samples are from Wind database. We do two empirical analysis under 2000.1.1~2007.5.31, and 2008.1.1~2010.5.31 (under financial crisis).

We propose that \(N = 20000 \), and \(\alpha = 0.05 \).

In a securities market, we have \(r_t \), which is the daily log return of equity index, represented as
\[r_t = \ln p_t - \ln p_{t-1} , \]
where \(p_t \) is the equity index.

For 2000.1.1~2007.5.31:

1. The basic characteristics of statistical data:
From Figure 3, we could see the volatility of returns has the phenomenon of mean-reversion, clustering, and persistence. All the data has a trend that reverses to 0.005. From the intensity of several series data, we see “clustering” clearly. It will keep “persistence” along with the increasing of time.
Figure 3 The daily log return of SHCI (2000.1.1~2007.5.31)

Figure 4 Descriptive statistics for return of SHCI (2000.1.1~2007.5.31)
The characters of statistics are described as Table 1:

Table 1 Characters of statistics for return of SHCI (2000.1.1~2007.5.31)

<table>
<thead>
<tr>
<th>mean</th>
<th>median</th>
<th>max</th>
<th>min</th>
<th>skewness</th>
<th>kurtosis</th>
<th>JB</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3518e-004</td>
<td>3.8645e-004</td>
<td>0.0940</td>
<td>-0.0926</td>
<td>0.2105</td>
<td>8.1552</td>
<td>41.325</td>
</tr>
</tbody>
</table>

Through the analysis of Table 1, we could find some characters of daily return for SHCI from 2000.1.1 to 2007.5.31.

(1) The skewness is more than 0. The skewness of our sample data is 0.2105, which is to right. The distribution of the data has a long right tail.

(2) The kurtosis is greater than 3. The kurtosis of our sample data is 8.1552. But for normal distribution, the kurtosis is 3. The sample shows leptokurtosis and fat-tailedness.

(3) Jarque-Bera statistic for normality is under 2 degrees of χ^2, whose threshold under 5% significance level is 5.99. But the J-B value of our sample data is more than
5.99, which rejects the null hypothesis of normal distribution. It means that the series \(\{r_t\} \) is not normal distribution, which could also be seen from the figure 5 of Q-Q.

2 Correlation test

We use Ljung-Box-Pierce Q to test autocorrelation of residuals, and find that there is no autocorrelation for the rate of SHCI returns. Then we use ARCH test from Engle to exam if there exists ARCH effect in this series. The result shows it has.

![Sample Autocorrelation Function (ACF)](image)

Figure 6 The autocorrelation for return of SHCI（2000.1.1~2007.5.31）
Figure 7 The partial correlation for return of SHCI (2000.1.1~2007.5.31)

Figure 8 The autocorrelation for squared return of SHCI (2000.1.1~2007.5.31)
3 Unit root test

The result is shown as Table 2.

<table>
<thead>
<tr>
<th>Table 2 ADF test for return of SHCI (2000.1.1~2007.5.31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Statistic</td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
</tr>
<tr>
<td>Test critical values:</td>
</tr>
<tr>
<td>1% level</td>
</tr>
<tr>
<td>5% level</td>
</tr>
<tr>
<td>10% level</td>
</tr>
</tbody>
</table>

The unit root test results show that: the values of Augmented Dickey-Fuller test statistics are all less than the thresholds of 1%, 5%, 10%, and the t-value is almost 0. So, we could conclude that the sample series does not have a unit root, which means it is a stationary series.

4 To establish the GJR-GARCH (1,1) model for SHCI daily return:

<table>
<thead>
<tr>
<th>Table 3 Estimating parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>GARCH(1)</td>
</tr>
<tr>
<td>ARCH(1)</td>
</tr>
<tr>
<td>Leverage(1)</td>
</tr>
</tbody>
</table>

After estimation, we could get the model is as follows:

\[r_t = 1.0004 + \varepsilon_t \]

\[h_t = 5.2761e-006 + 0.87401h_t + 0.086961\varepsilon_{t-1}^2 + 0.04586I_{r_t,\varepsilon_{t-1}} \]

