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1. Introduction

Numerical simulation is considered the third pillar in engineering science,
complementing theory and experiments. Computational fluid dynamics is one
of its major fields and helps in understanding and predicting the behavior of
fluid flow. The use of simulation promises better control of technical processes
and insight into systems for which experiments are expensive or impossible.

An import discipline in computational fluid dynamics is multi-phase flow,
a setting that involves two or more different fluids. There is a wide range
of applications that involve multiple fluids and where numerical simulations
are a fundamental tool. This thesis presents numerical techniques for the set-
ting where the two fluids are incompressible and do not mix. One application
is intravenous therapy in medicine where vesicles consisting of oleaginous
substances enter the circulation of the blood [80]. These flows are usually
characterized by high surface tensions that tend to make vesicles spherical.
Similarly, simulation is a tool in the understanding of the shape of red blood
cells [1]. In the biomedical industry, so-called lab-on-a-chip processes also
involve the simulation of capillary-dominated multi-phase flow [96, 84]. For
the development of polymer materials like bicontinuous interfacially-jammed
emulsion gels [66], different fluids are separated by barrier materials, which
can be modeled with multi-phase flow approaches for representing interface
physics. Likewise, liquid phase sintering can be controlled by tracking mix-
tures of different fluids and their solidification.

Subsurface flow is another field where multiple fluids are present. The in-
teraction of different fluids with the rock material is one of the main physical
processes in this setting, but its modeling represents a considerable challenge.
Due to the small length scales of pores on the order of millimeters, wetting ef-
fects dominate the flow. These small length scales need to be seen in the light
of the size of the global structures modeled, which are groundwater basins
and oil reservoirs that extend over thousands of square kilometers. The wide
range of scales requires model reductions, like the combination of small-scale
flow simulations with detailed rock structures to find the permeability of rock
materials, and large scale simulations of Darcy flow with these parameters.

The implementation of the numerical models for multi-phase flow requires
the use of advanced programming techniques. Particularly for reliable three-
dimensional simulations, hundreds of millions or even billions of degrees of
freedom are required to provide sufficient resolution. In order to tackle such
enormous problems, efficient parallel implementations are necessary. In this
thesis, a parallel adaptive finite element framework is presented for construct-
ing solvers for the equations of incompressible flow coupled to a description
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of the interface between the fluids. The framework is also applied to simu-
late planetary mantle convection where the goal is to understand the dynamics
of mantle materials at different temperatures, flow that is mainly driven by
buoyancy. At first sight, the problems of mantle convection and of capillary-
dominated two-phase flow are very different, in particular with respect to the
length scales of thousands of kilometers in mantle simulations and millimeters
or less for capillary-dominated flow. However, the programming techniques
applied in this thesis are indeed very similar.

This comprehensive summary consists of eight chapters. In the next chap-
ter, we discuss the fundamental numerical aspects in the simulation of two-
phase flow. Chapter 3 gives an introduction to the simulation of mantle con-
vection. Chapter 4 discusses numerical and implementation issues underlying
both application problems. Chapter 5 gives a short outline of software aspects
in finite element programming. The papers included in this thesis are summa-
rized in Chapter 6. Chapter 7 identifies possible directions of future research,
and Chapter 8 gives a Swedish summary of this work.
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2. Simulation of Two-Phase Flow

We consider the dynamics of two immiscible incompressible fluids separated
by an interface Γ according to Fig. 2.1. By Ω1 we denote the region occupied
by the first fluid, and by Ω2 the region occupied by the second one. We assume
laminar flow at small Reynolds numbers.

Ω1

Ω2

Γ

∂Ω

Figure 2.1. Schematic view of a two-phase flow problem. Fluid 1 occupies region Ω1,
and fluid 2 occupies Ω2. The interface Γ separates the two fluids.

The motion of each fluid for two-phase flow in d-dimensional space is de-
scribed by the incompressible Navier–Stokes equations,

ρ

(
∂u
∂ t

+u ·∇u
)
−∇ · (2µε(u))+∇p = ρf, (2.1)

∇ ·u = 0. (2.2)

The vector u denotes the d components of fluid velocity and p denotes the
fluid’s (dynamic) pressure. The rank-2 tensor ε(u) = 1

2

(
∇u+(∇u)T

)
repre-

sents the rate-of-deformation tensor. The fluid density is denoted by ρ and the
(dynamic) viscosity by µ . The term f specifies external forces acting on the
fluid, for instance gravity or electromagnetic forces.

The system of Navier–Stokes equations (2.1)–(2.2) is completed by a di-
vergence-free initial velocity field u(·,0) and application-specific boundary
conditions at the boundary ∂Ω (cf. Gresho and Sani [51, 52] for a discussion
of various possibilities). No-slip boundary conditions at solid walls are of the
form

u = 0 on ∂Ωw ⊂ ∂Ω. (2.3)
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The incompressible Navier–Stokes equations (2.1)–(2.2) hold on each subdo-
main Ωi for the two fluids and their solution is denoted by the variables ui
and pi, i = 1,2. Extra conditions are necessary to describe the behavior at the
interface Γ = Γ(t), which is a free surface evolving in time according to the
underlying fluid flow u|Γ. If we neglect mass transfer over the interface, the
following jump conditions over the interface hold (see, e.g., [33, 85]),

JuK
Γ
= 0, (2.4)

J−2µε(u) ·n+ pnK
Γ
= σκn, (2.5)

J−2µε(u) ·nK
Γ
· t = 0, (2.6)

where σ is a constant specifying the relative strength of the surface tension, κ

denotes the interface curvature, n the direction normal to the interface (point-
ing into Ω1), and t denotes vectors tangential to the interface. The jump of
quantities from Ω1 to Ω2 is denoted by JuK = u1− u2. A widespread for-
mulation is to pose the two-phase flow problem on the whole domain Ω =
Ω1 ∪Γ∪Ω2, based on the combined variables u and p. Generally, the fluid
densities ρi and viscosities µi are different for the two fluids and jump at the in-
terface. In addition, the jump in normal stress (2.5) can be modeled by adding
a forcing of the form

fst = σκnδΓ (2.7)

to the momentum equation, where δΓ is a delta function that localizes the force
to the interface, i.e., ∫

Ω

h(x)δΓ(x)dx =
∫

Γ

h(s)ds,

for h : Rd → R.
In addition to solving the incompressible Navier–Stokes equations, the two

main aspects in the numerical simulation of two-phase flow are the represen-
tation of the interface as it evolves in time, and the evaluation of interfacial
tension. Some applications also require the evaluation of additional physical
processes on the interface. The interface representation and evolution is dis-
cussed in Sections 2.1 to 2.3, and the evaluation of interface forces in Sec. 2.4.

2.1 Overview of numerical models for interface
representation

The geometry of the interface is usually complex and can change topology,
like the breakup and reconnection of bubbles. Several discrete approaches
have been proposed during the last decades. There are two main strategies
to couple the interface evolution problem to the Navier–Stokes equations dis-
cretized on a fixed grid, interface tracking and interface capturing approaches.
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Interface tracking
Interface tracking is based on an explicit description of the interface. Bound-
ary integral methods use potential theory to reduce the problem to the inter-
face [68]. However, these methods are only valid for the limited physics of
a Stokes flow. In the more general setting where the Navier–Stokes equa-
tions are formulated on the whole domain, one strategy is to embed marker
points or elements for representing the interface. These so-called front track-
ing methods were introduced in different variants by Peskin [102] and Glimm
et al. [47], see also the review articles [112, 131]. The evolution of the inter-
face in front tracking schemes is accomplished by Lagrangian advection of the
marker points. This process combines the information from the d-dimensional
fluid grid and the (d−1)-dimensional interface grid. When the flow deforms
the interface, the marker points need to be redistributed for retaining accurate
interface representations. Also, straight-forward implementations of tracking
methods are prone to unphysical changes of the area/volume of the respective
fluid.

Interface capturing
In interface capturing approaches, the interface is implicitly defined through
other quantities. Historically, the first scheme of this kind was the marker-and-
cell method proposed by Harlow and Welch [63], considered to be a volume-
tracking method. Here, one fluid is colored by marker particles whose location
is advected with the flow field. The position of the interface can then be recon-
structed from the particle field. An extension of this approach is to replace the
marker particles by a marker function in terms of the volume-of-fluid (VOF)
method [93, 67]. VOF includes an additional variable that stores the fraction
of the first fluid on the total fluid for each cell of the computational grid. The
advection of the interface is usually implemented by increasing or decreasing
the volume fraction depending on the velocity field and the composition of
neighboring cells. The advantage of VOF methods is volume conservation and
a natural mechanism for breakup and fusion of bubbles. However, the evalua-
tion of surface tension forces along the interface requires the reconstruction of
the interface location from the discrete volume fractions. This reconstruction
makes VOF schemes considerably more complicated to implement compared
to front tracking methods. For details of the reconstruction, including higher
order schemes, we refer to [112, 114] and references therein.

While VOF methods operate on the discrete level, a continuous front cap-
turing framework is provided by the level set method [100, 124] and the phase
field method [76]. The methods discussed in Paper I–III are based on these
two approaches, which are discussed in detail in the following two sections.

Since all the different approaches have their pros and cons, hybrid ap-
proaches have been presented in order to combine attractive features of sev-
eral methods. Examples are coupled level set-boundary integral methods [41],
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Figure 2.2. Representing an interface by a signed distance level set function φ .

combined level set-front tracking methods [115, 116], and combined level set-
VOF approaches [123].

2.2 Level set methods
The basic idea of level set methods is to define the interface implicitly as the
zero contour line of a function φ that is defined in the whole domain Ω. These
methods have been introduced in [100] and applied to incompressible two-
phase flow in [124]. Level set methods allow for a straight-forward evaluation
of normal vectors, n(φ) = ∇φ/|∇φ |, and curvature, κ(φ) = −∇ ·n(φ). Both
these quantities can be computed locally from φ on the same computational
mesh as is used for the representation of fluid flow. The mechanism for moving
the interface in level set methods is advection of the function φ with local fluid
velocity, i.e.,

∂φ

∂ t
+u ·∇φ = 0. (2.8)

This is an additional partial differential equation coupled to the Navier–Stokes
equations. The advection equation (2.8) can be solved with standard tools for
hyperbolic transport equations, like upwind finite difference/volume schemes
or stabilized finite element methods.

The standard choice for the level set function is a signed distance function
φ , depicted in Fig. 2.2, see [114, 99] for a presentation of this concept. A
signed distance function encodes the distance of a particular point to the in-
terface and distinguishes the fluids by the sign. It has the property |∇φ | = 1
almost everywhere. Since the information from φ is only needed in a region
around the interface, so-called narrow-band level set implementations are of-
ten used. These methods calculate φ only on a few grid cells around the in-
terface, usually combined with high-resolution grids for φ . We refer to [2] for
the presentation of such a method.

To start a level set calculation, a profile φ(·,0) needs to be generated given
the initial position of the interface. Moreover, the flow field as well as inac-
curacies in the numerical scheme deform the signed distance function during
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the simulation. Therefore, algorithms have been proposed to (re-)initialize
the signed distance function. These algorithms enforce the property |∇φ |= 1
[110, 72]. One option is to solve the PDE

∂φ

∂τ
+Sε (φ0)(|∇φ |−1) = 0, (2.9)

to steady state, where Sε(φ0) is a smoothed sign function with value 1 in the
first fluid and value −1 in the other one [99]. However, discretizations of
the reinitialization scheme do not preserve mass in the sense that the area
vol(Ω1) = vol({x;φ(x) > 0}) is altered, so that the overall level set imple-
mentation based on signed distance functions usually suffers from unphysical
volume changes in the fluid phases.

