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1. Introduction and background

I take a look out my window. There I see the trucks coming and going, de-

livering goods from halfway around the world. Everything we need to keep

our lives going. I see a helicopter passing high above. Transporting people,

desperately in need of aid, to the hospital. In the far distance I can see a con-

struction crane adding concrete blocks to a rising building. All over the city

the same thing. We truly live in the age of the machines. The epitome of which

is the machine I am now turning to, to write this text.

Yet, despite our knowledge of how to build machines for all possible intents

and purposes, when I look into the mirror I see something that we cannot fully

explain. Hidden in our bodies are machines, so powerful yet still so simple,

performing all the tasks necessary for life. True to our nature as curious be-

ings we cannot help but try to explore and explain one of the few frontiers of

scientific knowledge remaining.

1.1 A quick guide to protein folding

The first real piece in this puzzle was uncovered by Watson and Crick in 1953

[59]. They found the blueprints; the structure of DNA. However, DNA is just

a carrier of information, the real workers are the proteins. Over the following

two decades the full process of how the DNA code was transcribed to RNA

and then into an amino acid sequence was discovered. Now, the major question

remaining was how the amino acid sequence folded into its functional form,

the protein. Unfortunately we still do not know the full answer to that question

40 years later.

1.1.1 The protein folding problems

One remarkable property of proteins was first discovered in an experiment

by Christian Anfinsen in 1957 [53, 2]. What he found was that a denatured

protein outside the cell would, when the environment allowed, fold back into

its native functional state. This is a really remarkable property. Proteins are

able to self-assemble without help from any exterior mechanisms.

To be fair, Anfinsen’s experiment was made outside the cell, in vitro. For

folding in the cell, in vivo, there are helper proteins, chaperones. However,

it seems their main purpose is not to guide the folding but to act to isolate
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the protein from the crowded environment of the cell, to prevent errors in the

folding process [19].

Anfinsen’s discovery is the central part of protein folding. It tells that the

initial configuration is not important to the end result. The protein should be

able to fold; regardless of which random unfolded state it starts from and the

only guide is the internal free energy. It also tells some important things to

expect from the energy of the protein.

First of all, since the protein always folds by itself into one unique shape

the natural explanation is that the native state is the state with the lowest free

energy. Furthermore, there has to be a sizable energy difference between the

native state and any other state. If this energy gap was too small then there

would be oscillations between different states because small random thermal

fluctuations from the environment would be enough to push it up to a slightly

higher energy state. This is not observed. Finally the native state cannot be too

topologically complicated. For the protein to fold there has to be an accessible

pathway from the unfolded state to the native state. It is not obvious that a

randomly composed protein would have all of these properties naturally. Most

likely the process of evolution has, during billions of years, selectively chosen

proteins that fold easily and have stable native states.

What is the protein folding problem then? The fact is that proteins do fold

into one unique native structure. Still, three questions needs to be answered

before we can say that we really understand the protein folding process fully.

The first question is why does it fold? The second question is what is the

target? Finally, the third question is how does it get there? Neither of these

questions has been fully answered. A more detailed description of the ques-

tions and of our current level of knowledge requires more information of what

proteins really look like. That I will give in the next section, but first a few

words on another question that hides behind the others. Why? Why do we

need this knowledge, beside the obvious reason of scientific curiosity?

Proteins are everywhere in our bodies. They are involved in everything that

happens. It is then, of course, of terrible importance that they work prop-

erly. I have said that the proteins always fold into their functional native state.

That is not entirely true. Sometimes something goes wrong somewhere in the

process. Proteins that have misfolded can no longer perform their proper func-

tion. On top of that they might aggregate with other misfolded proteins to form

an insoluble plaque. Normally the body has cleaning mechanisms to remove

these things before it gets dangerous, but sometimes these mechanisms are not

working properly.

Alzheimer’s disease, although the exact cause is unknown, is associated

with a build-up of insoluble plaques of misfolded proteins in the brain. Prions

became known with the outbreak of mad cow disease and its human form

Creutzfeldt-Jakob disease. They are essentially proteins that have folded into

the wrong configuration. What is unique about prions is that they are able

to, unlike viruses and bacteria, transmit a disease without any genetic code
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for self-replication. They do it by influencing the folding of other proteins

of the same kind, making them fold into a similar shape as the prion. Other

diseases are also related to the folding of proteins, like Parkinson’s disease,

cystic fibrosis and even normal allergies. If we had a better knowledge of

the protein folding process, then we would gain a better knowledge of these

diseases and it could help the process of finding cures.

Another field where a detailed description of the folding process would be

vital is protein design and redesign. In this case the goal is to create a new,

or modify an existing, protein to perform a particular task. The reason for

designing a protein could be designing a new drug or creating a catalyst for

some particular reaction. The number of possibilities are almost limitless.

1.1.2 The structure of proteins

The protein consists of multiple levels of structure, all shown in Fig. 1.1. Deep

down there is the primary structure, the building blocks. In essence, a protein

is a long chain where each link is an amino acid, commonly called residues.

There are only 20 different types of amino acids used in proteins. All amino

acids share a common part, which makes up the main chain of the protein. The

side chain is where the different types of amino acids differ.

The side chain has very different properties for different amino acids. For

example arginine has a long, positively charged side chain, aspartic acid has a

short negatively charged side chain and cysteine has a side chain with a sulphur

atom able to form disulfide bonds with other cysteines. This difference in the

side chains of the amino acids is what makes each type of protein unique.

Hence, the final shape of the protein and how to get there must somehow be

encoded in the amino acid sequence. Cracking that code has, however, proved

hard.

The next level of structure in the proteins, the secondary structure, is local

structure defined by the pattern of hydrogen bonds between the amino acids.

The two most common types of secondary structure are the α-helix and the

β -sheet. The α-helix is a helical pattern where the carbonyl oxygen of the ith

residue forms a hydrogen bond with the amine hydrogen of the i+4th residue

while β -sheets are formed by two or more straight and flat conformations,

called β -strands, interacting and forming hydrogen bonds between them in a

regular pattern.

The hydrogen bonds, that are the basis of the secondary structure, are formed

between atoms of the main chain. The difference between the different residues

has no effect on the hydrogen-bonding pattern. Still, some residues prefer to

be in one or the other secondary structure. For example proline, with its ring

shape, cannot exist inside a helix without distorting it. Valine does not like

helices either, but the reason here is steric constraints because of the shape of

the side chain. Similarly the other amino acids have different propensities for
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(a)

(b) (c)

Figure 1.1: The different structure levels of the protein. (a) shows how the primary

structure is constructed from a string of amino acids, each consisting of a main chain

part (blue) and a side chain part (red). (b) shows the secondary structure, displaying

an alpha helix (blue) and a beta strand (red) connected by a short loop. The side chains

are not shown here. (c) shows the tertiary structure where the helix and strand from

(b) are included.

different kinds of secondary structure. However, this is not enough to predict

the secondary structure of a protein based on the primary structure to more

than about 80% accuracy. The secondary structure is not totally dependent on

the primary structure either. Some sequences that form an alpha-helix in one

protein forms a beta-strand in another because of the local environment.
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The next structure level is the tertiary structure. This is the full three dimen-

sional structure of the proteins, describing the coordinates for all the atoms.

The tertiary structure defines the function of the protein, since the shape is

tailored for it to perform one specific task. The tailoring could be a cavity in

the protein structure formed in a way to bind a specific molecule to catalyze a

specific reaction, or it could be a structure that is formed in such a way as to

be able to grab hold to a DNA strand.

One feature of the tertiary structure is that it is very compact. In fact the

density is more or less as high as possible. There are two main reasons why the

proteins are so dense, the hydrophobic effect and hydrogen bonding. First of

all, the hydrophobic effect is caused by hydrophobic side chains being exposed

to water. Since hydrophobic molecules cannot form hydrogen bonds with wa-

ter, it is more favorable for them to cluster together, because of entropy rea-

sons. This will cause an unfolded protein to quickly fold into a compact shape

with a hydrophobic core. One of the problems with misfolded proteins is that

they might have a lot of hydrophobic residues at the surface. This will cause

them to aggregate with other misfolded proteins, forming insoluble plaques.

Proteins put in a nonpolar environment will denature very rapidly.

Even though the side chain may be hydrophobic the main chain still con-

tains a carbonyl oxygen and an amide hydrogen. It is energetically unfavor-

able for those if they are not bonded to anything. Hence, the formation of

secondary structure with a regular hydrogen bonding pattern. In the native

structure, essentially all atoms that can form hydrogen bonds also form bonds

[16].

It has been debated whether the protein folding process is driven by one

particular force or should be seen as the sum of many forces. This latter ap-

proach was the earlier interpretation, where the folding process was an intri-

cate mix of the hydrophobic effect, hydrogen bond formation, charged interac-

tions, van der Waals interactions, disulfide bond formation etc. The question is

still open with some arguing that the hydrophobic effect is the most important

part [46, 38], while others argue that hydrogen bonding is the most important

part [50, 64]. The order at which the different levels of structure form is also

disputed. Is the secondary structure formed before, after, or at the same time

as the protein collapses into a compact shape?

1.1.3 Folding pathways

The microscopic forces affecting the protein folding process are known. The

question why proteins fold is, to a large extent, answered. It then seems that

the other two questions, how they fold and what the target is, would be easy to

answer as well. Simply construct an energy function containing all the infor-

mation about the different types of interactions. A simple simulation would
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then show the folding pathways and the final native state. Unfortunately it is

not that simple.

In 1968 Cyrus Levinthal realized something that would later be named

Levinthal’s paradox. The number of possible misfolded configurations of the

average protein is astronomically large. In this immense jungle of faulty con-

figurations, how can the folding protein find the one native state? The typical

protein folds in a matter of microseconds to milliseconds so there has to be

some way for it to search the huge configuration space in a selective manner.

There are, however, some indications of how this mystery is solved.

Folding time can be measured experimentally. Results have shown that the

folding time is correlated with the amount of local connections in the native

state [23]. That is, if there are a lot of interactions between residues that are

close on the chain then the folding will be fast. This will be the case for

structures rich in α-helices. On the other hand, structures with a lot of long-

range interactions, like β -sheet rich structures, will take longer time to fold.

The conclusion from this is that the protein starts off the folding by searching

for local conformations.

There are three main theories of what the folding process looks like. First

there is the framework model, which says that the secondary structure is the

first to form [47]. When that has formed, interactions between the hydrophobic

residues will cause the protein to collapse into a compact shape, followed by a

slow search for the right tertiary structure. The second model, the hydrophobic

collapse model, is the opposite [38]. The folding starts with the hydrophobic

collapse. While in the framework model the tertiary structure depended on

the secondary structure, in the hydrophobic collapse model it is the other way

around. Finally the third option is the nucleation condensation model [3].

This model says that secondary and tertiary structure are formed concurrently.

The folding starts in a nucleus, with the correct local structure formed, and

spreads from there to the unfolded parts. The true description of the folding

might very well be some combination of these, where different proteins using

different pathways.

1.1.4 Simulating folding

The first question anyone who tries to simulate protein folding should ask him-

self or herself is what level of detail is necessary? The most detailed approach

is to do the full quantum-mechanical calculations. While it has the benefits

of giving the best results and not requiring any parameter fitting, it is totally

unfeasible to use it on the scale of a full protein. The level of detail is simply

too high, and even the best computers available today would not be able to

produce a result in a reasonable timeframe. Despite this, quantum mechanical

approaches has some uses in simulating smaller molecules and for simulating
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a protein binding to a ligand, by letting the active sites be described in full

detail and use a more coarse-grained approach for the rest of the protein.

The most common approach is to use all-atom methods. Here, the role

of electrons is simplified. Instead the covalent bonds are explicitly defined

beforehand and effective energy terms are introduced for the long-range in-

teractions. These methods require a large set of parameters to specify things

like the optimal bond angle and van der Waals forces between all different

combinations of atoms. A small simplification of the all-atom method is the

united-atom method, where the methyl hydrogen atoms are also treated im-

plicitly.

An issue is the treatment of the surrounding solvent. We saw the hydropho-

bic effect had a large effect on the folding process. Simply running the sim-

ulation in a vacuum would not work very well. That would leave a lot of

polar residues on the surface of the protein in an energetically unfavorable

unbonded state, while in reality they would form hydrogen bonds with the

water molecules. There are two ways around this. Either introduce the wa-

ter molecules explicitly in the simulation. This would increase the number of

atoms needed to be simulated a lot. The other way is to introduce water im-

plicitly as a mean-field effect, where the average effect of the water per unit

area and the area of the protein exposed to the water is taken into account.

An all-atom approach is regularly combined with a physical force-field,

where the force field is the description of the potential energy of the system,

i.e. an energy function and the set of parameters used. Typically the param-

eters are constructed from either experimental results or quantum chemical

calculations.

There are two main methods of simulation, molecular dynamics and the

Monte Carlo method. The latter is a stochastic method where random changes

in the protein are evaluated based on their effect on the energy of the system.

Monte Carlo methods are generally a good way of finding the minima of a

potential. However, it is not obvious that the way it gets there is in any way

physical. For example, there is no inherent time-scale. For detailed simula-

tions, where the pathway to the target state is sought after, molecular dynamics

is commonly used instead.

In molecular dynamics simulations, contrary to Monte Carlo methods, the

folding is deterministic. Knowing the potential energy of the system, the force

and acceleration on each atom can be calculated through

ma = F =−∇U (1.1)

where m is the atom mass, a the acceleration, F the force and U the potential

energy of the atom. Knowing the acceleration of all atoms in the system is

enough to describe their movement completely. However, it is not possible to

solve this multi-body system in any analytical way so the main approach is

to run computer simulations with a discretized version of this equation with

a time-step of the order of 1015 seconds. The computer power of today then
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allows for simulations of a small folding protein over timescales up to the

order of a few milliseconds [40]. This correlates with the real folding time for

these smaller, often alpha-helix rich, structures.

All-atom molecular dynamics simulations have given some good results. In

[40] 12 different small proteins were folded to an RMSD (root-mean-squared

deviation) between 1 and 4 Å from their native state. However, longer proteins

still poses a major challenge. Not only would they need more computer-time

because of the increased number of atoms. The folding time of the larger pro-

teins is larger, even on the order of seconds for some proteins, so the simula-

tion would have to cover a longer time-interval as well. Longer proteins would

also lead to more problems with Levinthal’s paradox, because the number of

possible conformations grows immensely.

There are ways to increase the speed of molecular dynamics simulations by

introducing things like cut-offs for long range interactions, but to really be able

to simulate larger systems a more coarse-grained approach is necessary. There

are many ways to do this, depending on the level of detail needed [56]. The

simplest version is the one-bead model, which means that the entire amino

acids is represented by one site, normally the central carbon. The problem

with one-bead models is how to encode all the properties of the amino acid,

like size and geometry in just one point. One way to introduce the direction of

the side chain into the system is to change into a two-bead model. In this case

there is a second site at the center of the side chain for each residue, a variant

of which is the United-Residue method [49]. By adding the main chain atoms,

in a four-bead model, the hydrogen-bonding can be described explicitly and

would improve the ability to study the formation of the secondary structure. In

the other direction even more coarse-grained models exists, where the protein

is treated as composed of larger rigid blocks that are interacting with each

other.

Low bead models are often combined with Gō-like models, which means

they have a bias to fold to the known native state. The reason for this is that

the potential of the most coarse-grained models is not good enough to find

the correct native state without a nudge in the right direction. Gō-like models

were introduced to see if it was possible to find a pathway from an unfolded

state to the native state if the native state was known. They only take into

account the interactions between sites in contact in the native structure. All

other interactions can be lumped together as friction [9]. Modern approaches

have improved the Gō-like models and used them for different problems, but

they are still limited to cases where the native interactions are dominating [56].

In the case of misfolding, where non-native interactions play an important role,

the friction approximation is not valid.
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1.2 Outline

The protein folding problem still poses a major challenge for scientists. The

detailed all-atom simulations are still far away from being able to simulate

anything but the smallest proteins. In this thesis I will present a novel ap-

proach to the protein folding problem, using methods learned from theoretical

physics.

The thesis will be divided into two parts. In the first part I will show how to

use a discrete version of the Frenet frame to create a geometrical representation

of the proteins. Chapter 2 will be about the geometry of the main chain and

will largely be based on Paper III. Chapter 3 will extend this to the side chains

and is based on Paper IV and V.

The second part is about defining an energy for the proteins and running

simulations. In Chapter 4 I will talk about solitons and how to use solitons

to model proteins. Although I was part of the creation of the model with

Paper I, I was not directly involved in introducing solitons and developing the

techniques to use them, which was mainly done in [10] and [42]. However,

solitons are an important part of the model and take part in Papers IV-V as

well as in more recent work that are still to be published. Chapter 5 is based

on Paper II and describes a detailed investigation of the phase structure of the

model.
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Part I:
Protein Geometry and Visualization





2. Main chain geometry

The starting point of most protein models is the geometrical representation and

the common approach is to simply use the coordinates of the atoms. A step in

the simulation of a protein would then involve shifting the coordinates of one

or more of the atoms slightly. This will change the distance between atoms and

thus change the energy of the system. However, in most of the usual energy

functions the energy does not just depend on the positions directly. Many of

the potential terms deal with the angles of the bonds. Fortunately these angles

can be calculated if you know the surrounding atom positions.

Another way of doing this is to start from the angles instead. One step of

the simulation would then involve a bend or a twist at one or more points. If

all the angles and bond lengths are known the coordinates can be calculated

uniquely. This is a common approach in systems where local coordinates are

easier to use than global coordinates, i.e. where it is easier to relate one point

in the system to its neighbors than to an outside observer.

In our model we use a coarse-grained description of the protein with the

position of the amino acid given only by the central carbon, the Cα . This

means the protein can be seen as a discrete, piecewise linear, one-dimensional

curve, where the vertices correspond to the central carbons. To describe this

we use the curvature and torsion of the curve to create a discrete Frenet frame

at each site.

In this chapter I will describe the local coordinates we use, starting from

the continuous Frenet frame, and moving on to a discrete frame. This chapter

will, in many ways, follow the procedure in Paper III.

2.1 The Frenet frame

The most common way of describing a continuous and differentiable curve,

c(s), in R
3 is by using the Frenet equation [34]:

d
ds

⎛
⎝ t

n
b

⎞
⎠=

⎛
⎝ 0 κ 0

−κ 0 τ
0 −τ 0

⎞
⎠
⎛
⎝ t

n
b

⎞
⎠ (2.1)

where

t =
ċ
‖ċ‖ ≡ 1

‖ċ‖
dc(s)

ds

19



is the unit tangent vector, pointing in the direction of the curve,

b =
ċ× c̈
‖ċ× c̈‖

is the unit binormal vector,

n = b× t

is the unit normal vector,

κ =
‖ċ× c̈‖
‖ċ‖3

is the curvature and finally

τ =
(ċ× c̈) · ...c
‖ċ× c̈‖2

is the torsion. A right-handed Frenet frame is now formed by the three vectors

(t,n,b) at each point of the curve. With no loss of generality the curve can

be parametrized by arc-length so that ‖ċ‖ = 1 which simplifies the equations

[34].

From (2.1) and the following equations it can be seen that if c(s) is known

then the Frenet frame can be calculated throughout the curve. However, it is

also easy to see that if the curvature and torsion for the curve is known, then

the Frenet frames can also be calculated, but only up to a global rotation and

translation.

2.1.1 The discretized Frenet equations

The problem with the Frenet frame is that it is not well defined for a straight

curve, or for a kink. In a straight segment κ = 0, and n and b have no well

defined direction. The conventional approach is to only define the Frenet equa-

tions where the curve behaves in a good way. In our case this is not possible

since we are working with a discrete curve. In Paper I and II we solved this by

working with a simple discretized version of the Frenet equations

ti+1 =
ti +δκini√

1+δ 2κ2
i

ni+1 =
ni +(−κiti + τibi)√

1+δ 2
(
κ2

i + τ2
i

) (2.2)

bi+1 = ti+1 ×ni+1

where δ is the distance between two vertices on the curve, i.e. the distance

between two consecutive Cα , which can, to a good approximation, be taken as

the constant value 3.8 Å. If ri is the position of the Cα of the ith amino acid
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then (ti,ni,bi) is the local Frenet frame at ri, and ti points in the direction of

ri+1 so that ri+1 = ri +δ ti. Letting δ → 0 gives (2.1) back. As we discovered

there are several drawbacks with using this method. The most obvious is that a

curve is not allowed to turn more than 90◦ at each site. This can be seen from

(2.2) as it is impossible to find a value for κi such that ti+1 has a component

in the direction of −ti. Furthermore a 90◦ turn would require κ → ∞ which is

impractical since turns in proteins are often close to this value.

In the standard Frenet equations in 3-dimensions the curvature is always taken

to be positive. However, in (2.2) the curvature needs to be defined on R to

cover all (forward-facing) directions. The idea to define the curvature for neg-

ative values as well proved useful even when not strictly necessary for geo-

metric reasons, as we will see in the next section.

Figure 2.1: Rotation of DF-frame by use of Euler angles.

2.1.2 The discrete Frenet equations

The discretized Frenet equations proved too problematic to work with so in

Paper III we introduced a fully discrete version of the Frenet equations, based

on rotations with Euler angles. Similar methods are common in other areas,

such as robotics [54], aeronautics [32] and in virtual reality [58].

If the positions of the vertices, (r0 . . .rn), are known, where n is the number

of vertices, then the unit tangent vector can be introduced as

ti =
ri+1 − ri

|ri+1 − ri| .

If the vertices ri+1, ri and ri−1 are not located on a straight line then the unit

binormal vector can be defined as

bi =
ti−1 × ti

|ti−1 × ti|
and the unit normal vector as

ni = bi × ti.
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In this way a Discrete Frenet frame (DF-frame) can be defined at every site

except at r0 and rn. To get the discrete version of (2.1) (DF-equation) we need

a transfer matrix that maps the frame at vertex i to the frame at vertex i+1,⎛
⎝ ti+1

ni+1

bi+1

⎞
⎠= Ti+1,i

⎛
⎝ ti

ni
bi

⎞
⎠ . (2.3)

The DF-frame at i+1 is related to the DF-frame at i by an SO(3) rotation, that

is most easily parametrized in the terms of Euler angles. With the angles φ , θ
and ψ as in Fig. 2.1 the transfer matrix, Ti+1,i looks like

Ti+1,i =

⎛
⎝ cψcφ − cθ sψsφ cψsφ + cθ sψcφ sθ sψ

−sψcφ − cθ cψsφ −sψsφ + cθ cψcφ sθ cψ
sθ sφ −sθ cφ cθ

⎞
⎠

i+1,i

(2.4)

where sφ is short for sinφ and cφ is short for cosφ and similarly for the other

angles. The angles should here be treated as bond variables, defined between

the vertices.

This expression can be further simplified by realizing that the definition of bi
requires that bi+1 · ti = 0 for all i, which gives the condition that

sinθ sinφ = 0

for all bonds. Setting θ = 0 would make bi constant and essentially make

the curve planar. This is not desirable, so based on this we conclude that the

correct interpretation is that φ = 0 everywhere. With that condition the DF-

equation simplifies to⎛
⎝ ti+1

ni+1

bi+1

⎞
⎠=

⎛
⎝ cosψ cosθ sinψ sinθ sinψ

−sinψ cosθ cosψ sinθ cosψ
0 −sinθ cosθ

⎞
⎠

i+1,i

⎛
⎝ ti

ni
bi

⎞
⎠ . (2.5)

From the DF-equation the procedure for calculating the two remaining angles

is straightforward. The discrete bond angle, ψ , is given by

ψi+1,i =−sign(ni+1 · ti)arccos(ti+1 · ti) (2.6)

where sign(ni+1 · ti)≤ 0 for all i, and the discrete torsion angle θ is given by

θi+1,i =−sign(bi+1 ·ni)arccos(bi+1 ·bi) (2.7)

From a geometrical viewpoint the bond angle, ψi+1,i ∈ [0,π], measures the

angle between ti and ti+1 on the plane determined by the three vertices ri, ri+1

and ri+2. The torsion angle, θi+1,i ∈ [−π,π], measures the angle between the

two planes defined by the vertices (ri−1,ri,ri+1) and (ri,ri+1,ri+2), as seen in

Fig. 2.2.
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Figure 2.2: The bond angle ψi+1,i and torsion angle θi+1,i

2.1.3 Curve reconstruction

A common situation is that the bond and torsion angles are known and the

coordinates are unknown. This situation can arise when, like in our model, the

energy of the system depends on the angles and energy minimization proce-

dures are used to find the optimal angles. Then the coordinates of the curve can

be reconstructed in the following way. First, the angles are not sufficient by

themselves. The DF-frame has to be known at one point to be able to use equa-

tion (2.5) and the location of this point has to be known as well. Fortunately,

the choice of both frame and location is rather arbitrary. Different choices for

these only introduce a global translation and rotation to the protein.

In our simulations the following has proved to be good choices for the initial

frame

r0 = δ

⎛
⎝ −cosψ1,0

sinψ1,0

0

⎞
⎠

r1 =

⎛
⎝ 0

0

0

⎞
⎠

t0 =

⎛
⎝ cosψ1,0

−sinψ1,0

0

⎞
⎠

t1 =

⎛
⎝ 1

0

0

⎞
⎠ n1 =

⎛
⎝ 0

1

0

⎞
⎠ b1 =

⎛
⎝ 0

0

1

⎞
⎠ (2.8)

where δ is the bond-length assumed to be constant = 3.8 Å. Repeated use of

equation (2.5) together with the fact that ri+1 = ri + δ ti will give the coordi-

nates for the whole curve.
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2.2 Gauge properties

The choice of using the DF-frame to describe the curve has so far been arbi-

trary. In this section I will try to show that there are deeper reasons to select

that particular framing. In physical systems it is always important to recognize

symmetries and conserved properties. Since we know that we can describe the

protein using only the backbone angles θ and ψ (in our coarse-grained model)

we should also be able to write an energy for the system in terms of those two

angles.

2.2.1 The continuous case

Suppose that we made a rotation in the normal plane of the DF-frame so that(
n
b

)
→

(
e1

e2

)
=

(
cosη −sinη
sinη cosη

)(
n
b

)
(2.9)

where η is some arbitrary angle and η = 0 would give back the standard Frenet

frame, then this would transform the bond and torsion angles as well. How-

ever, the energy of the system should not depend on our choice of basis axis

on the normal plane. The energy has to be invariant under this transformation.

Equation (2.9) acts on the curvature and torsion as following

τ → τ − η̇ (2.10)

κT 3 → κ
(
T 3 cosη −T 2 sinη

)
(2.11)

where T 2 and T 3 belongs to the adjoint basis of SO(3) Lie algebra

T 1 =

⎛
⎝ 0 0 0

0 0 −1

0 1 0

⎞
⎠ T 2 =

⎛
⎝ 0 0 1

0 0 0

−1 0 0

⎞
⎠ T 3 =

⎛
⎝ 0 −1 0

1 0 0

0 0 0

⎞
⎠ .

The transformations (2.10) and (2.11) can be recognized from the Abelian

Higgs model, where the rotation corresponds to a U(1) gauge transformation,

κ corresponds to the complex scalar field φ and τ corresponds to the spatial

components of the U(1) gauge field A1 [44]. Since we require that the energy

of the system being invariant of this gauge transformation a natural starting

point is to use the following gauge invariant free energy from Abelian Higgs

theory

F =

L∫
0

ds
{
|(∂s + iA1)φ |2 +λ

(
|φ |2 −μ2

)2
}
. (2.12)

This concept will be developed further in chapter 4.
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2.2.2 The discrete case

The discrete version of (2.10) and (2.11) can be shown to be

θi+1,i → θi+1,i +Δi −Δi+1 (2.13)

ψi+1,iT 3 → ψi+1,i
(
T 3 cosΔi+1 −T 2 sinΔi+1

)
(2.14)

where we can see that θi+1,i transforms in a similar way as τ so we can denote

this the discrete torsion, θi+1,i ≡ τi+1,i. Similarly we can denote ψi+1,i the

discrete curvature ψi+1,i ≡ κi+1,i. This notation will be used in Chapter 4 and

5.

Of particular interest is the transformation that sends

bi →−bi

ni →−ni

i.e. a rotation of the basis axes on the normal plane by 180◦. This rotation can

be achieved by setting Δi+1 = π and Δk = 0 for all k �= i+1. The transforma-

tion would act on the angles in the following way:

θi+1,i → θi+1,i −π

θi+2,i+1 → θi+2,i+1 +π (2.15)

ψi+1,i →−ψi+1,i.

Note here that the transformation acts on two different θ -values because the

transformation (2.13) tells that both θi+1,i and θi+2,i+1 depends on Δi+1.

Normally the Frenet equation uses only positive curvature. From equation

(2.6) it follows that ψ-angles calculated from a known curve will always be

positive as well. However, there is nothing in the DF-equations that prevents

it from working with negative ψ so we can easily extend the range of ψ to

[−π,π]. The extension of the range also means that ψ and θ covers every di-

rection twice, so there should be a Z2-symmetry between negative and positive

ψ values. This is exactly the symmetry we have found in (2.15).

2.3 Main chain statistics

The protein data bank (PDB) [6] is the collection of all known protein struc-

tures and at the time of writing it has about 80,000 entries. While this is a very

small subset of all existing proteins in nature, it is still a vast amount of data. A

first test of the usability in describing the protein main chain in terms of ψ and

θ angles would be to look at their statistical distribution in known proteins.

Regular patterns should appear for regular structure, like the different kinds of

secondary structure.
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Figure 2.3: Torsion angles of the full protein main chain.

2.3.1 Ramachandran plot

Before going into the results of our method it is good to take a look at the

conventional way of looking at statistical angle distributions. The regular way

is to look at the torsion angles of the main chain, as they are shown in Fig.

2.3 [29]. The peptide bond angle, ωrama is fixed at ωrama = π except in some

rare occasions in prolines where ωrama = 0 [60]. The bond angles can also be

considered fixed so the whole main chain can be encoded in the two remaining

torsion angles φrama and ψrama. The plot of φrama and ψrama angles is called a

Ramachandran plot (Fig. 2.4).

Different amino acids can fill different regions in the Ramachandran plot.

The two most distinct are proline and glycine. Proline has a cyclic structure,

which makes it very rigid and it can only exist in certain distinct regions of the

Ramachandran plot. Glycine on the other hand, which is essentially lacking a

side chain, is very free and can exist in regions of the Ramachandran forbidden

for the other residues [29].

The Ramachandran plot can be used for structure validation, where the

φrama and ψrama values of a new structure can be plotted. A large number

of points in regions that are supposed to be forbidden would indicate that the

structure is of low quality [28].

2.3.2 DF-plot and stereographic projection

The Ramachandran angles φrama and ψrama are defined on a torus, which

makes them easy to plot on a plane. The angles in the DF-equations, on the

other hand, are defined on a sphere (where we have restricted the range of ψ
to only positive values to avoid degeneracies in the plot). While it is hard to

make a straightforward interpretation of the Ramachandran plot just by look-

ing at it, the plot of the angles from the DF-equations (the DF-plot) has a very

clear interpretation. Think of a sphere with its center at the site i, the north

pole in the direction of site i+1 and the prime meridian in the direction of the
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Figure 2.4: The Ramachandran plot for the proteins in the PDB with less than 2 Å

resolution. The empty regions are either sterically forbidden or energetically unfavor-

able. The dense regions are denoted after which kind of structure they represent. α
stands for α-helices, β for β -sheets and Lα stands for left-handed α helices. Long

left-handed helices are very uncommon but single residues can still bend in a way

similar to a left-handed helix.

site i-1. The point on this sphere given by (ψi+1,i,θi+1,i) would then give the

direction towards site i+2.

Plotting the data from the whole PDB database in the same manner as the

Ramachandran plot produces a circular pattern around the north pole of the

sphere. For visual purposes it is better to show this in a stereographic pro-

jection rather than on a sphere. ψi+1,i and θi+1,i can be transformed to polar

stereographic coordinates, r and ϕ , through

r =
1− cosψ

sinψ

ϕ = θ (2.16)

where r = 0 would correspond to the north pole and the south pole would be

at r → ∞. There are two forbidden regions (best seen in Fig. 2.6) inside and

outside the circular pattern. The outside region is forbidden because of steric

constraints, while the inner region is perhaps not technically forbidden but

energetically very unfavorable.
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2.3.3 Secondary structure analysis

A first example of using the DF-plot would be to see how the different sec-

ondary structures of the proteins manifest themselves in the plot. The expecta-

tion is to find a similar pattern as in the Ramachandran plot with well-defined

regions corresponding to different kinds of secondary structure. The differ-

ence is that, while the Ramachandran angles are defined on a site, ψi+1,i and

θi+1,i are defined between site i and i+1.

The figures in this section will all be based on the PDB database, using

all items containing proteins with less than 2 Å resolution. The choice of

resolution is to get as high quality figures as possible. The result will be the

same even with a more refined set of data.

(a) (b)

Figure 2.5: Stereographic DF-plot showing the angles between two residues denoted

in the PDB database as α-helices (a) and β -sheets (b).

In Fig. 2.5 the DF-plot of α-helices and β -sheets can be seen. A deeper

analysis shows that the values for α-helices are centered around (ψ,θ) ∼(π
2 ,1

)
and β -sheets are centered around (ψ,θ)∼ (1,−π). The third region in

Fig. 2.4, the Lα region, will be treated more carefully in chapter 3.

Fig. 2.6 shows the loop regions of the protein as both a Ramachandran

and a DF-plot. In the DF-plot two distinct rings can be seen; one with β -like

behavior (ψ ∼ 1) and one with α-like behavior (ψ ∼ π
2 ). In the Ramachandran

plot the angles at one site is used, but in the DF-plot the angles are defined on

the bond between two sites. For regular structure like helices and sheets this

would make no big difference. We expect to see roughly the same thing, i.e.

small, well defined, densely populated areas. However, in the loop regions

there might be a difference in what information is obtainable in the two plots,

but the features of the DF-plot have not been studied extensively yet.
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(a) (b)

Figure 2.6: a) Stereographic DF-plot showing the angles between two residues de-

noted in the PDB database as having no secondary structure. b) Ramachandran plot

of residues with no secondary structure.
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3. Side chain geometry

The previous chapter introduced a way to describe the main chain of the pro-

tein in terms of the angles ψ and θ . However, to be complete the description

also has to include the side chains. In this chapter I will show different meth-

ods for describing and visualizing the atoms of the side chains. I will also do

a summary of the work in paper IV to analyze the Lα region from Fig. 2.4.

Finally I will show an analysis of the Villin headpiece, which is one of the

most studied smaller proteins, in terms of main chain and side chain angles.

3.1 Side chain rotamers

A good start to a chapter on side chain geometry is to look at the conventional

methods. First of all the position of the Cβ , the first atom of the side chains of

all amino acids, except for glycine that lacks a side chain. The conventional

way of looking at it is that the position of the Cβ is fixed if the location of the C,

N and Cα of the main chain is known because of the tetrahedrical symmetry of

the bonds around the Cα . This is a notion that has been increasingly criticized

in later studies [5], and we investigate this symmetry in Paper V and show that,

contrary to the older notion, the angles have secondary structure dependence.

Similar to the conventional description of the main chain, the side chain

bond angles are assumed to be more or less fixed and the side chain is assumed

to be fully described by the torsion angles [18]. The side chains can look

very different for different amino acids so the definitions of the torsion angles

needed to describe the side chain are different as well. As an example look

at Fig. 3.1. In the left part of this figure glutamic acid is shown with the

first two torsion angles on the side chain, χ1 and χ2. The right part of the

figure is called a Janin plot. It shows χ1 versus χ2, and the plot really shows

the three different low energy conformations, the rotamers, for the side chain

torsion angles; trans, gauche+ and gauche- with the angles π , +π
3 and −π

3
respectively. Certain combinations of these are more common than others. In

Fig. 3.1 the combination χ1 in trans and χ2 in gauche- is very common while

χ1 and χ2 in gauche+ is more or less forbidden because of steric clashes.

Statistical probabilities for the different rotamers of all amino acids have

been collected in rotamer libraries [31]. They can be used for recreating the

side chain if the angles are unknown. Different kinds of libraries exists. Some

only depend on the type of residue, others depend on the secondary structure

and still others depend on the local environment of the residue.
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(a) (b)

Figure 3.1: a) Glutamic acid with the first two side chain rotamer angles shown. b)

Janin plot for glutamic acid.

3.2 DF-frame and side chains

The problem with using the tetrahedral symmetry to define the position of the

Cβ and the torsion angles to define the rest of the side chain is that both of these

are essentially local descriptions. They give very little information about the

direction of the side chain in comparison with the main chain and surrounding

residues. The Janin plot also has the same problem as the Ramachandran plot

in that it is hard to make a straight-forward geometrical interpretation of what

it means.

3.2.1 The Cβ position

With the DF-frame defined at each residue, the logical way of visualizing the

position of the Cβ would be to plot it in that frame. Fig. 3.2a shows the

distribution of possible directions to the Cβ . The center of the sphere is located

at the Cα and the radius is the same as the typical length from Cα to Cβ . In

this plot the location of the Cα of the residues before and after are included as

well, with the proper distances. This can give an idea of the direction of the

side chain, and possible interactions, with regards to nearby residues.

In Fig. 3.2b the different directions are categorized according to secondary

structure. There are two big regions corresponding to the two main secondary

structures connected by a loop region in a horse-shoe shaped pattern. In the

lower right there is also an isolated island corresponding to the Lα region

in the Ramachandran plot, although this plot does not include any glycines

because of their lack of a Cβ . This island will be discussed further later in this

chapter.
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From Fig. 3.2b we see that the position of the Cβ is clearly dependent on the

secondary structure. If you only regard it as fixed by the tetrahedral symmetry

N-Cα -C-Cβ , which is basically true, then you risk missing the bigger picture,

i.e. the secondary structure dependent rotation of the tetrahedron.

(a) (b) (c)

Figure 3.2: a) The distribution of Cβ atoms in the DF-frame. The position of the next

and previous residue is shown for comparison. b) The direction of the Cβ depends

heavily on the secondary structure. c) The position of the Cγ in the DF-frame. The

three rotamers can be seen, but also a split depending on the secondary structure not

seen in the Janin plot. Note that the cyclical shape of proline separates it from the

other amino acids.

3.2.2 The Cγ position and further

Why stop at the Cβ ? Most side chains are longer than that and for most of

them the next atom after the Cβ is the Cγ . The DF-plot for Cγ can be seen

in Fig. 3.2c. The position of the Cγ in relation to the Cβ is only determined

by χ1 as the bond angle is more or less fixed. Hence, we expect to see the

three rotamers and they are easily found in the figure. However, similar to the

location of the Cβ , the position of the Cγ depends on the secondary structure.

A fact which is not seen in the Janin plot.

Proline with its typical cyclical structure bends in a completely different

way than the other residues. The proline spots can be seen in the right part of

Fig. 3.2c.

This method can be used to plot the positions of atoms further out in the side

chain as well. However, the problem is that the difference between residues

gets larger and the number of possible configurations grows the further you

go in the side chain. Already in the Cγ picture there are eight distinct spots.

Eventually the lack of data will make it impossible to go further.
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3.3 Cβ frame

Another frame that can be useful is the Cβ frame. It is defined by rotating

the DF-frame so that north is in the direction of the line from Cα to Cβ and

moving the center to the Cβ . Formally the definition is

si =
rCβ ,i − rCα ,i∣∣∣rCβ ,i − rCα ,i

∣∣∣
pi =

si × ti

|si × ti| (3.1)

qi = si ×pi

where rCβ ,i is the location of the Cβ , rCα ,i the location of the Cα and ti the

tangent vector of the DF-frame at i. Then (si,pi,qi) forms an orthonormal

frame. This frame is mainly used together with the stereographic projection

using the same procedure as in 2.3.2.

