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1. Introduction

Magnetism has been important for technological applications for almost a mil-
lennia, when the compass was introduced in China [1]. Today we see applica-
tions in for example data storage, electrical engines and transformers, to name
a few. The main work of this thesis considers magnetism from a computational
point of view. Both in terms of methodological development and applications
aiming to understand existing materials or design new materials with tailored
properties. The purpose of the introductory chapters is to supply the informa-
tion and basic concepts necessary to understand the research of the published
papers. It is in no way self-contained, but includes a number of references to
important sources on the topics at hand.

Allready Niels Bohr, in his doctoral thesis [2], and H. J. van Leeuwen in
1921 [3] showed that magnetism can not be described by a classical theory
of a moving charged particle, as one might naively think. In this model the
net magnetization will always be zero for any electric or temperature field due
to the thermal fluctuations. With the introduction of quantum mechanics the
intrinsic angular momentum of the electron, spin, was included. For ferromag-
netic materials the macroscopic magnetic moment originates from the spin of
the electron and the orbital angular momentum originating from the electron
orbiting the nucleus. The spin magnetic moment associated with the electron
is

µµµs =−gµB
~s
h̄

(1.1)

where g≈ 2 is the electron g-factor, which can be derived from the relativistic
description of quantum mechanics. ~s is the quantum mechanical spin opera-
tors, given by

sx = h̄
2σx, sy = h̄

2 σy, sz = h̄
2σz, (1.2)

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 1

)
(1.3)

are the Pauli matrices, and µB = eh̄
2mc is the Bohr magneton. The magnetic

moment of individual atoms is commonly given in terms of µB as the g-factor
and the half-integer spin of electron roughly cancels. The orbital magnetic
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moment due to the electron orbiting the nucleus is given by

µo =− e
2mc

(~r×~p) =−µB~l (1.4)

where~r is the position of the electron, ~p is the momentum and~l is the angular
momentum. To achieve a net magnetization in a macroscopic sample an im-
balance in the occupancy of spin-up and spin-down electrons is needed. How-
ever, on a smaller scale a large number of different magnetic orderings can
occur. Most of which do not result in a macroscopic net moment, but instead
cancels over large length scales. This ordering, however can have effect on a
number of macroscopic quantities, like density and thermal expansion (invar
effect). The driving mechanism for magnetism is not obvious, at a first glance
one might think that the interaction between magnetic dipoles dictates the ori-
entation of the moment. However the energy associated with this interaction
is extremely small, and will be overcome by thermal fluctuations even at very
low temperature. The most important mechanism is actually the interaction
between the electric charge of the electron, together with the anti-symmetric
properties associated with all fermions. Further on it will be shown that the
Coulomb interaction between the electrons is most cumbersome to treat, part
of this thesis is dedicated to how to make an approximate description accurate
enough to yield quantitative agreement with measurements, at a reasonable
computational cost. For the readers interested in magnetism in the solid state
the books by Yoshida[4], Kübler [5] and Mohn [1] are recommended.
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2. Theoretical background

This chapter introduces the theoretical background necessary for the contin-
ued discussion. The first quantity needed is that which describes the state in
which the quantum mechanical system resides. For a many particle system
this is the wave function, denoted by Ψ(~x1, . . . ,~xn, t), where ~xi =~ri,~si is the
position vector in real- and spin-space of particle i at time t. Let the particle
exchange operator Pi j be defined as

Pi jΨ(~x1, . . . ,~xi, . . . ,~x j, . . . ,~xn, t) = Ψ(~x1, . . . ,~x j, . . . ,~xi, . . . ,~xn, t). (2.1)

Two successive applications of Pi j must lead to the same system, hence P2
i j = I,

resulting in two possible characteristics

Ψ(~x1, . . . ,~xi, . . . ,~x j, . . . ,~xn, t) = Ψ(~x1, . . . ,~x j, . . . ,~xi, . . . ,~xn, t) Bosons

Ψ(~x1, . . . ,~xi, . . . ,~x j, . . . ,~xn, t) =−Ψ(~x1, . . . ,~x j, . . . ,~xi, . . . ,~xn, t) Fermions.

(2.2)
The antisymmetric property of the fermions require that

i = j ⇒ Ψ(x, t) = 0 (2.3)

which is the Pauli exclusion principle. The time evolution of a non-relativisic
system is governed by the Schrödinger equation

ih̄
∂

∂ t
Ψ(~x1, . . . ,~xn, t) = HΨ(~x1, . . . ,~xn, t) (2.4)

where H is the Hamiltonian, or total energy operator, of the system. In absence
of external fields the Hamiltonian has the following form

HS = ∑
I

~p2
I

2MI
+∑

i

~p2
i

2me
+

1
2 ∑

I,J

ZIZJe2

|~RI−~RJ|
+

1
2 ∑

i, j

e2

|~ri−~r j| −∑
I,i

ZIe2

|~RI−~ri|
(2.5)

where MI , ZI and RI refer to the mass, number of protons and the position of
nuclei I, me and ri are the mass and position of an electron. From left the terms
describe the kinetic energy of the nuclei, the kinetic energy of the electrons,
the electrostatic energy between the nuclei, the electrostatic energy between
the electrons and the electrostatic energy between the nuclei and electrons. As
there is no explicit time dependence in Eq. 2.5 the spatial and time dependence
of the wave function can be separated. If the spatial part is expressed in an
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eigen basis to H, with Ψ(~xi, t) = ψE(~xi)e−
iEt
h̄ eq. 2.4 reduces to

HΨ = EΨ (2.6)

where E is the energy of the system. That is, no energy is dissipating from
the system. The state with the lowest energy, the ground state, can be found
through a variational procedure following the Euler-Lagrange equations.

2.1 Born-Oppenheimer approximation
In reality the atoms are not stationary, which will complicate our picture
slightly. It would be very convenient if we could separate the motion of the
electrons from the motion of the nuclei. For a system where this could be done
we can write the electronic wave function as

Ψ(~RI,~ri) = ψ(~RI,~ri)φ(~RI) (2.7)

with the demand that ψ(~RI,~ri) is the solution to the electronic part of the
Schrödinger equation with the positions of the nuclei ~RI fixed, i.e.

HSeψ =
(

∑i
~pi2
2me

+ 1
2 ∑i, j

e2

|~ri−~r j| −∑I,i
ZIe2

|~RI−~ri|
)

ψ =(
∑i

~p2
i

2me
+ 1

2 ∑i, j
e2

|~ri−~r j| +V (~ri)
)

ψ = Eeψ.
(2.8)

Applying the Hamiltonian to the full wave function results in

HSΨ =
(

∑I
~p2

I
2MI

+ 1
2 ∑I,J

ZIZJe2

|~RI−~RJ | +∑i
~pi2
2me

+ 1
2 ∑i, j

e2

|~ri−~r j| −∑I,i
ZIe2

|~RI−~ri|
)

Ψ

= ψ

(
∑I

~p2
I

2MI
+ 1

2 ∑I,J
ZIZJe2

|~RI−~RJ | +Ee({~RI})−∑I,i
ZIe2

|~RI−~ri|
)

φ

−∑I
1

2MI

(
2~pIφ~pIψ +φ~p2

I ψ
)
.

(2.9)
From this it is clear that if the last two terms are ignored, the equations can be
solved for the electrons and nuclei separately, by making φ(~r) satisfy(

∑
I

~p2
I

2MI
+

1
2 ∑

I,J

ZIZJe2

|~RI−~RJ|
+Ee({~RI})−∑

I,i

ZIe2

|~RI−~ri|

)
φ = Enφ (2.10)

This approximation is known as the Born-Oppenheimer- (BO), or adiabatic
approximation [6] , it assumes that the electrons do not change eigenstates as
the nuclei move. This is often a good approximation as the electrons are much
lighter than the nuclei and therefore move much faster, they can adjust to the
new position of the nuclei very fast and see it as a stationary electric field,
cases when BO is not valid is for example BCS superconductivity. From now
on we will only consider the electronic part of the Hamiltonian.
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2.2 Crystals and the Bloch theorem
The basic equations describing the electronic system is known, yet unsolvable
in its current form. The main problem is that the set of equations is enormous
for any macroscopic sample, with a particle number in the order of Avogadro’s
number, ∼ 1023. For solids in a crystalline phase there is a theorem by F.
Bloch[7] dating back to 1929, for one-dimensional solids this was realized
already in 1883 by G. Flouquet [8], that reduces the complexity using the
periodicity of the crystal as argument. Due to the periodic arrangement of the
nuclei the electrons experience a periodic potential from the electric charge
of the nuclei. A crystal is made up of a Bravais lattice and a basis. The basis
is just the positions of the atoms in the primitive cell, the Bravais lattice is
all points conected by the vector ~R = n1~a1 +n2~a2 +n3~a3, where ~ai is a lattice
vector and ni is an integer. The Bloch theorem now states that the eigenstates
ψ the Hamiltonian, where V (~r) = V (~r +~R) is a periodic potential, and ~R is
any Bravais lattice vector, can be expressed as a plane wave times a periodic
function un~k(~r) = un~k(~r +~R), i.e.

ψn~k(~r) = ei~k·~run~k(~r) (2.11)

where n is the band index and ~k the wave number. That is, bulk properties
can now be calculated using only one primitive cell. This simplifies things
enormously, since most crystal structures can be represented by only a few
atoms. In a real sample surface atoms are naturally present, luckily they make
up about N2/3 of the total number of atoms N. That means about 1 out of 108

atoms are at the surface, hence this approximation is often good. The primitive
cell of the crystal is not only determined by the time averaged position of
the ions, for example magnetic ordering can reduce the symmetry. If lattice
vibrations are considered the cell is increased to the point where all phonon
q-vectors under consideration are encompassed in the cell.

2.3 Relativistic description
In many cases the Schrödinger equation gives an inadequate description of
solids, particularly when magnetism is included. The Schrödinger equation
(eq 2.4) has no explicit dependence on spin, and therefore contains no cou-
pling between spin space and real space, something that is known to be im-
portant for e.g. the magneto-crystalline anisotropy (the classical dipole-dipole
interaction is extremely small for highly symmetric bulk crystals). A more
elaborate treatment is described by the so-called Dirac equation, a relativistic
counterpart of the Schrödinger equation incorporating also the anti particles.
The wave function in the relativistic formulation is then a four-component
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spinor, one two-component for the electron and one for the positron.

|Ψ〉=
[
|Ψe〉
|Ψp〉

]
(2.12)

The Hamiltonian in this has has the form

H =

[
V (~r)+mc2 c~σ ·~p

c~σ ·~p V (~r)+mc2

]
. (2.13)

Assuming H|Ψ〉 = EΨ〉 the electronic part of the eigenvalue equation be-
comes

[−E−mc2−V (~r))+ c2(~σ ·~p)(E +mc2−V (~r))−1(~σ ·~p)]|Ψe〉= 0 (2.14)

where ~p is the momentum, c is the speed of light. We can now see that spin
and orbital space couple through the c~σ ·~p terms. For the solids studied in this
thesis we do not need the treatment of the anti-particles, and will therefore
reduce the equations to the non-relativistic limit, considering an atom-like
central potential [9]. The resulting Hamiltonian contains the terms from eq.
2.5 with some additional terms.

H = HSe−∑
i

~p4
i

8m3
ec2 +

h̄2

8m2
ec2 ∇

2V (~r)− 1
2m2c2

1
r

dV
dr ∑

i

~li ·~si. (2.15)

The first added term is the mass-velocity term, a correction to the kinetic en-
ergy. The second is the Darwin term, a correction to the potential. The last
term is the spin-orbit coupling, the pre factor ξ = 1

r
dV
dr is commonly called the

spin-orbit coupling constant. With the inclusion of the spin-orbit interaction
we have an explicit coupling between the spin and orbital degrees of freedom.
This is quite weak for light elements, but as the number of protons in the nu-
cleus increases, the spin-orbit coupling constant is enhanced. For example in
actinide compounds it is sometimes considerably larger than the level splitting
from the crystal electric field.
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3. Many-particle physics and
approximations

From now on all equations will be in Rydberg atomic units, i.e. h̄ = 2me =
e2/2 = 1, henceforth reserving the letter e for the exponential function. The
Hamiltonian in eq. 2.8 is still intractable for most systems, the problem lies in
the ∑i, j

1
|~ri−~r j| term which couples the movement of one electron to all other

electrons in the system, i.e. the electrons are correlated. For example, the elec-
tronic repulsion will lead to a suppressed electron density in the vicinity of an
electron, called exchange correlation hole. If we would like to calculate the
ground state of the system we would have to set up a basis consisting of all
possible states, something that is computationally impossible for almost all
systems with todays techniques. Hence approximations are needed, a com-
mon approach is to construct a so called mean field, taking into account cor-
relations on an average only, expressing the other electrons as an effective
potential. This leads to a single particle problem, which in turn may be solved
taking into account temperature only through the Fermi-Dirac distribution.
Another approach is to map the part of the problem which is strongly corre-
lated to a reduced problem possible to solve including the proper correlation
effects, hybridizing with the environment through a mean field.

3.1 The Hartree-Fock approximation
Based on the antisymmetric properties of the wave function a set of equations
is derived forming an effective single-particle problem, the equations are gen-
erally known as the Hartree-Fock (HF) equations. It might be tempting to
construct the many-particle wave function as a product of single particle wave
functions, |Ψ〉= Πiψi(~xi), however the anti-symmetric properties will not be
obeyed, hence the Pauli exclusion principle eq. 2.3 will not be satisfied and
this type of wave function is of no use for fermionic systems. However, Slater
noted that the properties of the determinant makes it suitable as a basis [10],
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introducing the so called Slater determinant

|Ψ〉= 1√
N!

∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ1(~x2) . . . ψ1(~xn)

ψ2(~x1)
. . .

...
...

ψn(~x1) . . . ψn(~xn).