Many methods have been proposed to improve mass conservation, like con-
strained reinitialization that penalizes volume changes during reinitialization
[121, 64] and the conservative level set method [94, 95]. The conservative
level set method is based on a smoothed color function instead of the signed
distance function, see Fig. 2.3(b). Around the interface, there is a transition
region where the function smoothly switches from value +1 to−1. This func-
tion φ can be calculated from the reinitialization equation

∂φ

∂τ
+∇ ·

(
n
(
1−φ

2))−∇ · (nε∇φ ·n) = 0. (2.10)

In this equation, diffusion in direction normal to the interface is balanced by
a compressive flux. The parameter ε is typically chosen to be proportional to
the mesh size. For a plane interface located at x = ξ , the steady-state value of
(2.10) is given by

φ(x) = tanh
(

x−ξ

ε

)
, (2.11)

see also Fig. 2.3(b). Since the reinitialization equation (2.10) is posed as a
conservation law, an implementation that exactly preserves

∫
Ω

φdx is pos-
sible [95]. A disadvantage of a smoothed color function is that the evalu-
ation of quantities along the interface is less accurate because of the steep
profile, which increases resolution requirements considerably. Another draw-
back of the smoothed indicator function (2.11) is the necessity to consider it
in the whole domain for conserving

∫
Ω

φdx. Nonetheless, the high resolu-
tion requirements around the interface can be alleviated by the use of adaptive
meshes, as has been used in Paper III. Alternatively, the conservation proper-
ties of this method can be combined with the superior interface representation
of signed distance functions as proposed in [82].

2.3 Phase field methods
The concept of all the methods presented above is to use some interface de-
scription as a mathematical tool. The phase field method gives the function
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Figure 2.3. Illustration of mechanism driving interface sharpness in the Cahn–Hilliard
equation [29] and in the conservative level set method [94].

representing the interface a physical meaning as diffuse interface in the whole
domain Ω. It is derived from the van der Waals hypothesis stating that im-
miscible fluids actually mix on molecular level. The profile of the interface
is given by a balance of random molecular motion and molecular attraction in
terms of the molecular free energy, as formulated by Cahn and Hilliard [29],

f (C) = βΨ(C)+
α

2
|∇C|2, (2.12)

where C denotes the concentration and Ψ(C) = (C + 1)2(C− 1)2. Similar
to the smoothed color function (2.11), the function seeks to attain the two
equilibrium values C =±1, which is driven by the double-well potential Ψ(C),
and the gradient term ∇C make the transition smooth.
The physical system seeks to minimize the energy (2.12), a process described
by the Cahn–Hilliard equation

∂C
∂ t

= ∇ · (M∇ψ) = ∇ ·
(
M∇

(
βΨ
′(C)−α∇

2C
))

, (2.13)

with the chemical potential ψ and the mobility factor M. The phase field
method [76] (see also the reviews [6, 35, 118]) includes transport of the inter-
face by convection, i.e., a term u ·∇C. The mean diffuse interface thickness in
the phase field method is given by

√
α/β . Even though physical mixing hap-

pens only in the range of some tens of nanometers [33], the phase field method
has been used successfully for the simulation of multi-phase flow where the
interface thickness is rather dictated by numerical resolution.

The phase field method relies on a similar function C as the conservative
level set method [94]. For a plane interface, the steady state for the phase field
method is indeed exactly the same as for the conservative level set method,
namely (2.11) with ε =

√
2α/β . However, the two methods rely on different

nonlinear sharpening mechanism, as illustrated in Fig. 2.3.
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The diffuse interface approach of the phase field method includes a formu-
lation for interfacial tension as a volume force

σκnδΓ ≈ ψ∇C. (2.14)

Boyer [20] formulated a phase field model for fluids with different densities
and viscosities. Different forms of the surface tension force have recently been
studied numerically on a benchmark problem [5].

2.4 Interface forces
For evaluating the surface tension force (2.7) and other quantities along the
interface for non-diffuse interface models, two main approaches can be dis-
tinguished. The first class of methods uses discrete delta functions approx-
imating δΓ in the force definition in order to localize the force to a volume
fraction close to the interface [103]. This continuous surface tension approach
[23] (see also the review in [131]) is conceptually similar to the volume force
(2.14) for the phase field method. A general framework for the evaluation
of surface tension and other quantities along the interface is provided by the
immersed boundary method, see the review paper [103]. Normal vectors and
curvatures for evaluating surface tension (2.7) are computed from straight-
forward geometric identities with the information provided by the respective
interface description. For color functions c that are +1 in one fluid and −1 in
the other, the following continuous surface tension model can be used,

nδΓ ≈
1
2

∇c. (2.15)

The factor one half comes from the fact that the function c switches from −1
to +1. Paper I addresses the accuracy of interface forces constructed from this
concept in the context of finite element discretizations. In general, the defini-
tion of discrete delta functions needs to be done with care in order to maintain
consistency of the method. For instance, the approach to combine a signed
distance function with a scalar discrete delta function of the form δh (φ(x))
has been demonstrated to lead to O(1) errors [36]. Several consistent delta
function approximations have been proposed, see [36, 138] and references
therein.

The second class of methods avoids introducing volume forces by con-
sidering jump conditions of the type (2.4)–(2.6) directly along the (d − 1)-
dimensional interface. This can be accomplished by embedding the jumps
directly into finite difference stencils [38]. These so-called ghost fluid meth-
ods have been generalized to finite element space discretizations in the frame-
work of extended finite element methods, where discontinuities are embedded
into the solution spaces [54]. Recently, an extended finite element method
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for simulating a three-dimensional rising bubble has been used [107]. A gen-
eral formulation for evaluating interface forces and other quantities along the
interface in a sharp way is provided by the immersed interface [85, 87].

2.5 Modeling of contact lines
When the interface between two fluids is in contact with solid walls, wetting
driven by contact line dynamics needs to be included in the numerical model.
A contact line is defined as the (d−2)-dimensional manifold where the inter-
face between the two fluids is in contact with the solid. The conventional no-
slip boundary condition does not hold at contact lines since that would yield a
singularity in shear stress [70]. In order to resolve this singularity, the contact
line needs to be allowed to slip, for example based on a Navier condition

uslip = λn ·
(

∇u+(∇u)T
)
, (2.16)

where the parameter λ is the so-called slip length. Many models have been
proposed to define this parameter, like the ad-hoc approach in [119] or rela-
tions derived from multiscale simulations [109]. In Paper II, a new multiscale
model is proposed for resolving this relation.

In the phase field method, there is a built-in mechanism for contact line
behavior, which is used in Papers II and III. By setting a nonlinear Robin-type
boundary condition on the concentration variable C,

n ·∇C+ cos(θS)(1−C2) = 0,

a problem-specific static contact line angle θS can be imposed [76, 134]. How-
ever, the behavior of flow driven by contact lines depends on the value of the
mobility M. Yue et al. [136] showed convergence of contact dynamics with
respect to the interface thickness

√
2α/β but the dependence on resolving

small mobilities M sets high demands on numerical methods.
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3. Mantle convection

Convection processes in planetary mantles can be described by incompressible
flow driven by density differences, which in turn are caused by differences in
temperature. The buoyancy forces are much lower than viscous friction forces,
so the fluid flow is so slow that inertial terms can be neglected [113, Ch. 6].
The resulting fluid flow is described by the Stokes equations. In combination
with the temperature evolution equation, this yields the Boussinesq approxi-
mation, a system of coupled differential equations,

−∇ · (2µε(u))+∇p = ρ(T )g, (3.1)
∇ ·u = 0, (3.2)

∂T
∂ t

+u ·∇T −∇ · (κ∇T ) = γ, (3.3)

which is solved on a spherical domain like the 2D illustration in Fig. 3.1.
The problem variables are the fluid velocity u, the dynamic pressure p, and
the temperature T . Rock viscosity is denoted by µ , thermal conductivity by
κ , and the direction and magnitude of gravity is given by g. The density
ρ(T ) depends on temperature. Simple models assume an expansion around
some reference values, ρ(T ) = ρref(1−β (T −Tref)), where β is the thermal
expansion coefficient. More elaborate models rely on tabulated density values
for mantle materials at various temperatures. The heat source γ is typically
modeled to contain effects from radioactive decay and viscous heating,

γ = γradiogenic +2µε(u) : ε(u) = γradiogenic +µ ∑
i j

∂ui

∂x j

∂ui

∂x j
.

Other heat generating phenomena like chemical separation within the mantle
or crystallization effects are not as straight-forward to model, see [113].
Boundary conditions in mantle convection simulations are typically no-slip
velocity conditions at the inner core boundary and free-slip conditions at the
outer mantle boundary, see Fig. 3.1. In global mantle simulations, Dirichlet-
type conditions for the temperature are supplied both on the hot inner and the
cold outer boundaries. Alternatively, adiabatic conditions on the outer bound-
ary or prescribed heat fluxes are sometimes also used, especially in the process
of validation of numerical models based on simplified smaller geometries.

Numerical simulation is essential in the understanding of the dynamics in
the mantle of planets, as the flow quantities cannot be accessed directly. For
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the Earth’s mantle, numerical models can be verified by measurements close
to the surface, like thermal fluxes, glacial rebound, seismic activities, or the
gravitational field.

Typical mantle materials are characterized by high dynamic viscosities µ ,
often in the range of 1019−1023 kg

ms . For length scales in the range of plane-
tary dimensions, i.e., 106 m, and buoyancy forces ρg in the range of 104 kg

m2s2 ,
typical flow velocities are of magnitude 10−8 m

s , i.e., 10–100 centimeters per
year. The dynamic pressure is of magnitude 108 Pa, and temperatures are in
the range of a few thousands of Kelvin. Handling quantities at these disparate
orders of magnitude introduces requires special care, e.g., in the choice of iter-
ative linear solvers where solutions of systems of equations are only performed
approximately and suitable criteria to decide when a discrete residual is small
enough need to be established. To cope with very large or very small numbers,
numerical techniques must rely on residuals that are measured relative to the
magnitude in matrix and right-hand-side entries. In addition, disparate scales
of the components in a block system like when solving the Stokes equations
(3.1)–(3.2) with a coupled linear solver need to be avoided. The approach
taken in Paper IV is to rescale the continuity equation (3.2) and the pressure
variable to obtain well-balanced magnitudes in the numerical computations.

An alternative approach is to introduce a non-dimensional form of the equa-
tions and quantify the strength of buoyancy forces ρg by the non-dimensional
Rayleigh number. If we consider convection in the earth’s mantle driven only
by internal heating, we can define a Rayleigh number

Raγ =
|g|ρ0βγD5

cpµκ2 ,

where |g| denotes the magnitude of gravitational acceleration, ρ0 a reference
density, γ denotes the internal heat generation per unit mass, D=Router−Rinner
the depth of the mantle, and cp is the specific heat at constant pressure, see
[25]. For convection that is driven by the temperature difference between the
hot inner (core) boundary and the cold outer boundary instead, an alternative
Rayleigh number can be defined,

Ra∆T =
|g|ρ0β (∆T )D3

µκ
,

where ∆T is the temperature difference between inner and outer boundary.
Since the real situation in the mantle is a combination of different driving
mechanisms, one often chooses the most significant contribution when defin-
ing a characteristic Rayleigh number [113].

For the Boussinesq equations in non-dimensionalized form, the Rayleigh
number is the only parameter left (µ , κ , and γ , if present, are of unit value). As
the Rayleigh number in typical mantle convection simulations is of magnitude
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Figure 3.1. Spot at temperature distribution in a mantle convection simulation on
a two-dimensional quarter shell. The inner boundary is hot and the outer boundary
cold, and buoyancy transports the hot material towards the outer boundary. The small-
scale plumes in this simulation are non-stationary and localized. Image from Paper
IV.

between 106 and 108 or even larger, the ratio between convective transport
of temperature, uT , and diffusive transport, κ∇T , is very large. This im-
plies that the temperature equation is strongly convection dominated, which
needs to be taken into account when choosing the numerical discretization,
see Sec. 4.2 below. A physical consequence of high Rayleigh number flow is
the fact that the flow becomes non-stationary, opposed to flow at low Rayleigh
numbers where the solution develops a steady state. At moderate Rayleigh
numbers in the range of 105 and on simple problems, mantle convection de-
velops periodic orbits as observed in one of the benchmark cases in [18]. At
even higher Rayleigh numbers or on realistic shell geometries, the flow be-
comes completely unstable and so-called turbulent mantle convection devel-
ops [113]. Fig. 3.1 shows a numerical results for a typical two-dimensional
mantle convection process in the high Rayleigh number regime. After an ini-
tial transition period, plumes develop which represent non-stationary rise of
hot material from the bottom.

Extended mantle convection models
One way to make mantle convection models more realistic compared to the
configuration considered in Paper IV is to introduce a dependence of the vis-
cosity µ on the temperature. Usual viscosity contrasts between hot and cold
regions can be 106 and even larger as remarked in [125]. In numerical models,
an exponential relation of the form

µ = µ0 eE(T0−T )

is popular [139], where E denotes a viscosity factor and µ0 the value of the
viscosity at the reference temperature T0. Heterogeneity in the material and
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temperature distributions can lead to sharp changes in µ , which requires robust
discretization methods and linear solvers [45, 75].
Also, the Boussinesq limit of small density variations in the underlying equa-
tions is not completely realistic either, and one can allow for compressibility
in the flow equations. This yields a modified continuity equation ∇ · (ρu) = 0
with temperature- and pressure-dependent density ρ , for which the Stokes sys-
tem becomes non-symmetric and, hence, numerically even more challenging.
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4. Computational aspects of coupled
flow-transport problems

The structure of the model used for the multi-phase flow application presented
in Chapter 2 and the mantle convection from Chapter 3 enables the use of
similar implementation concepts. Both applications are described by incom-
pressible flow coupled to a scalar transport-type equation, with the transport
driven by the flow field. For level set models, the level set variable is simply
advected according to (2.8), whereas the equation is of convection-diffusion
type in phase field models (2.13) and mantle convection (3.3). In all cases, the
scalar quantity enters the momentum equation as a source, either through a sur-
face tension term (2.15) or the temperature-dependent density. This nonlinear
coupling of the equations poses several numerical challenges. In this chapter,
we address the main steps in the numerical treatment of these coupled systems.
Compared to the limited description provided in Papers I–III, the discussion
included here focuses on all the essential steps in the discrete approximation
for the Navier–Stokes equations, including efficient linear solvers.

For spatial discretization, there are various methods available. The most
popular schemes are the finite volume method, the finite difference method,
and the finite element method. A comparative introduction of these meth-
ods can be found, e.g., in Quartapelle [105]. The algorithms developed in
this thesis are based on a finite element space discretization because of the
flexibility of this method with respect to geometry representation and adap-
tive mesh refinement. There is a vast literature discussing various aspects of
finite elements for the incompressible flow equations (2.1)–(2.2). Mathemat-
ical aspects are discussed, e.g., in Glowinski [48] and Gunzburger [59]. The
books by Gresho and Sani [51, 52] focus on practical issues for implemen-
tation such as boundary conditions, discretization schemes, and stabilization.
The work by Elman, Silvester & Wathen [34], Quarteroni & Valli [106], and
Turek [133] put special emphasis on algorithmic matters like efficient numer-
ical linear algebra. Throughout this section, we will mainly discuss the steps
for discretizing the incompressible Navier–Stokes equations (2.1)–(2.2) cou-
pled to the level set equation (2.8). Similar steps are taken for the Boussinesq
system (3.1)–(3.3). Deviations in the treatment are explicitly addressed.
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4.1 Weak form and spatial discretization
The equations of incompressible flow (2.1)–(2.2) depend on both space and
time. Most implementations split the discretization into separate approxima-
tions for the spatial and temporal part.

For setting up the spatial finite element approximation, the first step is to
rewrite the system of equations (2.1)–(2.2) in variational form. To this end,
we define the space of admissible velocity solutions at a given instant in time
by Vu =

{
u ∈ H1(Ω);u = 0 on ∂Ωw,n ·u = 0 on ∂Ωs

}
, where ∂Ωw denotes

wall boundaries and ∂Ωs boundaries where the flow field may slip but no
normal flux through the boundary is allowed (this condition is also used for
symmetry boundaries). Hence, Vu is the space of all square integrable vector-
valued functions on Ω with integrable first derivatives that satisfy the boundary
conditions. For simplicity, we here assume that the boundary is covered by
these two types of boundaries, see [52] for additional forms for inflow and
outflow boundaries. The space of admissible pressure solutions is defined by
Vp = L2(Ω). Let us denote the standard L2 inner product on Ω by (·, ·)Ω. The
variational problem corresponding to (2.1)–(2.2) is to find, at each instant in
time, a pair (u(·, t), p(·, t)) ∈ Vu×Vp such that(

v,ρ
(

∂u
∂ t

+u ·∇u
))

Ω

+(ε(v),2µε(u))
Ω

− (∇ ·v, p)
Ω
− (q,∇ ·u)

Ω
=
(
v, f
)

Ω

(4.1)

holds for all test functions (v,q) ∈ Vu×Vp. Similarly, the weak equation for
the level set variable is to find φ ∈ H1(Ω) such that(

ξ ,
∂φ

∂ t
+u ·∇φ

)
Ω

= 0 for all ξ ∈ Vφ = H1(Ω). (4.2)

In the spatial discretization of systems (4.1) and (4.2), the (infinite-dimensio-
nal) solution function spaces Vu, Vp, and Vφ are replaced by finite-dimensional
subspaces V h

u , V h
p , and V h

φ
. Then, only the projection of the equations onto

finite dimensional test function spaces V h
u ×V h

p is considered, resulting in nu-
merical approximations uh and ph, and similarly for φ h. The discretizations
considered in this thesis use a decomposition of the computational domain into
elements of characteristic size h. We mainly focus on quadrilateral elements
in 2D and hexahedral (brick) elements in 3D in this thesis. The basis func-
tions that span Vu and Vp are chosen to be piecewise Lagrange polynomials
within the elements. Globally, the basis functions are nonzero in exactly one
node, and zero on all the others. The support of the basis functions is confined
to a patch of elements around the respective nodes. For velocity, continuity
of the approximation over the whole domain Ω is enforced to make sure that
V h

u ⊂Vu. In the pressure, discontinuities over element boundaries are allowed.
Apart from some results in Paper IV, all the computations were performed on
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continuous pressure spaces, though. For the representation of the velocity
uh, equally shaped basis functions are used for each spatial component. For
instance, we will denote a finite element approximation with quadratic basis
functions for velocity and linear basis functions for pressure by Qd

2Q1. For
this finite element, the basis functions for uh are defined as a tensor product of
Lagrangian interpolation polynomials of degree two in each coordinate direc-
tion, and the pressure basis functions as tensor product of linear Lagrangian
interpolants.

With constant coefficients, the viscous term is often reformulated using the
identity ∇ · 2µε(uh) = µ∇ ·∇uh + µ∇(∇ ·uh), dropping the second term be-
cause of incompressibility. This gives a block Laplacian operator, for which
the final matrix is sparser by a factor 1

d , which translates to a similar speedup
when solving the linear systems. Since we consider systems where viscos-
ity is variable because of multiple phases or temperature-dependent viscosity,
we keep the original form. The incompressibility condition also allows to use
different discrete forms of the convective term uh ·∇uh. Sometimes, the skew-
symmetric form uh ·∇uh + 1

2 uh(∇ ·uh) is preferred over the convective form
used in (4.1) as it ensures discrete energy conservation. We refer to Quarteroni
and Valli [106] for a discussion of different forms.

4.2 Stability of spatial discretization
For stability of the spatial discretization of the incompressible flow equations
(4.1), a compatibility condition between the approximation of velocity and
pressure must be satisfied, namely

inf
qh∈V h

p

sup
vh∈V h

u

(
qh,∇ ·vh

)
Ω∥∥qh

∥∥
L2

∥∥vh
∥∥

H1

≥ β > 0, (4.3)

where the constant β does not depend on the mesh size parameter h. This con-
dition is called LBB (Ladyzhenskaya, Babuška, Brezzi) or inf–sup condition
[46, 34]. In particular, the condition also ensures that the discrete divergence
matrix discretizing the term

(
qh,∇ ·uh

)
Ω

is of full row rank, guaranteeing a
unique solution for velocity and pressure. The inf–sup condition restricts the
choice of stable element combinations for velocity and pressure, for instance
the element combination Qd

1Q1 is unstable, whereas the element combination
Qd

2Q1, the so-called Taylor–Hood element pair, satisfies the inf–sup condition
(see [46, 52, 34]).

The standard Galerkin method leads to central difference approximations
of first derivatives. The solution to this approximation gets spoiled by spuri-
ous node-to-node oscillations around steep gradients once the element Péclet
number Pe = h|uh|/κ is significantly larger than one [31, 51, 52]. Among
the first systematic approaches to address the insufficiencies in the Galerkin
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finite element method for flow problems is the streamline upwind/Petrov–
Galerkin (SUPG) method for dominating convection [24], and the pressure-
stabilization/Petrov–Galerkin (PSPG) method for circumventing the inf–sup
condition [69]. The idea of this class of stabilized methods is to add additional
terms based on the element-wise residual of the differential operator tested
against vh ·∇vh +∇qh in the Navier–Stokes case, which can be interpreted as
testing with modified test functions compared to the solution functions, a so-
called Petrov–Galerkin approach. SUPG/PSPG stabilization techniques have
been refined over the years [128], including theoretical support through the
framework of the variational multiscale method, see, e.g., [14]. The varia-
tional multiscale method interprets the terms in residual-based stabilization as
the representation of information from unresolved scales and was, e.g., used
as a framework for turbulence simulations based on high order [14] and low-
order finite element methods [49, 50]. Extensive work has been done on sim-
ilar stabilization techniques, like the streamline diffusion method [62], edge
stabilization [26], and local projection stabilization [21]. We refer to [22] and
references therein for a critical assessment of these methods.

In Paper I, an SUPG/PSPG stabilization for the Navier–Stokes system has
been used to perform experiments with the a priori unstable element pair
Qd

1Q1. Apart from this setting, all other parts in this thesis consider laminar
Navier–Stokes or Stokes flow with inf–sup stable elements where no stabi-
lization in velocity and pressure is necessary. In the mantle convection, Pé-
clet numbers in the temperature equation are often 103 and larger even for
highly resolved computations and, hence, stabilization for temperature is es-
sential, though. In the level set evolution equation as well as reinitialization
(2.9), no physical diffusion at all is present, leading to similar difficulties. In
the conservative level set method, the diffusion in the reinitialization equation
(2.10) ensures that the discretization remains stable. Nonetheless, we observed
that fewer reinitialization steps were necessary when advection was performed
with a stabilized formulation.