5 Estimation ES under FHS

<table>
<thead>
<tr>
<th>Table 4 Risk measures of Forecasting under 2000.1.1~2007.5.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
</tr>
<tr>
<td>Risk Measures</td>
</tr>
</tbody>
</table>
For 2008.1.1~2010.5.31:

1. The basic characteristics of statistical data

From Figure 9, the volatility of returns has the phenomenon of mean-reversion, clustering, and persistence. All the data has a trend that reverses to -0.01. From the intensity of several series data, we see “clustering” clearly. It will keep “persistence” along with the increasing of time.
Figure 10 The daily log return of SHCI (2008.1.1–2010.5.31)

Figure 11 Descriptive statistics for return of SHCI (2008.1.1–2010.5.31)
The characters of statistics are described as Table 5:

Table 5 Characters of statistics for return of SHCI (2008.1.1~2010.5.31)

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>median</th>
<th>max</th>
<th>min</th>
<th>skewness</th>
<th>kurtosis</th>
<th>JB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.0012</td>
<td>9.4302e-004</td>
<td>0.0903</td>
<td>-0.0804</td>
<td>-0.0886</td>
<td>4.6021</td>
<td>21.367</td>
</tr>
</tbody>
</table>

Through the analysis of Table 5, we could find some characters of daily return for SHCI from 2008.1.1 to 2010.5.31.

(1) The skewness is less than 0. The skewness of our sample data is -0.0886, which is to left. The distribution of the data has a long left tail. Daily return for Chinese stock market shows a significant negative skewness.

(2) The kurtosis is greater than 3. The kurtosis of our sample data is 4.6021. But for normal distribution, the kurtosis is 3. The sample shows leptokurtosis and fat-tailedness.

(3) Jarque-Bera statistic for normality is under 2 degrees of χ^2, whose threshold
under 5% significance level is 5.99. But the J-B value of our sample data is more than 5.99, which rejects the null hypothesis of normal distribution. It means that the series \(\{ r_t \} \) is not normal distribution, which could also be seen from figure 12 of Q-Q.

2 Correlation test
We use Ljung-Box-Pierce Q to test autocorrelation of residuals, and find that there is no autocorrelation for the rate of SHCI returns.
Then we use ARCH test from Engle to exam if there exists ARCH effect in this series. The result shows it has.

![Sample Autocorrelation Function (ACF)](image)

Figure 13 The autocorrelation for return of SHCI（2008.1.1~2010.5.31）
Figure 14 The partial correlation for return of SHCI (2008.1.1~2010.5.31)

Figure 15 The autocorrelation for squared return of SHCI (2008.1.1~2010.5.31)
3 Unit root test
The time series using in GARCH model should be stationary. So we use the Augmented Dickey-Fuller test (ADF) to exam if the sample has unit root, which can show if the sample series is stationary. We chose to use Schwazrh Information Criterion (SIC), and let the computer automatically select the lag, setting the maximum lag order be 10. The result is shown as Table 6.

<table>
<thead>
<tr>
<th>Augmented Dickey-Fuller test statistic</th>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29.92783</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

The unit root test results show that: the values of Augmented Dickey-Fuller test statistics are all less than the thresholds of 1%, 5%, 10%, and the t-value is almost 0. So, we could conclude that the sample series does not have a unit root, which means it is a stationary series.

4 To establish the GJR-GARCH (1,1) model for SHCI daily return:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
<th>T-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.9988</td>
<td>0.00087391</td>
<td>0.5832</td>
</tr>
<tr>
<td>K</td>
<td>1.0154e-005</td>
<td>3.2139e-006</td>
<td>3.1594</td>
</tr>
<tr>
<td>GARCH(1)</td>
<td>0.92151</td>
<td>0.017158</td>
<td>53.7064</td>
</tr>
<tr>
<td>ARCH(1)</td>
<td>0.01656</td>
<td>0.015008</td>
<td>1.1034</td>
</tr>
<tr>
<td>Leverage(1)</td>
<td>0.077807</td>
<td>0.022786</td>
<td>3.4148</td>
</tr>
</tbody>
</table>