∣∣∣∣∣∣∣∣∣∣∣
(3.1)

Proceeding to minimize the energy of the Hamiltonian in eq. 2.8 following the
Euler-Lagrange procedure results in the following Schrödinger-like equation(−~p2 +V (~r)

)
ψi(~x)

+∑ j
∫

d~rd~r′ψ∗j (~x′)ψ j(~x′) 1
|~r−~r′|ψi(~x)

−∑ j
∫

d~rd~r′ψ∗j (~x′)ψi(~x′) 1
|~r−~r′|ψ j(~x)δsi,s j = εiψi(~x)

(3.2)

Now two potential terms originating from the electron-electron interaction can
be identified, the first one being

V h
i (~r) = ∑

j 6=i

∫
d~r′ψ∗j (~x

′)ψ j(~x′)
1

|~r−~r′| (3.3)

is the so called Hartree term, an effect of the Coulomb interaction between
the electron and the charge distribution of all other electrons. The other term
is non-local and acts only on parallel spins due to its quantum mechanical
origin,

V x
i (~r,~r′) =−∑

j 6=i
δ~s,~s′ψ

∗
j (~x
′)ψi(~x)

1
|~r−~r′| , (3.4)

known as the exchange potential. As the exchange potential acts only on par-
allel spins different potential for spin up and down, This can in turn lead to
spontaneous symmetry breaking and magnetism. Later the term correlation
energy will be used, according to quantum chemistry defined as the difference
from the HF energy compared to the results of a more rigorous treatment of
the electrostatic interaction between the electrons. In this thesis we will also
use the term screened exchange for a Hartree-Fock like static potential with an
artificially screened Coulomb interaction. The HF approximation suffers from
a variety of problems due to it’s mean field nature, most severe is that it lacks
the correlation hole. This has two implications, first there is a binding force
between the electron and the correlation hole due to the positive charge of
the hole. Secondly the correlation hole screens the charge of the electron, and
therefore the interaction between neighboring electrons are weakened. In the
HF approximation this is not taken into account, hence the interaction strength
is overestimated, HF does however perform reasonably well for systems with
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a small number of electrons, where many body effects are not so important,
e.g. when applied to small molecules.

3.2 Density functional theory
An alternative approach to the orbital based techniques, such as the Hartree-
Fock approximation, are the density functional theories (DFT). In DFT the
many-body problem is circumvented by working with the density instead of
the wave function. Only a brief presentation is made, excellent reviews on
the subject are Dreizler and Gross [11], Capelle [12] and Burke [13]. The de-
velopment of density functional theory boosted significantly with the proof
of Hohenberg and Kohn [14], stating that the ground state electron density is
enough to completely determined the Hamiltonian, and therefore all proper-
ties, or more exactly:

Theorem 1 For any system of interacting particles in an external potential
Vext(~r), the potential Vext(~r) is determined uniquely, up to a constant shift, by
the ground state density n0(~r).

Theorem 2 A universal functional for the energy E[n] in terms of the density
n(~r) can be defined, valid for any external potential Vext(~r). For any particular
Vext(~r), the exact ground state energy of the system is the global minimum
value of this functional, and the density n(~r) that minimizes the functional is
the exact ground state density n0(~r).

The proofs is not discussed in this thesis, interested readers are referred to
the recommended literature, details regarding for example v-representability
is also excluded as they are to a large extent overcome by the Levy constrained
search method [15, 16]. This means in principle that since the Hamiltonian is
fully determined by Vext(~r), which in turn is uniquely determined by n0(~r), the
only quantity needed for a full description of the ground state is the density.
To determine the ground state density only the functional E[n] is needed, un-
fortunately the theorems provide no means of finding E[n], hence approximate
functionals are developed.

3.2.1 Kohn-Sham equations
Kohn and Sham proposed a scheme how to use DFT in practice [17]. Using
variational calculus they derived a Schrödinger like single particle equation
similar to the Hartree-Fock equations1. The scheme is based on the assump-
tion that you can find a system of fictitious non-interacting quasi particles,

1Earlier approaches, such as the Thomas-Fermi approximation, describes all terms in the
Hamiltonian as a functional of the density. These methods has some applicability at very high
pressures, but often fails as a result of a large error in the kinetic energy.
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with the same density as a system of electrons. The quasi particles are non-
interacting, hence we work in a single particle basis. The orbitals, denoted
ψi(~r), fulfill the equations

Heff
ψi(~r) =

(
T +V eff

s

)
ψi(~r) = εiψi(~r) (3.5)

and
n(~r) = ∑

i∈occ
|ψi(~r)|2 (3.6)

where the V eff
s is the effective single particle potential. As we assume that

the density minimizes the energy it should also satisfy the Euler Lagrange
equation

δTs[n]
δn(~r)

+V eff
s (~r) = µ (3.7)

where Ts[n] is the minimum kinetic energy and µ is the chemical potential.
V eff

s is the effective potential of the single particle, it is defined as

V eff
s = V ext +

δEh

δn(~r)
+

δExc

δn(~r)
(3.8)

where the energy Exc includes both exchange and correlation, in contrast to
the Ex appearing in the Hartree Fock expression. The minimum kinetic energy
is defined by

Ts[n] =
min

Ψ→ n
〈Ψ| ∑

i∈occ
~pi|Ψ〉, (3.9)

which in practice is often calculated by

Ts[n] = ∑
i∈occ

εi−
∫

d~rV eff
s n(~r), (3.10)

to avoid calculating gradients of the wave function. We can now construct the
total energy from this non-interacting kinetic energy

E[n] = Ts[n]+Eh[n]+Exc[n]+
∫

d~rV ext(~r)n(~r). (3.11)

According to Hohenberg and Kohn’s theorems all ground state properties
should be available from the density, but due to technical reasons it is problem-
atic to calculate magnetic properties from just the charge density. To circum-
vent this the formalism is extended to include also the magnetization density
~m(~r), i.e. spin-density functional theory (SDFT). This formalism was devel-
oped in 1972 by Von Barth and Hedin [18].The argument for validity is very
similar to the one for DFT, two different non-degenerate ground states will
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always lead to different charge n(~r) and magnetization densities ~m(~r). Since
the spin-operators in eq. 1.2 are described by 2× 2 matrices, the approach is
to represent the density and effective potential in this form as well.

n(~r) ⇒ ρ(~r) =

(
ραα(~r) ραβ (~r)
ρβα(~r) ρββ (~r)

)

V eff
s (~r) ⇒ ~V eff

s (~r) =

(
Vαα(~r) Vαβ (~r)
Vβα(~r) Vββ (~r)

)
.

(3.12)

The wave functions will be represented as two-component spinors

ψi(~r) ⇒ ψi(~r,~s) = ψi(~x) =

(
ψiα(~r)
ψiβ (~r)

)
(3.13)

following eq. 3.6 we write the density matrix as

ρ(~r) = ∑
i∈occ

(
|ψiα(~r)|2 〈ψiα(~r)|ψiβ (~r)〉

〈ψiβ (~r)|ψiα(~r)〉 |ψiβ (~r)|2
)

(3.14)

which is generally expanded in terms of the charge and magnetization densi-
ties

ρ(~r) =
1
2

[n(~r)+~m(~r) ·~σ ] . (3.15)

By using the variational principle we get the following magnetic Kohn-Sham
equation

∑
β

(
T δα,β +V eff

sαβ

)
ψiβ (~r) = ∑

β

εiδα,β ψi(~r) (3.16)

with

V eff
αβ

= V ext
αβ

+
δEh

δn(~r)
+

δExc[ρ]
δρβα(~r)

(3.17)

we still have to determine the functional Exc[n], that is, a functional of the
density which gives the proper exchange and correlation energy.

3.2.2 Exchange and correlation
The exchange correlation energy consists of two parts, exchange and correla-
tion, Exc = Ex + Ec. There are many ways of approximating Exc, it is most
tractable in terms of computational speed if one can find a functional which
is local. For the classes of local approximations we can write the exchange
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correlation energy simply as a function of the density

Exc[n(~r)] =
∫

d~rε(n(~r)) (3.18)

The exchange energy in DFT is defined by

Ex[n] = 〈Ψ[n]|V e−e|Ψ[n]〉−V h[n] (3.19)

i.e. the electron-electron interaction evaluated of the Kohn-Sham orbitals ex-
cluding the Hartree term. The correlation part is now defined as the remainder,
unknown energy

Ec[n] = E[n]−Ts[n]−Eh[n]−Ex[n] (3.20)

hence, the difference in the true energy to that of the terms already incorpo-
rated. In the so called Local Density Approximation (LDA) Ex[n] and Ec[n] is
determined from very accurate Monte Carlo simulations of the homogeneous
electron gas in different densities. These are later parametrized to an easy
accessible form, for Ec[n] several parameterizations are available, originally
Wigner correlation was used, later Ceperley and Alder [19], Vosko,Wilk and
Nussair [20], von Barth and Hedin [18], Perdew and Zunger [21], among oth-
ers provided parameterizations with different features. Extensions to include
gradients to the electron density in the functional is also common, they are de-
noted Generalized Gradient Approximations (GGA’s) [22, 23, 24]. DFT has
proven very successful over the years, and has proven transferability for large
parts of the periodic system, even though the exchange-correlation functionals
are approximate. It is argued that this is due to simple physical properties con-
served by the functionals, for example the exchange hole integrates to 1, and
the correlation hole to zero. However, for systems with very localized states,
like transition metal oxides and f -electron systems the LDA/GGA schemes
are inadequate. This is due to non-local effects, hence the explicit Coulomb
interaction has to be taken into account to some approximation.

3.2.3 LDA+U
One scheme to incorporate explicit Coulomb interaction between some or-
bitals is to use a HF like approach for the states which are localized [25].
This is realized by not using only the density, but the density matrix, to calcu-
late interactions between electrons. It generally known as DFT+U or LDA+U
scheme, where U is the Coulomb interaction term. It is similar to HF in the
sense that the energy and potential is expressed in the same way, however, it
is the Kohn-Sham orbitals from DFT that supply the basis, not the variational
orbitals resulting from the energy minimization in the HF model. The LDA+U
Hamiltonian is characterized by the standard DFT Hamiltonian, plus an extra
term added only for a set of correlated orbitals {ψ~R,ξi

(~x)}= {|~R,ξi〉} centered
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on cite ~R,

HLDA+U = H0 +HU = HLDA +
1
2 ∑

~R,ξ1,ξ2,ξ3,ξ4∈LU

Uξ1ξ2ξ3ξ4
c†
~R,ξ1

c†
~R,ξ2

c~R,ξ3
c~R,ξ4

(3.21)
where the LU denotes the correlated subspace, i.e. orbital and spin index, and
HLDA is the effective LDA Hamiltonian of eq. 3.5. The U-matrix is defined by

Uξ1ξ2ξ3ξ4
=
∫

d~xd~x′ψ†
~R,ξ1

(~x)ψ†
~R,ξ2

(~x′)g(~r−~r′)ψ~R,ξ3
(~x)ψ~R,ξ4

(~x′) (3.22)

Using the density matrix in eq. 3.14 we write the most general expression for
the HF-like energy as

EU =
1
2 ∑

ξ1ξ2ξ3ξ4

[
ρξ1ξ3

ρξ2ξ4
−ρξ1ξ4

ρξ2ξ3

]
Uξ1ξ2ξ3ξ4

(3.23)

where g(~r−~r′) is the interaction. It might be tempting to use the Coulomb
interaction g = 1

~r−~r′ , like in the HF approximation. However since the HF
approximation is free of screening effects this energy is largely overestimated.
Instead one uses a reduced value, where the reduced interaction strength can
be determined from a number of schemes e.g. constrained LDA [26, 27] and
constrained RPA [28], but in practice often determined by varying the strength
and comparing some physical quantities to experiment.

3.3 Dynamic mean field theory
A more rigorous method to treat electronic systems is the so-called Spectral
Density Functional Theory (SDFT). Here the central quantity is the energy
dependent spectral density, instead of the energy independent electron den-
sity from DFT. The energy dependence of SDFT captures the full excitation
spectra of the electronic system, hence the exchange and correlation has to
be treated explicitly. A full solution to the SDFT problem is still beyond the
possibility of todays computers. However, for some model Hamiltonians the
machinery to deal with local correlation effects, including many body effects,
is well developed. In the Anderson impurity model (AIM) [29] the approach
is to consider highly localized electrons in a host of itinerant electrons. The
localized electrons are allowed to interact with the host through a hybridiza-
tion term and with each other with the Coulomb interaction U . For another
category of model Hamiltonians, lattice models, one originally had two limits
with easily accessible solutions, the U/W = ∞ and the U/W = 0, where W
denotes the band width of the valence electrons. A different limit originates
from 1989 when Metzner and Vollhardt [30] descovered that diagrammatic
treatment of the electron correlation is greatly simplified in infinite dimen-
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sions d→∞. It was followed by Georges and Kotliar in 1992[31] who proved
that the so called Hubbard model can be mapped onto the AIM, and that the
mapping becomes exact in infinite dimensions. The machinery is referred to
as Dynamical Mean Field Theory (DMFT), and allows for mapping lattice
models, in particular the Hubbard model, to the single impurity AIM,

HAIM =∑
i j

εi jc
†
i c j +

1
2 ∑

i, j,k,l
Ui jklc

†
i c†

jckcl

+∑
ki j

V †
k,i j(c

†
i sk, j + s†

k,ic j)+∑
k,i

εk,is
†
k,isk,i

(3.24)

where c represents correlated electrons and s free electrons. The DMFT is an
approximation to and exact SDFT, just as LDA is an approximation to the ex-
act exchange correlation functional in DFT. Anisimov, Poteryaev et. al. [32]
and Lichtenstein and Katsnelson [33] realized how this scheme can be used to
map the LDA+U Hamiltonian in eq. 3.21 on an impurity model much like the
AIM, leaving weakly correlated electrons to LDA, and strongly correlated to
an impurity solver of choice. The Coulomb interaction between the correlated
electrons in the impurity are described by a self-energy Σ~R(iωn), whereas the
Coulomb interaction between weakly correlated electrons, and between impu-
rity and weakly correlated electrons are described with LDA. Self-consistency
is reached when the local Green’s function is unchanged from the previous it-
eration, i.e. the self-energy and the chemical potential µ is conserved accord-
ing to Fig 4.2. The self-energy in the correlated subspace is determined by the
bath Green’s-function

Ĝ0,~R(iωn) = [(iωn + µ)1̂−Ĥ0,~R− ∆̂(iωn)]−1 (3.25)

The resulting self-energy is then projected back to the LDA basis and the full
Green’s-function

Ĝ~k(iωn) = [(iωn + µ)1̂− ĤLDA
~k
−∑

~R

Σ̂~R(iωn)]−1 (3.26)

The procedure of projecting to the correlated basis, and embedding the re-
sulting self-energy into the LDA basis set, will be presented in more detail
in chapter 4, and Paper II. A number of good reviews exist, the interested
reader is referred to [34, 35, 36, 37, 38]. A variety of impurity solvers exist
for the AIM, and many are generalized to the multi-orbital case, and appli-
cable in the LDA+DMFT framework. The impurity solvers can be classified
into three main categories: the ones treating hybridization exactly and approx-
imates the Coulomb interaction, the ones treating Coulomb interaction exactly
and approximates the hybridization, and formally exact quantum Monte-Carlo
(QMC) solvers. QMC is not used in any research presented in this thesis due
to its time consuming nature, hence a more detailed description is omitted.
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The two main branches of QMC used in LDA+DMFT is the Hirsh-Fye(HF)
QMC[39, 40] and the continuous time(CT) QMC[41], where the CT-QMC
currently seems to be the better choice. The QMC family of solvers are able
to resolve the metal-insulator transition, i.e. they are reliable for arbitrary cor-
relation strength U/W , but the computational cost is high and analytical con-
tinuation of the self-energy to real energy has some extra difficulties due to
numerical noise. Care has to be taken as the Coulomb interaction on the impu-
rity is taken into account twice, once in LDA and once in the impurity solver,
this is solved by including a double counting (DC) term.