On problems with sharp gradients like in mantle convection, the stabiliza-
tion provided by SUPG-type methods is sometimes not enough. To address
this problem, so-called discontinuity capturing has been proposed [127, 15].
This approach adds artificial diffusion whose amount depends on the gradient
of the solution or its residual. The idea of artificial viscosity based on residuals
has been considered recently without any further stabilizing terms like SUPG.
In [56], a stabilization based on an entropy associated to the solution vari-
able was proposed, whereas [92] considered the residual of the equation itself.
Opposed to global stabilization methods like SUPG, methods with diffusion
proportional to residuals allow to concentrate numerical dissipation to regions
where it is actually needed, namely around steep gradients where a diffusion
term similar to the first-order upwind schemes [86] is introduced. In smooth
regions, on the other hand, residuals are small and little or no dissipation is
added.
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(a) Temperature field at t = 20
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(b) Temperature minimum and maximum over time

Figure 4.1. Comparison of stabilization approaches for mantle convection at Ra= 106,
driven by three circular heat sources near the bottom. The computation is based on a
domain of unit size with Q2 elements for temperature on an adaptively refined mesh
with finest mesh size h = 0.004. An unstabilized method (no stab), a residual-based
stabilization with YZβ discontinuity capturing with β = 1 as in [15] (SUPG+DC),
and an artificial viscosity based on the residual of the temperature entropy according
to [56] (art visc) are compared. As a reference, a highly resolved computation with
h = 0.0005 and the artificial viscosity stabilization is included.

Fig. 4.1 gives an illustration of the effect of stabilization on a convection-
dominated problem in mantle convection. It can be seen that an unstabilized
computation leads to artificial over- and undershoots in the temperature ex-
trema. A closer inspection of the solution field shows oscillations in consider-
able portions of the solution, especially close to the front of high temperature.
If stabilization is applied, the quality of the solution is considerably improved,
which can be seen by the minimum temperature that is very close to zero
(around −0.03 in this example). In this case, SUPG stabilization alone did
not approximations free from oscillations, so a discontinuity capturing term
according to [15] was included. For the example displayed in Fig. 4.1, the two
stabilized approaches of artificial viscosity [56] and SUPG with discontinuity
capturing show a similar performance.

4.3 Adaptive mesh refinement
The accurate simulation of both two-phase flow and mantle convection relies
on resolving relatively small features in the problem variables. To design effi-
cient numerical methods, one needs to be able to concentrate high resolution
to regions where they have the biggest impact on the quality of the solution.
For the simulations in this thesis, meshes are dynamically refined and coars-
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ened as the solution evolves in time. This allows the finest regions of the
mesh to be considerably finer than would be possible with uniformly refined
meshes. Adaptive strategies have been demonstrated to improve computa-
tional efficiency with up to a factor 100 in 2D and about 1000 in 3D compared
to uniform meshes [4, 7, 12].

Two-phase flow
In two-phase flow, the region around the interface is a candidate for high reso-
lution. On the one hand, changes in material parameters from one fluid to the
other or the surface tension reduce the regularity in the solution fields. More-
over, for continuous surface tension models in the spirit of Brackbill et al. [23],
one wishes to make the region over which the force is spread as thin as pos-
sible. This is because smoothed approaches are justified in the limit of sharp
interfaces, i.e., h→ 0. For phase field models, the physical diffuse interface
width needs to be smaller than the size of bubbles, which makes adaptive mesh
refinement an indispensable tool already for two-dimensional simulations like
the studies for the sharp interface limit by Yue et al. [137, 136].

In many two-phase flow applications, simple strategies are used as refine-
ment indicators, like refining cells that are sufficiently close to the interface
as for phase field methods [134] or the conservative level set method [95]. A
similar strategy has been used for many of the results presented in this thesis.
Other studies base the refinement on jump residuals [5].

Mantle convection
Similar to turbulent incompressible Navier–Stokes flow at high Reynolds num-
bers [104], the flow features in mantle convection become smaller with in-
creasing Rayleigh number, requiring increasing spatial and temporal resolu-
tion. As opposed to turbulent flow away from boundary layers where eddies
are evenly distributed and require high resolution basically everywhere in the
computational domain for direct numerical simulation, the plumes in man-
tle convection are more localized, which allows for effective use of adaptive
mesh refinement, as pointed out, e.g., in [27]. The temperature plot in Fig. 3.1
also illustrates that jumps in the temperature field indicate regions with high
resolution requirements. A different view on this refinement strategy is the
aim to reduce the impact of artificial dissipation of magnitude |u|h near gradi-
ents by reducing the mesh size in these regions. The evaluation of changes in
the scalar field can be realized with similar implementation techniques as for
two-phase flow. In Paper IV, a standard tool from error estimation on elliptic
problems is used, the so-called Kelly error indicator [39] that measures the
jump in gradients over cell boundaries.
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4.4 Time discretization
The system of the incompressible Navier–Stokes equations (2.1)–(2.2) is cou-
pled nonlinearly to the level set evolution equation (2.8). In addition, there is
no time derivative on the pressure variable (and none on the velocity either,
for the Stokes equations). This mixture of differential equations and algebraic
equations yields a differential–algebraic system after discretization which is
more difficult to solve than pure ordinary differential equations (see Hairer et
al. [60, 61] for derivation and analysis of numerical schemes).

A popular approach is to split the advection-type equation from the incom-
pressible flow equations and to treat them after one another. Splitting ap-
proaches combine explicit and implicit discretization of different terms in the
equations. For higher order accuracy, several values from old time levels can
be combined in the explicit stage, e.g., in stages of Runge–Kutta schemes or
using Adams–Bashforth methods [60]. If we assume that the velocity in the
advection equation is treated explicitly, the level set variable can be propagated
in time, and the new values are available for the propagation of the Navier–
Stokes system from the old to the new time level.

For Navier–Stokes time stepping schemes that treat both convection and
diffusion explicitly, linear stability theory sets a restrictive limit on the time
step ∆t in terms of the spatial mesh size h, namely

∆tmax ∼min
{

h
‖u‖∞

,
ρh2

µ

}
, (4.4)

see, e.g., the discussion in [79]. Therefore, for applications where the vis-
cosity is not too small compared to the velocity, (semi-)implicit time stepping
schemes are often preferred over fully explicit ones. Popular schemes are vari-
ants of the one-step theta method [78] and the Backward Difference Formula
of second order (BDF-2). Most results in this thesis have been obtained with
the BDF-2 method. Stable time stepping on the Navier–Stokes block system
requires implicit discretization of the (differential–algebraic) terms (∇ ·v, p)

Ω

and (q,∇ ·u)
Ω

. These terms enforce the divergence-free condition on the ve-
locity in Lagrangian multiplier form, see, e.g., [59]. In such a setting, a cou-
pled linear system of saddle-point structure arises and needs to be solved for
each time step. The problem of finding optimal linear solvers for these prob-
lems is challenging and will be discussed in Sec. 4.5 below.

In order to avoid saddle-point linear systems, Harlow and Welch [63] pro-
posed to perform time propagation of the Navier–Stokes equations by a frac-
tional time stepping strategy, which was then developed further to a projection
scheme by Chorin and Temam [30, 126]. Fractional-step schemes first ad-
vance velocities subject to the momentum equation with pressure extrapolated
from old time levels. The resulting velocity is in general not divergence-free,
so a pressure Poisson equation with forcing given by the divergence of the
intermediate-step velocity is solved, in order to correct the velocity. The two
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linear subproblems arising after spatial and temporal discretization are of con-
siderably easier structure than the original saddle-point system in the coupled
approach. In particular when convection is treated explicitly so that the terms
at the new time level in the momentum equation are linear and have constant
coefficients [79], this plays an important role. For these reasons, projection
schemes are to date the most popular strategy for the numerical approxima-
tion of the instationary Navier–Stokes equations, especially in the medium and
high Reynolds number regime [105, 79]. However, each of the subproblems
needs to be equipped with suitable boundary conditions for well-posedness.
Indeed, many naïve implementations of projection methods suffer from non-
consistent approximations close to boundaries. We refer to the review paper
[55] and references therein for an elaboration of the state-of-the-art. In the
solution of multi-phase flow systems, the densities in different fluids are in
general different. In straight-forward projection schemes as the one proposed
in [57], the variation in density propagates into the Poisson equation of the
pressure, giving rise to a Poisson operator of the form

(
∇q, 1

ρ
∇p
)

Ω

. Strong
variations in density like for liquid-gas systems make fast Poisson solvers less
efficient. Recently, a projection method based on a constant-coefficient Pois-
son problem has been proposed [58].

In case the convection term u ·∇u is treated implicitly, the nonlinearity
needs to be resolved. One variant is the semi-implicit treatment of the form
un−1 ·∇un. For fully implicit methods, the nonlinearity can be treated by a
Picard or full Newton iteration [34]. The Picard iteration or the semi-explicit
form have the advantage that the contribution of the convection term to the ve-
locity matrix becomes block-diagonal, enabling faster solution of linear sys-
tems. However, implicit treatment of convection is not always necessary. For
problems where small time steps are needed for accuracy reasons (like in tur-
bulent flow simulations or many of the popular fractional step solvers), the
CFL condition (4.4) is no real restriction and it avoids evaluating the convec-
tive term in the linear system, gaining overall efficiency as pointed out, e.g., in
[79].

We note that solutions from old time steps can be used to make iterative
linear solvers more efficient by creating good initial guesses by extrapolation.
As demonstrated in Paper IV, the iteration count for a linear Stokes solver can
be roughly halved by using second-order extrapolated values instead of zero
initial guess or constant extrapolation.

In many situations, the time step limit introduced by the splitting between
transport equation and the incompressible flow equations leads to acceptable
step sizes of the order ∆t ∼ h/‖u‖∞. However, in two-phase flow simulations
with the level set methods and explicit treatment of surface tension terms, an
additional stability condition arises as pointed out in [23]. In its full generality,
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the time step limit imposed by explicit treatment of surface tension reads

∆tσ ,max = c1
µ

σ
h+
√

c2
ρ

σ
h3, (4.5)

where c1 and c2 are constants that do not depend on the mesh size h and the
material parameters, cf. [40]. The viscosity µ and density ρ represent the
arithmetic mean of the values of the two fluids. If surface tension is large,
the term

√
ρ/σh3/2 sets a more restrictive limit on the time step when resolv-

ing the propagation of so-called capillary waves. This limit is related to the
interaction of inertial terms in the momentum equation and the surface ten-
sion term and appears also when velocity is treated explicitly in the level set
equation (2.8) and surface tension “pseudo-implicitly” with the newly com-
puted level set values. Several techniques have been proposed to overcome
this limit, like the solution of an additional evolution equation for the mean
curvature [122, 120] or the semi-implicit treatment of surface tension [71]
based on the Laplace–Beltrami formulation [32].

