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1. Introduction

With the announced finding on July 4, 2012 of a Higgs-boson-like particle

with a mass around 125-126 GeV by the ATLAS and CMS collaborations

[1, 2], these are truly exciting times to be working in particle physics. No less

tantalizing are the possible hints of new physics suggested by the excess of

di-photon Higgs-candidate decays observed by both groups.

At least until very recently, the Standard Model of particle physics has been

an extremely successful theory, accounting for all observed phenomena in par-

ticle collider experiments. It dictates that all matter is composed of quarks

(the building blocks of protons and neutrons) and leptons (such as electrons

and neutrinos) which can interact through three fundamental forces: the elec-

tromagnetic, the weak and the strong interactions. The laws of these interac-

tions are governed by two quantum gauge theories, the electroweak theory and

quantum chromodynamics.

The electroweak theory describes the electromagnetic and weak force in a

unified way. It has an SU(2)×U(1) gauge symmetry which is associated with

four particles γ,W±,Z0 that mediate the electroweak force during interactions

of elementary particles. At energies below a scale of around 250 GeV, the

SU(2)×U(1) gauge symmetry is spontaneously broken to a U(1) subgroup

through the Higgs-mechanism, giving masses to the carriers of the weak force

W±,Z0, whereas the photon γ , mediating the electromagnetic force, remains

massless. The Higgs-mechanism, in addition, gives masses to all elementary

particles.

Quantum chromodynamics (QCD) is the theory of interactions between the

constituents of protons and neutrons, namely the quarks. The interactions

are mediated through the exchange of eight different particles called gluons g
which are associated with the gauge group SU(3). Unlike photons, the glu-

ons interact among themselves, leading to the curious phenomenon that as one

attempts to pull the quarks in a proton away from each other, the strength of

their mutual attraction rapidly increases, keeping them permanently confined

within a radius of about 10−15 m.

Despite its successes, it is clear that the Standard Model cannot be a complete

theory of particle physics. Indeed, discrepancies between the observed veloc-

ities of stars in galactic orbit and those predicted by the directly observable

matter points to the existence of unobserved dark matter, estimated to consti-

tute 84% of the matter of the universe. As none of the particles of the Stan-

dard Model are viable dark matter candidates, some extension of the model is

clearly necessary.
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Amore speculative, but nonetheless very attractive idea is that of grand uni-

fication in which the theories of electroweak and strong interactions at some

appropriate energy scale become parts of a grand unified theory (GUT) with a

larger gauge group, for example SU(5). The breaking of this enhanced gauge

symmetry down to the SU(3)×SU(2)×U(1) gauge symmetry of the Standard

Model is believed to be similar to the Higgs-mechanism. Beyond the elegance

of accounting for all fundamental interactions in a single unified theory, the

SU(5) GUT consistently explains the fractional electric charges of the quarks

in terms of their charge under the SU(3) gauge group: in a nutshell, quarks

carry 1/3 of the lepton charge because they have three colors. GUT theo-

ries may also be able to explain the smallness of neutrino masses through the

seesaw-mechanism. Nevertheless, unification of the electromagnetic, weak

and strong couplings is only close, but not exact, within the Standard Model

itself.

A particularly elegant scenario is offered by supersymmetric extensions of

the Standard Model. Such extensions contain dark matter candidates, achieve

grand unification and stabilize the Higgs mass against large radiative correc-

tions. Moreover, supersymmetry (SUSY) seems an important ingredient in

finite theories of quantum gravity. A particular paradigm of supersymmetric

model building which does not appear to be under pressure by current LHC

data is that of split supersymmetry. Here, the SUSY breaking scale is high,

around the GUT scale of 1016 GeV, and all supersymmetric scalars are ul-

traheavy. This naturally suppresses unwanted side effects such as proton de-

cay and flavor-changing neutral currents which would be mediated by these

scalars. On the other hand, the supersymmetric fermions can remain light,

protected by chiral symmetry. Among these fermions, the lightest electrically

neutral ones may be dark matter candidates whereas the lightest electrically

charged ones may couple to the final-state photons in the Higgs decay, enhanc-

ing the rate. A recent analysis [3] shows that if the diphoton excess survives

further scrutiny, split SUSY requires the existence of a new charged fermion

around 115-150 GeV.

Although many of the above ideas may turn out to have nothing to do with

nature, we outlined them here to suggest that new physics may well be within

the reach of the LHC. Thus, the purpose of the Large Hadron Collider is two-

fold. One, which at the time of writing seems very likely to have been fulfilled,

is the discovery of the Higgs boson. The other is (hopefully) the discovery of

new physics beyond that of the Standard Model.

The LHC is a hadron collider. This in turn means that there is a large

QCD background present in the experiments, accounting for more than 99%

of the events. Identifying signal processes therefore requires a quantitative

understanding of the background which must first in a sense be subtracted

from the collected data. Figure 1.1 below illustrates a typical example of a

signal process and a background process.
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Figure 1.1. An example of (a) a signal process and (b) a background process.

In precise terms, an understanding of the QCD background amounts to the

knowledge of the cross-sections of all relevant Standard Model processes to

some sufficiently high precision. An important ingredient, but by no means the

only one, needed for computing cross-sections are the scattering amplitudes of

processes.

Traditionally, scattering amplitudes have been computed by means of Feyn-

man diagrams, and very impressive calculations have been performed by their

use. Nevertheless, this approach inevitably runs out of steam at some point,

owing to the explosive growth of the number and complexity of the Feyn-

man diagrams contributing to the amplitudes. Efficient methods for comput-

ing tree-level amplitudes have emerged more recently, including most notably

the BCFW-recursion relations [4].

More powerful methods for calculating loop-level amplitudes were devel-

oped in the mid-1990’s exploiting the unitarity of the S-matrix along with

an ansatz for one-loop amplitudes involving simpler integrals than those ap-

pearing in Feynman diagram calculations. Exploiting the analytic structure

of the loop-integrand it is then possible to determine the coefficients of these

integrals in terms of tree-level amplitudes. This approach is known as the uni-

tarity method. It has proven very successful at one loop where it has rendered

a number of amplitude calculations possible, in particular of processes with

many partons in the final state. One-loop unitarity also exists in an even more

recent form, called generalized unitarity. Here the analytic structure of the

loop-integrand is probed by a larger number of on-shell constraints, leading

to formulas of the integral coefficients in terms of tree amplitudes without the

need for performing algebra at intermediate stages.

The subject of this thesis is the development of a systematic approach for com-

puting two-loop amplitudes based on generalized unitarity. Such an extension

of the unitarity method is necessary for an efficient numerical implementation,

but it is very likely that such a formalism will also produce extremely compact

analytical results for scattering amplitudes, obtained in a simple and straight-

forward way. It should be emphasized that generalized unitarity has certainly
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been applied beyond one loop, primarily in the calculation of amplitudes of

N = 4 supersymmetric Yang-Mills (SYM) theory and N = 8 supergravity.

However, the first step in these calculations is to construct a suitable ansatz

for the amplitude of interest in terms of a craftily chosen set of integrals. It

is therefore fair to say that no systematized use of generalized unitarity exists

beyond one loop.

Two-loop amplitudes are needed for quantitative estimates of the QCD

background at the LHC. For example, there are processes (such as gg → γγ
and gg →W+W−) whose amplitudes start at one loop, and whose differential

cross sections therefore begin not at O(α0
s ) but rather at O(α2

s ). The next-to-

leading order (NLO) cross section therefore receives contributions from the

interference of one- and two-loop amplitudes. (The process gg → γγ is ef-

fectively NLO as the suppression from the extra powers of αs compared to

qq → γγ are roughly compensated by the large density of gluons at small x.)
Moreover, any calculation at NNLO will require two-loop amplitudes as in-

put. The practical uses of NNLO calculations involve providing theory for

precision measurements (beyond the processes e+e− → 3 jets, gg → H and

W,Z production, which have already been computed), providing uncertainty

estimates on NLO calculations, and further reducing the dependence on the

choice of renormalization scale in, for example, gg →W +n jets.

Although outside of the main focus of this thesis, it is worth mentioning

that the past 8-9 years have witnessed astounding progress in N = 4 SYM

amplitudes, uncovering dualities with Wilson loops and correlators of local

operators; an integrable structure leading to an all-loop solution; and an all-

loop recursion relation for the integrand à la BCFW. No less spectacular is a

reformulation of the theory’s S-matrix as a contour integral on a Grassmannian

manifold, allowing a notion of particle scattering without manifest spacetime.

The hope raised by some of these advances is that the study of scattering am-

plitudes may ultimately teach us something fundamental about quantum field

theory, or even spacetime itself.

This thesis is organized as follows. In Chapter 2 we give a pedagogical intro-

duction to unitarity at one loop, explaining its origin in the analytic S-matrix

program of the 1960’s, its modern revival in the 1990’s and finally its present-

day incarnation in the form of generalized unitarity. In Chapter 3 we take the

first steps in developing a systematic extension of generalized unitarity to two

loops. In this approach, the two-loop amplitude is expanded in a basis of in-

tegrals. The expansion coefficents are obtained by integrating products of tree

amplitudes along contours in the complex plane. We give a selection prin-

ciple for determining contours that are guaranteed to produce correct results

for amplitudes in any gauge theory, including QCD. In Chapter 4 we explain

how the double-box integrals in the two-loop integral basis are each associated

with a uniquely defined contour producing their coefficient. In Chapter 5 we

identify a class of basis integrals which are likely to simplify unitarity calcula-
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tions substantially at two loops, and moreover analytically evaluate two such

integrals at four points. Chapter 6 falls somewhat outside the mainstream of

purpose and method in this thesis. Here we provide a check on a recently de-

veloped BCFW-like recursion relation [5, 6] for the integrand of N = 4 SYM

amplitudes, investigating the two-loop six-gluon maximally helicity violating

(MHV) integrand. In Chapter 7 we give our conclusions and suggest many

open directions of future research. In Appendix A we specify conventions and

notation used throughout the thesis.
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2. One-loop unitarity

In this chapter we give a pedagogical review of the unitarity method at one

loop, a modern alternative to the more traditional Feynman-diagrammatic ap-

proach to scattering amplitudes. We follow the development of this method

through its rise and fall with the analytic S-matrix program in the 1960’s into

its modern revival in the 1990’s by Bern, Dixon and Kosower, culminating in

its present-day form known as generalized unitarity.

2.1 Unitarity in the 1960’s

2.1.1 Unitarity of the S-matrix

The basic process in a particle collider is one where a number of particles

approach each other from a macroscopic distance and collide in a microscopic

interaction region, after which the products of the interaction travel out to a

macroscopic distance. The probability amplitude for the transition from some

initial state |Ψ+
α 〉 (characterized by spins, flavor, eletroweak and color charges

etc.) to some final state |Ψ−
β 〉 is the inner product

Sαβ ≡ 〈Ψ+
α |Ψ−

β 〉 (2.1)

which defines an element of the S-matrix. The S-matrix may be decomposed

into two parts

S = 1+ iT (2.2)

according to the respective possibilities that the particles either pass by each

other with no interactions, or interact. Factoring a momentum-conservation

delta function out of the T-matrix defines the scattering amplitude Aαβ of the

process,

Tαβ = (2π)4δ
(

∑
i∈α

pi + ∑
i∈β

pi

)
Aαβ . (2.3)

Conservation of probability requires the S-matrix to be unitary. This is easily

seen to be the case: for example,

(S†S)αγ =
∫

dβ S∗βαSβγ =
∫

dβ 〈Ψ−
α |Ψ+

β 〉〈Ψ+
β |Ψ−

γ 〉= 〈Ψ−
α |Ψ−

γ 〉 (2.4)

= δ (α − γ) , (2.5)
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and similarly one can show that SS† = 1.

Using the decomposition in eq. (2.2), the unitarity of the S-matrix implies

for the T-matrix that

−i(T −T †) = T †T . (2.6)

As explained, for example, in Section 7.3 of ref. [7], this equation immediately

implies the optical theorem. This theorem relates the imaginary part of any

forward scattering amplitude (i.e., one in which the outgoing momenta are

some permutation of the incoming momenta) to the total cross section of the

process. Looking beyond forward amplitudes, in Section 2.1.2 we will see

how a careful analysis of a generic one-loop Feynman diagram allows one to

prove a more refined version of the optical theorem, known as the Cutkosky

rules. For now, we restrict ourselves to show how eq. (2.6) relates higher-loop

amplitudes to lower-loop amplitudes.

To this end, expand the T-matrix perturbatively in the coupling g,

T =
∞

∑
n=4

gn−2
(
T (0)

n +g2T (1)
n +g4T (2)

n + · · ·) (2.7)

where T (0)
n ,T (1)

n ,T (2)
n , . . . correspond to the contributions from n-point tree-

level, one-loop, two-loop etc. Feynman diagrams. Inserting this expansion

into eq. (2.6) one obtains, for example,

at order g4: − i
(
T (1)
4 −T (1)†

4

)
= T (0)†

4 T (0)
4 (2.8)

at order g6: − i
(
T (2)
4 −T (2)†

4

)
= T (0)†

4 T (1)
4 +T (1)†

4 T (0)
4 +T (0)†

5 T (0)
5 . (2.9)

These relations are illustrated schematically in figure 2.1. Implicit in the prod-

ucts of T-matrices on the right hand sides is a sum over all possible states that

can propagate across the dashed vertical lines, as dictated by the Feynman

rules.

Figure 2.1. The unitarity of the S-matrix implies relations between amplitudes across

loop orders, here illustrated in the case of four-particle scattering. The number of

holes in a blob indicates the number of loops in the corresponding amplitude. This

figure was taken from ref. [8].
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2.1.2 The Cutkosky rules

The Cutkosky rules provide a quantitative statement on the relations discussed

above between scattering amplitudes across loop orders. This theorem relates

the discontinuity of a one-loop amplitude in any of its kinematic channels to

the product of the tree-level amplitudes arising in the on-shell factorization on

the channel in question.

In order to prove this theorem, let us first introduce the notation

K ≡ k1+ · · ·+ k j (2.10)

s ≡ K2 (2.11)

D ≡ 4−2ε . (2.12)

A generic Feynman diagram contributing to the one-loop amplitude is illus-

trated in figure 2.2.

Figure 2.2. A generic one-loop Feynman diagram. The loop integrand is essentially

the product of the tree-level amplitudes indicated by the gray blobs, times the two

propagators bridging them.

The Feynman rules tell us that the integrand of the diagram consists of

the two highlighted propagators times two factors which are essentially tree

amplitudes,

M (1)(s) =
∫ dDq

(2π)D
1(

K/2−q
)2−m2

r + iε
1(

K/2+q
)2−m2

r + iε

× Ãtree
L

(
k1, . . . ,k j,q+K/2

)
Ãtree

R
(
k j+1, . . . ,kn,−q+K/2

)
(2.13)

keeping in mind that the states traveling along the propagators are not on-

shell, hence the tildes. In the following theorem we calculate the discontinuity

in the s-channel of the diagram illustrated in figure 2.2. However, applying

eq. (2.16) below to every term in the Feynman diagram expansion of the one-

loop amplitude, one arrives at the result alluded to above: the discontinuity

of the amplitude equals the sum over all possible ways in which to factor the

contributing one-loop diagrams into on-shell tree amplitudes.
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Theorem 1 (Cutkosky rules). The s-channel discontinuity of the diagram in
eq. (2.13) is computed by replacing the two propagators according to the rule

1(
K/2±q

)2−m2
r + iε

−→−2πiδ (+)
((

K/2±q
)2−m2

r
)

(2.14)

where
δ (+)(· · ·) ≡ θ(K0)δ (· · ·) (2.15)

with θ denoting the Heaviside step function. In other words, the s-channel
discontinuity is given by

Disc
s

M (1)(s) =
∫ dDq

(2π)D δ (+)
((

K/2−q
)2−m2

r
)
δ (+)

((
K/2+q

)2−m2
r
)

× (−2πi)2Atree
L

(
k1, . . . ,k j,q+K/2

)
Atree

R
(
k j+1, . . . ,kn,−q+K/2

)
. (2.16)

Proof. 1 It is convenient to work in the center-of-momentum frame where

Kμ = (K0,0). In this frame, the propagator denominators in eq. (2.13) take

the form(
K/2±q

)2−m2
r + iε =

(
K0/2±q0

)2−|q|2−m2
r + iε (2.17)

=
(
K0/2±q0

)2− (Er − iε)2 , (2.18)

where we redefined ε in eq. (2.18). Thus, in the center-of-momentum frame,

the one-loop diagram takes the form

M (1) =
∫ d3q

(2π)4

∫ ∞

−∞
dq0 1(

K0/2−q0
)2− (Er − iε)2

1(
K0/2+q0

)2− (Er − iε)2

× Ãtree
L

(
k1, . . . ,k j,q+K/2

)
Ãtree

R
(
k j+1, . . . ,kn,−q+K/2

)
. (2.19)

We observe that the integrand under the
∫ ∞
−∞ dq0(· · ·) integral has four poles,

located at the points q0 = K0

2 ± (Er − iε) and q0 = −K0

2 ± (Er − iε). Let us

now perform the q0 integration, closing the integration contour in the up-

per half of the complex plane, as illustrated in figure 2.3. The integral will

then receive contributions from the poles at q0 =±K0

2 −Er + iε , with residues

Res=− 1
2Er

1
K0(K0∓2Er)

, producing

M (1) =−2πi
∫ d3q

(2π)4

(
1

2Er

1

K0(K0+2Er)
+

1

2Er

1

K0(K0−2Er)

)
× Ãtree

L
(
k1, . . . ,k j,q+K/2

)
Ãtree

R
(
k j+1, . . . ,kn,−q+K/2

)
. (2.20)

1Please note that this proof is a (heavily augmented) version of that appearing in Section 7.3 of

ref. [7].
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Figure 2.3. The poles of the integrand of eq. (2.19) are located slightly above and

below the real axis in the q0-plane. The integration contour is taken along the real

axis and closed in the upper half of the complex plane, as indicated by the dashed

semicircle.

At this point, let us pause to make an important observation: as one can di-

rectly verify, the expression in eq. (2.20) also results from making the replace-

ment

1(
K/2+q

)2−m2
r + iε

−→−2πiδ (+)
((

K/2+q
)2−m2

r
)

(2.21)

in the integrand of eq. (2.13) and integrating out this delta function (indeed,

the two terms in the (· · ·) part of the integrand of eq. (2.20) correspond to the

two points in the support of δ
(
(q0+K0/2)2−E2

r
)
).

Let us now go back to the intermediate result in eq. (2.20) and change the

integration variables into polar coordinates. As the integrand only depends on

the norm of q, the angular integrations will simply produce a factor of 4π .

Further changing the resulting integration measure |q|2d|q| −→ |q|ErdEr, one

then finds

M (1) =−2πi
4π

(2π)4

∫ ∞

mr

dErEr|q|
(

1

2Er

1

K0(K0+2Er)
+

1

2Er

1

K0(K0−2Er)

)
× Ãtree

L (k1, . . . ,k j,q+K/2)Ãtree
R (k j+1, . . . ,kn,−q+K/2) . (2.22)

The integrand has poles at Er = ±K0

2 . When K0 < 2mr, the pole does not lie

on the integration contour, so M (1) is manifestly real. When K0 > 2mr, how-

ever, the pole lies just above or below the contour of integration, depending

upon whether K0 is given a small positive or negative imaginary part; that is,

depending on whether we are evaluating M (1)(s+ iε) or M (1)(s− iε).
The one-loop diagram M (1)(s) thus has a branch cut along the real axis,

running from s = 4m2
r to s = +∞. To evaluate the discontinuity M (1)(s+

iε)−M (1)(s− iε), we rewrite the integrand of eq. (2.22) using the Sokhatsky-
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Weierstrass theorem,

1

K0−2Er ± iε
= PV

1

K0−2Er
∓ πiδ (K0−2Er) (2.23)

where PV denotes the Cauchy principal value. The discontinuity is thus given

by replacing

1

K0(K0−2Er)
−→−2πiδ

(
K0(K0−2Er)

)
(2.24)

in the second term in the integrand of eq. (2.22), the first term yielding no con-

tribution to the discontinuity. Recall that the q0 contour integration producing

the former term froze the integration variable to the value q0 =−K0

2 +Er − iε ,
in turn setting K0(K0 − 2Er) = (K/2− q)2 −m2

r . Thus, the replacement in

eq. (2.24) is equivalent to the replacement

1(
K/2−q

)2−m2
r + iε

−→−2πiδ (+)
(
(K/2−q

)2−m2
r
)
. (2.25)

Alternatively, one can easily check that the expression resulting from applying

the replacement (2.24) to the integrand of eq. (2.22) is identical to that result-

ing from applying the replacements in eqs. (2.21) and (2.25) to the integrand

of eq. (2.13). This completes the proof of eq. (2.16).

In conclusion, the one-loop diagram M (1)(s) illustrated in figure 2.2 and

explicitly given in eq. (2.13) has a branch cut along the real axis, running from

s = 4m2
r to s =+∞. The associated discontinuity M (1)(s+ iε)−M (1)(s− iε)

is computed by replacing the two propagators in eq. (2.13) by delta functions

according to the replacements in eq. (2.14). These replacements are often

referred to as unitarity cuts or as cutting the propagators.
Stated differently, the discontinuity arises from the region of the d4q in-

tegration in which the two propagators in figure 2.2 are put simultaneously

on-shell. This region is referred to as Lorentz invariant phase space. Labeling
the propagator momenta as

p1 = q+
K
2
, p2 =−q+

K
2
, (2.26)

the measure over Lorentz invariant phase space implicit in eq. (2.16) takes the

form

dLIPS(p1, p2) ≡ d4p1

(2π)4
d4p2

(2π)4
(2π)4δ (4)(p1+ p2−K)

× (−2πi)2δ (+)(p2
1−m2

r )δ
(+)(p2

2−m2
r ) . (2.27)

This way of writing the measure makes its interpretation clear: the integration

is over all possible propagator momenta p1, p2 that satisfy momentum con-

servation p1 + p2 = K and put the two propagators simultaneously on-shell.
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Employing this notation and now applying eq. (2.16) to all Feynman diagrams

contributing to the one-loop amplitude we conclude that

Disc
s

A(1)(s) = ∑
intermediate

states

∫
dLIPS(p1, p2)Atree

L
(
k1, . . . ,k j, p1

)
×Atree

R
(
k j+1, . . . ,kn, p2

)
(2.28)

where the summation runs over all possible ways in which to factor the con-

tributing one-loop diagrams into on-shell tree amplitudes.

2.1.3 Dispersion integrals and bootstrapping

As shown in the previous section, the one-loop diagram M (1)(s) (illustrated

in figure 2.2) has a branch cut along the real axis, running from s = 4m2
r to

s =+∞. The finite branch point s0 = (2mr)
2 has a clear physical meaning: it

is the threshold energy for production of a two-particle state. For real s below

s0, the two intermediate states cannot go on-shell whereby the Feynman iε-
prescription becomes irrelevant and M (1)(s) is real. However, at s = s0, the
propagator denominators vanish, and at this point the diagram acquires an

imaginary part.

Now, since M (1)(s) is meromorphic in the upper half of the s-plane and

real on the real axis for Re s < s0, the Schwarz reflection principle dictates

that M (1)(s) can be analytically continued to the lower half plane with

M (1)(s) =
(
M (1)(s∗)

)∗
. (2.29)

Near the real axis for s > s0, eq. (2.29) implies

ReM (1)(s+ iε) = ReM (1)(s− iε) (2.30)

ImM (1)(s+ iε) =−ImM (1)(s− iε) . (2.31)

In particular, the discontinuity across the branch cut is

Disc
s

M (1)(s) = 2i ImM (1)(s+ iε) . (2.32)

At this point, let us remind ourselves of the content of the Cutkosky rule in

eq. (2.16): the discontinuity of M (1)(s) can be obtained by integrating the

two tree-level amplitudes arising in the on-shell factorization over relativis-

tic phase space. The knowledge of this tree-level data therefore suffices to

determine the imaginary part of M (1)(s).
Assuming M (1)(s) has no poles in the upper half of the s-plane2, this is

enough to determine the function completely. Namely, the real part can then

2This is for example the case for supersymmetric gauge theories. In contrast, QCD and N = 0

SYM amplitudes contain terms which are rational functions of the external momenta (often

referred to as rational terms). These terms give rise to poles in the complex s-plane, in addition

to the branch cuts discussed above.
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be found by means of the Kramers-Kronig relation

ReM (1)(s) =
1

π
PV

∫ ∞

−∞
ds′

ImM (1)(s′)
s′ − s

. (2.33)

Here again PV refers to the Cauchy principal value prescription. The integral

in eq. (2.33) is known as a dispersion integral3.

To summarize what we have found in this section: assuming the dispersion

integral in eq. (2.33) can be performed, any one-loop diagram can be explic-

itly reconstructed from the tree-level amplitudes arising in the on-shell fac-

torization on its various kinematic channels. This was the philosophy of the

unitarity bootstrap approach: to determine the S-matrix iteratively in the loop

order, starting from tree amplitudes.

As alluded to in the previous paragraph, the difficulty of carrying out the

required dispersion integrals, along with the ambiguity arising from rational

contributions to the amplitude, led to a breakdown of the analytic S-matrix

program in the late 1960’s. However, as we shall see in the next section, the

program experienced a dramatic revival in the 1990’s.

2.2 Unitarity in the 1990’s
The crucial insight that led to the resurrection of the unitarity approach came

from Bern, Dixon and Kosower in the 1990’s [9–13]. Rather than trying to re-

construct a one-loop amplitude directly from its discontinuities à la eq. (2.33),

in their approach one exploits that the basic algebraic structure of the one-loop

integrand is already known from the sum over all Feynman diagrams. Indeed,

as we shall see in Section 2.2.1, this sum can be expressed as a linear com-

bination of a small set of one-loop basis integrals.4 Taking discontinuities of

this basis decomposition in all possible channels then relates the basis coef-

ficients to tree amplitudes through the Cutkosky rule (2.28), allowing one to

unambiguously determine the coefficients, and in turn the amplitude.

2.2.1 Integral reductions and integral bases

The generic one-loop Feynman diagram is an integral over an arbitrary number

of propagators, multiplied by powers of the loop momentum � in the numera-

tor. In particular, the integrand of an n-point amplitude in Yang-Mills theory

may contain up to n propagators and rank n tensors in �μ , owing to the three-

gluon vertex. Such integrals cannot be evaluated directly, and instead one uses

integral reductions to express the desired integral as a sum of simpler integrals.

3The integral transform in eq. (2.33) is known as a Hilbert transform.
4As already mentioned above, the amplitude will in general also have contributions from func-

tions which are rational in the external momenta.
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To illustrate how such reductions are performed, let us start with an n-gon
integral of the form described above, assuming all propagators to be massless,

In−gon[P(�μ)] ≡
∫ dD�

(2π)D
P(�μ)

�2(�−K1)2 · · ·(�−Kn−1)2
(2.34)

where the Ki denote sums of external momenta attached to the vertices of the

n-gon and the numerator insertion P(�μ) represents an arbitrary polynomial in

�μ . We will refer to the special case P(�μ) = 1 as a scalar integral, and the

generic case as a tensor integral (irrespective of whether the Lorentz indices

are contracted or not). As we will now outline, the integrals (2.34) can be

iteratively reduced to scalar n-gons with n = 1,2,3,4. Please note that the

presentation below is based on Section 4.2 in ref. [14].

First, if n ≥ 5, four independent momenta K1, . . . ,K4 are available. These

can be used to define dual momenta,

vμ
1 = ε(μ,2,3,4) , vμ

2 = ε(1,μ,3,4)
vμ
3 = ε(1,2,μ,4) , vμ

4 = ε(1,2,3,μ)

vi ·Kj = ε(1,2,3,4)δi j ,

(2.35)

in terms of which the loop momentum can be expanded as,5

�μ =
1

ε(1,2,3,4)

4

∑
i=1

vμ
i � ·Ki (2.36)

=
1

2ε(1,2,3,4)

4

∑
i=1

vμ
i

(
�2− (�−Ki)

2+K2
i
)
. (2.37)

Now, inserting eq. (2.37) into the degree p polynomial P(�μ) in eq. (2.34), the

first two terms will collapse propagators, thus producing (n−1)-gon integrals

with numerator polynomials of degree p− 1, while the last term remains an

n-gon integral, also of degree p− 1. Iterating this procedure, n-gon integrals

may be reduced to box integrals plus scalar n-gon integrals.

Furthermore, all scalar n-gons with n ≥ 6 can be reduced into scalar poly-

gons with fewer sides. Namely, for n ≥ 6 we have an additional independent

momentum K5. Dotting this momentum into eq. (2.36), the resulting equation

can be rewritten in the form

1= a0�
2+

5

∑
i=1

ai(�−Ki)
2 . (2.38)

5Please note that eq. (2.37) is only a valid identity for the four-dimensional part of the loop

momentum, and care must be taken when applying it to a D-dimensional loop momentum.

However, in practice, loop momenta typically appear dotted into (strictly four-dimensional)

external momenta or polarization vectors.
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Inserted into the numerator of eq. (2.34), we see that this equation allows us

to write, for example, a scalar hexagon integral as a sum of six scalar pen-

tagons. Furthermore, in strictly four dimensions, a Gram determinant identity

is available which reduces the scalar pentagon to a sum of five boxes.

Finally, tensor n-gons with n = 4,3,2,1 can be reduced into scalar n-gons
with n = 4,3,2,1 using either Passarino-Veltman reduction, or using dual vec-

tors in analogy with the steps above, but we omit the details here. In conclu-

sion, any one-loop Feynman diagram can be expressed as a linear combination

of scalar boxes, triangles, bubbles and tadpoles.

Applying integral reductions to the Feynman diagram expansion of any n-
point one-loop amplitude—which we take to define the amplitude—we con-

clude that the amplitude can be expressed as a linear combination of the fol-

lowing basis integrals,6

A(1)
n = ∑

boxes

c�I�+ ∑
triangles

c�I�+ ∑
bubbles

c◦I◦+ ∑
tadpoles

c�I�+rational terms

(2.39)

with a priori unknown coefficients, and where the summations run over all

possible ways of distributing the n (cyclically ordered) external momenta at

the vertices of the integrals. The definition of these integrals can be read off

from figure 2.4 which also serves to restate the basis decomposition of the

one-loop amplitude schematically.

Figure 2.4. Schematic representation of the decomposition of a generic one-loop am-

plitude into the basis of one-loop integrals. The · · · at each vertex represent the pres-

ence of an arbitrary number of external legs. Implicit here is a summation over all

possible ways of distributing the (cyclically ordered) legs at the vertices.

The box and triangle integrals are classified according to which of their exter-

nal momenta are massless. Triangles exist in zero-mass through three-mass

configurations (0m, 1m, 2m, 3m) while boxes exist in zero-mass through four-

mass configurations. Here the two-mass case contains two distinct subclasses

6Although massless tadpoles vanish in dimensional regularization, we include them here to

accomodate the general case of massive propagators.
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referred to as two-mass-easy (2me) and two-mass-hard (2mh), corresponding

to the massless corners of the box being opposite and adjacent, respectively.

2.2.2 Example: the one-loop n-gluon MHV amplitude in N = 4
SYM theory

We briefly outlined the basic ideas of the modern unitarity method in the in-

troduction of Section 2.2. To give an example of how this method is used in

practice, we sketch here the computation of the one-loop n-gluon MHV am-

plitude in N = 4 super Yang-Mills theory. The presentation here is inspired

by Section 4.4 of ref. [14].

Expressed in the integral basis of Section 2.2.1, this amplitude is known

to only contain boxes, as the triangle and bubble coefficients vanish due to

supersymmetric cancelations. Thus, we can write

A(1)
n,MHV(i

−, j−) = ∑
a∈boxes

caIa . (2.40)

Let us define

Kj1, j2 ≡
(
k j1 + · · ·+ k j2

)
(2.41)

s j1, j2 ≡
(
k j1 + · · ·+ k j2

)2
. (2.42)

Using the Cutkosky rule in eq. (2.28), the discontinuity in the s j1, j2-channel of

the left hand side of eq. (2.40) evaluates to

Disc
s j1, j2

A(1)
n,MHV(i

−, j−) = ∑
h,h′

∫
dLIPS(p1, p2)Atree

L
(
k j1 , . . . ,k j2 , ph

1, ph′
2

)
×Atree

R
(
k j2+1, . . . ,k j1−1, ph

1, ph′
2

)
(2.43)

where the sum over helicities h,h′ indicates that we are to sum over all states

that can propagate along the cut propagators. Depending on the cut under con-

sideration, the two negative-helicity external states i and j can appear in two

possible configurations, as illustrated in figure 2.5: either a) they are involved

in the same tree-level amplitude, in which case only gluons can propagate in

the cut loop; or b) they are not involved in the same tree-level amplitude, in

which case the entire N = 4 supermultiplet of states can propagate in the cut

loop.

The amplitudes involved in the summation over the N = 4 multiplet are

related to gluonic amplitudes through a supersymmetric Ward identity [15,

16]. Direct calculation shows that the integrand of eq. (2.43) in both cases a)

and b) yields the same result,

Atree
n,MHV(i

−, j−)
〈 j1−1, j1〉〈p1 p2〉
〈 j1−1, p1〉〈p1 j1〉

〈 j2, j2+1〉〈p2 p1〉
〈 j2 p2〉〈p2, j2+1〉 . (2.44)
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Figure 2.5. The s j1, j2 -channel discontinuity of the one-loop n-gluon MHV amplitude

in N = 4 super Yang-Mills theory. The Cutkosky rule relates this discontinuity to

the product of tree-level amplitudes separated by the dashed red line, illustrating the

cut. Depending on the cut, the two negative-helicity external states may appear in

(a) the same tree amplitude, in which case only gluons can propagate along the cut

propagators (as indicated by the assigned internal helicities); or (b) in distinct tree

amplitudes, in which case the entire N = 4 supermultiplet of states can propagate (as

indicated by the dashed circle).

After some algebra (we refer to eqs. (103)-(107) in ref. [14] for details), this

can be rewritten as

Atree
n,MHV(i

−, j−)
2

(
s j1, j2s j1−1, j2+1 − s j1−1, j2s j1, j2+1(

p1+ k j1−1

)2(p2+ k j2+1

)2
+

s j1, j2−1s j1−1, j2 − s j1−1, j2−1s j1, j2(
p1+ k j1−1

)2(p2− k j2

)2
+

s j1+1, j2s j1, j2+1 − s j1, j2s j1+1, j2+1(
p1− k j1

)2(p2+ k j2+1

)2
+

s j1+1, j2−1s j1, j2 − s j1, j2−1s j1+1, j2(
p1− k j1

)2(p2− k j2

)2
)

(2.45)

plus terms that vanish after integration.
In summary, we have expressed the s j1, j2-channel discontinuity of the one-

loop amplitude as the phase space integral (2.43), with the Atree
L (· · ·)Atree

R (· · ·)
integrand explicitly given in eq. (2.45). Let us now go back to eq. (2.40)
and consider how this discontinuity may be produced by the right hand side.

Recalling the cut propagators δ (+)(p2
1)δ

(+)(p2
2) implicit in the phase space

measure (see eq. (2.27)), the explicit propagators in eq. (2.45) allow us to
directly read off the relevant box integrals. That is, the terms on the right

hand side of eq. (2.40) producing the discontinuity are of the form
∫ dD�

(2π)D (· · ·)
where the integrand is obtained by multiplying eq. (2.45) by 1/(p2

1p2
2) and then
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replacing (p1, p2)−→ (�,Kj1, j2 − �),

Disc
s j1 , j2

A(1)
n,MHV(i

−, j−) =
Atree

n,MHV(i
−, j−)

2
×

Disc
s j1 , j2

[(
s j1, j2s j1−1, j2+1 − s j1−1, j2s j1, j2+1

)
I2me
�

(
k j1−1, Kj1, j2 , k j2+1, −Kj1−1, j2+1

)
+
(

s j1, j2−1s j1−1, j2 − s j1−1, j2−1s j1, j2

)
I2me
�

(
k j1−1, Kj1, j2−1, k j2 , −Kj1−1, j2

)
+
(

s j1+1, j2s j1, j2+1 − s j1, j2s j1+1, j2+1

)
I2me
�

(
k j1 , Kj1+1, j2 , k j2+1, −Kj1, j2+1

)
+
(

s j1+1, j2−1s j1, j2 − s j1, j2−1s j1+1, j2

)
I2me
�

(
k j1 , Kj1+1, j2−1, k j2 , −Kj1, j2

)]
(2.46)

where the notation I2me
� denotes that the box integrals are of the two-mass-easy

type (as defined at the end of Section 2.2.1).

Summing over all possible and independent kinematic channels, one finds

the following result for the one-loop n-gluon MHV amplitude in N = 4 super

Yang-Mills theory,7

A(1)
n,MHV = (μ2)ε Γ(1+ ε)Γ2(1− ε)

(4π)2−εΓ(1−2ε)
Atree

n,MHV Vn . (2.47)

Here the function Vn takes the form

V2m+1 =
m−1

∑
j=1

n

∑
i=1

fi, j (2.48)

V2m =
m−2

∑
j=1

n

∑
i=1

fi, j +
n/2

∑
i=1

fi,m−1 , (2.49)

with the two-mass-easy box functions given by

fi, j =− 1

ε2

[(−si−1,i+ j−1

)−ε
+
(−si,i+ j

)−ε − (−si,i+ j−1

)−ε − (−si−1,i+ j
)−ε

]
+Li2

(
1− si,i+ j−1

si−1,i+ j−1

)
+Li2

(
1− si,i+ j−1

si,i+ j

)
+Li2

(
1− si−1,i+ j

si−1,i+ j−1

)
+Li2

(
1− si−1,i+ j

si,i+ j

)
−Li2

(
1− si,i+ j−1 si−1,i+ j

si−1,i+ j−1 si,i+ j

)
+

1

2
log2

(
si−1,i+ j−1

si,i+ j

)
.

(2.50)

We note that the result given in eqs. (2.47)-(2.50) has been shown to pass in-

dependent consistency checks; in particular, it has the correct collinear limits.

7Please note that from this point on, we drop the bar on the dimensional regulator ε introduced

in eq. (2.12), used above to distinguish it from that of the Feynman iε-prescription.
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It is remarkable that a compact result for an all-multiplicity one-loop ampli-

tude can be obtained through a small number of steps. This clearly shows the

power of the unitarity approach.

2.3 Generalized unitarity
One-loop amplitudes in generic Yang-Mills theories have nonzero contribu-

tions from triangle and bubble integrals in the basis decomposition (2.39). In

the presence of these additional integrals, the unitarity approach described in

Section 2.2.2 can still be used to determine all the respective coefficients, but

the procedure is in practice somewhat cumbersome. Schematically, the result

of applying a cut in the s j1, j2-channel to eq. (2.39) is,

Figure 2.6. The result of applying a cut in the s j1, j2 -channel to eq. (2.39). It is implied

that, on the left hand side, one should sum over all possible box, triangle and bubble

integrals containing the propagators being put on-shell; similarly for the Feynman

diagrams on the right hand side.

That is, all integrals containing the propagators being put on-shell will enter

on the left hand side, and a nontrivial amount of algebra is required to disen-

tangle their respective coefficients.

One conceivable way to cut down the required algebra would be to put sev-

eral propagators on-shell simultaneously. Assuming this is a valid operation,

putting four propagators on-shell would leave on the left hand side in figure 2.6

only the particular box integral containing these propagators, and no disentan-

gling is necessary to find its coefficient. Moreover, extracting the coefficient

of a particular triangle integral would be done by putting its three propagators

on-shell: the only other contributions on the left hand side in figure 2.6 would

come from box integrals containing one propagator in addition to the three

being put on-shell. At this stage, some disentangling would be needed to de-

termine the triangle coefficient, but the prior knowledge of the contaminating

box coefficients makes this task comparatively straightforward.

As we shall see in the following sections, not only is the operation of putting

more than two propagators on-shell valid, there are further refinements avail-

able in which the box, triangle and bubble coefficients can be obtained directly,

with no need for disentangling their respective coefficients.
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2.3.1 Quadruple cuts: direct extraction of box coefficients

In this section we examine what happens to the one-loop equation (2.39) when

four propagators are put on-shell and how the resulting equation enables us

to obtain box coefficients directly from tree-level data. This is essentially a

review of the BCF quadruple-cut method [17], though the phrasing in terms of

multidimensional contour integrals presented here owes to the mathematically

rigorous viewpoint taken in refs. [18–21] and Paper I.

Let us consider a specific box integral with massless propagators,8

I�(K1,K2,K3,K4) =
∫
RD

dD�

(2π)D
1

�2(�−K1)2(�−K1−K2)2(�+K4)2
(2.51)

illustrated in figure 2.7,

Figure 2.7. The general one-loop box integral. The · · · dots at each vertex represent

the presence of an arbitrary number of massless legs. The vertex momenta Ki are sums

of these momenta.

and the associated quadruple cut in which the propagators are replaced by

delta functions solving the on-shell constraints

p2
1 ≡ �2 = 0 (2.52)

p2
2 ≡ (�−K1)

2 = 0 (2.53)

p2
3 ≡ (�−K1−K2)

2 = 0 (2.54)

p2
4 ≡ (�+K4)

2 = 0 . (2.55)

This is a system of one quadratic and three linear equations (as one can see by

subtracting eq. (2.52) from eq. (2.53), eq. (2.53) from eq. (2.54) etc.), and thus

has two distinct solutions.

What is perhaps not immediately obvious is that the solutions of eqs. (2.52)-

(2.55) are generically complex, � ∈ C4. A special case in which this is easy to

see arises when one of the external momenta, for example K1, is lightlike. With

8Note that we suppress the Feynman iε-prescription as it is irrelevant here.
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the adjacent propagator momenta p1 and p2 also being lightlike, momentum

conservation K1 = p1− p2 then implies

0=−2p1 · p2 = 〈p1 p2〉[p1 p2] . (2.56)

This equation has two solutions: either the holomorphic or the antiholomor-

phic spinors are proportional [22],

〈p1 p2〉= 0 =⇒ λp1 ∝ λp2 or [p1 p2] = 0 =⇒ λ̃p1 ∝ λ̃p2 . (2.57)

Corresponding to each of these cases we will label the vertex with respectively

⊕ or �, referred to as the chirality of the vertex. These considerations will be

important throughout this thesis and are summarized in figure 2.8.

Figure 2.8. Momentum conservation at the massless three-point vertex implies that ei-

ther (a) the holomorphic spinors are proportional, denoted with⊕; or (b) the antiholo-

morphic spinors are proportional, denoted with �. It should be noted that the labeling

of holomorphically-collinear vertices as⊕, and of antiholomorphically-collinear ones

as � is not uniform in the literature.

Now, insisting that the momenta p1, p2 be real in Minkowski signature im-

plies 〈p1 p2〉∗ =−[p1 p2], whereby both cases in eq. (2.57) are simultaneously

realized, causing the momenta to be proportional, pμ
1 = α pμ

2 . This would be

unacceptable: for example, if in addition K4 is lightlike, momentum conser-

vation at the vertex containing this external leg would then imply Kμ
4 ∝ Kμ

1 .

To ensure that eqs. (2.52)-(2.55) have solutions for generic external momenta,

we must go back and relax the assumptions on p1, p2 so that their angle and

bracket spinor products are not related by complex conjugation. Two options

are available: either allow these momenta to live in (2,2)-signature, or allow
them to be complex. We will stick to the latter option, p1, p2 ∈ C4.

To summarize what we have seen so far, the equations (2.52)-(2.55) have two

distinct solutions {L,L•}, both of which are generically complex, {L,L•} ⊂
C4; moreover, they are each other’s complex conjugates when the external

momenta are real. (Though we have only established this in the special case

where at least one external momentum Ki is massless, the conclusion holds

true in complete generality.) We will refer to the points L,L• as the leading
singularities of the integrand in eq. (2.51).
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Keeping these facts in mind, let us now return to the procedure of putting

four propagators on-shell in eq. (2.39). Schematically, one would like to per-

form the replacement

4

∏
i=1

1

p2
i

−→ (−2πi)4
4

∏
i=1

δC(p2
i ) (2.58)

where, compared to eq. (2.14), we have dropped the now meaningless restric-

tion to positive-energy states and instead added the superscript C to indicate

that the integration range in eq. (2.51) must necessarily be pushed into C4 in

order to contain the leading singularities.

More accurately, the natural definition of delta functions with complex ar-

guments involves contour integrals – integrating out a variable q in an inte-

grand involving delta functions will fix q to some value q0; in the language of

contour integrals, this corresponds to integrating in the complex q-plane along

a small circle centered at q0. Indeed, as observed in refs. [23, 24], Cauchy’s

residue theorem implies that the localization property∫
dq δ (q−q0) f (q) = f (q0) (2.59)

continues to hold if we define δ (q− q0) ≡ − 1
2πi

1
q−q0

and take the integral to

be a contour integral along a small circle in the complex q-plane centered at

q0. Stated differently, starting from the integral − 1
2πi

∫
R dq f (q)

q−q0
, we can think

of the operation of “cutting the propagator” in two equivalent ways: as the

replacement 1
q−q0

−→−2πiδ (q−q0), or as the change of integration contour

R−→Cε(q0). (Of course, this equivalence is exactly what is made explicit in

the Feynman iε-prescription by giving the pole q0 a small imaginary part, as

we have already seen in the proof of the Cutkosky rules.)

By analogy, taking the quadruple cut of the box integral (2.51) should re-

ally be understood as a change of integration range from RD to a surface (of

real dimension 4) embedded in C4 while leaving the integrand in eq. (2.51)

unchanged. The quadruple-cut integral is thus a multidimensional contour in-

tegral whose contour is a linear combination of the two 4-tori that encircle the

leading singularities L,L•, the first of which can be written formally as9

T 4
ε (L) = {� ∈ C4 : |p2

i (�)|= εi, i = 1, . . . ,4} . (2.60)

At this point it is not clear which linear combinations ω1T 4
ε (L)+ω2T 4

ε (L
•)

define valid integration contours, and for now we will assume that one should

simply average over the two contributions; that is, set ω1 = ω2 =
1
2 . (As we

will show in Section 3.2, this choice is indeed valid.)

9Using the parametrization of the loop momentum introduced in the next section it is possible

to write down these tori explicitly, see eqs. (2.99)-(2.100) as an example.
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Thus, we define the quadruple cut as the change of contour10∫
RD

dD�

(2π)D
Φ(�)

∏4
i=1 p2

i (�)
−→ 1

2
∑

a∈{L,L•}

∫
T 4

ε (a)

d4�

(2π)4
Φ(�)

∏4
i=1 p2

i (�)
. (2.61)

Note in particular that the change of contour away from real Minkowski space

renders the box integral IR finite, and one may therefore disregard the dimen-

sional regulator part of the measure d−2ε� and the (−2ε)-dimensional compo-

nents of the loop momentum.

One important respect in which the multidimensional contour integrals do

not behave like integrals of delta functions is the transformation formula for

changing variables: Given a holomorphic function f = ( f1, . . . , fn) : C
n → Cn

with an isolated zero11 at a ∈ Cn, the residue at a is computed by the integral

over the contour Γε(a) = {z ∈ Cn : | fi(z)| = εi, i = 1, . . . ,n}. This contour

integral satisfies the transformation formula

1

(2πi)n

∫
Γε (a)

h(z)dz1∧·· ·∧dzn

f1(z) · · · fn(z)
=

h(a)

deti, j
∂ fi
∂ z j

(2.62)

which, crucially, does not involve taking the absolute value of the inverse Ja-

cobian. This ensures that this factor is analytic in any variables on which it

depends, so that further contour integrations can be carried out.

At long last, let us return to what we set out to do, namely to put four prop-

agators 1
p2i

on-shell in eq. (2.39). Changing the contour of integration as pre-

scribed by eq. (2.61) turns this equation into

c�
2

∑
a∈{L,L•}

∫
T 4

ε (a)

d4�

(2π)4
4

∏
i=1

1

p2
i (�)

=
1

2
∑

a∈{L,L•}
∑

helicities,
species

∫
T 4

ε (a)

d4�

(2π)4
4

∏
i=1

1

p2
i (�)

Atree
i

(
pi(�), pi+1(�)

)
. (2.63)

We observe that the triangle, bubble and tadpole integrals on the right hand

side of eq. (2.39) have disappeared: their integrands take the form given in

eq. (2.61) where, e.g., in the case of triangles, Φ(�) = p2
j(�). The contour in-

tegration freezes the value of � to one of the leading singularities L,L•, and

10Please note that all (generalized-)unitarity cuts used in this chapter are taken in strictly four

dimensions. The formalism can be usefully extended to D = 4−2ε dimensions [25–27] where

contributions to the amplitude which are rational in four dimensions gain branch cuts and be-

come obtainable by unitarity cuts [28]. However, this extension of the unitarity formalism will

not concern us here.
11A function f = ( f1, . . . , fn) :Cn →Cn is said to have an isolated zero at a ∈Cn iff by choosing

a small enough neighborhood U of a one can achieve f−1(0)∩U = {a}.
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the residues of a triangle integral thus contain the vanishing factor Φ(L(•)) =
p2

j(L
(•)) = 0. Similarly, in the sum over all one-loop Feynman diagrams im-

plicit on the left hand side of eq. (2.39), only the diagrams whose integrands

contain the four propagators being put on-shell will contribute to the quadru-

ple cut. In the right hand side of eq. (2.63), the summation over species and

helicities refers to this restricted set of diagrams; moreover, we have factored

the integrand of any such diagram into the product of the four propagators

times the tree-level amplitudes separated by these propagators (see figure 2.9).

Defining the Jacobian12,

JBCF ≡
(
det
i,μ

∂ p2
i (�)

∂�μ

)−1
∣∣∣∣∣
�=L,L•

(2.64)

=
1

4(K1+K2)2(K4+K1)2
√

1−2(t13+ t24)+(t13− t24)2
, (2.65)

where ti j =
K2

i K2
j

(K4+K1)2(K1+K2)2
, we can utilize the transformation formula (2.62)

to perform the contour integrations in eq. (2.63), yielding

c�JBCF =
1

2
JBCF ∑

a∈{L,L•}
∑

helicities,
species

4

∏
i=1

Atree
i

(
pi(a), pi+1(a)

)
. (2.66)

Canceling out the Jacobian factor on both sides we are left with the BCF for-

mula for the box coefficient [17],

c� =
1

2
∑

a∈{L,L•}
∑

helicities,
species

4

∏
i=1

Atree
i

(
pi(a), pi+1(a)

)
. (2.67)

The result is stunningly simple: the coefficient of any one-loop box integral in

eq. (2.39) is computed by (essentially) multiplying tree amplitudes arising by

literally cutting the propagators of the box graph, as illustrated in figure 2.9.

In example 2 below we show how the BCF formula (2.67) may be used to

determine box coefficients in practice.

Although the Jacobian JBCF cancels out on both sides of eq. (2.66), we

included it explicitly in this equation for good measure13. Namely, as we will

12To compute the Jacobian, Wick rotate to Euclidean signature and exploit that, prior to eval-

uation at the leading singularities, the determinant on the right hand side of eq. (2.64) can be

rewritten as 16deti,μ pμ
i =±16

(
deti, j(pi · p j)

)1/2
=±4

(
deti, j(p2

i + p2
j − (pi − p j)

2)
)1/2

. The

first equality uses the fact that both the determinant and the square root of the Gram determinant

represent the volume of the parallelotope spanned by the four vectors pi, up to a sign. This sign,

along with any potential factors of i introduced by the Wick rotation, can then be determined

numerically. Evaluating at the leading singularities produces J −1
BCF = 4

(
deti, j(pi − p j)

2
)1/2

,

as given more explicitly in eq. (2.65).
13Pun intended.
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see in the next section, the Jacobian in general has poles of its own which may

be utilized when looking for integration contours that distinguish between the

basis integrals in eq. (2.39).

Figure 2.9. Schematic representation of the BCF formula (2.67). The coefficient of

any box integral in eq. (2.39) is obtained by multiplying the tree amplitudes repre-

sented here by gray blobs. These arise by literally cutting the propagators of the box

and promoting the latter to on-shell states.

Example 1: solution of quadruple-cut constraints
In this example we solve the quadruple cut constraints (2.52)-(2.55) for a one-

loop box with four massless external momenta. As illustrated in figure 2.10,

there are two distinct solutions.

Figure 2.10. The two solutions to the quadruple-cut constraints (2.52)-(2.55) for a

one-loop box integral with four massless external momenta.

For definiteness, consider solution S1. Consulting figure 2.8, the chiralities

at the k1- and k4-vertices are seen to imply, respectively, that 〈p1| ∝ 〈1| and
|p1] ∝ |4] so that pμ

1 = 1
2〈p1|γμ |p1] can be written as

pμ
1 = t1〈1|γμ |4] . (2.68)
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To determine the factor of proportionality we use momentum conservation at

the k1-vertex, p1 = p2+ k1:

t1〈1|γμ |4] = t2〈1|γμ |2]+ 1

2
〈1|γμ |1] (2.69)

from which we read off

t1|4] = t2|2]+ 1

2
|1] . (2.70)

Taking the bracket spinor product with [2| yields t1[24] = 1
2 [21] so that

t1 =
[12]

2[42]
. (2.71)

The remaining quadruple-cut propagator momenta in figure 2.10 can be ob-

tained completely analogously, and one finds

S1:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pμ
1 = [1 2]

2[4 2]〈1|γμ |4]
pμ
2 = − [1 4]

2[2 4]〈1|γμ |2]
pμ
3 = [3 4]

2[2 4]〈3|γμ |2]
pμ
4 = − [3 2]

2[4 2]〈3|γμ |4]

S2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pμ
1 = 〈1 2〉

2〈4 2〉 〈4|γμ |1]
pμ
2 = − 〈1 4〉

2〈2 4〉 〈2|γμ |1]
pμ
3 = 〈3 4〉

2〈2 4〉 〈2|γμ |3]
pμ
4 = − 〈3 2〉

2〈4 2〉 〈4|γμ |3] .

(2.72)

Example 2: calculation of box coefficients
As a simple example of how the BCF formula (2.67) is used in practice, we

compute here the box coefficient of the one-loop four-gluon amplitude with

external helicites (1−,2−,3+,4+).
The quadruple cut isolates four corner amplitudes, illustrated in figure 2.11

for the two solutions S1 and S2 found in example 1 above. The assignments

of internal helicities are dictated by the external helicities and consistency with

the chiralities14 at the vertices of the box. In this case, the assignment of

helicities only allow gluons to propagate along the cut propagators.

On top of being gluonic, the corner amplitudes in figure 2.11 are either

MHV or MHV and are therefore readily given by the Parke-Taylor formula

(A.39). We use the convention that all momenta in the Parke-Taylor formula

are outgoing, and the analytic continuation rule15 that changing the sign of a

momentum, pi → −pi, is effected by changing the sign of the holomorphic

spinor [29]: λ α
i →−λ α

i while λ̃ α̇
i → λ̃ α̇

i .

14As can be seen from figure 2.8, a ⊕-vertex only allows for an MHV-amplitude to be attached.

Similarly, a �-vertex only allows for an MHV-amplitude to be attached.
15The tracking of signs and the continuation rule are only necessary when the entire multiplet of

states can circulate in the cut loop, to ensure that the contributions are added with the correct

relative signs. Nonetheless, we include this technicality here for completeness.
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Figure 2.11. The quadruple-cut one-loop four-gluon amplitude with external helici-

ties (1−,2−,3+,4+), evaluated on solutions S1 and S2. The assigned internal and

external helicities only allow gluons to propagate in the loop.

Putting the above remarks together, the quadruple-cut amplitude evaluated

on the kinematical solution S1 yields

4

∏
j=1

Atree
j

∣∣∣∣∣
S1

=
i[−p1, p2]

3

[p2 1][1, −p1]

i〈2, −p2〉3
〈−p2, p3〉〈p3 2〉

i[p4 3]
3

[3, −p3][−p3, p4]

i〈−p4, p1〉3
〈p1 4〉〈4, −p4〉

=

(
[p1 p2]〈2 p2〉

)2 (
[p1 p2]〈2 p2〉

) (
[p4 3]〈p4 p1〉

)2 (
[p4 3]〈p4 p1〉

)(
[p2 1]〈p2 p3〉

) 〈2 p3〉
(
[1 p1]〈p1 4〉

)
[p3 3]

(
[p3 p4]〈4 p4〉

)
=

(− [p1 1]〈21〉
)2 (

[p1 p3]〈2 p3〉
) (

[43]〈4 p1〉
)2 (

[p3 3]〈p3 p1〉
)(

[p1 1]〈p1 p3〉
) 〈2 p3〉

(
[1 p1]〈p1 4〉

)
[p3 3]

(
[p3 p1]〈4 p1〉

)
= 〈12〉2[34]2
= i s12s14Atree

−−++ (2.73)

where

Atree
−−++ =

i〈12〉4
〈12〉〈23〉〈34〉〈41〉 . (2.74)

Here, in the second equality of eq. (2.73), we made use of the abovementioned

analytic continuation rule and judiciously rearranged the various spinor prod-

ucts. In the third equality we used momentum conservation at the vertices: for

example, the equality p2 = p1− k1 implies [p1 p2]〈2 p2〉=−[p1 1]〈21〉.
The quadruple-cut amplitude evaluated on the second kinematical solution

S2 turns out to yield the same result as in eq. (2.73). The BCF formula (2.67)

then implies that the box coefficient of the A(1)(1−,2−,3+,4+) amplitude is

c� =
1

2
∑

a=1,2

4

∏
j=1

Atree
j

∣∣∣∣∣
Sa

= i s12s14Atree
−−++ . (2.75)

This result is valid for any massless gauge theory, in particular for N =
4,2,1,0 Yang-Mills theory.
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Of course, calculating quadruple-cut amplitudes requires more work in prac-

tice, especially when the corner amplitudes are non-MHV, or the entire multi-

plet of states can propagate in the loop. We refer to ref. [17] for more exam-

ples.

2.3.2 Direct extraction of triangle coefficients

In the introduction of Section 2.3 we discussed an algorithm for determin-

ing the coefficient of any triangle integral: put its three propagators on-shell

by applying to both sides of eq. (2.39) a triple cut. This leaves on the right

hand side the triple-cut triangle integral along with triple-cut boxes contain-

ing one propagator in addition to the three being put on-shell. Using the prior

knowledge of the box coefficients from the BCF formula (2.67) one can then

disentangle the contributions of these contaminating boxes and determine the

desired triangle coefficient.

In this section we will see how a judicious parametrization of the loop mo-

mentum allows us to visualize the complex integration contours discussed in

the previous section. This in turn enables us to identify contours that single

out the triangle integrals directly, avoiding any contamination from boxes.

A good parametrization of the loop momentum in this context is simply one

in which the on-shell constraints are easy to solve. Let us recall example 1 in

Section 2.3 where we considered the one-loop box integral with four mass-

less external momenta. The quadruple-cut loop momentum � was found to

take the form 〈k1|γμ |k2] or 〈k2|γμ |k1], respectively for solutions S1 and S2;

that is, up to addition of the external momenta k1 and k2, according to which

propagator momentum is labeled �. This suggests a natural ansatz for the loop

momentum: express � as a linear combination of the four latter vectors from

the outset. At least, this is viable whenever two massless external momenta

are available.

In fact, this observation carries over to the general case: given a pair of

arbitrary vertex momenta (K1,K2), we can obtain a pair of massless momenta

(K�
1,K

�
2) by applying the “flattening” procedure described in Appendix A. In

terms of the flattened vectors, we can then parametrize the loop momentum

as,

�μ = α1K�μ
1 +α2K�μ

2 +α3〈K�
1|γμ |K�

2]+α4〈K�
2|γμ |K�

1] . (2.76)

With this parametrization in hand, let us now consider a general triangle inte-

gral, illustrated in figure 2.12.

Labeling the propagator momenta as

p1 ≡ �

p2 ≡ �−K1 (2.77)

p3 ≡ �−K1−K2 ,
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Figure 2.12. The general one-loop triangle integral. The · · · dots at each vertex repre-

sent the presence of an arbitrary number of massless legs. The vertex momenta Ki are

sums of these momenta.

the triangle integral can be written in the compact form,

I�(K1,K2,K3) =
∫
RD

dD�

(2π)D

3

∏
i=1

1

p2
i (�)

. (2.78)

Formally, the triple cut of this integral is defined as the replacement

3

∏
i=1

1

p2
i

−→ (−2πi)3
3

∏
i=1

δC(p2
i ) (2.79)

inside the integrand. In analogy with the discussion in the previous section,

this amounts to pushing the real-slice integration range RD into C4 in such

a way as to encircle the solutions of the joint on-shell constraints p2
1 = p2

2 =
p2
3 = 0, while leaving the integrand unperturbed.

To find these complex integration contours, first observe that the parametriza-

tion (2.76) yields the following form of the squared propagator momenta

p2
1 = γ

(
α1α2−4α3α4

)
(2.80)

p2
2 = γ

(
(α1−1)

(
α2− S1

γ

)
−4α3α4

)
(2.81)

p2
3 = γ

((
α1− S2

γ −1
)(

α2− S1
γ −1

)
−4α3α4

)
. (2.82)

The general solution to the joint on-shell constraints p2
1 = p2

2 = p2
3 = 0 then

takes the form

α1 =
γ(S2+ γ)
γ2−S1S2

, α2 =
S1S2(S1+ γ)
γ(S1S2− γ2)

, α3α4 =−S1S2(S1+ γ)(S2+ γ)
4(γ2−S1S2)2

.

(2.83)

The structure of the last equation defines two distinct cases, according to

whether S1S2 equals zero or not. Let us start by treating the first case, S1S2 = 0,
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where the triple-cut constraints have two distinct classes of solutions,

S1: (α1,α2,α3,α4) =

(
1+

S2

γ
, 0, z, 0

)
(2.84)

S2: (α1,α2,α3,α4) =

(
1+

S2

γ
, 0, 0, z

)
(2.85)

with z denoting a free complex parameter.

Letting Cαi(z0) denote a small circle in the αi-plane around z0, the integra-

tion of ∏3
i=1

1
p2i

over the two 4-tori

T1 = Cα1

(
1+ S2

γ

)
×Cα2

(0)×Γ1×Cα4
(0) (2.86)

T2 = Cα1

(
1+ S2

γ

)
×Cα2

(0)×Cα3
(0)×Γ2 (2.87)

will respectively localize (α1,α2,α3,α4) ∈ C4 to points in S1 or S2, thereby

solving the triple-cut constraints. The factors Γ1 and Γ2 in eqs. (2.86)-(2.87)

are a priori undetermined contours, reflecting the fact that the triple-cut con-

straints leave the respective parameters α3 and α4 completely free.

Accordingly, in the case where S1S2 = 0, we define the triple cut as the

redefinition of contour

Itriple−cut
� =

1

2
∑

a=1,2

∫
Ta

dα1∧·· ·∧dα4

(
det
μ,i

∂�μ

∂αi

) 3

∏
i=1

1

p2
i (α1, . . . ,α4)

(2.88)

where, like in the quadruple-cut case discussed in Section 2.3.1, we assume
that one should simply average over the two tori in eqs. (2.86)-(2.87).

The Jacobian associated with the change of variables to the αi-parameters

evaluates to

det
μ,i

∂�μ

∂αi
= iγ2 , (2.89)

as can be seen by writing the determinant as the square root of the Gram de-

terminant of the four basis vectors in eq. (2.76), in analogy with the evaluation

of the BCF determinant described in Section 2.3.1.

In order to compute the integral in eq. (2.88), let us start by carrying out the

contour integrations over the three factors in eqs. (2.86) and (2.87) which are

a priori known. The transformation formula (2.62) instructs us to evaluate the

determinant

det
i, j

∂ p2
i (α1, . . . ,α4)

∂α j

∣∣∣∣
S1,2

= 4γ(γ2−S1S2)z (2.90)

which follows directly from eqs. (2.80)-(2.82), without imposing S1S2 = 0.
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Thus, in the case where S1S2 = 0, the triple-cut triangle integral takes the

form

Itriple−cut
� =

iγ
8(γ2−S1S2)

∑
a=1,2

∮
Γa

dz
z

(2.91)

where the contours Γa are a priori undetermined. The pole at z = 0, arising as

a singularity of the Jacobian, is known as a composite leading singularity.
Now, to find useful choices of the contours Γa, recall that the triple cut

of the right hand side of eq. (2.39) will involve the triple-cut triangle (2.88),

as well as triple-cut boxes containing some additional propagator 1
(�−P)2 . On

the solution (2.84)-(2.85) to the triple-cut constraints, the inverse propagator

evaluates to

(�−P)2
∣∣
Si

= (−2� ·P+P2)
∣∣
Si

(2.92)

=
(−2(aμ

1 z+aμ
0 )Pμ +P2

)∣∣
Si

(2.93)

=−2(a1 ·P)(z− z�, i) , (2.94)

writing the loop momentum parametrization (2.76) slightly schematically.

Thus, the triple-cut box integrals take the form

Itriple−cut
� =

1

2
∑

a=1,2

∫
Ta

dα1∧·· ·∧dα4

(
detμ,i

∂�μ

∂αi

)
∏3

i=1 p2
i (α1, . . . ,α4)

× 1

(�−P)2
(2.95)

=− iγ
16(a1 ·P)(γ2−S1S2)

∑
a=1,2

∮
Γa

dz
z(z− z�,a)

. (2.96)

To summarize what we have found so far, in the case where S1S2 = 0, the

result of applying the triple cut to both sides of eq. (2.39) is

∑
a=1,2

∮
Γa

dz
z

(
−∑

i

c�, i

2(a1 ·Pi)(z− z�; i,a)
+ c�

)

= ∑
a=1,2

∑
helicities,
species

∮
Γa

dz
z

3

∏
j=1

Atree
j (z)

∣∣∣∣∣
Sa

(2.97)

where the sum over i on the left hand side represents the sum over all triple-cut

boxes.

The crucial observation now is that the triple-cut boxes have vanishing

residues at z = ∞. Therefore, making the choice of contour Γa = Cε(∞) in

eq. (2.97) leaves us with the compact formula [30]

S1S2 = 0: c� =−1

2
∑

a=1,2
∑

helicities,
species

∮
Cε (∞)

dz
z

3

∏
j=1

Atree
j (z)

∣∣∣∣∣
Sa

. (2.98)
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Incidentally, as promised earlier, the 4-tori associated with the quadruple cut

described formally in eq. (2.60) can now be written explicitly:

T quad−cut
1 = Cα1

(
1+ S2

γ

)
×Cα2

(0)×Cα3
(z�,1)×Cα4

(0) (2.99)

T quad−cut
2 = Cα1

(
1+ S2

γ

)
×Cα2

(0)×Cα3
(0)×Cα4

(z�,2) (2.100)

where we here chose the contours Γa in eqs. (2.86)-(2.87) to encircle the poles

where the additional box propagator 1
(�−P)2 becomes on-shell, cf. eqs. (2.92)-

(2.94).

In the case where S1S2 �= 0, the triple-cut constraints p2
1 = p2

2 = p2
3 = 0 have

only one class of solutions,

S : (α1,α2,α3,α4)=

(
γ(S2+ γ)
γ2−S1S2

,
S1S2(S1+ γ)
γ(S1S2− γ2)

, z, −S1S2(S1+ γ)(S2+ γ)
4(γ2−S1S2)2 z

)
(2.101)

which we have here chosen to parametrize by z ≡ α3. The derivation above

extends readily to this case, except that there is now a single contour available

over which one can integrate, rather than averaging over two distinct contour

integrations. The appropriate change amounts to replacing 1
2 ∑a=1,2

∮
Γa
(· · ·)

−→ ∮
Γ(· · ·) in the above equations, wherever applicable. The triple-cut box

integral here takes the form
∮

Γ
dz

(z−z�, 1)(z−z�, 2)
, but still has a vanishing residue

at z = ∞. Thus, we can again take the contour Γ in the free parameter to

encircle the infinity pole to conclude

S1S2 �= 0: c� =− ∑
helicities,
species

∮
Cε (∞)

dz
z

3

∏
j=1

Atree
j (z)

∣∣∣∣∣
S

. (2.102)

The formulas (2.98) and (2.102) take a remarkably simple form. In analogy

with the BCF formula (2.67), the input needed to obtain the coefficient of any

triangle integral in eq. (2.39) is the product of the tree amplitudes that arise

by literally cutting the propagators of the triangle graph, as illustrated in fig-

ure 2.13.

Following a similar, but somewhat more involved, analysis one may obtain a

formula for the coefficient of a generic bubble integral. We refer to eq. (5.28)

in ref. [30] for its detailed form. Moreover, we refer to Section 2 of ref. [31]

for a strategy for obtaining tadpole coefficients.
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Figure 2.13. Schematic representation of the formulas (2.98) and (2.102). The input

needed to produce the coefficient of any triangle integral in eq. (2.39) is the product

of the tree amplitudes, represented here by gray blobs. These arise by literally cutting

the propagators of the triangle and promoting the latter to on-shell states.

To summarize this section, generalized-unitarity calculations proceed by ex-

pressing the one-loop amplitude as a linear combination (2.39) of the basis

integrals discussed in Section 2.2.1 with a priori unknown coefficients. These

coefficients are then determined from tree-level data through explicit formu-

las, examples of which include the BCF formula (2.67) for the box coefficient,

and Forde’s prescription (2.98) and (2.102) for the triangle coefficients.

As we have seen, generalized-unitarity cuts amount to a redefinition of the

integration contour: the original one-loop contour RD is replaced by a linear

combination of tori of real dimension 4, embedded in C4 and encircling the

leading singularities of the one-loop integrand. However, up to this point we

have not rigorously derived which particular linear combinations are valid, and

which are not. In particular, in deriving both of the formulas (2.67) and (2.98)

we made the (plausible) assumption that one should simply average over the

two tori that were available in either case.

This naturally raises a related question: do the generalized cuts have an

interpretation as an operation performed on integrated expressions? The Cut-

kosky rules state that the ordinary two-particle cuts (2.14) applied to a one-

loop Feynman diagram compute the discontinuity of the diagram. It therefore

seems reasonable to think that the quadruple cut (2.58) should have some in-

terpretation as the discontinuity of a discontinuity. In reality, however, such an

interpretation has a number of ambiguities associated with it and is difficult to

make precise.

Generalized-unitarity cuts thus stand on a somewhat different footing than

the ordinary two-particle cuts, as their only immediate interpretation is as a

redefinition of the integration contour away from the real slice RD into a lin-

ear combination of leading-singularity cycles. In Chapter 3 we will present a

principle dictating how to select correct integration contours.
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3. Maximal unitarity at two loops

In this chapter we take the first steps in developing a systematic extension

of generalized unitarity to two loops. In analogy with the approach at one

loop, the two-loop amplitude is first expanded in a basis of integrals, and our

aim is to obtain formulas for the expansion coefficients in terms of tree-level

amplitudes, analogous to those in eqs. (2.67), (2.98), (2.102). Throughout this

chapter, we restrict our attention to four-gluon amplitudes and consider only

the extraction of the coefficients of basis integrals with the maximal number

of propagators.

For four massless external states, these integrals have the topology of a

double box, illustrated in figure 3.1

Figure 3.1. The double box integral P∗∗
2,2[1].

and given by

P∗∗
2,2[ f (�1, �2)] =

∫ dD�1
(2π)D

dD�2
(2π)D

f (�1, �2)
�21(�1− k1)2(�1−K12)2(�1+ �2)2

× 1

�22(�2− k4)2(�2−K34)2
(3.1)

where Ki··· j ≡ ki + · · ·+ k j, and the notation follows ref. [32]. Moreover, we

refer to the function f (�1, �2) as a numerator insertion, following the termi-

nology in Section 2.2.1.
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The basis composition of the four-point two-loop amplitude takes the form

A(2)
4 = c1,σ1

(ε)P∗∗
2,2;σ1

[1] + c2,σ1
(ε)P∗∗

2,2;σ1
[�1 · k4] + · · · (3.2)

where the · · · refer to contributions from other cyclic permutations of the

double-box integrals, as well as from integrals with fewer propagators and

rational terms. Although the integral coefficients c1,c2 etc. in general have

non-trivial dependence on the dimensional regulator, we will restrict our at-

tention to obtaining the leading O(ε0) part.
Our approach to determine the two-loop integral coefficients is similar in

spirit to the BCF approach reviewed in Section 2.3.1 for obtaining box coeffi-

cients. That is, we apply a heptacut1 to both sides of the decomposition (3.2),

setting all double-box propagators on-shell. As the two loop momenta have

a total of eight degrees of freedom, setting seven propagators on-shell will

leave one remaining degree of freedom. The effect of cutting all available

propagators at two loops is therefore different from that at one loop where the

quadruple cut used to extract the box coefficient freezes all components of the

loop momentum.

As it turns out, however, it is possible to freeze the remaining degree of

freedom z at two loops. This is achieved by integrating z over a small cir-

cle enclosing poles of the Jacobian that arises from linearizing the on-shell

constraints. We will explain this in detail Section 3.1. In analogy with the dis-

cussion of generalized cuts at one loop in Section 2.3, the two-loop heptacut is

appropriately defined as a redefinition of the range of integration in eq. (3.2),

from RD ×RD to a contour embedded in C8. This contour has real dimension

8 and encircles points where all seven propagators are on-shell and where,

in addition, the Jacobian has poles. Each such point may be encircled by a

T 8-torus, all of which are determined in Section 3.1, and the contour is some

a priori undetermined linear combination of the T 8-tori obtained in this sec-

tion. The two-loop contour is thus analogous to the quadruple-cut contour in

Section 2.3.1, being a linear combination of the T 4-tori in eqs. (2.99)-(2.100).

In Section 3.2 we establish a selection principle determining which contours

—that is, which linear combinations of the T 8-tori—produce correct results

for the integral coefficients. We proceed in Section 3.3 to apply this principle

to obtain formulas for the double-box coefficients in terms of contour integra-

tions of products of tree-level amplitudes along valid contours. In Section 3.4

these formulas are applied to obtain the coefficients of various four-gluon am-

plitudes. Section 3.5 provides a comparison between the approach of Paper I

and that of the leading-singularity method.

1To be accurate, as we are only concerned with finding the coefficients to O(ε0), it suffices
to consider only the four-dimensional components of the loop momentum as far as cuts are

concerned.
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We remark that the presentation in Sections 3.1-3.4 below is essentially that

of Sections III-VI in Paper I, adding here a few comments and skipping a few

technical derivations.

3.1 Maximal cuts at two loops

In this section we determine the T 8-tori associated with the double-box on-

shell constraints

�21 = 0 , (�1− k1)2 = 0 , (�1−K12)
2 = 0 , �22 = 0 ,

(�2− k4)2 = 0 , (�2−K34)
2 = 0 , (�1+ �2)

2 = 0 .
(3.3)

The double box has seven propagators; if we cut all of them, that is put all

of the momenta they are carrying to on-shell values, we will be left with one

additional degree of freedom.

Figure 3.2. The heptacut double box.

At two loops, it is convenient to write the four-dimensional heptacut integral

symbolically in terms of complex delta functions as follows

∫ d4�1
(2π)4

d4�2
(2π)4

δC
(
�21
)

δC
(
(�1− k1)2

)
δC

(
(�1−K12)

2
)

δC
(
(�1+ �2)

2
)

×δC
(
�22
)

δC
(
(�2− k4)2

)
δC

(
(�2−K34)

2
)
. (3.4)

In analogy with the discussion in Section 2.3.1, this integral is properly defined

as an integration of the integrand of eq. (3.1) (with f (�1, �2) = 1) over some

a priori unknown C8-embedded contour encircling the leading singularities of

the integrand. The heptacut integral in eq. (3.4) is depicted in figure 3.2.
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To solve the on-shell equations (3.3), we use the following parametrization

of the loop momenta,

�
μ
1 = α1kμ

1 +α2kμ
2 +

s12α3

2〈14〉 [42] 〈1
−|γμ |2−〉+ s12α4

2〈24〉 [41] 〈2
−|γμ |1−〉 ,

�
μ
2 = β1kμ

3 +β2kμ
4 +

s12β3

2〈31〉 [14] 〈3
−|γμ |4−〉+ s12β4

2〈41〉 [13] 〈4
−|γμ |3−〉 .

(3.5)

Using this parametrization, the six corresponding heptacut equations involving

only one loop momentum are

�21 = s12
(

α1α2+
α3α4

χ(χ+1)

)
= 0

(�1− k1)2 = s12
(
(α1−1)α2+

α3α4
χ(χ+1)

)
= 0

(�1−K12)
2 = s12

(
(α1−1)(α2−1)+ α3α4

χ(χ+1)

)
= 0 (3.6)

�22 = s12
(

β1β2+
β3β4

χ(χ+1)

)
= 0

(�2− k4)2 = s12
(

β1(β2−1)+ β3β4
χ(χ+1)

)
= 0

(�2−K34)
2 = s12

(
(β1−1)(β2−1)+ β3β4

χ(χ+1)

)
= 0

where

χ ≡ s14
s12

. (3.7)

We can simplify these equations, obtaining

α1 = 1 , α2 = 0 , α3α4 = 0 ,
β1 = 0 , β2 = 1 , β3β4 = 0 .

(3.8)

These equations have four distinct solutions. If we substitute these values into

eq. (3.3), we find for the last equation

0= (�1+ �2)
2 = 2�1 · �2

= 2

(
kμ
1 +

s12α3

2〈14〉 [42] 〈1
−|γμ |2−〉+ s12α4

2〈24〉 [41] 〈2
−|γμ |1−〉

)
×
(

k4μ +
s12β3

2〈31〉 [14] 〈3
−|γμ |4−〉+ s12β4

2〈41〉 [13] 〈4
−|γμ |3−〉

)
. (3.9)

For two of the four solutions to eqs. (3.8), this equation has two solutions,

so that overall we find six solutions to the heptacut equations (3.6), (3.9). To

each of the six solutions S j, we can associate a seven-torus in the parameters

αi and βi that encircles the solution.
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For the solution α4 = 0= β4, the last equation (3.9) simplifies to

0=

(
[41]+

s12α3

〈14〉
)(

〈14〉− s12β3

[14]

)
, (3.10)

which has two distinct solutions,

S1 : α3 =−χ , β3 arbitrary ;

S2 : β3 =−χ , α3 arbitrary . (3.11)

In all solutions, we will relabel the remaining degree of freedom, calling it z.
Likewise, the solution α3 = 0= β3 also yields two solutions to eq. (3.9),

S3 : α4 =−χ , β4 = z ;
S4 : β4 =−χ , α4 = z . (3.12)

For the remaining two solutions, the last equation (3.9) does not factorize, and

we obtain only one solution; for α3 = 0= β4,

S5 : α4 = z , β3 =−(χ +1)
z+χ

z+χ +1
; (3.13)

and for α4 = 0= β3,

S6 : α3 = z , β4 =−(χ +1)
z+χ

z+χ +1
. (3.14)

In the last two solutions, we could equally well have chosen a different parame-

trization, where β3 or β4 respectively are set to z. This just amounts to a change

of variables, of course, but does break the manifest symmetry between the two

loops.

The existence of six kinematic solutions can also be understood from holo-

morphicity considerations of the cuts. When we cut all propagators, each of

the six vertices in the double box has three massless momenta attached. We

can write these momenta in terms of spinors, kμ = λ ασ μ
αα̇ λ̃ α̇ . To restate our

findings in figure 2.8, momentum conservation at each vertex [22] then implies

that either,

1) the holomorphic spinors λ of the momenta are collinear (proportional),

λa ∝ λb ∝ λc. We will depict such a vertex using a circled plus (⊕).

Such a vertex would allow only an MHV tree amplitude to be attached

(of course the holomorphicity properties of the cut are independent of

any tree amplitude).

2) the antiholomorphic spinors λ̃ of the momenta are collinear, λ̃a ∝ λ̃b ∝
λ̃c. We will depict such a vertex using a circled minus (�). Such a vertex

would allow only an MHV tree amplitude to be attached.
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Solution S1, obtained by setting

α3 =−χ , β3 = z ,
α4 = 0 , β4 = 0 .

Solution S2, obtained by setting

α3 = z , β3 =−χ ,

α4 = 0 , β4 = 0 .

Solution S3, obtained by setting

α3 = 0 , β3 = 0 ,

α4 =−χ , β4 = z .

Solution S4, obtained by setting

α3 = 0 , β3 = 0 ,

α4 = z , β4 =−χ .

Solution S5, obtained by setting

α3 = 0 , β3 =−(χ +1) z+χ
z+χ+1 ,

α4 = z , β4 = 0 .

Solution S6, obtained by setting

α3 = z , β3 = 0 ,

α4 = 0 , β4 =−(χ +1) z+χ
z+χ+1 .

Figure 3.3. The six classes of solutions to the heptacut equations (3.6) for the two-loop

planar double box.
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For general kinematics, neither the external holomorphic spinors λ j nor the

external antiholomorphic spinors λ̃ j are collinear. A configuration with an un-

interrupted chain of either ⊕ or � vertices connecting any two external legs

is thus disallowed. There are exactly six ways of assigning these two label-

ings to vertices avoiding such chains, hence six solutions. The six solutions

are shown diagrammatically in figure 3.3. From this figure we observe that

parity ⊕ ←→ � exchanges the solutions (S1 ←→ S3), (S2 ←→ S4) and

(S5 ←→ S6). The solutions within each pair are therefore referred to as

parity-conjugate solutions.

In evaluating the contour integrals represented by the delta functions in eq. (3.4),

we encounter two Jacobians: one from changing variables from the compo-

nents of � j to the αi and βi; and one from actually performing the contour

integrals in the latter variables. It is the latter Jacobian that is important for

our purposes. The former Jacobian is equal to JαJβ , where

Jα = det
μ,i

∂�μ
1

∂αi
=− is212

4χ(χ +1)
, Jβ = det

μ,i

∂�μ
2

∂βi
=− is212

4χ(χ +1)
. (3.15)

To evaluate the latter Jacobian, we may note that three of the delta functions

(or equivalently three of the contour integrals) involve only α variables, and

three involve only β variables. We can thus split up the problem into three

steps: computing the Jacobian associated with �1, that is with the α variables

alone; computing the Jacobian associated with �2, that is with the β variables

alone; and finally, computing the Jacobian associated with the middle propa-

gator, involving both �1 and �2.
For each of the six solutions, we must compute the Jacobian independently.

As an example, consider the second solution S2. The first Jacobian arises

from considering the integral,

∫
dα1dα2dα4 δ

[
s12

(
α1α2+

α3α4
χ(χ+1)

)]
δ
[
s12

(
(α1−1)α2+

α3α4
χ(χ+1)

)]
×δ

[
s12

(
(α1−1)(α2−1)+ α3α4

χ(χ+1)

)]
, (3.16)

associated with the �1 loop. Define

⎛⎝ g1(α1,α2,α4)
g2(α1,α2,α4)
g3(α1,α2,α4)

⎞⎠ =

⎛⎜⎜⎜⎝
s12

(
α1α2+

α3α4
χ(χ+1)

)
s12

(
(α1−1)α2+

α3α4
χ(χ+1)

)
s12

(
(α1−1)(α2−1)+ α3α4

χ(χ+1)

)
⎞⎟⎟⎟⎠ . (3.17)
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The first Jacobian is then,

J1 = det
i, j

∂gi

∂α j
= s312 det

⎛⎜⎝ α2 α1
α3

χ(χ+1)

α2 α1−1 α3
χ(χ+1)

α2−1 α1−1 α3
χ(χ+1)

⎞⎟⎠ = − s312
χ(χ +1)

α3

(3.18)

The fact that the Jacobians appear in the denominator as determinants rather

than as absolute values of determinants owes to the transformation formula

(2.62) satisfied by the implicit complex contour integrations.

Similarly, the second Jacobian arises from considering the integral,∫
dβ1dβ2dβ4 δ

[
s12

(
β1β2+

β3β4
χ(χ+1)

)]
δ
[
s12

(
β1(β2−1)+ β3β4

χ(χ+1)

)]
×δ

[
s12

(
(β1−1)(β2−1)+ β3β4

χ(χ+1)

)]
, (3.19)

associated with the �2 loop. Define

⎛⎝ h1(β1,β2,β4)
h2(β1,β2,β4)
h3(β1,β2,β4)

⎞⎠ =

⎛⎜⎜⎜⎝
s12

(
β1β2+

β3β4
χ(χ+1)

)
s12

(
β1(β2−1)+ β3β4

χ(χ+1)

)
s12

(
(β1−1)(β2−1)+ β3β4

χ(χ+1)

)
⎞⎟⎟⎟⎠ . (3.20)

The second Jacobian is then,

J2 = det
i, j

∂hi

∂β j
= s312 det

⎛⎜⎜⎝
β2 β1

β3
χ(χ+1)

β2−1 β1
β3

χ(χ+1)

β2−1 β1−1
β3

χ(χ+1)

⎞⎟⎟⎠ =
s312

χ(χ +1)
β3 .

(3.21)

The remaining integration we must consider is over α3 and β3,

1

2

∫
dα3dβ3

JαJβ

J1J2
δ
[

s12
2χ

(α3+χ)(β3+χ)
]
=

1

32s212

∫ dα3dβ3

α3β3
δ
[

s12
2χ

(α3+χ)(β3+χ)
]
, (3.22)

which leaves a remaining contour integration over z (i.e. α3), along with the

overall inverse Jacobian,

J−1(z) =− 1

16s312 z(z+χ)
. (3.23)

The computation for the other five solutions is similar; it turns out that we ob-

tain the same overall Jacobian for all solutions. The contour for the z integra-

tion remains to be chosen; for this solution, there are two possible non-trivial
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contours, one encircling z = 0, and the other, encircling z =−χ . (We set aside

a possible non-trivial contour encircling z = ∞, as its contribution when inte-

grating an arbitrary multiplying function f (z) sums to zero when combined

with the contributions of these two contours.)

The poles at z= 0 and z=−χ are known as composite leading singularities;
encircling these poles corresponds, in the language of ref. [33], to cutting an

effective eighth propagator. In addition, for solutions S5,6, the denominator

of β3,4 (eqs. (3.13) and (3.14)) can give rise to additional poles at z =−χ −1

in tensor integrals. (As noted in Section 2.2.1, in a slight abuse of language,

we refer to integrals with no free indices, but numerator powers of the loop

momenta contracted into external vectors, as “tensor integrals”.)

Collecting the information above, we have the following T 8-tori we can

utilize in seeking equations for integral coefficients,

T1,1 = τ ×Cα3
(−χ)×Cα4

(0)×Cβ3=z(0)×Cβ4
(0)

T1,2 = τ ×Cα3
(−χ)×Cα4

(0)×Cβ3=z(−χ)×Cβ4
(0)

T2,1 = τ ×Cα3=z(0)×Cα4
(0)×Cβ3

(−χ)×Cβ4
(0)

T2,2 = τ ×Cα3=z(−χ)×Cα4
(0)×Cβ3

(−χ)×Cβ4
(0)

T3,1 = τ ×Cα3
(0)×Cα4

(−χ)×Cβ3
(0)×Cβ4=z(0)

T3,2 = τ ×Cα3
(0)×Cα4

(−χ)×Cβ3
(0)×Cβ4=z(−χ)

T4,1 = τ ×Cα3
(0)×Cα4=z(0)×Cβ3

(0)×Cβ4
(−χ)

T4,2 = τ ×Cα3
(0)×Cα4=z(−χ)×Cβ3

(0)×Cβ4
(−χ) (3.24)

T5,1 = τ ×Cα3
(0)×Cα4=z(0)×Cβ3

(
− (1+χ)(z+χ)

z+χ+1

)
×Cβ4

(0)

T5,2 = τ ×Cα3
(0)×Cα4=z(−χ)×Cβ3

(
− (1+χ)(z+χ)

z+χ+1

)
×Cβ4

(0)

T5,3 = τ ×Cα3
(0)×Cα4=z(−χ −1)×Cβ3

(
− (1+χ)(z+χ)

z+χ+1

)
×Cβ4

(0)

T6,1 = τ ×Cα3=z(0)×Cα4
(0)×Cβ3

(0)×Cβ4

(
− (1+χ)(z+χ)

z+χ+1

)
T6,2 = τ ×Cα3=z(−χ)×Cα4

(0)×Cβ3
(0)×Cβ4

(
− (1+χ)(z+χ)

z+χ+1

)
T6,3 = τ ×Cα3=z(−χ −1)×Cα4

(0)×Cβ3
(0)×Cβ4

(
− (1+χ)(z+χ)

z+χ+1

)
where each subscript denotes the variable in whose plane the circle lies, and

where

τ =Cα1
(1)×Cα2

(0)×Cβ1
(0)×Cβ2

(1) , (3.25)

corresponding to the on-shell values in eq. (3.8). We will refer to these eight-

tori as leading-singularity cycles.
Naively, we could deform the original contour of integration for the double

box (3.1), along the product of real axes for all components of �1 and �2, to
any linear combination of contours in eq. (3.24) that we wish. However, an
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arbitrary deformation will not preserve the vanishing of total derivatives such

as ∫ dD�

(2π)D
ε(�,k1,k2,k4)

�2(�− k1)2(�− k1− k2)2(�+ k4)2
. (3.26)

In order to ensure that such objects vanish as they must, we impose constraints

on the contours. We derive these in the next section.

3.2 Constraint equations for contours
Integral reductions are implicitly part of the simplifications applied to the sum

over Feynman diagrams defining an amplitude in order to obtain the basis de-

composition (3.2). The basis at two loops will contain integrals with up to

eight propagators in the planar2 case [32], though a specific complete and in-

dependent choice of integrals for a general amplitude has not yet been written

down.

As we saw in Section 2.2.1, integral reductions at one loop involve only

rewriting dot products of the loop momentum in terms of linear combinations

of propagators and external invariants, along with the use of Lorentz invariance

and parity to eliminate some integrals. For the box integral, in particular, the

only non-trivial constraint arises from the use of parity, which requires that∫ dD�

(2π)D
ε(�,k1,k2,k4)

�2(�− k1)2(�− k1− k2)2(�+ k4)2
= 0 . (3.27)

This constraint must be respected by the unitarity procedure; otherwise, ap-

plying a cut to the original integral and to the integral after reduction would

yield different, and hence inconsistent, answers. Thus, we arrive at the follow-

ing principle dictating how maximal-cut contours must be chosen in order to

ultimately produce correct results for the integral coefficients:

Selection principle for contours. Contours must be chosen so as to an-
nilate any loop integrand which has a vanishing integration on (RD)⊗L

where L denotes the loop order.

At one loop, this constraint simply expresses invariance of the contour under

parity conjugation of the on-shell solutions. Indeed, in the case of the quadru-

ple cut, recall from the discussion below eq. (2.60) that there are two 4-tori

encircling the leading singularities of the integrand. In Section 2.3.1 it was not

clear which linear combinations ω1T 4
ε (L)+ω2T 4

ε (L
•) define valid integration

contours, and we simply assumed that the choice ω1 = ω2 =
1
2 , defining the

quadruple cut in eq. (2.61) specifies a valid contour.

2The same restriction to eight propagators or fewer presumably applies in the non-planar case

as well, using arguments along the same lines as given in ref. [32].
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From the above selection principle one can immediately infer ω1 = ω2.

Namely, changing the contour RD −→ ω1T 4
ε (L)+ω2T 4

ε (L
•) in eq. (3.27), one

finds the constraint equation ω1−ω2 = 0, as shown in Section II of Paper I.

(Setting the winding numbers equal to the value 1
2 is simply a normalization,

guaranteeing that the quadruple cut of the box integral itself is essentially one,

cf. the left hand side of eq. (2.66).)

Similar constraints arise at two loops. In particular, we must require that the

vanishing of the following Levi-Civita insertions

P∗∗
2,2[ε(�1,k2,k3,k4)] , P∗∗

2,2[ε(�2,k2,k3,k4)] , P∗∗
2,2[ε(�1, �2,k1,k2)] ,

P∗∗
2,2[ε(�1, �2,k1,k3)] , P∗∗

2,2[ε(�1, �2,k2,k3)] , (3.28)

continues to hold for integration over our chosen linear combination of con-

tours. This is the complete set of Levi-Civita symbols that arises during inte-

gral reduction, after using momentum conservation.

At two loops, additional reductions are required in order to arrive at a

linearly-independent set of basis integrals. These are usually obtained through

integration-by-parts (IBP) relations; that is, they correspond to adding a total

derivative to the original integrand. Each such total derivative, or equivalently

each non-trivial reduction identity, gives rise to a constraint requiring that

the unitarity procedure give vanishing coefficients for the additional terms;

or equivalently, that the unitarity procedure respect the reduction equations.

This is not automatically true contour-by-contour, and hence gives rise to non-

trivial constraints on the choice of contours, and the weighting of different

solutions.

In two-loop four-point amplitudes, we can express all dot products of loop

momenta with external vectors in terms of eight dot products: � j ·k1, � j ·k2, � j ·
k4, and � j · v, where vμ = ε(μ,k1,k2,k4). Just as at one loop, odd powers of v
will give rise to vanishing integrals, as expressed in the Levi-Civita constraints

discussed above. Even powers can again be re-expressed in terms of the other

dot products (up to terms involving the (−2ε)-dimensional components of the

loop momentum). All integrals can then be rewritten in terms of the six dot

products of the loop momenta with the external momenta.

Of these six dot products, three of them — �1 · k1, �1 · k2, �2 · k4 — can be

rewritten as linear combinations of the propagator denominators and external

invariants. One additional dot product of �2 — say �2 · k2 — can be rewrit-

ten in terms of the remaining two (�1 ·k4 and �2 ·k1), propagator denominators,

and external invariants. The remaining two dot products are called irreducible.

At a first stage, then, before using IBP identities, we can reduce an arbitrary

double-box integral appearing in a gauge-theory amplitude to a linear com-

bination of the 22 different integrals that can arise with powers of the two

irreducible numerators.
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We have the following naively-irreducible integrals,

P∗∗
2,2[(�1 · k4)m (�2 · k1)n] ,

{
0≤ m,n ≤ 4

0≤ m+n ≤ 6
(3.29)

In the massless case, it turns out that there are 20 IBP relations between these

integrals, which allow further reductions. These reductions allow us to pick

certain pairs, for example,

P∗∗
2,2[1] and P∗∗

2,2[�1 · k4] , (3.30)

as master integrals for the set in eq. (3.29), and thus also as basis integrals for

an amplitude.
The remaining integrals dictated by the Feynman rules for gauge theory are

given in terms of these two by integration-by-parts identities. For example,

P∗∗
2,2[�2 · k1] = P∗∗

2,2[�1 · k4]

P∗∗
2,2[(�1 · k4)(�2 · k1)] =

1

8
χs212P∗∗

2,2[1]−
3

4
s12P∗∗

2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�2 · k1)2] = − εχs212

4(1−2ε)
P∗∗
2,2[1]+

(χ +3ε)s12
2(1−2ε)

P∗∗
2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�1 · k4)2] = − εχs212

4(1−2ε)
P∗∗
2,2[1]+

(χ +3ε)s12
2(1−2ε)

P∗∗
2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�1 · k4)(�2 · k1)2] = − (1−3ε)χs312

16(1−2ε)
P∗∗
2,2[1]+

(3−9ε −2εχ)s212
8(1−2ε)

P∗∗
2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�1 · k4)2(�2 · k1)] = − (1−3ε)χs312

16(1−2ε)
P∗∗
2,2[1]+

(3−9ε −2εχ)s212
8(1−2ε)

P∗∗
2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�2 · k1)3] =

εχ(1−2χ −3ε)s312
16(1− ε)(1−2ε)

P∗∗
2,2[1]

+

(
2χ2−3ε(1−2χ)+ ε2(9+2χ)

)
s212

8(1− ε)(1−2ε)
P∗∗
2,2[�1 · k4]+ · · ·

P∗∗
2,2[(�1 · k4)3] =

εχ(1−2χ −3ε)s312
16(1− ε)(1−2ε)

P∗∗
2,2[1]

+

(
2χ2−3ε(1−2χ)+ ε2(9+2χ)

)
s212

8(1− ε)(1−2ε)
P∗∗
2,2[�1 · k4]+ · · ·

(3.31)

where the ellipses denote additional integrals with fewer propagators. Wemust

require that these equations (and the other 12 we do not display explicitly) are

preserved by the choice of contours. The contour integrals which implement

the augmented heptacut will yield vanishing results for the integrals with fewer

propagators, so they do not enter the constraint equations. As we are con-

sidering only four-dimensional cuts, the augmented heptacuts are effectively

four-dimensional.
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In order to find the explicit form of the constraint equations, denote the

weight of contour Tj,r by ar, j,

a1, j −→ encircling z = 0 for solution S j

a2, j −→ encircling z =−χ for solution S j (3.32)

a3, j −→ encircling z =−χ −1 for solution S j .

For a numerator insertion of f (�1, �2) in the numerator of the double box,

the augmented heptacut is then,

4

∑
j=1

2

∑
r=1

ar, j

∮
Tj,r

d4αid4βi f (�1, �2)×Propagators(�1, �2)

∣∣∣∣
param

+
6

∑
j=5

3

∑
r=1

ar, j

∮
Tj,r

d4αid4βi f (�1, �2)×Propagators(�1, �2)

∣∣∣∣
param

(3.33)

where the notation |param indicates that we use the parametrization of �1 and

�2 given in eq. (3.5). The signs in front of each coefficient ar, j in the result

will depend on the orientation chosen for the corresponding contour; but this

sign will drop out of final formulas for integral coefficients so long as this

orientation is chosen consistently throughout the calculation.

We can write down a compact expression for the augmented heptacut of the

general tensor integral,

P∗∗
2,2[(�1 · k4)m(�2 · k1)n] = − 1

128

[
δm,0

(s12
2

)n−3
∮

Γ1

dz
z
(z+χ)n−1

+ δn,0

(s12
2

)m−3
∮

Γ2

dz
z
(z+χ)m−1

+ δm,0

(s12
2

)n−3
∮

Γ3

dz
z
(z+χ)n−1

+ δn,0

(s12
2

)m−3
∮

Γ4

dz
z
(z+χ)m−1

+
(s12

2

)m+n−3
∮

Γ5

dz
z
(z+χ)m−1

(
− z

z+χ +1

)n

+
(s12

2

)m+n−3
∮

Γ6

dz
z
(z+χ)m−1

(
− z

z+χ +1

)n]
(3.34)

where Γ j denotes the z component of ∑r ar, jTj,r, and where in our notation, the

contour integral implicitly includes a factor of 1/(2πi), as noted in Section ??.
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We can evaluate this expression using the contours as weighted in eq. (3.33);
we find,

P∗∗
2,2[1] = − 1

16χs312

6

∑
j=1

(a1, j −a2, j) (3.35)

P∗∗
2,2[(�1 · k4)m] = − 1

32s212

(χs12
2

)m−1

∑
j �=1,3

a1, j (3.36)

P∗∗
2,2[(�2 · k1)n] = − 1

32s212

(χs12
2

)n−1

×(−a2,6+a3,6−a2,5+a3,5+a1,1+a1,3) (3.37)

P∗∗
2,2[(�1 · k4)m(�2 · k1)n] =

1

64s12

(
− s12

2

)m+n−2 [
θ
(
min(m,n)− 5

2

)
(χ +1)(χ +2)

+ θ
(
min(m,n)− 3

2

)
(m+n−3)(χ +1) + θ

(
min(m,n)− 1

2

)](
a3,6+a3,5

)
(3.38)

where m,n ≥ 1 and the last result is valid only for 0 ≤ m+ n ≤ 6 and 0 ≤
m,n ≤ 4 (corresponding to the numerator insertions allowed in gauge theory

in D = 4−2ε dimensions).
With these expressions, we now turn to the constraint equations. Let us be-

gin with the equations arising from the insertion of Levi-Civita tensors (3.28).
As an example, let us consider ε(�1,k2,k3,k4),

0 = P∗∗
2,2[ε(�1,k2,k3,k4)]

= − 1

16s312

⎛⎝∮
Γ1

dz
z

ε
(

kμ
1 − s12

2
〈1−|γμ |2−〉
〈1−|4|2−〉 χ,k2,k3,k4

)
z+χ

+
∮

Γ2

dz
z

ε
(

kμ
1 + s12

2
〈1−|γμ |2−〉
〈1−|4|2−〉 z,k2,k3,k4

)
z+χ

+
∮

Γ3

dz
z

ε
(

kμ
1 − s12

2
〈2−|γμ |1−〉
〈2−|4|1−〉 χ,k2,k3,k4

)
z+χ

+
∮

Γ4

dz
z

ε
(

kμ
1 + s12

2
〈2−|γμ |1−〉
〈2−|4|1−〉 z,k2,k3,k4

)
z+χ

+
∮

Γ5

dz
z

ε
(

kμ
1 + s12

2
〈2−|γμ |1−〉
〈2−|4|1−〉 z,k2,k3,k4

)
z+χ

+
∮

Γ6

dz
z

ε
(

kμ
1 + s12

2
〈1−|γμ |2−〉
〈1−|4|2−〉 z,k2,k3,k4

)
z+χ

⎞⎠ . (3.39)
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Evaluating this expression on the augmented heptacut (3.33) we obtain

0 =
1

32s212

[
(a2,2+a2,6−a1,1+a2,1) ε

(〈1−|γμ |2−〉
〈1−|4 |2−〉 ,k2,k3,k4

)
+ (a2,5+a2,4−a1,3+a2,3) ε

(〈2−|γμ |1−〉
〈2−|4 |1−〉 ,k2,k3,k4

)]
(3.40)

=
1

32s212

(
a2,2+a2,6−a2,5−a2,4−a1,1+a2,1+a1,3−a2,3

)
×ε

(〈1−|γμ |2−〉
〈1−|4 |2−〉 ,k2,k3,k4

)
,

where the last line follows from the fact that the two Levi-Civita symbols

appearing on the first line are equal but opposite in value.

The constraints arising from the insertions of respectively ε(�2,k2,k3,k4)
and ε(�1, �2,ki,k j) with (i, j) ∈ {(1,2),(1,3),(2,3)} are obtained similarly.

In total, we have the following constraint equations from the five Levi-Civita

insertions,

a2,2+a2,6−a2,5−a2,4−a1,1+a2,1+a1,3−a2,3 = 0

a1,2−a2,2−a1,6+a3,6+a1,5−a3,5−a1,4+a2,4−a2,1+a2,3 = 0

a2,6−a3,6−a2,5+a3,5−a1,1+a1,3 = 0 (3.41)

a2,6−a2,5−a1,1+a1,3 = 0

a1,2−a1,6+a2,6+a1,5−a2,5−a1,4−a1,1+a1,3 = 0 ,

or equivalently

a1,2−a1,6+a1,5−a1,4 = 0

a2,2−a2,4+a2,1−a2,3 = 0

a2,6−a2,5−a1,1+a1,3 = 0 (3.42)

a3,6−a3,5 = 0 .

This set has one equation less: not all the equations from the Levi-Civita sym-

bols are independent. We see that these equations are solved by insisting that

the contours for parity-conjugate pairs of solutions (S1 ←→ S3, S2 ←→ S4

and S5 ←→ S6) carry equal weights. This nicely generalizes the one-loop

constraint on contours, discussed below eq. (3.27).

We next impose the constraints following from the IBP reductions. Eval-

uating both sides of equations (3.31) along with the remaining 12 reduction

equations not displayed above, and setting ε = 0, we find two additional con-

straint equations,

a1,2+a1,6+a1,5+a1,4 = −a2,6+a3,6−a2,5+a3,5+a1,1+a1,3 ,

a3,6+a3,5 = −1

2

6

∑
j=1

(a1, j −a2, j)+
3

2
∑

j �=1,3

a1, j . (3.43)
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In principle, one might expect 18 additional equations from the remaining

reduction identities; but these all turn out to be automatically satisfied on the

solutions of this pair of equations.

Beyond ensuring that all the reduction identities are valid, we ultimately

want to determine the coefficients of the two basis integrals (3.30). Because

the system of equations leaves many undetermined weights ar, j, we have the

freedom to choose values which also kill one or the other of the basis integrals.

That is, we can choose contours for which one or the other of the basis integrals

has vanishing augmented heptacut. To project out the second basis integral,

P∗∗
2,2[�1 · k4], we should also require that eq. (3.36) with m = 1 vanish,

∑
j �=1,3

a1, j = 0 . (3.44)

To project out the first basis integral, P∗∗
2,2[1], we should require that eq. (3.35)

vanish,
6

∑
j=1

(a1, j −a2, j) = 0 . (3.45)

The following values

a1,1 = −2u+ v , a2,1 = u ,
a1,2 = −2u+ v , a2,2 = u ,
a1,3 = −2u+ v , a2,3 = u ,
a1,4 = −2u+ v , a2,4 = u ,
a1,5 = 2u− v , a2,5 = v , a3,5 = 2u ,
a1,6 = 2u− v , a2,6 = v , a3,6 = 2u ,

(3.46)

(where u,v are real parameters) solve all the constraint equations (3.42), (3.43),

although we emphasize that it is not the most general solution. In addition,

these values also set the heptacut of the basis integral P∗∗
2,2[�1 · k4] to zero,

thereby allowing us to extract the coefficient of the first basis integral, P∗∗
2,2[1].

We will call a specific choice of contours weighted by these values P1, leaving

the dependence on u and v implicit. A particularly simple solution is given by

u = 1
2 and v = 1. This choice is illustrated schematically in figure 3.4(a).

Similarly, the following values,

a1,1 = −2u+ v , a2,1 = u ,
a1,2 = −2u+ v , a2,2 = u ,
a1,3 = −2u+ v , a2,3 = u ,
a1,4 = −2u+ v , a2,4 = u ,
a1,5 = 6u− v , a2,5 = v , a3,5 = 6u ,
a1,6 = 6u− v , a2,6 = v , a3,6 = 6u ,

(3.47)

(where again u,v are real parameters) solve all the constraint equations (3.42),

(3.43), sets to zero the heptacut of the basis integral P∗∗
2,2[1], and thereby ex-

tracts the coefficient of P∗∗
2,2[�1 · k4]. We will call a specific choice of contours
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weighted by these values P2, again leaving the dependence on u and v implicit.

The choice u = 1
2 and v = 1 again gives a particularly simple solution. It is

illustrated schematically in figure 3.4(b).

In general, contours which satisfy all constraint equations (3.42, 3.43) and

moreover set the heptacut of all but one master integral to zero will directly

extract the coefficient of this one master integral. Accordingly, we refer to

such contours as master contours.

(a) (b)

Figure 3.4. Schematic representation of contours for the coefficients of the two basis

double boxes: (a) the scalar double box, P∗∗
2,2[1] (b) the double box with an irreducible

numerator insertion, P∗∗
2,2[�1 · k4]. The contours encircle the leading singularities dis-

tributed across the six kinematical solutions; the integers next to the contours indicate

the winding number. Both representations are for the choice u = 1
2 and v = 1 in

eqs. (3.46) and (3.47).

Before turning to the extraction procedure, we may observe that the four-

dimensional heptacuts do not suffice to extract information about the coef-

ficients beyond O(ε0). The problem is that we can find non-vanishing linear

combinations of tensor integrals whose heptacut integrand vanishes identically

for all six solutions. As a result, not only do integrals over all contours Tj,a
vanish, but even integrals constructed by multiplying the integrand by an ar-

bitrary function of the remaining degree of freedom z would vanish. We call

such linear combinations magic. Examples of magic combinations include,

M1 = P∗∗
2,2[2,2]+

s12
2

P∗∗
2,2[2,1]+

s12
2

P∗∗
2,2[1,2]−χ

(s12
2

)2
P∗∗
2,2[1,1] , (3.48)

M2 = P∗∗
2,2[3,2]+

s12
2

P∗∗
2,2[3,1]+

s12
2

P∗∗
2,2[2,2]−χ

(s12
2

)2
P∗∗
2,2[2,1] , (3.49)

where the abbreviated notation P∗∗
2,2[m,n] is defined by,

P∗∗
2,2[m,n]≡ P∗∗

2,2[(�1 · k4)m(�2 · k1)n] . (3.50)

After use of IBP reduction equations, the magic combinations do not vanish,

but the coefficients of both master integrals are of O(ε).
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3.3 Master formulas for integral coefficients
With solutions to the constraint equations that also isolate specific basis inte-

grals in hand, we can write down a procedure for computing the coefficients of

the integrals in the master equation (3.2). To do so, we apply the augmented

heptacuts to the left-hand side of the master equation. The basic heptacut

will break apart the two-loop amplitude into a product of six on-shell tree

amplitudes, one for each vertex in the double box. We will be left with the

integral over the z contour. On the right-hand side, we have the two basis inte-

grals (3.30) chosen earlier. Here, apply the augmented heptacut, and perform

all integrations. This gives us the relation,

1

128

(
2

s12

)3 6

∑
i=1

∮
Γi

dz
z(z+χ)

(−i)
6

∏
j=1

Atree
j (z)

=
c1

16χs312

6

∑
j=1

(a1, j −a2, j)+
c2

32s212
∑

j �=1,3

a1, j . (3.51)

In this equation, the product of amplitudes arises from a factor of a tree-level

amplitude at each vertex of the double box with all seven propagators cut.

As explained in the previous section, through a judicious choice of contours,

we can make the coefficient of c2 in this equation vanish, or alternatively the

coefficient of c1 vanish. This would then allow us to solve for c1 and c2,
respectively. We gave such choices in eqs. (3.46) and (3.47). Using them, we

can write an expression for c1,

c1 =
iχ
8u

∮
P1

dz
z(z+χ)

6

∏
j=1

Atree
j (z) , (3.52)

and for c2,

c2 = − i
4s12u

∮
P2

dz
z(z+χ)

6

∏
j=1

Atree
j (z) . (3.53)

The right-hand sides of these equations must be summed over possible helicity

and particle-species assignments. The explicit integration is understood to be

over the z component of P1 and P2 respectively, with the integrations over the

other αi and βi implicit in the solutions S j, and with the dependence of Pj on

the parameters u and v left implicit. The formulas (3.52) and (3.53) represent

the central result of this chapter. They are valid for any gauge theory, and

indeed for any amplitude satisfying the power-counting rules of gauge theory.

These formulas are not manifestly independent of the choice of contour, but

the constraint equations ensure that they are. We will see explicit examples in

the next section. Of course, the independence of the final result of the choice

of contour does not mean that the results at intermediate steps are indepen-
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dent; certain choices of contour may in fact simplify analytic or numerical

calculations. We have already seen hints of this in the choices of P1 and P2,

where some values of u and v will require evaluation of fewer contours, and

hence possibly fewer numerical evaluations if the formulas (3.52) and (3.53)

are used in a numerical setting.

Figure 3.5. Graphical representation of ∏6
j=1 Atree

j (z)
∣∣∣
D=4

for the all-plus QCD am-

plitude.

At one loop, one can choose a basis so that integral coefficients are indepen-

dent of the dimensional regulator ε , and four-dimensional cuts suffice to com-

pute all of them. (Computing the rational terms requires use of D-dimensional

cuts.) At two loops, the coefficients of integral reductions, and hence gener-

ally of integrals in eq. 3.2, will depend explicitly on ε . In particular, c1 and

c2 above will depend explicitly on ε . In general, this dependence cannot be

extracted from four-dimensional heptacuts alone, because of the vanishing of

magic combinations discussed in Section 3.2. We can also see the need for

cuts beyond four dimensions, or considerably relaxing some of the heptacut

conditions, by considering the two-loop all-plus amplitude, A2-loop
4 (++++),

computed in ref. [34]. In this case, the product of tree amplitudes in eqs. (3.52)

and (3.53) will necessarily vanish in four dimensions, because there is no as-

signment of internal helicities in figure 3.5 that will leave all three-point am-

plitudes non-vanishing. The same observation still holds if we relax some of

the cut conditions, examining hexacuts or pentacuts.

3.4 Examples

In this section, we apply the formalism developed in previous sections to sev-

eral examples of two-loop four-point amplitudes. We use the master formu-

las (3.52) and (3.53) to compute the coefficients to O(ε0) of the two double

box basis integrals, P∗∗
2,2[1] and P∗∗

2,2[�1 · k4]. We consider three different contri-

butions to four-gluon amplitudes in supersymmetric theories with N = 4,2,1

supersymmetries: the s- and t-channel contributions to A2-loop
4 (1−,2−,3+,4+),
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and the s-channel contributions to A2-loop
4 (1−,2+,3−,4+). (The t-channel con-

tributions to the latter amplitudes can be obtained by relabeling the arguments

of the s-channel contribution.)
We will express the results as multiples of the tree-level four-gluon ampli-

tudes,

Atree
−−++ =

i〈12〉4
〈12〉〈23〉〈34〉〈41〉 , (3.54)

and

Atree
−+−+ =

i〈13〉4
〈12〉〈23〉〈34〉〈41〉 . (3.55)

Figure 3.6. The labeling of internal momenta used in Section 3.4, here shown for the

s-channel contribution to A2-loop
4 (1−,2−,3+,4+).

In this section, it will be convenient to have a label for each cut propagator

in the double box. Accordingly, we adopt a different labeling from previous

sections, displayed in figure 3.6.

3.4.1 The s-channel contribution to A2-loop
4 (1−,2−,3+,4+)

For this contribution, shown above in figure 3.6, the helicities of the external

states allow only gluons to propagate in either loop. For this reason, we will

get the same result independent of the number of supersymmetries. We find

that for all six solutions to the on-shell equations,

6

∏
j=1

Atree
j = −is212s23Atree

−−++ . (3.56)

We can then use eq. (3.52) to obtain

c1 = −is212s23Atree
−−++

(
(v−2u)i

4u
− iv

4u
− i

2

)
= −s212s23Atree

−−++ ; (3.57)
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and eq. (3.53) to obtain

c2 = −is212s23Atree
−−++

(
−(v−2u)i

s12uχ
− (6u− v)i

2s12uχ
+

i
s12χ

+
iv

2s12uχ

)
= 0 . (3.58)

We see that the dependence on the parameters u and v has disappeared, as

expected. In the N = 4 theory, these turn out to be the exact coefficients;

in theories with fewer supersymmetries, there are additional terms of O(ε) in
these coefficients.

3.4.2 The t-channel contribution to A2-loop
4 (1−,2−,3+,4+)

Figure 3.7. The heptacut for the t-channel contribution to A2-loop
4 (1−,2−,3+,4+).

We turn next to the computation of the coefficients in the t-channel contribu-
tion to the same amplitude considered in the previous section. The heptacut

for this contribution is shown in figure 3.7. In applying the formulas for the

coefficients, we have cyclicly permuted the external momentum arguments,

(1,2,3,4)−→ (4,1,2,3), so that we must replace χ −→ χ−1. Otherwise, they

are of course unchanged.

In this contribution, computing the required products of tree amplitudes is

more involved, and the computation also requires sums over supermultiplets of

states propagating in the loops. As an example, we work through the computa-

tion of the product in solution S2. We have two possible helicity assignments

for the internal lines, shown in figure 3.8. For gluon internal lines, we multiply

the amplitudes at the six vertices to obtain,

6

∏
j=1

Atree, gluon
j = − 1

Δ
×
{

A4 for configuration A ,
B4 for configuration B ,

(3.59)
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(a) (b)

Figure 3.8. The two distinct assignments of internal helicities in solution S2 for the

t-channel double-box contributions to A2-loop
4 (1−,2−,3+,4+): (a) configuration A and

(b) configuration B.

where

A4 =
(
[p4]〈1 p2〉〈q2 l〉 [l q]〈qq1〉 [q1 q2]

)4
B4 =

(
[4 p1]〈p1 1〉〈p2 q2〉 [q p]〈qq1〉 [q1 q2]

)4
(3.60)

Δ = [p4] [4 p1] [p1 p]〈p1 1〉〈1 p2〉〈p2 p1〉〈p2 q2〉〈q2 l〉〈l p2〉 [l q]
× [q p] [pl]〈qq1〉〈q1 3〉〈3q〉 [q1 q2] [q2 2] [2q1]

and the minus sign in eq. (3.59) comes from the factor of i in each Atree, gluon
j .

The helicity assignments of the internal lines allow only gluons to propagate

in the right (q) loop, whereas the entire supersymmetric multiplet of states can

propagate in the left (p) loop. For N = 4 super Yang-Mills, the sum over

states yields,

∑
N =4

multiplet

6

∏
j=1

Atree
j

∣∣∣∣∣
S2

= −(A+B)4

Δ
. (3.61)

On the other hand, from refs. [35] and [33] we know that in the N = 4 theory,

∑
N =4

multiplet

6

∏
j=1

Atree
j

∣∣∣∣∣
S2

= −is12s223Atree
−−++ . (3.62)

As a calculational shortcut, we use the equality of the expressions in eqs. (3.61)

and (3.62) to fix the relative sign of A and B in eq. (3.60). (Of course, the rel-

ative signs can also be determined a priori, without reference to results in the

literature, by carefully tracking the direction — incoming or outgoing — of

the momenta at a given vertex and using the analytic continuation rule that

changing the sign of a momentum, pi →−pi, is effected by changing the sign
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of the holomorphic spinor [29]: λ α
i →−λ α

i while λ̃ α̇
i → λ̃ α̇

i .) One finds

A = [p4]〈1 p2〉〈q2 l〉 [l q]〈qq1〉 [q1 q2]

B = − [4 p1]〈p1 1〉〈p2 q2〉 [q p]〈qq1〉 [q1 q2] . (3.63)

Ref. [36] teaches us that the sum over the N = 4,2,1,0 multiplet of states is

related to the N = 4 state sum via

∑
SUSY

multiplet

6

∏
j=1

Atree
j =

(A+B)N (A4−N +B4−N )

(A+B)4
(
1− 1

2δN ,4

)
∑

N =4
multiplet

6

∏
j=1

Atree
j

(3.64)

so that the sum over the supersymmetric multiplet of states can be calculated

from the gluonic contributions alone (indeed, recall that A and B in eq. (3.60)

were obtained from the product of purely gluonic amplitudes corresponding

to configurations A and B, respectively).

We can simplify the expression for the ratio between the supersymmetric

state sums in eq. (3.64) by factoring out as many common factors of A and B
as possible (exploiting momentum conservation fully). Setting A = αF and

B = βF , for N = 4,2,1 the ratio appearing in eq. (3.64) simplifies to

R =
(α +β )N (α4−N +β 4−N )

(α +β )4
(
1− 1

2δN ,4

)
(3.65)

=

(
α4−N +β 4−N

)(
1− 1

2δN ,4

)
(α +β )4−N

(3.66)

= 1− (4−N )

(
α

α +β

)
+(4−N )

(
α

α +β

)2

. (3.67)

where the last equality holds only for N = 4,2,1; it can be obtained by

expanding the numerator
(
α4−N +β 4−N

)(
1− 1

2δN ,4

)
in eq. (3.66) in β

around −α .

In the case at hand, we can use momentum conservation (l = p2+ q2 and

p1 = p− k4) to rewrite A and B as follows,

A = [p4]〈1 p2〉〈q2 p2〉 [p2 q]〈qq1〉 [q1 q2]

B = − [4 p]〈p1〉〈p2 q2〉 [q p]〈qq1〉 [q1 q2] (3.68)

and identify

α = 〈1 p2〉 [p2 q]
β = − [q p]〈p1〉 (3.69)

F = [p4]〈q2 p2〉〈qq1〉 [q1 q2] .

Momentum conservation implies that α +β =−〈14〉 [4q], and thus,

α
α +β

=−〈1 p1〉 [p1 q]
〈14〉 [4q]

=−〈1 p1〉 [p1 3]

〈14〉 [43] , (3.70)
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where the second equality uses the proportionality of antiholomorphic spinors,

λ̃q ∝ λ̃3. (This proportionality holds only for some of the other six solutions

Si in addition to S2.) The ratio thus simplifies to,

R = 1+(4−N )

(〈1 p1〉 [p1 3]

〈14〉 [43]
)
+(4−N )

(〈1 p1〉 [p1 3]

〈14〉 [43]
)2

. (3.71)

We can solve for the explicit values of the cut momenta using the parametriza-

tion (3.5) with the external momenta cyclicly permuted (for the t-channel
configuration), and using the on-shell values defining S2 given in eqs. (3.8)

and (3.11). We find,

pμ
1 ≡ pμ − kμ

4 =
s14z

2〈43〉 [31] 〈4
−|γμ |1−〉 , (3.72)

so that,

〈1 p1〉 [p1 3] = 〈1−|γμ |3−〉 p1μ =
s14z

2〈43〉 [31] 〈1
−|γμ |3−〉〈4−|γμ |1−〉

=
〈41〉
〈43〉s14z , (3.73)

and thus,
〈1 p1〉 [p1 3]

〈14〉 [43] = χz . (3.74)

This gives us our final form for the ratio,

R = 1+(4−N )χz+(4−N )χ2z2 , (3.75)

and for the product of tree amplitudes,

∑
SUSY

multiplet

6

∏
j=1

Atree
j

∣∣∣∣
S2

=−is12s223Atree
−−++

(
1+(4−N )χz+(4−N )χ2z2

)
.

(3.76)

In this solution to the heptacut equations, the supersymmetric multiplet runs

only in one of the loops. In other solutions (in particular, S6), the multiplet

can run in both loops. The treatment of this case is similar but more elaborate.

It turns out [36] that the sum over the multiplet can again be evaluated purely

from the gluonic contributions. The main difference is that in this case there

are three gluonic contributions A4,B4,C4 (compared to the two in eq. (3.60)).

One can again fix the relative sign of B and C by insisting that the N = 4

supersymmetric result− (A+B+C)4

Δ be equal to eq. (3.62), and from the obvious

analog of eq. (3.64) one then finds the results for the supermultiplet sums for

N = 4,2,1,0. These expressions can again be simplified as above.
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Summing over all six solutions, and plugging the result into our master

formulas (3.52) and (3.53), taken with u = 1
2 and v = 1, we find

c1 = −s12s223Atree
−−++

(
1+

1

4
(1−δN ,4)(4−N )!χ(χ +1)δN ,1

)
c2 =

3

2
s223Atree

−−++(1−δN ,4)(4−N )!χ(χ +1)δN ,1 , (3.77)

valid for N = 4,2,1.

3.4.3 The s-channel contribution to A2-loop
4 (1−,2+,3−,4+)

Figure 3.9. The heptacut for the s-channel contribution to A2-loop
4 (1−,2+,3−,4+).

The heptacut for the s-channel contribution to A2-loop
4 (1−,2+,3−,4+) is shown

in figure 3.9. We will evaluate this contribution in two different ways, illustrat-

ing both the result’s independence of the precise choice of contour, and also

illustrating the potential advantages of a judicious choice of contour in a given

calculation.

Rather than using our master formulas (3.52) and (3.53), let us evaluate

the augmented heptacut integral for a general contour, before imposing the

constraint equations. Adding up the contributions from all six solutions, we

find

6

∑
i=1

∮
Γi

dz
z(z+χ)

6

∏
j=1

Atree
j (z)

=−is212s23Atree
−+−+

[
6

∑
j=1

a1, j −a2, j

χ
− (4−N )

a1,6−a3,6−a2,5

(χ +1)2

+

((
1− 1

2δN ,4

) χ4−N +1

(χ +1)4−N
−1

)(
a1,3−a2,3

χ
+

a1,4−a2,4

χ

)]
. (3.78)

In this expression, we need to impose the constraint equations in order to re-

strict the evaluation to a valid contour; and then we would seek to project onto
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each basis integral in turn. Now, suppose we can find a pair of solutions to

the constraint equations which projects onto the first or second basis integral,

respectively, and in addition, satisfies a1,3−a2,3+a1,4−a2,4 = 0. Using such

a contour would set the second line of eq. (3.78) equal to zero and therefore

produce a particularly simple algebraic expression for c1 and c2 directly, with-

out need for additional simplification. Choosing u = 1
3 and v = 1 in P1 and P2

gives such a contour.

This gives us the results

c1 = −s212s23Atree
−+−+

(
1− 3

4
(4−N )

χ
(χ +1)2

)
c2 = −3

2
s12s23Atree

−+−+
4−N

(χ +1)2
, (3.79)

valid for N = 4,2,1. The t-channel contribution can be obtained by exchang-

ing s12 ←→ s23 and χ −→ χ−1.

If we compare the expressions obtained above for the coefficients ci to those

obtained using the choice suggested in Section 3.3, u = 1
2 and v = 1, we find

that the expressions are equal by virtue of the identity

1

χ

((
1− 1

2δN ,4

) χ4−N +1

(χ +1)4−N
−1

)
=− 4−N

(χ +1)2
, (3.80)

valid for N = 4,2,1. This identity can of course easily be proven without

reference to the current discussion, but the point we wish to emphasize is that

the flexibility in choosing contours suggests certain algebraic simplifications

which are not immediately obvious.

The double box coefficients given in eqs. (3.57, 3.58, 3.77, 3.79) agree with

the O(ε0) terms of the corresponding coefficients, supplied to us by Lance

Dixon [37], in the amplitudes computed by Bern, De Freitas, and Dixon [38].

We emphasize that though we have only given explicit results for super-

symmetric theories, the method can also be applied to find the double-box

coefficients of QCD amplitudes. The only required change in the calculation

is that the tree-level data fed into the master formulas in eqs. (3.52)-(3.53)

should be computed for QCD instead.

A mystery, left to be resolved in the next chapter, is the surplus of six free

winding numbers ai, j characterizing the maximal-cut contours. Namely, re-

call from eq. (3.32) that there are 14 such winding numbers. The contour con-

straint equations (3.42)-(3.43) impose 6 constraints, supplied by the 2 addi-

tional constraints from requiring that one master double box be set to one, and

the other to zero on the cut. In total, one appears to be left with 14−6−2= 6

free parameters in the two-loop master contours, in contrast to the situation

in one-loop generalised unitarity where the master contours contain no free

parameters.
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3.5 Comparison with the leading-singularity method

The use of composite leading singularities to freeze loop integrations to points

in C8 is common to the approach in Paper I and that of the leading-singularity

method, and it is worth explaining the difference between these two approaches.

The leading-singularity method has notably only been explored for N = 4

supersymmetric Yang-Mills (SYM) theory. It employs purely integrand-level
reductions to the Feynman-diagram expansion defining the amplitude. For ex-

ample, at one loop, the N = 4 SYM amplitudes have vanishing triangle and

bubble contributions in eq. (2.39) due to diagram-by-diagram cancelations be-

tween the different types of particles circulating in the loop. Also at higher

loops, N = 4 supersymmetry will give rise to many similar cancelations, re-

sulting in a relatively limited set of integrals. Now, as the integrands on either

side of the reduction equation are equal, one may choose any linear combi-

nation of leading-singularity contours to determine integral coefficients. For

generic gauge theories, the restriction to using only integrand-level reductions

has the disadvantage of leaving a relatively large number of (linearly depen-

dent) integrals—for QCD of the same order of magnitude as the Feynman

diagram expansion itself.

In contrast, in the approach reviewed in this chapter, we make use of addi-

tional reductions coming from IBP identities. This has the virtue of producing

an extremely compact result for the amplitude. For example, for four massless

external states, the Feynman rules for gauge theory produce 22 double-box

integrals with various powers of the loop momenta in the integrand numerator.

Through IBP relations, these are reduced to two linearly independent double

boxes. Similarly, for five massless states, the 76 pentagon-boxes produced

by the Feynman rules are reduced via IBP’s (and two Gram determinant con-

straints) to a single pentagon-box integral. Thus, the use of IBP reductions

leads to somewhat remarkable simplifications, yielding in some sense a min-

imal representation of the amplitude. However, as the reduction equation for

the two-loop amplitude no longer holds at the level of the integrand, to avoid

contamination from spurious terms, one is now obliged to choose linear com-

binations of leading-singularity contours that respect the IBP (and possibly

Gram determinant) constraints.

To rephrase these considerations more concretely, let us go back to the ba-

sis composition of the four-point amplitude,

A(2)
4 = c1,σ1

P∗∗
2,2;σ1

[1] + c2,σ1
P∗∗
2,2;σ1

[�1 · k4] + · · · (3.81)
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which, as we recall, in the parametrization (3.5) of the loop momenta has the

heptacut

6

∑
i=1

∮
Γi

dz
z(z+χ)

(
c1,σ1

+c2,σ1
(�1 ·k4)

∣∣∣
Si
(z)

)
=

6

∑
i=1

∮
Γi

dz
z(z+χ)

6

∏
j=1

Atree
j (z)

∣∣∣∣∣
Si

.

(3.82)

With the integral coefficients in eqs. (3.57), (3.58), (3.77), (3.79) one can

examine whether the equality in eq. (3.82) also holds at the integrand level.

In other words, for any fixed solution Si to the heptacut under consideration,

does the candidate equality

∀z ∈ C: c1,σ1
+ c2,σ1

(�1 · k4)
∣∣∣
Si
(z) ?

=
6

∏
j=1

Atree
j (z)

∣∣∣∣∣
Si

(3.83)

hold true? For N = 4 super Yang-Mills theory, the answer is trivially yes:

both sides are equal to a constant (namely −s212s23Atree for the s-channel cut,
and −s12s223Atree for the t-channel cut). This is a reflection of the fact that

N = 4 supersymmetry is sufficiently powerful to cancel all double-box in-

tegrals in the Feynman-diagram expansion but the scalar ones. In hindsight,

this observation shows that, for N = 4 SYM, any choice of contours Γi in

eq. (3.82) will produce correct results for the coefficients c1,c2. These obser-

vations immediately extend to the five-gluon MHV amplitude [20] where the

analog of eq. (3.83) now involves non-trivial functions of z.
In contrast, for N = 2,1 super Yang-Mills theory, the candidate equal-

ity (3.83) cannot hold, as one can easily see by considering the limit as the

loop momenta become large. Indeed, in both of these gauge theories, for any

heptacut one may consider there always exists a kinematical solution for which

6

∏
j=1

Atree
j (z) ∼ z2 as z → ∞ (3.84)

whereas for all the kinematical solutions,

c1,σ1
+ c2,σ1

(�1 · k4)(z) ∼ z or z0 as z → ∞ . (3.85)

The reason why eq. (3.83) fails to hold for these gauge theories is that there is

not enough supersymmetry to cancel double boxes with quadratic numerator

insertions, as reflected in eq. (3.84). To produce a minimal representation of

amplitudes in N < 4 Yang-Mills theory, we use IBP relations to reduce the set

of double-box integrals to the basis elements {P∗∗
2,2;σ1

[1], P∗∗
2,2;σ1

[�1 ·k4]}. As a

result, the integrands on either side of the basis decomposition in eq. (3.81) are

only equal up to terms which integrate to zero on RD ×RD, and the contours

Γi in eq. (3.82) must be chosen so as to annihilate such terms.
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4. Uniqueness of two-loop master contours

The selection principle in Chapter 3 for determining the complex integration

contours that underlie generalized cuts, though fulfilling its practical purpose,

leaves a question of a more fundamental nature. Namely, the box and trian-

gle contours in Section 2.3 are unambiguously defined, so what is the origin

of the six free parameters in the analogous two-loop master contours? Are

there additional constraints on the contours which have not yet been taken into

account, or is there some other explanation?

The path followed in this chapter toward a resolution of this mystery will

take us through a number of unexpected discoveries. The first is an appealing

physical interpretation of the heptacut Jacobian poles, intimately linked with

the resolution. The second is a complete classification of the solutions to the

heptacut of the general double-box integral. As we shall see, these solutions

are naturally associated with Riemann surfaces whose topology is determined

by the number of states at the vertices of the double-box graph and whose

precise geometry, once illuminated, dispels the mystery.

We remark that the presentation in Sections 4.1-4.4 is essentially that of

Sections 3, 5 and Appendix A in Paper III, adding here a few comments, ob-

servations and illustrations. In Section 4.5 we provide a brief introduction to

the so-called symbol of transcendental functions.

4.1 Maximal cut of the general double box

The integrals considered throughout this chapter have the topology of a double

box, illustrated in figure 4.1. Ignoring pentagon-boxes, these are the integrals

in the basis decomposition of the two-loop amplitude

A(2) = ∑
i

ci(ε) Integrali + Rational (4.1)

that contain the maximal number of propagators.1

1We choose to ignore pentagon-boxes in this thesis as we expect the explicit octacuts they

contain to allow a straightforward extraction of their coefficients, analogous to the quadruple

cut at one loop.
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Figure 4.1. The general double-box integral. The · · · dots at each vertex represent the

presence of an arbitrary number of massless legs. Each of the vertices, shown as gray

blobs, is given a label i = 1, . . . ,6 which equals the index of the associated external

momentum Ki.

Employing a different notation than that of Chapter 3, more suited to the

purposes of the present chapter, the general double-box integral is defined by

I(N1,N2,N3,N4,N5,N6)[Φ] ≡
∫ dD�1

(2π)D
dD�2
(2π)D

(
Φ(�1, �2)

�21 (�1−K1)2 (�1−K1−K2)2

× 1

(�1+ �2+K6)2 �
2
2 (�2−K5)2 (�2−K4−K5)2

)
(4.2)

where Ni denotes the number of external legs at vertex i in figure 4.1.

For future purposes in this chapter we sketch here a few details of the cal-

culation of the heptacut of the general double-box integral in eq. (4.2) which

otherwise mostly proceeds in analogy with the calculation described in Sec-

tion 3.1. The heptacut is defined by the joint on-shell constraints

�21 = 0 (4.3)

(�1−K1)
2 = 0 (4.4)

(�1−K1−K2)
2 = 0 (4.5)

�22 = 0 (4.6)

(�2−K5)
2 = 0 (4.7)

(�2−K4−K5)
2 = 0 (4.8)

(�1+ �2+K6)
2 = 0 . (4.9)
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In this chapter, we will use the following convenient parametrization of the

loop momenta

�
μ
1 = α1K�μ

1 +α2K�μ
2 +α3

〈
K�
1|γμ |K�

2

]
+α4

〈
K�
2|γμ |K�

1

]
(4.10)

�
μ
2 = β1K�μ

4 +β2K�μ
5 +β3

〈
K�
4|γμ |K�

5

]
+β4

〈
K�
5|γμ |K�

4

]
. (4.11)

which unlike that of eq. (3.5) does not involve a rescaling of the parameters.

Re-expressed in terms of the loop momentum parametrization (4.10)-(4.11),

the on-shell constraints (4.3)-(4.8) (corresponding to cutting the six outer prop-

agators in figure 4.1) take the form

α1 =
γ1(S2+γ1)
γ21−S1S2

, α2 =
S1S2(S1+γ1)
γ1(S1S2−γ21 )

, α3α4 =−S1S2(S1+γ1)(S2+γ1)
4(γ21−S1S2)2

β1 =
S4S5(S5+γ2)
γ2(S4S5−γ22 )

, β2 =
γ2(S4+γ2)
γ22−S4S5

, β3β4 =−S4S5(S4+γ2)(S5+γ2)
4(γ22−S4S5)2

.

(4.12)

We observe that in this parametrization, the variables α1,α2,β1,β2 are directly

fixed, while the remaining variables obey simple constraints of the form α3α4

= constant.

Replacing all propagators in eq. (4.2) by complex delta functions (setting

Φ=1) and integrating out the six that correspond to the outer propagators in

figure 4.1, a contribution to the heptacut double-box integral is

J1 =C
∮ dα3dβ3

α3β3
δC

(
(�1+�2+K6)

2
)

where C ≡ γ1γ2
(γ2

1 −S1S2)(γ2
2 −S4S5)

.

(4.13)

We note that the variables α3 or β3 are not always good integration variables:

on certain solutions to eq. (4.12) they may happen to be constant, cf. figure 3.3.

In such cases, they should be traded for α4 or β4 through dα3
α3

→−dα4
α4

, and/or
dβ3
β3

→−dβ4
β4

. Notice the relative signs which were ignored in Chapter 3. These

arise from the fact that, in solving for the complex delta functions, one should

use determinants rather than absolute values of determinants, as discussed be-

low eq. (2.62).

Integrating out the remaining complex delta function in eq. (4.13) then pro-

duces the following contribution to the maximal cut of the general double box,

J
∣∣
z≡α3

= C
∮

Γ

dz
z

(
B0(z)2−4B1(z)B−1(z)

)−1/2
(4.14)

73



where z ≡ α3 and

B1 =
〈
K�
4|γμ |K�

5

](
α1K�μ

1 +α2K�μ
2 +z

〈
K�
1|γμ |K�

2

]
+α4(z)

〈
K�
2|γμ |K�

1

]
+Kμ

6

)
(4.15)

B0 =
(

β1K�
4μ +β2K�

5μ +K6μ

)
×
(

α1K�μ
1 +α2K�μ

2 + z
〈
K�
1|γμ |K�

2

]
+α4(z)

〈
K�
2|γμ |K�

1

]
+Kμ

6

)
− 1

2K2
6 (4.16)

B−1 =−S4S5(S4+ γ2)(S5+ γ2)
〈
K�
5|γμ |K�

4

]
4(γ2

2 −S4S5)2

×
(

α1K�μ
1 +α2K�μ

2 + z
〈
K�
1|γμ |K�

2

]
+α4(z)

〈
K�
2|γμ |K�

1

]
+Kμ

6

)
. (4.17)

Here α1,α2,α4(z),β1,β2 are given by eq. (4.12), whereas z is unconstrained,

reflecting the degree of freedom left over after imposing the seven cut con-

straints. Despite appearances, we will see that in all cases with less than 10

massless particles, the argument of the square root in eq. (4.14) is in fact a

perfect square.

Similar formulas arise when solving instead for z = α4,β3 or β4 and are

given explicitly in eqs. (3.28)-(3.39) in Paper II. We emphasize that the max-

imal cut of the general double box is a sum over such contributions, as exem-

plified in eq. (3.34).

4.2 Kinematical solutions and Jacobian poles

In this section we consider the classes of solutions to the joint heptacut con-

straints (4.3)-(4.9). As the loop momenta have a total of eight degrees of free-

dom (α1, . . . ,α4,β1, . . . ,β4), the result of imposing seven on-shell constraints

will be to fix all but one of these parameters. The various choices of freez-

ing the loop parameters to particular values that solve these constraints span a

number of distinct kinematical solutions, whose unconstrained variable z ∈ C

parametrizes a Riemann surface (for example, a Riemann sphere). As we

shall see, the Riemann surfaces associated with the kinematical solutions are

not disjoint, but rather they have pointwise intersections located at the poles

of the Jacobian discussed in the previous section.

The number of kinematical solutions to the heptacut constraints is deter-

mined by the distribution of external momenta at the vertices of the double-

box graph, and an important role in the classification is played by the vertices

that join three massless lines. In order to state the classification, we introduce
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some notation which will be used throughout this chapter,2

Ni ≡ # of external legs at vertex i for i = 1, . . . ,6

ni ≡ total # of legs at vertex i for i = 1, . . . ,6

μ j ≡
⎧⎨⎩

(1−δn1,3)(1−δn2,3)
(1−δn3,3)(1−δn6,3)
(1−δn4,3)(1−δn5,3)

for j = 1

for j = 2

for j = 3 .

(4.18)

The variable μ j keeps track of whether each of the three vertical lines in the

double-box graph in figure 4.1 is part of some three-point vertex or not, and

respectively equals zero or one. For mnemonic convenience, we will denote

the values of μ j by letters as follows

μ j = m ⇐⇒ μ j = 0

μ j = M ⇐⇒ μ j = 1 .
(4.19)

To give an example of how three-point vertices play a role in determining

the number of kinematical solutions, let us consider the third equation in

eq. (4.12),

α3α4 ∝ S1S2 . (4.20)

We observe that if the right hand side is nonzero, one gets an invertible relation

between α3 and α4, leaving either of them as an equivalent free parameter. If,

on the other hand, the right hand side is zero, this equation has two distinct

solutions, α3 = 0 or α4 = 0. The latter situation occurs whenever the leftmost

vertical line of the double-box graph is part of some three-point vertex (in the

above notation denoted by m), and the splitting of one into two solutions of

eq. (4.12) is a reflection of the existence of two types of massless on-shell

three-point vertices in 3+ 1 dimensions, already observed in figure 2.8. In-

deed, assuming for the moment that S1 = 0, it follows from eq. (4.10) that

α3 = 0 implies

|�1] ∝ |�1−K1] ∝ |K1] (4.21)

whereas α4 = 0 implies

〈�1| ∝ 〈�1−K1| ∝ 〈K1| , (4.22)

consistent with eq. (2.57).

Below we discuss the number of kinematical solutions to the heptacut con-

straints (4.3)-(4.9) and the intersections of their associated Riemann surfaces

for each of a total of four cases. These four cases are defined by having all,

exactly two, exactly one and none of the vertical lines in the double-box graph

be part of some three-point vertex.

2We deliberately repeat the definition of Ni here, to make its distinction from ni clear.
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4.2.1 Case 1: (μ1,μ2,μ3) = (m,m,m)

Let us first consider the integral topologies where each vertical line of the

double-box graph is part of at least one three-point vertex. This category in-

cludes, for instance, all topologies with four or five massless external states,

but also an infinite sequence of topologies at higher points.

At this point, recall our findings for the case of four external massless mo-

menta in Chapter 3: there are six classes of kinematical solutions to the hep-

tacut constraints (4.3)-(4.9). The solutions are uniquely characterized by the

distribution of chiralities (⊕ or �) at the three-point vertices. Disallowed dis-

tributions are those with uninterrupted chains of same-chirality vertices along

the vertical or horizontal lines; all other configurations are allowed for generic

external kinematics.

Classification of kinematical solutions
As it turns out, the classification of kinematical solutions in the case of four

massless external states extends uniformly to cover all case 1 topologies. We

can establish this in two steps.

Let us start by noting that for an allowed solution, three-point vertices lying

on a common vertical line must have opposite chirality. For the leftmost and

rightmost lines, this is already visible from the discussion around eqs. (4.21)

and (4.22). For example, having two ⊕ vertices on the leftmost vertical line

cannot be achieved for generic external momenta because it would require

〈K1| ∝ 〈�1−K1| ∝ 〈K2| (4.23)

and thus K1·K2 = 0. Similarly, for generic external momenta, forcing two ⊕
vertices to appear in the central vertical line can be shown to require the four-

momentum in the central propagator to vanish, leaving no free parameter.

This already places an upper bound of 23 = 8 on the number of kinematical

solutions. Not all of these configurations are allowed, however. For instance,

three⊕ vertices lying on a horizontal line would force all angle bracket spinors

on that line to be proportional to each other, in analogy with eq. (4.23).

More generally, consider the distribution of chiralities at the vertices of the

7-particle topology shown in figure 4.2.

This distribution of chiralities does not obviously impose any constraints

on the external kinematics. Closer inspection, however, reveals that this as-

signment contains a one-loop sub-box on the right loop (of the two-mass-easy

type), with opposite chiralities at its two massless corners. But as is known

from studies of one-loop boxes, for generic external momenta, opposite cor-

ners of a two-mass-easy box must have identical chiralities [17]. Thus, the

configuration in figure 4.2 in fact does impose constraints on the external mo-

menta and is therefore disallowed. We have verified, by exhaustion, that all

chirality assignments not forbidden in such ways lead to healthy kinematical

solutions.
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Figure 4.2. A generic integral belonging to case 1: all three vertical lines are part of

some three-point vertex. The shown chirality assignment is forbidden, as explained in

the main text.

To summarize this discussion, we have derived three simple rules which es-

tablish that there are exactly six kinematical solutions for all topologies within

case 1:

• Rule 1. Two same-chirality vertices cannot appear in a vertical line.

• Rule 2. Three same-chirality vertices cannot appear in an horizontal line.

• Rule 3. In rule 2, opposite-chirality vertices at opposite corners of a one-

loop sub-box should be counted like same-chirality adjacent vertices (cf.

the right loop in figure 4.2).

Interpretation of Jacobian poles
As it turns out, the six kinematical solutions to the heptacut constraints (4.3)-

(4.9) are not completely disjoint: as illustrated in figure 4.3, for any given

kinematical solution Si, depicted there as a Riemann sphere, there are two

special points where it coincides with a different kinematical solution. We

now proceed to locate these special points and show that the six Riemann

spheres link into a chain.

To clarify the exposition, we will consider a particular representative of case

1 and write out explicitly the kinematical solutions and the Jacobian determi-

nants. For example, let us choose the integral topology whose vertex momenta

(as defined in figure 4.1) are

K1 = k1+ k2 , K2 = k3 , K3 = 0 ,

K4 = k4 , K5 = k5 , K6 = 0 ,
(4.24)

with the ki being lightlike vectors. In terms of the spinor ratios

P1 =− 〈K�
1 k5〉

2〈k3 k5〉 , P2 =− 〈K�
1 k4〉

2〈k3 k4〉 , Q1 =− [k5 K�
1]

2[k4 K�
1]
,

P•
1 =− [K�

1 k5]
2[k3 k5]

, P•
2 =− [K�

1 k4]
2[k3 k4]

, Q•
1 =− 〈k5 K�

1〉
2〈k4 K�

1〉
,

(4.25)
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Figure 4.3. The six different classes of kinematical solutions to the heptacut con-

straints (4.3)-(4.9), illustrated here as Riemann spheres (intended to represent the

complex degree of freedom z left unfrozen by the heptacut constraints), in case 1. The

kinematical solutions are characterized by the distribution of chiralities at the vertices

of the double-box graph (see figure 4.1), shown next to each sphere. Each Riemann

sphere coincides with the two adjacent spheres in the chain at a single point, illustrated

as a black dot. These points are precisely the poles of the heptacut Jacobian. The Rie-

mann spheres contain additional singularities, denoted by ∞L and ∞R, associated with

respectively the left or right loop momentum becoming infinite (respectively occur-

ing as z = ∞ or z = P(•)
2 in eqs. (4.25)-(4.27)). Parity-conjugate kinematical solutions

appear antipodally in the chain.

the six kinematical solutions S1, . . . ,S6 are obtained by fixing the parameters

of the loop momenta to the values

S1, . . . ,S6:

{
α1 = 1 , β1 = 0

α2 = 0 , β2 = 1
(4.26)

S1:

{
α3 = P•

1 , β3 = z
α4 = 0 , β4 = 0

; S2:

{
α3 = z , β3 = Q•

1

α4 = 0 , β4 = 0

S3:

{
α3 = 0 , β3 = 0

α4 = P1 , β4 = z ; S4:

{
α3 = 0 , β3 = 0

α4 = z , β4 = Q1

S5:

{
α3 = 0 , β3 =− 〈k5 k3〉(z−P1)

2〈k4 k3〉(z−P2)
α4 = z , β4 = 0

; S6:

{
α3 = z , β3 = 0

α4 = 0 , β4 =− [k5 k3](z−P•
1 )

2[k4 k3](z−P•
2 )

(4.27)
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with z ∈ C a free parameter. The associated heptacut Jacobians are

Ji(z) =
1

s45
(
(s13+ s23)(s15+ s25)− s12s35)

)×
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

±(
z(1− z/P•

1 )
)−1

for i = 2,6

±(
z(1− z/P1)

)−1
for i = 4,5

−(
z(1− z/Q•

1)
)−1

for i = 1

−(
z(1− z/Q1)

)−1
for i = 3 .

(4.28)

In the first two lines of eq. (4.28), the plus or minus signs refer respectively

to the first or second indicated kinematical solution. Now, consider first the

intersection between S4 and S6. In S4 we have α3 = 0 but α4 free, while

in S6 we have α4 = 0 and α3 free; the intersection is simply a point, located

within S4 at α4 = 0 and within S6 at α3 = 0. At this point, β3 equals zero

while β4 takes on a finite value explicitly given in eqs. (4.25) and (4.27).

To understand better why S4 and S6 coincide at a point, let us examine

what is happening to the loop momentum �1 at z = 0 in S4. By assumption,

either vertex 1 or 2 in figure 4.1 is a three-point vertex; let us consider here

the former case. It is straightforward to see that in the parametrization (4.10)

the on-shell constraints (4.3)-(4.5) and (4.9) are solved within S6 by setting

(α1,α2,α3,α4) = (S2+γ1
γ1

,0,z,0). At z = 0 we then observe that

�
μ
1 =

S2+ γ1
γ1

Kμ
1 ∝ Kμ

1 , (4.29)

i.e., the loop momentum is collinear with that of a massless external particle.

This collinearity can be immediately understood from figure 4.3: at the in-

tersection of S4 and S6, the lower-left vertex must simultaneously be of the�
and ⊕ type, and therefore the momenta connected by this vertex are mutually

collinear. Moreover, when both of the momenta K1 and K2 are massless, the

simultaneous collinearity conditions at the two left-most vertices imply that

the momentum of the particle exchanged between these vertices must vanish.

Indeed, we see that in this case, eq. (4.29) implies that �1−K1 = 0. Physically,

this corresponds to a soft divergence region, giving rise to an infrared diver-

gence in the original two-loop integral. In a gauge theory, the exchanged soft

particle producing such a singularity will necessarily be a soft gluon, as can

be argued from the behavior of the three-point vertices.

Similarly, the intersection between S2 and S5 occurs at a point where

α3 = α4 = 0. By symmetry, there are similar intersections at points where

β3 = β4 = 0, merging S1 with S6, and S3 with S5. Finally, the intersections

between S1 and S2, and between S3 and S4, occur at points where the mo-

menta in the central three-point vertices become collinear.

Let us conclude this discussion by the observation that the poles of the Jaco-

bian determinants in eq. (4.28) coincide with the intersection points of the six
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Riemann spheres shown in figure 4.3. We have checked that this phenomenon

extends to all integral topologies in case 1.

Residue relations across solutions
At the location of any Jacobian pole, each loop momentum �i as evaluated

from either of the two intersecting spheres assumes identical values; for ex-

ample,

�i(0)
∣∣
S4

= �i(0)
∣∣
S6

for i = 1,2 . (4.30)

As a result of this, given an arbitrary function f (�1(z), �2(z)) that does not

share these poles, one has the identities

Res
z=Q•

1

J(z) f (�1(z), �2(z))
∣∣
S1

= −Res
z=P•

1

J(z) f (�1(z), �2(z))
∣∣
S2

(4.31)

Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S2

= −Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S5

(4.32)

Res
z=P1

J(z) f (�1(z), �2(z))
∣∣
S5

= −Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S3

(4.33)

Res
z=Q1

J(z) f (�1(z), �2(z))
∣∣
S3

= −Res
z=P1

J(z) f (�1(z), �2(z))
∣∣
S4

(4.34)

Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S4

= −Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S6

(4.35)

Res
z=P•

1

J(z) f (�1(z), �2(z))
∣∣
S6

= −Res
z=0

J(z) f (�1(z), �2(z))
∣∣
S1

. (4.36)

We note that the uniform pattern of signs owes to the conventions explained

below eq. (4.13). As explained in Section 4.4, these identities can be applied

in computations of heptacut two-loop amplitudes J(z)∏6
j=1 Atree

j (z)
∣∣∣
Si

to ex-

plain the vanishing of certain residues, as well as the seemingly accidental

equality between pairs of other residues.

To summarize Section 4.2.1, we have found that in case 1 there are six classes

of kinematical solutions to the heptacut constraints (4.3)-(4.9), each of which

is labeled by a free complex variable z ∈ C, parametrizing a Riemann sphere.

The six Riemann spheres thus associated with the kinematical solutions in-

tersect pairwise in six points, linking into a chain as illustrated in figure 4.3.

Within each sphere, the Jacobian factor that arose from linearizing the cut con-

straints gives rise to a measure which has two poles, located at the intersection

with the neighboring spheres in the chain. These poles were called hidden or

composite leading singularities in refs. [19, 20, 33]. Pleasingly, we find that

they are directly related to the physical collinear and infrared singularities of

the theory.3

3One may inquire about the Jacobian poles coming from three-point vertices in the center of the

double-box graph. While these certainly do correspond to a dangerous infrared-singular region

of integration, in this case there is not necessarily a divergence. For instance, the fully massive

four-point double box, belonging to case 3 below, is infrared finite.
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4.2.2 Case 2: (μ1,μ2,μ3) = (M,m,m), (m,M,m) or (m,m,M)

Figure 4.4. The four different classes of kinematical solutions to the heptacut con-

straints in case 2: exactly two vertical lines of the double-box graph are part of some

three-point vertex. Figure (a) illustrates the (m,M,m) subcase, whereas figure (b) il-

lustrates the (M,m,m) subcase. The only difference between these two subcases is the

number of points contained in each sphere at which one of the loop momenta becomes

infinite. We observe that in both subcases the number of independent residues one can

take is 8.

This is the case where exactly two vertical lines of the double-box graph are

part of some three-point vertex. The analysis leading to rules 1-3 in Section

4.2.1 remains valid and shows that there are exactly four kinematical solutions

for any topology belonging to this case. These solutions are uniquely charac-

terized by those assignments of vertex chiralities where no two ⊕ or � occur

in the same vertical line. Based on our insights from the previous subsec-

tion, it is natural to expect that the four Riemann spheres associated with the

kinematical solutions again have pointwise intersections and are linked into a

chain. This picture turns out to be correct, and we will now elaborate on some

of its details.

For the double-box topologies of the type (m,M,m), one finds that the inter-

section points coincide with the poles of the Jacobian in eq. (4.14), in complete

analogy with case 1. Moreover, each of these intersection points is associated

with the simultaneous collinearity of the momenta in some three-point vertex

of the double-box graph, again in exact analogy with case 1. The kinematical

solutions of subcase (m,M,m) are illustrated in figure 4.4(a).

Seemingly, a new technical issue arises for the topologies of type (M,m,

m):4 the square root in eq. (4.14) suggests that the Jacobian contains branch

4By assumption, at least one of the vertex momenta K3 or K6 (defined in figure 4.1) vanishes.

Without loss of generality, we take K6 to vanish here.
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cuts. Despite appearances, the radicand is in fact a perfect square, as can

easily be seen by writing the central-propagator condition 0 = (�1 + �2)
2 =

〈�1 �2〉[�1 �2] in the factorized form

(�1+ �2)
2 =

1

α2
1β 2

2

((
α1〈K�

1|+α4〈K�
2|
)(

β2|K�
5〉+β3|K�

4〉
))

×
((

α1[K�
1|+α3[K�

2|
)(

β2|K�
5]+β4|K�

4]
))

= 0 . (4.37)

Plugging eq. (4.37) into eq. (4.13) and performing the last integration yields

an explicitly rational formula for the Jacobian, containing poles rather than

branch cuts.

The (M,m,m) subcase thus presents no new features compared to the (m,

M,m) subcase, except in one regard, illustrated in figure 4.4(b): the number

of points in each Riemann sphere at which one of the loop momenta becomes

infinite. This can be understood as follows. For solutions S2 and S4, the

fact that S1S2 �= 0 implies that α3 ∼ z and α4 ∼ 1
z , allowing for two distinct

points on each of these spheres at which the left loop momentum �1 becomes

infinite, denoted respectively as ∞L,1 and ∞L,2 in figure 4.4(b). On the other

hand, in solutions S1 and S3 the loop momentum �1 assumes a constant value

independent of z.5 In particular, neither of these spheres contain any point at

which �1 becomes infinite.

The above reasoning readily extends to case 1 and explains the positioning

of the infinity poles in figure 4.3.

From figures 4.3 and 4.4 we observe that in both case 1 and 2, the number

of independent residues one can take is 8. Here, the qualifier “independent”

refers to the fact that on any given Riemann sphere, the residues necessarily

add to zero, allowing any one residue to be expressed in terms of the remaining

ones on the sphere. Thus, counting the number of poles shown in figures 4.3

and 4.4, and subtracting the number of Riemann spheres to compensate for the

redundancy, we find 8 independent residues in all cases considered so far.

5To be somewhat more detailed, the chirality distributions in solutions S1 and S3 allow us

to construct an “effective” one-loop box, obtained by collapsing the horizontal propagators

between same-chirality labels on the right loop. As it turns out, the solution to the quadruple-cut

constraints of this one-loop box is exactly equal to the left loop momentum �1 in the original

heptacut double box. But as the quadruple cut freezes all components of the one-loop box

momentum, this implies that the �1 obtained from S1 and S3 cannot have any dependence on

z.
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4.2.3 Case 3: (μ1,μ2,μ3) = (M,M,m), (M,m,M) or (m,M,M)

In double-box topologies where exactly one vertical line of the graph is part

of some three-point vertex, the rules of Section 4.2.1 imply that there are two

kinematical solutions.

In the (M,M,m) case, one of the two Riemann spheres can be parametrized

by z ≡ α3 (and its parity conjugate by z ≡ α4), and so the equations (4.14)-

(4.17) readily apply. Because B−1 = 0, the Jacobian (4.14) is manifestly a

rational function and has only poles in z. Exactly as in the previous cases, these

poles are located at the intersections of the Riemann spheres; in particular, the

Jacobian has exactly two poles on each sphere.

In the (M,m,M) case, assuming again (without loss of generality) that

K6 = 0, we can proceed as in the (M,m,m) case above, following eq. (4.37).

The same expression remains valid here and makes manifest the fact that the

Jacobians are rational functions (of the variables α3,α4,β3 or β4). Again, the

poles of the Jacobians coincide with the intersections of the Riemann spheres

corresponding to the kinematical solutions.

Figure 4.5. The two different classes of kinematical solutions to the heptacut con-

straints in subcase (M,M, m) of case 3. The subcases (M, m, M) and (m, M,M) are

similar. Again the number of independent residues one can take is 8.

The two kinematical solutions associated with the subcase (M,M,m) are illus-

trated in figure 4.5 which also shows that the number of independent residues

one can take is again 8, as in the previous cases. The other subcases (M,m,

M) and (m,M,M) are similar.
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4.2.4 Case 4: (μ1,μ2,μ3) = (M,M,M)

This is the case in which the double-box graph contains no three-point vertices.

For the scattering of massless particles, the first time this occurs is for 10

particles, as depicted in figure 4.6.

Figure 4.6. The integral I(2,2,1,2,2,1), the simplest example of an integral with more

than three particles at all vertices, and whose heptacut Jacobian J(z) accordingly has

branch cuts that cannot be removed by any reparametrization z → ϕ(z). As argued

in the main text, this is presumably related to the appearance of functions in the an-

alytic expression for I(2,2,1,2,2,1) which cannot be expressed in terms of generalized

polylogarithms.

To analyze this case, we return to the Jacobian determinant in eq. (4.14)

which takes the form

J =
∮

Γi

dz√
Q(z)

(4.38)

where Q(z) = z2(B0(z)2 − 4B1(z)B−1(z)) is a quartic polynomial. Numeri-

cally, we find that for generic 10-particle kinematics, the four roots ri of this

polynomial are distinct. This means that, contrary to the previous cases, the

Jacobian contains genuine branch cuts (meaning that they cannot be removed

by any redefinition of z). The integration variable z in eq. (4.38) therefore

parametrizes a two-sheeted cover of the Riemann sphere. This is topologi-

cally equivalent to an elliptic curve (i.e., a genus one Riemann surface), as

illustrated in figure 4.7. In particular, there is a single class of kinematical

solutions to the heptacut constraints (4.3)-(4.9) in this case.

For an elliptic curve there are two natural cycles over which the z integra-

tion in eq. (4.38) can be performed, generalizing the notion of a residue –

namely, its topological cycles Γ1 and Γ2, respectively shown in red and blue

in figure 4.7. In terms of the z variable, these are cycles which enclose a pair

of branch points. Integrations over such cycles produce so-called complete

elliptic integrals of the first kind K(t) where the argument t is some cross-ratio

of the four roots of the radicand Q(z). As they arise when performing the loop

integration on a compact T 8 contour, the integration cycles Γ1 and Γ2 define

leading singularity cycles of the double-box integral.
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As illustrated in figure 4.7, the number of poles at which one of the loop mo-

menta becomes infinite is 8. This can easily be explained as follows. The

fact that S1S2 �= 0 implies that α3 ∼ z and α4 ∼ 1
z , allowing for two distinct

points on each sheet of the elliptic curve at which the left loop momentum

�1 becomes infinite; these points are denoted as ∞L,i in the figure. Moreover,

since each of the sheets can equivalently be parametrized in terms of β3 or β4,

the fact that S4S5 �= 0 implies that β3 ∼ z and β4 ∼ 1
z , allowing for two distinct

points on each sheet at which the right loop momentum �2 becomes infinite;

these points are denoted as ∞R,i. Thus, there are in total 8 poles on the elliptic

curve.

Figure 4.7. The single class of kinematical solutions to the heptacut constraints in case

4 where the double-box graph contains no three-point vertices. Here, the Jacobian de-

velops branch cuts, and the heptacut loop-momentum parameter z thus parametrizes

a two-sheeted cover of the Riemann sphere. The two sheets are shown glued together

along their branch cuts, illustrating how this Riemann surface is topologically equiva-

lent to an elliptic curve. The topological cycles Γ1 and Γ2, respectively shown in red

and blue, enclose two distinct pairs of branch points and provide natural contours of

integration for the heptacut double box in eq. (4.38). We observe that there are eight

poles at which one of the loop momenta becomes infinite. In this case one finds a total

of nine independent leading-singularity cycles, as explained in the main text.

The residues of these 8 poles are not all independent, however. For in-

stance, their sum is zero as it is corresponds to a contractible cycle, as can

be seen from figure 4.7. If all the infinity poles are only simple poles, which

is the case if all numerator insertions in the double-box integral are at most

linear in each of the loop momenta �1, �2, there would exist a second, less

obvious relation6. However, the large-momentum behavior of theories such

as pure Yang-Mills or QCD are not such as to produce only simple poles, and

so this relation does not apply. Including the two topological cycles Γi in our

6This relation is easier to describe when the elliptic curve is viewed as the complex plane mod-

ulo the doubly-periodic identification z � z+1, z � z+ τ . While the first relation mentioned in

the main text arises from integrating a form ω(z) along the boundary of a fundamental domain,

the second relation arises from integrating ω(z)z. In the absence of double poles, the latter

relation relates the sum of the residues weighted by z to integrals over Γ1 and Γ2. We refer the

reader to ref. [39] for more details; in particular, to Chapter III, Proposition 2.1.
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counting, we thus find a total of 9 independent leading-singularity cycles in

case 4, in contradistinction with the previous cases 1-3.

Finally, let us summarize our discussion of the number of solutions to the

maximal cut of the double-box graph in figure 4.1. We have observed that as

the number of three-point vertices in the double-box graph grows, the num-

ber of associated Riemann surfaces increases from one surface (of genus one)

to two spheres linked by pointwise intersections, and further on to four, and

finally six spheres thus linked.

The branching of kinematical solutions can be understood intuitively from

the observation that the equation x1x2 = m with m �= 0 has a single connected

component as its solution when x1 and x2 are allowed to be complex; but

two essentially-disconnected components when m = 0. Applied to, e.g., the

equation α3α4 ∝ S1S2 in eq. (4.12), this insight leads us to expect a splitting

of one Riemann sphere into two as S1S2 → 0.7 This is indeed what happens,

as exemplified by the splitting of the sphere S1 in figure 4.5 into the spheres

S3 and S4 in figure 4.4(a) whose left-most pair of double-box vertices then

acquires chiralities. Taking the limit μ2 →m of figure 4.4(a), the middle pair

of vertices will acquire chiralities, splitting the spheres S2 and S4 into the

respective pairs (S1,S2) and (S3,S4) in figure 4.3. In contrast, the solutions

(S1,S3) in figure 4.4(a) admit only one chirality assignment to the middle

vertices, as dictated by the rules in Section 4.2.1, and are transformed into

the solutions (S5,S6) in figure 4.3. As the resulting six solutions shown

in figure 4.3 have chiralities assigned to all pairs of vertices, the splitting of

Riemann spheres terminates at this stage. A summary of the chiral branchings

described here is given in figure 4.8.

Figure 4.8. The chiral branchings described in the main text above. Daughter spheres

are drawn with the same (or similar) color as the mother spheres. The two Riemann

spheres on the left should be thought of as arising from a μ3 →m limit of the elliptic

curve in figure 4.7.

Let us also remark that by giving generic small masses to the internal lines

of the double-box integral with four lightlike external momenta, we expect

7We thank D. Kosower for this observation.
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that the six spheres that arose in the massless case are turned into a smooth

elliptic curve.

Finally, it should be mentioned that the algebraic problem of solving the on-

shell constraints (4.3)-(4.9) can be recast as a geometric problem in momen-

tum twistor space where it amounts to finding two lines which appropriately

intersect a set of lines encoding the external momenta. Besides geometric

elegance, this formulation has the conceptual advantage of being inherently

coordinate free. We refer to ref. [40] for the one-loop case, and to Section 4 of

Paper III for the two-loop case.

Maximal cuts versus integrated expressions
Widely propagated folklore holds that there should be a close connection be-

tween the maximal cut of a given integral and the analytic form of its integrated

expression. The appearance of an elliptic curve in case 4 provides closer ev-

idence of such a connection, as we will now argue. As shown in ref. [41],

eq. (8.1), the integral in figure 4.6 can be represented as a one-scale integral as

follows

I(2,2,1,2,2,1) =
∫ ∞

u

du′√
Q̃(u′)

× (Li3(· · ·)+ · · ·) (4.39)

where Q̃(u′) defines the same elliptic curve as Q(z) in eq. (4.38). It may be

shown that the sunrise integral with massive propagators admits a very simi-

lar integral representation, with the integrand of eq. (4.39) containing log(· · ·)
instead of Li3(· · ·) [42]. This integral was studied analytically in great de-

tail in refs. [43, 44] and references therein, and was found not to be express-

ible in terms of polylogarithms. Given the similarity with eq. (4.39), we thus

find it extremely unlikely that I(2,2,1,2,2,1) is expressible in terms of (multiple)

polylogarithms. Thus the topology of the Riemann surface parametrizing the

heptacut solutions appears to be reflected in the integrated expression.

Moreover, as argued in Appendix B of Paper III, such more general func-

tions must necessarily be present in the scattering amplitudes of N = 4 super

Yang-Mills theory. In this appendix it is shown that a particular two-loop

N3MHV amplitude for the scattering of 10 massless scalars is given by the

single integral I(2,2,1,2,2,1), thus ruling out any possible cancelations. This sug-

gests that the realm of N = 4 SYM extends beyond that of polylogarithms.

Another observation one can make along these lines is that two-loop in-

tegrands with associated T 8-contours, such as double boxes and double tri-

angles, contain transcendentality-4 functions in the finite (i.e., O(ε0)) part

of their integrated expressions. In contrast, the finite part of the bubble-box

contains only transcendentality-3 functions, consistent with the bubble-box

integrand having no associated T 8-contours.8

8We refer to eqs. (22)-(25) of ref. [45] for the analytical result for the scalar double box, and to

eq. (13) of ref. [46] for the analytical result for the double box with the (�1 + k4)2 numerator
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4.3 Uniqueness of two-loop master contours
Let us now recapitulate the situation from Chapter 3 where we used heptacuts

to determine the double-box coefficients of the massless four-point amplitude.

As illustrated in figure 3.4, the contours associated with the heptacut may

encircle 14 different leading singularities, in the notation of Chapter 3 denoted

as9

a1,i −→ encircling z = 0 for solution Si

a2,i −→ encircling z =−χ for solution Si (4.40)

a3, j −→ encircling z =−χ −1 for solution S j

where i = 1, . . . ,6, j = 5,6 and χ ≡ s14
s12

. Here, the 12 winding numbers a1,i
and a2,i are associated with Jacobian poles whereas the 2 winding numbers

a3,5 and a3,6 are associated with the poles ∞R in S5 and S6 in figure 4.3. The

consistency conditions on the maximal-cut contours that they must annihilate

any integrand that integrates to zero on RD ×RD were shown to translate into

the following linear constraints on the winding numbers,

a1,2+a1,5−a1,4−a1,6 = 0

a2,1+a2,2−a2,3−a2,4 = 0

a2,6−a1,1−a2,5+a1,3 = 0

a3,5−a3,6 = 0

a1,2+a1,5+a1,4+a1,6 = −a2,6+a1,1−a2,5+a1,3+a3,5+a3,6

a3,5+a3,6 = − 1
2 ∑6

j=1(a1, j −a2, j)+
3
2 ∑ j �=1,3 a1, j

(4.41)

where the first four followed from the vanishing integrations of integrands in-

volving Levi-Civita contractions of loop momenta and the last two followed

from integration-by-parts identities between tensor double-box integrals. Im-

posing these constraints on the winding numbers leaves 14− 6 = 8 free pa-

rameters in the contours.

Moreover, in the case of four massless external momenta, there turn out to

be exactly two linearly independent master integrals of the double-box topol-

ogy. The particular masters used in Chapter 3 have the maximal cuts

χs312I cut
1,1,0,1,1,0[1] =

6

∑
i=1

(a1,i −a2,i) (4.42)

2s212I cut
1,1,0,1,1,0[�1 · k4] = ∑

i�=1,3

a1,i (4.43)

insertion. Moreover, the double triangle was calculated in ref. [47], and the result given in

eqs. (23)-(24) (see figures 1, 2 and eq. (1) for an explanation of the notation). Finally, the

bubble-box was calculated in ref. [48], and the result is given in eqs. (3.13)-(3.15).
9Recall that in Chapter 3 we employed a rescaled version of the loop momentum parametriza-

tion (4.10)-(4.11) used here. As a result of the rescaling, all nonzero Jacobian poles are located

at z =−χ .
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where we remind the reader of the numerator insertion notation explained in

eq. (4.2). As we saw, it is possible to find contours (a1,i,a2,i,a3, j) satisfying

the constraint equations (4.41) with the additional property of setting the right

hand sides of eqs. (4.42) and (4.43) respectively equal to one and zero (or

vice versa). This is exemplified in eqs. (3.46)-(3.47), though we emphasize

that these are not the most general solutions. Such contours thus isolate the

contribution of a single master integral in the basis decomposition (3.2) and

are therefore referred to as master contours. With the 8 free parameters in

the contours that remained in the previous paragraph, we thus find a total of

8−2= 6 free parameters in the two-loop master contours.

This stands in contrast to the situation at one loop, reviewed in Section 2.3

where we found uniquely defined contours associated with the boxes and tri-

angles; formulas for the extraction of bubbles and tadpoles, similarly, do not

contain any ambiguity. From this point of view, the appearance of 6 uncon-

strained variables in the analogous two-loop master contours thus comes as

something of a surprise.

By considering figure 4.3, this phenomenon can now easily be explained: all

of the Jacobian poles belong to two Riemann spheres and so are counted twice

in the above counting (4.40). Due to this, a contour which encircles the z = 0

pole in S2 and in S5 with identical winding numbers in the two spheres, and

no other poles, is equivalent to a zero-cycle. The addition of such zero-cycles

defines an equivalence relation on the vector space spanned by the leading-

singularity contours: any two contours related by the addition of such zero-

cycles are equivalent.

This manifests itself as the invariance of the contour constraint equations

(4.41) under the translations10

(a2,1, a2,2) −→ (a2,1, a2,2) + (ξ1,−ξ1) (4.44)

(a1,2, a1,5) −→ (a1,2, a1,5) + (ξ2,−ξ2) (4.45)

(a2,5, a1,3) −→ (a2,5, a1,3) + (ξ3,ξ3) (4.46)

(a2,3, a2,4) −→ (a2,3, a2,4) + (ξ4,−ξ4) (4.47)

(a1,4, a1,6) −→ (a1,4, a1,6) + (ξ5,−ξ5) (4.48)

(a2,6, a1,1) −→ (a2,6, a1,1) + (ξ6,ξ6) , (4.49)

corresponding to the addition of a zero-cycle encircling each Jacobian pole

with the winding numbers (ξi,±ξi) ∈ Z×Z on the two Riemann spheres con-

taining the pole. These equivalence relations allow us to add to an arbitrary

10Please note that in this section, in order to make the connection with Chapter 3 as clear as

possible, we adopt the conventions of this reference on the orientations of contours encircling

poles in the various Riemann spheres and on the signs of the Jacobians. These conventions differ

from those used in Chapter 3, in particular, with respect to the minus signs described below

eq. (4.13). The pattern of relative signs between the zero-cycle winding numbers (ξi,±ξi) in

eqs. (4.44)-(4.49) owes to the omission of these minus signs in Chapter 3.
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contour, characterized by the winding numbers (a1,i,a2,i,a3, j), the zero-cycle

with (ξi) = (−a2,1,−a1,2,−a2,5,−a2,3,−a1,4,−a2,6) to obtain an equivalent

contour characterized by 8 independent parameters. This shows that the lead-

ing singularity contours are characterized by 8 rather than 14 winding num-

bers.

4.3.1 Invariant labeling of contours

To get around the redundancy built into the notation (4.40), we will from now

on adopt the following notation for the independent winding numbers

Ω = (ω1∩2, ω2∩5, ω5∩3, ω3∩4, ω4∩6, ω6∩1, ω5,∞R , ω6,∞R) . (4.50)

Here ωi∩ j denotes the winding around the intersection point of Si and S j of

a small circle supported in either of these spheres, with positive orientation in

Si or with negative orientation in S j. Analogously, ω j,∞R denotes the wind-

ing around the point ∞R in S j where the right loop momentum �2 becomes

infinite (see figure 4.3). Of course, we could trade some of the variables in

eq. (4.50) for winding numbers around the other infinity poles in figure 4.3,

but we find the above choice to be the most convenient. Also note that (4.50)

has the added advantage over the notation (4.40) of not making reference to a

particular parametrization of the Riemann spheres Si, hence the title of this

subsection.

The 8 winding numbers ωi in eq. (4.50) are equal to the following linear

combinations of the ai, j

Ω =
(
a2,1+a2,2, −a1,2−a1,5, a2,5−a1,3, a2,3+a2,4,

−a1,4−a1,6, a2,6−a1,1, a3,5, a3,6

)
. (4.51)

In analogy with the notation (4.50) for the winding numbers around the leading

singularities, let us introduce the following notation for the residues. The

residue at the intersection point of the spheres Si and S j, computed from

the viewpoint of sphere Si, will be labeled Resi∩ j. Alternatively, we could

consider the same residue, but computed from the viewpoint of S j. As noted

around eqs. (4.31)-(4.36), the result would be equal and opposite. Thus, we

can re-express these identities in a very compact form by declaring Resi∩ j to

be antisymmetric,

Resi∩ jΦ(z) =−Res j∩iΦ(z) . (4.52)

Here Φ denotes an arbitrary function of the loop momenta. The other residues

will be labeled Resi,∞L and Resi,∞R , according to either the left or right loop

momentum of the double-box graph approaching infinity. The identities (4.31)-

(4.36) are dual to the contour equivalence relations (4.44)-(4.49); an applica-

tion of them is given in Section 4.4.
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Re-expressing the contour constraint equations (4.41) in terms of the wind-

ing numbers (4.50)-(4.51), they are found to take the form

ω2∩5−ω4∩6 = 0

ω1∩2−ω3∩4 = 0

ω6∩1−ω5∩3 = 0

ω5,∞R −ω6,∞R = 0

ω2∩5+ω4∩6 = ω5∩3+ω6∩1−ω5,∞R −ω6,∞R

ω5,∞R +ω6,∞R = 1
2(ω1∩2+ω3∩4+ω5∩3+ω6∩1)−ω2∩5−ω4∩6

(4.53)

while the heptacut master double boxes used in Chapter 3 evaluate to

χs312I cut
1,1,0,1,1,0[1] = ω1∩2+ω2∩5+ω5∩3+ω3∩4+ω4∩6+ω6∩1 (4.54)

2s212I cut
1,1,0,1,1,0[�1 · k4] = ω2∩5+ω4∩6 . (4.55)

We observe that upon imposing the 6 constraint equations (4.53) on the 8

winding numbers ωi∩ j given in eq. (4.50), we are left with 2 unconstrained

parameters. This number of free parameters exactly equals the number of

master double-box integrals at four points. In other words, we observe that

in terms of the ω-variables, there is a unique master contour associated with

each of the master double-box integrals in eqs. (4.54)-(4.55). These contours

are respectively characterized by the winding numbers

Ω1 =
1

4
(1,0,1,1,0,1,1,1) and Ω2 =−1

4
(1,−2,1,1,−2,1,3,3) . (4.56)

More generally, as shown in Paper IV, any four-point double-box configuration

belonging to case 1 (referred to in Paper IV as class (c)), has 8 independent

leading-singularity winding numbers subject to 6 constraints. The number

of remaining free parameters is thus 8− 6 = 2, equal to the number of lin-

early independent master double boxes in this case. Moreover, any four-point

double-box configuration belonging to case 2 (referred to in Paper IV as class

(b)), has 8 independent leading-singularity winding numbers subject to 5 con-

straints. The number of remaining free parameters is thus 8− 5 = 3, equal

to the number of linearly independent master double boxes in this case. In

both these cases, the free parameters can be set to appropriate values, yielding

uniquely defined master contours associated with each double-box master in-

tegral. We refer to eq. (6.3) of Paper IV for the master contours in case 2; and

to eq. (6.5) for the master contours in case 1.

The observed uniqueness of master contours at two loops is in perfect anal-

ogy with the situation in one-loop generalized unitarity [17, 30] and constitutes

the main result of this chapter.

It is worth remarking that the Levi-Civita constraints in the top four equa-

tions in eq. (4.53) (expressing parity invariance of the master contours), can
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be rephrased geometrically as follows. Since parity-conjugate solutions ap-

pear antipodally in the chains of Riemann spheres in figures 4.3, 4.4, 4.5, par-

ity ⊕←→� has the effect of rotating these chains by 180◦. Parity invariance

is thus simply the statement that the master contours are invariant under such

rotations.

4.4 Residues of maximally cut amplitudes

As we have seen in Chapter 3, the residues of the heptacut two-loop amplitu-

de J(z)∏6
j=1 Atree

j (z)
∣∣∣
Si

at the Jacobian poles form the input out of which the

double-box coefficients of the amplitude are computed. An amusing appli-

cation of the identities (4.31)-(4.36) arises in the context of evaluating these

residues, relating them across different kinematical solutions. As a result,

these identities explain the vanishing of certain residues, as well as the seem-

ingly accidental equality between pairs of other residues. This in turn allows

one to cut the work of evaluating these residues in half.

As an example, let us consider the heptacut illustrated in figure 4.9 of the

two-loop amplitude A(2)(1−,2−,3+,4+,5+). The helicities assigned to the

internal and external states allow only gluons to propagate in the loops; this

in turn implies [36] that the results for the heptacut amplitude within N =
4,2,1,0 Yang-Mills theory are identical.

Figure 4.9. A heptacut of the two-loop amplitude A(2)(1−,2−,3+,4+,5+). The hepta-
cut two-loop amplitude J(z)∏6

j=1 Atree
j (z)

∣∣∣
Si

only receives nonvanishing contributions

from kinematical solutions consistent with the assigned internal helicities.

The heptacut J(z)∏6
j=1 Atree

j (z)
∣∣∣
Si

shown in figure 4.9 of this amplitude only

receives nonvanishing contributions from kinematical solutions consistent with

the internal helicites shown there – in particular kinematical solutions whose
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(3, p1, p2)-vertex is MHV. By inspection of figure 4.3 we thus see that

6

∏
j=1

Atree
j (z)

∣∣∣∣∣
Si

= 0 for i = 1,2,6 . (4.57)

For the heptacut amplitude evaluated at the remaining three kinematical solu-

tions, direct calculation reveals the residues at the Jacobian poles to be

1

iAtree−−+++

Res
z=(0,Q1)

J(z)
6

∏
j=1

Atree
j (z)

∣∣∣∣∣
S3

= (1, −1) (4.58)

1

iAtree−−+++

Res
z=(0,P1)

J(z)
6

∏
j=1

Atree
j (z)

∣∣∣∣∣
S4

= (0, 1) (4.59)

1

iAtree−−+++

Res
z=(0,P1)

J(z)
6

∏
j=1

Atree
j (z)

∣∣∣∣∣
S5

= (0, −1) . (4.60)

One observes that the residues at z = 0 in solutions S4 and S5 are vanishing.

This can now be easily explained by eqs. (4.35) and (4.32) as a consequence

of the vanishing (4.57) of the heptacut amplitude on solutions S6 and S2,

respectively. Moreover, eq. (4.34) relates the residues at the nonzero Jacobian

poles in S3 and S4; similarly, eq. (4.33) relates residues in S3 and S5. In

conclusion, the identities (4.31)-(4.36) allow us to cut the work of evaluating

the residues of the heptacut two-loop amplitude at the Jacobian poles in half.

4.5 The symbol of a transcendental function
In this section we provide a brief introduction to the so-called symbol of a tran-
scendental function, an object which, though only recently introduced in the

amplitude literature, has gained widespread use there—extending in particular

to Section 5.3 of this thesis.

The symbol made its first appearance in the amplitude literature in ref. [49]

where it was used to simplify a 17-page expression [50, 51] for the so-called

BDS remainder function [52], involving exotic (Goncharov) polylogarithms

to a four-line expression involving classical polylogarithms. The basic idea of

the symbol is to associate a tensor with a polylogarithm-type function; all the

complicated functional equations among polylogarithms are then translated

into algebraic relations in the tensor algebra.

As an example, let us consider the identity11

−Li2(z)− logz log(1− z) = Li2(1− z)− π2

6
. (4.61)

11This example is taken from a lecture by C. Duhr from the School of Analytic Computing in
Theoretical High-Energy Physics in Atrani, Italy during October 6-11, 2011.

93



To prove this identity, recall the definition of the dilogarithm as an iterated

integral,

Li2(z) =−
∫ z

0

dt
t
log(1− t) , (4.62)

or equivalently,

dLi2(z) =− log(1− z) d logz . (4.63)

The differential of the other function appearing in the identity (4.61) is

d
[
log(1− z) logz

]
= logz d log(1− z)+ log(1− z) d logz . (4.64)

Let us use these differentials as inspiration to define a linear map,

S (Li2(z)) = − [
(1− z)⊗ z

]
(4.65)

S (logz log(1− z)) = z⊗ (1− z)+(1− z)⊗ z , (4.66)

known as the symbol.
Applying the symbol map to the left hand side of eq. (4.61) yields

−S (Li2(z))−S (logz log(1− z)) = (1− z)⊗ z− [
z⊗ (1− z)+(1− z)⊗ z

]
=−[z⊗ (1− z)

]
(4.67)

= S (Li2(1− z)) , (4.68)

equal to the symbol of the right hand side of eq. (4.61), provided that

S (π2) = 0 . (4.69)

What we have shown is that the left and right hand sides of eq. (4.61) are equal,

up to addition of terms of the form π log(z) or π2 times rational functions of

z. These terms must then be determined by other means.

More generally, a function of transcendentality n is defined as one which

can be written as an n-fold iterated integral,

Tn =
∫ b

a
d logR1◦· · ·◦d logRn =

∫ b

a

(∫ t

a
d logR1 ◦ · · · ◦d logRn−1

)
d logRn(t) .

(4.70)

Such a function has the associated symbol

S (Tn) = R1⊗·· ·⊗Rn . (4.71)

For example, from this definition it immediately follows that the classical

polylogarithms, iteratively defined by

Lin(z) =
∫ z

0
Lin−1(t) d log t , Li1(z) =− log(1− z) , (4.72)

have the symbol

S (Lin(z)) =−(1− z)⊗ z⊗·· ·⊗ z︸ ︷︷ ︸
n−1 factors

. (4.73)

94



The symbol in eq. (4.73) can be understood concretely in terms of iterated

discontinuities as follows. The first entry from the left can be interpreted as

the discontinuity of Lik(z) across the branch cut 1 < z < ∞. The analytic

continuation of the resulting function Disc1<z<∞Lin(z) = 2πi
(n−1)!(log z)n−1 in

turn has a discontinuity across the branch cut −∞ < z < 0; this corresponds to

the second entry of eq. (4.73) (after multiplying this entry by −1, as allowed

by eq. (4.75)) etc. This interpretation can be made precise and extended to all

functions of the form (4.70) [53].

Moreover, the definition of the symbol in eqs. (4.70)-(4.71) immediately

implies the logarithmic behavior

R1⊗·· ·⊗ (RaRb)⊗·· ·⊗Rn = R1⊗·· ·⊗Ra ⊗·· ·⊗Rn

+R1⊗·· ·⊗Rb ⊗·· ·⊗Rn (4.74)

R1⊗·· ·⊗ cR j ⊗·· ·⊗Rn = R1⊗·· ·⊗R j ⊗·· ·⊗Rn , (4.75)

where c denotes an arbitrary constant and Ri arbitrary rational functions.

As an example of the use of the identities (4.74)-(4.75), let us consider the

identity

Li2(z2) = 2Li2(z)+2Li2(−z) . (4.76)

At the level of the symbol we have

S (Li2(z2)) =−[(1− z2)⊗ z2
]

(4.77)

=−2
[
(1− z)⊗ z+(1+ z)⊗ z

]
(4.78)

=−2
[
(1− z)⊗ z+(1− (−z))⊗ (−z)

]
(4.79)

= 2S (Li2(z))+2S (Li2(−z)) , (4.80)

which proves the identity (4.76), again up to addition of terms of the form

π log(z) or π2 times rational functions of z. The ambiguity of lower transcen-

dental functions (times appropriate factors of πk or ζ (k)) is an inherent feature

of the symbol map: when applied to a functional equation, the symbol only

retains information about the leading transcendental part.
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5. A basis of IR-finite integrals?

A central question in generalized-unitarity calculations concerns the choice

of basis integrals in which amplitudes are expanded. Currently, methods are

available to generate integration-by-parts identities [32, 54] at two loops, ex-

amples of which were used in Chapter 3. Such identities allow one to reduce

any set of tensor integrals produced by the Feynman rules to a basis of one’s

choosing. However, it remains an open problem to single out one particu-

larly compelling choice of two-loop basis which is universally applicable to

all gauge theories, in particular QCD.

To guide one’s search, reasonable questions to ask are: which features are

desirable for the basis integrals to possess? Insisting on such features to

be present, is there some systematic way of generating the appropriate inte-

grands? And assuming such integrands can be formed, can the integrals be

evaluated in practice?

In this chapter we identify a class of basis integrals which are likely to

simplify unitarity calculations substantially at two loops, and moreover ana-

lytically evaluate two such integrals at four points. We remark that the presen-

tation in Sections 5.1-5.2 is essentially that of Section 5.2 in Paper III, adding

here a few comments. Section 5.3 gives an overview of the analytical evalua-

tion in Section 6 of Paper III, skipping the technical details.

5.1 Motivation

As indicated in the basis decomposition of two-loop amplitudes in eq. (3.2),

the integral coefficients are functions of the dimensional regulator ε . But in

contrast to the situation at one loop, the O(ε) contributions to the coefficients

cannot be re-expressed as rational contributions to the amplitude, and these

corrections therefore form an inevitable part of the two-loop integral coef-

ficients. The physical significance of these O(ε) contributions lies in the

fact that in the basis expansion of the two-loop amplitude, they will multi-

ply 1
εk singularities in the integrated expressions for the two-loop integrals,

thus producing finite contributions to the amplitude. Their extraction there-

fore poses an important problem. But unfortunately, as we explained in Chap-

ter 3, the O(ε) parts of two-loop integral coefficients are not obtainable from

four-dimensional cuts. Instead, they must be computed by evaluating cuts in

D = 4−2ε dimensions, something which is technically much more involved.
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Ideally, one would like to circumvent the need for taking cuts in D = 4−2ε
dimensions, or at least limit such computations as much as possible. One

way to achieve this would be to expand the two-loop amplitude in a basis

that contains as many infrared-finite integrals as possible. Indeed, although

the expansion coefficients may still depend on ε , the physically relevant part

of the coefficients multiplying IR-finite integrals is purely O(ε0) and may

thus be obtained from strictly four-dimensional cuts. Of course, as two-loop

amplitudes do have IR divergences of their own (as they necessarily must,

to cancel the IR divergences of tree and one-loop amplitudes in the cross-

section [55, 56]), any basis of integrals must contain IR-divergent integrals1.

Nonetheless, it is plausible that by using a basis with a minimal number of

IR-divergent integrals one can minimize the work of extracting the physically

relevant part of the basis integral coefficients. Focusing our attention to the

double-box contributions to two-loop amplitudes, we thus turn to the question:

can one find two linearly independent infrared-finite integrals with the double-

box topology?

5.2 Chiral integrals
A class of integrals with the property of infrared finiteness was introduced

in ref. [6] where they were used to express the integrand of N = 4 super

Yang-Mills amplitudes in a strikingly simple form. Here, we wish to investi-

gate whether these so-called chiral numerator integrals can be used as master

integrals for two-loop amplitudes in any gauge theory.

For four lightlike external momenta there are, up to parity conjugation, two

distinct chiral numerator integrals, which we can define as2

I++ ≡ I1,1,0,1,1,0
[
[1|/�1|2〉〈3|/�2|4]

] × [2 3]〈1 4〉 (5.1)

I+− ≡ I1,1,0,1,1,0
[
[1|/�1|2〉〈4|/�2|3]

] × [2 4]〈1 3〉 (5.2)

where we remind the reader of the numerator insertion notation explained in

eq. (4.2). Similar definitions can be given for an arbitrary number of external

legs, replacing the spinors [i| or 〈i| by their flattened counterparts [K�
i | or 〈K�

i |.
This definition has a straightforward physical motivation: the infrared di-

vergences of the massless double-box integral arise from the regions of the

1Unless we are prepared to accept integral coefficients with 1
εk singularities – which we are not.

2We stress that the chiral numerator integrals considered here are not exactly chiral in the sense

of ref. [6], in which the general notion of a chiral integral was formulated in terms of the

analytic structure of its integrand. There, chiral integrals were defined as integrals which have

at most simple-pole singularities on each leading-singularity contour, and whose residues are all

equal to either zero, or plus or minus one. In general, such integrals may differ from the chiral

numerator integrals I+± considered here by the addition of integrals with fewer internal lines,

such as triangle-boxes or double-triangles. Since we are not concerned with the latter integrals

in this thesis, this distinction will not be of relevance here, however.
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loop momentum integrations where a loop momentum is becoming collinear

with a massless external leg, �1‖k1,2 or �2‖k3,4. However, in these regions, the

numerator insertions [1|/�1|2〉 etc. approach zero, thereby rendering the inte-

gral IR finite. This observation suggests a general strategy for constructing

IR-finite integrals: identify IR-dangerous regions of the scalar integral, and

construct appropriate numerator insertions that vanish in these regions.

In the notation of eq. (4.50), the maximal cuts of the above integrals take

the form

I++
cut = ω6,∞R (5.3)

I+−cut = ω1∩2 , (5.4)

receiving contributions from a remarkably small number of leading singular-

ities. The vanishing of a large number of leading-singularity residues reflects

the absence of infrared singularities in the uncut integrals, as observed in Sec-

tion 4.2.1. Here, we could of course also have chosen to consider the integrals

I−− and I−+ whose numerator insertions are obtained by parity conjugation

〈·| · |·]←→ [·| · |·〉 of eqs. (5.1)-(5.2). However, on the solution of the first four

constraint equations of (4.53) (which express parity invariance of the con-

tours), one finds that the maximal cuts of parity-conjugate integrals are equal.

The largest potentially linearly independent set of chiral double boxes there-

fore consists, at four points, of two integrals which we choose as those given

in eqs. (5.1)-(5.2).

Considering these two integrals, let us now ask: are they linearly indepen-

dent as master integrals? Equivalently, can one find two distinct contours,

satisfying the constraint equations (4.53), each with the property of yielding a

nonvanishing maximal cut for precisely one of these integrals?

Remarkably, such master contours do exist: the contours which extract the

coefficient of I++ and I+− are, respectively,

Ω++ = (0,−1,0,0,−1,0,1,1) and Ω+− = (1,1,1,1,1,1,0,0) . (5.5)

Thus the integrals I++ and I+− are linearly independent and may be used as

master integrals for the double-box contributions to two-loop amplitudes in

any gauge theory. Incidentally, as a bonus, the contours in eq. (5.5) take a

somewhat simpler form than those in eq. (4.56) whose winding numbers dis-

play no easily discernible pattern.

The choice of using the chiral numerator integrals as master integrals provides

a substantial simplification over other choices (such as that of eqs. (4.54)-

(4.55)), as their infrared finiteness allows their expansion coefficients in the

two-loop amplitude to be obtained from strictly four-dimensional cuts. But

one might worry that the technical difficulty is simply shifted elsewhere, in

particular to the analytical evaluation of these integrals. To counter this con-

cern, we present in the next section a detailed analytical evaluation of these

integrals and moreover find the result to take a remarkably compact form.
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5.3 Analytical evaluation of chiral double boxes

In the previous section we found that the chiral numerator integrals in eqs. (5.1)-

(5.2) form a basis of the master integrals with the double-box topology.

In this section we turn to the question of evaluating these integrals ana-

lytically. We will focus our attention on obtaining analytical expressions in

the special case of four lightlike external momenta, but we are hopeful that

many of the ideas presented here will prove applicable for higher numbers of

external legs as well. Our aim in this section is to give an overview of the

calculation. We refer to Section 6 of Paper III for more details.

Let us start by observing that as a result of the infrared (and also UV)

finiteness of our integrals, they can be evaluated in strictly four dimensions,

with no need for regularization. Our starting point is the standard Feynman

parametrization formula in terms of which our integrals may be written3

I++ =−χ2

(
1+(1+χ)

∂
∂ χ

)
I1(χ) and

I+− =−(1+χ)2
(
1+χ

∂
∂ χ

)
I1(χ) . (5.6)

with

I1(χ)=
∫ d3a d3b dc c δ

(
1− c−∑i ai −∑i bi

)(
∑i ai ∑i bi + c

(
∑i ai +∑i bi

))−1

(
a1a3

(
c+∑i bi

)
+(a1b4+a3b6+a2b5χ)c+b4b6

(
c+∑i ai

))2

(5.7)

where the integration range of variables ai,bi,c is the real interval [0,1] and
where we re-introduce the notation χ ≡ t

s ≡ s14
s12

from Chapter 3.

The second step of the calculation is to derive an equivalent form of eq. (5.7)

where such high powers of the integration variables do not occur within the

denominator. Here, we were inspired by recent work [41] on Mellin space

transforms, but the representation of I1(χ) below can be obtained without ref-

erence to Mellin space. Rather, we only used a series of simple, if rather

non-obvious, changes of variables4. One finds

I1(χ) = 6

∫ ∞

1
dc

∫ ∞

0

d7(a1a2a3aI b1b2b3bI )

vol(GL(1))

1

(cA2+A.B+B2)4
(5.8)

where A2 ≡ a1a3+aI (a1+a2+a3), A.B≡ b1b3+aI (b1+b2+b3)+bI (a1+
a2+a3)+a2b2χ and B2 ≡ b1b3+bI (b1+b2+b3). The “1/vol(GL(1))” no-

tation is an instruction to set any one of the variables a1, . . . ,bI equal to 1

3In this chapter, we use the normalization I[· · · ]≡ ∫ d4�1d4�2 (···)
(iπD/2)2(inverse propagators)

.

4Incidentally, these changes of variables, when applied to the double-box integral considered in

eq. (8.1) of ref. [41], reproduces that formula exactly, giving an elementary derivation of it.
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and integrate over the seven remaining ones; this is also why we wrote “d7”

instead of “d8”. As the notation suggests, the result does not depend on which

variable is set to 1, due to the scaling (“GL(1)”) symmetry of the integrand.

In principle, the third step of the calculation is now to integrate out the vari-

ables in eq. (5.8) one at the time. In reality, this would produce extremely

lengthy expressions involving polylogarithms. However, due to the many

functional identities between polylogarithms, such expressions can typically

be simplified. As we discussed in Section 4.5, this is achieved very efficiently

by working at the level of the symbol. Integrating out the variables in eq. (5.8)

one at the time at the level of the symbol, we are left with the following symbol

S [I1(χ)] =
2

χ
[χ ⊗χ ⊗ (1+χ)⊗ (1+χ)]− 2

1+χ
[χ ⊗χ ⊗ (1+χ)⊗χ] .

(5.9)

Let us note that in attempting to integrate out the variables in eq. (5.8) one at

the time, one observes that I1(χ) has uniform transcendentality degree 4.

The fourth step of the calculation is now to “integrate” the symbol; that is,

to find an appropriate transcendental function with the symbol (5.9). In order

to arrive at an unambiguous answer we need to impose a number of constraints

on the final result for I1(χ). They take the following form.

1. The fact that I1(χ) has the uniform transcendentality degree 4, as ex-

plained above.

2. The physical requirement that, on all physical sheets (which can be ei-

ther −1< χ < 0, −∞ < χ <−1 or 0< χ < ∞, depending on the chan-

nel under consideration), the integral is analytic around χ =−1. This is

because our integral, being planar, has a vanishing unitarity cut in the u-
channel and hence, by the Cutkosky rules5, cannot have a discontinuity

in the u-channel.

3. The asymptotics (“Regge limit”)

I1(χ)→ π2

6
log2 χ +

(
4ζ (3)− π2

3

)
logχ +O(1) as χ → 0 and

I1(χ)→ 6ζ (3)
logχ

χ
+O(χ−1) as χ → ∞ (5.10)

which is obtained directly from eq. (5.8). For instance, the double loga-

rithm originates from the region where 1 � a1 ∼ b1 � a2 � 1/χ (and

other variables∼ 1). The subleading logarithm originates from the bound-

aries of that region — explicitly, the three regions 1 ∼ a1 � a2 � 1/χ ,

1 � a1 ∼ a2 � 1/χ and 1 � a1 � a2 ∼ 1/χ . The χ → ∞ logarithm

originates from the a2 → 0 region where the other variables are ∼ 1.

5See Theorem 1 in Section 2.1.2.
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As it turns out, knowing only the symbol (5.9) and imposing these three con-

straints, it is possible to reconstruct the function I1(χ) uniquely. The result

can be conveniently expressed in terms of the harmonic polylogarithms [57]

H−1,−1,0,0(x)≡
∫ x

0

dt
t +1

H−1,0,0(t) and H0,−1,0,0(x)≡
∫ x

0

dt
t

H−1,0,0(t) ,

(5.11)

with

H−1,0,0(x)≡ 1

2

∫ x

0

dt
t +1

log2 t =−Li3(−x)+ logxLi2(−x)+
1

2
log2 x log(1+x) .

(5.12)

Plugging the result for I1(χ) into eq. (5.6), we then obtain the following com-

plete results for the chiral numerator integrals I++ and I+− in eqs. (5.1)-(5.2):

I++(χ) = 2H−1,−1,0,0(χ)− π2

3
Li2(−χ)

+

(
π2

2
log(1+χ)− π2

3
logχ +2ζ (3)

)
log(1+χ)− 6χζ (3) , (5.13)

I+−(χ) = 2H0,−1,0,0(χ)−π2Li2(−χ)− π2

6
log2 χ −4ζ (3) logχ

− π4

10
−6(1+χ)ζ (3) . (5.14)

These formulas are such that, with the standard branch choice for the poly-

logarithms, the result is real in the Euclidean region χ > 0. Also, we refer to

the footnote below eq. (5.8) for an explanation of our conventions. If desired,

these results could be rewritten in terms of classical polylogarithms such as

Li4, but we have not found such rewritings particularly illuminating.

Equations (5.13)-(5.14) contain ζ (3) terms which violate the uniform tran-

scendentality degree of the other terms, which may be surprising at first sight.

We tentatively attribute this to double-triangle integrals present in the differ-

ence between our I+± and the “true” chiral integrals, as discussed in the foot-

note below eqs. (5.1)-(5.2). It would be interesting to evaluate the difference

explicitly and see if the ζ (3)-terms disappear.

As we were hoping, we have found that the chiral numerator integrals I+±
admit rather compact analytical expressions. We invite the reader to compare

our results against earlier results in the literature for double-box integrals. We

refer to eqs. (22)-(25) of ref. [45] for the analytical result for the scalar double

box, and to eq. (13) of ref. [46] for the analytical result for the double box with

the (�1+ k4)2 numerator insertion.
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6. Loop-level recursion: a numerical check

In this final chapter we turn to two-loop calculations beyond four points. This

chapter is intended to provide an overview of Paper II, and we refer to the

original paper for further technical details.

Paper II stands somewhat apart in method and purpose from the other pa-

pers reviewed in this thesis. It serves to provide a check on a recently devel-

oped BCFW-like recursion relation [5, 6] for the (four-dimensional) integrand

of N = 4 supersymmetric Yang-Mills theory. Specifically, this paper provides

a comparison of the prediction for the two-loop six-gluon maximally helicity

violating (MHV) integrand against the result obtained by use of the leading-

singularity method. This comparison was performed numerically, for a large

number of randomly selected momenta.

The focus of this chapter will be on the use of the leading-singularity ap-

proach to obtain the two-loop integrand. In particular to explain how, given a

set of randomly generated momenta, the integrand may be evaluated numeri-

cally.

6.1 Heptacut constructibility

In our attempt to construct the complete two-loop six-gluon MHV amplitude

we are faced with two limitations. One is that the integration-by-parts (IBP)

identities that were used in Chapter 3 to determine maximal-cut contours are

not fully known at six points. The other is that a two-loop formalism along

the lines of Paper I has not yet been developed to treat integrals with less than

seven propagators.

The way around both of these obstacles is to expand the two-loop amplitude

in an appropriate set of integrals that reflect the loop-momentum power count-

ing of N = 4 SYM. For the latter we choose the integral basis of ref. [21], il-

lustrated for convenience in figure 6.1 below. The use of the word “basis” here

is somewhat misleading, and stands in contrast to its use in the previous chap-

ter, as there are linear relations between the integrals in figure 6.1. Moreover,

integrals containing subloops with less than four propagators (which would

be needed to express lower-supersymmetric and QCD amplitudes) are absent.

Nonetheless, for brevity, we will stick to this abuse of terminology in this

chapter.
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Thus, we expand the two-loop six-gluon MHV amplitude in the basis in

figure 6.1,

M(2)
6,MHV =

A(2)
6,MHV

Atree
6,MHV

=
1

4
∑

i=1,...,24
j=1,...,12

rici,σ j Ii,σ j (6.1)

where for convenience we normalized by the corresponding tree-level ampli-

tude. The dihedral permutations σ j were listed in eq. (A.37), and the symmetry

factors ri of the integrals can be read off from figure 6.1.

Figure 6.1. The (overcomplete) integral basis in terms of which the two-loop six-gluon

amplitude is expressed. The integrals shown here are recorded in the σ1 permutation

where the external momenta are labeled clockwise starting with k1 at the position of

the arrow. The dotted lines appearing, for example, in I8,σ1
denote numerator inser-

tions of loop momenta, specified more explicitly in figure 6.2.

Let us now turn to the two issues raised above. The absence of integrals con-

taining subloops with less than four propagators in the two-loop amplitude can

be understood as follows: such integrals admit two-particle cuts that factor out

a subtriangle or sub-bubble. Thus, a nonzero coefficient in the decomposition

of the two-loop amplitude would require a nonzero coefficient of these tri-

angles and bubbles in the one-loop amplitude isolated by the cut. However,

one-loop amplitudes in N = 4 SYM only have box contributions, owing to

supersymmetric cancelations. This strongly suggests (but does not rigorously

prove) that subtriangle and sub-bubble integrals would appear with zero coef-

ficient if included in the two-loop basis expansion.

Throughout this chapter we will make use of heptacut contours that are not

constrained by IBP identities. The fact that this does not produce spurious

terms here, unlike in Chapter 3, can be traced back to the loop-momentum
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power counting of N = 4 amplitudes. As we argued above, supersymmetric

cancelations enforce vanishing coefficients of integrals with less than seven

propagators. In fact, even more is true: only the integrals shown in figure 6.1

survive the cancelations.

The fact that, for example, there are no further integrals of the topology of

I19,σ1
and I8,σ1

can be shown by setting any seven of their propagators on-shell

in eq. (6.1). Partial fractioning the integrand ∏6
j=1 Atree

j (z) of the resulting left

hand side then reveals terms of the same form as the heptacuts of I19,σ1
and

I8,σ1
, but none sharing this topology and containing, e.g., higher powers of

loop momenta in the numerator.

In contrast, the sum of Feynman diagrams (after cancelations) of lower su-

persymmetric or QCD amplitudes would contain the integrals I19,σ1
and I8,σ1

,

and in addition integrals of this topology with numerator insertions quadratic

(or higher) in the loop momenta. To express these amplitudes in terms of the

basis in figure 6.1, IBP identities would be needed to reduce higher numerator

powers to the scalar and linear powers of I19,σ1
and I8,σ1

. However, the inte-

grands before and after reduction are only equal up to terms which integrate

to zero on RD ×RD; as discussed in Chapter 3, such terms do not necessarily

integrate to zero on the T 8-tori defining the heptacut contours. Thus, in the

case of N < 4 SYM, avoiding spurious terms requires heptacut contours that

respect IBP identities. On the other hand, for N = 4 SYM, as IBP reductions

are never used, we are not obliged to have the heptacut contours respect them.

To summarize what has been said so far, the loop-momentum power counting

ofN = 4 SYM essentially guarantees that the two-loop six-gluon amplitude is

contructible entirely by heptacuts. Moreover, when the amplitude is expanded

in the basis in figure 6.1, the heptacut contours need not be constrained by IBP

relations. This, then, will be our approach to compute the two-loop amplitude.

The use of the basis in figure 6.1 comes at a price, though. As our goal is

to compare our result to that of Arkani-Hamed et al. in refs. [5, 6]—which is

expressed in terms of a different integral basis—it is not meaningful to check

agreement between individual integral coefficients in the two representations.

A quantity that can be meaningfully compared is the two-loop integrand:

in general, in the planar limit of any field theory, the loop integrand is a well-

defined rational function of the external momenta (which for example can be

thought of as being produced by the Feynman rules). In our case, the two-loop

integrand is the quantity under the integral sign in eq. (6.1), obtained as the

sum of the integrands of the 24 basis integrals Ii,σ j , weighted by the integral

coefficients ci,σ j and symmetry factors ri, where the summation is taken over

all dihedral permutations σ j of the external momentum labels. Agreement

between the two-loop integrand as computed by either method would imply

agreement between the integrated expressions; that is, the results for the ampli-
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tude.1 Accordingly, the following two sections will be devoted to explaining

how, given a set of randomly generated momenta, the two-loop integrand may

be evaluated numerically. In Section 6.2 we show how the integral coefficients

ci,σ j in eq. (6.1) are computed and proceed in Section 6.3 to discuss how the

integrands of the basis integrals Ii,σ j are added in a meaningful way to produce

the integrand of eq. (6.1).

6.2 Determining integral coefficients

In this section we show how the integral coefficients in eq. (6.1) are determi-

ned. As the heptacut contours used to compute them are not constrained

by IBP relations, the approach followed in Paper II is essentially that of the

leading-singularity method rather than that of Paper I. The results of Paper II

thus have some overlap with ref. [21], but differ in that the entire two-loop six-

gluon MHV integrand, rather than only the parity-even2 part, is constructed.

6.2.1 Example: integral coefficients from leading singularities

As an example, let us apply to eq. (6.1) the heptacut illustrated in figure 6.2.

Figure 6.2. The result of applying a particular heptacut to the right hand side of

eq. (6.1). The cut propagators are illustrated by the inclusion of an additional orthogo-

nal line. This heptacut isolates the contribution of a unique double-box integral (I2,σ1
),

but also receives contributions from the pentagon-box integrals shown here.

1More accurately, the object we are comparing is the strictly four-dimensional part of the in-

tegrand. Indeed, cf. Section 6.2.2, the μ-integrals I14,σ j , I15,σ j give rise to contributions to the

integrand which are O(ε) in the dimensional regulator and hence not obtainable from evaluat-

ing leading singularities in strictly four dimensions. Thus, our findings of agreement between

the integrands should be interpreted as a statement concerning the O(ε0) part exclusively.
2The integrand of the normalized two-loop amplitude in eq. (6.1) can be canonically split into

two terms, respectively even and odd under parity 〈a b〉 ←→ [a b].
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This turns eq. (6.1) into an equation involving contour integrals in the com-

plex plane,

i
Atree
MHV

6

∑
i=1

∮
Γi

dzJi(z)
6

∏
j=1

Atree
j (z)

∣∣∣∣∣
Si

=
1

4

6

∑
i=1

∮
Γi

dzJi(z)Ki(z) . (6.2)

The subscript
( · · ·)∣∣

Si
refers to the six kinematical solutions (essentially il-

lustrated in figure 3.3) of the joint on-shell constraints, and Γi denote con-

tours contained in the associated Riemann spheres. The further details of this

equation are not necessary for understanding the basic idea of the leading-

singularity method and are suppressed here.3

The integral coefficients to be determined (in this heptacut, c2,σ1
,c22,σ1

,
c19,σ1

,c18,σ1
,c8,σ1

) are contained implicitly in the kernels Ki(z). These are

functions with poles (specific to the various pentagon-boxes in figure 6.2) at

various values of z where the uncut propagators become on-shell. In addition,

the Jacobians Ji(z) contain poles common to the double box and the pentagon-

boxes. The idea of the leading-singularity method is that by making various

choices of the contours Γi, eq. (6.2) produces a system of linear equations

which can be solved to obtain the integral coefficients.

For example, we can consider the contour Γi = δi,5Cε(P1) which encircles

the nonzero Jacobian pole in solution S5, and no other poles in the remaining

Riemann spheres. With this choice of Γi, eq. (6.2) reduces to

1

4

(
c2,σ1

− 1

2

c22,σ1

〈K�−
2 |/k12|K�−

1 〉(P1−P2)
− 1

2

c19,σ1

〈K�−
2 |/k1|K�−

1 〉(P1−P3)

)
= −2γ1γ2P1〈K�−

2 |/K5|K�−
1 〉 . (6.3)

Similar equations may be obtained from eq. (6.2) by making various choices of

contours. Solving the resulting system of linear equations (and imposing the

“gauge fixing” in eq. (6.4), as explained in the next subsection) then produces

unique answers for the integral coefficients.

6.2.2 Overcompleteness and μ-integrals

In attempting to obtain the integral coefficients ci,σ j in eq. (6.1) from gen-

eralized four-dimensional cuts, one encounters two technical issues. The first

point is that the basis in figure 6.1 is overcomplete, and the integral coefficients

are therefore not uniquely defined. This feature will manifest itself as the ap-

pearance of free parameters in the solutions of the linear equations satisfied by

the integral coefficients. This in turn means that one has to set a subset of the

3Nonetheless, we refer the curious reader to eqs. (4.7), (4.26) and (4.19)-(4.24) in Paper II for

the precise form of the Jacobians Ji(z), the cut amplitude ∏6
j=1 Atree

j (z) and the kernels Ki(z).
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integral coefficients equal to specific values in order to obtain unique solutions

for the remaining coefficients. The non-uniqueness of the integral coefficients

is accounted for by the existence of various linear relations between the inte-

grals in figure 6.1, as was explained carefully in ref. [21]. In order to obtain

unique answers for all integral coefficients, we make the following “gauge

choices”: we set

c11,σ j = sσ j(61)sσ j(12)sσ j(123)

c12,σ j = sσ j(456)(sσ j(345)sσ j(456)− sσ j(12)sσ j(45))

c24,σ j = 0

⎫⎬⎭ for j = 1, . . . ,12

(6.4)

whereby codd11,σ j
= codd12,σ j

= codd24,σ j
= 0. We then find unique results for the re-

maining coefficients with the property that Re ci,σ j = ceveni,σ j
.

The second point is that the coefficients of the μ-integrals I14,σ1
and I15,σ1

(thus called because their integrands contain factors involving the (−2ε)-
dimensional part of the loop momenta) are of O(ε) in the dimensional reg-

ulator and hence are not obtainable from four-dimensional cuts, as discussed

in Section 3.3. As we restrict ourselves to taking four-dimensional generalized

cuts here, we shall therefore not be concerned with these integral coefficients.

6.3 Assembling the integrand
Having explained in the previous section how the integral coefficients of eq. (6.1)

are obtained, we proceed in this section to discuss how the integrands of the

basis integrals Ii,σ j are added in a meaningful way to produce the integrand of

eq. (6.1).

Expressed as functions of internal and external momenta, the integrands of

the basis integrals cannot be added in any meaningful way as the value of any

term would depend on the labeling of the internal lines of the corresponding

graph (i.e., which propagators are labeled �1 and �2). To remedy this, the

integrand must be expressed in terms of dual x-space coordinates, defined by

xi − xi+1 = ki i = 1, . . . ,6 (mod 6)

xσ j(1)− x7 = �1
xσ j(1)− x8 = −�2

}
j = 1, . . . ,6

xσ j(6)− x7 = −�1
xσ j(6)− x8 = �2

}
j = 7, . . . ,12

xi j ≡ xi − x j i, j = 1, . . . ,8 ,

(6.5)

with the additional requirement that, for any given graph, �1 and �2 be offset by
appropriate translations by external momenta so that all propagators take the

form 1/x2i j. Finally, the integrand must be symmetrized in x7 and x8. Namely,

any assignment of these points to a given graph will fail to be invariant under
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vertical reflections of the graph; to ensure that the value of the integrand is not

dependent on how its contributing graphs happen to be drawn, one must there-

fore average over the two possible assignments of these points. The integrands

of the basis integrals in figure 6.1 are presented in Section A.1 of Paper II.

In summary, given a set of random internal and external momenta, the evalua-

tion of the integrand of eq. (6.1) proceeds in three steps. First, the integral co-

efficients are obtained by solving the linear equations that follow from taking

the leading singularities of eq. (6.1). Second, the integrands of the basis inte-

grals are computed after converting the momenta into the dual x-space (which

is achieved by solving eq. (6.5) and choosing, e.g., the base point x6 = 0).

Finally, the intermediate results are combined, weighting the contributions by

the appropriate symmetry factors ri of the integrals. This is essentially the

procedure followed by the code [58] which is available online. As a simple

consistency check of the code, we remark that the results produced for the

integrand indeed satisfy crossing symmetry; that is,

integrand of M(2)
6,MHV(x1, . . . ,x6) = integrand of M(2)

6,MHV(xσ j(1), . . . ,xσ j(6))

for σ j ∈ D6 . (6.6)

We have evaluated the two-loop six-gluon MHV integrand for a large number

of randomly selected rational momenta4 and in all cases find agreement with

[5, 6] to high numerical accuracy [59]. In Table 1 below we have provided a

few sample points to allow the curious reader to reproduce our results. Further

data points can be generated by the Mathematica notebook [58] available on-

line.

Finally, one may observe that the assumption that the two-loop amplitude

is MHV is only used when evaluating the heptacuts of the left hand side of

eq. (6.1). The form of the heptacuts of the right hand side of eq. (6.1) is in-

dependent of the external helicities, and the results of Paper II can therefore

straightforwardly be extended to obtain the NMHV integrand as well.

4To generate n rational momenta which are lightlike in (+,−,−,−) signature, the first n− 2

can be chosen as arbitrary Pythagorean quadruples (for example, generated by using the

parametrization (m2
3 + m2

1 + m2
2,m

2
3 − m2

1 − m2
2,2m1m3,2m2m3) with mi ∈ Z) normalized by

their ‖ · ‖1-norm. To ensure that the n-th momentum will be lightlike and satisfy momentum

conservation, the (n− 1)-th momentum is obtained by generating an additional Pythagorean

quadruple ξ of unit ‖ · ‖1-norm and then rescaling it by the constant α = − (∑n−2
i=1 ki)

2

2ξ μ ∑n−2
i=1 kμi

∈ Q

whereby kn =−
(

∑n−2
i=1 ki +αξ

)
is lightlike and rational.
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(x1, . . . ,x6) (x7,x8) integrand of M(2)
6,MHV((−1

2 ,
1
2 ,0,0

)
,(−11

12 ,
1
6 ,

1
4 ,0

)
,(−4

3 ,
5
12 ,

7
12 ,0

)
,

((
1
4 ,

1
4 ,2,1

)
,(−7

4 ,
29
36 ,

13
18 ,− 1

18

)
, (0,0,2,0)

)
−31 230 748 253

22 094 130 240 − 994 276 085
981 961 344 i(−23

18 ,
35
54 ,

28
27 ,−10

27

)
,

(0,0,0,0)
)

((
3
8 ,

7
24 ,

1
6 ,−1

6

)
,(

7
8 ,− 5

24 ,
1
6 ,−1

6

)
,(

157
120 ,−3

8 ,− 7
30 ,−1

6

)
,

((
1, 13 ,0,2

)
,(

69
40 ,−1

8 ,−17
30 ,−1

6

)
, (0,0,1,1)

)
4 777 009 838 357

201 230 662 913 280 +
1 802 603 853 899

259 652 468 275 200 i(
73
90 ,

5
54 ,− 53

135 ,
19
27

)
,

(0,0,0,0)
)

((
5
12 ,

1
3 ,0,

1
4

)
,(

79
96 ,− 1

24 ,
1
8 ,

5
32

)
,(

59
48 ,−1

6 ,
7
32 ,− 7

32

)
,

((
1
2 ,

1
3 ,

1
3 ,0

)
,(

157
96 ,−13

24 ,
1
8 ,− 3

32

)
,

(
1
2 ,0,0,0

))
3 393 545 258 977 272

16 669 297 265 − 43 045 877 862 533 664
183 362 269 915 i(

125
224 ,

15
28 ,

1
8 ,− 3

32

)
,

(0,0,0,0)
)

Table 1: Values of the two-loop six-gluon MHV integrand (normalized with

respect to the tree-level amplitude) at three randomly chosen sets of points

(x1, . . . ,x6) and (x7,x8) in dual x-space, respectively encoding external and

internal momenta as prescribed by eq. (6.5). The parity-even and odd parts

of the integrand of M(2)
6,MHV respectively coincide with its real and imaginary

parts. Further data points can be generated by the Mathematica notebook

[58] available online.
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7. Conclusions and outlook

In the papers I-IV reviewed in this thesis we have taken the first steps in devel-

oping a new method for computing two-loop amplitudes, based on generalized

unitarity. The method does not rely on any assumptions such as supersymme-

try and is therefore expected to be applicable to all gauge theories, in particular

to QCD.

To put this two-loop method in proper context, let us first recapitulate our

review of one-loop unitarity in Chapter 2. The starting point of calculations

of one-loop amplitudes within the unitarity framework is to expand the ampli-

tude as a linear combination in a basis of one-loop integrals (illustrated in fig-

ure 2.4). The process dependence thereby resides in the integral coefficients,

and the goal of the calculation is to express these coefficients as functions of

the momenta of the scattering particles. The determination of the coefficients

is done by applying to both sides of the basis decomposition of the amplitude

a number of so-called cuts. In the basic variant of unitarity, cuts are defined as

replacing a pair of propagators by delta functions, thereby (by the Cutkosky

rules) computing the branch cut discontinuities across the various kinematic

channels. The amplitude, defined by its Feynman diagram expansion, is then

turned into a product of tree-level amplitudes (again, by the Cutkosky rules),

enabling the computation of one-loop amplitudes from tree-level data. In prac-

tice, however, these cuts are shared between several of the integrals in the basis

decomposition of the amplitude, and non-trivial algebra is required to disen-

tangle the coefficients of each integral.

One-loop unitarity also exists in a more recent version, called generalized

unitarity, in which the operation of taking cuts does not have any known inter-

pretation in terms of branch cut discontinuities. Rather, generalized cuts are

defined as a change of the integration range away from the real sliceRD (where

D = 4− 2ε) into a contour of real dimension 4, embedded in C4. More con-

cretely, to extract the coefficient of any box integral in figure 2.4, the contour

is an average of two tori, each encircling a point in C4 where all four propa-

gators become on-shell. The integration over this contour, rather than RD, in

figure 2.4 annihilates all integrals on the right hand side but the box, whereas

the left hand side becomes a product of four tree amplitudes. The end result is

thus a formula (see eq. (2.67)) expressing the box integral coefficient in terms

of tree-level data. Similarly, for any particular triangle or bubble integral on

the right hand side of figure 2.4, there are known contours which annihilate all

remaining integrals, thereby yielding a formula for the associated coefficient

purely in terms of tree-level amplitudes.
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Maximal unitarity at two loops
In Chapter 3 we have taken the first steps in developing a systematic extension

of generalized unitarity to two loops. In this approach, the two-loop ampli-

tude (defined by its Feynman diagram expansion) is expanded in a basis of

two-loop integrals. In similarity with one-loop generalized unitarity, the ex-

pansion coefficients are then obtained by applying to both sides of the basis

composition of the amplitude the maximal number of cuts possible. To be spe-

cific, we considered the four-point amplitude with massless external states and

restricted our attention to the basis integrals containing the maximal number

of propagators, namely the double boxes (illustrated in figure 3.1). With four

massless external momenta there turn out to be two linearly independent inte-

grals of this topology. The task is then to find formulas for their coefficients

in terms of tree amplitudes.

Double-box integrals have seven propagators that can be cut, whereas the

two four-dimensional loop momenta have a total of eight degrees of freedom.

Imposing seven on-shell constraints—referred to as taking a heptacut—will

therefore leave one free parameter. The effect of cutting all available prop-

agators at two loops is therefore different from that at one loop where the

quadruple cut used to extract the box coefficient freezes all components of the

loop momentum.

As it turns out, however, it is in fact possible to freeze the remaining degree

of freedom at two loops as follows. The heptacut is defined as a change of the

integration range in the basis decomposition of the amplitude from RD ×RD

into a contour embedded in C8 of real dimension eight. More specifically,

the contour encircles various poles of the integrand. The integration over it

will thus immediately freeze seven of the loop momentum variables through

the use of a multidimensional version of Cauchy’s residue theorem whereby

the resulting loop momenta solve the seven on-shell constraints. However, in

order to use Cauchy’s theorem, one must first perform a change of variables

to linearize the denominators of the propagators. This will produce a Jacobian

factor which becomes part of the measure of the remaining integration. This

measure contains poles known as composite leading singularities which the

remaining contour may be chosen to encircle.

As the maximal cuts of the double-box basis integrals are contour integrals,

the task of finding formulas for their coefficients is turned into the question

of finding appropriate integration contours for the remaining degree of free-

dom. This is not a trivial problem, however, as there is a variety of leading-

singularity poles which may all be encircled with some a priori arbitrary wind-

ing numbers. For gauge theories with less than maximal supersymmetry (or in

particular, no supersymmetry such as QCD), various random choices of con-

tours would produce various different results for the double-box coefficients.

The question is then: what principle selects contours that produce correct re-

sults for the coefficients?
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The selection principle established in Chapter 3 is remarkably simple: the

(complete C8-embedded) contours must annihilate all functions that have van-

ishing integrations on RD ×RD. This constraint traces back to the definition

of the heptacut as a change of the integration range in the basis decomposition

of the two-loop amplitude: in the original equation, the integrands on either

side are equal up to terms that integrate to zero on RD ×RD. Such terms do

not integrate to zero on randomly chosen C8-embedded contours and would

produce spurious contributions—unless the contours are chosen in such a way

as to annihilate them.

The use of composite leading singularities to freeze loop integrations to

points in C8 is common to the approach in Chapter 3 and that of the leading-

singularity method, and it is worth explaining the difference between these

two approaches. The leading-singularity method has notably only been ex-

plored for N = 4 supersymmetric Yang-Mills (SYM) theory. It employs

purely integrand-level reductions to the Feynman-diagram expansion defining

the amplitude. As the integrands on either side of the reduction equation are

equal, one may choose any linear combination of leading-singularity contours

to determine integral coefficients.

In contrast, the approach in Chapter 3 makes use of additional reductions

coming from integration-by-parts (IBP) identities. This has the virtue of pro-

ducing an extremely compact result for the amplitude. For example, for four

massless external states, the Feynman rules for gauge theory produce 22 double-

box integrals with various powers of the loop momenta in the integrand nu-

merator. Through IBP relations, these are reduced to two linearly independent

double boxes. Similarly, for five massless states, the 76 pentagon-boxes pro-

duced by the Feynman rules are reduced via IBP’s (and two Gram determinant

constraints) to a single pentagon-box integral. Thus, the use of IBP reductions

leads to somewhat remarkable simplifications, yielding in some sense a min-

imal representation of the amplitude. However, as the reduction equation for

the two-loop amplitude no longer holds at the level of the integrand, to avoid

contamination from spurious terms, one is now obliged to choose linear com-

binations of leading-singularity contours that respect the IBP (and possibly

Gram determinant) constraints.

In the case of four massless external states considered in Chapter 3, there

turn out to be four constraints arising from the vanishing integrations of dou-

ble boxes whose numerators involve Levi-Civita contractions of the loop mo-

menta. Moreover, the 20 IBP relations turn out to provide only two additional

constraints on the contours, yielding a total of six constraints. As mentioned

above, the IBP relations leave two linearly independent double-box integrals

at four points, referred to as master double boxes. Among the linear combi-

nations of leading-singularity contours that satisfy all six constraints there are

contours which moreover set the heptacuts of the two master double boxes

equal to respectively one and zero, or vice versa. Since they extract the co-
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efficient of a unique double-box integral in the basis decomposition of the

amplitude, we refer to them as master contours.
Our final prescription for determining the double-box coefficients of the

two-loop amplitude is thus to integrate a product of tree-level amplitudes (re-

sulting from applying heptacuts to the sum over Feynman diagrams) over spe-

cific contours in the complex plane, subject to consistency conditions. Dif-

ferent contours produce different integral coefficients. The formalism is sum-

marized in eqs. (3.52)-(3.53). Examples of the master contours P1 and P2 are

illustrated in figure 3.4.

We have applied this formalism to obtain the double-box coefficients of the

four-gluon amplitudes in N = 4,2,1 SYM theory, finding agreement with

unpublished results supplied to us by Lance Dixon [37]. We emphasize that

though we have only given explicit results for supersymmetric theories, the

method can also be applied to find the double-box coefficients of QCD ampli-

tudes. The only required change in the calculation is that the tree-level data

fed into the master formulas in eqs. (3.52)-(3.53) should be computed for QCD

instead.

Uniqueness of two-loop master contours
In Chapter 4 we explain a puzzling feature of the (double-box) master contours

obtained in the preceding chapter, namely that the contours appear to depend

on six free parameters. This stands in contrast to the situation in generalized

unitarity at one loop where the master contours associated with boxes, trian-

gles etc. are uniquely defined, containing no free parameters. From the point

of view of the contour selection principle of Chapter 3, the six free parame-

ters seem to suggest that we have overlooked six constraints on the contours.

Their origin turns out to have a much simpler explanation, however: the com-

posite leading singularities encircled by the master contours are in fact shared

between the different kinematical solutions to the heptacut constraints, result-

ing in a double-counting of these poles in Chapter 3. Eliminating the ensuing

redundancy of variables, the two-loop master contours associated with double-

box master integrals are found to be uniquely defined, in perfect analogy with

the situation at one loop. Said differently, we find that the double-box mas-

ter integrals in the two-loop basis are each associated with a unique contour

producing their coefficient in the basis decomposition of the amplitude. This

strongly suggests that the contour selection principle of Chapter 3 is sufficient

to completely determine the contours defining maximal cuts at two loops.

The sharing of the composite leading singularities between different kine-

matical solutions leads to an appealing physical interpretation of these poles.

Indeed, the different solutions to the heptacut constraints are distinguished by

the loop momenta satisfying different collinearity conditions at the three-point

vertices of the double-box graph (e.g., see figure 3.3). When the loop mo-

menta are evaluated at the composite leading singularities, one of the momenta

must then satisfy two collinearity conditions simultaneously, forcing this mo-
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mentum to become collinear with whichever lightlike external momenta are

attached to the respective vertices of the double box. In the original uncut

double-box integral, the regions of loop-momentum integration that produce

infrared divergences are precisely those where a loop momentum is becoming

collinear with external lightlike momenta. In this sense, two-loop composite

leading singularities are naturally associated with the infrared divergences of

the original loop integral.

In Chapter 4 we also give a complete classification of the kinematical so-

lutions to the heptacut constraints associated with the general double-box in-

tegral. As discussed above, these constraints leave one free parameter which

must necessarily be complex, z ∈ C, in order to satisfy the constraints. This

degree of freedom naturally parametrizes Riemann surfaces where, for a given

double-box integral, each surface corresponds to a particular kinematical so-

lution. These Riemann surfaces are not disjoint, but rather have intersections

at points which, as noted above, coincide with the composite leading singular-

ities.

Our classification of the kinematical solutions is given in terms of three-

point vertices. Depending on whether all, exactly two, exactly one or none of

the vertical lines in the double-box graph in figure 4.1 are part of some three-

point vertex, one finds respectively six, four or two distinct Riemann spheres,

intersecting in points and linked into a chain; and, ultimately, an elliptic curve

(see figures 4.3, 4.4, 4.5, 4.7). In all cases involving spheres there is a total of

eight independent leading-singularity poles, distributed in various ways over

the spheres. For the elliptic curve we find a total of nine independent leading-

singularity cycles. Finally, we tentatively relate the appearance of an elliptic

curve in the heptacut to the appearance of non-polylogarithm type functions

in the integrated expression for the 10-point integral in figure 4.6.

Ideal two-loop integral bases
A central question in generalized-unitarity calculations concerns the choice

of basis integrals in which amplitudes are expanded. So far, it remains an

open problem to single out one particularly compelling choice of two-loop

basis which is universally applicable to all gauge theories, in particular QCD.

In Chapter 5 we pointed out that a basis containing as many infrared-finite

integrals as possible is likely to simplify unitarity calculations substantially at

two loops.

The point is that when the two-loop amplitude is expanded in a basis of

two-loop integrals, there will inevitably be O(ε) corrections to the expansion

coefficients. These corrections cannot be obtained from cuts in strictly four di-

mensions, but rather require taking cuts in D = 4−2ε dimensions, something

which is technically much more involved. The knowledge of these correc-

tions is important when expanding in a generic basis, as they will multiply 1
εk

singularities in the integrated expressions for the two-loop integrals, thereby

producing finite contributions to the amplitude. In contrast, when expanding
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in a basis of finite integrals, O(ε) corrections are still present, but become

physically irrelevant. Of course, as two-loop amplitudes necessarily have in-

frared divergences, it is impossible to expand them in a basis consisting en-

tirely of infrared-finite integrals. Nevertheless, it is plausible that by using a

basis with a minimal number of IR-divergent integrals, one can minimize the

work needed to compute the physically relevant part of the expansion coeffi-

cients.

More concretely, we pointed out that the chiral integrals introduced by

Arkani-Hamed et al. can be used as master integrals for the double-box con-

tributions to the four-point amplitudes in any gauge theory, including QCD.

The infrared finiteness of these integrals can be easily understood. Namely,

their integrands contain factors that vanish in the regions where the loop mo-

menta become collinear with lightlike external momenta, thereby quenching

the source of IR divergences.

We then evaluated the chiral double-box integrals analytically at four points,

obtaining remarkably compact results. Our calculation proceeded in four steps.

First, we write the integrals in terms of their Feynman parametrization. Sec-

ond, we rewrite the Feynman-parametrized form as an integral over projective

space, a form which is particularly amenable to analytic evaluation. In the

third step, we integrate out the variables in the projectivized representation

one at the time. However, we only carry out these integrations at the level of

the so-called symbol of transcendental functions. We do so to ensure that the

polylogarithmic expressions produced by the integrations are written in the

most compact form possible. In the last step we reconstruct the analytic ex-

pressions for the chiral integrals from the symbol along with three constraints

on the integrated expression. Our results are expressed in terms of harmonic

polylogarithms and given in eqs. (5.13)-(5.14).

Loop-level recursion: a numerical check
In Chapter 6 we considered two-loop calculations beyond four points. Here

we have provided a check on a recently developed BCFW-like recursion rela-

tion [5, 6] for the (four-dimensional) integrand of the amplitudes of N = 4

SYM theory. Specifically, we have provided a comparison of the prediction for

the two-loop six-gluon maximally helicity violating (MHV) integrand against

the result obtained by use of the leading-singularity method. The comparison

is performed numerically for a large number of randomly selected momenta

and in all cases finds agreement between the two results to high numerical

accuracy. Equivalently, assuming the validity of refs. [5, 6], one can view the

analysis carried out in this chapter as a check that the leading singularities of

the N = 4 SYM integrand evaluated in strictly four dimensions (as opposed

to in D = 4− 2ε dimensions) are sufficient to detect the parity-odd1 part of

1We refer to the footnote below figure 6.2 for a definition of the parity-even and odd parts of

the integrand.
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the integrand. In Table 1 we have provided the values of the two-loop six-

gluon MHV integrand at three randomly chosen sets of internal and external

momenta.

Future research
The work presented in this thesis opens many directions for future research.

Among the more urgent open problems is to extend the method of Paper I to

allow calculations of complete two-loop amplitudes. This requires capturing

the contributions from all integrals in a two-loop basis. In addition to double

boxes, such a basis will contain integrals with less than seven propagators.

Extracting their coefficients by use of maximal unitarity thus requires exami-

nation of hexacuts, pentacuts etc. Two-loop integrals whose subloops contain

at least three propagators all admit T 8-integration contours (analogous to those

in eq. (3.24)) that appropriately define such cuts. Moreover, the cut integrand

is a holomorphic function, and the contour integrations can thus be performed

directly by means of a multidimensional version of Cauchy’s residue theorem,

localizing the integration to points in C8. In contrast, two-loop integrals with

bubble-subloops do not admit T 8 contours: for example, the box-bubble inte-

gral rather admits a T 6× S2 contour which does not immediately localize to

points in C8. Nevertheless, as shown by Mastrolia in ref. [60], the S2 integra-

tion associated with bubble integrals at one loop can effectively be localized

through the use of Stokes’ theorem, and the bubble coefficients directly ex-

tracted. A related approach is that of Arkani-Hamed et al. in ref. [61]. To

summarize, the integrals in a two-loop basis are associated with a variety of

T 8,T 6×S2 and also T 4×S2×S2 contours encircling the poles that come from

the measure of the cut integrals, or from propagators going on-shell.

Developing a formalism for extracting the coefficients of all the integrals in

a two-loop basis therefore requires two steps. The first is a systematic way of

uncovering and enumerating all such contours. The second is to construct ap-

propriate linear combinations of these contours which annihilate all functions

that have vanishing RD ×RD integrations, such as those arising from integra-

tion by parts. It would be extremely interesting to carry out these steps and

to examine whether the uniqueness of master contours, observed for double

boxes in Papers III and IV, continues to hold.

To be more accurate, the above considerations only suffice to determine in-

tegral coefficients to O(ε0) in the dimensional regulator. As discussed above,

the knowledge of higher order corrections requires taking cuts beyond strictly

four dimensions; but this knowledge would only be needed for a few integrals

if the amplitude is expanded in a “maximally IR-finite” basis. It would be very

interesting to construct such a basis in practice. Moreover, to calculate the co-

efficients of IR-divergent integrals to higher orders, it may be possible to take

cuts in D = 6 dimensions rather than in D = 4−2ε dimensions, extending the

one-loop analysis of Davies [62]. Investigating this more closely would also

be intriguing.
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Interesting applications of the formalism would be to compute two-loop QCD

amplitudes relevant to precision LHC phenomenology; in particular, the am-

plitudes of the four-particle processes qq →W±γ , qq → Z0γ and H → 3 par-

tons as well as five-particle processes such as gg → qqV . One could also

imagine applying the ideas presented here to examine the UV properties of

supergravity theories, such as the no-triangle hypothesis.

It would also be very interesting to see if the techniques of Chapter 5 used

to evaluate the chiral double-box integrals at four points can be extended to

compute higher-point integrals at two loops. Other open questions are how

to augment the formalism to tackle non-planar integrals and, looking further

ahead, how it may ultimately be implemented in a numerical routine such as

BLACKHAT in an efficient and numerically stable way.

Let us end this thesis on an inquisitive note. So far, we have no deep under-

standing of what the IBP constraints on the maximal-cut contours are trying

to tell us. Clearly, from a computational viewpoint it would be desirable if

these constraints could be understood more transparently, perhaps making the

knowledge of IBP relations unnecessary. From a more philosophical view-

point, the immediate goal of building a bestiary of master contours may not

necessarily be the final word. Rather, one would hope that the contours can

ultimately be understood in a more unified way, perhaps in terms of a deeper

underlying principle yet to be uncovered.

Perhaps the IBP relations themselves can be trivialized by an appropriate

representation of the loop integrals. This is turn might give a clue as to what is

the right language in which to phrase the constraints. Or perhaps it is possible

to understand the constraints directly, without reference to IBP relations, in

terms of a purely geometric picture. In fact, we have already seen that the Levi-

Civita constraints simply state that the master contours are invariant under

180◦ rotations of the chains of Riemann spheres in Chapter 4. Maybe this is a

hint that there are simple geometric rules at work. It will be fascinating to see

if future investigations will shed light on these questions.
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A. Notation and conventions

In this appendix we specify conventions and notation used throughout the the-

sis.

The spacetime signature is ημν = diag(1,−1,−1,−1). All external mo-

menta in an amplitude are outgoing and will be denoted by ki. We will make

use of the spinor helicity formalism [14, 63–69] in which a given lightlike

four-dimensional momentum is written as a tensor product of two massless

Weyl spinors,

kμ
i =

(
u−(ki)

)a σ μ
aȧuȧ

−(ki) +
(
u+(ki)

)ȧ σ μ
aȧua

+(ki) (A.1)

where a, ȧ = 1,2. The spinors are often denoted as

λ a
i = ua

+(ki) , λ̃ ȧ
i = uȧ

−(ki) . (A.2)

One can form the following Lorentz invariant inner products out of the spinors,

〈i j〉 ≡ 〈i−| j+〉 ≡ εabλ a
i λ b

j =
(
u−(ki)

)a u+(k j)a , (A.3)

[i j] ≡ 〈i+| j−〉 ≡ εḃȧλ̃ ȧ
i λ̃ ḃ

j =
(
u+(ki)

)
ȧ u−(k j)

ȧ (A.4)

which satisfy

〈i j〉[ j i] = 2ki · k j . (A.5)

To give a useful representation of the spinors, it is convenient to use the fol-

lowing representation of the gamma matrices,

γ0 =

(
0 iσ2

−iσ2 0

)
, γ1 =

(
0 σ3

−σ3 0

)
γ2 =−i

(
0 I
I 0

)
, γ3 =

(
0 σ1

−σ1 0

)
γ5 =−iγ0γ1γ2γ3

(A.6)

which may be obtained by matrix conjugation of theWeyl representation, γμ =
R−1γμ

WeylR with

R =

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ . (A.7)
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In the representation (A.6), the spinors defined out of a lightlike four-vector

pμ = (p0, p1, p2, p3) take the following form

〈p| ≡ 〈p−| ≡ u−(p) =
1√

p0+ p3

⎛⎜⎜⎝
p1+ ip2

p0+ p3

0

0

⎞⎟⎟⎠ (A.8)

|p〉 ≡ |p+〉 ≡ u+(p) =
1√

p0+ p3

⎛⎜⎜⎝
p0+ p3

−p1− ip2

0

0

⎞⎟⎟⎠ (A.9)

and

[p| ≡ 〈p+| ≡ u+(p) =
1√

p0+ p3

⎛⎜⎜⎝
0

0

p1− ip2

p0+ p3

⎞⎟⎟⎠ (A.10)

|p] ≡ |p−〉 ≡ u−(p) =
1√

p0+ p3

⎛⎜⎜⎝
0

0

−p0− p3

p1− ip2

⎞⎟⎟⎠ (A.11)

where we included two auxiliary zero-entries for the holomorphic spinors in

eqs. (A.8)-(A.9) as well as for the antiholomorphic spinors in eqs. (A.10)-

(A.11).

In terms of the notation introduced in eqs. (A.8)-(A.11), one can rewrite

eq. (A.1) as

/p = pμγμ = |p〉[p|+ |p]〈p|= |p+〉⊗〈p+| + |p−〉⊗〈p−| . (A.12)

Moreover, in the representation (A.8)-(A.11) of the spinors, the inner products

in eq. (A.4) take the form

〈p q〉= 〈p−|q+〉=
√

q0+q3√
p0+ p3

(p1+ ip2)−
√

p0+ p3√
q0+q3

(q1+ iq2) (A.13)

and

[p q] = 〈p+|q−〉=
√

q0+q3√
p0+ p3

(−p1+ ip2)+

√
p0+ p3√
q0+q3

(q1− iq2) . (A.14)

For real momenta p,q, the angle and square spinor products (A.13)-(A.14) are

related by complex conjugation as follows

〈p q〉∗ =−[p q] . (A.15)
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The inner products in eqs. (A.13)-(A.14) can also be used in the situation when

the momenta p,q are complex. In particular, the following useful identities

hold true for arbitrary lightlike momenta ki,k j,

Gordon identity: 〈i±|γμ |i±〉 = 2kμ
i (A.16)

projection operator: |i±〉〈i±| = 1
2(1± γ5)/ki (A.17)

antisymmetry: 〈i j〉 = −〈 j i〉 , [i j] = −[ j i] (A.18)

Fierz rearrangement: 〈i+|γμ | j+〉〈k+|γμ |l+〉 = 2[i k]〈l j〉 (A.19)

charge conjugation: 〈i+|γμ | j+〉 = 〈 j−|γμ |i−〉 (A.20)

Schouten identity: 〈i j〉〈k l〉 = 〈i k〉〈 j l〉+ 〈i l〉〈k j〉 . (A.21)

Spinor strings are defined as follows

〈K−
i |/P+ /Q|K−

j 〉= 〈K−
i |/P|K−

j 〉+ 〈K−
i |/Q|K−

j 〉 (A.22)

〈K−
i |/P|K−

j 〉= 〈Ki P〉[P Kj] if P2 = 0 . (A.23)

We use the following normalizations for expressions involving Levi-Civita

contractions of momenta

ε(1,2,3,4) = εμνρσ k1μk2νk3ρk4σ (A.24)

= ∑
σ∈S4

(sgnσ)k1,σ(0)k2,σ(1)k3,σ(2)k4,σ(3) (A.25)

=− i
4
Tr(γ5/k1/k2/k3/k4) (A.26)

=− i
4

(
[12]〈23〉[34]〈41〉−〈12〉[23]〈34〉[41]) . (A.27)

We will use the following notation for sums and invariant masses of external

momenta,

ki1···in ≡ ki1 + · · ·+ kin (A.28)

si1···in ≡ (ki1 + · · ·+ kin)
2 (A.29)

Si ≡ K2
i . (A.30)

In Chapters 4-6 wemake use of the “flattened” momenta introduced in refs. [30,

70]: for a pair of momenta K1,K2, define the quantity

γ1± = (K1 ·K2)±
√

Δ1 , Δ1 = (K1 ·K2)
2−K2

1K2
2 (A.31)

which can take two different values if both momenta are massive (i.e., if

S1S2 �= 0). For a given value of γ1 one defines a pair of massless “flattened”

momenta as follows

K�
1± =

K1− (S1/γ1±)K2

1−S1S2/γ2
1±

, K�
2± =

K2− (S2/γ1±)K1

1−S1S2/γ2
1±

. (A.32)
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If one of the momenta K1 or K2 is massless, γ1± can only take one value, and

we use the following abbreviated notation:

S1S2 = 0 =⇒

⎧⎪⎨⎪⎩
γ1 = 2K1 ·K2

K�
1 = K1− (S1/γ1)K2

K�
2 = K2− (S2/γ1)K1 .

(A.33)

Similarly, we use the notation

γ2± = (K4 ·K5)±
√

Δ2 , Δ2 = (K4 ·K5)
2−K2

4K2
5 (A.34)

K�
4± =

K4− (S4/γ2±)K5

1−S4S5/γ2
2±

, K�
5± =

K5− (S5/γ2±)K4

1−S4S5/γ2
2±

. (A.35)

S4S5 = 0 =⇒

⎧⎪⎨⎪⎩
γ2 = 2K4 ·K5

K�
4 = K4− (S4/γ2)K5

K�
5 = K5− (S5/γ2)K4 .

(A.36)

In Chapter 6 we denote make use of the dihedral group D6 whose elements are

labeled as follows,

σ1 = (1,2,3,4,5,6) σ2 = (2,3,4,5,6,1) σ3 = (3,4,5,6,1,2)

σ4 = (4,5,6,1,2,3) σ5 = (5,6,1,2,3,4) σ6 = (6,1,2,3,4,5)

σ7 = (6,5,4,3,2,1) σ8 = (5,4,3,2,1,6) σ9 = (4,3,2,1,6,5)

σ10 = (3,2,1,6,5,4) σ11 = (2,1,6,5,4,3) σ12 = (1,6,5,4,3,2) .
(A.37)

We use a standard color decomposition of the L-loop n-point amplitude to

disentangle color from kinematics,

A
(L)

n = ∑
σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) · · ·T aσ(n))A(L)
n (σ(1),σ(2), . . . ,σ(n)) , (A.38)

where A(L)
n is an L-loop color-ordered partial amplitude. Throughout the thesis

we restrict our attention to the leading-color (planar) partial amplitudes.

Finally, the Parke-Taylor formula for the tree-level n-gluon maximally he-

licity violating (MHV) amplitude is

Atree
n,MHV(i

−, j−) =
i〈i j〉4

〈1 2〉〈2 3〉 · · · 〈n 1〉 , (A.39)

and for the MHV amplitude,

Atree
n,MHV

(i+, j+) = (−1)n i[i j]4

[1 2][2 3] · · · [n 1]
. (A.40)
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Summary in Swedish

Den, av ATLAS och CMS experimenten, annonserade upptäckten av en Higgs-

boson-liknande partikel med en massa runt 125-126 GeV den 4 juli 2012 gör

detta till en spännande tid att arbeta inom partikelfysik. Spännande är också

de möjliga tecknen på ny fysik i och med överskottet av två-fotonsönderfall av

Higgskandidaten som observerats av de båda grupperna.

Åtminstone tills helt nyligen har standardmodellen för partikelfysik varit

en extremt framgångsrik teori som förklarar alla observationer gjorda i ex-

periment med partikelacceleratorer. Enligt standardmodellen är all materia

uppbyggd av kvarkar (byggstenarna för protoner och neutroner) och leptoner

(såsom elektroner och neutriner) som växelverkar genom tre fundamentala

krafter: den elektromagnetiska, den svaga och den starka kraften. Krafterna

beskrivs med hjälp av två kvantfältteorier, den elektrosvaga teorin och kvant-

kromodynamik.

Den elektrosvaga teorin förenar den elektromagnetiska och den svaga kraf-

ten i en teori. Denna har en SU(2)×U(1) gaugesymmetri associerad med

de fyra partiklar, γ , W± och Z0, som förmedlar växelverkan mellan elemen-

tarpartiklar. Vid energier under omkring 250 GeV är SU(2)×U(1) gauge

symmetrin bruten till U(1) genom Higgsmekanismen, vilket ger massa åt den

svaga kraftens kraftpartiklar, W± och Z0, medan fotonen, γ , kraftpartikeln

för den elektromagnetiska kraften, förblir masslös. Higgsmekanismen ger

därutöver massa till alla elementarpartiklar.

Kvantkromodynamik (QCD) är teorin för växelverkningar mellan protonen

och neutronens beståndsdelar, kvarkarna. