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1. Introduction

The aim of this thesis is to investigate the role of correlations in the electronic
structure of materials. The following chapters contain an introduction to the
subject, starting from the Dirac equation and ending with the Dynamical Mean
Field Theory. However, for those of you who are asking yourself right now
what electronic structure even means, and if these correlations are any useful,
this small chapter is for you.

One can think of a piece of material as a giant ballroom, and the electrons
as a group of graceful but very shy and indistinguishable dancers. When you
look the other way they will dance around like waves, but as soon as you even
take a glimpse of what they are doing they will stop. The dance is called
the electronic structure of the material, and the dance steps are guided by the
Schrödinger equation. As in real life, the most important rule is to avoid to
bump into each other. The Coulomb interaction makes sure that the electrons
do not lose track of each other and keep their distance. The Coulomb interac-
tion is also responsible for the important quantum effect called entanglement.
This effect can arise in confined areas where two or more electrons really have
to correlate their movement to make sure that everyone has enough space.

It is unfortunately not possible to directly calculate the true electronic struc-
ture of a material due to the huge number of interacting electrons. The trick is
to replace the well-mannered electrons with rude quasi-particles which do not
really care if they invade the space of the others. This allows us to treat each
quasi-particle separately without considering exactly where the other particles
are, which leads to great simplifications and a method called Kohn-Sham Den-
sity Functional Theory (KS-DFT). This approach works well, except for the
confined areas where the electrons become entangled. In these areas we need
to go back to the proper way of describing the electrons, and one of the best
methods to do this is called Dynamical Mean Field Theory (DMFT).

So, before we stretch this analogy too thin let us go back to the important
question at hand, namely how can all these dancing electrons influence your
everyday life? Hard permanent magnets, like SmCo5 studied in Paper IV,
are key components in the generators which produce the electricity you use
at home. The transition metal oxides in Paper V make your life less gray, as
they are used as pigments in paint and glazes. MnO puts food on your table as
it also serves as a fertilizer. Dilute magnetic semiconductors, like Mn doped
GaAs in Paper VI, can potentially be used to greatly improve the next gen-
eration of computers, and thereby allow you to update your Facebook status
at least twice as fast! Finally, we are just beginning to understand the role
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of entanglement in the electronic structure, so the most important discoveries
are still to be made. This thesis will hopefully bring us a bit closer to those
discoveries.

1.1 Notation
A list of the notation and commonly used symbols is found in Table 1.1. This
includes the notation used for the various representations of an operator A.
The one-electron representation Ã acts on the single-particle state vector |qi〉.
The many-body representation Â acts on the many-body state vector |νi〉.

Table 1.1. List of symbols

ℜ(a) real part of the number a
ℑ(a) imaginary part of the number a
|qi〉 single-particle state vector
|νi〉 many-body state vector
a vector or matrix of the quantity a

Ã one-electron representation of operator A
Ã matrix representation of Ã
Ãi j matrix element ij of Ã
Â many-body representation of operator A
Â matrix representation of Â
Âi j matrix element ij of Â

10



2. Single particle physics

2.1 Relativistic states
Let us consider a single isolated electron in a time-independent external po-
tential V (r̃), where r̃ is the position operator. In the energy range most com-
monly found in solid state physics, this system can be fully described by a
four-component spinor [1, 2, 3]:

|χ(t)〉=
[
|χA〉
|χB〉

]
≡




|χ1〉
|χ2〉
|χ3〉
|χ4〉


 . (2.1)

The |χ1〉 (|χ2〉) component describes an electron with spin up (down), while
the |χ3〉 (|χ4〉) component describes a positron with spin up (down). The state
vector |χ(t)〉 evolves in time according to the Dirac equation

iℏ
d

dt
|χ(t)〉= H̃|χ(t)〉 ≡

[
V (r̃)+mc2 cσ̃ · p̃

cσ̃ · p̃ V (r̃)−mc2

][
|χA〉
|χB〉

]
, (2.2)

where m is the mass, c is the speed of light, p̃ is the momentum operator,
σ̃ = (σ̃1, σ̃2, σ̃3), and σ̃i is a Pauli operator.

The eigenstates {|χi〉}i of H̃ constitute a complete basis of the system, and
are obtained from the equation

[
V (r̃)+mc2 cσ̃ · p̃

cσ̃ · p̃ V (r̃)−mc2

][
|χA

i 〉
|χB

i 〉

]
= Ei

[
|χA

i 〉
|χB

i 〉

]
, (2.3)

where Ei is the eigenvalue corresponding to |χi〉. Solving Eq. (2.3) with re-
spect to |χA〉 gives

[
K̃(Ei)− c2(σ̃ · p̃)

(
K̃(Ei)+2mc2)−1

(σ̃ · p̃)
]
|χA

i 〉= 0, (2.4)

where K̃(Ei) = Ei−mc2−V (r̃). Eq. (2.4) describes the fully relativistic elec-
tronic problem.

2.2 Non-relativistic limit
If the energy of the electron is close to its rest mass mc2, the relativistic ef-
fects are rather small. The non-relativistic limit of Eq. (2.4) is obtained by
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expanding [K̃(Ei)+ 2mc2]−1 in powers of K̃(Ei)/2mc2. Keeping the lowest
order terms yields

(
K̃(Ei)+2mc2)−1 ≈ −1

4m2c4

(
K̃(Ei)−2mc2) . (2.5)

Substituting Eq. (2.5) into (2.4) gives
[
K̃(Ei)−

p̃2

2m
+

1
4m2c2 (σ̃ · p̃)K̃(Ei)(σ̃ · p̃)

]
|χA

i 〉= 0. (2.6)

The third term in Eq. (2.6) can be written as

(σ̃ · p̃)K̃(Ei)(σ̃ · p̃) = K̃(Ei) p̃
2 + iℏ∇V (r̃) · p̃−ℏσ̃ · [∇V (r̃)]× p̃, (2.7)

where we have used the identity (σ̃ ·Ã)(σ̃ ·B̃)= Ã ·B̃+ iσ̃ ·Ã×B̃ and [p̃,A(r̃)]=
−iℏ∇A(r̃). It is important to note that the first and the second term on the right
hand side in Eq. (2.7) are not hermitian, but that their sum is [4]. To take this
observation into account we expand K̃(Ei) p̃

2 in a symmetric and antisymmet-
ric part

K̃(Ei) p̃
2 =

1
2

{
K̃(Ei), p̃

2}+ 1
2

[
K̃(Ei), p̃

2] . (2.8)

The antisymmetric part gives

1
2

[
K̃(Ei), p̃

2] = 1
2
(p̃ · [p̃,V (r̃)]+ [p̃,V (r̃)] · p̃)

=
1
2
[p̃ [p̃,V (r̃)]]+ [p̃,V (r̃)] · p̃

= −ℏ
2

2
∇2V (r̃)− iℏ∇V (r̃) · p̃. (2.9)

The second term on the last line of Eq. (2.9) cancels the non-hermitian part in
Eq. (2.7). Neglecting the third term in Eq. (2.6) gives K̃(Ei) ≈ p̃2/2m for all
eigenstates |χA

i 〉. Substituting this approximation into the symmetric part of
Eq. (2.8) yields

1
2

{
K̃(Ei), p̃

2}≈ p̃4

2m
. (2.10)

Substituting Eq. (2.8), (2.9), (2.10), and (2.7) into Eq. (2.6) finally yields,

H̃|χA
i 〉= Ei|χA

i 〉 (2.11)

where

H̃ =

[
mc2 +

p̃2

2m
+V (r̃)− p̃4

8m3c2

+
ℏ

2

8m2c2 ∇2V (r̃)+
ℏ

4m2c2 σ̃ · [∇V (r̃)]× p̃

]
. (2.12)
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The first term in the Hamiltonian H̃ in Eq. (2.12) gives the rest mass energy of
the electron. The second and third terms constitute the non-relativistic kinetic
energy and potential energy of the Hamiltonian. The fourth term can be seen
as a relativistic correction to the kinetic energy. The fifth term is called the
Darwin term [5] and is a relativistic correction to the potential. The last term
in H̃ corresponds to a generalized form of the spin-orbit interaction.

If V is a central potential, its gradient is given by

∇V (r̃) =
dV

dr

r̃

r̃
, (2.13)

where r̃ = |r̃|. One can then write the spin-orbit interaction term in a more
familiar form

ℏ

4m2c2 σ̃ · [∇V (r̃)]× p̃=− 1
2m2c2

1
r̃

dV

dr
(r̃) l̃ · s̃, (2.14)

where l̃= r̃× p̃, and s̃= (ℏ/2)σ̃ .

2.2.1 Periodic potential
Crystal structures are characterized by a periodic arrangement of atoms [6].
The external potential V (r̃) in Eq. (2.12) is therefore periodic in space, and
there exist some lattice vectors a1, a2, and a3 such that

V (r̃) = V (r̃+Ri1i2i3), (2.15)

Ri1i2i3 = i1a1 + i2a2 + i3a3, (2.16)

for all integers i2, i2, and i3. The integers i1, i2, and i3 can be extracted from R

by taking the scalar product with the reciprocal lattice vectors b1, b2, and b3.
These are defined as

b1 =
2π

v
a2×a3, (2.17)

b2 =
2π

v
a3×a1, (2.18)

b3 =
2π

v
a1×a2, (2.19)

(2.20)

where vcell = a1 · (a2× a3) is the volume of the unit cell spanned by a1, a2,
and a3. The reciprocal lattice vectors fulfill the relation

Ri1i2i3 ·b j = (i1a1 + i2a2 + i3a3) ·b j = 2πi j. (2.21)

The full Hamiltonian H̃ in Eq. (2.12) depends on the position operator r̃ only
through the potentialV (r̃). We can write V (r̃) in the momentum basis

|k〉 ≡Ω−1/2
∫
|r〉eir·kdr, (2.22)
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where the normalization constant Ω = ∑R vcell is the volume of the crystal.
Then we get

〈k|V (r̃)|k′〉 = ∑
R

∫

cell
〈k|R+ r〉H̃[V (r)]〈R+ r|k′〉dr

=
1
Ω

∫

cell
V (r)e−ir·(k−k

′)dr∑
R

e−iR·(k−k
′)

= ∑
K

δ (K−k+k′)VK, (2.23)

where K= j1b1 + j2b2 + j3b3 and

VK =
1

vcell

∫

cell
V (r)e−ir·Kdr. (2.24)

Substituting Eq. (2.24) into Eq. (2.12) shows that the one-electron Hamilto-
nian H̃ is block diagonal in the momentum basis {|k〉} for a periodic poten-
tial. Within each block the k-vectors are related by a reciprocal lattice vector
K. All eigenstates |qki 〉 of H̃ can be made to belong to some k-block which
means that their position representation can be written as

〈r|qki 〉=
∫
〈r|k′〉〈k′|qki 〉dk′ = eir·k∑

K

eir·K〈k+K|qki 〉. (2.25)

This means that the electronic wave-function in a crystal can be expressed
as a plane-wave eir·k times a function uk(r) = ∑K e

ir·K〈k+K|qki 〉 which has
the same periodicity of the lattice. Equation (2.25) can be restated in a more
familiar form, known as Bloch’s theorem [6]:

〈r+R|qki 〉= eik·R〈r|qki 〉. (2.26)

2.2.2 Quantum numbers
One of the corner stones of quantum mechanics is that any measurable quantity
of a system can be represented by a hermitian operator, called an observable.
For any system there exists a maximal set Q of observables that commute
with each other. Q can be constructed by sequentially adding observables that
commute with the rest of the observables in Q, until no more observables can
be added. Since the observables in Q commute with each other, they share
a common orthonormal eigenbasis {|qi〉}i, where the index qi is a list of the
corresponding eigenvalues. For a free electron, Q could for example contain
the momentum operator p̃ and the spin operator s̃z, and q= (k,sz). Each index
qi represents a unique list of values, which means that they can be given an
order

q1 < q2 < q3 < · · · . (2.27)

The possibility to define an order will be of importance in the construction of
the many-body basis presented in the next chapter.
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3. Many-body physics

3.1 Non-interacting fermions
3.1.1 Many-body basis
Let us start by considering a system consisting of two identical non-interacting
fermions. It can be tempting to construct a two-particle basis {ψi j} by (im-
plicitly) labeling the particles and then indexing them like two single particle
states vectors,

|ψi j〉= |qi〉⊗ |q j〉. (3.1)

However, the state vector |ψi j〉 in Eq. (3.1) is incompatible with the Pauli
principle, which for fermions states that an interchange of two particle labels
will result in a change of sign of the state vector, i.e.,

|ψi j〉=−|ψ ji〉. (3.2)

The definition of the state in (3.1) can be made antisymmetric, thereby con-
forming to the Pauli principle, by writing out the particle labels explicitly and
taking the determinant of the one particle state vectors. The antisymmetric
definition gives

|ψi j〉=
1√
2
(|qi〉⊗ |q j〉− |q j〉⊗ |qi〉)≡

1√
2

∣∣∣∣
|1,qi〉 |2,qi〉
|1,q j〉 |2,q j〉

∣∣∣∣ . (3.3)

The state vectors |ψi j〉 and |ψ ji〉 correspond to the same state as they are equal
up to a phase factor. This means that only one of them should be included
in the two-particle basis. There is a convention which states that only state
vectors with indices sorted according to Eq. (2.27) should be included in the
basis. If an operation yields an unordered state vector, one has to do some
changes of the rows in the Slater determinant in Eq. (3.3) to obtain the ordered
state vector. The same construction can be used for an N-particle system,
which gives the basis {|ψi1,i2,··· ,iN〉} [7].

The many-body basis {|ψi1,i2,··· ,iN 〉} grows very rapidly as a function of the
available one-particle states,

|{|ψi1,i2,··· ,iN〉}|=
(
M

N

)
. (3.4)

where M is the number of single-particle states and N is the number of elec-
trons. Since the computational resources needed to solve a problem numeri-
cally grow at least linearly with the size of the basis, the number of available
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single-particle states must be severely restricted. In a standard solid state prob-
lem, one often tries to limit the number of orbitals explicitly included in the
many-body basis. Some orbitals are therefore assumed to be always occupied
or unoccupied, so their effect can be integrated out and added as an external
potential.

3.1.2 Operators and occupation number formalism
The one-particle Hamiltonian H̃ in Eq. (2.12) can be generalized to an N-
particle system as a sum of one-particle operators,

Ĥ =
N

∑
j=1

H̃ j =
N

∑
j=1

∑
k,l

H̃ j
kl| j,qk〉〈 j,ql|, (3.5)

where the index j runs over the particle labels, and H̃ j

kl = 〈 j,qk|H̃ j| j,ql〉. Since
H̃ j only acts on particle j, its matrix elements H̃ j do not depend on the states
of the other particles. The N-particle Hamiltonian Ĥ obtained in this way can
therefore only describe non-interacting particles. For identical particles H̃ j

kl

is independent of the particle label and can be written as H̃kl . The N-particle
operator Ĥ can hence be written as

Ĥ = ∑
k,l

H̃kl

N

∑
j=1
| j,qk〉〈 j,ql| ≡∑

k,l

H̃klQ̂kl . (3.6)

The operator Q̂kl acts on the state |ψi1,i2,··· ,iN 〉 as

Q̂kl |ψi1,i2,··· ,iN〉=
N

∑
j=1

δi j lQ̂kl |ψi1,i2,··· ,l,··· ,iN 〉=
N

∑
j=1

δi j l|ψi1,i2,··· ,k,··· ,iN 〉. (3.7)

If |ψi1,i2,··· ,k,··· ,iN〉 contains two copies of the single-particle state index k, the
antisymmetric properties of the wave function makes it zero. The new list
of indices [i1, i2, · · · ,k, · · · , iN ] in the right hand side of Eq. (3.7) is generally
not sorted in the conventional order. The reordering process of |ψi1,i2,··· ,k,··· ,iN 〉
interchanges a number of rows in the Slater determinant. Each row change
multiplies the state vector with a factor of (-1). The number of row changes is
given by

γkl = ∑
s

ns, (3.8)

where the index s runs over all integers between k and l, and ns ∈ {0,1} is the
occupation number of the single-particle state indexed by qs. The state vector
on the right hand side of Eq. (3.7) can hence be written as

N

∑
j=1

δi jl |ψi1,i2,··· ,k,··· ,iN〉= (δnk0 +δkl)δnl1(−1)γkl |ψσ(i1,i2,··· ,k,··· ,iN)〉, (3.9)
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where σ sorts the indices according to the conventional order.
As seen in Eq. (3.9), all the properties of Qkl and |ψi1,i2,··· ,i j,··· ,iN〉 are cap-

tured by the occupation numbers. A common way of denoting the state vector
|ψi1,i2,··· ,i j ,··· ,iN 〉 is therefore a sorted list of the occupation numbers. The state
vector |ψ24〉, having one electron in state |q2〉 and one in |q4〉, can for example
be written like

|ψ24〉= |n1,n2, · · · 〉= |0,1,0,1,0, · · · 〉, (3.10)

and Eq. (3.7) becomes

Q̂kl | · · · ,nk, · · · ,nl, · · · 〉= (δnk0 +δkl)δnl1(−1)γkl | · · · ,1, · · · ,0, · · · 〉. (3.11)

The expectation value of the operator Q̂kk gives the occupation number for the
state indexed by qk,

〈n̂k〉= 〈· · · ,nk, · · · |Q̂kk| · · · ,nk, · · · 〉= nk. (3.12)

3.1.3 Creation and annihilation operators

It is a straightforward exercise to show that the operator Q̂kl can be written as
a product of two operators

Q̂kl = ĉ
†
k ĉl, (3.13)

where ĉ
†
k is called “creation” operator and ĉl is called “annihilation” operator.