4.5 Numerical linear algebra for discrete systems
After time discretization and linearization, the discrete problem for Navier–
Stokes equations in weak form (4.1) is to find discrete approximations

uh =
Nu

∑
i=1

ϕ
(i)
u ui,

ph =
Np

∑
j=1

ϕ
( j)
p p j,

(4.6)

which satisfy the weak form for test functions v = ϕ
(i)
u , i = 1, . . . ,Nu and q =

ϕ
( j)
p , j = 1, . . .Np. Here, ϕ

(i)
u denotes the finite element basis functions for the

velocity and ϕ
(i)
q the basis functions for pressure. For simplicity of notation,

let us assume backward Euler time stepping on the coupled Navier–Stokes
operator (i.e., no projection) and a semi-implicit treatment of the convection
term of the form uh,n−1 ·∇uh,n in this section. Assume further that the material
parameters ρ and µ are constant. The result is the following linear system of
equations in saddle point form(

A BT

B 0

)(
xu
xp

)
=

(
bu
bp

)
, (4.7)
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where the matrix elements are given by the integrals

A =
ρ

∆t
M+ρC

(
uh,n−1

)
+µL,

Mi j =
(

ϕ
(i)
u ,ϕ

( j)
u

)
Ω

(mass matrix),

Ci j

(
uh,n−1

)
=
(

ϕ
(i)
u ,uh,n−1 ·∇ϕ

( j)
u

)
Ω

(convection matrix),

Li j =
(

ε

(
ϕ
(i)
u

)
,2ε

(
ϕ
( j)
u

))
Ω

(viscosity matrix),

B =−
(

∇ ·ϕ(i)
u ,ϕ

( j)
p

)
Ω

(divergence matrix),

the vectors xu = (u1, . . . ,uNu)
T, xp =

(
p1, . . . , pNp

)T denote the discrete solu-
tion vectors for u and p, respectively, and the right hand side vectors are given
by

bu =
(

ϕ
(i)
u , f
)

Ω

, bp = 0.

In system (4.7), the pressure gradient matrix BT is the transpose of the di-
vergence matrix. We note that rows and columns corresponding to essential
boundary conditions are eliminated from the matrix, ensuring full rank of the
resulting system. Since the basis functions are localized to a patch of elements
around the node in which they are non-zero, the resulting matrices are sparse.

The solution of these linear system is the final task in finding a discrete
approximation. In most flow codes, the solution of linear systems takes the
largest proportion of computing time. Hence, efficient solvers are an essential
tool in the numerical simulation. For realistic problem sizes, direct solvers
are not an option because of excessive storage requirements and non-optimal
scaling with the problem size. Instead, iterative Krylov subspace methods are
the preferred option [111]. If paired with effective preconditioners, iterative
solvers allow to solve a linear problem of size N in O(N) operations (though
usually with quite large proportionality constants between 1,000 and 100,000).

The discretization of the level set or phase field equation results in a linear
system with a system matrix that is dominated by a scalar mass matrix, which
can be solved by straight-forward iterative techniques [111]. For the solution
of the Cahn–Hilliard equation, an efficient method has been proposed in [19].

For solving the saddle-point Stokes and Navier–Stokes systems (4.7), a vast
number of different techniques have been proposed. The review paper by
Benzi, Golub, and Liesen [16] collects the many significant contributions for
these systems, see also [133, 34]. Efficient schemes include multigrid methods
with suitably defined smoothers (cf. [130]), segregated solution approaches, or
use preconditioners based on an approximate Schur complement of the block
2×2 matrix system defined by velocity and pressure matrices. Here, we sum-
marize the methods used in the work in this thesis.

32



4.5.1 Stokes equations
We start the discussion with the Stokes matrix, i.e., the system(

µL BT

B 0

)(
xu
xp

)
=

(
bu
bp

)
, (4.8)

solved with an iterative Krylov method. Because of the zero pressure-pressure
block, the matrix system is indefinite and simple solvers like conjugate gradi-
ent are not applicable. Instead, viable solvers are GMRES, SymmLQ, Min-
Res, and BiCGStab [111]. Since the preconditioner applied in the thesis is
non-symmetric (see below), SymmLQ and MinRes are not possible either. In
our simulations, the BiCGStab and GMRES show similar performance, and
convergence speed depends more on the quality of the preconditioner and less
on the specific iterative solver. One advantage of GMRES is that it allows
for right preconditioning where the true residual is readily available as a stop-
ping criterion, compared to the preconditioned residual that arises with left
preconditioning [34]. Therefore, we choose GMRES in this work.

The condition number of matrix L increases as the mesh size h becomes
smaller. Since the number of iterations needed by GMRES increases with
increasing condition number, solvers without preconditioner deteriorate for
increasing problem size. For the Stokes equations, an optimal preconditioner
based on the Schur complement of the 2× 2 block system was presented by
Silvester and Wathen [117]. One defines a preconditioner by the block trian-
gular matrix

P =

(
µL BT

0 −S

)
⇔ P−1 =

(
(µL)−1 (µL)−1BTS−1

0 −S−1

)
, (4.9)

where S = B(µL)−1BT denotes the Schur complement. If we apply P−1 as a
right preconditioner, we obtain(

µL BT

B 0

)
P−1 =

(
I 0

B(µL)−1 I

)
.

The preconditioned matrix thus only has eigenvalues of unit value with a min-
imum polynomial of degree two, for which GMRES can be shown to converge
in at most two iterations [117, 16]. In order to avoid explicit inversion of the
matrix µL for the Schur complement S, an approximation of the Schur com-
plement is needed. Since B represents a discrete divergence operator, µL a dis-
crete Laplacian, and BT a discrete gradient, the resulting operator is spectrally
equivalent to an identity operation on the pressure space. In the finite element
setting, the operator is represented by the pressure mass matrix Mp. In case the
viscosity is variable, an optimal approximation to the Schur complement is the
mass matrix scaled by the inverse of the viscosity, i.e., M(i j)

p =
(

ϕ
(i)
p , 1

µ
ϕ
( j)
p

)
Ω

,
cf. [53].
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For practical use of the preconditioner, the inverses (µL)−1 and M−1
p need

to be approximated in (4.9). For the latter, either the diagonal of the pressure
mass matrix or an incomplete LU (ILU) decomposition restricted to the spar-
sity structure of Mp yield optimal performance [16, Sec. 10.1.3]. For constant
coefficients, the velocity matrix µL is dominated by the vector Laplacian, for
which multigrid methods [130] give high quality approximations that do not
depend on the mesh size. As pointed out in [44], geometric multigrid meth-
ods are less robust when coefficients vary strongly. Also, geometric multi-
grid is not straight-forward to design when using adaptively refined meshes,
even though progress has been made recently [77]. Therefore, algebraic multi-
grid (AMG) methods are often the preferred preconditioner for approximating
(µL)−1. AMG has been demonstrated to be very robust to large contrasts in
coefficients [42] and to scale well on massively parallel computers [132, 3].
AMG methods do not rely on a hierarchy of grids as geometric multigrid,
but build a hierarchy based on the connectivity between different rows in the
matrix.

Our work on Stokes systems in Papers II and IV is based on an AMG
preconditioner based on the implementation in [43], computed from the en-
tries of the vector Laplacian also in the case of variable coefficients. Even
though omitting the coupling between components may reduce the quality of
the approximation in the variable-coefficient case, it generally improves per-
formance of algebraic multilevel preconditioners which perform best for scalar
Poisson-type problems. In addition, the comparatively expensive operations
when evaluating the preconditioner (smoothing, restriction, and prolongation)
are performed on a sparser matrix, which reduces computational costs in prac-
tice. Another variant to significantly reduce computational costs for higher
order finite elements is to build the AMG preconditioner for linear elements
on a subdivided mesh with the same number of degrees of freedom. The re-
sulting matrix is sparser but has the same spectral properties, as proposed, e.g.,
in [98, 16].

For certain problems, it is enough to simply use one or a few V-cycles of
the algebraic multigrid preconditioner (see, e.g., [34]), whereas in other cases
more accurate inversion of the velocity matrix (e.g., using CG with a loose
tolerance) is necessary to obtain robust methods. In that case, the application
of a preconditioner is a nonlinear operation and generally different from one
iteration to the next. The flexible GMRES method (FGMRES) tolerates such
variable preconditioners [111].

4.5.2 Navier–Stokes equations
The structure of the Navier–Stokes system (4.7) is similar to the one of the
Stokes system (4.8). However, the velocity matrix A is non-symmetric because
of convection, and its presence makes finding good realizable approximations
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to the Schur complement S = BA−1BT difficult. In addition, a vector mass ma-
trix on the velocity is introduced. For small time steps, the mass matrix domi-
nates, whereas for ∆t→ ∞ the discrete time-dependent Navier–Stokes system
approaches the stationary Navier–Stokes system. For the limit case (the Oseen
system), the approximation of the Schur complement is particularly intricate.
Many proposed preconditioners depend on the magnitude of viscosity and de-
teriorate as µ → 0. This is the case, e.g., for the Schur complement approxi-
mation using a pressure convection-diffusion operator as in [81]. A different
approach is to add an additional contribution to the velocity-velocity block in
order to control the Schur complement, a so-called augmented Lagrangian ap-
proach [17]. Other directions of research have been to avoid the construction
of Schur complements and explicitly embed the structure of divergence and
pressure gradient matrices into a multilevel factorization process [129]. We
refer to [16] for a discussion of various techniques.

In this thesis, we focus on the simpler case of the instationary Navier–
Stokes equations where the mass matrix term is significant. We construct an
approximation of the inverse of the Schur complement matrix S−1 as

Ŝ−1 =
ρ

∆t
L−1

p +µM−1
p , (4.10)

i.e., a sum of inverses of Laplace and mass matrix on the pressure space. This
Schur complement approximation neglects the convective part and has been
proposed for the time-dependent Stokes operator, Ã = ρ

∆t M + µL, in [133,
90]. In this work, we found the approximation to perform extremely well
also for Navier–Stokes systems at low and moderate Reynolds numbers. The
approach to use a sum of inverse operators is motivated by the scalar analogy
s = βl(ν + κ)−1βr, for which s−1 = β

−1
l νβ−1

r + β
−1
l κβ−1

r , where the first
term symbolically resembles the velocity mass matrix and the second term the
viscous terms.

Since the pressure Laplace matrix in (4.10) is singular without boundary
conditions, suitable conditions need to be applied to Lp. In our work, we
choose to use natural (Neumann) conditions on Lp on boundaries where no-
slip or free-slip conditions are applied, and Dirichlet conditions on inflow and
outflow boundaries, motivated by similar choices sometimes made for projec-
tion schemes, see also the discussion in [34, Sec. 8.2].

As before, the inverses A−1 as well as L−1
p and M−1

p need to be approxi-
mated for an actual implementation. For the matrix M−1

p , an ILU factorization
is used, and an AMG V-cycle for approximating L−1

p . For the matrix A−1, we
choose to select between two different strategies depending on the size of the
time step and the spatial mesh size. If ∆tµ < Cρh2 for some constant C ≈ 1,
the influence of the viscosity matrix is small and an ILU decomposition on
the block-diagonal part of A is used. Otherwise, the eigenvalue spectrum is
significantly influenced by viscosity and an AMG V-cycle is applied. Since
the quality of the ILU becomes worse when used in parallel, the constant C
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Table 4.1. Iteration numbers and computing time for one time step of the Navier–
Stokes solver on 3D Beltrami flow from [37] on the domain [−1,1]3 for different values
of the viscosity µ , mesh size h, and time step ∆t. If only a single number is given, the
Newton iteration converged after one step. Otherwise, the iteration numbers to each
iteration are given. If a superscript “A” is given next to the iteration numbers, an
AMG preconditioner is used for approximately inverting the velocity matrix, otherwise
ILU.