3.3.1 Solvers with approximate Coulomb interaction
This set of solvers generally work with a perturbation expansion in the
Coulomb interaction. With only the lowest order terms included, i.e. the
Hartree and Fock terms, the LDA+U method is recovered. This is a static
approximation and DMFT is in principle not needed, but implementation is
trivial and easy to test due to the large number of published results using
LDA+U . For lattice models, Bickers and Scalapino[42] proposed the so
called fluctuation exchange (FLEX) approximation, describing interaction
between quasi particles with collective pair-, spin-, and charge fluctuations.
This was first used for realistic problems by Lichtenstein and Katsnelson who
calculated mainly magnetic properties of transition metals [33, 43]. FLEX
was later generalized to include also spin-orbit interaction (i.e. the spin-flip
terms) by Pourovskii et. al. [44], introducing Spin-polarized T-matrix
Fluctuation Exchange (SPT-FLEX) approximation, this has proven to be a
reliable method for itinerant actinides and actinide compounds [45, 46, 47].
When it comes to spectral properties this category of solvers works either for
strong correlation, U/W >> 1 (LDA+U) or weak to moderate correlation far
from phase transitions, U/W < 1 (FLEX, SPT-FLEX), in general they are
not able to catch the metal insulator transition.

3.3.2 Summary of Paper I: Improvements on the SPT-FLEX
solver
In this work we propose an alternative scheme for the FLEX family of solvers.
Our work is based on the SPT-FLEX, but our proposed improvements are ap-
plicable also for basic FLEX. The original FLEX obeys the conservation laws
for particle number, momentum and energy from Kadanoff and Baym[48].
Simply put, T -matrix takes into account inter-particle collisions, which are
excluded in the HF approximation. The T -matrix is expressed through the
ladder diagrams and results in a Dyson-like equation. The self-energy is con-
structed in similar manner to the random-phase approximation, however, the
bare Coulomb interaction is substituted for the static part of the T -matrix,
which will include screening for the particle-particle (PP) and particle-hole
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(PH) channels. A few choices can be made in the diagrammatic expansion.
First of all which channels are important, where we have adopted the main
features of Drchal et. al [49], depicted in Fig. 3.1. There is also an option to
choose different propagators between the scattering events, traditionally one
uses the unperturbed local Green’s function

G0(iωn) = [(iωn + µ)−H0−∆(iωn)]−1 (3.27)

or the full local Green’s function

G (iωn) = [(iωn + µ)−H0,~R−∆(iωn)−Σ(iωn)]−1. (3.28)

To obey thermodynamic conservation laws the self-energy has to be generated
from the full local Green’s function, i.e.

Σ̂[G ] =
δΦ[G ]

δG
, (3.29)

where Φ is called generating functional. A drawback is that the choice of
G in Φ[G ] it is known to over-screen the Coulomb interaction. The use of
the unperturbed Green’s function, G0, under-screens the Coulomb interaction,
and is also non-conserving. For investigation of spectral properties a possi-
ble loss of charge in the local DMFT cycle is often not noticeable and Φ[G0]
sometimes shows better agreement with experimental spectra. When more in-
tricate quantities than the spectral properties are investigated both versions
have deficiencies. Our proposition is to use a partially renormalized Green’s
function as propagator, aiming to avoid both over and under screening. For
the work performed in this thesis for example orbital moments are important,
DFT often underestimates this, and with a good impurity solver the addition
of on-site correlation effects can correct this [50]. Chadov et. al. proposes a
scheme where both spectral properties and orbital moments come out well
[51]. The scheme is based on the LDA+U approximation, with the additional
SPT-FLEX diagrams (excluding the Hartree-Fock contribution) included af-
terwards. Different double counting (DC) is used for the LDA+U and SPT-
FLEX parts of the calculation. The LDA+U is based on the full density matrix,
and is hence conserving, whereas the SPT-FLEX version is based on the un-
perturbed local Green’s function. Hence, the self-energy in this case is written
as

Σ(iωn) = Σ
HF[Ĝ ]−Σ

DC1
+Σ

SPT−FLEX[Ĝ0](iωn)−Σ
HF[Ĝ0]−Σ

DC2
. (3.30)

This scheme is not appealing to us mainly due to the introduction of additional
free parameters in the two DC terms used and the inconsistency in the gener-
ating functionals . Instead we propose a new generating functional in Φ[G HF],
where we define

G HF = [(iωn + µ)−H0,~R−∆(iωn)−Σ
HF]−1. (3.31)
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This approximation is also non-conserving, but the Hartree-Fock term is of-
ten dominant in the perturbation expression, hence this should be closer to a
conserving approximation. We also eliminated the (possible) use of different
double counting terms for the two self energies. The self-energy is calculated
through

Σ(iωn) = Σ[Ĝ HF](iωn)−Σ
DC (3.32)

The resulting spin and orbital moment agrees just as well with experiments,
for details see Paper I.

T (0) = GP(iωn) = UAS =a)

b)

−

Φ =
∑

n
1
n

=

Figure 3.1: Schematic view of the diagrams involved in creating the generating func-
tional for the SPT-FLEX impurity solver. a) displays the legend for the respective
symbols, where P for the propagator GP(iωn) can be either (HF), (0) or full. The
direction of the propagators depends on whether the particle-particle (PP) or particle-
hole channels are considered. UAS denotes the anti-symmetric vertex substituting the
unscreened U when constructing the self-energy.

3.3.3 Solvers with approximate hybridization
Solvers approximating the hybridization function can be divided into two sub-
classes, both starting from an exact solution of the correlated orbitals for an
atom, i.e. without hybridization, this is known as the Hubbard I approximation
(HIA), it gives an accurate spectra in the limit of strong correlation and weak
hybridization, U/W >> 1 [52]. Since the Hubbard 1 approximation works in
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the atomic limit the only parts of the LDA+U Hamiltonian retained are the

HHIA = H0,~R +
1
2 ∑

~R,ξ1,ξ2,ξ3,ξ4∈LU

Uξ1ξ2ξ3ξ4
c†
~R,ξ1

c†
~R,ξ2

c~R,ξ3
c~R,ξ4

(3.33)

where H0,~R is the LDA Hamiltonian projected on to the local basis set. The
complete many-body basis for this Hamiltonian is small enough to set up and
diagonalize directly. In terms of the AIM this equals ignoring the last two
terms in Eq. 3.24. The so called Non-Crossing (NCA), One-Crossing (OCA),
Two-Crossing (TCA) approximations etc. work with a perturbation expansion
of the exact local solution in the hybridization function. They work well for
strong to moderate correlation, U/W > 1, but are not able to describe the
metal insulator transition correctly [53]. One can also include auxiliary or-
bitals, representing the hybridization with the bath in terms of extra orbitals in
the atomic problem, this method goes under the name Exact Diagonalization
(ED). This method is in principle exact (i.e. able to treat any range of U/W ),
as the number of auxiliary orbitals increase more of the hybridization is ac-
counted for. However, the Hilbert space soon grows to prohibitive size, and in
practice works for strong to moderate correlation, U/W > 1. Recently Hafer-
mann et. al. presented a merger between the ED approach and perturbation
theory that captures also the metal insulator transition and Kondo phenomena
[54].

3.3.4 Double counting
A problem intrinsic to the LDA+DMFT procedure is that the Coulomb inter-
action is calculated twice for the correlated electrons, once in LDA, as they are
part of the density on which the exchange correlation potential is calculated,
and once when solving the impurity problem. Since the isolated exchange
correlation contribution from the correlated electrons taken into account by
LDA, and the LDA-like mean field part of the self-energy is not known, this
cannot (as of now) be done exactly, several schemes have been suggested,
but the range of applicability is still under dispute. When using schemes like
GW+DMFT [55] this problem is completely circumvented. The main strate-
gies how to estimate the double counted part of the interaction will be pre-
sented here. Due to the static nature of DFT, the double counting correction to
the self-energy can be assumed to be frequency independent. The self-energy
after correction reads

Σ~R(iωn) = Σ
AIM
~R (iωn)−V DC

~R (3.34)

where ΣAIM
~R

(iωn) is the result of the impurity solver and DC is the double
counting of choice.
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3.3.4.1 Around mean-field
The Around mean-field (AMF) double counting stems from Czyzyk and
Sawatzky[56]. It is based on the assumption that LDA gives the correct total
energy for a system without orbital polarization, and we can then subtract the
static mean field contribution from the self-energy. This is reasonable for
weakly correlated systems, but not exact as the orbital polarizations arising
from LDA due to exchange interactions, spin-orbit coupling and crystal field
splitting are neglected. The starting point is to redefine a density matrix
without the charge n = Tr(ρ) and magnetization ~m = Tr~σρ contributions

ρ̃ξ1ξ2
= ρξ1ξ2

− (δξ1ξ2
n+~σξ1ξ2

·~m)/D (3.35)

where D is the number of orbitals in the correlated subspace. This results in a
correction to the self-energy

V AMF
ξ1ξ2

= ∑
ξ3ξ4

(Uξ2ξ3ξ1ξ4
−Uξ2ξ3ξ4ξ1

)ρ̃ξ3ξ4
. (3.36)

3.3.4.2 Fully localized limit
The Fully localized limit (FLL) double counting assumes that the correlated
orbitals are uniformly occupied in the LDA solution, and that the Coulomb
interaction in the local orbitals can be represented by a constant times the
total occupation of the correlated orbitals. This assumption holds when we
assume integer occupation, i.e. in the insulating state. The potential is defined
by

V FLL
ξ1ξ2

= Vξ1ξ2
−
(

U(2n−1)
2

− J(n−1)
2

)
δξ1ξ2

+
J~m ·~σξ1ξ2

2
(3.37)

where U and J in this notation is the spherically averaged Coulomb repulsion
and intra-atomic exchange interaction.

3.3.4.3 Interpolation scheme
Even though most calculations use either one of these limits, the real system
lies somewhere in between. This led Pethukov et. al. to develop an interpo-
lationg scheme (INT) between these two limits [57]. AMF always gives a
negative contribution to the energy, whereas FLL always gives a positive con-
tribution. DFT is regarded to have a good total energy, but incorrect potential.
This argument let us define an interpolation parameter α , determined in a self-
consistent way minimizing the energy contribution from the double counting
correction

α =
DTrρ̃2

Dn−n2−m2 . (3.38)

This method eliminates the choice of double counting for systems where
the choice is not obvious, it also captures important magnetic features of Pu
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monopnictides where AMF leads to a collapse of the magnetic moment for
PuP, whereas FLL is unable to reproduce the non-magnetic solution for PuS.
Only the INT DC reproduces the correct ground state for both compounds for
a reasonable value of U ∼ 4eV.

3.3.4.4 Static part of Σ

This double counting correction assumes that LDA describes the orbital aver-
age of the static part of the self-energy well for the separate spin-channels, i.e.

V Σ0
ξ1ξ2∈s =

δξ1ξ2

2l +1 ∑
ξ3∈s

Σξ3,ξ3
(0), (3.39)

where s represents a spin-channel. This has proven to be reliable for mod-
erately correlated systems like transition metals [58, 59] and actinide com-
pounds [44].
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4. Implementational aspects

To solve coupled partial differentials of the kinds presented in the previous
chapter there are several methods available. In ab-initio material science by
far the most common is to expand the operators in a well defined basis. This
allows for a reformulation of the differential equation problem to an eigen-
value problem, which is much easier from a computational perspective.

4.1 DFT Basis sets
In the case of DFT we write the expansion of the wave functions in the basis
functions ψl as

|Ψi〉= ∑
l

cl|ψl〉 (4.1)

Inserting this into Eq. (3.5) we get:

∑
l

clHeff|ψl〉− εi ∑
l

cl|ψl〉= 0 (4.2)

Multiplying from the left with 〈ψk| yields:

∑
l

cl〈ψk|Heff|ψl〉− εi ∑
l

cl〈ψk|ψl〉= 0. (4.3)

Defining Hkl = 〈ψk|Heff|ψl〉, being a matrix element of the Hamiltonian and
Okl = 〈ψk|ψl〉, the overlap integral we can define the secular equation

∑
l

cl(Hkl− εiOkl) = 0 (4.4)

Now the Kohn-Sham equation Eq. (3.5) has been transformed from a dif-
ferential equation to a system of linear algebraic equations. By solving the
eigenvalue problem Eq. (4.4) one obtaines the energies, the coefficients cl
and thereby the solution of the Kohn-Sham equation. Generally the solution
is obtained in an iterative fashion according to the variational procedure by
Rayleigh and Ritz. A number of bases exist for this expansion, we need a
basis set able to describe the system accurately, preferably with as small num-
ber of basis functions as possible. Many basis sets use the muffin-tin geome-
try, which emphasizes on the spherical symmetry of the potential close to the
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Figure 4.1: Schematic picture of the muffin-tins and the corresponding potential wells,
V0 denotes the muffin-tin zero and rMT the muffin-tin radius. On the left hand side
APW type basis functions are represented, on the right hand side LMTO type basis
functions.

atoms in a crystal, and separates the problem into two domains. The external
potential Vext in Eq. (3.8) is represented in the unit cell by

V (~r) =

{
VMT(~r) , |~r|< rMT

VI(~r) , |~r| ≥ rMT,
(4.5)

where MT represents muffin-tin region and I the interstitial region.

