Approximating the Binomial Distribution by the Normal Distribution - Error and Accuracy

Peder Hansen

Examensarbete i matematik, 15 hp Handledare och examinator: Sven Erick Alm Juni 2011

Approximating the Binomial Distribution by the Normal Distribution - Error and Accuracy

Peder Hansen
Uppsala University

June 21, 2011

Abstract

Different rules of thumb are used when approximating the binomial distribution by the normal distribution. In this paper an examination is made regarding the size of the approximations errors. The exact probabilities of the binomial distribution is derived and then compared to the approximated value of the normal distribution. In addition a regression model is done. The result is that the different rules indeed gives rise to errors of different sizes. Furthermore, the regression model can be used in order to get guidance of the maximum size of the error.

Acknowledgenment

Thank you Professor Sven Erick Alm!

Contents

1 Introduction 4
2 Theory and methodology 4
2.1 Characteristics of the distributions 4
2.2 Approximation 5
2.3 Continuity correction 6
2.4 Error 7
2.5 Method 8
2.5.1 Algorithm 8
2.5.2 Regression 9
3 Background 10
4 The approximation error of the distribution function 11
4.1 Absolute error 11
4.2 Relative Error 14
5 Summary and conclusions 17

1 Introduction

Neither is any extensive examination found, regarding the rules of thumb used when approximating the binomial distribution by the normal distribution, nor of the accuracy and the error which they result in. The scope of this paper is the most common approximation of a Binomial distributed random variable by the normal distribution. We let $X \sim \operatorname{Bin}(n, p)$, with expectation $E(X)=n p$ and variance $V(X)=n p(1-p)$, be approximated by Y, where $Y \sim \mathrm{~N}(n p, n p(1-p))$. We denote, $X \approx Y$.

The rules of thumb, is a set of different guidelines, minimum values or limits, here denoted L for $n p(1-p)$, in order to get a good approximation, that is, $n p(1-p) \geq L$. There are various kinds of rules found in the literature and any extensive examination of the error and accuracy has not been found. Reasonable approaches when comparing the errors are, the maximum error and the relative error, which both are investigated.

The main focus lies on two related topics. First, there is a shorter section, where the origin of the rules, where they come from and who is the originator, is discussed. Next comes an empirical part, where the error affected by the different rules of thumb is studied. The result is both plotted and tabled. An analysis of regression is also made, which might be useful as a guideline when estimating the error in situations not covered here. In addition to the main topics, a section dealing with the preliminaries, notation and definitions of probability theory and mathematical statistics is found. Each of the sections will be more explanatory themselves regarding their topics. I presume the reader to be familiar with some basic concepts of mathematical statistics and probability theory, otherwise the theoretical part would range way to far. Therefor, also proofs and theorems are just referred to. Finally there is a summarizing section, where the results of the empirical part are discussed.

2 Theory and methodology

First of all, the reader is assumed to be familiar with basic concepts in mathematical statistics and probability theory. Furthermore there are, as stated above, some theory that instead of being explicitly explained, only is referred to. Regarding the former, I suggest the reader to view for instance [1] or [4] and concerning the latter the reader may want to read [7].

2.1 Characteristics of the distributions

As the approximation of a binomial distributed random variable by a normal distributed random variable is the main subject, a brief theoretical introduction about them is made. We start with a binomial distributed random
variable, X and denote,

$$
X \sim \operatorname{Bin}(n, p), \text { where } n \in \mathbb{N} \text { and } p \in[0,1] .
$$

The parameters p and n are the probability of an outcome and the number of trials. The expected value and variance of X are,

$$
E(X)=n p \text { and } V(X)=n p(1-p),
$$

respectively. In addition, X has got the probability function

$$
p_{X}(k)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \text { where } 0 \leq k \leq n,
$$

and the cumulative probability function, or distribution function,

$$
\begin{equation*}
F_{X}(k)=P(X \leq k)=\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{k-i} . \tag{1}
\end{equation*}
$$

The variable X is approximated by a normal distributed random variable, call it Y, we write,

$$
Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \text { where } \mu \in \mathbb{R} \text { and } \sigma^{2}<\infty
$$

The parameters μ and σ^{2} are the mean value and variance, $E(Y)$ and $V(Y)$, respectively. The density function of Y is

$$
f_{Y}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

and the distribution function is defined by,

$$
\begin{equation*}
F_{Y}(k)=P(Y \leq x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(t-\mu)^{2} / 2 \sigma^{2}} d t \tag{2}
\end{equation*}
$$

2.2 Approximation

Thanks to De Moivre, among others, we know by the central limit theorem that a sum of random variables converges to the normal distribution. A binomial distributed random variable X may be considered as a sum of Bernoulli distributed random variables. That is, let Z be a Bernoulli distributed random variable,

$$
Z \sim \operatorname{Be}(p) \text { where } p \in[0,1],
$$

with probability distribution,

$$
p_{Z}=P(Z=k)=\left\{\begin{array}{ll}
p & \text { for } k=1 \\
1-p & \text { for } k=0
\end{array} .\right.
$$

Consider the sum of n independent identically distributed Z_{i} 's, i.e.

$$
X=\sum_{i=0}^{n} Z_{i}
$$

and note that $X \sim \operatorname{Bin}(n, p)$. For instance one can realize that the probability of the sum being equal to $\mathrm{k}, P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$. Hence, we know that when $n \rightarrow \infty$, the distribution of X will be normal and for large n approximately normal. How large n should be in order to get a good approximation also depends, to some extent, on p. Because of this, it seems reasonable to define the following approximations. Again, let $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. The most common approximation, $X \approx Y$, is the one where $\mu=n p$ and $\sigma^{2}=n p(1-p)$, this is also the one used here. Regarding the distribution function we get

$$
\begin{equation*}
F_{X}(k) \approx \Phi\left(\frac{k-n p}{\sqrt{n p(1-p)}}\right) \tag{3}
\end{equation*}
$$

where $F_{X}(k)$ is defined in (1) and Φ is the standard normal distribution function. We extend the expression above and get that,

$$
\begin{equation*}
F_{X}(b)-F_{X}(a)=P(a<X \leq b) \approx \Phi\left(\frac{b-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{a-n p}{\sqrt{n p(1-p)}}\right) \tag{4}
\end{equation*}
$$

2.3 Continuity correction

We proceed with the use of continuity correction, which is recommended by [1], suggested by [4] and advised by [9], in order to decrease the error, the approximation (3) will then be replaced by

$$
\begin{equation*}
F_{X}(k) \approx \Phi\left(\frac{k+0.5-n p}{\sqrt{n p(1-p)}}\right) \tag{5}
\end{equation*}
$$

and hence (4) is written as
$F_{X}(b)-F_{X}(a)=P(a<X \leq b) \approx \Phi\left(\frac{b+0.5-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{a+0.5-n p}{\sqrt{n p(1-p)}}\right)$.

This gives, for a single probability, with the use of continuity correction, the approximation,
$p_{X}(k)=F_{X}(k)-F_{X}(k-1) \approx \Phi\left(\frac{k+0.5-n p}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{(k-1)+0.5-n p}{\sqrt{n p(1-p)}}\right)$
and further we note that it can be written

$$
\begin{equation*}
F_{X}(k)-F_{X}(k-1) \approx \int_{k-0.5}^{k+0.5} f_{Y}(t) d t \tag{8}
\end{equation*}
$$

2.4 Error

There are two common ways of measuring an error, the absolute error and the relative error. In addition another usual measure of how close, so to speak, two distributions are to each other, is the supremum norm

$$
\sup _{A}|P(X \in A)-P(Y \in A)|
$$

However, from a practical point of view, we will study the absolute error and relative error of the distribution function. Let a denote the exact value and \bar{a} the approximated value. The absolute error is the difference between them, the real value and the one approximated. The following notation is used,

$$
\varepsilon_{a b s}=|a-\bar{a}|
$$

Therefor, the absolute error of the distribution function, denoted $\varepsilon_{F_{a b s}}(k)$, for any fixed p and n, where $k \in \mathbb{N}: 0 \leq k \leq n$, without use of continuity correction, is

$$
\begin{equation*}
\varepsilon_{F_{a b s}}(k)=\left|F_{X}(k)-\Phi\left(\frac{k-n p}{\sqrt{n p(1-p)}}\right)\right| \tag{9}
\end{equation*}
$$

Regarding the relative error, in the same way as before, let a be the exact value and \bar{a} the approximated value. Then the relative error is defined as

$$
\varepsilon_{r e l}=\left|\frac{a-\bar{a}}{a}\right|
$$

This gives the relative error of the distribution function, denoted $\varepsilon_{F_{r e l}}(k)$, for any fixed p and n, where $k \in \mathbb{N}: 0 \leq k \leq n$, without use of continuity correction, is

$$
\varepsilon_{F_{r e l}}(k)=\frac{\varepsilon_{F_{a b s}}(k)}{F_{X}(k)},
$$

or equivalently, inserting $\varepsilon_{F_{a b s}}(k)$ from (9),

$$
\varepsilon_{F_{r e l}}(k)=\frac{\left|F_{X}(k)-\Phi\left(\frac{k-n p}{\sqrt{n p(1-p)}}\right)\right|}{F_{X}(k)} .
$$

2.5 Method

The examination is done in the statistical software R. The software provides predefined functions for deriving the distribution function and probability function of the normal and binomial distributions. The examination is split into two parts, where the first part deals with the absolute error of the approximation of the distribution function and the second part concerns the relative error. The conditions under which the calculations are made, are those found as guidelines in [4]. The calculations will be made with the help of a two-step algorithm. At the end of each section a linear model is fitted to the error. Finally, an overview, where a table and a plot of how the value of $n p q$, where $q=1-p$, affects the maximum approximation error for different probabilities are presented.

2.5.1 Algorithm

The two step algorithm below is used. The values of $n p q$ mentioned in the literature are, in all cases said to be equal or larger than some limit, here denoted L. The worst case scenario, as to speak, is the case where they are equal, that is, $n p q=L$. Therefor equalities are chosen as limits. We know that $n \in \mathbb{N}$, which means that p must be semi-fixed if the equality should hold, this means that the values of p are adjusted, but still remain close to the ones initially chosen. The way of doing this is a two-step algorithm. First a reasonable set of different initial probabilities, \tilde{p}_{i} 's are chosen, whereafter the corresponding \tilde{n}_{i} values, which in turn will be rounded to n_{i}, are derived. These are used to adjust \tilde{p}_{i} to p_{i} so that the equality will hold.

1. (a) Chose a set $\tilde{\mathbf{P}}$ of different initial probabilities, $\tilde{p}_{i} \in[0,0.5]$, where $i \in \mathbb{N}: 0<i<|\tilde{\mathbf{P}}|$.
(b) Derive the corresponding $\tilde{n}_{i} \in \mathbb{R}^{+}$so that $\tilde{n}_{i} \tilde{p}_{i}\left(1-\tilde{p}_{i}\right)=L$,
(c) continue by deriving $n_{i} \in \mathbb{N}$, in order to get a integer,

$$
\begin{equation*}
n_{i}\left(p_{i}\right):=\min \left\{n \in \mathbb{N}: n \tilde{p}_{i}\left(1-\tilde{p}_{i}\right) \geq L\right\} . \tag{10}
\end{equation*}
$$

Now we got a set of $n_{i} \in \mathbb{N}$, denote it \mathbf{N}.
2. Chose a set \mathbf{P} so that for every $p_{i} \in \mathbf{P}$,

$$
n_{i} p_{i}\left(1-p_{i}\right)=L
$$

The result is that we always keep the limit L fixed. Let us take a look at an example. Let $L=10$, use continuity correction and the initial $\tilde{\mathbf{P}}=$ 0.1(0.1)0.5,

Exemplifying table of algorithm values					
i	1	2	3	4	5
\tilde{p}_{i}	0.1	0.2	0.3	0.4	0.5
\tilde{n}_{i}	111.11	62.50	47.62	41.67	40.00
n_{i}	112	63	48	42	40
p_{i}	0.099	0.198	0.296	0.391	0.500

Different rules of thumb are suggested by [4]. Using approximation (3) the authors say that $n p(1-p) \geq 10$ gives reasonable approximations and in addition, using (5), it may even be sufficient using $n p(1-p) \geq 3$. The investigation takes place under three different conditions,

- $n p(1-p)=10$ without continuity correction, suggested in [4],
- $n p(1-p)=10$ with continuity correction, suggested in [2],
- $n p(1-p)=3$ with continuity correction, suggested in [4].

The investigation of the rules is made only for $p_{i} \in[0,0.5]$ due to symmetry. As we see, $n p(1-p)$ simply gets the same values for $p \in[0,0.5]$ as for $p \in[0.5,1]$. So, for every $p, n_{i}\left(p_{i}\right)$ is derived, this in turn, means that we get $n_{i}\left(p_{i}\right)+1$ approximations. For every $n_{i}\left(p_{i}\right)$, and of course p_{i} as well, we define the maximum absolute error of the approximation of the distribution function,

$$
\begin{equation*}
M_{F_{a b s}}=\max \left\{\varepsilon_{F_{a b s}}(k): 0 \leq k \leq n_{i}\left(p_{i}\right)\right\}, \tag{11}
\end{equation*}
$$

and in addition the maximum relative error

$$
\begin{equation*}
M_{F_{\text {rel }}}=\max \left\{\varepsilon_{F_{\text {rel }}}(k): 0 \leq k \leq n_{i}\left(p_{i}\right)\right\} . \tag{12}
\end{equation*}
$$

The results are both tabled and plotted.

2.5.2 Regression

Beforehand, some plots where made which indicated that the maximum absolute error could be a linear function of p. Regarding the relative maximum error, a quadratic or cubic function of p seemed plausible. Because of that, a regression is made. The model assumed to explain the absolute error is

$$
\begin{equation*}
M_{\varepsilon}=\alpha+\beta p+\epsilon_{l}, \tag{13}
\end{equation*}
$$

where M_{ε} is the maximum error, α is the intercept, β the slope and ϵ_{l} the error of the linear model. For the relative error, the two additional regression models are,

$$
\begin{equation*}
M_{\varepsilon}=\alpha+\beta p+\gamma p^{2}+\epsilon_{l} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\varepsilon}=\alpha+\beta p+\gamma p^{2}+\delta p^{3}+\epsilon_{l} . \tag{15}
\end{equation*}
$$

3 Background

In the first basic courses in mathematical statistics, the approximations (3) and (5) are taught. Students have learned some kind of rules of thumb they should use when applying the approximations, myself included, for example the rules suggested by Blom [4],

$$
\begin{aligned}
& n p(1-p) \geq 10 \\
& n p(1-p) \geq 3 \text { with continuity correction. }
\end{aligned}
$$

Any motivation why the limit L is set to be $L=10$ and $L=3$ respectively is not found in the book. On the other hand, in 1989 Blom claims that the approximation "gives decent accuracy if $n p q$ is approximately larger than 10 " with continuity correction [2]. Further, it is interesting, that Blom changes the suggestion between the first edition of [3] from 1970, where it says, similarly as above, that it "gives decent accuracy if $n p(1-p)$ is approximately larger than 10 " with continuity correction, and in the second edition from 1984 the same should yield, but now instead without use of continuity correction, the conclusion is that there has been some fuzziness regarding the rules. Neither have I, nor my advisor Sven Erick Alm, found any examination of the accuracy of these rules anywhere else. With Blom [4] as starting-point, I begun backtracking, hoping that I could find the source of the rules of thumb. It is worth mentioning that among authors, slightly different rules have been used. For instance Alm himself and Britton, present a schema with rules for approximating distributions, in which $n p(1-p)>5$ with continuity correction is suggested [1]. Even between countries, or from an international point of view, so to speak, differences are found. Schader and Schmid [10] says that "by far the most popular are"

$$
n p(1-p)>9
$$

and

$$
\begin{array}{r}
n p>5 \text { for } 0<p \leq 0.5 \\
n(1-p)>5 \text { for } 0.5<p<1
\end{array}
$$

which I am not familiar with and I have not found in any Swedish literature. In the mid-twentieth century, more precise 1952, Hald [9] wrote,

An exhaustive examination on the accuracy of the approximation formulas has not yet been made, and we can therefore only give rough rules for the applicability of the formulas.

With these words in mind, the conclusion is that there probably does not exist any earlier work made about the accuracy of the approximation. However, Hald himself made an examination in the same work for $n p q>9$. Further he also points out that in cases where the binomial distribution is very skew, $p<\frac{1}{n+1}$ and $p>\frac{n}{n+1}$, the approximation cannot be applied. Some articles have been found that briefly discuss the accuracy and error of the distributions. Mainly, the focus of the articles lies on some more advanced method of approximating than (3) or (5). An update of [2] has been made by Enger, Englund, Grandell and Holst in 2005, [4]. The writers have been contacted and Enger was said to be the one that assigned the rules. Hearing this made me believe that the source could be found. However, Enger could not recall from where he had got it [6]. That is how far I could get. Nevertheless, the examination remains as interesting as beforehand.

Discussing rules for approximating, one can not avoid at least mentioning the Berry-Esseen theorem. The theorem gives a conservative estimate, in the sense that it gives the largest possible size of the error. It is based upon the rate of convergence of the approximation to the normal distribution. The Berry-Esseen theorem will not be further examined here, but there are several interesting articles due to that the theorem is improved every now and then, most recently in May 2010 [11].

4 The approximation error of the distribution function

The errors of the approximations, $M_{F_{a b s}}$ and $M_{F_{r e l}}$, defined in (11), and (12) respectively, are plotted and tabled. The cases that are examined are those mentioned earlier, suggested by [4].

4.1 Absolute error

We examine the absolute maximum errors of the approximation of the distribution function, $M_{F_{a b s}}$ defined in (11), here in the first part. In addition to
that a regression is made, defined in (13), to see if we might find any linear trend.

Case 1: $n p q=10$, without continuity correction
First, the case where $L=10=n p q$, without continuity correction. $\tilde{\mathbf{P}}$, the set of different initial probabilities is chosen to be $\tilde{p}_{i}=0.01(0.01) 0.50$. This means that we use 50 equidistant \tilde{p}_{i}. The smallest probability is $p_{1}=0.0100$ and it has the largest error $M_{F_{a b s}}=0.0831 . M_{F_{a b s}}$ decreases the closer to 0.5 we get, which is natural since the binomial distribution tends to be skew. The points make a pattern which is a bit curvy, but still the points are close to the straight line in Figure 1. Another remark made, is that the distance between the probabilities decreases the closer to 0.5 we get. The fact that there are several \tilde{n}_{i} rounded to the same value of n_{i}, which in turn gives equal values on p_{i}, makes several $M_{F_{a b s}}$ the same, and plotted in the same spot. So they are all there, but not visible due to that reason. Next we try to fit a linear model for $M_{F_{a b b}}$. The result is

$$
M_{F_{a b s}}=0.0836-0.0417 p+\epsilon_{l} .
$$

The regression line is the straight line in Figure 1. The slope of the line shows that the size of $M_{F_{a b s}}$ changes moderately. Note that the sum of the errors of the regression line, $\sum\left|\epsilon_{l}\right|$, is relatively small, the result should be somewhat precise estimates of $M_{F_{\text {abs }}}$ for probabilities which are not taken in consideration here.

Figure 1: Maximum absolute error for $n p q=10$ without continuity correction. The straight line is the regression line, $M_{F_{a b s}}=0.0836-0.0417 p$.

Case 2: $n p q=10$, with continuity correction
Under these circumstances $M_{F_{a b s}}$ decreases and is about four times smaller than without continuity correction. The regression line,

$$
\begin{equation*}
M_{F_{a b s}}=0.0209-0.0416 p+\epsilon_{l}, \tag{16}
\end{equation*}
$$

also has got a four times smaller intercept than in the first case. What is interesting is that, the slope is approximately the same in both cases, this in turn, means that for every $\tilde{p}_{i}=0.01(0.01) 0.50$, it holds that $M_{F_{a b s}}$ also is four times smaller. This can be seen in Figure 2.

Figure 2: Maximum absolute error for $n p q=10$ with continuity correction. The straight line is the regression line, $M_{F_{a b s}}=0.0209-0.0416 p+\epsilon_{l}$.

Case 3: $n p q=3$, with continuity correction
Finally we take a look at the last case, regarding the absolute error, where $L=3=n p q$ and continuity correction is used. The plot is seen in Figure 3. $\tilde{\mathbf{P}}$ is the same as above. In this case the regression line is

$$
M_{F_{a b s}}=0.0373-0.0720 p+\epsilon_{l} .
$$

The largest error, $M_{F_{a b s}}=0.0355$ appears at $p_{1}=0.0100$ and is about twice the size compared to the largest $M_{F_{a b s}}$ for $L=10$. The slope of the line is more aggressive here, which in turn results in errors, one order of magnitude less than in the Case 1 for probabilities close to 0.5 . Also here the sum of
discrepancy from the regression line is relatively small which should result in fairly good estimations of $M_{F_{a b s}}$.

Figure 3: Maximum absolute error for $n p q=3$, with continuity correction. The straight line is the regression line, $M_{F_{a b s}}=0.0373-0.0720 p$.

4.2 Relative Error

Here, the maximum relative error of the approximation of the distribution function, $M_{F_{r e l}}$, defined in (12) is examined. The regression models (14) and (15) are both tested.

Case 1: $\quad n p q=10$, without continuity correction
In the first case we perform the calculations under, $L=10=n p q$ without continuity correction. The result is shown in Figure 4. As we see $M_{F_{r e l}}$ increases very rapidly. The smallest value of $M_{F_{r e l}}, 16.97317$ is at p_{1}. The largest 138.61756 at p_{50}. As we see in Table 4 , it is $k=0$ that gives the largest error. For other values of k the error is much smaller. Furthermore we note that $M_{F_{r e l}}$ is very large. If we look at a specific example where $p=0.2269$, which means that $n=57$, then $X \sim \operatorname{Bin}(57,0.2269)$. Let X be approximated, according to (3), by $Y \sim \mathrm{~N}(12.933,3.162078)$. We get that $P(X \leq 1)=7.55 \cdot 10^{-6}$ and $P(Y \leq 1)=8.04 \cdot 10^{-5}$. Under these circumstances we get,

$$
M_{F_{\text {rel }}}=\frac{|P(X \leq 1)-P(Y \leq 1)|}{P(X \leq 1)}=9.64 .
$$

The result is shown in Table 4. So the relative error is, as we also can see, large, for small k and small probabilities. The regression curves, defined in (14) and (15) are,

$$
M_{F_{r e l}}=14.66+69.86 p+416.14 p^{2}+\epsilon_{l}
$$

and

$$
M_{F_{r e l}}=21.53-92.26 p+1246.60 p^{2}-1136.07 p^{3}+\epsilon_{l}
$$

respectively. We note that there are not any larger differences in accuracy depending on the choice of model. Naturally, the discrepancy of the second model is lower.

Figure 4: Maximum relative error for $n p q=10$ without continuity correction. The solid line is the regression curve, $M_{F_{\text {rel }}}=14.66+69.86 p+416.14 p^{2}$ and the dashed line, $M_{F_{r e l}}=21.53-92.26 p+1246.60 p^{2}-1136.07 p^{3}$.

Case 2: $n p q=10$, with continuity correction

We continue by looking at the same case as above, but here continuity correction is used. This gives somewhat remarkable results, $M_{F_{r e l}}$ is actually about two times larger than without continuity correction. Let us study the same numeric example as above, except that we use continuity correction. We got $p=0.2269$ which again means that $n=57$, then $X \sim \operatorname{Bin}(57,0.2269)$. We let X be approximated, according to (5), by $Y \sim \mathrm{~N}(12.933,3.162078)$. It results in, $P(X \leq 1)=7.55 \cdot 10^{-6}$ and $P(Y \leq 1+0.5)=0.000150$. Under
these circumstances we get,

$$
M_{F_{r e l}}=\frac{|P(X \leq 1)-P(Y \leq 1+0.5)|}{P(X \leq 1)}=18.84
$$

which fits the values in Table 5. $M_{F_{a b s}}$ gets dramatically worse when we use continuity correction than without. Hence, also $M_{F_{r e l}}$ becomes worse. In Figure 5 one can judge that the results gets worse as we get closer to probabilities near 0.5. The regression curves, defined in (14) and (15) are,

$$
M_{F_{r e l}}=34.9-69.8 p+1597.1 p^{2}+\epsilon_{l}
$$

and

$$
M_{F_{r e l}}=37.4-127.3 p+1891.8 p^{2}-403.2 p^{3}+\epsilon_{l}
$$

respectively. Looking at Figure 5, we see that the difference between the two models is insignificant.

Figure 5: Maximum relative error for $n p q=10$ with continuity correction. The solid line is the regression curve, $M_{F_{r e l}}=34.9-69.8 p+1597.1 p^{2}$ and the dashed line, $M_{F_{r e l}}=37.4-127.3 p+1891.8 p^{2}-403.2 p^{3}$.

Case 3: $n p q=3$ with continuity correction
Here, in the last case $n p q=3$ and continuity correction is used, see Figure 6. This gives the curves of regression, defined in (14) and (15),

$$
M_{F_{r e l}}=0.473+2.204 p+2.123 p^{2}+\epsilon_{l}
$$

and

$$
M_{F_{r e l}}=0.514+1.155 p+7.858 p^{2}-7.885 p^{3}+\epsilon_{l}
$$

respectively. As we see $M_{F_{r e l}}$ actually get the smallest value here, where $n p q=3$ and continuity correction is used. As well as in the two other cases regarding the relative error the difference between the quadratic and cubic regression model is minimal.