In Fig. 3.3a the position of the Cγ is shown in the stereographic Cβ frame. In

this figure the three-fold symmetry of the rotamers is more evident than in the

DF-frame, but the difference between α-like behavior and β -like behavior is

still evident.

Continuing from the Cβ frame, other frames, like the Cγ frame, can be

defined in a similar manner.

(a) (b)

Figure 3.3: a) The position of the Cγ in the stereographic Cβ frame. The rotamers are

denoted. b) The position of the Cγ for residues with Cβ in the Lα island.

3.4 Investigating the Lα island
In Paper IV we made an effort to understand the small Lα island, seen in Fig.

3.2b. It can easily be shown that the residues in the island are the same that
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are in the Lα region in the Ramachandran plot (Fig. 2.4), except for glycine

that lacks a Cβ and hence will not show in the DF-plot.

In Fig. 3.3b we can see the Cγ -angles of the sites in the island. From this

figure it follows that the most common configuration is χ1 in trans followed by

g-, while g+ is almost nonexistant. A first step in analyzing these two regions

is to look at the distribution of residues shown in Fig. 3.4.

In the figure we can see that there is a large difference in the distribution

of residues between the g- conformation and the trans conformation. The

trans conformation is entirely dominated by the two residues asparagine and

aspartic acid. Visual inspection of the structure indicates that the reason for

this specificity might be interactions between the carbonyl groups in the main

chain and the side chain, which would agree with the result in [15].

The g- conformation is much less residue specific, even though asparagine

and aspartic acid still dominates. Visual inspection of the structure yields no

obvious result even though it might be possible that carbonyl-carbonyl inter-

actions still has some effect.

Figure 3.4: The distribution of the different amino acids in the g- island (left) and

trans island (right).

Another thing to consider is, what does a residue in the Lα island mean for

the curvature of the main chain? The Lα region in the Ramachandran plot has

been shown to correspond to left handed helices [48]. Continuous left handed

helices are forbidden by steric constraints unless they are solely composed of

glycine. Hence, we expect to find residues in the Lα island as isolated parts of

loops connecting regular secondary structure. The DF-plot is defined on the

bond between two sites so it is only possible to plot the situation before and

after the island. This is shown in Fig. 3.5.

Finally the different regions in Fig. 3.5 can be analyzed to see how they

connect to each other and what type of loop this corresponds to. We have

identified four different types of loops, shown in Fig. 3.6. One of which, 3.6a,

connects an α-helix with a β -strand, while the other three are different types

of β -loop-β configurations. There is also the possibility of a combination of
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(a) (b)

Figure 3.5: The distribution of DF-angles a) before a site in the Lα island and b) after

the Lα island.

3.6c and 3.6d, where two sites in the Lα island coincide in the same loop, or

the even more rare occasion with three sites where the middle one keeps ψ
and θ constant at

(π
2 ,−π

3

)
. Both 3.6c and 3.6d usually contains glycines in

the loops as well, to reduce steric problems, but this has not been studied in

detail.

(a) (b)

(c) (d)

Figure 3.6: Four different types of loops containing sites in the Lα island. The transi-

tion caused by that site is marked with a bright red arrow.
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(a) (b)

Figure 3.7: a) The structure of chicken villin headpiece based on 1YRF in the PDB.

b) The trajectory of 1YRF in the DF-plot with the density distribution for all proteins

shown in the background.

3.5 Chicken villin headpiece (1YRF) geometry

To end the part of the thesis about geometry I would like to utilize the methods

developed to study one particular protein, the chicken villin headpiece (1YRF

in the PDB) [11]. This is a simple, small protein that has been studied for

many different purposes, using many different methods.

1YRF is a short, 35 residue, protein with a 3-helix structure as seen in Fig.

3.7a. Using the methods developed in chapter 2 it is possible to construct the

DF-frame along the main chain and calculate the angles ψ and θ . The DF-plot

of 1YRF in Fig. 3.7b shows heavy concentration in the α-helical region, as

expected, while in the irregular loop regions the angles varies. The regular

structure can be easily modelled. The real challenge is to find a good model to

describe the loops.

Notable is that the loop regions are not inherently irregular. Fig. 3.8 shows

the two helix-loop-helix motifs in 1YRF. There are repeating patterns, like the

tendency for the helix to end by shifting θ by π to the opposite side of the plot.

The other points also seems to coincide with higher density areas, indicating

that there is some kind of order to the loops. Part 2 of this thesis will deal with

the question of how to classify loops, and how to predict and simulate them.

Finally the Cβ s in the loop regions can be viewed in the DF-frame (Fig.

3.9). This plot is limited in its ability to study loop regions since it does not

show glycines, which are very common in irregular structure because of their

flexibility. Still, it displays the same pattern as the DF-plot in that the loop

region corresponds to a transition from one stable, stationary state, to another.

In this case from one α-helix to the next, through an irregular loop region that

passes through the β side of the figure.
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(a) (b)

Figure 3.8: The loop regions of 1YRF in the DF-plot. a) shows the region from site

50 to 57 in the PDB file and b) shows 60 to 65.

(a) (b)

Figure 3.9: The Cβ s of the loop regions of 1YRF in the DF-plot. a) shows the first

loop. The first loop contains a glycine which is not seen in this plot, so the residue

before and after the glycine has been connected with a black dotted line to show that

it is not a real connection. b) shows the second loop.
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Part II:
Protein Modeling





4. A soliton model of proteins

The first part of this thesis introduced a model for how to describe the ge-

ometry of proteins in terms of DF-frames. However, it also introduced a few

concepts that were left hanging without any deeper explanation of their use.

In 2.2.1 the connection to Abelian-Higgs models were hinted at. In 2.2.2 a Z2

symmetry was introduced, only to be left out of the rest of the chapter. In this

chapter these will be critical pieces in the task of solving the question posed

in 3.5, how to model the loop regions of the protein. The central concept in

solving the problem will be the mathematical structure known as solitons.

In this chapter I will show how solitons can be found in the structure of

the main chain of proteins and how they can be described by a variant of the

discrete non-linear Schrödinger equation.

In this part of the thesis I will use a slightly different notation than in the

first part to get a better agreement with published papers. Instead of the angles

(ψ,θ) I will talk about the discrete curvature and torsion (κ,τ). They are

equivalent definitions as discussed in 2.2.2.

4.1 Introduction to solitons

Solitons were first described by the Scotsman John Scott Russell in 1834,

when he saw, in the Union Canal in Scotland, a wave that was "assuming
the form of a large solitary elevation, a rounded, smooth and well-defined
heap of water, which continued its course along the channel apparently with-
out change of form or diminution of speed" [51]. This wave that Scott Russell

saw was later shown to be accurately described by an exact solution of the

Korteweg-de Vries equation [35]. During the last century solitons have been

found in many different fields, from superconductivity [13] to cosmic strings

and magnetic monopoles [41]. They have also proved useful for data trans-

mission in fiber optics [13].

Generally a soliton is a solitary wave, which is localized, non-dispersive and

interacts with other solitons without losing energy. In essence, they are waves

that in many ways behaves like particles. The non-dispersive nature of solitons

is what makes them good for long distance data transmissions. Contrary to

ordinary waves the soliton cannot be described as local perturbations around

some ground state. Solitons are inherently non-linear phenomena and emerge

when non-linear interactions combine elementary constituents into a collective
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excitation, and can be shown to be the solution to many different kinds of non-

linear equations.

In biological molecules the concept of solitons was first introduced by Alexan-

der Davydov as a way to describe lossless energy transfer in α-helices [14].

At the time it solved a big problem about how the energy from ATP-hydrolysis

is transferred through the protein. Later, similar methods have been applied to

DNA as well [63].

4.1.1 A soliton view of the main chain

The idea of interpreting the main chain of proteins as a sequence of soliton-

(anti)soliton pairs was first introduced in [10]. Here I will return to the protein

1YRF that was discussed in 3.5. In Fig. 4.1a the curvature and torsion of

1YRF is plotted. The fluctuations of the torsion indicate the locations of the

loop regions, but the soliton structure is hidden.

However, using the Z2 gauge transformation defined in 2.2.2, as in Fig.

4.1b, shows a different picture emerging. Here κ has the appearance of a

topological soliton-(anti)soliton pair in a double-well potential. The two soli-

tons are located in the loop regions of the protein and interpolate between the

two ground-states, i.e. κ = π
2 and κ =−π

2 . Note here that the chirality of the

helices is the same regardless of the sign of κ .

(a) (b)

Figure 4.1: a) The curvature and torsion of 1YRF, with standard positive curvature,

along the chain. b) Curvature and torsion after gauge transformation.

The basis of our model is that all proteins can be described as a sequence

of solitons. Recent studies have shown that a large subset of the proteins in

the PDB can indeed be accurately described by a combination of just a few

hundreds of model solitons [37]. However, there is currently no good model

to uniquely identify the locations of the solitons and this can be a tricky matter

if the data is noisy.
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4.2 Abelian Higgs model

The last section showed that proteins display a structure that is very reminis-

cent of solitons. The task is then to find an equation that can properly describe

them. In 2.2.1 the connection was made to Abelian Higgs models and the

following energy was suggested as a starting point

F =

L∫
0

ds
{
|(∂s + iA1)φ |2 +λ

(
|φ |2 −μ2

)2
}
. (4.1)

Higgs models and spontaneous symmetry breaking have gained fame lately

with the construction of LHC and the search for the Higgs boson [24]. A three-

dimensional version of this model is known as the Ginzburg-Landau model

of superconductivity [41]. In our case we are interested in a discrete one-

dimensional version, to work with a model featuring discrete one-dimensional

curves. The following energy function was first introduced in Paper I, and

later extended in [10] and [42]

E =−
N−1

∑
i=1

2κi+1κi +
N

∑
i=1

{
2κ2

i + c
(
κ2

i −m2
)2

+bκ2
i τ2

i

}

+
N

∑
i=1

{
dτi + eτ2

i +qκ2
i τi

}
. (4.2)

Here the first and second sums comes from the discretization of (4.1). In

the third sum the first term is the one-dimensional Chern-Simons term, which

through the sign of d controls the chirality of the structure; the second term is

a Proca mass term and the third is a regulator. More terms can be added to the

energy (4.2) only as long as they are gauge invariant.