4.1.1 Linear muffin-tin orbitals
A brief introduction to the linear muffin-tin orbital (LMTO) [60] approach is
given below, for an extensive review see the book by H.L. Skriver [61], for
details about the particular implementation used, see J.M. Wills et. al. [62].
The method defines the basis functions as site centered, with a head inside
the muffin tin, and a tail in the interstitial region. Moreover, a full-potential
LMTO code must expand the cite centered basis functions around other sites,
where the origin basis function is referred to as the parent. Formally the basis
functions inside the MT sphere around some site τ are decomposed in terms
of spherical harmonics times a radial function

χτ,L(ε,~r) = YL(̂~r)φl(ε,r) (4.6)

where τ refers to lattice cite, L = (l,ml), YL = ilYl,m,~̂r is the angle and r is the
length of~r, i.e. the distance to the center of site τ . The radial function φl(ε,r)
is calculated as the solution to the radial Schrödinger equation,

∂ 2(rφl(ε,r)
∂ r2 =

(
l(l +1)

r2 +Vτ(~r)− ε

)
rφl(ε,r). (4.7)
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To remove the energy dependence the radial function is expanded around
some linearization energy εν to first order, defining

φl(εν ,r)≡ φl(εν ,r)

φ̇l(εν ,r)≡ ∂φl(ε,r)
∂ε

∣∣∣∣
ε=εν

(4.8)

φl(εν ,r) and φ̇l(εν ,r) are orthogonal to each other and the core states. The
basis functions in the interstitial region is expanded in spherical harmonics
times spherical waves with some wave number κ2

i = VI− εi,

χI,L(ε,κ,~r) = YL(̂~r)yl(κ,~r). (4.9)

The spherical waves are solutions to the Helmholtz equation,(− d2

dr2 +
l(l +1)

r2 −κ
2)ryl(κr) = 0, (4.10)

resulting in yl(κr) being either of the two linearly independent solutions
spherical Bessel ( jl(κr)) or Neumann (nl(κr)) functions. If κ2 is negative
the solution is of the type Hankel function of the first kind. This results in the
following basis functions

χτ,L(εν ,κ,r) = YL(r̂)

{
φl(εν ,r)+κ cot(ηl)Jl(κr) ,r < rMT

κNl(κr) ,r ≥ rMT
. (4.11)

As the basis functions are constrained to be continuous and differentiable in
all space we introduce the phase shift ηl which fulfills

cot(ηl(ε,κ)) =
nl(κr)
jl(κr)

Dl(ε)−κDnl (κ)
Dl(ε)−κD jl (κ)

(4.12)

where Dl(ε) are the logarithmic derivatives at the sphere boundary. JL and
NL are augmented versions of the spherical Bessel and Neumann functions.
JL and NL are required to be energy independent to first order around the
linearization energy. This gives the spherical Bessel function the following
shape:

Jl(κr) =− φ̇(εν ,r)
κ ˙cot(ηl(εν ,κ))

, (4.13)

which is continuous and differentiable within the muffin-tin sphere and or-
thogonal to the core states. nl is replaced by the augmented Neumann function
Nl , using an expansion around the sites τ with~rτ =~r−~Rτ ′ they are defined as
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NL(κ,~rτ) =

{
4π ∑L′,L′′CLL′L′′JL′(κ,(~rτ ′)nL′′(κ,(~rτ ′) , |~rτ ′ | ≤ rMT

nl(κ,~rτ ′) , |~rτ ′ |> rMT
(4.14)

where CLL′L′′ =
∫

d~̂rYL(̂~r)YL′ (̂~r)YL′′ (̂~r) are Gaunt coefficients. It is common to
use a basis with several κ for each l. Considering the disperse s- and p-valence
bands it is common to use 3κ , (triple basis), while treating the narrower semi-
core stats together with the d- and f -valence bands with 2κ , (double basis).
Some implementations limits the the number of κ’s to one (single basis), es-
pecially within the atomic sphere approximation only κ = 0 for all L’s. The
definition of the orbitals are covered by Eqs. (4.11) - (4.12), the Schrödinger
equation is now solved according to Eq. (4.4). All LDA+DMFT calculations
in this thesis are based on the FP-LMTO code RSPt [63].

4.1.2 Augmented plane-waves
The Augmented plane-wave (APW) [64, 65, 66] method uses the same geom-
etry as the LMTO method, but the basis functions are defined as

χ
APW
~k+~Gm

(~r) =

{
∑LCL(~k + ~Gm)ψτ,L(εν ,~r) ,r < rMT

ei(~k+~Gm)~r) ,r ≥ rMT
. (4.15)

where ψL(εν ,~r) are solutions to the radial Shrödinger equation just like in the
LMTO case. The coefficients CL(~k + ~Gm) are obtained by matching the value
of the interstitial and the muffin-tin part of the wave-function. In contrast to
the LMTO basis functions each APW has a discontinuous derivative at the
sphere boundary, however the solution for the eigenstates minimizes the final
discontinuity. The φ̇(εν ,r) is most conveniently included in the basis through
local orbitals (lo). The main part of the calculations using the LDA+U method
in this thesis are calculated with APW+lo as implemented in the Elk code [67].

4.2 Summary of Paper II: DMFT implementation
The accuracy of the DFT+DMFT scheme relies mainly on three quantities,
the DFT basis, the quality of the impurity solver and the choice of correlated
orbitals. The DFT basis and impurity solvers are already described in previous
sections. Here we address the aspects of the implementation of the correlated
orbitals, the mapping procedure and accuracy of Matsubara summations for
temperature Greens functions. The general scheme is depicted in Fig. 4.2,
where the quantities are denoted in operator form. The basis sets in which
the operators are expanded will generally not be orthonormal, the following
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relation for the operator and matrix form is used

Â → A
1̂ → O

ÂB̂ → AO−1B
Â−1 → OA−1O (4.16)

where O is the overlap matrix and Â, B̂ are operators.

LDA+
DMFT

LDA

DMFT

4.2.1 The mapping procedure
Local quantities, e.g. Hamiltonian, overlap is expanded in the basis functions
|ξi〉 spanning the correlated subspace, the projectors are setup in two stages,
first the projection coefficients between the LMTO basis χi and |ξ~R,L〉 are cal-
culated. In the second step, if applicable, the local basis is rotated or reduced
further to encompass e.g. crystal field or JJ orbitals according to

〈ξ1|T̂ †ÂT̂ |ξ2〉= ∑
ξ3ξ4ξ5ξ6

T ∗
ξ1

O−1
ξ3ξ4

Aξ4ξ5
O−1

ξ5ξ6
Tξ6ξ2

. (4.17)
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In the case that no extra transformation is made, T is simply the unit matrix
and our transformation is defined by

Aξ1ξ2
= 〈ξ1|Â|ξ2〉= ∑

~k,i j

〈ξ1|χ~k
i 〉A~k

i, j〈χ~k
j |ξ2〉= ∑

~k,i j

U
~k,~R†
iξ1

A~k
i, jU

~k,~R
iξ2

. (4.18)

The current implementation ha no restriction on the underlying lattice, e.g. a
cluster of atoms represented in some of their cubic crystal field orbitals can be
chosen.

4.2.2 Basis functions for the local problem
The choice of local orbitals is very intricate, it should, to as large extent as
possible, be without spectral weight leakage, have pure angular character and
be causal. The orbitals should also be reasonably localized if the mapping is
to make sense. The spectral weight leakage can be quantified by looking at the
overlap between the LMTO basis and the local basis,

Oξ1ξ2
= ∑

~k,i j

〈ξ1|χi〉(O−1
~k

)i j〈χ j|ξ2〉. (4.19)

which is ideally unity for a mapping, i.e. no spectral weight loss. The purity
of the angular character is easily verified from the construction of the orbitals.
Ref. [68] derives that the necessary and sufficient contition for causality is
that the projectors are separable, i.e. P~k(i j,~R,ξ1ξ2) = U

~k,~R†
iξ1

U
~k,~R
jξ2

, something
that is true for the two types of basis functions for the local orbitals used in
this implementation.

4.2.2.1 Orthogonalized LMTOs
The orthogonalized LMTO (ORT) basis is only possible to construct when a
minimal basis (single κ) is used for the l-shell under consideration, in this
case a simple Löwdin orthogonalization. The correlated orbitals are defined
according to

ξi = ∑
~k, j

ei~k~R
χ~k, j[

√
O−1

~k
] j,i (4.20)

The basis is poorly localized, as the LMTOs extend into the interstitial and
other spheres in a full potential LMTO code. Benefits are that there is no spec-
tral weight leakage, as the overlap between the local orbitals and the DMFT
is one by construction. This basis is poorly localized and the orbitals |~R,ξ 〉 do
not have pure L character, however, there will be no leakage of spectral weight.
This orbital construction is used by other LDA+DMFT implementation with
charge self-consistency, e.g. Savrasov [69] or Pourovskii [70].
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4.2.2.2 Muffin-tin heads
The second option is the Muffin-tin heads (MT) basis set, it is extremely lo-
calized with pure L character, and will be referred to the muffin-tin only (MT)
orbitals, here we define the correlated orbitals as

ξ~R,L(~r) =

{
YL(̂~r)φl(εnu,r) ,r < rMT

0 ,r ≥ rMT
. (4.21)

this basis suffers from some spectral leakage, however, the mapping is usually
95%−100% complete, i.e. the matrix

O ∼~1 (4.22)

where I is the identity matrix1. We can also renormalize the basis set multi-
plying with O−1, or using just the diagonal components of O−1 resulting in
something similar to the projector recommended in Ref. [68]. Renormalizing
with the full matrix results in a small mixing of angular character, whereas
renormalizing with the diagonal components results in pure angular character
but polarization effects are diminished (i.e. occupations increase, but the off
diagonal couplings are not increased). As the mapping is usually very close
to complete for example spectral functions look the same regardless of renor-
malization. Magnetic moments and total occupations typically differs in the
second or third significant digit.

4.2.3 Coulomb interaction in a spherical geometry
For a spherical geometry the Coulomb interaction can be rewritten into a con-
venient form, where

Uξ1ξ2ξ3ξ4
=
∫

d~r1d~r2ψ
∗
~R,ξ1

(~x1)ψ∗~R,ξ2
(~x2)g(~r1−~r2)ψ~R,ξ3

(~x1)ψ~R,ξ4
(~x2) (4.23)

is expanded in series of

g(~r1−~r2) =
∞

∑
k=0

gk(r1,r2)Pk(cos(θ12). (4.24)

where the radial part is integrated to

F(k) =
∫

dr1dr2r2
1R2

l (r1)gk(r1,r2)R2
l (r2)r2

2 (4.25)

1For the ORT basis set O ≡ I by definition
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commonly referred to as Slater parameters 2. Defining

ck(m1,m2) =
(

4π

2k +1

)1/2 ∫
dΩY ∗lm1

(Ω)Yk(m1−m2)Ylm2(Ω) (4.26)

It is now straightforward to write Ui jkl as

Uξ1ξ2ξ3ξ4
= δs1,s3δs2,s4δm1+m2,m3+m4

∞

∑
k=0

c(k)(m1,m3)c(k)(m2,m4)Fk (4.27)

which with q = m1−m2 can be written as

ck(m1,m2) = (−1)m1(2l +1)

(
l k l
0 0 0

)(
l k l
−m1 q m2

)
(4.28)

resulting in

Uξ1ξ2ξ3ξ4
= δs1,s3δs2,s4 ∑

kq
(−)m1+m2+q(2l +1)2 (4.29)

×
(

l k l
0 0 0

)2(
l k l
−m1 −q m3

)
F(k)

(
l k l
−m2 q m4

)
.

From this form deduce that F0 = U represents the spherical part of the
Coulomb interaction, The commonly used J is a linear combination of F2,F4

and F6, for d-electrons the ratios are almost constant independent of material,
whereas for f -electrons they are in general not. This results in a number of
parameters, that are in principle possible to determine form experiment,
but in practice this can be difficult due to lack of experimental data or the
quality of the data. A way of reducing the number of free parameter is to

use the Yukawa potential, g = e−λ (~r−~r′)
~r−~r′ , here only the screening parameter

λ is adjusted. Another benefit is that the ratio of the Slater parameters are
calculated contrary to the common approach of choosing them separately,
this method is explained extensively in paper IV. A more appropriate way to
reduce the free parameters are to calculate the effective screening using the
Random Phase Approximation (RPA) as suggested by Solovyev[50]. This
implementation is presently lacking, but a comparison of the screening ratios
of F2,F4 and F6 to the ones calculated from the Yukawa potential would
carry a great value. Note that in approaches like GW+DMFT this problem
does not occur, as the screened Coulomb interaction is calculated within GW
(often using RPA), also the issue of double counting is circumvented.