Figure 6: Maximum relative error for $n p q=3$ with continuity correction. The solid line is the regression curve, $M_{F_{r e l}}=0.473+2.204 p+2.123 p^{2}$ and the dashed line, $M_{F_{r e l}}=0.514+1.155 p+7.858 p^{2}-7.885 p^{3}$.

5 Summary and conclusions

The three different rules of thumbs that are focused on turned out to give approximation errors of different sizes. Regarding the absolute errors, the largest difference is found between the case where $L=10$ without continuity correction and $L=10$ with continuity correction. The largest error decreases from ~ 0.08 to about ~ 0.02, which is approximately four times smaller, a relatively large difference. Letting $L=3$ and using continuity correction we end up with the largest error ~ 0.035, closer to the latter case, but still between them. When using this common and simple way of approximating, depending on the problem, different levels of tolerance usually are accepted. A common level in many cases may be 0.01 . If we look deeper, we see that the probabilities for getting such a small $M_{F_{a b s}}$ differs from between the rules of thumb. Using $n p q=10$ without continuity correction does not even reach to the 0.01 level of accepted accuracy. Comparing this to the other
two cases which in contrast reach the 0.01 level for probabilities ~ 0.25 in the same case as above but in addition with continuity correction, and for probabilities ~ 0.35 in the case where $n p q=3$. Further, it would be interesting to investigate how the relationship between k and n affects the error. In addition, another interesting part would be some tables indicating how large n should be in order to get sufficiently small errors, for different probabilities.

Concerning the relative errors I would say that the applicability may be somewhat uncertain, due to the fact that $M_{F_{\text {rel }}}$ is very large for small values of k but rapidly decrease. This fact, I may say, make the plots look a bit extreme and there are other values of k that give much better approximations. Judging by Tables 4, 5 and 6 indeed this seems to be the case. We know that the approximation is motivated by the central limit theorem, however, what we also know, is that it does not hold the same accuracy for small probabilities, that is, the tails of the distributions. This is also the direct reason why the accuracy gets worse when using continuity correction, it puts extra mass on the already too large approximated value. In a similar way we get the explanation why the relative error increases when the value of $n p q$ changes from 10 to 3, (as one maybe would expect the opposite), the mean value of the normal distribution, $n p$, gets closer to 0 which in turn gives additional mass. The conclusion is, one should remember that due to the fluctuations depending on k, of the relative errors, what we also can see in Tables 4, 5 and 6, that the regression model also provides conservative estimates of the errors. As a natural alternative, and most likely better, Poisson approximation is recommended for small probabilities. Like in the previous case concerning the absolute errors, some more exhaustive examination of the relative error would be interesting. How large should n be to get acceptable levels of the error, for instance 10% or 5% and so on.

References

[1] Alm S.E. and Britton T., Stokastik - Sannolikhetsteori och statistikteori med tillämpningar, Liber (2008).
[2] Blom, G., Sannolikhetsteori och statistikteori med tillämpningar (Bok C), Fjärde upplagan, Studentlitteratur (1989).
[3] Blom, G., Sannolikhetsteori med tillämpningar (Bok A), Studentlitteratur $(1970,1984)$
[4] Blom G., Enger J., Englund G., Grandell J. and Holst L., Sannolihetsteori och statistikteori med tillämpningar, Femte upplagan, Studentlitteratur (2008).
[5] Cramér H., Sannolikhetskalkylen, Almqvist \& Wiksell/Geber Förlag AB (1949).
[6] Enger J., Private communication, (2011).
[7] Gut A., An Intermediate Course in Probability, Springer (2009).
[8] Hald A., A History of Mathematical Statistics from 1750 to 1930. Wiley, New York (1998).
[9] Hald A., Statistical Theory with Engineering Applications, John Wiley \& Sons, Inc., New York and London (1952).
[10] Schader M. and Schmid F., Two Rules of Thumb for the Approximation of the Binomial Distribution by the Normal Distribution, The American Statistician, 43, 1989, 23-24.
[11] Shevtsov I. G., An Improvement of Convergence Rate Estimates in the Lyapunov Theorem, Doklady Mathematics, 82, 2010, 862-864.

Tables

Regarding the plotted probabilities, that is the set \mathbf{P}, only the maximum error is plotted. One can not tell from which k the error comes from, neither can one tell if the error is of similar size for other values of k. To get a more detailed picture this section contains tables both for the absolute errors and the relative errors. It would have been possible to table all the errors for all values of k, but due to the fact that the cardinality of \mathbf{N} at times, that is for small probabilities, is relatively large, it would have taken too much place. This made me table only the 10 values of k which resulted in the largest errors. The columns in the tables, that contains the values of k is in descending order. What this means is that the first value of k in each column is the maximum error that is plotted. On the side of every column of k, there is a column where the corresponding error is written. These two sub columns, got a common header which tells the value of p in the specific case.

	$p=0.01$		0.02		0.03		0.03		0.049		0.0597		0.06		0.07		0.0893		0.099		0.10		0.1		0.12		0.13		0.14		0.15		. 16		0.179		0.1899
	$k \varepsilon_{F_{a b}}$	k		k		k		k		k		$\mid k$	$\varepsilon^{\varepsilon_{\text {abs }}}$	$\mid k$		k												k				k				k	
10	00.0831	10	083	10	0.0828	10	0.0824	10	0.0819	10	0.0813	10	0.0805	10	0.0795	11	0.0793	11	0.0794	11	0.0793	11	0.079	11	0.0786	11	78	12	0.0771	11	0.0761	12	0.0763	12	20.0763	12	0.0761
	90.0808	9	0.0795	9	0.078	11	0.0768	11	0.0776	11	0.0782	11	0.0787	11	0.0791	10	0.0784	10	0.0772	10	0.0758	10	0.0741		0.0743	12	0.075	12	0.0757	12	0.0761	11	110.0747	11	110.0733	11	0.0715
11	10.0738	11	0.0749	11	0.0759	9	0.0765	9	0.0748	9	0.073	,	0.071	-	0.0689	12	120.0698	12	0.0711	12	0.0723	12	0.0734	10	0.0724	10	0.0706	10	0.0684	13	0.0665	13	0.0683	13	130.0696	13	0.0709
	0.0672	8	0.065	8	0.0628	12	0.0621	12	0.0638	12	0.0654	12	0.067	12	0.0685		0.0669		0.0647		0.0623		0.0597	13	0.0614	13	0.0631	13	0.0649	10	0.0662	10	0.0636	10	10.0611	10	0.0583
12	20.0569	12	0.0587	12	0.0604	8	0.0605	8	0.0581	8	0.0557	8	0.0532	13	0.0516	13	0.0536	13	0.0555	13	0.0575	13	0.0596		0.0573		0.0549		0.0521	14	0.051	14	40.0536	14	40.0557	14	0.058
	0.0465	7	0.0442	7	0.0419	13	0.0435	13	0.0455	13	0.0475	13	0.0496	8	0.0507		80.0483		0.0458		0.0433		0.0422		0.0443		0.0464	14	0.0488		0.0494		90.0463		90.0436	15	0.0418
	0.037	13	0.0396	13	0.0416	7	0.0396	7	0.0373	7	0.035	7	70.0328	14	0.0337	14	40.0356	14	0.0377	14	0.0398		0.0406		0.0382		0.0359	8	0.0332	15	0.0342	15	0.0368	5	50.0391		0.0406
	0.0253	6	0.0235	14	0.0243	14	0.026	14	0.0278	14	0.0297	14	40.0317	7	0.0305		70.0285		0.0264		0.0244	15	0.0258	15	0.0277	15	0.0296	15	50.032		0.0308		80.0281		0.0259	16	0.0263
14	0.021	14	0.0226	6	0.0217	6	0.02	6	0.0184	6	0.0168	15	0.017	15	0.0186	15	0.0202	15	0.0219	15	0.0237		0.0222		0.0204		0.0187	16	0.018	16	0.0198	16	60.0219	16	160.0239		0.0235
	0.0092	15	0.0103	15	0.0115	15	0.0128	15	0.0141	15	0.0155		0.0152	6	0.0138		0.0125		0.0112		0.0118		0.0133	16	0.0147	16	0.0162		0.0169		0.0152		70.0134	17	70.0125	17	0.0142
	0.19		0.2066		0.2163		0.2269		0.2389		0.2454		0.2598		0.2678		0.2764		0.2857		0.2959		0.307		0.3194		0.3333		0.3492		0.3679		0.3909		0.4219		0.5
	ε	k																																			
	20.0757	12	0.0751	12	0.0742	13	0.0736	13	0.0737	13	0.0737	13	0.073	13	0.0724	13	30.0715	14	40.0714	14	0.0715	14	0.0711	14	0.0701	15	0.0695	15	0.0693	15	0.0676	16	0.0675	17	70.0662	20	0.0627
	0.0717	13	0.0725	13	0.0731	12	0.073	12	0.0712	12	0.0701	14	0.0698	14	0.0705	14	0.0711	13	0.0702	13	0.0685	15	0.0675	15	0.0688	14	0.0682	16	0.0656	16	0.0675	17	0.0645	16	160.0629	19	0.0614
	$1 \quad 0.07$	11	0.0681	11	0.066	14	0.0653	14	0.0672	14	0.0681	12	0.0672	12	0.0654	12	0.0633	15	50.0643	15	0.066	13	0.0662	13	0.0632	16	0.0629	14	0.0652	14	0.0603	15	0.0632	18	180.0626	21	0.058
14	40.0597	14	0.0615	14	0.0634	11	0.0634	11	0.0602	11	0.0584	15	50.059	15	0.0608	15	0.0626	12	0.0607	12	0.0578	16	0.057	16	0.06	13	0.0593	17	0.0554	17	0.0601	18	0.0552	15	150.0533	18	0.0544
	00.0561	10	0.0536	10	0.0508	15	0.0511	15	0.0541	15	0.0557	11	10.0541	11	0.0516	11	110.0489	16	160.0514	16	0.0541	12	0.0543	12	0.0502	17	0.0508	13	0.0542	18	0.048	14	0.0526	19	0.0532	22	0.0487
	50.0438	15	0.046	15	0.0484	10	0.0476	10	0.044	10	0.042	16	0.0442	16	0.0464	16	0.0488	11	0.0459	11	0.0425	17	0.0428	17	0.0466	12	0.0453	18	0.0418	13	0.0475	19	0.0424	20	0.0408	17	0.0434
	90.0384	9	0.036	9	0.0333	16	0.0353	16	0.0384	16	0.0402	10	0.0376	10	0.0352	17	0.0337	17	0.0364	17	0.0394	11	0.0388	11	0.0347	18	0.0366	12	0.0396	19	0.0343	13	0.0387	14	140.0402	23	0.0373
	60.0281	16	0.0301	16	0.0325		0.0304		0.0273		0.0256	17	0.0292	17	0.0314	10	0.0326	10	0.0298	10	0.0269	18	0.0286	18	0.0322	11	0.0301	19	0.0282	12	0.0329	20	0.0293	21	10.0282	16	0.0311
	80.0217	8	0.0199	17	0.0191	17	0.0213	17	0.024	17	0.0256	9	0.022	9	0.0202	18	0.0206	18	0.0229	18	0.0255	10	0.0238	10	0.0205	19	0.0235	11	0.0252	20	0.022	12	0.025	13	130.0269	24	0.026
	0.	17	0.0	8	0.0179	8	0.0159	8	0.	18	0.0142	18	80.017	18	0.0187	9	90.0182	9	90.0163	19	0.0146	19	0.017	19	0.0199	10	0.	20	0.017	11	0.0	21	10.0183	2	2	5	0.02