They are defined as

ĉ
†
k | · · · ,nk, · · · 〉 = δnk0(−1)∑

k−1
s=1 ns | · · · ,1, · · · 〉, (3.14)

ĉl| · · · ,nl, · · · 〉 = δnl1(−1)∑
l−1
s=1 ns | · · · ,0, · · · 〉. (3.15)

The occupation number operator n̂k becomes

n̂k = ĉ
†
k ĉk. (3.16)

As seen from the definitions in Eq. (3.14) and (3.15) the (fermionic) cre-
ation and annihilation operators follow the anti-commutation relations

{
ĉ

†
k, ĉ

†
l

}
≡ ĉ

†
k ĉ

†
l + ĉ

†
l ĉ

†
k = 0, (3.17)

{
ĉk, ĉl

}
≡ ĉk ĉl + ĉl ĉk = 0, (3.18)

{
ĉ

†
k , ĉl

}
≡ ĉ

†
k ĉl+ ĉl ĉ

†
k = δkl . (3.19)
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3.1.4 Field operators

Substituting Q̂kl from Eq. (3.13) into Eq. (3.6) gives

Ĥ = ∑
kl

H̃kl ĉ
†
k ĉl =

(

∑
k

ĉ
†
k〈qk|

)
H̃

(

∑
l

|ql〉ĉl
)

= Ψ̂†H̃Ψ̂. (3.20)

The operator Ψ̂ is called field operator, and is a very useful tool in the the-
oretical treatment of many-body physics. One can interpret the action of Ψ̂
as taking a particle from an occupied single-particle state in the many-body
system and putting it into an empty system, which then becomes a single-
particle system. Ψ̂† does the opposite, that is, it takes the particle from the
one-particle system and puts it into the same single-particle state but in the
many-body system. Since the sum in Eq. (3.20) runs over all single-particle
states, all particles will be treated.

The way the many-body Hamiltonian in Eq. (3.20) is written has a quite
natural interpretation. First Ψ̂ takes a particle from an occupied single-state in
the many-body system and adds it to a single-particle system. In this single-
particle system the particle is operated upon by the single-particle Hamiltonian
H̃ . Finally, the particle is put back into the many-body system by Ψ̂†.

3.1.5 The ground state of a system of non-interacting particles
At zero Kelvin the ground state |gs〉 of a system of N non-interacting particles
governed by the Hamiltonian in Eq. (3.20), can be obtained by diagonalizing
the matrix representation of the Hamiltonian in some many-body basis {|νi〉}i,

Ĥ = ∑
i j

Ĥi j|νi〉〈ν j|= ∑
l

E
(N)
l |ν ′l 〉〈ν ′l |, (3.21)

where {|ν ′i 〉} is the N-particle eigenbasis of Ĥ and {E(N)
i }i are the eigenval-

ues. The ground state corresponds to the eigenstate |ν ′i 〉 with the lowest en-
ergy. However, diagonalizing the matrix Ĥi j directly is very computationally
demanding since almost all realistic problems yield an enormous many-body
basis.

An alternative approach is based on the less demanding diagonalization of
the corresponding single-particle Hamiltonian H̃,

H̃ = ∑
i j

H̃i j|qi〉〈q j|= ∑
i

E
(1)
i |q′i〉〈q′i|, (3.22)

where {|q′i〉} is the single-particle eigenbasis of H̃ and {E(1)
i } are the eigen-

values. The idea is to use the single-particle eigenstates, ordered according
to energy, as the single-particle states used in the construction in Eq. (3.3) of
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the many-body basis {|νi〉}i. Thus, when the field operator Ψ̂ acts on |νi〉, it
can take a particle from one of these single-particle eigenstates |q′j〉, without
affecting the other particles, and let that state be acted upon by H̃. Since |q′j〉 is

an eigenstate to H̃, it will only be multiplied with the eigenvalue E(1)
j and then

returned back by Ψ̂†. This implies that |νi〉 is in fact already an eigenvector of
Ĥ ,

Ψ̂†H̃Ψ̂|νi〉 = Ψ̂†H̃∑
j

|q′j〉δn j1(−1)∑
j−1
s=1 ns | · · · ,n j = 0, · · · 〉

= Ψ̂† ∑
j

E(1) j |q′j〉δn j1(−1)∑
j−1
s=1 ns | · · · ,n j = 0, · · · 〉

= ∑
j

E
(1)
j δn j1(−1)2∑

i−1
s=1 ns | · · · ,n j = 1, · · · 〉

= ∑
j

E
(1)
j δn j1|νi〉, (3.23)

with an eigenvalueE(N)
i =∑ jE

(1)
j δni j. Finding the ground state is now a trivial

task. It corresponds to the many-body state in which N of the single-particle
eigenstates of lowest eigenvalue are occupied. As the single-particle basis was
ordered according to energy the N-particle ground state |gs〉 can be written as

|gs〉= |1,1, · · · ,1︸ ︷︷ ︸
N times

,0, · · · 〉. (3.24)

3.2 Thermal effects
Up to now we have not discussed any thermal effects, except for the statement
that the ground state |gs〉 = |1,1, · · · ,1,0, · · · 〉 is valid for zero Kelvin. To
understand the thermal effects it is important to remember that temperature
is a measure of the average kinetic energy of particles moving randomly in
a sample. The motion of the particles is still governed by a Hamiltonian, so
that the total energy is conserved. However, only knowing the average kinetic
energy of the system does not identify its state, since the Hamiltonian of a
many-body system often has large degenerate eigenspaces. Due to the lack of
information the best we can do is to work with probabilities, and look at the
resulting statistical properties of the system.

3.2.1 Density operator
Suppose we have a statistical system which has a probability Pn of being in
the state |νn〉. To calculate the expectation value of the observable Ô we need
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to consider each state |νn〉 separately, and then weight each outcome with the
probability Pn,

〈Ô〉= ∑
n

Pn〈νn|Ô|νn〉= Tr
(

∑
n

Pn|νn〉〈νn|Ô
)
= Tr(ρ̂Ô), (3.25)

where ρ̂ ≡ ∑nPn|νn〉〈νn| is called the density operator [8]. The density oper-
ator is a generalization of the state vector description of a system since it also
can describe statistical systems. Just like the state contains all the physically
significant information we possibly can obtain about a non-statistical system,
the density operator does the same for the statistical system in question. In
addition to the relation in Eq. (3.25) the density operator is Hermitian and its
trace is one:

ρ̂ = ρ̂† (3.26)

Tr(ρ̂) = ∑
n

PnTr(|νn〉〈νn|) = ∑
n

Pn = 1. (3.27)

3.2.2 Ensembles
When talking about probabilities it is often fruitful to use the concept of statis-
tical ensemble [8]. An ensemble is an infinite collection of systems prepared
according to some known recipe. The systems are not allowed to interact with
each other which means that the ensemble does not have to exist as a whole
at a given time. In practice there is always a state preparation machine, which
creates each system right before the system is used. It is important to note that
the order in which the systems are produced is unimportant. Two ensembles
are equivalent as long as the total probability to obtain a certain outcome of a
measurement is the same. A good illustration of the concept is a beam of elec-
trons (the ensemble) coming out of a linear accelerator (the state preparation
machine). In theory one can of course consider an ensemble of any system,
even the universe1.

Suppose again that we have a statistical system which has a probability Pn
of being in the state |νn〉, described by the density operator ρ̂ = ∑nPn|νn〉〈νn|.
To calculate what happens if we probe the system with some measurement
apparatus A[·] we need to consider the effect on each state |νn〉 separately, and
then weight each outcome with the probability Pn,

A[ρ̂ ] = ∑
n

PnA[|νn〉〈νn|] = ∑
n

PnAn. (3.28)

Another way of doing the same thing is to consider X copies of the system
(an ensemble), with PnX copies having the density operator ρ̂n = |νn〉〈νn|.
1The existence and uniqueness of a universe state preparation machine has long been the topic
of heated debate, and has given rise to several major world religions.
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Instead of measuring only on a single system we perform the measurement on
each system in the ensemble and normalize the outcome with the number of
systems. Schematically everything looks the same,

A[X̂ ]

X
≡ ∑nPnXA[|νn〉〈νn|]

X
= ∑

n

PnAn, (3.29)

where X̂ = X ρ̂ represents the entire ensemble. The two ways of representing
a statistical system, with probabilities and with an ensemble, are equivalent.
The ensemble picture, however, has the advantage that it describes a physical
entity, a collection of systems, onto which we can apply all our previously
derived formalism.

3.2.3 Quantum statistical mechanics
By using ensembles to represent the state of a statistical system we can answer
the following two fundamental questions:

1. What is the probability that a random preparation procedure produces
a certain density operator ρ̂ = ∑nPn|νn〉〈νn| instead of another density
operator ρ̂ ′?

2. What density operator has the largest probability to be prepared by the
random procedure, for a given energy E = Tr(Ĥρ̂) and number of parti-
cles N = Tr(n̂ρ̂)?

We will consider the grand canonical ensemble, where both particles and en-
ergy may be transfered between the systems and a reservoir. This is the most
general type of ensemble that can describe an open system. The random prepa-
ration procedure can be described as a preparation machine controlled by a
random number generator. The probability that the preparation machine will
produce a certain ensemble is then proportional to the total number of ways Ω
it can prepare the individual systems and still get the same ensemble [9],

Ω =
X !

X1!X2!X3! · · · , (3.30)

where X is the number of systems in the ensemble and Xn≡ PnX is the number
of systems in state |νn〉. Eq. (3.30) can be simplified for large X by applying
Stirling’s approximation

ln(X !)≈ X lnX−X , (3.31)

giving

Ω = exp
[
X lnX−∑

n

Xn lnXn

]
. (3.32)

In terms of probabilities this simplifies further to

Ω = exp
[
−X∑

n

Pn lnPn

]
= exp [−XTr(ρ̂ ln ρ̂)] . (3.33)
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The probability to obtain ρ̂ instead of ρ̂ ′ is simply

p=
Ω

Ω+Ω′
, (3.34)

where Ω′ corresponds to ρ̂ ′.
To answer the second question we need to maximize Ω under the constrain

that it should be a stationary point with respect to energy (δ [Tr(Ĥρ̂)] = 0),
number of electrons (δ [Tr(n̂ρ̂)] = 0), and probability (δ [Tr(ρ̂)] = 0). Maxi-
mizing Ω corresponds to maximizing −Tr(ρ̂ ln ρ̂), and the constraints can be
enforced by using Lagrangian multipliers. By choosing the multipliers−β for
δ [Tr(Ĥρ̂)], µβ for δ [Tr(n̂ρ̂)], and λ for δ [Tr(ρ̂)] we get

δ

δ ρ̂

[
−Tr(ρ̂ ln ρ̂)−βTr(Ĥρ̂)+µβTr(n̂ρ̂)−λTr(ρ̂)

]
= 0. (3.35)

Resolving the functional derivatives in Eq. (3.35) yields

ln ρ̂ +1+β Ĥ−µβ n̂+λ = 0. (3.36)

Eq. (3.36) is solved by

ρ̂ =
1
Z
e−β (Ĥ−µ n̂), (3.37)

where Z ≡ eλ+1. Using Tr(ρ̂) = 1 in Eq. (3.37) gives,

Z = Tr
(
e−β (Ĥ−µ n̂)

)
. (3.38)

The remaining Lagrangian multipliers β and µ correspond to the inverse tem-
perature of the system, β = 1/kBT , and the chemical potential, respectively.
The energy of the ensemble can be adjusted by tuning β , and the number of
particles by shifting µ . If the number of particles Tr(n̂ρ̂) is not an integer the
ground state is called an intermediate valence state. In the following chapters
the operator Ĥ−µ n̂ will often be encountered. To lighten the notation we will
denote it just as Ĥ.

3.3 Interacting fermions
Going from a single-particle system to a system of identical non-interacting
fermions required some new notation, but the dynamics was still governed
by the single-particle Hamiltonian, as shown in Eq. (3.20). The dynamics
of a system of interacting fermions is fundamentally different from the single-
particle dynamics. In fact, due to the interaction with other particles, generally
there exists no single-particle state |qi〉 that remains occupied or unoccupied
over time, [

Ĥ, n̂i

]
=
[
Ĥ, ĉ†

i ĉi

]
6= 0. (3.39)
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3.3.1 Coulomb interaction
The Hamiltonian of a system of particles can always be divided into two parts,
Ĥ0 = Ψ̂†H̃Ψ̂ with H̃ from Eq. (2.12), and ĤI which contains the two-particle
operators giving the interaction between the particles [9]. The Hamiltonian of
a system of electrons can be written as

Ĥ = Ĥ0 + ĤI = Ψ̂†H̃0Ψ̂+Û , (3.40)

where H̃0 is taken from Eq. (2.12) and the Coulomb interaction between the
electrons is given by Û . The Coulomb interaction acts on pairs of electrons
and is inversely proportional to their relative distance. Instead of starting from
a sum of two-particle operators

Û =
N

∑
i

N

∑
i 6= j

Û i, j, (3.41)

and proceeding in the same way as with the one-particle Hamiltonian in Eq. (3.5),
we will save time and derive the form of Û using some simple but less rigorous
arguments. Let us start by looking at a system containing two distinguishable
particles with state vector |qi〉⊗|q j〉. In this case the operator Ũ can be written
as

Ũ =
1∣∣r̃⊗ 1̃− 1̃⊗ r̃

∣∣ , (3.42)

where r̃ is the one-particle position operator. Inspired by the form of Eq. (3.20)
we can generalize the definition of the field operators from one-particle states

|qi〉 → Ψ̂≡∑
i

|qi〉ĉi (3.43)

to two-particle states

|qi〉⊗ |q j〉 → Ψ̂(2) ≡∑
i j

|qi〉⊗ |q j〉ĉiĉ j, (3.44)

and write

Û ≡ 1
2

Ψ̂(2)†ŨΨ̂(2) =
1
2

Ψ̂(2)†

(
1∣∣r̃⊗ 1̃− 1̃⊗ r̃

∣∣

)
Ψ̂(2). (3.45)

The factor 1/2 is introduced to compensate that the interactions between the
particles are counted twice in the product with the field operators. Expanding
the operator r̃ in Eq. (3.45) in a single-particle position basis {|r〉} gives the
standard expression [10]

Û =
1
2

∫
Ψ̂†(r)Ψ̂†(r′)

1
|r− r′|Ψ̂(r′)Ψ̂(r)drdr′. (3.46)
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3.4 Correlation effects
To be able to discuss the effects of the interaction between the electrons in
a material we need to introduce the concepts of pure, mixed, separable and
entangled states.

The state of a system is called pure if it can be represented by a state vector.
If a density operator is required to describe the state it is called a mixed state.
This means that all diagonal representations of a density operator representing
a mixed state must have at least two non-zero terms. A mixed state is also said
to be classically correlated, as the correlation between the states is of statistical
nature. The thermal density operator in Eq. (3.37) describes in general a mixed
state as long as the temperature is non-zero.

A state vector is called separable if it can be written as a single Slater
determinant, i.e. a single vector in the occupation number formalism |ν〉 =
|n1,n2, · · · 〉, for some one-particle states {|q′i〉}i. A general state is called sep-
arable if its density operator has a diagonal representation that only contains
separable terms. A state that is not separable but must be represented in one
way or another through a superposition of several Slater determinants is said to
be entangled or quantum correlated. In section 3.1.5 we saw that the Hamil-
tonian of a system of non-interacting particles has only pure and separable
eigenstates. Hence, an entangled state can not be described as a convex sum
of the eigenstates of a single-particle Hamiltonian. This means that the den-
sity operator in Eq. (3.37) is always separable if Ĥ is given by a single-particle
Hamiltonian.

These definitions can be succinctly summarized for an N-electron state as

|Ψ′i〉 = Λ̂†|0〉 ≡
N

∏
p

ĉ
†
ip
|0〉 pure separable

}
uncorrelated

|Ψi〉 = ∑
j

aij

N

∏
p

ĉ
†
jp
|0〉 pure entangled

ρ̂ ′ = ∑
i

p′i|Ψ′i〉〈Ψ′i| mixed separable

ρ̂ = ∑
i

pi|Ψi〉〈Ψi| mixed entangled





correlated

where |0〉 is the vacuum state. Here pi and p′i are sets of probabilities normal-
ized to one, and aij are expansion coefficients. The vectorial indices i and j

are composed of the ordered components ip and jp referring to a generic one-
particle basis. For example the state ĉ

†
1ĉ

†
3ĉ

†
7|0〉 corresponds to a many body

index i= (1,3,7).
Classical correlations can derive from physical processes, e.g. thermal de-

coherence, but also be induced by a local projection upon some set of or-
bitals, e.g. the d- or f-orbitals of single atom in a solid. To see the ef-
fect of a local projection, let us consider a set orbitals A labelled by the
indices in A = { j; |q j〉 ∈ A }. A set of 3d-orbitals could for example have
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A = {21,22, · · · ,30} where the orbitals indexed by 1, · · · ,20 could be s- and
p-orbitals. The corresponding Fock-subspaces[11] are given by

A
′ =

{
Â† = ∑

j∈A
aj

Nj

∏
p

ĉ
†
jp

;∑
j

|aj|2 = 1

}
, (3.47)

B
′ =

{
B̂† = ∑

j/∈A
bj

Nj

∏
p

ĉ
†
jp

;∑
j

|bj|2 = 1

}
, (3.48)

where j ∈ A is defined as jp ∈ A for p = 1, · · · ,Nj. The full Hilbert space H

can be bipartitioned as

H = A
′′⊗B

′′ ≡
{

∑
ij

αijÂ
†
i B̂

†
j |0〉; Â

†
i ∈A

′, B̂†
j ∈B

′
}
, (3.49)

where

A
′′ =

{
Â†|0〉; Â† ∈A

′
}
, (3.50)

B
′′ =

{
B̂†|0〉; B̂† ∈B

′
}
. (3.51)

The local projection of a pure state |Ψ〉 ∈A ′′⊗B′′ upon the orbitals in A is
obtained by taking the partial trace over B′′:

ρ̂A = ∑
ij

ρ̂A
ij Â

†
i |0〉〈0|Âj, (3.52)

where ρ̂A
ij = ∑k αikα∗jk. The locally projected state ρ̂A is therefore a mixed

state, unless ρ̂A happens to be idempotent.
Quantum correlations can stem from pair-wise particle interactions, e.g.

Coulomb interaction between electrons, or be induced by a non-local pro-
jection. To illustrate these effects let us consider a system with one spin-up
electron and one spin-down electron in two degenerate orbitals. If the ex-
change interaction matrix element Û1221 between the two orbitals is positive
(negative) the ground state |gs−〉 (|gs+〉) can be written as

|gs±〉= 1√
2
((ĉ†

1↑ĉ
†
2↓± ĉ

†
1↓ĉ

†
2↑)|0〉. (3.53)

The state vector |gs−〉 (|gs+〉) cannot be written as a separable state vector,
which makes it entangled. If both electrons have the same spin then one needs
at least four orbitals and a non-zero pair-hopping element of the form Û1234 to
get an entangled state. This situation is artistically depicted on the front page
of this thesis for a set of d-orbitals.

A non-local projection is qualitatively different from a local projection in
that it projects onto a set of many-body states, and not a set of orbitals. A
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non-local projection can therefore easily lead to entanglement. For example,
the non-local projection operator

P̂= ĉ
†
1↑ĉ

†
2↓|0〉〈0|ĉ2↓ĉ1↑+ ĉ

†
1↓ĉ

†
2↑|0〉〈0|ĉ2↑ĉ1↓, (3.54)

turns the pure separable spin-coherent state (1/2)(ĉ†
1↑+ ĉ

†
1↓)(ĉ

†
2↑± ĉ

†
2↓)|0〉 into

the entangled state |gs±〉. It should be noted that P̂ projects onto two separa-
ble states, and that the non-local projection used in this example in fact cor-
responds to a simple Stern-Gerlach experiment on a beam of spin-1 particles,
with a single slit to remove the spin ±1 components of the beam.

Considering that the electrons are constantly interacting with each other it
is perhaps surprising that many systems with delocalized one-electron states
are in fact well described by separable states. There are, however, processes
which at least heuristically can explain this observation. One important factor
is decoherence in an open quantum system. If an electron in an entangled state
is subject to a measurement of a one-electron observable Õ, the entangled state
will partially collapse and the electron will end up in a (separable) one-electron
eigenstate of Õ. The more a state is susceptible to measurements from the sur-
rounding, the less chance it has to stay entangled. Furthermore, a delocalized
electron interact with a large number of other delocalized electrons. There are
now two main scenarios, either the entanglement between the electrons add up
in a constructive way to lower the energy of the state, or the entanglement is
frustrated and the ground state becomes a superposition between a large num-
ber of slightly different many-body states. You can for example think of this
as a growing magnetic domain in the first case, and a spin-glass-like behavior
in the second. In the first case the entanglement spreads throughout the system
on a macroscopic scale. As the number of entangled electrons grows the risk
that one of them will be detected by a probe increases dramatically, resulting
in the collapse into a separable state. In the second case the large number of
superpositioned many-body states, and the small energy differences involved,
makes the total effect smaller and less distinct. These heuristic arguments
might explain the success of the effective potential approaches described in
the next chapter.
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4. Single particle approximations

The many-body eigenbasis of Ĥ in Eq. (3.40) can not be constructed simply
from occupying the single-particle eigenstates, like in Eq. (3.23), due to the
interaction term Û . To find the eigenvalues and eigenstates of Ĥ one has to
diagonalize its matrix representation Ĥ in the full many-body basis. Due to
the rapid growth of the basis with the increase in the number of particles and
available one-particle states, see Eq. (3.4), this problem becomes intractable
for anything but the smallest systems. Much effort has therefore been devoted
to defining an effective Hamiltonian which captures the effect of the Coulomb
interaction but still can be written in a one-particle form.

4.1 Hartree-Fock approximation
One of the most interesting quantities to extract from a calculation is the total
energy E of the system. The comparison of the total energies of two phases of
the same system tells us which one is the most stable at zero Kelvin. The elec-
tronic contribution to E is obtained from the expectation value of the Hamil-
tonian

E[ρ̂] = Tr
(

ρ̂Ĥ
)
= E0[ρ̂ ]+Tr

(
ρ̂Û
)
, (4.1)

where E0[ρ̂ ] = Tr(ρ̂Ĥ0) is the energy contribution from the one-electron part
of the Hamiltonian. The Coulomb interaction enters only in the form of an
expectation value over Û . The total energy of the system is therefore preserved
if the operator Û can be replaced with an effective one-electron operator Ũ (1)

with the same expectation value as Û ,

Tr
(

ρ̂Ψ̂†Ũ (1)Ψ̂
)
= Tr

(
ρ̂Û
)
. (4.2)

In the Hartree-Fock approximation1 [12, 13] the effective operator Ũ (1) is
approximated by coupling two external one-electron states |qi〉〈q j| to one of
the two interacting electrons in Tr(ρ̂Û),

ÛHF = ∑
i j

1
2

Tr
(

ρ̂ ∑
mn

ĉ†
mŨmin jĉn− ĉ†

mŨmi jnĉn

)
ĉ

†
i ĉ j

= ∑
i j

1
2

Tr(ρ̂ ĉ†
mĉn)

[
Ũmin j− Ũmi jn

]
ĉ

†
i ĉ j (4.3)

Ũmin j ≡ [〈qm|⊗ 〈qi|]Ũ [|qn〉⊗ |q j〉] .
1We have here used a many-body density operator formalism. All the expressions reduce to the
original ones if the density operator is set to be pure and separable.
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The two terms Ũmin j and Ũmi jn comes from coupling the one-electron states
|qi〉〈q j| to the same particle label or to different particle labels, respectively.

ÛHF gives the correct expectation value if the density operator can be rep-
resented by a pure separable state, i.e. ρ̂ = Λ̂†

ν |0〉〈0|Λ̂ν . However, as pointed
out in section 3.4, the ground state of a system of interacting particles at fi-
nite temperature is in general neither pure nor separable. The problem of not
being able to describe an entangled ground state was nevertheless already in-
troduced in the concept of an effective Hamiltonian in a single-particle form.
As we saw in section 3.1.5, all the eigenstates of a Hamiltonian describing
non-interacting particles are always separable.

Even if the temperature is set to zero and the ground state is assumed to be
a pure separable state we still have to deal with the problem that ÛHF depends
on the state of the system through ρ̂ . Thus, in order to find a correct ground
state we must use the operator ÛHF that in itself depends on the ground state
we are out to find. The most common way to deal with this problem is to start
from a trial density operator ρ̂0, construct ÛHF , find the ground state ρ̂gs, make
a new trial density operator ρ̂1 from a mixture of ρ̂0 and ρ̂gs, and repeat until
the trial density operator stops changing. Due to this algorithm the Hartree-
Fock method is often called the self-consistent field method in literature.

4.2 Density Functional Theory
Density Functional Theory (DFT) is centered around the electron density

ρ(r) = Tr[ρ̂ n̂(r)]≡ Tr[ρ̂Ψ̂†|r〉〈r|Ψ̂], (4.4)

and is based on two theorems first formulated2 by Hohenberg and Kohn [14].
DFT in the Hohenberg-Kohn formulation is an exact theory but with an ex-
tremely computationally expensive energy functional [15, 16].

4.2.1 Hohenberg-Kohn theorems
Theorem 1

If two external potentials V̂1 and V̂2 give the same ground-state electron den-
sity ρ0(r) ≡ Tr[ρ̂1n̂(r)] = Tr[ρ̂2n̂(r)], then their ground state density opera-
tors ρ̂1 and ρ̂2 will be degenerate, i.e., Tr(ρ̂1Ĥ1) = Tr(ρ̂2Ĥ1) and Tr(ρ̂1Ĥ2) =

Tr(ρ̂2Ĥ2).

Theorem 2

There is a universal energy functional F[ρ ], independent of V̂ , which is mini-
mized by the ground state density ρ0(r). The ground state energy of an elec-

2Here we have generalized the theorems to deal with density operators and allow for degenera-
cies in the ground state.
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tron density ρ(r) is given by E[ρ ]≡ F [ρ ]+
∫
V (r)ρ(r)dr.

Before we prove these theorems, let us first separate out the external poten-
tial V̂ ≡ Ψ̂†V (r̃)Ψ̂ from Ĥ0,

Ĥ ′0 ≡ Ĥ0−V̂ . (4.5)

Furthermore, in the following proofs we assume that any relativistic terms in
the Hamiltonian can be neglected. All proofs are, however, identical if we
consider a many-body representation Ĥ of the fully relativistic Hamiltonian H̃

in Eq. (2.2) plus a Coulomb interaction term Û .

Proof 1

Take two external potentials V̂1 and V̂2 and construct two Hamiltonians Ĥ1 =
Ĥ ′0 + Û + V̂1 and Ĥ2 = Ĥ ′0 + Û + V̂2. The two Hamiltonians give rise to two
density operators ρ̂1 and ρ̂2 corresponding to the ground state3 of the system.
Let us now restrict ourselves to the potentials fulfilling the condition stated in
the theorem: ρ(r) = Tr[ρ̂1n̂(r)] = Tr[ρ̂2n̂(r)]. Given this condition the ground
state energies can be written as

E1 = Tr(ρ̂1Ĥ1)≤ Tr(ρ̂2Ĥ1) = Tr
(

ρ̂2[Ĥ
′
0 +Û ]

)
+
∫
V1(r)ρ(r)dr, (4.6)

E2 = Tr(ρ̂2Ĥ2)≤ Tr(ρ̂1Ĥ2) = Tr
(

ρ̂1[Ĥ
′
0 +Û ]

)
+
∫
V2(r)ρ(r)dr, (4.7)

Suppose now that ρ̂1 and ρ̂2 are not degenerate, i.e.,

Tr(ρ̂1Ĥ1) < Tr(ρ̂2Ĥ1) (4.8)

and/or

Tr(ρ̂2Ĥ2) < Tr(ρ̂1Ĥ2). (4.9)

This assumption changes the less-or-equal sign in Eq. (4.6) and/or (4.7) into a
strictly-less-than sign. Adding Eq. (4.6) and (4.7) then yields

E1 +E2 < Tr
(

ρ̂2[Ĥ
′
0 +Û ]

)
+Tr

(
ρ̂1[Ĥ

′
0 +Û ]

)
+
∫
[V1(r)+V2(r)]ρ(r)dr

= Tr(ρ̂1Ĥ1)+Tr(ρ̂2Ĥ2) = E1 +E2. (4.10)

Eq. (4.10) is a contradiction, and this proves that our assumption that ρ̂1 and
ρ̂2 are not degenerate is false.

Proof 2

The ground state density operator ρ̂0 is obtained by minimizing the total en-
ergy E = Tr(ρ̂Ĥ) with respect to all variables in ρ̂ . However, instead of doing

3The ground state of a system at finite temperature is given by the thermal density operator
defined in Eq. (3.37)
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this minimization in just one step one can start by restricting the minimiza-
tion to those density operators ρ̂ which give a certain electron density [15, 16]
ρ(r), giving

E[ρ ] = min
ρ̂→ρ

Tr
[
ρ̂(Ĥ ′0 +Û+V̂ (r̃))

]

= min
ρ̂→ρ

Tr
[
ρ̂(Ĥ ′0 +Û)

]
+
∫
V (r)ρ(r)dr

= F [ρ ]+
∫
V (r)ρ(r)dr, (4.11)

where ρ̂ → ρ implies ρ̂ ∈ {ρ̂;Tr[ρ̂ n̂(r)] = ρ(r)}. The energy is minimized in
a second step with respect to ρ(r) to get the total energy

E = min
ρ

E[ρ ]. (4.12)

If the minimization procedure in Eq. (4.12) tries to evaluate E[ρ ] for some
unphysical electron density, not describable by any density operator, the con-
straint in the minimization procedure in Eq. (4.11) sets E[ρ ] to an infinitely
high value.

4.2.2 Kohn-Sham formulation
The proof of the second theorem gives an explicit form of the universal func-
tional F , but the minimization procedure involved is as computational de-
manding as the original many-body problem. The aim of the Kohn-Sham
method [17] is to extract those terms from the universal functional F that are
known to give a large contribution in the Hartree-Fock method, and then ap-
proximate the remaining term with a computationally inexpensive functional.
Since the Hartree-Fock method works with density operators ρ̂ and not elec-
tron densities ρ(r), there is no direct connection between the terms in

EHF [ρ̂ ] = Tr
[
ρ̂ĤHF

]
= Tr

[
ρ̂(Ĥ0 +ÛHF)

]
(4.13)

and E[ρ ] in Eq. (4.12). Kohn and Sham realized that one first needs to change
the minimization from ρ(r) to ρ̂ , giving

E = min
ρ

E[ρ ] = min
ρ̂

EKS[ρ̂ ]≡min
ρ̂

E[Tr(n̂(r)ρ̂)]. (4.14)

The change of minimization parameter does not change the value of E be-
cause the functional E[ρ ] takes its minimum value for a physical ρ(r) ob-
tained for some ρ̂ . Since EKS[ρ̂ ] depends on ρ̂ we can now easily extract parts

of Tr
[
ρ̂ĤHF

]
,

EKS[ρ̂ ] = Tr(ρ̂Ĥ0)+EH [ρ̂ ]+EXC[ρ̂ ], (4.15)

EXC[ρ̂ ] ≡ E[Tr(n̂(r)ρ̂)]−Tr(ρ̂Ĥ ′0)−EH[ρ̂ ]. (4.16)
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The first term on the right hand side in Eq. (4.15) is the expectation value of
the one-electron operators, including the external potential. The second term
is the Hartree functional EH [ρ ] which is defined as

EH [ρ̂ ] = ∑
i jmn

1
2

Tr
[
ρ̂ ĉ†

mĉn
]

Ũmin jTr
[
ĉ

†
i ĉ jρ̂

]
(4.17)

EH [ρ ] corresponds to the expectation value of the Ũmin j (Hartree) term in
Eq. (4.3). The exchange term Ũmi jn is not extracted but is allowed to remain
in the exchange-correlation term EXC[ρ̂ ].

EXC can be returned to a density functional by a second minimization pro-
cedure

EXC[ρ̂ ]→ EXC[ρ ]|ρ(r)=Tr[ρ̂n̂(r)] = E[ρ ]−min
ρ̂→ρ

(
Tr[ρ̂Ĥ0]+EH [ρ̂ ]

)
. (4.18)

The new Kohn-Sham term, given by

EKS
f ull[ρ̂ ] = Tr(ρ̂Ĥ0)+EH [ρ̂ ]+ EXC[ρ ]|ρ(r)=Tr[ρ̂n̂(r)] , (4.19)

does not give the ground state energy corresponding to the electron density ρ
unless ρ̂ minimizes Tr(ρ̂Ĥ0)+EH [ρ̂ ]. This is not a problem, however, since
the density operator that minimizes EKS also must minimize the two Hartree-
Fock terms Tr(ρ̂Ĥ0) and EH [ρ̂ ], for a given electron density ρ .

No approximations have been done so far, but nothing has been gained in
terms of computational complexity either. It is therefore time to introduce the
first approximation in the Kohn-Sham scheme. Instead of minimizing over all
density operators we restrict the search space of the minimization procedure in
Eq. (4.14) and (4.18) to pure separable states, i.e., ρ̂ = |ν〉〈ν |= Λ̂†

ν |0〉〈0|Λ̂ν ,
where 〈ν |ν〉= 1 and 〈ν |n̂|ν〉= N. Equation (4.14) can then be written as

min
ρ̂=|ν〉〈ν |
〈ν |ν〉=1
〈ν |n̂|ν〉=N

EKS[ρ̂ ] = min
|ν〉

〈ν |ν〉=1
〈ν |n̂|ν〉=N

〈ν |
(
Ĥ0 +

1
2

∫
n̂(r)n̂(r′)
|r− r′| drdr

′
)
|ν〉+EXC[ρ ]

(4.20)
The restriction to pure separable states is in principle not an approximation
as long as the corresponding electron densities span the same space as the
electron densities from the full many-body states. The reason for this is that
the exact universal function F is still embedded in EXC and will minimize
over all many-body states, not just the pure separable ones. It is important to
note the particles that are represented by |ν〉 do not behave as electrons. The
condition that |ν〉must be pure and separable implies that they instead act like
non-interacting particles, and we will therefore refer to them as Kohn-Sham
particles.
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The minimization procedure can now be carried out using ε as a Lagrangian
multiplier for the 〈ν |ν〉= 1 constraint, and4 µ for 〈ν |n̂|ν〉= N, giving

δ

δ 〈ν |

[
〈ν |Ĥ0+

1
2

∫
n̂(r)n̂(r′)
|r− r′| drdr

′− ε−µ n̂|ν〉+EXC[ρ ]

]
= 0. (4.21)

Performing the derivation in Eq. (4.21) gives
[
Ĥ0 +

∫
ρ(r)n̂(r′)
|r− r′| drdr′− ε−µ n̂

]
|ν〉+ δEXC

δ 〈ν | = 0, (4.22)

where we have used that

δ

δ 〈ν | 〈ν |n̂(r)n̂(r
′)|ν〉= [ρ(r)n̂(r′)+ n̂(r)ρ(r′)]|ν〉. (4.23)

The second approximation in the Kohn-Sham scheme is to replace the exact
but computationally cumbersome EXC functional with some approximate but
less demanding functional. One of the most popular choices, introduced al-
ready in the original paper by Kohn and Sham [17], is the exchange-correlation
functional of the Local Density Approximation,

ELDA
XC [ρ ] =

∫
ρ(r)ε(ρ(r))dr, (4.24)

δEXC

δ 〈ν | =
∫

n̂(r)ε(ρ(r))+ρ(r)n̂(r)
dε

dx

∣∣∣∣
x=ρ(r)

dr|ν〉. (4.25)

The function ε is parameterized to give the exact exchange-correlation energy
for a homogeneous electron gas with electron density ρ = ρ(r). Substituting
Eq. (4.25) into (4.22) gives
[
Ĥ0 +

∫(
ρ(r′)
|r− r′|dr

′+ ε(ρ(r))+ρ(r)
dε

dx

)
n̂(r)dr− ε

]
|ν〉= 0, (4.26)

where µ n̂ has been (re)added to Ĥ0. Equation (4.26) is an eigenvalue problem,
and the minimization procedure in this case corresponds to finding the eigen-
vector |ν0〉 with the smallest eigenvalue ε0. Equation (4.26) contains only
one-electron operators and can be written as

ĤKS|ν〉 ≡ Ψ̂†H̃KSΨ̂|ν〉= ε |ν〉. (4.27)

The ground state of ĤKS can easily be found by diagonalizing H̃KS as shown
in Sec. 3.1.5. Since ĤKS contains the electron density which depends on |ν0〉
one needs to solve Eq. (4.26) self-consistently together with

ρ(r) = 〈ν0|n̂(r)|ν0〉, (4.28)

N = 〈ν0|n̂|ν0〉, (4.29)

4Those of you who still remember our ’lightened’ notation may extract µ n̂ from Ĥ0 instead of
adding it twice.
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where the number of electrons N can be adjusted using the chemical poten-
tial µ in Ĥ0. The self-consistent value of ε0 corresponds to EKS[ρ0]. The
Kohn-Sham Hamiltonian ĤKS has a very different starting point compared
to the Hartree-Fock Hamiltonian ĤHF . However, when looking at Eq. (4.1)
and (4.15) we see that it is possible to interpret the Hartree plus exchange-
correlation term as just another way to approximate Û (1) in Eq. (4.2). It
should nevertheless be clearly stated that the approximation of the exchange-
correlation functional does not reduce KS-DFT to a simple mean-field approx-
imation like Hartree-Fock. Hence, there is nothing in the theory that says that
the non-interacting KS particles used in the minimization should be interpreted
as electrons, or even that the KS excitation spectra should represent electronic
excitations. This point is affirmed by the sharp contrast between experimental
photoemission data and the corresponding KS excitation spectrum often seen
for localized d- and f-electrons. That said, there is often a surprisingly good
agreement between the two quantities for delocalized s- and p-electrons. We
have now the option to either discard all the KS particle data, or to use them
as a starting point in a scheme aimed to produce a proper electronic excitation
spectra. The latter choice implies that we stray a bit from the path of theoreti-
cal rigor and actually interpret the KS excitation spectrum as a mean-field-like
description of the electronic excitation energies. In the remaining part of this
thesis we will explore the second option, and pursue techniques to improve
the lacking correspondence for the localized states.
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5. Single Impurity Anderson Model

Both HF and KS-DFT map the many-body Hamiltonian Ĥ directly to a one-
particle form H̃MF . The resulting ground state and excited states are therefore
always separable1. However, as we saw in section 3.4 electrons in partially
filled localized orbitals tend to become entangled due to the Coulomb in-
teraction, making HF and KS-DFT unsuitable2 to describe these states. For
simplicity, let us analyze this problem by considering just a single set of local-
ized orbitals A (an impurity), spanned by {|qi〉}i∈A, in a system (the host)
otherwise well described by an effective one-particle Hamiltonian ĤMF =

Ψ̂†(H̃0 +ŨMF )Ψ̂. This kind of system corresponds to a Single Impurity An-
derson Model [18, 10] (SIAM). To simplify the notation we introduce a sub-
space index according to the following rules

Ψ̂A ≡ P̃AΨ̂, (5.1)

ṼAB ≡ P̃AṼ P̃B, (5.2)

ŨABCD ≡
(
P̃A⊗ P̃B

)
Ũ
(
P̃C⊗ P̃D

)
, (5.3)

V̂AB ≡ Ψ̂†ṼABΨ̂≡ Ψ̂†
AṼ Ψ̂B, (5.4)

ÛABCD ≡ Ψ̂(2)†ŨABCDΨ̂(2). (5.5)

Here B, C, and D are index sets corresponding to the orbitals B,C , and D ,
and the projection operator P̃A is defined as

P̃A ≡∑
i∈A
|qi〉〈qi|. (5.6)

The SIAM Hamiltonian can now be written as

ĤSIAM = T̂ +ÛSIAM
AAAA (5.7)

where ÛSIAM
AAAA describes the Coulomb interaction between the electrons on the

impurity and T̂ gives the hopping of the electrons between different orbitals.
For our system ÛSIAM

AAAA is given by screened Coulomb interaction Û
e f f
AAAA, and

1The separability of the states in KS-DFT is with respect to the KS particles, not the electrons
hiding in an ill-defined way in the approximated exchange-correlation functionals.
2The exact functional in Eq. (4.18) could in principle yield the correct total energy, but it would
correspond to solving the full many-body problem and then throwing away all the information
except the total energy. The resulting KS excitation spectra would still not correspond to the
proper electronic excitation spectra, making it the most unsuitable method of them all.
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the hopping parameters are given by ĤMF −ÛDC
AA , where ÛDC

AA is the so called
double counting correction, giving

ĤSIAM = ĤMF +Û
e f f
AAAA−ÛDC

AA . (5.8)

We will return to the definition of Û e f f
AAAA and ÛDC

AA in sections 5.2 and 5.3,
respectively, but before that we need to introduce the concept of Green’s func-
tions.

5.1 Green’s function formalism
There are two ways of handling a one-electron operator Ã in a many-body
system. We have already encountered the first one in section 3.1.4, where the
field operator Ψ̂ offered a direct way to map Ã into a many-body representation

Â= Ψ̂†ÃΨ̂. (5.9)

The many-body operator Â can now directly act upon the density operator ρ̂
and be subject to the dynamics of the Hamiltonian Ĥ. The second way is to
keep Ã in the one-electron representation but to represent ρ̂ and the dynamics
of Ĥ using a one-particle Green’s function [9]

G̃S(t, t ′) ≡ −i∑
i j

〈
S[ĉi(t)ĉ

†
j(t
′)]
〉
|qi〉〈q j|

≡ −iTr(ρ̂S[Ψ̂(t)Ψ̂†(t ′)]), (5.10)

where the trace runs over all many-body states and ρ̂ is a density operator, for
example the thermal density operator taken from Eq. (3.37). The superopera-
tor S is either a time-ordering T , advanced-ordering A, or retarded-ordering R

operator defined as

T [ĉ(t)ĉ†(t ′)] ≡ +θ (t− t ′)ĉ(t)ĉ†(t ′)−θ (t ′− t)ĉ†(t ′)ĉ(t), (5.11)

A[ĉ(t)ĉ†(t ′)] ≡ +θ (t ′− t)
(
ĉ(t)ĉ†(t ′)+ ĉ†(t ′)ĉ(t)

)
, (5.12)

R[ĉ(t)ĉ†(t ′)] ≡ −θ (t− t ′)
(
ĉ(t)ĉ†(t ′)+ ĉ†(t ′)ĉ(t)

)
, (5.13)

where θ (τ) is the unit step function. The different definitions of S are used
for different problems. The advanced and retarded Green’s function can for
example describe the response of the system to different probes in Linear re-
sponse theory [19]. The expectation value of the time-ordered Green’s func-
tion |〈νi(t)|G̃T(t, t ′)|ν j(t

′)〉|2 describes for t > t ′ (t ′ > t) the probability that the
many-body system remains unchanged if a particle is added to (removed from)
the single particle state |ν j(t

′)〉 at time t ′ and then is removed from (added to)
the state |νi(t)〉 at time t. Adding or removing a particle raises the energy of
the system, which means that the time-ordered Green’s function can be used
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to look at the properties of the excited states. Nevertheless, it can also be used
to calculate the one-particle reduced density operator

ρ̃ ≡ Tr(Ψ̂ρ̂Ψ̂†) = ∑
i j

Tr(ρ̂ ĉ†
i ĉ j)|qi〉〈q j|=−i lim

t ′→t+
G̃T (t, t ′). (5.14)

ρ̃ can be used to obtain the expectation value of any one-particle operator

Tr(ρ̃ J̃) = ∑
i j

Tr(ρ̂ ĉ†
i ĉ j)J̃i j = Tr(ρ̂ Ĵ), (5.15)

where Ĵ = ∑i j J̃i jĉ
†
i ĉ j. The trace on the left hand side of Eq. (5.15) is over the

single-particle states while the trace in the middle and on the right hand side
comes from the definition of ρ̃ and runs over all possible many-body states.

In the following sections we will focus on the time-ordered Green’s func-
tion, unless otherwise stated.

5.1.1 Non-interacting Green’s function
It can be difficult to use the definition in Eq. (5.10) to construct the Green’s
function G̃S(t, t ′) as it requires an explicit evaluation of the many-body density
operator ρ̂ . A solution to this problem is to instead focus on the time evolution
of G̃S(t, t ′)

i
d

dt
G̃S(t, t ′) =

〈
δ (t− t ′)

{
Ψ̂(t)Ψ̂†(t)

}
+S

[
d

dt
Ψ̂(t)Ψ̂†(t ′)

]〉

= δ (t− t ′)1̃+
〈
S

[
d

dt
Ψ̂(t)Ψ̂†(t ′)

]〉
(5.16)

= δ (t− t ′)1̃+ i

〈
S

[
[Ĥ,Ψ̂(t)]Ψ̂†(t ′)

]〉
, (5.17)

where we have used the Heisenberg equation

d

dt
Ψ̂(t) = i[Ĥ,Ψ̂(t)]. (5.18)

If the dynamics of the system is governed by a single-particle Hamiltonian H̃

the commutator with the field operator Ψ̂(t) reduces to

[Ĥ,Ψ̂(t)] =−H̃Ψ̂(t). (5.19)

Substituting Eq. (5.19) into Eq. (5.17) yields the differential equation
(
i
d

dt
− H̃

)
G̃S

0(t, t
′) = 1̃δ (t− t ′). (5.20)
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where we have added the subscript 0 to emphasize that G̃S
0(t, t

′) describes non-
interacting particles. Taking the Fourier transform of Eq. (5.20) with respect
to the complex variable ω and τ = t− t ′ gives

(
ω− H̃

)
G̃0(ω) = 1̃, (5.21)

which has the formal solution

G̃0(ω) = ∑
i

|q′i〉〈q′i|
ω−E

(1)
i

. (5.22)

where E
(1)
j and |q′j〉 are the one-particle eigenvalues and eigenstates of H̃,

respectively. The matrix element 〈q′i|G̃0(ω)|q′i〉 is undefined for ω = E
(1)
i , but

is analytical elsewhere. It might seem odd that Eq. (5.22) does not contain any
reference to the many-body density operator ρ̂ . However, since G̃0(ω) only
describes the propagation of added non-interacting particles or holes, it does
not depend on the current state of the system but only on the single-particle
Hamiltonian that gives the single-particle dynamics.

5.1.2 Density of states
The single-particle density of states (DOS) ρ(E) can be obtained from G̃0(ω)
in Eq. (5.22) by letting ω approach the real axis from both the upper and the
lower half-plane,

ρ(E) = lim
δ→0+

−1
2π

ℑTr
[
G̃0(E+ iδ )− G̃0(E− iδ )

]

= lim
δ→0+

−1
2π

ℑ∑
j


 1

E+ iδ −E
(1)
j

− 1

E− iδ −E
(1)
j




︸ ︷︷ ︸
−2iδ

(E−E(1)
j

)2+δ 2

=
−1
2π

ℑ

[
−2iπ ∑

j

δ (E−E
(1)
j )

]
= ∑

j

δ (E−E
(1)
j ). (5.23)

As G̃0(E+ iδ ) (G̃0(E− iδ )) is only evaluated in the complex upper (lower)
half-plane it can be replaced by the Fourier transform of G̃R

0 (t, t
′) (G̃A

0 (t, t
′)).

Since ℑG̃0(E+ iδ ) =−ℑG̃0(E− iδ ) Eq. (5.23) simplifies to

ρ(E) = + lim
δ→0+

1
π

ℑTr[G̃A
0 (E− iδ )]

= − lim
δ→0+

1
π

ℑTr[G̃R
0 (E+ iδ )] (5.24)
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5.1.3 Thermal Green’s function
G̃(t, t ′) is called a thermal time-dependent one-particle Green’s function if the
density operator in Eq. (5.10) is taken from Eq. (3.37),

G̃(t, t ′) = −iTr

(
e−β Ĥ

Z
T

[
Ψ̂(t)Ψ̂†(t ′)

])

=
−i
Z

∑
i j

〈νi|Ψ̂|ν j〉〈ν j|Ψ̂†|νi〉e−iτ(E
(N)
i −E

(N)
j )×

[
θ (τ)e−βE

(N)
i −θ (−τ)e−βE

(N)
j

]
, (5.25)

where τ = t− t ′. Taking the Fourier transform of G̃(t, t ′) in Eq. (5.25) gives
the Lehmann representation

G̃(ω) =
1
Z

∑
i j

〈νi|Ψ̂|ν j〉〈ν j|Ψ̂†|νi〉

 e−βE

(N)
i

ω−E
(N)
i +E

(N)
j + iδ

− e
−βE

(N)
j

ω−E
(N)
i +E

(N)
j − iδ


 . (5.26)

5.1.4 Hybridization
Up to now all systems have been considered isolated from any quantum me-
chanical environment. In practice any realistic system is part of some larger
quantum mechanical system. The interaction between the system and its en-
vironment needs to be addressed before the basic machinery introduced in the
previous sections can be applied.

Let us consider a system of non-interacting particles, and divide its states
into two orthogonal subspaces, A spanned by {|qi〉}i∈A and B spanned by
{|qi〉}i∈B. The Hamiltonian of the system can be written as

H̃ = H̃AA+ H̃BB+ H̃AB+ H̃BA. (5.27)

where we have used the projection notation introduced in Eq. (5.2). Substitut-
ing Eq. (5.27) into Eq. (5.21) yields

(ω 1̃AA− H̃AA)G̃AA(ω) = 1̃AA+ H̃ABG̃BA(ω), (5.28)

(ω 1̃BB− H̃BB)G̃BA(ω) = H̃BAG̃AA(ω). (5.29)

Substituting G̃BA from Eq. (5.29) into (5.28) finally gives
[
ω 1̃AA− H̃AA− H̃AB(ω 1̃BB− H̃BB)

−1H̃BA

]
G̃AA(ω) = 1̃AA. (5.30)
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A comparison between Eq. (5.21) and (5.30) shows that in the case of non-
interacting particles, the only difference between an isolated system and a
subsystem is the hybridization function

∆̃AA(ω)≡ H̃AB(ω 1̃BB− H̃BB)
−1H̃BA. (5.31)

∆̃AA(ω) has the same analytical properties as G̃0(ω), which means that we can
define a hybridization spectral density ρ∆(E) in analogy with Eq. (5.24) as

ρ∆(E) =− lim
δ→0+

1
π

ℑTr[∆̃AA(E+ iδ )]. (5.32)

ρ∆(E) shows how strongly the orbitals in subspace A hybridize with the rest
of the system at a given energy E . Instead of constructing ∆̃AA(ω) from
Eq. (5.31), it is often more convenient to extract it from the inverse of the
projected Green’s function

∆̃AA(ω) = ω 1̃AA− H̃AA− [G̃AA(ω)]−1. (5.33)

5.2 Screening
Let us now return to the SIAM Hamiltonian in Eq. (5.8) and the definition of
Û

e f f
AAAA. Although it would seem natural to set Û e f f

AAAA equal to the (bare) ÛAAAA

from Eq. (3.46), this choice would strongly overestimate the strength of the
interaction between the electrons of the impurity. The missing ingredient is
the strong screening induced by the (density-density) interaction with the bath
electrons

Ũe f f (t, t ′) = Ũδ (t− t ′)+ Ũχ̃A(t, t ′)Ũ. (5.34)

where we have used the particle-hole four-index matrix notation

ÃPH
αβ = ÃPH

α1β1α2β2
, (5.35)

[
ÃPH B̃PH

]
αβ

= ∑
γ

ÃPH
αγ B̃PH

γβ = ∑
γ1,γ2

ÃPH
α1γ1α2γ2

B̃PH
γ1β1γ2β2

, (5.36)

and defined

χ̃PH
αβ (t, t

′) = −Tr
(

ρ̂S[ĉ†
α1
(t)ĉα2(t)ĉ

†
β1
(t ′)ĉβ2

(t ′)]
)

+δα1α2δβ1β2
Tr
(
ρ̂ ĉ†

α1
ĉα2

)
Tr
(

ρ̂ ĉ†
β1
ĉβ2

)
, (5.37)

χ̃A(t, t ′) = χ̃PH(t, t ′)− χ̃PH
AAAA(t, t

′). (5.38)

The operator χ̃PH(t, t ′) is called the particle-hole susceptibility and describes
the propagation of an electron-hole pair. In Eq. (5.38) χ̃PH

AAAA(t, t
′) removes the

self-induced screening of the impurity electrons, as Û e f f
AAAA in Eq. (5.8) takes

this effect into account explicitly.
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The constrained particle-hole susceptibility χ̃A(t, t ′) involves mainly the
weakly correlated bath states. It can therefore be approximated by means of
the constrained random phase approximation (cRPA) [20, 21, 22]

χ̃A(t, t ′) = P̃A(t, t ′)+
∫

P̃A(t, t ′′)Ũχ̃A(t ′′, t ′)dt′′ (5.39)

where we have used the particle-hole four-index matrix notation and defined
the particle-hole polarization bubble

P̃PH(t, t ′) = −G̃(t, t ′)⊗ G̃(t ′, t)

= Tr
(

ρ̂T [Ψ̂(t)Ψ̂†(t ′)]
)
⊗Tr

(
ρ̂T [Ψ̂(t ′)Ψ̂†(t)]

)
, (5.40)

P̃A(t, t ′) = P̃PH(t, t ′)− P̃PH
AA (t, t ′) (5.41)

Taking the Fourier transform of Eq. (5.34) and (5.39) gives

Ũe f f (ω) = Ũ+ Ũχ̃A(ω)Ũ, (5.42)

χ̃A(ω) = P̃A
0 (ω)+ P̃A

0(ω)Ũχ̃A(ω). (5.43)

Substituting Eq. (5.43) into Eq. (5.42) and solving for Ũe f f yields

Ũe f f (ω) = (1̃− P̃A
0 (ω)Ũ)−1Ũ. (5.44)

Finally, due to the difficulties in treating the fully dynamical interaction term
Ũe f f (ω) [22], it is common to consider the limit ω → 0 and project upon A

to obtain
Ũe f f
AAAA = [(1̃− P̃A

0 (0)Ũ)−1Ũ]AAAA. (5.45)

This static approximation is often adequate if we are not focusing on the high
energy excitation spectrum.

5.3 Double counting corrections
Given the expression for the screened Coulomb interaction Ũe f f

AAAA in Eq. (5.45),
we are now ready to deal with the double counting (DC) correction term ÛDC

AA

introduced in Eq. (5.8). ÛDC
AA is supposed to cancel the Coulomb interaction

contributions which are taken into account both in Ũe f f
AAAA and in ĤMF . The

first problem is to determine the on-site Coulomb interaction ÛMF
AA included in

ĤMF , since without a proper description of ÛMF
AA it is not possible to identify

the extra contributions.

5.3.1 Hartree-Fock
In the case ĤMF is obtained from the Hartree-Fock approximation ÛMF

AA is
given by ÛHF

AA from Eq. (4.3). Since Ũe f f
AAAA was constructed to improve the
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mean-field description, a natural approach to the double counting problem
would be to remove ÛHF

AA from ĤMF . Unfortunately this choice would not be
correct, again due to a lack of screening in ÛHF . Replacing ÛHF

AA with a much
weaker Ũe f f

AAAA would result in that the correlated orbitals would fill up with
electrons. We are now left with two options: we can either include the (RPA)
screening also in the host material, i.e. perform a GW calculation instead
of HF[22], or remove the mean-field part of the screened Ũe f f

AAAA. The latter
choice gives the screened Hartree-Fock (SHF) double counting term

ÛSHF
AA = [Ũe f f

AAAA]
HF = ∑

i j∈A

1
2

ρ̃nm

[
Ũe f f
min j− Ũe f f

mi jn

]
ĉ

†
i ĉ j. (5.46)

5.3.2 KS-DFT
While it is possible to obtain ÛMF

AA in the case of Hartree-Fock, major compli-
cations arise when ĤMF is given by the KS Hamiltonian ĤKS from Eq. (4.27).
As we saw in section 4.2.2, the exchange-correlation functional in KS-DFT is
defined with respect to the total electron density. The non-linearity of the func-
tional makes it impossible to directly extract the contribution coming from just
the Coulomb interaction between the electrons in the correlated orbitals3. This
lack of a proper definition has paved the way for several more or less hand-
waving approximations. It is however interesting to note that the two most
commonly used double counting corrections, Around Mean-Field (AMF) and
Fully Localized Limit (FFL), are actually strongly related to the type of cor-
relations present in ρ̂ . To see this we must make a detailed derivation starting
from the effective Hartree-Fock energy correction

E
e f f
HF = Tr(ŨSHF

AA ρ̃), (5.47)

where ρ̃ is the one-particle reduced density operator from Eq. (5.14). Expand-
ing Eq. (5.47) in the eigenbasis of ρ̃ (Löwdin’s natural orbitals) gives

E
e f f
HF = ∑

i j

1
2

[
Ũe f f
i ji j − Ũe f f

i j ji

]
(ñiñ j− ñ2

i δi j), (5.48)

where the ñ2
i δi j term is trivially zero in the previous sum, but is introduced to

take care of the self-interaction arising from the following approximations. If
for a moment we forget the spin-orbit coupling, the terms in Eq. (5.48) can be
rearranged according to spin up (↑) and spin down (↓) contributions

E
e f f
HF = ∑

ab

[
Ũe f f

abab− Ũe f f

abba

]
(ña↑ñb↑+ ña↓ñb↓− [ñ2

a↑+ ñ2
a↓]δab)

+Ũe f f
abab(ña↑ñb↓+ ña↓ñb↑), (5.49)

3This fact also calls into question the standard implementation of the Self-Interaction Correction
which applies the exchange-correlation functional to partial electron densities.

42



where the indices a,b run over the non-spin degrees of freedom. The next step
is to take the spherical average of the effective Coulomb interaction terms in
Eq. (5.49), giving

E
e f f
AHF =

〈
Ũ− J̃

〉
∑
ab

(ña↑ñb↑+ ña↓ñb↓)−
〈
Ũ − J̃

〉
Tr(ρ̃2)

〈
Ũ
〉
(ña↑ñb↓+ ña↓ñb↑), (5.50)

where

〈
Ũ − J̃

〉
≡

∑ab

[
Ũe f f
abab− Ũe f f

abba

]

D2 , (5.51)

〈
Ũ
〉
≡ ∑ab Ũe f f

abab

D2 , (5.52)

and D= ∑a 1. Evaluating the sums in Eq. (5.50) yields

E
e f f
AHF =

1
2

[〈
Ũ− J̃

〉 N2 +M2

2
+
〈
Ũ
〉 N2−M2

2

]
− 1

2

〈
Ũ − J̃

〉
Tr(ρ̃2), (5.53)

where N = ∑a(ña↑+ ña↓) and M = ∑a(ña↑− ña↓). The term Tr(ρ̃2) is pro-
portional to the linear entropy, and is therefore sensitive to both the classical
and quantum correlations in the state. The expression for FLL is obtained by
assuming that ρ̂ is pure and separable, i.e. that ρ̃ is idempotent, giving

E
e f f
FLL =

1
2

[〈
Ũ− J̃

〉 N2 +M2

2
+
〈
Ũ
〉 N2−M2

2

]
− 1

2

〈
Ũ − J̃

〉
N. (5.54)

The AMF double counting assumes that ρ̂ is maximally mixed for a given
value of M, i.e. Tr(ρ̃2)≈ (N2 +M2)/D, giving

E
e f f
AMF =

1
2

[〈
Ũ − J̃

〉 N2 +M2

2
+
〈
Ũ
〉 N2−M2

2

]
− 1

2

〈
Ũ− J̃

〉
(N2 +M2)/D.

(5.55)
A third option is to replace Tr(ρ̃2) with the linear interpolation of these two
limits

Tr(ρ̃2) = x

(
N2 +M2

D

)
+(1− x)N⇒ x≡ Tr(ρ̃2)−N

(N2 +M2)D−1−N
, (5.56)

giving
Ee f f
x = xE

e f f
AMF +(1− x)Ee f f

FLL. (5.57)

The corresponding double counting corrections are given by the derivatives of
Ee f f with respect to N and M.

The AMF, FLL, and interpolation DC corrections offers a heuristic solution
to the screening problem by starting from the effective Hartree-Fock energy.
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However, this treatment results in a rough estimate of the double counting
correction as it ignores the double counting in the correlation part of the KS
energy functional.

When the correlated orbitals are almost equally occupied and the recipes
above give too crude estimates of the double counting correction, one can re-
sort to the empirical chemical potential double counting. It defines ÛDC

AA =
µDCn̂A, so that the double counting parameter µDC can act as a chemical po-
tential in the impurity problem. µDC is then essentially treated as a free param-
eter and is set according to experimental photoemission data. The theoretical
justification for such a procedure is simply that the correct double counting
should give the correct experimental chemical potential, and since the double
counting is unknown we might as well set it to the correct value by hand. The
obvious drawback is that it requires experimental data.

Finally a fifth option is to take the average hermitian part of the self-energy
Σ̃AA(ω = 0) introduced in the next section, to enforce Fermi-liquid behavior.

It is hard to say which KS-DFT double counting correction is better than
another since the double counting problem is so ill-posed. However, from
the derivations of FLL and AMF one could expect that FLL is suitable for
localized electrons in a low temperature ferromagnetic phase, while AMF
works better for rather delocalized electrons in high temperature paramagnetic
phases.

5.4 Self-energy
It is time to introduce one of the main advantages the Green’s function for-
malism has to offer, the possibility to go beyond a non-interacting particle de-
scription while still remaining in the one-particle Hilbert space. This is made
possible by the so called self-energy correction Σ̃(τ).

Substituting ĤSIAM into Eq. (5.17) gives

i
d

dt
G̃S(t, t ′) = δ (t− t ′)1̃+ i

〈
S

[
[ĤMF −ÛDC

AA ,Ψ̂](t)Ψ̂†(t ′)
]〉

+i
〈
S
[
[ÛAAAA,Ψ̂](t)Ψ̂†(t ′)

]〉
. (5.58)

Like in Eq. (5.19) the second term on the right hand side in Eq. (5.58) reduces
to

i
〈
S
[
[ĤMF −ÛDC

AA ,Ψ̂](t)Ψ̂†(t ′)
]〉

= (ĤMF −ÛDC
AA )G̃

S(t, t ′). (5.59)

While the commutator in the third term is zero except for local impurity states

i
〈
S[[ÛAAAA,Ψ̂](t)Ψ̂†(t ′)]

〉
= iP̃A

〈
S[[ÛAAAA,Ψ̂A](t)Ψ̂

†(t ′)]
〉
, (5.60)
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it is still hard to evaluate due to the many-body nature of ÛAAAA. We post-
pone this problem by simply defining the self-energy Σ̃S

AA(τ) as the local one-
particle operator that makes G̃S(t, t ′) fulfill

iP̃A

〈
S[[ÛAAAA,Ψ̂A](t)Ψ̂

†(t ′)]
〉
=
(
Σ̃S
AA ∗ G̃S

)
(t, t ′) (5.61)

where ∗ denotes the convolution operation

( f ∗g)(x,y)≡
∫ ∞

−∞
f (z)g(x− z,y)dz. (5.62)

Substituting Eq. (5.61) into Eq. (5.58) yields
(

d

dt
− H̃MF +ŨDC

AA

)
G̃S(t, t ′)−

(
Σ̃S
AA ∗ G̃S

)
(t, t ′) = 1̃δ (t− t ′). (5.63)

The Green’s function G̃S(t, t ′) depends only on the time difference τ = t− t ′,
which allows us to take the Fourier transform on both sides of Eq. (5.63) to
obtain the well-known Dyson equation [9, 10]

[
G̃−1

0 (ω)− Σ̃AA(ω)
]
G̃(ω) = 1̃, (5.64)

where
G̃0(ω) =

(
ω 1̃− H̃MF +ŨDC

AA

)−1
. (5.65)

G̃(ω) is given by G̃R(ω) for ℑω > 0 and G̃A(ω) for ℑω < 0. Rearranging and
projecting the terms in Eq. (5.64) gives an explicit definition of the self-energy

Σ̃AA(ω) = [G̃0AA(ω)]−1− [G̃AA(ω)]−1. (5.66)

In order to calculate ΣAA(ω) of a thermal system using Eq. (5.66), we first
need to know the thermal one-particle Green’s function G̃(ω). The defini-
tion of G̃(ω) in Eq. (5.26) requires the eigenvalues and eigenstates of ĤSIAM,
which makes it intractable for all but the smallest of systems. Fortunately,
there are various techniques – impurity solvers – that allow us to calculate the
self-energy without explicitly constructing G̃(ω) for the entire system. We
will mainly focus on three of these impurity solvers: the Hubbard-I Approx-
imation, Exact Diagonalization, and Spin-Polarized T-matrix Fluctuation Ex-
change. However, before we dive into the nuts and bolts of these impurity
solvers, there is another fundamental issue of self-consistency needs to be ad-
dressed.

Once the self-energy has been calculated it contains a refined description of
the electronic interaction in the correlated orbitals. This information is passed
from the self-energy to the global Green’s function G̃(ω) through Eq. (5.64).
However, as the system is updated the mean-field part of the Hamiltonian
needs to be recalculated, which requires the one-particle reduced density oper-
ator from Eq. (5.14) (See section 5.6). The updated Hamiltonian gives rise to
a new Green’s function which in turn generates a new self-energy. This chain
of updates forms a self-consistency cycle analogous to that of Hartree-Fock or
KS-DFT.
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5.5 Impurity solvers
5.5.1 Hubbard-I Approximation
The Hubbard-I approximation [23, 24] (HIA) completely neglects the hy-
bridization between the local orbitals and the bath. The SIAM Hamiltonian
and bath Green’s function are then reduced to

ĤSIAM ∆=0−→ ĤHIA
AA = ĤMF

AA +ÛAAAA−ÛMF
AA , (5.67)

G̃0(ω)
∆=0−→ G̃HIA

0AA(ω) = [ω 1̃AA− ĤMF
AA −ÛMF

AA ]−1. (5.68)

Since the Hubbard-I Hamiltonian ĤHIA describes a system with just a few
orbitals and electrons it can be written in a many-body basis and diagonalized
numerically. The eigenvalues E(N)

i and eigenvectors |νi〉 of ĤHIA are used in
Eq. (5.26) to produce G̃HIA

AA (ω). G̃HIA
0AA(ω) and G̃HIA

AA (ω) are then substituted
into Eq. (5.66) to yield Σ̃AA(ω).

HIA is in some ways the simplest of the impurity solvers, as it does not
treat the hybridization with the bath at all. On the other hand, it treats all
interactions between the local electrons exactly, and produces an analytical
self-energy for arbitrary frequencies ω . The HIA self-energy gives therefore
often a highly accurate spectral density when the correlated orbitals are very
localized. Nevertheless, even a tiny hybridization can give rise to an extra
quasiparticle peak in the low energy part of the spectrum at sufficiently low
temperatures. This resonance is due the Kondo effect, a collective screening
of the magnetic moment of the impurity by the electrons in the bath. Since
HIA does not capture this effect one must proceed with care when compar-
ing the spectral density with experimental photoemission data taken at low
temperatures.

5.5.2 Exact Diagonalization
Exact Diagonalization (ED) is a natural extension of HIA in the sense that it
reduces the system to a finite size, but also takes into account a significant part
of the hybridization. It does so by not only including the correlated subspace
A , like in HIA, but also an auxiliary subspace B spanned by a few fictitious
bath states {|qEDi 〉}i∈B. The Hamiltonian of this extended system has the form

ĤED = ĤHIA
AA + ĤED

AB + ĤED
AB + ĤED

BB , (5.69)

where ĤED
AB = Ψ̂†H̃ED

AB Ψ̂ and ĤED
BB = Ψ̂†H̃ED

BB Ψ̂ represent the hybridization
strength between the bath and the correlated orbitals, and the bath Hamilto-
nian, respectively. H̃ED

AB and H̃ED
BB are fitted to reproduce the hybridization

function ∆AA(ω) from Eq. (5.33) as close as possible. In Paper V we per-
formed the fitting by minimizing the cost function

F(H̃ED
AB ,H̃ED

BB ) = ∑
n

Wn

∥∥H̃ED
AB [iωn1̃− H̃ED

BB ]−1H̃ED
BA − ∆̃AA(iωn)

∥∥2
F
, (5.70)
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where iωn = iπT (2n+ 1) is a Matsubara frequency [10], {Wn} is a set of
weights and ‖Ã‖2

F = Tr(Ã†Ã) is the Frobenius norm. The use of Matsubara
frequencies makes ∆̃AA(iωn) rather smooth, which reduces the risk of getting
stuck in a local minimum. Once ĤED has been constructed the rest of the
procedure is identical to that of the HIA solver.

5.5.2.1 Technical considerations

An important technical issue in the implementation of ED is constructing the
matrix representation of the Hamiltonian with respect to the many-body basis.
This step is greatly simplified if the basis vectors are defined as pure separable
states (single Slater determinants) in some one-particle basis. As we saw in
section 3.1.2 the Slater determinants can be visualized in the occupation num-
ber formalism. For example 5 electrons in a 10 orbital manifold can form the
following many-body states:

|Ψ5
1〉 = |1111100000〉,

|Ψ5
2〉 = |1111010000〉,

|Ψ5
3〉 = |1111001000〉,

...

|Ψ5
M−1〉 = |0000101111〉,
|Ψ5

M〉 = |0000011111〉.
Here M is the number of possible many-body states, i.e. the binomial coef-
ficient of 10 over 5. When the creation and annihilation operators are given
in the same one-particle basis as |ΨN

i 〉, then their action becomes a simple
remapping of the indices N → N ± 1, i→ j and a multiplication of a phase
factor (±1).

The size of the many-body basis explodes with the number of orbitals and
electrons, as shown in Eq. (3.4), so even for a moderate number of orbitals
and electrons the Hilbert space becomes too large to handle in practice. How-
ever often the system under consideration possesses useful symmetries, which
can be used to find some criteria to a priori identify a block structure in the
Hamiltonian. These blocks can then be treated separately which saves a lot of
computational resources.

A general way to obtain these criteria is to define the many-body basis vec-
tors as the eigenvectors of a set of commuting observables {Âk}, and then
determine how the states mix under the action of the Hamiltonian. Since the
basis vectors should be representable by single Slater determinants, only com-
muting one-electron observables

Âk = ∑
i j

Ãk
i jĉ

†
i ĉ j, (5.71)

should to be considered. Furthermore, to keep the calculation of the mixing
rather simple we impose an additional condition that the observables should
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commute with Û . These two restrictions reduce the list of potential observ-
ables {Âk} for the correlated orbitals to Ŝz and L̂z (or alternatively Ŝx and L̂x

and Ŝy and L̂y). The auxiliary bath orbitals are not directly affected by Û , so
each bath spin-orbital m can be assigned an observable n̂m = ĉ†

mĉm that mea-
sures its occupation.

Each spin-orbital j can be transformed into a common eigenstate of all these
observables and assigned a vector of eigenvalues~a j. A many-body basis vec-
tor |ΨN

i 〉, defined as a single Slater determinant with respect to these orbitals,
is trivially an eigenstate of the observables in {Âk}, with an eigenvalue vector

~Ai =
K

∑
j=1
〈ΨN

i |ĉ†
j ĉ j|ΨN

i 〉~a j. (5.72)

Obtaining these eigenvalue vectors is not enough to determine the block struc-
ture of ĤED, as the one-electron Hamiltonian Ĥ0 does not in general commute
with the observables in {Âk}. In particular, the hybridization with the bath
orbitals rarely commute with L̃z. The off-diagonal elements of H̃0 determine
how the blocks will form. Each non-zero off-diagonal element H̃0

mnĉ
†
mĉn al-

lows a many-body basis vector |Ψi〉 to couple to a basis vector |Ψ j〉 if the
following condition is fulfilled

~A j−~Ai =~am−~an. (5.73)

The problem of generating a block structure can now be transformed into
finding the connected components of an undirected graph, where the vertices
are defined by {~Ai} and the edges by {~am−~an,0} for all n and m through
Eq. (5.73). This problem can be solved efficiently through the use of sparse
logical square matrix multiplication4, in the following steps:

1. Map each vertex to a matrix index, and each edge to a true element in
the logical matrix T .

2. Multiply T with itself, until it remains constant. This procedure makes
the connected components complete.

3. The true elements in a row or column in T gives the indices of all the
vertices of a connected component.

This algorithm can be further improved by contracting any dense region in
the graph before T is defined. Additionally, the second step can be performed
even more efficiently through the use of an update matrix V :

1. V ← T

2. While V 6= 0
a) T ← T .or. V
b) V ← (.not. T ) .and. T.V

4Notice that our tests have shown that the intrinsic Fortran function MATMUL for large dense
logical matrices is extremely inefficient. In order to test our procedure we strongly suggest to
look for alternative solutions for matrix multiplications.
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The Hamiltonian is now finally ready to be block diagonalized by grouping all
the many-body basis vectors with quantum number vectors {~Ai} matching a
given connected component.

Further technical considerations, like how the choice of local orbitals affects
the hybridization function, can be found in the supplemental material of Paper
V.

5.5.3 Spin-Polarized T-matrix Fluctuation-exchange
Spin-Polarized T-matrix Fluctuation-exchange (SPTF) solver is a diagram-
matic approach based on the perturbation of the Green’s function with respect
to Û

e f f
AAAA−ÛDC

AA . The first step in deriving the SPTF contributions is to con-
struct the local particle-particle susceptibility from the RPA expression

χ̃PP
AA (t, t

′) = P̃PP
AA (t, t

′)+
∫
P̃PP
AA (t, t

′′)Ũe f f
AA χ̃PP

AA (t
′′, t ′)dt′′ (5.74)

where

P̃PP
AA (t, t

′) = −G̃AA(t, t
′)⊗ G̃AA(t, t

′)

= Tr
(

ρ̂T [Ψ̂A(t)Ψ̂
†
A(t
′)]
)
⊗Tr

(
ρ̂T [Ψ̂A(t)Ψ̂

†
A(t
′)]
)
. (5.75)

It should be noted that it is not the particle-hole four-index matrix notation
defined in Eq. (5.35) that is used in Eq. (5.74) but rather the corresponding
particle-particle notation

ṼPP
αβ = ṼPP

α1α2β1β2
. (5.76)

The bare particle-particle polarization P̃PP
AA (t, t

′) describes the independent prop-
agation of two electrons, while P̃(t, t ′) in Eq. (5.40) describes an electron
and a hole. The constrained particle-hole susceptibility χ̃A(t, t ′) was used in
Eq. (5.42) to account for the screening of the bare interaction ŨAA by the bath
electrons, giving the effective interaction Ũ e f f . The local particle-particle sus-
ceptibility χ̃PP

AA (t, t
′) plays a similar role in the SPTF method. It is used to con-

struct the T-matrix T̃AA(t, t
′) which describes the particle-particle screening of

effective interaction Ũ e f f by the correlated electrons themselves

T̃AA(t, t
′) = Ũe f f

AA δ (t− t ′)+ Ũe f f
AA χ̃PP

AA (t, t
′)Ũe f f

AA , (5.77)

where we again have used the particle-particle four index matrix notation.
The second part of the SPTF scheme is to construct an effective particle-

hole interaction. The starting point is the static anti-symmetrized vertex

ŨAS
αβ = T̃α1β1α2β2

(ω)
∣∣
ω=0− T̃α1β1β2α2

(ω)
∣∣
ω=0 , (5.78)

where T̃AA(ω) is the Fourier transform of T̃AA(t, t
′) from Eq. (5.77). The anti-

symmetrized vertex give rise to a new RPA particle-hole susceptibility

χ̃AS
AA(t, t

′) = P̃PH
AA (t, t

′)+
∫

P̃PH
AA (t, t

′′)ŨAS
AAχ̃AS

AA(t
′′, t ′)dt′′. (5.79)
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χ̃AS
AA(t, t

′) is then used to obtain the particle-hole effective interaction

W̃AS
AA(t, t

′) = ŨAS
AA + ŨAS

AAχ̃AS
AA(t, t

′)ŨAS
AA. (5.80)

The SPTF self-energy is given by the Fourier transforms of the effective
interaction W̃AS

AA(ω) and the Hartree-Fock approximation of T̃AA(ω) combined
with the Green’s function in a GW form

Σ̃SPTF
i j (ω) = Tr

(
[(W̃AS

iA jA+ T̃iA jA− T̃iAA j−W̃DC
AA )∗ G̃AA](ω)

)
. (5.81)

where the convolution is defined in Eq. (5.62). The double counting term
W̃DC

AA (ω) is given by

W̃DC
AA (ω) = ŨAS

AA + ŨAS
AAP̃PH

AA (ω)ŨAS
AA. (5.82)

It cancels the parts which are included both in the T-matrix and in the W-
matrix.

5.6 One-particle reduced density operator
A large part of the work dedicated to this thesis went into solving technical
problems related to the implementation of our methods. This is reflected in
the following two sections, which will deal with the asymptotic summation of
the Green’s function over the Matsubara frequencies5.

The one-particle reduced density operator ρ̃ defined in Eq. (5.14) is ob-
tained from limτ→0− G̃(τ). However, the self-energy update in Eq. (5.64)
generates G̃(iωn) in the (Matsubara) frequency domain. This means that the
calculation of ρ̃ requires a Fourier transform of G̃(iωn) in the limit τ → 0−

ρ̃ = lim
τ→0−

lim
N→∞

1
β

N

∑
n=−N

G̃(iωn)e
−iωnτ . (5.83)

The asymptotic behavior of G̃(iωn) goes as 1/(iωn). This makes the partial
sum in Eq. (5.83) only point wise convergent and not uniformly convergent
with respect to τ , and means that the limits can not be interchanged. One way
around this problem is to use that the Dyson equation in Eq. (5.66) ensures
that the self-energy matrix6 takes the analytical form

Σ̃(iωn) = Σ̃(∞)+ Σ̃d(iωn), (5.84)

Σ̃d(iωn) = Ṽ†[iωn1̃− D̃]−1Ṽ, (5.85)

5These sections will likely require your full attention, so before we continue may I suggest a
quick coffee break?
6From here on we drop any SIAM superscript and the explicit local projections as the following
procedure is general.

50



where D̃ is a diagonal matrix. Substituting Eq. (5.84) into Eq. (5.64) gives

G̃(iωn) =
[
iωn1̃− H̃stat− Σ̃d(iωn)

]−1

= W̃†
[
iωn1̃− Ẽ− W̃Σ̃d(iωn)W̃

†
]−1

W̃, (5.86)

where the diagonal matrix Ẽ contains the eigenvalues and the unitary matrix
W̃ contains the eigenvectors of the static Hamiltonian

H̃stat = H̃MF −∑
i

ŨDC
AiAi

+ Σ̃(∞). (5.87)

Σ̃d(iωn) can be expanded in the limit of large ωn as

W̃Σ̃d(iωn)W̃
† =

∞

∑
j=0

W̃Ṽ†D̃ jṼW̃†

(iωn) j+1 =
√

Ã[iωn1̃− B̃]−1
√

Ã+O(
1

ω3
n

). (5.88)

where

Ã ≡ W̃Ṽ†ṼW̃†, (5.89)

B̃ ≡ Ã−1/2W̃Ṽ†D̃ṼW̃†Ã−1/2. (5.90)

The Green’s function can now be decomposed into a numerical part and an
analytical part

G̃an(iωn) =

[
iωn1̃− Ẽ− Ã′

iωn1̃− B̃′

]−1

=
iωn1̃− B̃′

(iωn1̃− Ẽ)(iωn1̃− B̃′)− Ã′
(5.91)

G̃num(iωn) = G̃(iωn)− W̃†G̃an(iωn)W̃, (5.92)

where we have rotated the analytical part into the eigenbasis of H̃stat , and Ã′

and B̃′ are the diagonal components of Ã and B̃, respectively. It should be
states that Ã′ and B̃′ are in practice obtained by fitting the asymptotic part of
the self-energy with a model function, and not from Eq. (5.88). The construc-
tion in Eq. (5.91) makes G̃an(iωn) diagonal, with simple poles at

z± =
Ẽ+ B̃′

2
± 1

2

√
(Ẽ− B̃′)2 +4Ã′. (5.93)

The density operator can now also be split into an analytical and numerical
part

ρ̃ = W̃†ρ̃anW̃+ ρ̃num, (5.94)

ρ̃an = lim
τ→0−

lim
N→∞

1
β

N

∑
n=−N

G̃an(iωn)e
−iωnτ , (5.95)

ρ̃num = lim
τ→0−

lim
N→∞

1
β

N

∑
n=0

[
G̃num(iωn)e

−iωnτ + G̃num†(iωn)e
iωnτ
]
, (5.96)
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where we have used that G̃(iωn) = [G̃(−iωn)]
† to restrict the numerical sum-

mation to positive Matsubara frequencies.
The numerical part ρ̂num converges uniformly with respect to ωn [25] which

allows the order of the limits in Eq. (5.96) to be interchanged. With a mini-
mal loss of accuracy the resulting sum can be truncated at some large cut-off
Matsubara frequency Nmax, giving

ρ̃num ≈
Nmax

∑
n=0

1
β

[
G̃num(iωn)+ G̃num†(iωn)

]
. (5.97)

The analytical part ρ̂an has a simple form but contains the logarithmic di-
vergence of ρ̂ . However, the convenient simple pole structure allows the sum-
mation to be transformed into a complex contour integral through the use of
Cauchy’s residue theorem

lim
τ→0−

lim
R→∞

1
2πi

∮

R

e−τzG̃an(z)

eβ z+1
dz=

=− lim
τ→0−

lim
R→∞

1
β

N

∑
n=−N

G̃an(iωn)e
−iτωn + ∑

j=±

Resz=z̃ j [G̃
an(z)]

eβ z̃ j + 1̃
= 0 (5.98)

where we have used that

Resz=iωn

[
1

eβ z+1

]
=− 1

β
, (5.99)

and that the circular contour is zero for −β < τ < 0,0≤ θ < 2π as

lim
R→∞

e−τReiθ

eβReiθ +1
= 0. (5.100)

Eq. (5.98) implies that

ρ̃an = ∑
j=±

Resz=z̃ j [G̃
an(z)]

eβ z̃ j + 1̃
=

Q̃G
+

eβ z̃+ + 1̃
+

Q̃G
−

eβ z̃−+ 1̃
(5.101)

where the residues Q̃G
± are given by

Q̃G
± =

1̃
2
± Ẽ− B̃′

2
√
(Ẽ− B̃′)2 +4Ã′

. (5.102)

The final expression for the density operator ρ̃ is obtained by substituting
Eq. (5.101) and (5.97) into Eq. (5.94).

5.7 Total energy correction
Another important quantity is the total energy correction ∆EHGM which is the
sum of the Galitskii-Migdal contribution [26, 27], and the expectation value
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of H̃MF and the double counting correction ŨEDC given by

ŨEDC ≡ ∑
i

Ũ(1)DC
AiAi

+
1
2 ∑

i

Ũ(2)DC
AiAi

, (5.103)

∆EHGM = lim
τ→0−

lim
N→∞

N

∑
n=−N

Tr
[(

H̃MF− ŨEDC+
Σ̃(iωn)

2

)
G̃(iωn)e

−iωnτ

β

]
,(5.104)

where Ũ(1)DC
AiAi

and Ũ(2)DC
AiAi

are the parts of the double counting that represents
one particle potentials and two particle interactions, respectively. The asymp-
totic behavior of the summation in ∆EHGM is proportional to that of ρ̃ in
Eq. (5.83). As we saw in Eq. (5.86), G̃(iωn) becomes diagonal in the eigen-
basis of H̃stat in the asymptotic limit. To take advantage of this we extract
parts of the Hamiltonian and the double-counting correction from Eq. (5.104),
giving

∆EHGM = lim
τ→0−

lim
N→∞

1
2β

N

∑
n=−N

Tr
[(

H̃stat + Σ̃d(iωn)
)
G̃(iωn)e

−iωnτ
]

+
1
2

Tr
[
H̃MF ρ̃

]
− 1

2 ∑
i

Tr
[
Ũ(1)DC
AiAi

ρ̃AiAi

]
, (5.105)

where ρ̃ is given by Eq. (5.94). Following the same procedure as for ρ̃ in the
previous section, we can now define the analytical and numerical parts using
Eq. (5.88) and (5.91)

∆EHGM = ∆Ean
HGM+∆Enum

GM +∆EMF
HGM, (5.106)

∆EMF
HGM = Tr

[
H̃MF ρ̃

]
− 1

2 ∑
i

Tr
[
Ũ(1)DC
AiAi

ρ̃AiAi

]
, (5.107)

∆Ean
HGM = lim

τ→0−
lim
N→∞

1
2β

N

∑
n=−N

Tr
[(

Ẽ+
Ã′

iωn1̃− B̃′

)
G̃an(iωn)e

−iωnτ

]

= lim
τ→0−

lim
N→∞

1
2β

N

∑
n=−N

Tr
[

e−iωnτÃ′

(iωn1̃− Ẽ)(iωn1̃− B̃′)− Ã′

]

+
1
2

Tr
[
Ẽρ̃an

]
, (5.108)

∆Enum
GM = ∆EGM−∆Ean

GM−∆EMF
HGM. (5.109)

The evaluation of ∆EMF
HGM poses no difficulties apart from that it requires the

density operator ρ̃ . ∆Enum
GM converges uniformly with respect to ωn and can

therefore be treated in the same way as ρ̃num. The static part of ∆Ean
HGM, i.e. the

second term in Eq. (5.108), is readily evaluated once ρ̃an has been calculated.
The only remaining term in Eq. (5.106) to evaluate is the dynamical part of
∆Ean

HGM , which can be treated in the same way as G̃an(z). The part within the

53



trace has the same simple poles z±, but its residues are given by

Q̃HGM
± =

±Ã′√
(Ẽ− B̃′)2 +4Ã′

. (5.110)

Applying Cauchy’s residue theorem to ∆Ean
HGM gives

∆Ean
HGM =

1
2

Tr
[
Ẽρ̃an

]
+

1
2

Tr
[

Q̃HGM
+

eβ z̃+ + 1̃
+

Q̃HGM
−

eβ z̃− + 1̃

]
. (5.111)

This method of evaluating the total energy correction and the density op-
erator can in principle be extended by replacing the one pole approximation
of Σ̃d(iωn) with an m-pole approximation, and use a root solver to find the
poles of the analytical Green’s function. This would allow the numerical cut-
off frequency Nmax to be reduced even further, and thereby save even more
computational resources.
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6. Periodic Anderson Model

While the Single Impurity Anderson Model presented in the previous chapter
offers a great insight in how to improve a mean-field description, it is limited
to systems containing just a single impurity1. The Periodic Anderson Model
(PAM) offers a closer description of a correlated material as it allows the impu-
rities to form a periodic lattice. However, the model is not completely general
as the electrons in the localized orbitals Ai at impurity i are only allowed to
interact with the electrons in impurity j through the hopping term, and not
through the two-particle operator U-term

ĤPAM = T̂ +∑
i

ÛPAM
AiAiAiAi

. (6.1)

If we once more identify the model parameters with the mean-field Hamilto-
nian and effective Coulomb interaction, like we did in Eq. (5.8), we get

ĤPAM = ĤMF +∑
i

(Û
e f f
AiAiAiAi

−ÛDC
AiAi

), (6.2)

where Û e f f
AiAiAiAi

and ÛDC
AiAi

are defined in section 5.2 and 5.3, respectively. The
PAM Green’s function G̃PAM(ω) is given by

(
ω 1̃− H̃MF +∑

i

ŨDC
AiAi
− Σ̃PAM(ω)

)
G̃PAM(ω) = 1̃, (6.3)

where the PAM self-energy Σ̃PAM(ω) in general is non-local.

6.1 Dynamical Mean Field Theory
Dynamical Mean Field Theory [28, 29, 30, 31, 32] (DMFT) is built around
the mapping of the Periodic Anderson Model to several Single Impurity An-
derson Models, one for each impurity, schematically depicted in Fig. 6.1. The
mapping is defined2 through the locally projected Hamiltonians

ĤSIAM
AiAiAiAi

≡ ĤPAM
AiAiAiAi

(6.4)

1Or at least to systems with very low impurity concentrations, so that all impurity interactions
may be completely neglected.
2The following equations can also be obtained by setting G̃SIAM

AiAi
(ω) = G̃PAM

AiAi
(ω), Σ̃SIAM

AiAi
(ω) =

Σ̃PAM
AiAi

(ω), ŨSIAM
AiAiAiAi

= ŨPAM
AiAiAiAi

, and then extracting H̃MF
AiAi
−ŨDC

AiAi
in the limit ω → ∞.
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Figure 6.1. A schematical illustration of the mapping from the Periodic Anderson
Model to a Single Impurity Anderson Model in the DMFT scheme. The bath pa-
rameters Vk and εk correspond to the off-diagonal (hopping) and diagonal (energy)
elements of T̂, respectively, and U symbolizes the ÛSIAM

AAAA term in Eq. (5.7).

and the SIAM hybridization function

∆̃SIAM
AiAi

(ω)≡ ∆̃PAM
AiAi

(ω)≡ ω 1̃− H̃MF
AiAi

+ŨDC
AiAi
− Σ̃PAM

AiAi
(ω)− [G̃PAM

AiAi
(ω)]−1.