The parameters (b,c,d,e,m,q) are global in the sense that they are specific

to one particular type of supersecondary structure, i.e. soliton, but do not

depend directly on the local structure of the amino acids.

One issue with this energy is that the curvature and torsion are angles and

defined modulo 2π . This periodicity is not taken into account in the energy,

which means that two identical curves could have different energies.

4.2.1 The nonlinear Schrödinger equation

In [42] it was shown that the energy (4.2) could be directly related to general-

ized discrete nonlinear Schrödinger equations (GDNLS) and I will here sum-

marize the results. The discrete nonlinear Schrödinger equation have been

used in many diverse fields [33], like in the study of polarons in molecular

crystals [26], Bose-Einstein condensates [17] and in the field of proteins to

study Davydov’s soliton [52].
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To see the correspondence with the GDNLS equation τ can be removed

from (4.2) by using the equation of motion, so that

τi =−1

2

d +qκ2
i

e+bκ2
i
. (4.3)

With τ substituted out, the remaining equation of motion looks like

κi+1 −2κi +κi−1 =
dU [κi]

dκ2
i

(4.4)

where

U [κi] =−
(

bd − eq
2b

)2
1

e+bκ2
i
−
(

q2 +8bcm2

4b

)
κ2

i + cκ4. (4.5)

If the parameters of the equation are chosen in such a way that the potential

U [κi] has two separate local minima, then there exists a dark soliton solution

that interpolates between the two minima [25]. Typically these minima will

be located in the vicinity of κ = ±m. The parameter m can then be adjusted

to fit typical values for proteins, i.e. m ≈ ±π
2 for α-helices and m ≈ ±1 for

β -sheets.

To solve (4.4) it is sufficient to find a fixed point of

κ(n+1)
i = κ(n)

i − ε

⎧⎪⎨
⎪⎩κ(n)

i

dU
[
κ(n)

i

]
d
(

κ(n)
i

)2
−
(

κ(n)
i+1 −2κ(n)

i +κ(n)
i+1

)⎫⎪⎬
⎪⎭ (4.6)

where κ(n)
i is the nth iteration of some initial configuration and ε is an arbi-

trary, but sufficiently small, constant.

4.3 Building proteins
The geometrical tools defined in the geometry part of the thesis, the concept

of solitons and the energy defined in the last section is sufficient to create a

phenomenological model for proteins. The only thing remaining is to combine

them.

In 4.1.1 it was shown that a sequence of solitons could be used to describe

the curvature of a protein. Further, in 4.2 an energy was constructed, with six

free parameters, that exhibits soliton solutions. Six parameters should then be

enough to describe one particular type of soliton. However, the solitons in 4.2

are symmetric while real proteins might be asymmetric, e.g. a loop taking an

α-helix to a β -strand. To deal with this situation the parameters m and c are

allowed to be asymmetric as well so that

m =

{
m1

m2

N < NA
N ≥ NA
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c =
{

c1

c2

N < NA
N ≥ NA

(4.7)

where NA is some site inside the soliton, generally, but not necessarily, the

center of the soliton.

4.3.1 Amino acid size

The components introduced so far have not taken the size of the amino acids

into account. This is an important factor, especially when considering that

self-intersections should be forbidden during folding. For this reason we have

added the following self-avoiding condition to our model∣∣ri − r j
∣∣> z (4.8)

for all (ri,r j), where ri and r j are the locations of site i and j respectively and

z a parameter with a typical value of 3.8 Å. The drawback with this method is

that it can not give 100 % certainty of no self-intersections occurring. Since

the model deals with the angles a small change in one angle in one site may

lead to a large shift further along the curve.

Another thing that is important, but not taken into consideration in the present

model is the difference between the sizes of the different side chains. Many

different models to treat the side chains exists, as described in 1.1.4, with

different accuracy [55].

In paper V we introduced an energy function to describe the location of

the Cβ , which could potentially be used in the future to add the geometrical

restrictions of the side chains into the model. I will discuss this energy more

in Section 4.5.

4.3.2 Treatment of the solvent

The different ways of treating the solvent were outlined in 1.1.4. Our model is

too coarse-grained to use explicit solvent so a more implicit approach is nec-

essary. Conventional methods of implicit solvent rely on that the enormous

amount of solvent molecules can be treated in a mean field theory. For exam-

ple, the Coloumb force in a continuous medium between two charges qi and

q j can be described as

F =
1

εr

qiq j

4πε0r2
i j

where εr is the dielectric constant of the solvent. Protein models in general

use more complete models, like the generalized Born model [45], and take

into account the exposed surface area as well [1].

In our model we take a different approach and instead assume that the effect

of the solvent implicitly affects the soliton parameters.
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4.3.3 Parameter fitting

The parameters in the equation (4.2) cannot be derived from first principles.

Instead they have to be fitted by comparison to real solitons from proteins. For

given parameters the κ values for the soliton solution can be found by starting

from a step-function and then running the iteration in equation (4.6) until it

converges and τ can then be calculated through equation (4.3).

For geometrical reasons it is reasonable to define τi between κi−1 and κi, so

that in equation (4.3)

κi → κi +κi−1

2
.

This is equivalent to the energy in equation (4.2) if the same substitution is

made in the terms bκ2τ2 and qκ2τ .

There are two ways to compare the simulated (κi,τi) values to the real soliton in

question. Either calculate the (κi,τi) values for the real soliton by the procedure

in 2.1.2, or calculate the curve corresponding to the simulated (κi,τi) values by

the procedure in 2.1.3 and then look at the RMSD between the two curves.

A simple Metropolis Monte Carlo procedure [22] is then enough to adapt the

parameters to give as good fit as possible to the real soliton.

While the method just described works well for a single soliton, finding pa-

rameters for a whole protein, which generally is a multi-soliton configuration,

is more complicated. Solitons corresponds to helix-loop-helix motifs and a

larger protein can be constructed by gluing two solitons together inside a he-

lix. However, there is no rule as to how much of the helix should be included

in each soliton, i.e. where they should be glued together. Empirical tests have

shown that it is often convenient to let one of the solitons describe most of the

helix.

4.3.4 Future development

There are several obvious areas where an improved model would be good.

I have already mentioned the question of the size of the side chains, where

a better self-avoiding calculation would be helpful, but the most important

improvement would be if a method was found to directly relate the parameter

values to the amino acid sequence instead of using a fitting procedure.

Another thing that could be interesting is a deeper study of solitons in pro-

teins, to see how they form and annihilate. It would be really good to find

a way to uniquely define where they are located in the real proteins as well,

instead of more or less putting them in by hand.

So far the method has only really been tested on structures rich in α-helices,

and α-helices are inherently local objects because their stability depends on

formation of hydrogen bonds within the helix. β -sheets, on the other hand, are

stabilized by forming hydrogen bonds between β -strands that may be far away

46



on the chain. It is an open question if our method, where non-local interactions

are not treated in an explicit manner, can handle β -sheets.

4.4 Simulations

The study of simulating proteins using our model is still in its infancy. So far,

the main simulations have been done by fitting parameters to one particular

protein and then seeing if its possible to get to the correct shape of the protein

by minimizing the energy, starting from either a straight line or one long helix.

We have found two different methods to create solitons from a helix. The

easy way is to put them there by hand, by making gauge transformations at

the correct positions to start with. The gauge transformations do not affect the

shape of the curve but it takes the curvature much closer to the target.

The other method has to do with introducing an anti-ferromagnetic param-

eter to create a soliton-(anti)soliton pair to shift κ from π
2 to −π

2 and changing

the shape of the double well potential to make the shift easier. In general that

method is harder to work with and has a much higher risk of getting stuck in

the wrong configuration. In the energy the addition of the anti-ferromagnetic

term would correspond to adding a parameter a to the first sum in equation

(4.2) so that the energy changes to

E =
N−1

∑
i=1

2ai+1,iκi+1κi + . . .

with the standard ferromagnetic value a = −1 used for all sites except the

center of the solitons where a = 1. The method also requires the parameter

c to start at c = 0. Both of these parameters then slowly attain their correct

equilibrium value during the early stages of the simulation.

4.4.1 Monte Carlo

The energy minimization is conducted through a Markovian Monte Carlo al-

gorithm, where at each step the angle is perturbed at one point on the chain.

The resulting state is then kept by the following, standard heat bath [20, 7],

probability

P =
x

1+ x
with x = exp

{
− ΔE

kBT

}
(4.9)

with ΔE being the energy difference between the new and the old state. All

simulations are run at low temperature, so kT is chosen in such a way that

the results belong to the collapsed phase. This will be discussed further in the

next chapter. Note that there is no direct relation between the Monte Carlo

temperature T and the real temperature.
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There is also no direct relation between the number of Monte Carlo steps

needed and the time of folding. Since one step only changes an angle, the

actual movement of the chain could be very different for two different steps,

and hence the time needed would be different. It might still be possible to re-

late the two concepts seeing that a folding that requires few Monte Carlo steps

would probably be quick in real life as well. One possibility is to assign an av-

erage time for each Monte Carlo step, where the time depends on the average

number of points affected by the move and hence the length of the chain.

4.4.2 1YRF revisited

Returning to the chicken villin 1YRF discussed in Section 3.5 and 4.1.1 for a

final time, it is time to look at how well the model can describe it. 1YRF was

first modeled in Paper V and later folded from a straight curve in [36]. The for-

mer showed that it was possible to find parameters to describe 1YRF with an

accuracy of about 0.4 Å. But it also showed that the average distance between

the modeled Cα and the real Cα was less than the Debye-Waller fluctuations

[57] as given in the PDB file by the B-factors [66].

In [36] it was shown that it was possible to fold 1YRF starting from a

straight line, by introducing an anti-ferromagnetic parameter. The resulting

folding pathway had remarkable similarities to a different Monte Carlo study

[65], taking a much more detailed approach, in the order and rate of helix

formation.