[^0]| $p=0.01$ | | 0.02 | | 0.03 | | 0.0399 | | . 0499 | | 0.0597 | | 0.0698 | | 0.0799 | | 0.0893 | | 0.0991 | | 0.109 | | 0.1196 | | 0.129 | | 0.1381 | | 0.1487 | | 0.1584 | | 0.1696 | | 0.1792 | | 0.1899 |
| :---: |
| $k \varepsilon_{F_{a b s}}$ | k | $\varepsilon_{F_{a b s}}$ | k | $\varepsilon_{F_{a}}$ | k | $\varepsilon_{F_{a b s}}$ | k | bs | k | $\varepsilon_{F_{a b s}}$ | k | , | k | $\varepsilon_{F_{a b s}}$ | k | , | | ε_{F} | | ε_{F} | | $\varepsilon_{F_{a b s}}$ | | ${ }^{\prime} \varepsilon_{F}$ | | ε_{F} | | $\varepsilon_{F_{a b}}$ | | ${ }^{1} \varepsilon_{F_{a b s}}$ |
| 110.0201 | 11 | 0.02 | 11 | 0.0198 | 11 | 0.0195 | 11 | 0.0192 | 11 | 0.0187 | 11 | 0.0182 | 11 | 0.0177 | 11 | 0.0171 | 12 | 0.0165 | 12 | 0.0163 | 12 | 0.0161 | 12 | 0.0158 | 12 | 0.0154 | 12 | 0.0149 | 12 | 0.0144 | 12 | 0.0136 | 13 | 0.0133 | 13 | 0.0131 |
| $10 \quad 0.02$ | 10 | 0.0193 | 10 | 0.0185 | 10 | 0.0176 | 10 | 0.0167 | 12 | 0.0164 | 12 | 0.0165 | 12 | 0.0166 | 12 | 0.0165 | 11 | 0.0164 | 11 | 0.0157 | 11 | 0.0148 | 11 | 0.0139 | 13 | 30.0133 | 13 | 0.0134 | 13 | 30.0135 | 13 | 0.0134 | 12 | 0.013 | | 0.0121 |
| 120.0149 | 12 | 0.0153 | 12 | 0.0156 | 12 | 0.0159 | 12 | 0.0162 | 10 | 0.0157 | 10 | 0.0147 | 10 | 0.0137 | 10 | 0.0126 | 13 | 0.0121 | 13 | 0.0125 | 13 | 130.0129 | 13 | 0.0131 | 11 | 0.0131 | 11 | 0.0121 | 11 | 10.0111 | 11 | 0.0099 | 14 | 0.01 | 14 | 0.0104 |
| 90.0141 | 9 | 0.0129 | 9 | 0.0118 | 9 | 0.0106 | 6 | 0.0103 | 6 | 0.0102 | 13 | 0.0107 | 13 | 0.0112 | 13 | 0.0117 | 10 | 0.0116 | 10 | 0.0104 | 10 | 0.0092 | | 0.0084 | 7 | 0.0083 | 14 | 0.0086 | 14 | 40.0091 | 14 | 0.0097 | 11 | 0.0088 | 11 | 0.0077 |
| 50.0114 | 5 | 0.011 | 5 | 0.0107 | 6 | 0.0104 | 5 | 0.0098 | 13 | 0.0101 | 6 | 0.01 | 6 | 0.0098 | 6 | 60.0096 | 6 | 60.0093 | 6 | 0.0089 | 6 | 0.0085 | | 0.0082 | 14 | $4{ }^{4} 0.008$ | 7 | 0.0081 | 7 | 70.0079 | 7 | 0.0076 | 7 | 0.0074 | | $7 \quad 0.007$ |
| 60.0104 | 6 | 0.0105 | 6 | 0.0105 | 5 | 0.0103 | 13 | 0.0095 | 5 | 0.0094 | 5 | 0.0089 | 5 | 0.0084 | | 70.0082 | 7 | 70.0083 | 7 | 0.0084 | 7 | 0.0084 | 10 | 0.0082 | 6 | 0.0078 | 6 | 0.0073 | 6 | 60.0069 | 8 | 0.0066 | 8 | 0.0067 | | 0.0068 |
| 0.0091 | 4 | 0.0086 | 13 | 0.0082 | 13 | 0.0089 | 9 | 0.0094 | 9 | 0.0083 | 7 | 0.0077 | 7 | 0.008 | 5 | 0.008 | 5 | 0.0075 | 5 | 0.0071 | 14 | 40.0069 | 14 | 0.0075 | 10 | 0.0071 | 8 | 0.0061 | 8 | 80.0064 | 6 | 0.0064 | 6 | 0.006 | 6 | 0.0055 |
| 160.0076 | 13 | 0.0075 | 4 | 0.0081 | 4 | 0.0076 | 4 | 0.0071 | 7 | 0.0074 | 9 | 0.0071 | 17 | 0.0066 | 17 | 0.0064 | 17 | 0.0062 | 14 | 0.0062 | 5 | 50.0065 | | 0.0061 | 8 | 0.0058 | 10 | 0.0059 | 18 | 80.0053 | 18 | 0.0052 | 18 | 0.005 | 15 | 0.0055 |
| 170.0071 | 16 | 0.0073 | 16 | 0.0071 | 17 | 0.007 | 7 | 0.007 | 17 | 0.0068 | 17 | 0.0067 | 9 | 0.006 | 18 | 0.0058 | 18 | 0.0058 | 17 | 0.006 | 17 | 70.0058 | 18 | 0.0057 | 5 | 50.0057 | 18 | 0.0055 | 10 | 0.0048 | 19 | 0.0047 | 15 | 0.0048 | 18 | 0.0047 |
| 130.0068 | 17 | 0.0071 | 17 | 0.007 | 16 | 0.0069 | 17 | 0.0069 | 4 | 0.0066 | 4 | 0.0061 | 18 | 0.0058 | 4 | 40.0053 | 14 | 40.0055 | 18 | 0.0058 | 18 | 180.0057 | 17 | 0.0055 | 18 | 8.0056 | 5 | 0.0052 | 5 | 50.0047 | 5 | 0.0043 | 19 | 0.0047 | 19 | 0.0046 |