(6.5)
Eq. (6.4) and (6.5) gives the SIAM bath Green’s function

G̃SIAM
0AiAi (ω) = [ω 1̃− H̃MF

AiAi
+ŨDC

AiAi
− ∆̃SIAM

AiAi
(ω)]−1, (6.6)

which together with ŨSIAM
AiAiAiAi

= ŨPAM
AiAiAiAi

from Eq. (6.4) fully determines the
SIAM problem. Once the the SIAM problems are constructed they are solved
by some appropriate impurity solvers to yield a set of self-energies {Σ̃SIAM

AiAi
(ω)}i.

What is needed now is a way to relate this information to the PAM self-energy.
DMFT provides this connection by approximating the PAM self-energy by its
corresponding value in the limit of large coordination number, i.e. when the
correlated orbitals are surrounded by a large number of hybridizing orbitals.
In this limit the electrons are no longer allowed to form entangled states over
clusters of impurities, which reduces the PAM self-energy to the sum of the
local SIAM self-energies [28, 29, 30, 31, 32]

Σ̃PAM(ω)≈ Σ̃DMFT (ω)≡∑
i

Σ̃SIAM
AiAi

(ω). (6.7)

The DMFT scheme can be cast in the form of a loop which starts from a
trial PAM self-energy, constructs G̃PAM , performs the SIAM mapping to ob-
tain {Σ̃SIAM

AiAi
(ω)}, updates Σ̃PAM using Eq. (6.7), and then continues until self-

consistency has been reached. This cycle is illustrated in the top of Fig. 6.2.
To make the procedure fully self-consistent it is important to also update

the mean-field-like Hamiltonian. In the DFT+DMFT scheme the calculation
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is divided into two cycles, the DFT cycle and the DMFT cycle, as shown in
Fig. 6.2. In the DFT cycle the ground state of the system is approximated as a
pure separable state and H̃KS is calculated. In the DMFT cycle H̃KS is kept fix
while the self-energy is updated. The Green’s function is then used to generate
a new electron density and from that a new KS Hamiltonian.

DFT+

DMFT

DMFT

DFT

Figure 6.2. Schematic representation of the DFT+DMFT cycle. The first iteration
starts in the DFT cycle where a trial electronic density is given as an input. The
KS Hamiltonian is then set up and used in the construction of the Green’s function
G̃(iωn). The local Green’s function G̃AA(iωn) is obtained by projecting G̃(iωn) onto a
correlated orbitals A . G̃AA(iωn) gives the impurity bath Green’s function G̃0AA(iωn)
which is then fed to an impurity solver. The resulting impurity self-energies are then
summed to produce the total self-energy used to update G̃(iωn). Once the basic DMFT
cycle has converged a new electron density is constructed and the loop continues until
full self-consistency.
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7. Results

7.1 Intermediate valence compounds
Intermediate valence (IV) systems [33, 34, 35] have ground states where the
localized d- or f-manifold is in a mixed state containing both fn and fn+1

configurations. The principal interest in these materials is due to the interac-
tion between these localized electrons and the itinerant conduction electrons,
which manifests itself in exotic material properties [36]. Usually IV systems
are metallic, albeit poorly conducting, down to very low temperatures with
ground states which can be described as paramagnetic Fermi liquids [37, 38],
but the compounds investigated in Papers I, II, and III all show unusual tem-
perature dependencies.

YbInCu4 undergoes a first-order isostructural electronic phase transition at
Tc ≈ 40 K, associated with a change in the valence state of Yb ions, which
causes the electrical resistivity and the effective magnetic moment to drop by
an order of magnitude [39]. YbB12 and SmB6, on the other hand, are classi-
cal examples of narrow-gap semiconductors which develop a band gap on the
order of 10 meV as the temperature is lowered [36]. From a theoretical point
of view they are considered excitonic insulators [40, 41, 42] or Kondo insula-
tors [36]. The heavy fermion material SmSn3 shows anomalies in the specific
heat [43] and electric resistivity [44] with two sharp peaks at 9.3 and 9.6 K,
and one broad peaks at and 10.8 K. While the latter is attributed to an anti-
ferromagnetic phase transition, the first two peaks are still of unknown ori-
gin, although multipole magnetic order was suggested to play a key role [43].
Also the temperature dependence of the electric resistivity and specific heat
of Yb2Pd2Sn reveal signatures of a non-Fermi liquid ground state, with two
maxima at 200 and 11 K. YbPd2Sn exhibits coexistence of superconductivity
(Tc = 2.3 K) and antiferromagnetism (TN = 0.28 K).

Although the anomalous properties of many of these materials have been
known for decades [48, 49, 50, 51, 39] the underlying mechanism and relation
to the IV ground state is still unclear [52, 53, 41, 42, 54, 55, 56, 57, 58]. Most
of the theoretical studies have focused on the the interaction between the lo-
calized f-electrons and the itinerant electrons in the meV energy scale close to
the Fermi level, using primarily model Hamiltonian approaches [59, 60, 61,
56, 62, 58, 63]. The theoretical calculations in Paper I, II, and III are aimed to
complement these studies with an accurate description of the multiplet spectra
of the localized f-electrons. To this end we used the LDA+DMFT approach
with the Hubbard-I Approximation impurity solver (see section 6.1) integrated
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Figure 7.1. Partial Yb 4f or Sm 4f density of states from LDA+DMFT[HIA] (full
lines) and experimental photoemission spectrum from Refs. [45, 46, 47] and Pa-
per III and II (dashed lines). Upper left: YbInCu4, upper right: YbB12, middle left:
Yb2Pd2Sn, middle right: YbPd2Sn, lower left: SmB6, lower right: SmSn3.

in the FP-LMTO code RSPt [64]. While the Hubbard-I approximation does
not take into account the hybridization between the correlated f-orbitals and
the bath, and therefore can not produce any quasiparticle peak associated with
the Kondo effect, it still gives a very accurate description of the highly local-
ized f-electrons. The results, in form of 4f-partial densities of states, are shown
in Fig. 7.1 along with the corresponding experimental photoemission spectra.

The theoretical partial densities of the correlated states and the measured
photoemission spectra show an overall excellent agreement. All major peaks
are reproduced and their positions lie within a few tenths of an electron volt of
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the experimental positions. This data clearly support the use of the Hubbard-I
approximation for localized 4f-electrons. However, to include the Kondo
physics it is necessary to refine the theoretical description even further, e.g.
by using the atomic HIA data as input to simulations based on the Continuous
Time Quantum Monte Carlo method.

7.2 Hard permanent magnets
Hard permanent magnets are materials characterized by their huge coercive
fields. They are of crucial technical importance and can be found in such di-
verse applications as electric motors, magnetic recording media, and in the
mining industry, where they are used in mineral separation processes. The
strongest magnetic materials known today are alloys of rare earth elements,
e.g. Nd2Fe14B and SmCo5. While it is known that the coercivity arises from
a coupling between the localized rare-earth f-electrons and the itinerant tran-
sition metal d-electrons, the details of this interaction and how it influences
the crystal field splitting in the f-manifold is still an outstanding problem. In
Paper IV we calculate the electronic structure of SmCo5 using LSDA+DMFT.
We treat the localized Sm-4f electrons with the HIA solver and the weakly
correlated Co-3d electrons with the SPTF solver in the full conserving formu-
lation (See Paper VIII).

The inclusion of spin-polarization in the LSDA part of the DFT+DMFT
cycle makes the double counting problem even more complicated. We used
the double counting correction H̃DC = µDC1̃+ H̃X for the Sm 4f states, where
the double counting parameter µDC acts as an atomic chemical potential, and
HX is introduced to remove the local intra-orbital LDA exchange splitting. An
estimate of the inter-orbital LDA exchange splitting was obtained from a sep-
arate charge self-consistent calculation, but where the Sm 4f electrons were
constrained to stay paramagnetic. This approach works under the assumption
that the Sm 4f inter-orbital LDA exchange splitting is only slightly perturbed
by the polarization of the Sm 4f-states. In the main calculation HX was ad-
justed to remove any intra-orbital LDA exchange splitting from the projected
LDA Hamiltonian, while keeping the previously estimated inter-orbital LDA
exchange splitting constant. The charge self-consistency is fundamental in this
approach as a one-shot calculation would completely neglect the effect of the
SPTF self-energy on inter-orbital exchange splitting.

The inclusion of the full Coulomb interaction drastically improves the cor-
respondence between the calculated spectral properties and the experimental
data, as seen in Fig. 7.2. Moreover, the magnetic properties are strongly in-
fluenced by the inclusion of the LDA+DMFT self-energy, as shown in Table
7.1. In the one-particle band picture the magnetic moment driven by a large
exchange-splitting, which gives a very large spin-moment but severely under-
estimates the orbital moment. In the atomic-like picture, given by the HIA
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Figure 7.2. Experimental and calculated spectra of SmCo5. The calculated LDA
values are represented with thin lines while the LDA+DMFT values are given by thick
lines. (a) Experimental x-ray photoemission spectrum from Ref. [65]. The small
peak at -11 eV is an Ar 2p artifact from the sample cleaning procedure. (b) Calculated
projected density of states of Sm 4f orbitals. (c) Calculated projected density of states
of Co 3d states for Wyckoff position 2c (solid lines) and 3g (dashed lines). The Fermi
level is at zero energy.
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Table 7.1. Spin (ms), orbital (mo), and total (mtot) moment of SmCo5. The total

moment also includes the contribution from the interstitial region. All the magnetic

moments are given in units of µB.

Sm Co (2c) Co (3g) Total
Method ms mo ms mo ms mo mtot

LSDA (100 K) -5.48 1.81 1.58 0.06 1.55 0.10 4.04
LSDA+DMFT (100 K) -4.38 4.45 1.54 0.21 1.53 0.18 8.24
LSDA+DMFT (400 K) -3.47 3.26 1.54 0.22 1.52 0.18 8.02
Exp. – – – – – – 8.9

solver, there is a large set of almost degenerate many-body eigenstates with
different magnetization directions. The inter-orbital exchange introduces a
small energy bias in favor of a certain magnetization direction which increases
the weights of the favored states in the many-body density operator. This small
energy is on the same order as the thermal energy fluctuations (≈ kBT ), which
gives the magnetic moment a proper temperature dependence.

7.3 Electronic entanglement in the late transition metal
monoxides

The electronic structure of the late transition metal monoxides (TMO) – MnO,
FeO, CoO and NiO – has been the topic of much discussion for a long time [66,
67]. The surge in interest arose when it stood clear that single Slater determi-
nant band structure calculations [68] predict these oxides to be metallic, while
experiments showed that they are wide-gap insulators with band gaps of 2 – 4
eV. Mott and Peierls identified the strong on-site Coulomb repulsion between
the electrons in the TM-3d orbitals as the driving force behind the formation
of the band gap [69, 70]. Later, a set of refined experiments showed that there
is also a strong hybridization between the TM-3d and O-2p states [71, 72],
which places the TMOs in the intermediate regime between Mott insulators
and charge-transfer insulators in the Zaneen, Sawatzky and Allen classifica-
tion scheme [73].

Over the years numerous computational schemes have been used to de-
scribe the spectral properties of the TMOs; density functional theory (DFT)
in local (LDA) or semi-local (GGA) approximations [74, 75], self-interaction
corrections [76] and LDA+U [77, 78], combinations between GW and LDA+U
[79, 80], and between GW and hybrid functionals [81]. The inclusion of type
II antiferromagnetic order is vital to get the correct shape of the excitation
spectrum in these studies, while experiments have shown that spectral proper-
ties are insensitive to the magnetic order [82]. This discrepancy can be traced
to the one-single Slater determinant (pure separable state) nature of these ap-
proaches. Methods based on describing the electrons in the TM-3d orbitals
using a general mixed and entangled many-body state, like finite cluster ap-
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NiO

Figure 7.3. PDOS of the Ni 3d states (thick lines) and O 2p states (dashed lines)
in NiO, and corresponding XPS/BIS data (black circles). The Fermi level is at zero
energy.

proximations [83, 84] and LDA+DMFT [85, 86, 87, 88, 89, 90, 91] do not
have this drawback. Unfortunately, it has been difficult for the above men-
tioned LDA+DMFT studies to reproduce experimental photoemission spec-
tra. This might in part be due to the use of various technical approximations,
in particular the three-pole approximation, the maximum entropy method, a
lack of charge self-consistency, and the density-density approximation of the
Coulomb interaction matrix.

In Paper V we present the LDA+DMFT results obtained with our newly im-
plemented ED impurity solver, free of the technical approximations mentioned
above. While the quality of the calculations are affirmed through comparison
with experimental photoemission experiments (XPS/BIS), as shown for NiO
in Fig. 7.3, the main focus of the letter is the entanglement between the elec-
trons in the impurity problem.

7.3.1 Entanglement measures
Entanglement between distinguishable particles has been studied in great de-
tail both theoretically and experimentally [92]. As the particles are distin-
guishable they can be labelled and partitioned into different subspaces of the
Hilbert space using tensor products (⊗). A pure state |Ψ′〉 of N distinguish-
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able particles is then defined as being separable if it can be written as a single
product state

|Ψ′〉=
N⊗

j=1

|Ψ′j〉 ≡ |Ψ′1〉⊗ |Ψ′2〉⊗ ·· ·⊗ |Ψ′N〉. (7.1)

The representation of an entangled state |Ψ〉 requires at least a superposition
of two product states

|Ψ〉=
M≥2

∑
i=1

N⊗

j=1

|Ψi
j〉. (7.2)

The fixed partitioning of the Hilbert space makes it natural to ask whether
or not the particles in a composite partition A are entangled with the particles
not in A (composite partition B). The standard way to investigate this for a
pure state |Ψ〉 is to construct a reduced NA-particle density operator by taking
the partial trace over the subspace B

ρ̃A = TrB [ρ̃ ]≡∑
i

〈Ψi
(B)|ρ̃N |Ψi

(B)〉 (7.3)

where

|Ψi
(B)〉= 1̃⊗|Ψ j

b1
〉⊗ 1̃⊗·· ·⊗ |Ψ j

b2
〉⊗ ·· ·⊗ |Ψ j

bNB
〉⊗ 1̃, (7.4)

and b1, . . . ,bNB
are the indices of the partitions included in B. The particles

are entangled if ρ̃ i
N−1 is a mixed state, which can be checked using the von

Neumann entropy
SvN = Tr

[
ρ̃ i
N−1 ln(ρ̃ i

N−1)
]
. (7.5)

The bipartitioning procedure measures the entanglement between two given
subspaces, but it does not give a value of the total entanglement in the system.
This quantity can be evaluated through a geometric entanglement measure [93]

EG[|Ψ〉〈Ψ|] = 1−max
|Ψ′〉

∣∣〈Ψ′|Ψ〉
∣∣2 , (7.6)

where |Ψ′〉 is restricted to be separable. EG measures the distance between |Ψ〉
and the closest possible separable state |Ψ′〉. Although it is trivial to calculate
the overlap, it is far from easy to perform the minimization over all separable
states due to the large variational space. A practical alternative to a brute force
numerical optimization is the search function F , schematically presented in
pseudocode form in Fig. 7.4.

The situation is rather similar when the particles are indistinguishable, apart
from that there is no natural partitioning of the Hilbert space. It is still possible
to define a bipartition, as shown in Eq. (3.49), but the number of particles in
each partition is in general not fixed. In Paper V we instead focus on the one-
particle reduced density matrix defined in Eq. (5.14), and an analogous search
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function F is:
input: pure state |Ψ〉, partitioning if the Hilbert space {Am}M, current
maximal overlap O′max

1. #Detect single-particle states:
if (|{Am}|= 1) return 〈Ψ|Ψ〉

2. #Measurement optimization:
Diagonalize the one-particle density matrices of each partition
ρ̃(m) = Ṽ(m)D̃(m)Ṽ(m)†, where ρ̃(m) = TrH \Am

(|Ψ〉〈Ψ|).
3. Label the eigenvalues D̃(m)

ii from largest to smallest such that

D̃(mk)
ikik
≥ D̃(ml)

il il
for k ≤ l. Define |Ψk〉= ∑ j Ṽ

(mk)
ik j
|Ψ(mk)

j 〉.
4. #Perform the measurement and add another one-particle detector:

for k = 1,2, · · · , total number of states
if (D̃(mk)ikik > O′max) then
P̃k←

⊗mk−1
i=1 1̃⊗〈Ψk|⊗M

i=mk+1 1̃
O′max←max

(
O′max,F

[
P̃k|Ψ〉,{Am}m 6=mk

,O′max
])

end if
done

5. return O′max
end F

Figure 7.4. A pseudocode representation of the recursive depth first search function
F [|Ψ〉,{Am},O′max]. Note that the state |Ψ〉 is not renormalized after each measure-
ment, and that the initial value of O′max can be set to zero. Comments are given in
italic.

algorithm to the one presented in Fig. 7.4 is derived. We also considers the en-
tanglement in mixed states, in particular in the paramagnetic phase where the
ground state is composed by a large number of degenerate many-body states.
Although the presence of classical correlations makes it much more difficult
to extract the strength of the entanglement, the use of spin coherent operators
allowed us to obtain a practical expression for the paramagnetic mixed state
entanglement as well.

The entanglement measures presented in Paper V finally make it possible
to study the role of the entanglement in more exotic systems as complex ac-
tinides or Fe based superconductors, and see how it relates to their unconven-
tional properties. We are just beginning to explore this promising new path of
research.