2The phase of the spherical harmonics is treated according to Condon and Shortley[71]
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4.2.4 Integration of Matsubara Green’s functions
The density matrix ρ̂DMFT

~k
can be obtained from the Green’s function as an

infinite sum over all the Matsubara frequencies [72]

ρ̂~k = lim
η→0+

lim
N→∞

T
N

∑
n=0

[
Ĝ~k(iωn)eiωnη + Ĝ†

~k
(iωn)e−iωnη

]
. (4.30)

The order of the limits can not be interchanged as the partial sums are only
point wise convergent and not uniformly convergent with respect to η . To
circumvent this problem the Green’s function is decomposed into an analytical
and a numerical part. To construct the analytical model Green’s function a
model self-energy Σan

R (iωn) is considered

Σ
an
R (iωn)≡ Σ̂R(∞)+

V
iωn− ε

, (4.31)

a reasonable function considering the analytic properties are the same as that
of the Green’s function. Now the partition of the Green’s function can be de-
fined as

Ĝan
~k

(iωn) =

[
iωn1̂+ µ 1̂− ĤLDA

~k
−∑

R
Σ̂

an
R (iωn)

]−1

(4.32)

Ĝnum
~k

(iωn) = Ĝ~k(iωn)− Ĝan
~k

(iωn), (4.33)

the density matrix can be split into two parts as ρ̂~k = ρ̂an
~k

+ ρ̂num
~k

, where

ρ̂
an
~k

= lim
η→0+

lim
N→∞

T
N

∑
n=0

[
Ĝan

~k
(iωn)eiωnη + Ĝan†

~k
(iωn)e−iωnη

]
(4.34)

ρ̂
num
~k

= lim
η→0+

lim
N→∞

T
N

∑
n=0

[
Ĝnum

~k
(iωn)eiωnη + Ĝnum†

~k
(iωn)e−iωnη

]
.(4.35)

The analytical part ρ̂an
~k

has a simple form but contains the logarithmic diver-
gence of ρ̂~k, while ρ̂num

~k
converges uniformly [73]. The uniform convergence

allows the order of the limits in Eq. (4.35) to be interchanged. With a mini-
mal loss of accuracy the resulting sum can be truncated at some large cut-off
Matsubara frequency Nmax, giving

ρ̂
num
~k
≈

Nmax

∑
n=0

[
Ĝnum

~k
(iωn)+ Ĝnum†

~k
(iωn)

]
. (4.36)

The analytical part of the density matrix can still not be summed explicitly.
By diagonalizing µ 1̂− ĤLDA

~k
−∑R Σ̂R(iωn) for a few n around Nmax, using the
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model for the self-energy, the analytic Green’s function is created by

Gan
~k,χ1,χ2

(iωn) = ∑
m

〈~k,χ1|Xm
~k
〉〈Xm

~k
|~k,χ2〉

iωn− εm
1,~k
− V m

iωn−εm
2,~k

(4.37)

where ε1,m and |Xm
~k
〉 is eigenvalue and eigenvector m to ĤLDA

~k
−∑R Σ̂R(∞) and

V m and ε2 is fitted to the decaying self-energy. Since Σ̂R(∞) is hermitian the
slow decaying tails are cancelled out by taking

Σ̂R(∞)≈ Σ̂
H
R (iωNmax)≡

Σ̂R(iωNmax)+ Σ̂
†
R(iωNmax)

2
. (4.38)

The current implementation goes one step further and extrapolates Σ̂H
R (iωn)

to infinity from a least squares fit of a few data points around Nmax. Since
Σ̂H

R (iωn) is hermitian it can be expanded in orders of ω−2
n , so the first order

fit has an error proportional to ω
−4
Nmax

. Now the two residues for each eigen
function can be summed, the approximation is that the eigen representation
does not change for high energies.

Expectation values of statical quantities can be evaluated directly from the
density matrix, e.g. spin moment 〈ŝz〉 = Tr(ŝzρ̂) or single particle energy
〈ĤLDA〉= Tr(Ĥ0ρ̂).

The total energy is derived by equation of motion of the Greens function
and the definition of the Hamiltoninan in eq. 3.21

〈 ∂

∂τ
Ĝ(τ)〉= 〈ĤLDA〉+2〈ĤU〉 (4.39)

where τ is the imaginary time. Fourier transforming the left hand side using
the definition of the Greens function we obtain

Tr[ωĜ(ω)] = Tr[Σ̂(ω)Ĝ(ω)]+Tr[ĤLDAĜ(ω)]. (4.40)

Where the frequency independence of ĤLDA allows the single particle energies
to be evaluated by

Tr[ĤLDAρ̂] (4.41)

and the many-body correction, the Galitskii-Migdal energy [74, 72]

EGM = Tr[Σ̂(ω)Ĝ(ω)] (4.42)

is evaluated using the same procedure as the density matrix.
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4.3 Integration methods
With the reciprocal space representation of the wave function according to
Eq. 2.11 the expectation value of an operator X̂ is calculated by integrating
the matrix elements over the Brillouin zone. Defining

Xi(~k) = 〈ψi(~k)|X̂ |ψi(~k)〉 (4.43)

the expectation value is

〈X̂〉= ∑
i

1
ΩBZ

∫
BZ

Xi(~k)Θ(εi−µ)d~k , (4.44)

where i is the band index, ΩBZ is the volume of the Brillouin zone, Xi(~k) is
the function to be integrated and Θ(εi−µ) is a step function. Since a discrete
mesh of k-points samples the (continuos) reciprocal space convergence needs
to be tested thoroughly. There are different schemes for integration with rather
different convergence behavior, the intuitive way (for 0K temperature) would
be to use a step function

〈X̂〉= ∑
i

1
ΩBZ

∑
~k

w~kXi(~k)Θ(εi−µ)d~k , (4.45)

where w~k is the symmetry reduced weight of the k-point. This leads to very
slow convergence as the occupancy jumps from 0 to 1 at the Fermi level. To
circumvent this one frequently uses either smearing quadratures (Methfessel-
Paxton, Fermi smearing etc.) or interpolation schemes (tetrahedron method,
cubic interpolation etc.).

4.3.1 Smearing quadratures
In this approach the step functions is replaced with a smooth function
f (σ ,εi−µ). The integral now takes the shape of

〈X̂〉= ∑
i

1
ΩBZ

∑
~k

w~kXi(~k) f (σ ,εi−µ)d~k . (4.46)

One popular choice is so-called temperature smearing, defining x = ε−µ

σ
the

definition of f (x) simply takes the form of the Fermi-Dirac distribution[75]

f (x) =
1

ex +1
(4.47)

where σ = β−1 = kbT . Using smearing quadrature yields exactly the same
result as using temperature Greens-functions, and can hence be used as a test
of the implementation.
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Another popular choice proposed by Methfessel and Paxton is to use Her-
mite’s functions [76], the resulting f (x) is defined through the recursive for-
mula

f0(x) =
1
2

erfc(x) (4.48)

fN(x) = f0(x)+
N

∑
n=1

AnH2n−1(x)e−x2
(4.49)

where erfc(x) =
∫ x
−∞

e−t2
dt is the complementary error function, H2n−1(x) is

an Hermite function and An are expansion coefficients arising from expand-
ing the delta function in in therms if Hermite functions. This scheme show
good convergence properties for metals, but suffers from unphysical effects
of negative occupation for higher orders. A correction to this is proposed by
Marzari and Vanderbilt, approximating the delta function by a Gaussian times
a polynomial [77].

All smearing methods introduce another caveat; they are not variational
with respect to the total energy E. This means that the ground state energy
does not minimize E, but instead a generalized free energy F = E − T S =
E−∑i σS( f (xi)). For Fermi smearing this translates to

S( f ) =−( f ln( f )+(1− f )ln(1− f )) (4.50)

In the case of DMFT the entropy contribution is more difficult to calculate,
Kotliar et al proposes a numerical temperature integration scheme which re-
quires well converged total energies for a number of temperatures. However,
for sufficiently high temperature we can use the von Neumann entropy

S =−kBTr(ρlnρ) , (4.51)

where ρ is the density matrix in the LDA basis, for a mean field estimate.
For solvers where the full Hilbert space is represented (e.g. Hubard 1) the von
Neuman entropy is accurate in the many particle basis.

4.3.2 The tetrahedron method
One of the most used integration schemes for metals is the linear tetrahedron
method [78](with Blöchl corrections [79]). This is due to superior conver-
gence properties compared to smearing based quadratures (e.g. Gaussian and
Fermi quadratures). The tetrahedron method divides the reciprocal space into
tetrahedrons, most often following Fig. 4.2 or similar schemes with equal vol-
ume for all tetrahedrons. For all corners of a tetrahedron the function value
is known, hence we can construct an interpolation scheme within the tetrahe-
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dron. The results in an integral on the form

〈X̂〉= ∑
i

1
ΩBZ

∑
~k

wi,~kXi(~k)d~k , (4.52)

where the weights wi,~k are calculated by interpolating the band i within all
tetrahedrons where k is a corner. In general the tetrahedrons are setup using
a scheme which makes the integration anisotropic, e.g. when calculating the
number of particles for a magnetic system including spin-orbit coupling two
supposedly equivalent directions will give different results, as charge must
be conserved to avoid issues with the Madelung energy this will manifest
itself in different Fermi levels, see Fig. 4.3 for an example. The current
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Figure 4.2: Schematic picture of a cube divided in tetrahedrons, following the work
of P Blöchl[78]. The division procedure can be assigned an orientation through the
body diagonal. As the tetrahedrons are anisotropic also the result of the integration
will have minor anisotropies.

implementation is able to handle any k-mesh but the standard generator is
based on the k-point sampling scheme proposed by S. Froyen [80], where the
k-points are distributed on a cubic mesh, and mapped onto the reciprocal space
of the crystal.
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Figure 4.3: The figure shows the difference in the Fermi level between crystallograph-
ically equivalent directions, the [111] direction is the body diagonal used as origin for
dividing the cube into tetrahedrons. The results are computed from the same potential
and linearization energies (converged without spin-orbit coupling), subsequently spin-
orbit interaction is turned on and one iteration is done for each crystallographic direc-
tion. The difference due to the anisotropic tetrahedrons are 2-3 orders of magnitude
larger than the differences are when using the adaptive gaussian smearing scheme,
and is hence the dominant numerical noise in the calculation. The trial system is bcc
Fe.

4.3.3 Summary of Paper III: The Adaptive Gaussian Smearing
method for integration
As presented in the sections on the tetrahedron method and the smearing meth-
ods it is hard to get reliable numbers on small quantities which are sensitive
to the position of the fermi-level. For instance magneto crystalline anisotropy
energies (MAEs) for cubic 3d transition metals needs convergence in the order
of 1e-7 eV, which is smaller then the error introduced by the asymmetries in
the tetrahedron method, and generally requires a very tedious convergence test
of both k-point mesh and smearing width for the smearing methods (however,
for Fermi smearing one can argue that the fermi level obtained is for a certain
temperature). For these reasons we developed the Adaptive Gaussian Smear-
ing (AGS) scheme, which, despite the name, works for any of the smearing
methods described in the previous section. It is derived from the argument that
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the smearing should decrease as the k-mesh increases. The energy resolution
for a given band is determined by the density of k-points though

∆E =
dE
dk

∆k. (4.53)

The energy resolution should be such that there is a smooth connection be-
tween each k-point while retaining resolution of individual eigenvalues. For
Gaussian smearing a reasonable value is ∆E = 2σ , where σ is the standard
deviation. The k-point resolution is calculated as the radius of a sphere whose
volume is the average volume per k-point

∆K =
(

3
4π

VBZ

nk

)1/3

. (4.54)

We still have to evaluate dE
dk , this is done by assuming a free-electron disper-

sion of the bands, E(k) = k2

2m∗ . Using the electron rest-mass is in most cases a
pessimistic guess, as most metals are not free electron like. This is evaluated
at the Fermi k-vector kF =

√
2EF =

√
2W , where W is the width of the occu-

pied band. Now we have an expression for the smearing that depends on the
number of k-points used in the sampling,

2σ =
√

2W
m∗

(
3

4π

VBZ

nk

)1/3

. (4.55)

The effective mass parameter m∗ can be used as a tuning parameter to speed
up convergence, but regardless of choice the same result will be achieved. The
same is true for the choice of ∆E = 2σ , here the factor 2 can be included in
m∗, as we will have convergence to the same result. In the limit of a dense
mesh (infinite number of k-points) the step-function is be retained as σ → 0,
but convergence issues does not arise here as the weight of each k-point is
approaching zero.
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5. Multipolar analysis

The electronic occupations can polarize either in spin space, resulting in a
spin-moment, or in orbital space, resulting in some orbital ordering effect. If
spin and orbital degrees of freedom are coupled we can also have combina-
tions of these, resulting in four possibilities, charge density multipoles, spin
density multipoles, charge currents and spin currents. The most common po-
larizations to consider are the spin and orbital moments, however, these are
a few of the lowest order of polarizations possible for each l-shell. In fact,
the local density matrix has (2(2l + 1))2 independent elements, of which we
usually consider only 7, occupancy n, spin moment ~s and orbital moment ~l.
For many properties of weakly correlated metals the LDA determines these
quantities reasonably well, however higher order polarizations are largely un-
derestimated, and if we consider strongly correlated materials we have to in-
clude an orbital dependence in the exchange correlation, e.g. through LDA+U
or LDA+DMFT. Analysis of higher order ordering effects are not straight-
forward, the common route is to project on a basis with some clear physical
meaning, for example projecting to the l,m~s will show the l resolved exchange
splitting, the J,m jjj basis shows if you have a strong coupling between spin and
orbital space1 and projection onto the crystal harmonics indicates the splitting
caused by the crystal electric field. The basis where the off-diagonal elements
of the density matrix is minimal indicates what physical phenomena that dom-
inates the system, however, not in detail. Generally the eigenvectors of the
the density matrix shows no clear preference for either phenomena, and are
difficult to analyze. A reliable analysis should include not only occupational
polarization, but also the contribution to the energy, preferably both static and
dynamic effects should be taken into account. From experimental perspective
multipolar ordering is difficult to probe directly, as a detailed picture of the
local electronic structure is needed. Experimental techniques used to detect
multipolar ordering include resonant x-ray scattering (RXS), non-resonant x-
ray diffraction (XRD) and neutron diffraction, for a review consider Santini
et. al. [81] and references therein.