\qquad

$$
\begin{array}{r|rr|rr|rr}
0.007 & 16 & 0.0064 & 16 & 0.0056 & 17 & 0.004 \\
0.0067 & 15 & 0.0059 & 17 & 0.0051 & 16 & 0.004 \\
0.0052 & 17 & 0.005 & 15 & 0.0045 & 18 & 0.003 \\
0.0046 & 14 & 0.0038 & 11 & 0.0033 & 11 & 0.002
\end{array}
$$

1000		
L00 0	6	8L00
zZ00		

Table 2: Table of the 10 largest errors, $\varepsilon_{F_{a b s}}$ and which k is comes from, for every p_{i}, under $n p q=10$ with continuity correction.

	$p=0.01$	0.0199	0.0297	0.0395	0.0493	0.059	0.0685	0.0795	0.089	0.0978	0.1086	0.1172	0.1273	0.1394
	$\varepsilon_{F_{a b}}$	$\varepsilon_{F_{a}}$	$k \quad \varepsilon_{F_{c}}$	$\left\lvert\, \begin{array}{ll}k & \varepsilon_{F_{a}} \text { }\end{array}\right.$	$k \varepsilon_{F}$	ε_{F}	$\mid k \quad \varepsilon_{F}$	ε	$\mid k \quad \varepsilon$	k	$k \varepsilon_{F_{a}}$	$\varepsilon^{F_{a b s}}$	k	$k \varepsilon_{F_{a b s}}$
2	0.0356	20.0343	$\left\lvert\, \begin{array}{ll}3 & 0.0332\end{array}\right.$	$\mid 30.0331$	30.0328	30.0325	30.0322	30.0318	30.0314	30.031	30.0304	$3 \quad 0.03$	30.0294	30.0286
3	0.0335	30.0334	20.0331	20.0318	20.0305	20.0292	20.0279	20.0265	20.0252	20.0239	20.0224	20.0212	20.0198	00.0189
0	0.0245	00.0242	$0 \quad 0.0239$	00.0236	00.0233	00.0229	$0 \quad 0.0225$	00.0221	00.0216	$0 \quad 0.0212$	00.0207	00.0202	00.0196	20.0181
6	60.0117	60.0116	$6 \quad 0.0114$	$6 \quad 0.0112$	40.0111	40.0116	$4 \quad 0.0121$	40.0126	40.0131	$4 \quad 0.0135$	$4 \quad 0.014$	$4 \quad 0.0143$	40.0147	40.0152
4	0.009	40.0096	40.0101	40.0106	60.0111	60.0109	$6 \quad 0.0107$	60.0105	60.0103	$6 \quad 0.0101$	60.0098	60.0096	60.0094	$6 \quad 0.009$
5	50.009	50.0086	50.0082	$5 \quad 0.0077$	50.0072	$7 \quad 0.0071$	$7 \quad 0.007$	$7 \quad 0.007$	$7 \quad 0.007$	70.0069	70.0069	$7 \quad 0.0068$	70.0068	10.0075
7	0.0072	70.0072	$7 \quad 0.0071$	70.0071	70.0071	50.0068	50.0063	50.0058	50.0053	50.0048	10.0053	10.0059	10.0067	$7 \quad 0.0067$
	0.0047	10.0035	80.003	80.003	80.003	$8 \quad 0.003$	80.003	80.003	10.0036	10.0044	50.0042	50.0038	50.0032	$8 \quad 0.003$
8	80.0031	$8 \quad 0.003$	10.0024	10.0013	$9 \quad 0.001$	$9 \quad 0.001$	10.0017	10.0028	$8 \quad 0.003$	$8 \quad 0.003$	$8 \quad 0.003$	80.003	$8 \quad 0.003$	50.0025
9	90.001	$9 \quad 0.001$	$9 \quad 0.001$	$9 \quad 0.001$	$10 \quad 3 \mathrm{e}-04$	$8 \mathrm{e}-04$	$9 \quad 0.001$							
	0.1464	0.1542	0.1629	0.1727	0.1838	0.1965	0.2113	0.2288	0.25	0.2764	0.311	0.3613	0.5	
	$\varepsilon_{F_{a b s}}$,	$k \varepsilon_{F}$,	$k \varepsilon_{F}$	$k \varepsilon_{F}$	$k \varepsilon_{F}$	$k \varepsilon_{F}$	\| k	$k \varepsilon_{F}{ }_{\text {c }}$	$k \varepsilon_{F_{a b s}}$	$k \quad \varepsilon_{F_{a b s}}$	$k \varepsilon_{F_{a b s}}$	
3	30.0281	30.0276	$\left\lvert\, \begin{array}{ll}3 & 0.0269\end{array}\right.$	$\left\lvert\, \begin{aligned} & 30.0262 \mid\end{aligned}\right.$	30.0252	30.0241	$\left\lvert\, \begin{array}{ll}3 & 0.0227\end{array}\right.$	$\left\lvert\, \begin{array}{ll}3 & 0.0209\end{array}\right.$	30.0186	$\left\lvert\, \begin{array}{ll}4 & 0.016\end{array}\right.$	40.0146	$\left\lvert\, \begin{aligned} & 4 \\ & 0.0112\end{aligned}\right.$	90.0024	
0	0.0185	$0 \quad 0.018$	$0 \quad 0.0175$	00.0169	40.0164	40.0166	40.0167	40.0168	40.0166	30.0155	30.0114	$1 \begin{array}{ll}1 & 0.0079\end{array}$	20.0024	
2	0.0172	20.0161	$4 \quad 0.0159$	$4 \begin{array}{lll}4 & 0.0161\end{array}$	00.0161	00.0153	0	00.0131	00.0116	$1 \begin{array}{ll}1 & 0.0108\end{array}$	10.0099	50.0068	100.0015	
4	40.0154	40.0156	20.0149	20.0135	20.012	20.0104	10.0106	10.0109	10.011	00.0098	00.0076	30.0057	10.0015	
	60.0088	60.0086	10.0088	10.0093	10.0098	10.0102	20.0085	20.0063	70.0055	$7 \quad 0.005$	50.0061	00.0047	30.0015	
	0.0079	10.0084	60.0083	6	60.0077	$6 \quad 0.0072$	$6 \quad 0.0067$	$6 \quad 0.006$	60.0051	50.0048	70.0042	20.0043	80.0015	
7	0.0066	70.0066	70.0065	70.0064	70.0063	$7 \quad 0.0062$	$7 \quad 0.006$	$7 \quad 0.0058$	20.0039	$6 \quad 0.0039$	80.0024	$7 \quad 0.0027$	$6 \quad 8 \mathrm{e}-04$	
8	0.003	80.003	80.003	80.003	$8 \quad 0.003$	$8 \quad 0.0029$	8 8 0.0029	880.0029	50.0036	880.0026	60.0024	80.0017	$5 \quad 8 \mathrm{e}-04$	
	50.0021	50.0017	50.0012	$9 \quad 9 \mathrm{e}-04$	$9 \quad 9 \mathrm{e}-04$	$9 \quad 9 \mathrm{e}-04$	50.0015	50.0025	80.0028	20.0012	20.0017	$9 \quad 5 \mathrm{e}-04$	$7 \quad 6 \mathrm{e}-04$	
	0.001	$9 \quad 0.001$	$9 \quad 9 \mathrm{e}-04$	$5 \quad 7 \mathrm{e}-04$	$10 \quad 2 \mathrm{e}-04$	5 7e-04	$9 \quad 9 \mathrm{e}-04$	$98 \mathrm{e}-04$	$6 \quad 2 \mathrm{e}-04$	4 6e-04				

Table 3: Table of the 10 largest errors, $\varepsilon_{F_{a b s}}$ and which k is comes from, for every p_{i}, under $n p q=3$ with continuity correction.