7.4 Magnetically doped semiconductors
Diluted magnetic semiconductors (DMS) are obtained by doping standard
semiconductors with a small amount of magnetic impurities, which results
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Figure 7.5. Resonant photoemission spectrum of Mn-3d states in Mn doped GaAs
at several concentrations compared to the Mn-3d projected density of states from
LDA+DMFT with the ED solver. The Fermi level is at zero energy, and no artifi-
cial shifts have been applied between theoretical and experimental curves. In the inset
the ferromagnetic (FM) and non-magnetic (NM) LDA results are shown.

in a ferromagnetic order. These materials are of prime interest in the emerging
field of spintronics, where they are used in electrical circuits to manipulate the
spin of the transported electrons. In practical applications, an ordering tem-
perature above room temperature is needed, but none of the claimed candidate
materials, like Mn or Co doped ZnO, have so far hold up to scrutiny. The study
of DMS materials based on ZnO has been hampered by difficulties in synthe-
sizing samples with a homogeneous distribution of dopants. Mn doped GaAs
offers a considerably more robust situation, and substitutional Mn doping at
the Ga sites can reach concentrations up to 6-8 % resulting in ordering tem-
peratures as high as 170 K. In Paper VI we calculate the spectral properties of
Mn doped GaAs using the LDA+DMFT approach and the ED impurity solver.
The multiplet-like spectrum compares well with the experimental photoemis-
sion data, as shown in Fig. 7.5, which indicates that the Mn 3d-electrons are
localized in nature although they are strongly influenced by the hybridization
with the host material.
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Figure 7.6. Calculated Fe 3d excitation spectrum for different impurity sites: substi-
tutional position in the Cs bulk (solid line), interstitial position in the first sub layer of
the Cs surface (dashed line), and adsorbed position on top of the Cs surface (dashed
dotted line). The experimental photoemission spectrum [94] is shown for comparison
(circles).

7.5 Iron impurities in Cesium
In Paper VII we investigate Fe impurities in Cs, and how the local environ-
ment of the Fe atoms affects the excitation spectrum using LDA+DMFT[ED].
This study was motivated by a report by Carbone et al. [94] who analyzed the
deposition of Fe impurities on different alkali metal surfaces (Cs, K, Na and
Li). Their photoemission spectroscopy data show two different correlation
regimes. The Fe atoms deposited on the Cs surface display a rich multiplet
spectrum, indicating strong correlations, while a more band-like behavior of
the Fe impurities is seen in the case of the Li surface. In their paper Carbone et
al. suggest that the photoemission signal comes from the impurities adsorbed
on the surface. However, often impurities do not adsorb on surfaces but rather
diffuse into the material, e.g. into interstitial positions or even change place
with the host atoms in substitutional positions. Through a series of calcula-
tions we show that it is hard to distinguish among the substitutional, intersti-
tial and adsorbed sites by probing the occupied part of the excitation spectrum,
corresponding to an ordinary photoemission spectroscopy experiment. How-
ever, clear differences between the sites emerge in the unoccupied part of the
excitation spectrum, as shown in Fig. 7.6. Therefore we conclude that an in-
verse photoemission experiment is likely able to determine the positions of the
Fe impurities deposited on the Cs surface.
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7.6 Magnetic moments in late transition metals
In Paper VIII we study three different formulations of SPTF and how they in-
fluence the magnetic moments and the spectra of the late transition metals Fe,
Co, and Ni. All the formulations use the same SPTF equations presented in
section 5.5.3, but they differ in the choice of Green’s function used in the po-
larization bubbles in Eq. (5.40) and (5.75), and in the self-energy in Eq. (5.81).
The symbol G̃AA(ω) has the following meaning in the three formulations:

G̃SIAM
0AA (ω) Standard formulation of SPTF in the bare Green’s function

(G0-SPTF)
G̃SIAM
AA (ω) Fully conserving formulation of SPTF (Full G-SPTF)

G̃HF
AA (ω) Partially conserving formulation of SPTF (GHF-SPTF)

The Green’s function G̃HF
AA (ω) used in GHF-SPTF is obtained from the Hartree-

Fock self-energy

Σ̃HF
i j =

1
2

ρ̃HF
nm

[
Ũe f f
min j− Ũe f f

mi jn

]
, (7.7)

and
[G̃HF

AA (ω)]−1 = [G̃SIAM
0AA (ω)]−1+ Σ̃HF

AA . (7.8)

The density operator ρ̃HF in Eq. (7.7) is obtained self-consistently from G̃HF
AA (ω)

and Eq. (5.14). GHF-SPTF is very close in spirit to LSDA+U+SPTF, the only
difference between the two is that LDA+U+SPTF use ρ̃AA in Eq. (7.7) instead
of ρ̃HF

AA .
The results for the spectral density and magnetic moment of bcc Fe are

shown in top and bottom panels of Fig. 7.7, respectively. The spectral proper-
ties are only minimally changed in the three different SPTF formulations. The
main difference is that full G-SPTF leads to a strong smearing of the high-
energy satellite. This extra smearing is closely related to the overscreening
problem encountered in the fully self-consistent GW method. It stems from
an overestimation of the polarization in Eq. (5.40) and (5.75), which over-
screens the effective interactions and leads to a stronger imaginary component
in the self-energy.

The magnetic moments show a larger difference between the three formu-
lations, and the results obtained from full G-SPTF are intermediate to those of
G0-SPTF and GHF-SPTF. This trend reveals that the screening is not the only
factor influencing the electronic structure. The screening tends to quench the
orbital polarization, so this effect alone would order the results according to
G0-SPTF > GHF-SPTF > full G-SPTF. The competing effect is that the dress-
ing of the Green’s function pushes the orbital polarization via the construction
of the self-energy in Eq. (5.81) and the use of the Σ(0) double counting correc-
tion. In G0-SPTF there is little screening, but also no dressing of the Green’s
function, leading to a smaller orbital moment. The screening in GHF-SPTF
is also small, but the inclusion of the Hartree-Fock self-energy in G̃HF

AA (ω)
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Figure 7.7. (top) Projected spectral density of Fe in the three different formulations of
SPTF compared to LDA results. (bottom) Fe orbital and spin moments.
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increases the orbital polarization. In full G-SPTF there is a large screening
which compensates the orbital polarization given by G̃SIAM

AA (ω), which ex-
plains the intermediate results. The results of Co and Ni follow the same
trends. The experimental orbital moment of bcc Fe is 0.8-0.9 µB and the spin
moment is 2.0-2.1 µB, which compares well to the results from the partially
conserving formulation GHF-SPTF.

7.7 Spectral properties of NiS
By replacing the oxygen in NiO with larger and less electronegative sulfur
atoms, the crystal structure becomes hexagonal and the correlation strength is
reduced. NiS exhibits a first-order phase transition [95] at 260 K, accompa-
nied by a 2% volume collapse and a transition from paramagnetism to antifer-
romagnetism. The high temperature paramagnetic phase is metallic while the
low temperature antiferromagnetic phase displays a rather poor conductivity.
To understand the role of correlation we have performed LDA+DMFT cal-
culations for both these phases, and compared the calculated photoemission
spectra with experimental data. The weak correlation strength, reflected in a
rather small Û e f f

AAAA and a large and broad hybridization ∆̃AA(ω), allow us to use
the SPTF impurity solver. The resulting self-energy shifts the main KS-DFT
quasi-particle bands of the correlated Ni 3d orbitals closer to the Fermi level,
and introduces a broadening of the spectral features, as shown in Fig. 7.8.
The excitations at intermediate energies, caused by the hybridization with the
S 3p orbitals, are also shifted but the main effect is a very strong broadening
given by the large imaginary part of the self-energy. A comparison between
LSDA+DMFT[SPTF], LSDA+U, and experimental data is shown in Fig. 7.8.
The peak positions and spectral weights at the Fermi level are significantly
improved due to the incorporation of the SPTF self-energy compared to the
static Hartree-Fock self-energy in LSDA+U.
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Figure 7.8. Theoretical (line) and experimental (circles) photoemission data for NiS.
Left panel: AMF phase within (a) LSDA+U and (b) LSDA+DMFT for photon en-
ergy 21.2 eV at 150 K. Right panel: Non-magnetic phase within (a) LDA and (b)
LDA+DMFT for photon energy 40.81 eV at 300 K.
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8. Conclusions and outlook

The electrons in transition metal 3d-orbitals and lanthanide 4f-orbitals have
a strong tendency to stay localized in various compounds and phases. The
DFT+DMFT results presented in the previous chapter show that a proper
many-body treatment on these localized electrons is essential to obtain the
correct spectral weight redistribution and multiplet features in the excitation
spectra. The many-body treatment gives a correct description of the paramag-
netic phase, with 〈Ŝ2〉 6= 0 but 〈Ŝz〉= 0, and a proper temperature dependence
of the ground state properties. However, there are still room for improvements.
Most of these results where obtained from simulations where the screened on-
site Coulomb interaction Û e f f

AAAA and the double counting correction ÛDC
AA were

obtained in a semi-empirical way1. The self-consistent GW+DMFT scheme
could potentially resolve these issues, but no fully self-consistent results have
been presented so far. What is also missing is a canonical way to construct the
correlated orbitals. This is closely related to the rather vague definition of the
term ’strongly correlated’ used in the quantum chemistry and condensed mat-
ter communities. The term is used to denote the electronic structure of those
materials which KS-DFT or HF fail to describe even in a qualitative way. The
lack of a quantitative definition of the strong correlation makes it very hard to
define an optimal set of correlated orbitals aimed to capture its effects. Let us
therefore end with some concluding remarks about the relation between the
strong correlation and the well-defined classical and quantum correlations, in
an attempt to shed some light on the subject.

The only trivial implication is that a mean-field description is separable.
The reverse implication, that a separable ground state must be well described
by KS-DFT or HF, is not true in general. Consider for example a material well
described by the LDA+U method. The LDA+U Hamiltonian is identical to
ĤPAM except that Û e f f

AAAA is replaced by the single-particle screened Hartree-
Fock term ÛSHF

AA . All the terms in the LDA+U Hamiltonian are single-particle
terms which implies that the LDA+U ground state is separable, but it is of
course still different from the KS-DFT ground state. This example shows also
why it is essential to use a proper minimization procedure in a geometrical
entanglement measure. The distance between a density operator obtained from
LDA+U and any arbitrarily chosen separable reference state, like the DFT
ground state of the same system, is always non-zero for a finite U, although

1The existence of more than 5 different double counting corrections makes the choice of cor-
rection almost a free parameter in itself.
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both states are separable. It might be tempting to think of this distance as
a measure of some strong correlations in the LDA+U ground state, but the
connection to entanglement is then completely lost. Furthermore, since we
add a Hartree-Fock term to the Hamiltonian in the LDA+U method, one could
even argue that the LDA reference state is more correlated than the LDA+U
state, at least in a DFT sense.

A finite classical correlation in the electronic structure of a thermal sys-
tem implies the existence of nearly degenerate many-body states in the ground
state density operator. These degeneracies are important in the description
of temperature dependent properties, e.g. the magnetic moment. The stan-
dard KS-DFT and HF implementations take the classical correlations into ac-
count only in a rudimentary way. Their ground states are constructed from the
single-particle eigenvectors of H̃MF , occupied according to the Fermi-Dirac
distribution of the corresponding eigenvalues. The main approximation is that
the Hamiltonian H̃MF is obtained from a single, possibly symmetry-broken,
electron density or one-particle reduced density operator. A proper treatment
would instead require the use of several mean-field-like Hamiltonians of large
supercells constructed from different starting points such that the crystal sym-
metry is fulfilled on average. However, it should be noted that even with a
multi-Hamiltonian mean-field approach it is still not possible to describe a
paramagnetic system. The reason is that the classical correlation related to
the different local moments of the atoms is intrinsically coupled to the 〈Ŝ2〉
dependent entanglement described in Paper V.

The connection between entanglement and strong correlation in materials
is still largely unexplored. A systematic study of the entanglement in the elec-
tronic structure of a set of strongly correlated materials would be highly inter-
esting. The pair-hopping entanglement, described in Paper V and in Section
3.4, can simplify the study as it is present also in the pure ground states of
magnetically ordered phases at zero Kelvin, as shown for CoO. However, as
the name suggests, this form of entanglement requires that the pair-hopping
terms in Û

e f f
AAAA are included in the calculation, and not discarded as in the

density-density approximation of the Coulomb interaction.
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9. Sammanfattning

Eftersom elektroner är osärskiljbara fermioner beter de sig på ett väldigt an-
norlunda sätt än vanliga föremål i vår omgivning. Om flera elektroner befinner
sig nära varandra går det, som namnet antyder, till exempel inte att avgöra
vilken av elektronerna som är vilken. Om man ändå försöker beskriva elek-
trontillståndet genom att sätta en bestämd etikett på vardera elektron byter den
matematiska beskrivningen av elektronerna tecken om man byter plats på två
av elektronetiketterna. Detta gör det naturligt att försöka definiera tillstån-
det hos en samling elektroner med hjälp av en så kallad Slater-determinant
som också delar denna egenskap. Snart visar det sig dock att det i många
fall inte räcker med endast en Slater-determinant, utan att man behöver lägga
ihop flera, antingen på ett klassiskt sätt med hjälp av sannolikheter, eller på
ett kvantmekaniskt sätt med hjälp av linjärkombinationer (superpositioner).
Om det endast behövs en Slater-determinant för att beskriva elektrontillstån-
det kallas det för ett rent och separabelt tillstånd. Om beskrivningen kräver
klassiska sannolikheter är tillståndet inte längre rent utan kallas mixat. Om
den behöver kvantmekaniska superpositioner kallas tillståndet sammanflätat
istället för separabelt. För att helt säkert kunna säga vilken av ovanstående kat-
egorier det totala elektrontillståndet tillhör räcker det inte med att undersöka
en elektron åt gången utan man måste ta med förhållandet mellan alla elek-
troner på en gång. Redan på 50-talet bevisade Löwdin att den linjära entropin
visar hur nära ett tillstånd är att vara rent och separabelt. Problemet vi brottas
med än idag är dock att kunna bestämma storleken på den klassiska respektive
den kvantmekaniska elektronkorrelationen var för sig. I Artikel V presenteras
två olika metoder för att direkt kunna bestämma den kvantmekaniska sam-
manflätningen: det geometriska sammanflätningsmåttet och den korrigerade
linjära entropin.

Standardmetoden för beräkningar av elektronstruktur, Kohn-Shams formu-
lering av densitetsfunktionalteorin (KS-DFT), ger ofta en mycket bra beskrivn-
ing av ett materials egenskaper. Ibland blir dock vissa egenskaper, såsom
elektrisk ledningsförmåga och magnetiskt moment, helt felaktiga för mate-
rial med lokaliserade d- och f-elektroner. Att det behövs något utöver KS-
DFT för att beskriva fotoemissionsspektra av dessa d- och f-elektroner är känt
sedan länge. Detta har ofta avfärdats med att dessa data endast visar att det
är de exciterade tillstånden och inte grundtillståndet som behöver korrigeras,
om ens det. Om man dock tittar närmre på elektrontillstånden framträder
bilden att KS-DFT ger en bra beskrivning av rena separabla elektrontillstånd,
men att metoden tyvärr ofta faller ganska platt när det kommer till mixade
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Figure 9.1. En schematisk illustration över hur atomerna i ett material beskrivs i
DMFT med hjälp av en atom i ett elektronbad. Parametrarna Vk och εk beskriver hur
lätt elektronerna kan hoppa mellan atomen och badet. Parametern U beskriver hur
mycket extra energi det krävs för att ändra antalet elektroner hos atomen.

sammanflätade elektrontillstånd. En av de mest lovande metoderna för att
förbättra DFT-resultaten är att inkludera dynamisk medelfältsteori (DMFT)
i beräkningarna. I DMFT beskrivs de lokaliserade d- och f-orbitalerna med
hjälp av en effektiv Andersonmodell som tillåter elektronerna att bli samman-
flätade, vilket illustreras i Fig. 9.1. En betydande del av denna avhandling
handlar om utveckling, implementation och användande av olika metoder för
att lösa den effektiva Andersonmodellen i DMFT. Fokus ligger på Hubbard-
I Approximationen (HIA), Exakt Diagonalisering (ED) och Spin-Polariserad
T-matris-Fluktuation-utbytesväxelverkan1 (SPTF).

I HIA tillåts inte elektonerna att lämna de lokaliserade orbitalerna. Detta
motsvarar att sätta Vk = 0 i Fig. 9.1. Detta förenklar problemet drastiskt, och
gör det möjligt att att ta fram en exakt "atomär" lösning. Denna beskrivning
visar sig stämma mycket bra för starkt lokaliserade 4f-elektroner i lantanoid-
föreningar (Artikel I, II, III och IV).

I ED anpassas ett litet antal fiktiva orbitaler för att efterlikna effekten av
elektronbadet i Andersonmodellen. Denna metod kan med framgång beskriva
elektrontillstånden i övergångsmetallmonoxiderna MnO, FeO, CoO och NiO
(Artikel V). Utöver excitationsspektra studerade vi även sammanflätningen
hos elektrontillstånden. Det visade sig att CoO särskiljer sig från de an-
dra övergångsmetallmonoxiderna genom att den har en extra intrikat form
av elektronsammanflätning. Detta kunde förklaras genom en tävling mellan
kristallfältsenergierna och Coloumb-repulsionen mellan 3d-elektronerna. Il-
lustrationen på framsidan av denna avhandling visar hur två spin-upp elek-
troner i Co 3d-orbitalerna ger upphov till det sammanflätade tillståndet. Med

1I vardagligt tal kallar vi den bara för "Flex"
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hjälp av ED har vi även studerat Mn inlöst i GaAs, ett material som tillhör
klassen utspädda magnetiska halvledare, och Fe på en yta av Cs (Artikel VI
och VII).

SPTF beskriver svagt växelverkande elektroner i mer delokaliserade or-
bitaler genom perturbationsteori. I Artikel VIII och IX studeras de mag-
netiska momenten och excitationsspektran hos Fe, Co, Ni och NiS. För de
rena övergångsmetallerna analyseras även betydelsen av olika formuleringar
av den perturbationsteori som används i SPFT.
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