1The spin-orbit coupling ξ ∑i
~li ·~si is diagonal in the J,m jjj basis.
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5.1 Multipole tensor formalism
In relation with spectroscopy it is common to describe polarizations of the
charge- and spin-densities in terms of multipoles derived from~l and~s opera-
tors. Following G. van der Laan the lowest order tensors, together with their
physical interpretation, are shown in tab. 5.1 [82]. It is now clear that it

Table 5.1: Relation between spherical tensors and standard ground state opera-
tors. Sz = ∑i sz,i, Lz = ∑i lz,i, Tz = 1

4 ∑i(3[lz(~l ·~s)]− 2l2sz)i, Qzz = ∑i(l2
z − 1

3 l2)i,
Pzz = ∑i(lzsz− 1

3
~l ·~s)i and Rzz = 1

3 ∑i[5lz(~l ·~s)lz− (l2−2)~l ·~s− (2l2 +1)lzsz]i

wkpr

Number operator w000 = n
Isotropic spin-orbit coupling w110 = (ls)−1

∑i
~li ·~si

Spin moment w011
0 =−s−1Sz

Orbital moment w101
0 =−l−1Lz

Magnetic dipole w211
0 =−(2l +3)l−1Tz

Quadropole moments w202
0 = 3[l(2l−1)]−1Qzz

w112
0 = 3l−1Pzz

w312
0 = 3[(l−1)(2l−1)]−1Rzz

becomes quite cumbersome to derive the expression for the higher order mul-
tipoles, hence a general method will simplify implementation a great deal. We
will denote trace over ml,ms as TrL, and trace over Matsubara frequencies as
Triωn . Making our way towards expressing the local density matrix in terms of
multipoles we start by introducing the multipolar charge distribution

wk
x = TrLΓ

k
xρ (5.1)

where

Γ
k
x ≡ 〈mb|Γ̂k

x|ma〉= (−1)l−mbn−1
lk

(
l k l
−mb x ma

)
. (5.2)

The constant nlk is chosen according to the preferred normalization, we follow
the notation of G. van der Laan [82], that is

nlk =
(2l)!√

(2l−1)!(2l + k +1)!
(5.3)

The spin dependence is introduced though

wkp
xy = TrLΓ

kp
xy ρ = TrLΓ

k
xΓ

p
y ρ (5.4)
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with

Γ
p
y ≡ 〈sb|Γ̂p

y |sa〉= (−1)s−sbn−1
sp

(
s p s
−sb y sa

)
. (5.5)

Using the orthogonality properties of the 3j-symbols

∑
lm

[l]

(
l1 l l2
ma m mb

)(
l1 l l2
mc m md

)
= δ (ma,mc)δ (mb,md) (5.6)

where [l] = (2l +1), invertability of the transform can be confirmed. Resulting
in

ρab =∑
kx

[k]nlk(−1)mb−l

(
l k l
−mb x ma

)
∑
py

[p]nsp(−1)sb−s

(
s p s
−sb y sa

)
wkp

xy

(5.7)
We now have an expression for charge and spin multipoles in terms of expec-
tation values of easily obtainable operators. Considering the expression for the
Coulomb interaction in section 4.2.3 we derive an expression for the Hartree
and Exchange energy contributions for each multipole tensor. Starting with
the Hartree term

EH =
1
2 ∑

abcd
ρabUabcdρcd (5.8)

and the expressions derived for density matrix and Coulomb interaction re-
spectively the tensor moment resolved energy is

EH =
4l

∑
2k=0

(2l +1)2

2 ∑
k

n2
nl

(
l k l
0 0 0

)2

F(k)wk0 ·wk0. (5.9)

In a similar manner the exchange energy

EX =
1
2 ∑

abcd
ρabUabcdρdc (5.10)

is expressed as

EX =−
4l

∑
2k=0

F(k)
2l

∑
k1=0

(2l +1)2(2k1 +1)
4

(−1)k1n2
lk

(
l k l
0 0 0

)
(5.11)

×
{

l l k1

l l k

}
wkp ·wkp. (5.12)

We now have a complete analysis tool for the density matrix, including static
energy contribution from LDA+U resolved in tensor moments. For systems
with strong spin-orbit coupling we have coupling between the spin and orbital
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degrees of freedom, this results in a coupling of the indices k and p and the
irreducible tensors given in table 5.1

wkpr
t = n−1

kpr ∑
xy

(−1)k−x+p−y

(
k r p
−x t −y

)
(5.13)

where

nkpr = ig
(

(g−2k)!(g−2p)!(g−2r)!
(g+1)!

)1/2 g!!
(g−2k)!!(g−2p)!!(g−2r)!!

.

(5.14)
In turn the expectation value of the k− p-coupled operator

Γ
kpr
t,ab = n−1

kprn
−1
lk n−1

sp (−1)−ma+l−sa+s+k+p
∑
xy

(−1)−x−y (5.15)

×
(

l k l
−ma x mb

)(
s p s
−sa y sb

)(
k r p
−x t −y

)

The transformation is complete, and the operator Λ
kpr
t is defined as the inverse

transform matrix through

Λ
kpr
t = (−1)k+r+p[kpr]nkprnlknspΓ

kpr
t (5.16)

TrΓkpr
t Λ

k′p′r′
−t ′ = (−1)t

δkk′δpp′δrr′δtt ′ (5.17)

To include dynamic effects we resort to DMFT, where the local density ma-
trix is substituted for the local Green’s function. All operators are expressed
as matrix representations in the |l,ml,ms〉 basis if nothing else is stated. The
mapping of the Green’s function to tensor moments is done in similar fash-
ion as the density matrix, defining the Green’s function expressed in the full
irreducible tensor

W kpr
t (iωn) = TrLΓ

kpr
t G(iωn) (5.18)

where the Green’s function is retained from the tensor representation throug

Gab(iωn) = ∑
kpr

~Λkpr
ab

~W kpr(iωn) (5.19)

The occupational spherical tensors in tab. 5.1 is recovered through the trace
over Matsubara frequencies

wkpr
t = TrωW kpr

t (iωn) (5.20)

and the density matrix

ρab = TrωGab(iωn) = ∑
kpr

~Λkpr
ab ~wkpr (5.21)

40



Considering the Dyson equation

Σ(iωn) = G−1
0 (iωn)−G−1(iωn), (5.22)

we argue to use the same transformation for the self energy.

V kpr
t (iωn) = TrLΓ

kpr
t Σ(iωn) (5.23)

The energy contribution from the local problem is calculated following the
Galitskii-Migdal expression

EGM =
1
2

TrL,ωΣ(iωn)G(iωn) (5.24)

In practice this is evaluated using exactly the same routines as in the non-
projected Galitskii-Migdal energy, the difference being that his is done kpr
resolved, i.e.

Ekpr
GM = TrL,ω

r

∑
t=−r

(
Λ

kpr
t V kpr

t (iωn)Λ
kpr
−t W kpr

−t (iωn)
)

(5.25)

5.2 Physical interpretation
As seen in tab. 5.1 there is an apparent physical meaning to the tensors, in
general we have for even k that ~wk0 represents the k’th multipole of charge-,
and ~wk1 represents the k’s multipole of magnetization densities for a certain
l-shell of a lattice site. Odd k breaks time reversal symmetry in charge-, and
odd p breaks time reversal symmetry in spin-space, hence the tensors describe
currents p = 0 and spin currents p = 1. In total the time reversal symmetry is
broken if k+ p is odd, the coupled index r refers to the total rank of the multi-
pole. Since a physical fermionic density matrix is hermitian, with eigenvalues
0≤ ev ≤ 1 it must obey

Tr[ρ]≥ Tr[ρ2] (5.26)

the polarization of the system is constrained according to 2

~w000 ≥∑
kpr

[kr]
2
|nkpr|2n2

lk~w
kpr ·~wkpr. (5.27)

2Here we use the fact that Trρ = ~w000, the scalar product between tensor moments is defined as
~wkpr ·~wkpr

∑
r
t=−r wkpr

t wkpr
−t .
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Since ~w000 = Trρ is the occupation of the system, we can write the equation
as 3

~w000 ≥ 1
2[l]

~w000 ·~w000 + ∑
kpr 6=000

[kr]
2
|nkpr|2n2

lk~w
kpr ·~wkpr. (5.28)

Introducing ne,nh as the number of electrons and the number of holes respec-
tively, some rearrangement leads to

n(2[l]−n) = nenh ≥ ∑
kpr 6=000

[lkr]|nkpr|2n2
lk~w

kpr ·~wkpr = ∑
kpr 6=000

π
kpr (5.29)

where πkpr is defined as the polarization of the kpr channel. Occupation fol-
lowing Hunds rules results in a fully polarized system leading to idempotency
and equality in the equation, for itinerant systems we have partial polarization,
but using the analysis tool presented here it is clear what channel is preferred.

5.3 Summary of Papers IV-XIII
This section serves as a short summary of the papers on multipoles and general
spin and orbital polarization.

5.3.1 IV, V: Development of the multipole formalism and
applications to actinide compounds
Paper IV focuses on the reduction of "free" parameters in LDA+U calculation,
and assesses the calculation in terms of multipolar ordering. For the test cases
PuS and PuP it is found that the interpolation double counting is crucial for
describing the magnetism in a uniform manner. Using the AMF double count-
ing the magnetic moment is quenched for both compounds for low values of
U , whereas the FLL double counting is unable to reproduce the non magnetic
ground state of PuP for any realistic value of U . Using INT double counting
we obtain the experimental magnetic structure for a range of U 3.5eV. Sys-
tematic calculations are performed for a number of U, Np and Pu compounds
with various degree of f -electron localization, we found that these materials
are not so well understood through arguments based on Hund’s rules, in fact
the role of the spin-moment is marginalized due to polarization of higher order
multipoles.

Since the formalism introduced in Paper IV only deals with static approx-
imations, whereas dynamic effects are known to be important in many of the
compounds we study, we extend the formalism in paper V to include dynamic
effects through DMFT. Resorting to many body methods have the potential

3The constants n2
l0 = [l]−1 and n2

000 = 1.
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gain of even less "free" parameters, as there are well developed methods for
calculating the screened coulomb interaction from first principles (note that
these are also possible to use with LDA+U , but then no local screening is pro-
vided by Hartree Fock). The double counting still remains an issue unless one
takes one further step and cut the ties with DFT, using for example GW for
the itinerant electrons. Another issue is that solvers using density-density ap-
proximation penalize many of the polarization channels in the sense that their
energy contribution is simply zero. On the other hand, solvers describing the
interaction with full U-matrix are in general not applicable for all ranges of
U/W (SPT-FLEX, Hubbard I, ED), or they are exceedingly computationally
demanding (full-U CT-QMC). The first case study is the δ -phase of Pu, where
we know that the branching ratio of white light 4d→ 5 f (~w110 = 2

3〈~l ·~s〉) tran-
sitions from the LDA ground state is only -2.4 [83] with a large spin moment,
whereas the experimental number for δ -Pu is ∼-5.4 for an f 5 configuration
with no magnetic moment [84] . Previous calculations of the δ phase shows
similar numbers, but using the density-density CT-QMC solver, hence the so-
lution is reached from a non-magnetic LDA ground state.[85]. Calculations
using LDA+U indicates the magnetic moment vanishes due to the fact that
the exchange energy goes into the ~w110 channel, but the resulting branching
ratio is overestimated with about 20%. DMFT calculations attribute the van-
ishing moment to the Kondo effect, but the large spin-orbit current increase
is also seen. No energy contributions are calculated, so the underlying reason
is not clear. We establish that the energy contribution from polarizing ~w110 is
about 0.4Ry, i.e. a much larger contribution than that of the proposed coher-
ence scale attributed to the Kondo effect with KT ∼ 800K, i.e. about 5mRy
[86]. We also conclude that there is a mass enhancement indicating both ef-
fects are present, moreover, the best suitable solver for this problem would
be the full U CT-QMC, which unfortunately takes prohibitively long time to
converge with the computational resources at hand.

5.3.2 VI: Polarization of an open shell in the presence of
spin-orbit coupling
In paper VI we investigate spontaneous symmetry breaking in presence of
strong spin-orbit coupling. The density matrix of a crystalline solid always
shows some polarization due to directional bonds that typically give rise to
higher order charge multipoles. This kind of polarization is by us referred to
as induced, as it is an effect of the geometry of the problem. Spontaneous
polarization includes time-reversal symmetry breaking, according to Hund’s
rules this occurs first and foremost in the ~w011 channel. However, strong spin-
orbit coupling makes this unfavorable as the possibility of larger energy gains
are possible by polarizing higher order multipoles. We performed large scale
investigations of actinide compounds, from which we formulated the empiri-
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cal Katt’s rules, a set of rules complementary to Hund’s, valid for the strong
spin-orbit coupling regime, see Tab. 5.2.

Hund’s rules Katt’s rules
HI. Saturate spin polarization - 011 KI. Saturate spin-orbit polarization - 110
HII. Optimize polarization 101 KII. Optimize polarization 615(617)

Induced polarizations: Induced polarizations:
110 and 112 415 and 505 (none)

HIII. Let ~w110 < 0 KIII. Polarize 001, if possible

Table 5.2: Katt’s rules formulated for an f -electron shell, KII refers to an occupa-
tion n ≤ 6, (n > 6), i.e. polarization of the f5/2 or ( f7/2) subshell. Hund’s rules are
presented for comparison to the weak spin-orbit regime. Populating the f -shell ac-
cording to Hund’s rules gives a result diagonal i l,ml ,s,ms-basis, whereas populating
the f -shell according to Katt’s rules will give a density matrix close to diagonal in
J,m j-basis.