µ ∆t # its time # its time
h = 0.167 h = 0.042

DoFs: 49,072 DoFs: 2,855,668

1

0.2 17+19A 0.77 s 27+30A 96 s
0.02 16+6 0.18 s 24+7A 52 s

0.002 8 0.069 s 19 11 s
0.0002 4 0.038 s 4 2.5 s

0.01

0.2 50+24 0.74 s 50 39 s
0.02 9 0.076 s 5 3.0 s

0.002 4 0.037 s 2 1.5 s
0.0002 2 0.022 s 2 1.5 s

0.0001

0.2 150+100 3.2 s fail —
0.02 13+4 0.14 s 32 22 s

0.002 6 0.051 s 4 2.5 s
0.0002 2 0.022 s 2 1.5 s

is made smaller in the case of parallel computations in order to enable AMG
earlier. The strategy of using a simple preconditioner on the velocity subsys-
tem and an efficient Laplace preconditioner for pressure is also found in the
design of efficient projection solvers.

Table 4.1 shows iteration counts for a 3D laminar flow with analytic so-
lution according to [37]. Spatial discretization was performed with Qd

2Q1
elements. For time stepping, a fully implicit BDF-2 scheme was used with a
Newton iteration to resolve the nonlinear convection in skew-symmetric form.
The linear solver with preconditioners described above has been used, em-
ploying the fast matrix-vector products presented in Paper VI. The nonlinear
solver was run until the absolute l2 residual of discrete vectors was smaller
than 10−8, using relative residuals of 10−5 for the linear solver. Note that no
inner iterations are performed in this example, i.e., each iteration corresponds
to one matrix-vector product and one preconditioner application for velocity
and pressure only. It can be seen that the solver is very efficient at small time
steps, which is because the ILU preconditioner approximation for the velocity
matrix A becomes better the more the mass matrix is dominating. In addition,
the Schur complement approximation is improved. Lastly, the extrapolation
gives better initial guesses for the linear solver when the time step is small
(indeed, the residual needs to be reduced only by about 10−2 for small time
steps). For high diffusion and large time steps, the solver is also quite efficient,
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Table 4.2. Iteration numbers in 2D Navier–Stokes solver for one time step of light
bubble rising in heavy fluid [73] for different values of the mesh size h and time step
∆t. The results for the finest mesh use adaptive mesh refinement around the inter-
face with mesh size far away from interfaces hmax = 0.0063. The simulation on the
adaptive mesh at ∆t = 0.03 is unstable because of the violation of the capillary time
step limit (4.5). If a superscript “A” is given next to the iteration numbers, an AMG
preconditioner is used for the velocity-velocity block, otherwise ILU.

∆t # its time # its time # its time
h = 0.0063 h = 0.0031 hmin = 0.00078

DoFs: 463,203 DoFs: 1,848,003 DoFs: 988,317
0.03 21+7A 4.5 s 24+12A 21 s unstable —

0.003 11 0.79 s 20 5.0 s 27+5A 11 s
0.0003 4 0.24 s 4 0.92 s 17 3.2 s

but it breaks down for small diffusion and large time steps. This is because the
approximation to the Schur complement does not include any contribution for
the convective part. We note that for moderate to small time steps, the compu-
tational costs for one time step with the fully coupled solver are only slightly
higher compared to efficient projection solvers. On the other hand, we observe
that the fully coupled solver allows larger time steps on application problems
of two-phase flow.

Table 4.2 shows the number of iterations and computing times of the Na-
vier–Stokes solver for one time step on a two-dimensional rising bubble ac-
cording to [73]. Note that the Navier–Stokes solver consumes about 80% of
the total run-time in this test case, with the rest spent on level set computa-
tions. In this test case, both density and viscosity differ by a factor 10 between
the two fluids. The test is performed at time t = 0.93 when the rise velocity
of the bubble |u| = 0.242 is close to its maximum. As before, the tolerance
for the nonlinear solver is set to an l2 residual smaller than 10−8 with 10−5

relative tolerance for the linear solver. The results show the efficiency of the
given preconditioner on a relatively wide range of time steps and for different
mesh sizes.
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5. Software for finite element programming

The implementation of advanced numerical models for both two-phase flow
and mantle convection requires a substantial programming effort. The infras-
tructure to handle adaptivity, finite element shape functions, as well as effi-
cient linear algebra requires on the order of 100,000 lines of code. Therefore,
libraries have been designed that provide building blocks for finite element
programming, so that only the actual application (PDEs, time stepping, pre-
conditioners) needs to be implemented. Among the hundreds of open-source
projects addressing finite element programming, two successful projects used
by many researchers all over the world are the deal.II library [9, 10] and the
FEniCS/Dolfin project [88, 89]. The work in this thesis is based on the deal.II
library. For numerical linear algebra with distributed storage of matrices or
algebraic multilevel preconditioners, the PETSc [8] and Trilinos [65] libraries
are common. The finite element libraries mentioned above provide interfaces
to these linear algebra packages.

5.1 The deal.II library
The finite element library deal.II (short for Differential Equations Analysis
Library) is a collection of various finite elements and a lot of frequently used
functionality, written in C++. One of the main design objectives of deal.II
is a unified interface for code in different space dimensions by the use of
templates in the C++ programming language. This makes programming for
different spatial dimensions transparent to the user and enables the develop-
ment of programs that target both 2D and 3D. deal.II restricts the element
type to quadrilaterals/bricks and implements both continuous and discontin-
uous element types. It supports arbitrary geometries by internal grid gener-
ators for simple geometries and interfaces to data formats from mesh gener-
ators, and allows for deforming meshes. deal.II comes with full support for
adaptive mesh refinement and handles continuity in solutions as required for
H1-conforming approximations through introduction of algebraic constraints
[9, 11]. The adaptive features include anisotropic meshes and h, p adaptivity.

5.2 Parallelization in deal.II
Also when using adaptive mesh refinement and coarsening to concentrate the
work to the most important regions, many three-dimensional problems and
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complex physical systems cannot be simulated on today’s serial computers.
Therefore, deal.II comes with support for parallelism for both shared mem-
ory computations as present on modern laptop or workstation computers, and
distributed computing to make use of big computing clusters.

Shared memory parallelization in deal.II builds on the framework from In-
tel’s Threading Building Blocks (TBB) [108, 74]. TBB is a C++ library that
is centered around a dynamic task scheduler. Parallel work (like a loop over
all vector entries in an operation of the form z = αx+ y for vectors x,y,z and
a scalar α) is subdivided into tasks which are then distributed to available
worker threads. Task-based parallelism differs from concepts like Pthreads or
OpenMP [97] that are centered around the available hardware threads. An-
other task-based library is SMP Superscalar [13], which tries to automatically
exploit parallelism in C/C++ code. The library looks for data dependencies
between tasks and schedules the work in a way that avoids write access to the
same data by two or more threads simultaneously.

Shared-memory parallelization is employed for deal.II’s internal linear al-
gebra routines. In addition, interfaces for parallel assembly are provided. In
this way, the two most computationally intensive parts of the library and user
code are done in parallel [10]. One advantage of shared memory parallelism
is that it can be applied incrementally, starting from the most time-consuming
functions. However, this incremental approach has the consequence that parts
which are not important to the developers (or too difficult to be easily im-
plemented) do not profit immediately from the increase in computing power
through parallelism. In deal.II, this applies, e.g., to enumeration of degrees of
freedom, grid refinement, and coarsening as well as resolution of constraints.

The second level of parallelism in deal.II addresses distributed storage. In
this concept, the grid, solution matrices, and vectors are partitioned among
the processors (domain decomposition), as opposed to shared memory paral-
lelism where each participating process has access to all data but only per-
forms a subset of the operations. In addition to the locally owned partition of
the global fields, each processor needs access to some data from neighbors,
so-called ghost data. During the solution of linear systems or when changing
the mesh, ghost data must be exchanged between the processors. This is done
by explicit send and receive commands, which are organized by the Message
Passing Interface (MPI) [91]. When using this approach to scale computations
to massively parallel supercomputers with tens of thousands processor cores
and meshes consisting of hundreds of millions or billions of cells, it is essential
that all data structures describing the global solution are fully distributed. This
is because only storing a few bytes per cell could saturate all memory available
to an individual process. Paper IV presents a mantle convection solver using
distributed parallelization, and Paper V presents the computational infrastruc-
ture to enable such large-scale computations.
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Figure 5.1. Illustration of CPU instructions spent for a 3D mantle convection solver.
The light green and orange boxes in the left of the panel are sparse matrix-vector
products, spending more than 60% of total instructions, within a GMRES solver pre-
conditioned by a block-triangular scheme according to Sec. 4.5.1, using AMG on the
velocity-velocity block. Several boxes of the same color indicate the same function
called in different contexts (e.g., matrix-vector products in solver and on different
levels in the AMG smoother). Picture created with the tool KCachegrind.

5.3 Efficiency on modern computer architectures
The ultimate task in finite element programming is to make simulations as fast
as possible. The largest amount of time is usually spent in linear solvers and
assembly routines, often 70–95% of total run-time. Efficient linear solvers
like the ones presented in Sec. 4.5 often have a complex internal structure, as
they combine fast preconditioners (e.g., using algebraic multilevel methods)
on different components, orthonormalization, and the like. Nonetheless, most
of the run time is spent on simple computational kernels like sparse matrix-
vector products, inner products and sparse matrix substitutions. Fig. 5.1 shows
a graph displaying the number of CPU instructions for running a three-dimen-
sional mantle convection solver presented in Paper IV. More than 60% of the
instructions (and about 80% of the run time) are spent on sparse matrix-vector
products. Matrix-vector products are used by the Krylov subspace solver on
the Stokes system as well as for algebraic multigrid on the velocity matrix
(smoother, restriction, prolongation). In comparison, only about 10% of time
is spent on assembly of matrices. In applications where operators are non-
linear, this proportion is usually somewhat larger.

Despite their fundamental importance for finite element analysis, sparse
matrix-vector products show a relatively poor performance on modern com-
puters because they are memory bandwidth limited rather than limited by com-
putations [101]. This means that the processor cannot fully utilize arithmetic
units because data access to the matrix and vector entries is not fast enough.
For faster computations, data access needs to be organized in such a way that
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data once loaded into computation units of the processor can be reused, see,
e.g., the work in [135]. Paper VI discusses a strategy to improve the perfor-
mance of matrix-vector products. The idea is not to store the global matrices
explicitly but to evaluate the matrix-vector product element by element us-
ing finite element shape function information and transformations from real to
unit cell. Such an approach can be faster than traditional matrix-vector prod-
ucts because considerably less data transfer is necessary. In addition, it also
obviates matrix assembly. In flow solvers, we observed a speedup by a fac-
tor two to three for Qd

2Q1 elements when replacing sparse matrices by the
method from Paper VI.
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6. Summary of Papers

6.1 Paper I
This paper provides an in-depth numerical study of inaccuracies in the discrete
evaluation of surface tension forces for the conservative level set model [95].
A circular bubble at rest is considered as a model problem. The force due to
surface tension should ideally be balanced by a jump in pressure. The study
is performed by applying a complete Navier–Stokes/two-phase flow solver to
the problem and recording the magnitude of spurious velocities.