	01		0.02		0.03		0.0399		0.0499		0.0597		0.0698		0.0799		0.0893	0.0991		0.109		0.1196		0.129		0.1381		0.1487		0.1584		0.1696		0.1792		. 1899
																${ }_{l}{ }^{k}$																				
	9732		17.7468		18.5666		19.4284		20.3435		21.3015		22.3354		23.4367			025		26.9868		28.4404				5		32.9391	10	34.6254				38.5519		
	3.5794	1	3.7342	1	3.8973	1	4.0678		4.2478	1	4.435		4.636	1	4.8487	7	5.0558	15.2848	1	5.5263	1	5.8005	1	6.0582		6.3197		16.63	1	6.9494	4	7.326		7.665	1	8.
2	1.1123	2	1.1665	2	1.2233	2	1.2825	2	1.3447	2	1.4092	2	1.4781	12	1.5507	7	1.621	$\begin{array}{ll}2 & 1.6985\end{array}$	2	1.7799	2	1.8718	2	1.9578	8	22.0447	72	2.1502	2	2.2524	4	2.3758	2	2.4865	2	2.6176
3	0.3227	3	0.3473	3	0.373	3	0.3998	3	0.4278	3	0.4568	8	0.4877	7	0.5202	2	0.5516	0.5861	3	0.6222	3	0.6629		0.7009	9	30.7391	13	30.7855	3	0.8302	2	0.884		0.9322	3	0.989
	0.2216	7	0.2213	7	0.2209	7	0.2203	7	0.2195	7	0.2186		0.2176		0.2178		0.2184	$\begin{array}{lr}8 & 0.219 \\ 7 & 0.2133\end{array}$	8	0.2194		0.2197		0.2199		$\begin{array}{lll}8 & 0.2199 \\ 4 & 0.2127\end{array}$	${ }^{4}$	$\begin{array}{ll}4 & 0.2364 \\ 8 & 0.2197\end{array}$		0.2592 0.2193		0.2867 0.2187		$\begin{array}{ll}4 & 0.3112 \\ 0.2179\end{array}$	4	0.2187
	0.2097 0.2064		$\begin{aligned} & 0.2111 \\ & 0.2036 \end{aligned}$	8	0.2125 0.2007		$\begin{aligned} & 0.2137 \\ & 0.1975 \end{aligned}$	$\begin{array}{r\|r\|} \hline 7 & 8 \\ 6 \end{array}$	$\begin{array}{r} 0.2149 \\ 0.194 \end{array}$	8	0.216 0.1944	4	$\begin{aligned} & 0.2169 \\ & 0.1968 \end{aligned}$	8	$\begin{aligned} & 0.2163 \\ & 0.1991 \end{aligned}$	1	0.2149 0.2012	$\begin{array}{ll} 7 & 0.2133 \\ 9 & 0.2034 \end{array}$	7	0.2114 0.2055		0.2092 0.2076		$\begin{array}{r} 0.2094 \\ 0.207 \end{array}$	4	$\left.\begin{array}{ll} 4 & 0.2127 \\ 9 & 0.2111 \end{array} \right\rvert\,$	$\left.\begin{array}{c} 7 \\ 1 \end{array}\right)$	$\begin{array}{ll}8 & 0.2197 \\ 9 & 0.2129\end{array}$	$\begin{array}{r\|r\|r} 7 \\ 9 & 8 \end{array}$	0.2193	5	0.2187 0.2161		0.2179 0.2174	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	0.2187 0.2169
	0.1817		0.1843	9	0.1869		0.1895	9	0.1919	6	0.1904	4	0.1864	4	0.1821		0.17791	100.175	10	0.1782	10	0.1816		0.1931		70.2047	77	70.2018	7	0.1988		0.1969		0.1997		0.2027
0	0.1457	10	0.1489	10	0.1522	10	0.1555	10	0.1588	10	0.162	10	0.1654	10	0.1687	710	0.1718	60.1731	-	0.1681	4	0.1737	10	0.1846	610	00.1874	10	0.1907		0.1936	6	0.1951		0.1916		0.187
	0.1454		0.139	5	0.1322	5	0.1251		0.1217		0.1253		0.129	11	0.1328		0.13641	110.1401	4	0.1528	6	0.1623	6	0.1568		10.1553		0.1595		0.1633		0.1677		0.1715		0.17

Table 4: Table of the 10 largest errors, $\varepsilon_{F_{r e l}}$ and which k is comes from, for every p_{i}, under $n p q=10$ without continuity correction.

	$p=0.01$		0.02	0.03		0.0399		0.0499		0.0597		0.0698		0.0799		0.0893		0.0991		0.109		0.1196		0.129		. 1381		1487		. 1584		. 1696		0.1792		. 1899
k	$k \varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}{ }^{k}$	$k \quad \varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{r e l}}$	k	F_{r}	k	${ }_{l}$	k	$\varepsilon_{F_{r e l}} \mid$	${ }^{k}$	$\varepsilon_{F_{\gamma}}$	k	$\varepsilon_{F_{\text {rel }}}$	${ }^{k}$	$\varepsilon_{F_{r e l}}$	${ }^{k}$	F_{r}	k	$\varepsilon_{F_{r e l}}$	k	F_{r}	k	$\varepsilon_{F_{r}}$	k	$\varepsilon_{F_{r}}$	k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{r}}$	k	$\varepsilon_{F_{r}}$	k	$\varepsilon_{\text {Frel }}$
	029.7208		31.1973	032.7709		34.4347	10	36.212	,	38.084	4	40.1172	0	42.297	0	44.4454	4	46.851	1	49.4206	0	52.3782	0	55.1954	0	58.0921	0	61.6752	0	65.2141	0	69.5729	0	73.5645	0	78.3871
1	6.4725	1	6.76191	17.0685		7.3907	1	7.7327		8.0908	1	8.4774	1	8.8893	1	9.2928	8	9.7419	,	10.2188	1	10.7642	1	11.2805	1	11.8083	1	12.4572	1	13.0941	1	13.8735	1	14.5828	1	15.4344
2	2.2923	2	2.3926	22.4984	2	2.6091	2	2.7261	2	2.848	2	2.9789	2	3.1178	2	3.2532	2	3.4032	,	3.5617	2	3.7421	2	3.912	2	4.0849	2	4.296	2	4.503	2	4.7545	2	4.9822	2	5.2542
3	0.9707	3	1.0166	31.0648	3	1.1151	13	1.1681	3	1.2232	3	1.2822	3	1.3445	3	1.4051	3	1.4721	1	1.5425	3	1.6224	3	1.6975	3	1.7735	3	1.8663	3	1.9566	3	2.06	3	2.1647	3	2.2822
4	0.4247	4	0.4491	40.4747	,	0.5014	4	0.5295	4	0.5586	4	0.5898	4	0.6227	4	0.6547	74	0.6899	-	0.7269	4	0.7689	4	0.8081	4	0.8479	4	0.8963	4	0.9433	4	1.0002	4	1.0514	4	1.1121
5	0.1665	5	0.18045	50.1951	5	0.2104	5	0.2265	5	0.2433	5	0.2612	5	0.2802	5	0.2986	5	0.3189	-	0.3403	5	0.3645	5	0.3873	5	0.4102	5	0.4382	5	0.4654	5	0.4982	5	0.5278	5	0.5629
9	0.0451	6	0.04686	60.0553	6	0.0642	6	0.0736	6	0.0835	6	0.0941	6	0.1054	6	0.1164	4	0.1286		0.1414	6	0.156	6	0.1698	6	0.1837	6	0.2008	6	0.2173	6	0.2374	6	0.2555	6	0.2771
8	0.0439	9	0.04479	90.0442	9	0.0436	9	0.0428	9	0.0419	9	0.0408	9	0.0394	9	0.038		0.0372	7	0.0373	7	0.0461	7	0.0544	7	0.0629	7	0.0733		0.0835	7	0.096	7	0.1073	7	0.1208
6	0.0387		0.042	80.0398	8	0.0375		0.0371		0.0373	10	0.0375		0.0375		0.0374	4	0.0363		0.0368	10	0.03621		0.0356		0.0348		0.0336		0.0324	11	0.0306		0.0303	8	0.0354
10	0.0353	10	0.035910	00.036410	10	0.0368	8	0.0349	8	0.0321	8	0.029	11	0.0278		0.0284	4	0.0297	9	0.0344	9	0.03211		0.0304		0.0307		0.0308		0.0308		0.0306		0.0289		0.0298