5.3.3 VII: Multipolar ordering in actinide dioxides
In this paper we compare ground state properties of UO2, NpO2 and PuO2 as
calculated by the LDA+U method. These compounds show a varying degree
of f -electron localization, UO2 and NpO2 are usually classified as semicon-
ducting, whereas PuO2 is an insulator. All compounds shows peculiarities in
their magnetic properties. UO2 is believed to have a 3~k-AFM structure, NpO2
shows signs of multipolar ordering and PuO2 is nonmagnetic, in contrast with
conventional LDA+U calculations, which predicts a magnetic ground state.
We make a systematic investigation of all three compounds in terms of intra
atomic multipolar ordering and interatomic ordering of the moments. We pre-
dict orderings in agreement with experiment for all compounds, where UO2 is
found to have two competing 3~k structures with similar energy. With the cur-
rent numerics of the code we where unable to resolve whether the longitudi-
nal or transverse ordering is the ground state. Both agree with measurements.
NpO2 also shows competing states with close to degenerate energy, one of the
calculated solutions prohibits spin-moment by symmetry, indicating that this
is likely to be the experimentally detected ground state. Lastly PuO2 shows
a 1~k arrangement of w615

−2 triakontadipoles, their moment integrates to zero,
consistent with experimental observation.
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5.3.4 VIII - X: Studies of triakontadipoles in Uranium based
superconductors
The nature of the hidden order phase of URu2Si2 is still under heavy debate.
A number of mechanisms have been proposed, for a recent review of experi-
mental and theoretical work see Mydosh et. al [87]. Spurred by the appearance
of the ~w615 multipoles appearing in many actinides we decided to investigate
the properties of URu2Si2 using LDA+U and analyzing the results in terms of
multipoles. Upon varying the screened Coulomb interaction we see a deviat-
ing behavior in the energy contribution of the ~w615 multipole. Already around
U ∼ 1 the energy contribution from ~w615 is dominant, and shows a sudden
increase. Under pressure the system is known to undergo a phase transition
from hidden order to AFM ordering. To investigate what happens to the sys-
tem under pressure we calculated the energy contribution from all exchange
channels for a number of volumes. The result is staggering, starting in the
AFM phase, with a moment of ∼ 0.3µB the contribution from the ~w615 tensor
diverges for a/a0 ∼ 1.015, at the same we see a reversal of dipole moment
at this point. This multipole breaks time reversal symmetry, and hence is de-
tected by neutron diffraction even though the moment integrates to zero, for a
graphical representation of a treakontadipole see Fig 5.1.

Calculations using LDA+DMFT indicates that a mixed hexadecapolar -
dipolar phase should constitute the hidden order. The dipole giving rise to
the small moment seen in experiments, and the hexadecapole to account for
the "hidden" part [88]. Curious about the possibility of different kinds of mul-
tipolar ordering in this compound we performed systematic investigation all
possible multipoles allowed by the experimental restrictions on symmetry. We
identify a multipolar ordering which forbids dipolar ordering on the uranium
site. The multipole is time-reversal odd, accounting for the tiny moment seen
experiment.

The finding of the triakontadipoles in URu2Si2 inspired us to investigate
the magnetic ordering of a few other Uranium based superconductors in the
hexagonal structure, UPd2Al3, UNi2Al3 and UPt3. These are so called heavy-
fermion superconductors, that is, the effective mass of the electrons are orders
of magnitude larger than that of a free electron. This implies poor conductivity,
still they all enter a superconducting phase, coexisting with magnetic ordering.

5.3.5 XI: Multipolar ordering can explain the low spin-moment
in LaFeAsO
The Fe based high Tc superconductors spurred an enormous interest upon dis-
covery. Hope was naturally that another family of superconductors besides the
cuperates wold shed light on the pairing mechanism. The mother compound,
LaFeAsO, did not show signs of strong correlation in terms of mass enhance-
ment, hence the first calculations where done with LDA. Alas, LDA produced
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Figure 5.1: Triakontadipoles w615
3 arranged according to one of the competing so-

lutions in UPt3. Green represents magnetization density pointing outwards from the
sphere, red represents inwards. Pt atoms are represented in red.Here the spheres rep-
resent the angular variation of the direction of the spin magnetization density for the
triakontadipole w615

3 . The darker regions indicate where the spin axis is normal to the
sphere, either outward (green) or inward (red). In both pictures the U atoms are pic-
tured in green and Pd atoms in red. The shaded atoms are located on the subsequent
layer. .

a magnetic moment almost 5 times as large as the experimentally detected
one. Moreover, the z-component of the As position of not determined by sym-
metry, when it is relaxed using LDA the result is far from the experimental
determined one. We show that adding on-site Coulomb interaction within the
LDA+U scheme is enough to remedy all those problems. The results are an-
alyzed in terms of the un-coupled multipoles due to the weak spin-orbit cou-
pling in this system. From our calculations it is clear that the exchange energy
chooses the w41

40 channel instead of the w01
00 channel that would produce a spin

moment.
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5.3.6 XII: Investigation of clustering an magnetism of Co
dopants in ZnO
Spurred by the work of Dietl et. al, showing mean field estimates of Curie
temperatures for various Mn doped p-type semiconductors above room tem-
perature [89], the filed of dilute magnetic semiconductors was extremely ac-
tive for many years [90, 91]. This study investigates clustering of Co in the
wide band-gap semiconductor ZnO. Assessing the applicability of LDA and
LDA+U we argue that LDA+U is the more appropriate of the two, based
on the rather strong localization of Co d-orbitals. The magnetic interactions
within the clusters are found to be weakly anti-ferromagnetic, particularly
when applying LDA+U . Moreover we find strong tendency to form Co nano
clusters, something detrimental to the use of this compound as a possible di-
lute magnetic semiconductor wether or not the clusters would have uncom-
pensated ferromagnetic moments on the edges. Exchange interactions in wide
band-gap semiconductors are short ranged, hence the formation of Co nano
clusters will dilute the sample of possible percolation paths, putting us in su-
per paramagnetic phase, regardless a small moment of the Co clusters. We
also compute the orbital moment of a Co monomer on the Zn sublattice in the
wurtzite structure, amounting to 0.14µB for U = 5eV and J = 1eV.

5.3.7 XIII: Investigations of the magnetic and electronic
structure of SrRuO3

The Ruddlesen-Popper series of Strontium Ruthenates show a spectacular
range of intriguing magnetic properties. From computational as well as exper-
imental point of view the results are quite inconclusive. The calculated mag-
netic moment varies between 1.09-2.0 [92, 93] when different methodology is
applied. Hence we see the need for a thorough assessment of computational
tools for this material. Recent work using LDA+DMFT shows an apparent
spin-flip transition when U is increased (J = U/2) [94]. This is something we
also see in e.g. Paper VIII and might be an implication that multipolar ordering
might be of importance in this compound. In this initial study we see that the
density of states compares reasonably well to experimental results. The mass-
enhancement is also close to experimental results for U ≥ 2eV, considering the
range of the experimental numbers are 3.1 to 6.9 [95, 96]. Magnetic moment is
also within the experimental range. Due to the large scatter of the experimen-
tal data it is difficult to judge which methods is appropriate. However, only
the LDA+DMFT scheme yields a mass enhancement due to correlation ef-
fects, as there is a considerable experimental mass enhancement we conclude
this methods is most suitable. The SPT-FLEX(GHF should be more reliable for
both magnetic and structural properties, with U ∼ 3 as a reasonable estimate
of the effective Coulomb interaction.
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6. Magneto-crystalline anisotropies

Magnetic anisotropy is the result of the coupling between real space and spin
space. It is generally divided into two different types, shape-anisotropy (SA)
originating solely from magnetic dipole-dipole interaction and the magneto-
crystalline anisotropy (MA) originating from both the spin-orbit interaction
and the dipole-dipole interaction. In a thin film the SA is dominating and
prefers a magnetization in the plane of the film, this is usually referred to as
uniaxial anisotropy (or unidirectional under the influence of exchange bias).
In highly symmetric crystals however, the SA is usually small compared to the
MA, the MA is restricted by the symmetry of the crystal, for example cubic
or hexagonal for homogeneous bulk materials. The MA is usually measured
in terms of magneto-crystalline anisotropy energy (MAE), which is the en-
ergy it takes to flip the spin quantization axis from the most preferred one, the
easy-axis, to another direction. From experimental point of view also interface
anisotropy and magneto elastic anisotropy is commonly regarded as different
phenomena then SA and MA, but from a computational perspective these ef-
fects are included as the reduce the symmetry of the computational cell. The
energy contribution from interface and magneto elastic effects can of course
be calculated, simply by comparing properties with bulk phases or unstrained
structure.

In the field of spin-electronics the magnetization often acts as the informa-
tion bearer. For example in a Magnetic Random Access Memory (MRAM)
ferromagnetic films separated by some spacer material forms a unit with dif-
ferent resistance depending on the direction of the magnetization of the fer-
romagnetic films [97, 98]. Similarly, in hard-drives a solid disk with different
domains of weakly coupled magnetic grains are used to store information.
These applications put certain demands on the MAE. If the MAE is too small
the information will be lost due to thermal fluctuations, if it is too high a very
strong write field is needed. A higher MAE leads to the possibility of using
smaller domains for data storage, hence a larger data density is achieved.

The MAE is generally parametrized in terms of the magnetization unit vec-
tors in cartesian coordinates, or directional cosines in spherical coordinates.
For a ferromagnetic grain of volume VG we can define a magnetization unit
vector

m =
M
Ms

= mxx̂+myŷ+mzẑ, (6.1)
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where M is the total magnetization vector and Ms is the total spin-moment
in VG. It is now common to expand the MAE density in terms of mi, due to
time-reversal symmetry only even powers of mi occurs.

For a uniaxial MAE we have a MAE density symmetric around one axis.
Using the z-direction as reference, the deviation from mz is the variable con-
sidered, i.e. 1−m2

z or m2
x +m2

y we can write the expansion as

G = K0 +K1(m2
x +m2

y)
2 +K2(m2

x +m2
y)

4 +K3(m2
x +m2

y)
6 +K4(m2

x +m2
y)

8 + ....
(6.2)

Often spherical coordinates are used in the case of uniaxial anisotropy, giv-
ing m2

x + m2
y = sin2(θ), θ being the polar angle. This leads to the simplified

expression

G = K0 +K1(sin2(θ))2 +K2(sin2(θ))4 +K3(sin2(θ))6 +K4(sin2(θ))8 + ....
(6.3)

Looking at the leading term, i.e. K1 we see that we have two cases, one with
a positive sign yielding a preferred direction along mz, this type of uniaxial
anisotropy is usually referred to as easy-axis anisotropy. The other case, a
negative sign, gives a so called easy-plane anisotropy, i.e. the preferred direc-
tion is in the mx +my plane.

In a cubic symmetry the MAE density is expressed as

G = K0 +K1(m2
xm2

y +m2
ym2

z +m2
z m2

x)+K2m2
xm2

ym2
z + .... (6.4)

Again, looking at the leading term K1 we see that a positive value yields a
six-fold degeneracy with easy-axes along the unit vectors, whereas a negative
value gives an eight-fold degeneracy where the unit vectors instead represent
the hard axes.

The theoretical simulations are mainly focused at the MAE. The MAE is
usually 10−6 to 10−3 eV per atom, hence only in the order of 10−10 to 10−6

of the total energy per atom. This puts very high demands on the numerical
stability of the implementations, the full potential LMTO implementation in
RSPt is well tested over the years, and the DMFT implementation is done in
the same spirit, with great care of numerical stability.

In general the results coincide with experimental data, exceptions are pri-
marily when materials with large structural relaxations (which can be taken
into account, but are rather time consuming) or localized electron.

A strong MA is commonly desired in electronics applications where data
is stored. The main reason for this to increase the data density in the storing
device. An important property is then, of course, that the data is retained over
some period of time. As described in the introduction the information on a
magnetic hard-drive is stored in weakly coupled magnetic grains. The energy
cost of flipping the magnetic moment of a grain is determined by its MAE.
The stability of the magnetization in the grain can therefore be related to the
total magnetic anisotropy energy of a grain, KuV , where V is the volume of
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the grain and Ku the uniaxial anisotropy constant. The energy of thermal fluc-
tuations can be estimated though kBT , where kB is the Boltzmann constant
and T is the temperature in Kelvin. For strong MA’s the statistics of thermally
induced magnetization reversals obeys an Arrhenius form [99], and the fre-
quency of reversals can be estimated from

f ∝ e−KuV/kBT . (6.5)

Hence, with a smaller ratio KuV/kBT the probability of unwanted magneti-
zation reversals increase [99]. As previously mentioned a too large MAE is
not desired as a larger write field is required. This can be seen as HW can be
written as

HW ∝ KU/Ms, (6.6)

where Ms is the saturation magnetic moment [100].
Materials that exhibit strong MA are for example multi-layer structures and

strained materials. The MA is proportional to the square of the spin-orbit cou-
pling constant ξ ∝

1
r

dV
dr , which can reach very high values for heavy atoms.

Therefore it is beneficial to alloy magnetic materials with heavy atoms. One
of the most famous examples are FePt in the L10 structure. Pt is non mag-
netic with a large SO-constant, and Fe is magnetic with small SO-constant,
the MAE between easy- and hard axes are only∼ 1µeV. The FePt compound,
however is extremely anisotropic with MAE ∼ 3 meV [101], also strains can
induce a very large MAE [100]. The effect can be viewed as an induced mo-
ment on the high SO-constant atoms, coupled to the magnetic atoms via the
exchange coupling. Writing the energy difference induced by the SO-coupling
as

∆ESO = ∑
qss′

∆Ess′
q = ∑

qss′
(Ess′

q (n̂1)− (Ess′
q (n̂2)), (6.7)

where q is the atomic species, s, s′ is occupied and unoccupied states, n̂i is the
spin-quantization axis. Using second order perturbation theory in SO coupling
with an atom centered basis set the energy each of the Ess′

q (n̂) can be expressed
as

Ess′
q (n̂) =−∑

ki j
∑
q′

∑
{m}

nkis,qm,q′m′nk js′,q′m′′,qm′′′

×〈qms|HSO(n̂)|qm′′′s′〉〈q′m′′s′|HSO(n̂)|q′m′s〉
εk j− εki

,

(6.8)

where k represents the sampling points in the Brillouin zone, i, j are the
occupied and unoccupied states , q′ is the sites in the unit cell and {m} =
{m,m′,m′′,m′′′}. The basis functions |qlms〉 are specified through the atomic
site q, the l and ms are the orbital and magnetic quantum numbers. For points
in the Brillouin zone with both occupied and unoccupied states close to the
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Fermi level Ess′
q (n̂i) will reach considerable size, as matrix elements in the

nominator are non-zero, but the energy difference in the denominator ap-
proaches 0. This description is utilized in the publications described in the
following section.