For an interface force that is constructed from a gradient of a color function
in the same finite element space as pressure, we demonstrate that the veloc-
ity errors are caused by inaccuracies in the numerically calculated curvature.
If the exact curvature is prescribed, there are no imbalances in the scheme.
However, when the element order of the function representing the color gradi-
ent differs from the one for pressure, an additional imbalance is introduced. In
other words, if the surface tension force is constructed from a gradient similar
to the pressure term, exact force balance can be achieved.

We also study the effect of the continuous representation of surface tension
on the prediction of the jump in pressure between the inside and the outside
of the bubble. For regularized delta functions, our experiments show that the
variation of the curvature between the inside and outside of the regularized
length ε ∼ h has the largest impact on pressure accuracy, considerably more
than the accuracy of the curvature. In addition, the paper studies the accu-
racy of sharp surface tension forces based on the evaluation of a line integral.
The results illustrate that continuous pressure space cannot represent the sharp
force appropriately, leading to a classical Gibbs phenomenon with oscillations
in pressure that do not diminish as the mesh size is reduced. Also, there are
large spurious velocities for this approach. These results indicate that discon-
tinuities in the discrete pressure space need to be allowed.

The tests have been performed with two different flow solvers in order to
evaluate the propagation of the force balance between different components
of the solver. The results for a fully coupled implicit method and a decou-
pled (projection) solver are similar, which shows that the choice of the solver
does not affect the balance of forces. Also, residual-based stabilization for
enabling the use of equal order elements on velocity and pressure according
to the discussion in Sec. 4.2 does not destroy the exact force balance.
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6.2 Paper II
Paper II presents a multiscale approach for the modeling of contact line dy-
namics. Many of the classical cheap numerical methods for two-phase flow,
like interface tracking schemes or the level set method, have no built-in mech-
anism for the representation of wetting flow driven by contact lines. Previ-
ously, ad-hoc approaches like slip conditions have been used to embed this
information. The motivation for this work has been to derive a physically
based formulation for the computation of contact line dynamics.

Our approach combines the capabilities of a detailed phase field simulation
for representing contact line dynamics and a conventional solver for the bulk
of the domain. On the macro scale, our approach moves the contact line by
a slip velocity that depends on the apparent contact angle of the interface at
the solid walls. In order to find numerical values for this relation, the physics
around the contact point is represented by a micro model based on the phase
field method. The dimensions of the micro domain are chosen to comprise
the region of diffusive transport around the interface. In global phase field
approaches, the correct physical value for these length scales cannot be set
because of resolution restrictions, and numerically dictated values are very
common. In our approach, the correct physical value for the diffusion length
is easily embedded into the micro domain. In order to restrict the computa-
tional domain for the micro simulations, a similarity velocity field based on
the creeping flow model by Huh and Scriven [70] is chosen as a far field. The
creeping flow equations are based on the apparent contact angle. Close to
the contact point, the physical static contact angle is specified as a boundary
condition for the phase field method. The slip velocity is then defined as the
velocity that is required to obtain a steady state between the apparent con-
tact angle in the far field and the static contact angle at the contact line. This
nonlinear relation is solved by a secant method, where a function evaluation
corresponds to the solution of the phase field method in time with a given slip
velocity. Since the apparent contact angle is a one-dimensional input and the
slip velocity a one-dimensional output, the results from the micro solver can
be tabulated prior to running the macro solver.

Numerical experiments for a macro solver based on a level set implemen-
tation with the ghost fluid method for evaluating surface tension demonstrate
that the multiscale method produces converging results for two test cases of
contact-line driven flow, namely, a capillary rise and an advancing droplet. We
compare with results of global phase field simulations and theoretical predic-
tions and obtain good agreement.

6.3 Paper III
Paper III presents a hybrid method that combines a conservative level set
method and a phase field method. The method aims at using the phase field

43



model to represent wetting but to use the cheaper level set method away from
the contact region. The method makes use of the similar formulation of these
two methods, namely the same shape of the regularized color function illus-
trated in Fig. 2.3. The combination of the two models is realized by a switch
function that is equal to one close to contact lines and becomes zero in re-
gions far away. This way, the additional terms in the phase field model are
disabled away from contact lines and simple advection of the color function
according to (2.8) is used. Also, surface tension forces are evaluated through
the usual relation with curvature and gradient of the color function away from
the contact line.

The benefits of the combination are demonstrated by two benchmark tests
of the conservative level set method and the phase field method in situations
without contact lines, namely on a rising bubble [73] and a bubble oscillating
by surface tension. It is shown that the conservative level set method is more
efficient for a given mesh size in absence of contact dynamics. For the phase
field method, the interface thickness and the mobility are chosen in order to
give the best results.

Additionally, we provide an a priori energy estimate to show that the switch
function is implemented in a stable way. We provide numerical tests on chan-
nel flow which show that the hybrid method gives good results.

6.4 Paper IV
Paper IV presents an efficient solver for mantle convection problems in geo-
dynamics. As opposed to techniques currently used in the geodynamics com-
munity, like Citcom [139] or Conman [83], the solver uses modern numerical
software as building blocks. Generic operations like definition of finite ele-
ment shape functions and adaptive mesh refinement are handled through the
finite element library deal.II [9, 10], and numerical linear algebra is provided
by distributed matrices and vectors from Trilinos [65]. This combination of
building blocks both reduces the complexity of the solver program and allows
to more easily incorporate future developments in the software packages.

The method applies a coherent set of numerical techniques for efficiently
solving the problem on large scale parallel computers. The algorithms for par-
allel adaptive mesh refinement follow the concept presented in Paper V. The
solver is based on higher order Q2 elements for the temperature and the veloc-
ity, and linear elements for the pressure. This promises better accuracy than
linear elements for all solution variables that are the current state-of-the-art.
In order to stabilize the convection-dominated temperature equation, an ad-
vanced stabilization approach based on a residual of the temperature entropy
[56] is used. This method is more stable on sharp gradients and also often less
diffusive than SUPG approaches that add diffusion almost constantly through-
out the domain. In order to solve the large systems of linear equations, efficient
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(parallel) numerical linear algebra is discussed. For the Stokes equations, the
Schur complement preconditioner presented in Sec. 4.5.1 is applied and its
efficiency demonstrated.

The implementation is verified on two benchmarks, one for 2D and one for
3D. Additionally, parallel scalability tests are performed that show the good
scaling of all the components in the implementation.

6.5 Paper V
This paper presents a software framework for enabling finite element simula-
tions on computing clusters consisting of tens of thousands processor cores.
The algorithms are presented in a modular way and interact with a distributed
mesh storage scheme, in this case the software p4est [28], through a small
set of queries. These queries are related to ownership of cells and ensure that
each processor can construct a representation of the part of the mesh that is
locally relevant, including the locally owned cells plus a layer of ghost cells.
The local representation is created by refinement of the respective cells from
a common coarse mesh that is present on all processors. The paper discusses
the whole chain of finite element programming, including matrix assembly,
representation of boundary conditions, solution of linear systems and postpro-
cessing like the evaluation of error indicators, adaptive mesh refinement and
transfer of solution components when the owning processor changes during
parallel adaptive refinement.

The main innovation of the paper is the introduction of scalable algorithms
to generic finite element programming, as opposed to specialized parallel im-
plementation techniques that have previously been used. This is important
because parallel capabilities in numerical software like deal.II will enable a
broader community to make use of large computing clusters with relatively
simple means. Previous approaches to “parallel” generic finite element com-
putations used a computational mesh that was replicated on each processor,
and only matrices and vectors had been distributed. Particular emphasis is put
on practical problems like efficient indexing when working with distributed
data sets where locally owned degrees of freedom and ghost indices are to
be represented. Moreover, the computation of constraints for enforcing con-
tinuity at hanging nodes and representing Dirichlet boundary conditions is
discussed in detail. The algorithm for computing constraints operates only
on the locally stored part of the triangulation (locally owned cells and ghost
cells), without communication with other processors. The paper presents scal-
ing results on up to 16,384 processors that illustrate the effectiveness of the
implementation.
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6.6 Paper VI
Paper VI is concerned with the kernel that usually consumes most comput-
ing time in finite element codes, namely matrix-vector products. In the paper,
an implementation for the efficient evaluation of finite element operators is
presented without using a sparse matrix. Sparse matrix-vector products have
unfavorable properties on modern computer systems, as their performance is
usually given by available memory bandwidth instead of arithmetic perfor-
mance of the processors. This is particularly true for modern computer clus-
ters where several cores share access to memory, which limits the parallel
scalability of linear solvers in finite element analysis.

This paper presents an alternative implementation that avoids storage of all
the matrix elements and evaluates the finite element operator cell-wise. This
approach has several advantages: Firstly, its memory requirements are signif-
icantly lower than for sparse matrices, which offsets the increase in operation
count for low order methods. Secondly, it allows for more efficient use of the
particular form of finite element shape functions, which reduces the computa-
tional effort per degree of freedom from O(pd) in sparse matrices to O(d2 p),
where p is the polynomial order and d the spatial dimension, in case of hexa-
hedral elements. This so-called sum-factorization approach can be interpreted
as an evaluation of shape functions in one dimension at a time. Thirdly, the
treatment of systems of PDEs is cheaper than for sparse matrices since the
coupling between components is only introduced at the level of quadrature
points, which is of lower complexity than the coupling introduced in sparse
matrices. Also, nonlinear operators can be evaluated as efficiently as linear
ones, which facilitates the evaluation of residuals, e.g., in the incompressible
Navier–Stokes equations with implicit treatment of convection.

As an effect, the presented method outperforms sparse matrix-vector prod-
ucts for scalar problems by about a factor two for a scalar Laplace operator
and by a factor five for the system matrix representing the linearized Navier–
Stokes equations with Q2 finite elements in three space dimensions. In addi-
tion, it avoids expensive assembly of sparse matrices in nonlinear solvers or
time-dependent problems. This improves overall performance of the Navier–
Stokes solver by more than a factor two on the problems considered in this
thesis. The performance gain for higher order elements is demonstrated to be
even larger.
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7. Future Work

In this thesis, efficient adaptive finite element techniques have been presented
for solving problems where a scalar transport equation is coupled to incom-
pressible flow. A significant part of the flow is influenced by the scalar field,
like two-phase flow driven by surface tension and contact lines and mantle
convection driven by buoyancy.

The results in Paper I highlight the importance of accurate evaluation of
surface tension forces. One direction of future research is the implementa-
tion of sharp interface treatments for finite element discretization in the spirit
of XFEM. Such an approach promises more accurate simulations on coarser
meshes compared to a diffuse force representation that is sandwiched between
the geometrical features of the bubbles and the mesh size. This is important es-
pecially for 3D simulations where resolution is more limited. Sharp interface
treatment also allows for higher accuracy of numerical schemes compared to
regularized interface forces. Another direction of future research is to improve
the quality of curvature approximation. One way to achieve this is to use finer
meshes around the interface only for the level set variable, and coarsen the
mesh more aggressively in the far field. Such an approach of different meshes
for the level set and flow variables has been employed for phase field simu-
lations [137]. However, there are implementation hurdles to be taken when
using domain decomposition to parallelize the computations, since an optimal
partitioning for the flow variables might create a considerable imbalance on
the level set degrees of freedom. In addition, a comparison of the benchmark
results in Paper III with conventional level set methods based on signed dis-
tance approaches in [73] shows that the conservative level set method requires
considerably more resolution to represent the interface. It will be necessary to
analyze mass conservation techniques like the ones presented in [82, 64] for
signed distance functions and compare with the conservative level set method
in terms of overall computational efficiency.

The techniques from Papers II and III that combine efficient level set ap-
proaches for the bulk of the domain, enriched by phase field information close
to contact lines, are potential tools for larger simulations of contact-line driven
flows. Using the parallel framework used for mantle convection presented in
Paper IV and V, the necessary degree of resolution can be provided to tackle
these problems. These tools are of interest for the simulation of multi-phase
flow in porous media: A first step in that direction would be to apply a solver
that includes an efficient wetting mechanism to more complicated geometries,
like channels with curved walls or the flow around obstacles. The flow field in-
duced by an imposed pressure gradient on a small-scale material configuration
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can be used to determine values for its permeability. An effective permeabil-
ity tensor is the main material parameter in coarse-scale simulations based on
Darcy’s law and is thus useful for simulation of flow in oil/gas reservoirs or
groundwater basins.

The multiscale approach presented in Paper II needs further analysis for the
case without a clear separation in scales of contact line reactions and global
fluid velocity. This situation is relevant when wetting is not the only driving
force in the flow, but when also external forces are present. In that case, it
might be necessary to exchange more information between the micro model
and the macro model, possibly leading to a situation where the micro model
needs to be evaluated during the macro simulation.

Also on the software side, further progress needs to be made. Firstly, the
massive parallel framework presented in Paper V is limited by the requirement
that each processor needs to hold the common coarse mesh through the p4est
implementation, i.e., the mesh from which each processor refines different
partitions to its local representation. When mesh generation is done outside
of the deal.II library, no hierarchy of cells is available and a mesh consisting
of millions of cells is necessary. In this situation, the largest possible prob-
lem size is still limited. Furthermore, the parallelization strategy needs to be
evaluated for h, p adaptivity and anisotropic mesh refinement.

An implementation using h, p adaptivity, i.e., adaptivity in both the mesh
size and the polynomial order of the elements, might be a tool to make the
representation of multi-phase flow more efficient. It is conceivable to use fine
meshes and low order elements close to the interface and coarser meshes with
higher element orders away from the interface where the solutions are smooth.
The framework in Paper VI will be very efficient for the regions where higher
order elements are employed, as opposed to sparse matrices.

The approach from Paper VI for fast matrix-vector products has been shown
to provide considerable speedups for matrix-vector products on second order
elements and higher. However, the impact on the whole solution chain of fi-
nite element methods has not been fully analyzed. In particular, high-quality
preconditioners for difficult problems, like the Stokes velocity operator with
strongly varying viscosity or the Navier–Stokes matrix with variable densities,
usually require explicit knowledge of matrix entries like aggregation-based al-
gebraic multigrid. One solution already mentioned in Sec. 4.5.1 is to com-
bine the matrix-free implementation of matrix-vector products on higher or-
der finite elements with AMG based on matrices from linear finite elements
with improved sparsity. However, this approach needs careful analysis, as ini-
tial tests revealed that it is efficient only for problems where the operator is
dominated by a Laplacian like the Stokes system. System matrices as aris-
ing from the time-dependent Navier–Stokes operator in Sec. 4.5.2 show not
as good a performance compared to ILU preconditioners on the high-order
elements. However, these preconditioners are not trivially parallelized, so it
will be necessary to find sufficiently simple yet efficient preconditioners for
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systems where the mass matrix part is large but is not large enough to be ap-
proximated by diagonal Jacobi-type preconditioners.

Another direction of future research of the methods in Paper VI is to replace
compiled code by code generators like the FEniCS form compiler [88]. Such
a tool allows to more easily specialize the generated code to the computer
hardware in use, in particular using optimizations as done for dense matrix-
matrix multiplies. This is particularly the case for modern and future computer
systems with graphical processing units, which require re-implementation of
our techniques. Also, it is necessary to keep pace with development of alge-
braic multigrid solvers for modern computer architectures. Within the Trilinos
project, the future package MueLu is targeted to provide algebraic multilevel
preconditioners on the emerging computer architectures, and ShyLU is target-
ing algebraic factorizations.
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8. Sammanfattning på svenska

Denna avhandling diskuterar numeriska approximationer för inkompressibelt
flöde kopplat till skalära transportekvationer. De två tillämpningar som be-
traktas är flerfasflöde modellerat med levelsetmetoden och konvektion i plan-
etmantel baserad på Boussinesq-approximationen.

Tvåfasflöde
Första delen av avhandlingen presenterar modeller för flödet av minst två in-
kompressibla, ej blandbara fluider. Denna typ av flöde är av betydelse i många
områden inom teknik och medicin och numerisk simulering är ett grundläg-
gande verktyg för att analysera och styra dessa processer. Ett exempel är intra-
venösa behandlingar där läkemedel i form av oljeliknande substanser injiceras
i blodflödet. I dessa sammanhang är ytspänningen mellan de olika vätskorna
vanligtvis stark, vilket gör att bubblor sträver efter att bli sfäriska. Liknande
numeriska tekniker kan också användas för att undersöka formen av röda
blodceller och för mikrofluidiska system, så kallade lab-on-a-chip-processer.
Bläckstråleskrivare och sintring är tekniska tillämpningar där flödet av flera
fluider måste kontrolleras för att göra processerna så effektiva som möjligt.
Förståelsen av tvåfasflödet är också grundläggande för att uppnå god effek-
tivitet i oljeutvinning.

I den numeriska modellen som betraktas i denna avhandling representeras
ytan mellan olika fluider med hjälp av en nivåkurva hos en indikatorfunktion.
Ytspänningskraften ingår i rörelsemängdekvationen och är proportionellt mot
krökningen av ytan och riktad i normalriktningen av ytan. Denna informa-
tion kan beräknas från indikatorfunktionen. Ett bidrag av denna avhandling
är en systematisk numerisk evaluering av diskretiseringsfelen som görs när
ytspänningskraften implementeras med finitaelementmetoden. För evaluerin-
gen betraktas en cirkulär bubbla som är i ett stationärt tillstånd och där al-
la hastigheter som mäts i en numerisk beräkning beror på approximations-
fel. Resultaten visar att krafterna är i exakt balans om ett analytiskt värde
av krökningen används och ytspänningen representeras genom en gradient i
samma funktionsrum som används för approximationen av trycket i Navier-
Stokes-ekvationerna. För praktiska beräkningar betyder det att den enda fel-
källan är approximationsfelet i krökningen. Dessutom visas att finitaelemen-
tapproximationer som föreskriver kontinuerliga funktioner inte kan represen-
tera en kraft som endast verkar på ytan utan måste approximeras med en ut-
spridd volymkraft.
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Ett annat bidrag av avhandlingen är två modeller för effektiv simulering av
flöde där ytan mellan fluiderna är i kontakt med väggar, ett så kallad kontakt-
linjeproblem. Den traditionella modellen som föreskriver att fluider inte kan
röra sig vid väggar är otillräcklig i detta avseende. Den första metoden är en
multiskalansats. En mikrosimulering extraherar information från det fysikalis-
ka beteendet i ett begränsat område omkring kontaktpunkten. Denna simuler-
ing görs med en phasefieldmetod vilket innehåller en mekanism för att förflytta
kontaktpunkterna. Informationen överförs sedan till en makromodell i form av
ett slip-randvillkor, ett randvillkor som tillåter avgränsningsytan att röra sig.
Denna sliphastighet beror på den makroskopiska kontaktvinkeln som uppmäts
i varje tidssteg i makrosimuleringen.

Den andra föreslagna metoden för kontaktlinjeproblem använder olika mo-
deller i olika delar av beräkningsområdet. I närheten av kontaktlinjer är vanliga
levelsetmetoder otillräckliga för att representera fysiken, så här används den
mer allmäna phasefieldmetoden. I delar som ligger längre bort från kontak-
tområdet vore en phasefieldmetod betydlig dyrare och där räcker det med att
använda en levelsetmetod. Lösningen som fås med hjälp av en speciell indika-
torfunktion och lösningen till phasefieldmetoden har en liknande form. Där-
för kan levelsetmetoden tolkas som en phasefieldmetod där några termer sätts
till noll. En konvergensstudie på två testfall har genomförts för att kvantifiera
besparingsmöjligheter med hybridmetoden jämfört med en vanlig phasefield-
implementering. Dessutom visas stabilitet av kombinationen med hälp av en
a-priori energiuppskattning.

Mantelkonvektion och mjukvara för finitaelementkoder
Den intressanta längdskalan för konvektion i jordens mantel är helt annorlunda
och mycket större jämfört med de små längderna i tvåfasflöde. Den matema-
tiska modellen som används i detta sammanhang, Stokes-ekvationerna kop-
plade till en skalär ekvation för transporten av temperaturen, har dock många
likheter till den som används för tvåfasflöde. Förutom liknande struktur i mod-
ellen kräver båda problem hög upplösning för att representera fysiken. Detta
är särskilt viktigt för tredimensionella beräkningar.

En del av avhandlingen beskriver en parallell implementering av mantel-
konvektionsmodellen för moderna beräkningskluster med tiotusentals proces-
sorer, vilket möjliggör simuleringar med hundratals miljoner till några mil-
jarder frihetsgrader. Koden använder sig av parallell adaptiv nätförfining och
noggranna tids- och rumsdiskretiseringar. För att kunna simulera den advek-
tionsdominerade temperaturekvationen som karakteriserar mantelkonvektio-
nen använder vi en avancerad stabiliseringsmetod baserad på en artificiell
viskositet som beror på residualen av entropin i temperaturekvationen. Imple-
menteringen använder sig av byggstenar för generisk finitaelementprogram-
mering och effektiva iterativa linjära lösare samt förkonditionerare. Denna
modularitet gör det möjligt att på ett relativt enkelt sätt kunna anpassa ko-

51



den till framtida utvecklingar på mjukvarusidan, till exempel utvecklingar för
nya sorters parallelldatorer.

Ett allmänt ramverk som möjliggör parallella adaptiva finitaelementberäk-
ningar för godtyckliga partiella differentialekvationer presenteras. Inga delar
som beskriver det globala problemet (som nätstrukturen eller information om
alla frihetsgrader) behöver hållas i sin helhet på en beräkningskärna. Tvärtom
delas all information upp mellan processorna, och lämpliga funktioner för ut-
bytet av denna information tillhandahålls. Detta berör förutom nätstrukturen
också vektorerna och matriserna som beskriver de linjära systemen, såsom
felindikatorer som beskriver vilka celler som ska förfinas eller förgrovas.

För att förbättra prestandan av högre ordningens finita elementmetoder har
en ny matrisfri implementering föreslagits. Denna metod utför elementbaser-
ad kvadratur istället för att assemblera en global gles matris. För att utföra
de lokala kvadraturberäkningar på ett så effektivt sätt som möjligt utnytt-
jas strukturen i basfunktionerna. Implementeringen är betydligt snabbare på
att utföra matris-vektorprodukter än glesa matriser, dagens standardmetod,
för finita element med kvadratiska och ännu högre ordningens basfunktion-
er. Dessutom är detta koncept mycket generellt och kan tillämpas till både
linjära och ickelinjära problem såsom evalueringen av residualer i Navier-
Stokes-ekvationerna. Eftersom denna metod inte använder sig av matriser kan
ytterligare besparingar uppnås eftersom man undviker assembleringen som
annars måste utföras i varje tidsteg för ickelinjära ekvationer. Det finns dock
fortfarande behov av assemblering av matriser i viss mån för att konstruera
effektiva förkonditionerare som algebraiska multinivåförkonditionerare, men
dessa behöver inte uppdateras i varje tidssteg.
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