4.4.3 λ -repressor 1LMB

The lambda repressor 1LMB [4] is a small, fast folding protein consisting

of 84 residues. It has been used in several protein folding studies and was

recently folded to 1.8 Å accuracy with an all-atom simulation [40, 8].

Fig. 4.2 shows the resulting curvature and torsion from fitting the param-

eters after 1LMB, with the more disordered end regions cut away. The alter-

nating color of the line shows the regions of the different solitons. The fit is

really good for the most parts, with the exception of the torsion in the second

soliton. The parameters used here gives an RMSD of 0.51 Å but this is a work

in progress so further optimization of the parameters might very well give a

better result.

Attempts to refold the curve from a long helix, using energy minimization,

has shown that this is indeed possible by gauge-transforming the helix. Recent

tests have shown that it is likely that it is possible to fold it by the method of

pair-formation as well.
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(a)

(b)

Figure 4.2: a) The curvature of 1LMB (dots) compared to simulated curvature. The

alternating colors of the line indicate the location of the solitons. b) The torsion of

1LMB (dots) compared to the simulated torsion. The resulting simulated curve has a

total RMSD of 0.51 Å compared to 1LMB.

4.5 Side chain energy

In Fig. 3.2b the statistical location of the Cβ was shown to be shaped like a

horse-shoe. Letting the spherical angle θ denote the angle from the tangent

direction and φ denote the angle from the normal direction it should be possi-

ble to define an energy in terms of (θ ,φ ) to describe the loop behavior of the

side chain, as seen in Fig. 3.9.

In Paper V such an energy is introduced, and I will refer the motivation of

it to that paper, where θ and φ are independent of each other and only related

through their mutual dependence on κ . The energy is as following

Eθ =
N

∑
i=1

{
dθ
2

κ2
i θ 2

i −bθ κ2
i θi −aθ θi +

cθ
2

θ 2
i

}

Eφ =
N

∑
i=1

{
dφ

2
κ2

i φ 2
i −bφ κ2

i φi −aφ φi +
cφ

2
φ 2

i

}
(4.10)
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and analogous to equation (4.3) the equations of motion gives the values for θ
and φ as

θi =
aθ +bθ κ2

i

cθ +dθ κ2
i

φi =
aφ +bφ κ2

i

cφ +dφ κ2
i

(4.11)

where we can fix cθ = cφ = 1, without any loss of generality.

This method of modeling the side chain was tested by applying it to the test

protein 1YRF, adapting parameters to fit the position of both the Cα and Cβ .

The parameters we found were able to model the protein with an accuracy of

less than 0.4 Å.
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5. Scaling laws

Polymers has been studied since the early 19th century, but it was only in the

70s that it was shown, by de Gennes, that polymers in solution should be con-

sidered a critical system [21]. Critical systems can be divided into universality

classes that enable the calculation of critical properties for an entire class of

physical systems using a single representative of the model [61, 62]. In the

case of polymers there are three different universality classes, or phases; the

self-avoiding random walk (SARW), the ordinary random walk (RW) and the

collapsed phase [12]. A regular protein lives in the collapsed phase, while if

you heat it up it goes through a phase-transition to the SARW phase. During

folding the process is the opposite since there it goes from the SARW to the

collapsed phase [30].

The easiest way to see this phase transition is to boil an egg. The egg white

is rich in proteins and at room temperature it is a transparent liquid. However,

if you boil it then the proteins go through a phase transition to an unfolded

(SARW) state that is solid and opaque.

A complete model for proteins needs to model this phase behavior. In this

chapter I will summarize the findings of Paper II where we studied the phase

structure of our model to compare it with real proteins.

5.1 Compactness index
The different universality classes are characterized by different values of so-

called critical exponents that describe the scaling behavior of the proteins in

the limit where the number of residues becomes large. The most commonly

used critical exponent in the study of proteins is the compactness index, ν ,

which tells how the radius of the protein, Rg, depends on the number of

residues, L. The best way to measure the radius is to use the radius of gy-

ration

R2
g =

1

2L2 ∑
i, j
(ri − r j)

2 (5.1)

where ri,r j are the locations of the residues, but other measures like the end-

to-end distance are also possible. For large L the radius of gyration goes as

R2
g ≈ R2

0L2ν
(

1+β1L−Δ1 + . . .
)

(5.2)

where ν and Δ1 are the universal critical exponents [43]. However, the form

factor, R0, and the amplitude of the leading finite size corrections, β1, are
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not. The correction terms βiL−Δi are generally small and I will ignore them

here. The previously mentioned phases in proteins has the following mean

field values for the compactness index ν

ν =

⎧⎨
⎩

3/5

1/2

1/3

SARW,

RW,

collapsed.
(5.3)

The compactness index is the inverse of the Hausdorff dimension of the protein

so the collapsed phase would correspond to a space-filling curve. Another

theoretical value for ν is worth mentioning. A straight line, or a long straight

helix both behaves like a one-dimensional system, i.e. ν = 1.

In practice, for proteins the SARW phase corresponds to high temperature or

good solvent and the collapsed phase corresponds to low temperature or bad

solvent. These two phases are separated at the Θ temperature which is also

the location of the RW phase. In Paper I we measured ν for the proteins in the

PDB. The resulting value was ν = 0.378, as seen in figure 5.1, which fits well

with other studies [27].

Figure 5.1: The length of the chain versus the radius of gyration for the proteins in the

PDB in a Log-Log plot. The fitted line gives a value ν = 0.378. Adapted from paper

I.

5.2 Simulations
The basic idea of Paper II was to make simulations using constant parameters

but varying the length, i.e. number of residues, and temperature of the model
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to see how the energy and compactness index changed. The model used for

the simulations is similar to the one in Paper I in that it uses the discretized

version of the Frenet equations as defined in Section 2.1.1 and a simplified

version of the energy in equation (4.2):

E = ∑
n.n

a
{

1− cos [ω (κi −κ j)]
}
+∑

i

{
bκ2

i τ2
i + c

(
κ2

i −m2
)2

+dτi

}
(5.4)

where the parameters are global and the first sum extends only over nearest

neighbors. With all parameters constant the end result only depended on the

length of the curve and the Metropolis temperature.

The energy was minimized using a Monte Carlo simulation as described in

Section 4.4.1, starting from a straight line (κ = 0, τ = 0). For each temperature

value between 10 and 16 different lengths were used, and for each length at

least 200 curves were generated. Each curve was run for 11000 multiplied by

the length number of Monte Carlo steps. This value was chosen to give the

curve enough time to settle down while still keeping the simulation time for

the longer curves reasonably low.

5.2.1 The radius of gyration

The first aim of with the simulations was to see if the compactness index fol-

lowed the same pattern as in real proteins. The measured radius of gyration

is shown in Fig. 5.2a as a function of length and temperature. The data can

be fitted to equation (5.2) to get values for ν for different temperatures. The

resulting values for the compactness index can be found in Fig. 5.2b.

The asymptotic value for the compactness index at low temperatures is ν =
0.35, which is close enough to the mean field value 1

3 to show that this is the

collapsed phase. The compactness index has no temperature dependence in

the collapsed phase. This stands in bright contrast to the RW phase where

there is a rapid transition from ν = 0.4 to ν = 0.58 as temperature increases.

At the center of this transition the value of ν is very close to ν = 0.5, i.e. the

mean field value at the Θ temperature for the RW phase.

The transition from RW to SARW is harder to see. When T → ∞ the curve

has to behave like a self-avoiding random walk. The asymptotic value here

is ν = 0.62, which is slightly higher than the mean field value, but consistent

with the fact that the mean field value is approached from above when length

increases [39].

Low temperature tests have shown that the collapsed phase is not attainable

if certain conditions are not met. Setting the parameter d in the energy (5.4)

to zero, or removing the self-avoidance from the system produces results with

compactness index ν = 0.5. Setting c= 0 would instead just produce a straight

line with ν = 1.
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(a) (b)

Figure 5.2: a) The radius of gyration as a function of temperature and length in a

Log-Log plot. The three different phases are denoted. b) The compactness index ν
as a function of temperature. The red lines mark the different phases. Note that the

definitions of the lines have changed from the version in Paper II to agree with (a) and

Fig. 5.3.

(a) (b)

Figure 5.3: a) The specific energy as a function of temperature and length L. The three

different phases are denoted. b) The values for the critical temperatures are given by

the maximum of the function (5.5) for different values of L.

5.2.2 Energy and critical temperature

The resulting energy for the simulated curves can be seen in Fig. 5.3a. The

plot clearly shows three different regions, here tentatively labeled collapsed,

RW and SARW after the different phases. In the collapsed and RW phase

the specific energy ( E
L ) shows a weak dependence on L while for high tem-

peratures this dependence disappears. In the limit of infinite temperature the

energy has no effect and the curve will only be subject to random fluctuations.

The specific energy of the collapsed phase is much higher than for the RW

phase. This is a phenomena that is caused by starting at a high-energy state

(straight line). When folding the curves in the collapsed phase gets stuck in

high energy conformations while the larger thermal vibrations in the RW phase

prevents this from occurring. From an energy point of view the transition
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from collapsed to RW phase is when the first sum in equation (5.4) becomes

irrelevant and the transition from RW to SARW is when the central bump of

the double well potential becomes irrelevant.

To find values for the critical temperatures where the phases change it is

possible to look at the maxima of the squared logarithmic derivative of the

specific energy with respect to temperature

DE (T,L) =
[

∂ logE (T,L)
∂ logT

]2

. (5.5)

The plot of this function can be seen in Fig. 5.3b. From this function the

critical values for the (Metropolis) temperature is shown to be logTc1 = 0.53

and logTc2 = 3.52. These values are used to define the phase boundaries in

Fig. 5.2 and 5.3.

Finally we have found that in the three phases the energy can be approximated

with the following functions

Ecoll =CcollL ln
L

Lcoll
0

(5.6)

ERW =CRW (T )L

[
1−

(
L

LRW
0 (T )

)−γ(T )
]

(5.7)

ESARW =C0T αL. (5.8)

In the collapsed phase the energy follows a logarithmically corrected linear

law, with parameters essentially independent of temperature. The energy for

the RW phase is easiest to understand by using the mean field value ν = 0.5
to transform it into

E (Rg,T ) =CRW

(
Rg

Ro

)2
[

1− (
LRW

0

)γ
(

Rg

R0

)−2γ
]

(5.9)

which is Hooke’s law with a correction term.