k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{r e}}$	k		k	$\varepsilon_{F_{r e l}}$	$\left.\right\|^{k}$	$\varepsilon_{F_{r e l}} \mid$	k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{\text {rel }}}$	k	$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{\text {rel }}}$	k	ε_{F}	k	$\varepsilon_{F_{\text {rel }}}$								
	82.1989		86.6195		91.8044		97.9661		105.4031		109.7278		119.9526		126.053		132.9907		140.9488		150.1682		160.9731		173.8113		189.3227		208.4603		232.7278		264.7054		309.5134		82.9711
	16.1038		16.8761	1	17.777		18.8412	2	20.1171	1	20.8552	1	22.5896		23.6179	1	24.7821	1	26.1109	1	27.6424	1	29.4274	1	31.5357	1	34.0669	1	37.1685	1	41.0727	1	46.177	1	53.271	1	64.8288
2	5.4669	2	5.7115	2	5.9954	2	6.3291		6.727	2	6.9561	2	7.4919	2	7.8079	2	8.1642	2	8.5694	2	9.0342	2	9.5734	2	10.2072	2	10.964		11.886	2	13.0394	2	14.5375	2	16.6055	2	19.9613
3	2.3738	3	2.4787	3	2.6001	3	2.7423	-	2.9111		3.0079	3	3.2335	3	3.366	3	3.515	3	3.6839	3	3.8769	3	4.1001	3	4.3612	3	4.6718	3	5.0485	3	5.5174		6.1233	3	6.9555	3	8.304
4	1.1594	4	1.2134	4	1.2758	4	1.3487	7	1.435	4	1.4844	4	1.5992		1.6665	4	1.7419	4	1.8273	4	1.9246	4	2.0368	4	2.1677	4	2.323	4	2.5107	4	2.7436	4	3.0436	4	3.4543	4	4.1207
5	0.5902	5	0.6214	5	0.6573	5	0.6993		0.749	5	0.7774	5	0.8433	5	0.8819	5	0.9252	5	0.974	5	1.0297	5	1.0938	5	1.1686	5	1.257	5	1.3638	5	1.4962	5	1.666	5	1.8991	5	2.2788
6	0.2939	6	0.3131	6	0.3352	6	0.3612	2	0.3919	6	0.4094	6	0.4503	6	0.4742	6	0.501	6	0.5314	6	0.5659	6	0.6057	6	0.6522	6	0.7072	6	0.7736	6	0.856	6	0.962	6	1.1074	6	1.3466
7	0.1314	7	0.1435	7	0.1576	7	0.1741	1	0.1938	7	0.205	7	0.2314	7	0.2468	7	0.2642	7	0.2839	7	0.3065	7	0.3325	7	0.3629	7	0.399	7	0.4428	7	0.4973	7	0.5676	7	0.6647	7	0.8267
8	0.0419	8	0.0495	8	0.0584	8	0.0689	8	0.0815	8	0.0888	8	0.1059	8	0.116	8	0.1274	8	0.1405	8	0.1554	8	0.1728	8	0.1933	8	0.2177	8	0.2475	8	0.2848	8	0.3334	8	0.401	8	0.5164
11	0.029211	11	0.0285		0.0274		0.026		0.0247		0.0244	9	0.0348	9	0.0412	9	0.0486	9	0.0571	9	0.067	9	0.0786	9	0.0923	9	0.1089	9	0.1294	9	0.1553	9	0.1895	9	0.2378	9	0.3228

Table 5: Table of the 10 largest errors, $\varepsilon_{F_{r e l}}$ and which k is comes from, for every p_{i}, under $n p q=10$ with continuity correction.

$p=0.01$		0.0199	0.0297		0.0395		0.0493		0.059		0.0685		0.0795		0.089		0.0978		0.1086		0.1172		0.1273		. 1394	
$k \varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$	$\\|^{k} \quad \varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r}}$	k	$\varepsilon_{F_{r e l}}$		ε_{F}		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{\text {rel }}}$		ε		$\varepsilon_{F_{r e l}}$	
$0 \quad 0.514$	0	0.533	00.5523	0	0.5721	0	0.5924	0	0.6132	0	0.634	0	0.6588		0.6809	0	0.7019	0	0.7283	0	0.7501	0	0.7764	0	0.8088	
20.0856	2	0.0842	20.0828	2	0.0813		0.0797	2	0.078	2	0.0762	2	0.0741	2	0.0721		0.0702	2	0.0678	2	0.0657	2	0.0631	1	0.0634	
30.0524	3	0.0527	$3 \quad 0.053$	3	0.0533		0.0536	3	0.0538	3	0.054	3	0.0541		0.0542		0.0542	3	0.0542	3	0.0542	3	0.0541	2	0.0599	
10.0243	1	0.0189	10.0132	4	0.0133		0.0141	4	0.0148	4	0.0155	1	0.0181	1	0.0247	1	0.031	1	0.039	1	0.0455	1	0.0535	3	0.0538	
60.0121	6	0.012	40.0126	6	0.0117	6	0.0115	6	0.0113		0.0111	4	0.0163	4	0.017		0.0177	4	0.0184	4	0.0191	4	0.0198	4	0.0206	
40.0112	4	0.0119	60.0118	5	0.0085	5	0.008	5	0.0075	1	0.0108	6	0.0109	6	0.0107		0.0105	6	0.0103	6	0.0101	6	0.0098	6	0.0095	
50.0099	5	0.0094	50.009	1	0.0075	7	0.0072	7	0.0072	7	0.0071	7	0.0071	7	0.0071	7	0.007	7	0.007	7	0.0069	7	0.0069	7	0.0068	
70.0073	7	0.0073	70.0072	7	0.0072	8	0.003		0.0046	5	0.007	5	0.0064	5	0.0059		0.0054	5	0.0048	5	0.0043	5	0.0037	8	0.003	
80.0031	8	0.0031	$8 \quad 0.0031$	8	0.0031	1	0.0015	8	0.003	8	0.003	8	0.003	8	0.003	8	0.003	8	0.003	8	0.003	8	0.003	5	0.0029	
$9 \quad 0.001$	9	0.001	$9 \quad 0.001$	9	0.001	9	0.001	9	0.001	9	0.001	9	0.001	9	0.001	9	0.001	-	0.001	9	0.001	9	0.001	9		
0.1464		0.1542	0.1629		0.1727		0.1838		0.1965		0.2113	0.2288			0.25	0.2764		0.311		0.3613		0.5				
$k \quad \varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$	$k \varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e l}}$	k	$\varepsilon_{F_{r e}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e t}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$		$\varepsilon_{F_{r e l}}$			
00.8281	0	0.8499	00.8748	0	0.9036	0	0.9373	0	0.9773	0	1.0255	0	1.085	0	1.1605		1.2602	0	1.3994	0	1.6142		2.0641			
10.0692	1	0.0759	10.0836	1	0.0925	1	0.1029	1	0.1153	1	0.1304	1	0.1491	1	0.173		0.2048		0.2498		0.3203		0.4769			
20.0579	2	0.0557	30.0531	3	0.0526	3	0.052	3	0.0512	3	0.05	3	0.0484	3	0.0459	3	0.042	3	0.0354	2	0.0436		0.1227			
30.0536	3	0.0534	20.053	2	0.0499	2	0.0462	2	0.0417	2	0.0361	2	0.029	4	0.0263	4	0.0268	4	0.0266	4	0.024	3	0.02			
40.0211	4	0.0216	$4 \quad 0.0222$	4	0.0228	4	0.0234	4	0.0241	4	0.0249	4	0.0256		0.0196	2	0.0068	2	0.0122	3	0.0226		0.0031			
60.0093	6	0.0091	60.0088	6	0.0085		0.0081	6	0.0077	6	0.0071	6	0.0064	7	0.0056		0.0061		0.0081		0.0099		0.0024			
70.0068	7	0.0067	70.0066	7	0.0066	7	0.0065	7	0.0063	7	0.0062	7	0.006	6	0.0055	7	0.0051	7	0.0043	7	0.0029	5	0.002			
80.003	8	0.003	$8 \quad 0.003$	8	0.003	8	0.003	8	0.003	8	0.0029	5	0.003	5	0.0044		0.0043	6	0.0026	8	0.0018		0.0016			
50.0025	5	0.002	50.0014	9	$9 \mathrm{e}-04$	9	$9 \mathrm{e}-04$	9	$9 \mathrm{e}-04$	5	0.0018	8	0.0029	8	0.0028	8	0.0027	8	0.0024	9	5e-04	10	0.0015			

Table 6: Table of the 10 largest errors, $\varepsilon_{F_{r e l}}$ and which k is comes from, for every p_{i}, under $n p q=3$ with continuity correction.

[^0]:
 and which k is comes from, for every p_{i}, under $n p q=$
 Table 1: Table of the 10 largest errors, $\varepsilon_{F_{a b s}}$ correction.