6.1 Summary of Papers XIV-XVI
In this section a brief introduction to the work related to magneto crystalline
anisotropy is given.

6.1.1 XIV: A route to nano-laminates with high MAE
In this work we asses a possible route to create nano-laminates with very high
magneto crystalline anisotropy energies. Today many of the hard magnetic
materials are rare earth based, implying high price and fear for supply short-
ages [102], we suggest a nano-laminate composed of Fe and WxRe1−x, where
x = 0.6− 0.8. The method relies on strong hybridization between heavy lig-
ands and lighter ferromagnetic materials. This induces a moment on the heavy
ligands, coupled to the lattice with the strong spin-orbit coupling of the heavy
element, cf. Eq. 6.8. To achieve a strong effect the coupled bands should be
close to the Fermi-level, this indicates that we will have a large DOS close to
the fermi level. This makes manufacturing intrinsically difficult, as the struc-
ture is less likely to be stable, however metastable compounds can now days
be synthesized with standard lab technology. There is also a possibility of en-
hanced exchange coupling between the ferromagnet and the ligands, as a large
DOS close to the Fermi-level can be reduced by the exchange splitting, similar
to Stoner theory of ferromagnetism.

6.1.2 XV: Investigation of the magnetism and electronic
structure of Fe2P
A promising non-rare earth based compound with high MAE is Fe2P, with
the benefit of being composed of cheap and abundant elements. We focus on
the impact of strain on MAE and magnetic moment, showing that the MAE
is strongly affected by strain, while retaining a high magnetic moment. This
indicates the possibility to use Fe2P as a basis for further studies, where dop-
ing can be used to influence the c/a ratio. Heavier dopants could also act to
increase the spin-orbit coupling constant, resulting in a higher MAE.
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6.1.3 XVI: Impact of substrate surface reconstructions on the
MAE of Fe on ZnSe
A thin layer of Fe on ZnSe is a prototypical ferromagnet-semiconductor
interface structure, mainly due to the excellent lattice matching of the rotated
bcc Fe lattice to the ZnSe zinc-blende structure. The magneto crystalline
anisotropy was expected to show a uniaxial in-plane symmetry. The actual
interface shows a quadratic symmetry, however, this is broken already in
the second ZnSe layer below the surface. Initially the overlap between the
ferromagnetic bcc Fe layers and the second semiconductor layer was argued
to be negligible, however Sjöstedt et. al showed that this was not the case, and
even an unrelaxed Fe surface on a sharp (1x1) ZnSe shows uniaxial behavior
[103]. This study is a joint theoretical and experimental work, aiming to
explain the strong reduction in the quadratic term K2 in the expansion of
magneto crystalline energy when comparing growth of Fe on a full coverage
sharp (1x1) interface vs. a half coverage c(2x2) reconstructed interface.
From theoretical perspective we modeled the structures using a sharp (1x1)
interface (model I), a sharp c(2x2) interface (model II) and a c(2x2) interface
with intermixed Fe atoms to the top Zn layer (model III) , see Fig. 6.1. The
actual samples are assumed to contain all model structures to some extent
due to interface defects, the (1x1) sample is likely to consist of mainly model
I, and the c(2x2) sample mainly of model II and III. The atomic positions
of the interfaces in all models are relaxed to their equilibrium positions. The
calculations corroborates the experimental finding of the strong reduction of
the K2 anisotropy constant, the non-vanishing K1 in the calculations of model
I is ascribed to the hybridization between Fe and Se, together with a small
buckling of the Fe atoms. The vanishing of K1 in the experimental study of Fe
on the sharp (1x1) ZnSe sample is not explained, but random distribution of
interface defects and c(2x2) reconstructed domains with different orientations
are possible reasons.
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Figure 6.1: The figure shows a model interface for Fe deposited on Zn-terminated
ZnSe. The yellow colored spheres represents Se atoms, the white Zn atoms, the light
red intermixed Fe atoms and the dark red the first full coverage deposited Fe layer.
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7. Perspectives and Outlook

Computational materials science is evolving very fast. Due to the increase in
computer power we can now do in a matter of weeks what seemed impossible
when I started my graduate studies. This enables more accurate methods to
be implemented, but old implementations constantly have to be updated to
make use of the latest hardware. The field of LDA+DMFT sees plenty of new
fundamental developments in terms of basis sets for the correlated orbitals
and impurity solvers whereas DFT already appears to be a standard method
for first principles materials science.

The developments presented in this theses shows great promise for future
use. Joining the LDA+DMFT scheme with spin-dynamics is a field likely to
have a very beneficial outcome. DMFT provides temperature renormalization
of the electronic structure and therefore also the interatomic interactions and
the local magnetic moments. This leads to temperature dependent Heisen-
berg exchange parameters and likely a more realistic picture. The multipole
analysis should be applied to more systems where the underlying reasons for
magnetic anomalies are not known. It can also be used to extract general-
ized multipolar magnetic exchange parameters, extending the spin-dynamics
scheme to include multipolar dynamics. The energy contributions from the
DFT part of the calculation should also be analyzed on the same footing, so
all energy contributions to the multipoles are available. This would provide an
even more detailed knowledge of the intricate competitions between crystal
field, spin-orbit coupling and exchange-correlation. The LDA+DMFT code
would benefit from an in-house full U-matrix CT-QMC solver making use of
the block diagonal and sparse representation of the many-body basis used in
our Hubbard 1 and ED solvers. Constrained RPA to calculate the screened
Coulomb interaction would also be a great addition to the code. The capabil-
ity of running cluster DMFT calculations is already implemented, and should
be tested and used. For long term development a full GW implementation
should be considered, to provide correct band gap for band-insulators and pa-
rameter free GW+DMFT calculations. This would allow treatment of coupled
quantum dots, doped semiconductors and most of all a fully parameter free
method.
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Summary in Swedish:
Teoretiska studier av magnetism och
elektronkorrelation i fasta material

Magnetism har länge använts av människan för en rad vitt skilda ändamål,
t.ex. kompassen är nästan 1000 år gammal [1]. Idag ser vi direkta tillämpning-
sområden som datalagring, elektriska motorer, transformatorer och högtalare
för att nämna några. Även indirekta effekter av magnetism kan vara väldigt
viktiga, till exempel brukar ett material ha lägre densitet om det är magnetiskt
än om det inte skulle vara det, något som har avgörande konsekvenser för t.ex.
slutförvaring av kärnbränsle. Av dessa anledningar är det önskvärt att förstå
de grundläggande mekanismerna bakom magnetismen, i förhoppning om att
kunna förutsäga ett materials egenskaper och designa nya material med förbät-
trade egenskaper. I många fall är detta svårt eller dyrt att göra experimentellt.
Därför är det önskvärt att simulera materialens egenskaper med hjälp av dator-
simulationer. Materialen består av elektroner och atomkärnor, deras interak-
tioner beskrivs av Diracekvationen, vilken man alltså måste lösa med tillräck-
lig precision med hjälp av datorn. Just magnetism har visat sig synnerligen
komplicerat ur denna aspekt. Anledningen är att magnetism ofta uppkommer
på grund av att några av bindningselektronerna är starkt korrelerade, d.v.s.
egenskaperna för en enskild elektron beror starkt på hur andra elektroner är
positionerade. Det stora flertalet av bindningselektronerna är dock svagt kor-
relerade. Dessa behandlas väl av så kallad täthetsfunktionalteori, i vilken man
ersätter växelverkan mellan individuella elektroner med växelverkan mellan
enskilda elektroner och den laddningstäthet som övriga elektroner ger upphov
till. För denna teori tilldelades dess grundare Walter Kohn Nobelpriset i Kemi
1998. Täthetsfunktionalteorin är exakt om utbytesväxelväxelverkan mellan
elektronen och laddningstätheten är känd, vilket den inte är. Istället tillämpas
approximativa utbytesväxelverkansfunktionaler, där man delvis tappar förmå-
gan att beskriva de starkt korrelerade elektronerna som ger upphov till mag-
netismen. En stor del av denna avhandling handlar om utveckling och imple-
mentation av metoder för att behandla dom starkt korrelerade elektronerna
med en explicit metod, d.v.s. där växelverkan mellan de starkt korrelerade
elektronerna behandlas individuellt, medan dom elektroner som inte kräver
den explicita behandlingen tas om hand med hjälp av täthetsfunktionalteorin.
Den övergripande metoden kallas i detta fall för täthetsfunktionalteori + dy-
namisk medelfältsteori. Förutom beräkningsmetoder har mycket arbete lagts
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på analysmetoder för resultaten, framförallt multipol analys av täthetsmatrisen
och spektralfunktionen samt multipolernas energibidrag. Behovet av utförli-
gare analys är uppenbart då man, för ett f -elektron skal, oftast analyserar en-
dast 7 storheter av totalt 196: spin-moment~s, orbital-moment~l samt laddning
n. Den metod vi utvecklat erbjuder en komplett analys i termer av kopplade
multipoler.

Vid sidan av metodutveckling har egenskaper hos ett flertal intressanta
material undersökts med våra metoder. Här återfinns ett antal Uranbaserade
okonventionella supraledare, URu2Si2, UPd2Al3, UNi2Al3 och UPt3, för
vilka mekanismen bakom supraledningen är okänd. Vi påvisar att en
komplicerad intraatomär magnetisk struktur, s.k. triakontadipoler, (se t.ex.
figur 5.1) är viktiga att ta hänsyn till i dessa material, något som är viktigt
för den grundläggande förståelsen av dem. För högtemperatursupraledaren
LaFeAsO visar vi hur en komplicerad magnetisk struktur ger en
förklaringsmodell till en mängd fenomen som debatteras i forskningsfronten.
Det visar sig att korrelationseffekter inte bara är viktiga för den magnetiska
ordningen i materialet, utan även atomernas jämviktspositioner i kristallen.
Vi har också undersökt δ -fasen av Plutonium. Den experimentellt uppmätta
densiteten är långt under den förväntade för Pu i denna kristallstruktur.
Tidigare beräkningar visade att den låga densiteten kunde bero på
förekomsten av magnetism. Experimentellt har man senare visat att
magnetism inte förekommer. Våra undersökningar indikerar spin-strömmar
som en av de viktigaste orsakerna, tillsammans med en dynamisk skärmning
av det magnetiska momentet, s.k. Kondo effekt. Ett stort antal material med
starkt korrelerade elektroner samt stark spin-ban koppling har analyserats i
termer av multipoler. Detta har lett fram till formuleringen av Katt’s regler,
en uppsättning regler för hur ett elektronskal polariseras då båda dessa
kriterier är uppfyllda. Katt’s regler är komplementära till Hund’s regler för
fria atomer. Det finns även förhoppning om att kunna använda elektronernas
spin, istället för deras laddning, för att konstruera snabbare transistorer, s.k.
spintronik. Detta förutsätter att man kan kontrollera både ledningsförmåga
och magnetism i materialen. Tidigt hoppades man att isolatorer som t.ex.
ZnO dopade med övergångsmetaller skulle ha just de sökta egenskaperna.
Materialen är notoriskt svåra att syntetisera experimentellt, då dopatomerna
lätt bildar kluster, och de magnetiska moment man sedermera mäter
kan komma just från dessa kluster. Genom att simulera representativa
kluster av Co atomer i ZnO visar vi att den magnetiska kopplingen är
antiferromagnetisk, samt att atomerna tenderar att forma nano kluster, något
som gör materialet olämpligt för spintronik-tillämpningar.

Ett annat viktigt fenomen för tillämpningar är magnetokristallin anisotropi
(MA), d.v.s. att magnetismen har en prefererad riktning i kristallen. Utan
denna skulle t.ex. magnetisk lagring av data vara omöjlig, transformatorerna
skulle bara vara en bråkdel så effektiva etc. Material med hög MA innehåller
ofta sällsynta jordartsmetaller. Tillgången på dessa är tidvis problematisk då
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i princip hela produktionen sker i Kina. Vi har undersökt Fe2P, ett lovande
material med hög MA som bara består av billiga metaller, för att utröna de un-
derliggande orsakerna till anisotropin i förhoppning om att i senare arbete des-
igna nya funktionella material baserade på Fe2P. Vi har också arbetat med att
utveckla ett generellt tillvägagångssätt för att hitta nanolaminat med hög MA.
Vi föreslår 5Fe/2W1−xRex, med x = 0.6−0.8. Enligt våra beräkningar är MA
energitätheten i samma storleksordning som hos de bästa materialen baser-
ade på sällsynta jordartsmetaller. Multilager av halvledarmaterial belagda med
ferromagnetiska filmer är en annan viktig materialklass för datalagring. Här
har vi, i samarbete med experiment, undersökt egenskaperna hos Fe belagt på
ZnSe med olika typer av s.k. ytrekonstruktion. Här har vi ökat förståelsen för
vad som bidrar till den starka uniaxiella anisotropin som ses i materialet. Det
visar sig att avsaknaden av ytrekonstruktioner i ett av proven i princip släcker
ut det uniaxiella bidraget, medan prov med c(2x2) rekonstruktion ger ett starkt
bidrag. Figur 6.1 visar atomlagren närmast gränsskiktet mellan Fe och ZnSe
och åskådliggör skillnaden mellan orekonstruerat (1x1), rekonstruerat c(2x2)
och rekonstruerat med inblandning av Fe atomer i det översta Zn skiktet.

Avhandlingen är disponerad enligt följande: kapitel 1 är en något utförli-
gare introduktion på engelska. Kapitel 2 ger en översikt till den grundläggande
kvantmekanik som används i avhandlingen. Kapitel 3 tar upp de approxima-
tioner som görs för att kunna lösa Diracekvationen. Hur det implementeras
tas upp i kapitel 4. Kapitel 5 tar upp multipolanalysen samt de resultat som
den gett upphov till. Slutligen tas grunderna för beskrivningen av magne-
tokristallin anisotropi upp i kapitel 6.
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