Finally the SARW phase, where the energy simply increases linearly with the

length of the chain and the temperature dependence can be described by a

simple power law. In the transition region between the RW and SARW phases

both (5.7) and (5.8) can be used to describe the energy.
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6. Epilogue

In the introduction I wrote about the protein folding problem and how it relates

to diseases like Alzheimer’s. While reading the thesis it is easy to lose track

of the bigger picture and only look at the details. In Chapter 2-5 I have hardly

mentioned folding and definitely not mentioned Alzheimer’s so how does it

all fit together?

The conventional ways of doing all-atom simulations with molecular dy-

namics are based on ideas that were developed in the 70’s. By making the

parameter sets increasingly more complex and spending millions on custom

built supercomputers it is possible to get incredible results. Still, without an

enormous breakthrough in computer technology they will always run into a

hard limit. The fact that proteins in general are rather large. In practice, to

have any hope of simulating larger proteins, a more coarse-grained approach

is necessary. Many different methods have been proposed and one of them is

described in this thesis. History will tell if this approach will be of any help to

solve the protein-folding problem.

The basic idea is to describe the proteins not in terms of their primary or

secondary structure but in terms of their transitions, the loops. Each loop

would then correspond to a one- or multi-soliton solution of an energy function

derived from very general physical principles. The symmetries of the system

is what really determines the possible energy terms, not the microscopical

interactions.

The geometrical view of proteins described in Chapter 2 and 3 is totally

independent on the energy and has nothing to do with if a protein can be de-

scribed in terms of solitons or not. It is purely geometrical and my hope is

that it can be used as a complement to Ramachandran plots and side chain ro-

tamer libraries, for example in structure quality assessments and classification

of loops.

As for the future prospects of the model I have already detailed a few logical

improvements to the model in Chapter 4. The model is still in its infancy and

there are a lot of aspects that we simply do not understand. The simulations are

often more tests of the model or proof of concept rather than fully utilizing the

model to find new results. I am sure that the practical usability of the model

will improve in the future.

With this I finish my contribution to the field of protein folding. It may not

be the solution to once and for all get rid of the problem, but in the current

situation where no such solution can be seen on the horizon, all small contri-

butions are valuable. Maybe sometime in the future it will be the combination
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of many new ideas like this one that will increase our knowledge of proteins

to the level where we will be able to do something about the diseases, caused

by misfolded proteins, that plagues humanity.
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Summary in Swedish

Böjande, vridande och vändande
Proteinmodellering och visualisering ur en gaugeinvariant
synvinkel.

"Men du, hur mycket ska man äta då?" Frågan gör mig ställd. Försiktigt får

jag ur mig några ord om att det där kanske inte riktigt är mitt expertområde.

För många betyder proteiner en stor burk med pulver som man ska ta för att

bli stor och stark. För mig har den världen alltid känts främmande. Protein

har en helt annan betydelse för mig. De är kroppens grovjobbare. Maskinerna

som får allting att fungera.

Proteinerna skapas alla på samma sätt, genom att DNA först översätts till

RNA för att det sedan i ribosomerna ska bildas en kedja av aminosyror. Denna

kedja kommer att vecka ihop sig till ett protein, i precis den form som krävs

för att utföra sin funktion. Så långt beter sig alla proteiner likadant men den

funktion som de utför kan se helt olika ut för olika proteiner. Vissa är enzymer

och ägnar sig åt att katalysera kemiska reaktioner, andra transporterar saker

från platsen de finns till platsen de behövs och åter andra bygger upp struktur.

Allt i ett så sammanvävt intrikat system att man nästan blir religiös av hur bra

det fungerar.

Men, nu är det inte alltid som det fungerar så perfekt. Ibland blir det något

fel som gör att proteinerna inte formar sig riktigt som de ska. Den felaktiga

formen gör att de inte löser sig så bra i vatten. Istället klumpar de ihop sig

till så kallad plack. Det här kan man se i hjärnan på personer som lider av

Alzheimers eller Creutzfeldt–Jakobs sjukdom.

De proteiner som finns i allt liv har utvecklats under årmiljonerna för att

fylla sin funktion till fulländning, men ibland vill vetenskapen göra små än-

dringar eller utnyttja naturens egna metoder. Det handlar då framför allt om

specialtillverkade proteiner som används i medicinska syften. När man utveck-

lar dessa vill man kunna räkna ut vilka aminosyror man behöver för att få en

viss form på proteinet. Det är formen det hela hänger på. Det är den som styr

funktionen.

Här är grunden till proteinveckningsproblemet. Man kan relativt enkelt

skapa en kedja av olika kombinationer av de 20 aminosyror som normalt

förekommer i proteiner. Att utifrån den bestämma form på det veckade pro-

teinet och därmed dess funktion har visat sig vara ett formidabelt problem. Om

man kunde förstå mer om hur proteiner veckas så skulle man också lära sig mer

om varför det ibland blir fel. Då kanske man skulle kunna hitta ett botemedel
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till sjukdomar såsom Alzheimers och Creutzfeldt-Jakobs. Man skulle också

kunna designa nya proteiner för specifika syften.

Anledningen till att man inte kan beskriva proteinveckning i detalj idag

handlar inte om brist på kunskaper om de kemiska reaktionerna eller vilka

atomer som ingår i proteinet. Problemet är att proteiner i allmänhet är så

stora att modellerna fallerar på grund av för mycket data. Tusentals atomer

som alla påverkar varandra med olika krafter samverkar till att i princip alltid

leda proteinet till en enda unik slutgiltig form. Vill man försöka simulera alla

dessa interaktioner så måste man, trots den enorma utveckling som skett för

datorer de senaste 40 åren, begränsa sig till små korta proteiner. Precis som en

meteorolog inte tar hänsyn till varje liten luftmolekyl för att förutsäga vädret så

skulle en lösning på proteinveckningsproblemet kunna vara att inte ta hänsyn

till alla små mikroskopiska krafter utan istället försöka beskriva det effektiva

resultatet av att alla dessa krafter samverkar. Det är den väg vi har valt.

Istället för att bry oss om detaljerna så betraktar vi proteinet som en kantig

kurva med de centrala kolatomerna i aminosyrorna som noder. Det enda som

finns kvar av utsträckningen på aminosyrorna är kravet att två noder inte får

vara närmare varandra än avståndet till närmaste grann-noderna på kurvan. En

komponent till behövs för att få en modell för proteiner, nämligen en energi.

När ett protein bildas så har det en hög energi, och allting strävar efter att sänka

sin egen energi tills dess det råder jämvikt med omgivningen. Det svåra är att

veta hur man ska definiera en energi utan att ta hänsyn till alla små krafter

mellan atomer.

Vad vi har gjort är att använda generella fysikaliska principer om symmetri

för att sätta upp en energi för hur kurvan böjer sig och vrider sig. Den allra

lägsta energin får en punkt på kurvan om den kröker sig precis som en α-helix,

som är en av de vanligaste byggstenarna i ett protein. Det lägsta energitillstån-

det för hela kurvan är då att den formar sig till en enda lång helix. Så ska inte

riktiga proteiner se ut och det kommer inte kurvan att göra heller. Orsaken till

det stavas solitoner.

I vår modell finns det två sätt för kurvan att kröka sig. Antingen har den

positiv eller negativ krökning. Om man bara tittar på kurvan kan man inte se

någon skillnad på en helix som bildats genom positiv eller negativ krökning.

Utgår man från kurvan som en rak linje så kommer vissa delar av linjen börja

kröka sig först. Varje nod på kurvan påverkar sina grannar så om en nod börjar

kröka åt ett visst håll så kommer den att dra med sig omkringliggande noder.

Det här pågår tills dess att hela kurvan är uppdelad i områden med krökning i

positiv eller negativ riktning.

Där de här områdena möts så kommer det finnas övergångsregioner där

krökningen förändras från positiv till negativ helix. Matematiskt kallas det här

för en soliton. Sett utifrån kommer det se ut som att kurvan från ena ändan

formar sig som en helix för att sedan gå över i en oregelbunden region innan

nästa helix börjar. Det här mönstret upprepar sig sedan genom hela kurvan

och det är samma mönster som man kan se i riktiga proteiner. Det jag inte har
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nämnt här, och som vi heller inte undersökt i någon större utsträckning än, är

de andra återkommande byggstenarna i proteiner, β -flak (β -sheet) och andra

mindre vanliga typer. I princip kan man beskriva dem på samma sätt, men

med en annan krökning, även om β -flak kan vara svåra att ta med i modellen

på grund av att de är mer beroende av kontakter med andra delar av proteinet.

Varje sådan här soliton kan beskrivas med några få parametrar men efter-

som modellen inte tar hänsyn till alla små krafter, utan handlar om vad som

händer när alla dessa samverkar, så är det väldigt svårt att härleda värden för

dessa parametrar ur kunskapen om de underliggande aminosyrorna. Det som

återstår är att ta ett riktigt protein att jämföra med och försöka anpassa parame-

trarna för att ge så bra överensstämmelse som möjligt. Det finns resultat som

tyder på att det bara finns ett begränsat antal olika typer av solitoner. I så

fall skulle det räcka med att bygga upp ett bibliotek över de möjliga typerna

och problemet skulle förenklas till att handla om att från aminosyresekvensen

förutsäga vilken soliton som skulle vara aktuell i det fallet.

Avslutningsvis så vill jag bara säga att de här modellerna är väldigt nya och

otestade på många plan. Mycket återstår att göra och det är mycket som vi

ännu inte förstår, men skulle det någon gång i framtiden visa sig att solitoner

är en återvändsgränd så kan ändå de geometriska metoderna i första delen av

avhandlingen stå på egna ben. Jag tror att det här synsättet har en framtid och

kommer att öka vår förståelse för hur proteiner fungerar. Det kommer inte att

lösa proteinveckningsproblemet en gång för alla, men i det läge vi är i idag,

när ingen lösning står för dörren, blir alla bidrag värdefulla.
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