After estimation, we could get the model is as follows:

\[r_t = 0.9988 + \varepsilon_t \]
\[h_t = 1.0154e - 005 + 0.92151h_t + 0.01656\varepsilon_{t-1}^2 + 0.077807I_{t-1}\varepsilon_{t-1}^2 \]

5 Estimation ES under FHS
<table>
<thead>
<tr>
<th>Horizon</th>
<th>1-Day Horizon</th>
<th>5-Day Horizon</th>
<th>10-Day Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>0.1862</td>
<td>259.3408</td>
<td>528.3150</td>
</tr>
</tbody>
</table>
References

[12] 滕帆, 金融风险度量: 一个文献综述，浙江大学宁波理工学院，浙江宁波 315100

Appendix: Matlab source code

One day code (2000.1.1~2007.5.31)
Clear
Load shanghai.mat
u=1.0004;
w=5.2761e-006;
beta=0.87401;
alpha=0.086961;
gamma=0.04586;
h=[1539,1];
sunn=[];
h0=w/(1-alpha-beta);
e0=0;
z0=0;
zhzuan=0;
z=[1539,1];
e=[1539,1];
rtest=[20000,1];
h(1)=w+beta*h0;
z(1)=e(1)/sqrt(h(1));
for i=1:1539
 e(i)=yy1(i)-u;
end
for i=2:1539
 if e(i-1)<0
 h(i)=w+beta*h(i-1)+alpha*e(i-1)^2+gamma*e(i-1)^2;
 else
 h(i)=w+beta*h(i-1)+alpha*e(i-1)^2;
 end
end
for i=2:1539
 z(i)=e(i)/sqrt(h(i));
end
for j=1:20000
 htest=w+beta*h(1539)+alpha*e(1539)^2+gamma*e(1539)^2;
 index=1+round(rand(1)*1538);
 etest=z(index)*sqrt(htest);
 rtest(j)=exp(etest+u)*4109.65-4109.65;
end
rnew=sort(rtest);
for i=1:1000
 sum=0;
 sum=sum+rnew(i);
end
aver=-sum/1000

Five day code
Clear
Load shanghai.mat

u=1.0004;
w=5.2761e-006;
beta=0.87401;
alpha=0.086961;
gamma=0.04586;
h=[1539,1];
sunn=[];
h0=w/(1-alpha-beta);
e0=0;
z0=0;
zhuan=0;
z=[1539,1];
ztest=[5,1];
e=[1539,1];
etest=[1539,1];
rtest=[5,1];
h(1)=w+beta*h0;
z(1)=e(1)/sqrt(h(1));
hhtest=[5,1];
for i=1:1539
 e(i)=yy1(i)-u;
end
for i=2:1539
 if e(i-1)<0
 h(i)=w+beta*h(i-1)+alpha*e(i-1)^2+gamma*e(i-1)^2;
 else
 h(i)=w+beta*h(i-1)+alpha*e(i-1)^2;
 end
end
for i=2:1539
 z(i)=e(i)/sqrt(h(i));
end
for j=1:20000
 for i=1:5
 index=1+round(rand(1)*1538);
 ztest(i)=z(index);
 end
 hhtest(1)=w+beta*h(1539)+alpha*e(1539)^2+gamma*e(1539)^2;
etest(1)=ztest(1)*sqrt(hhtest(1));
 for n=2:5
 if etest(n-1)<0
\[hhtest(n) = w + \beta \cdot hhtest(n-1) + \alpha \cdot etest(n-1)^2 + \gamma \cdot etest(n-1)^2; \]

```matlab
%index = 1 + round(rand(1) * 587);
if
    hhtest(n) = w + beta \cdot hhtest(n-1) + alpha \cdot etest(n-1)^2;
end
etest(n) = ztest(n) \cdot \sqrt{hhtest(n)};
end
for \text{nn} = 1:5
rtest(nn) = etest(nn) + u;
end
sunn = 0;
for i = 1:5
sunn = sunn + rtest(i);
end
tol(j) = exp(sunn) \cdot 4109.65 - 4109.65;
end
%for j = 1:42
%rtest(j) = etest(j) + u;
%end
rnew = sort(tol);
sum = 0;
for i = 1:1000
sum = sum + rnew(i);
end
aver = -sum / 1000
```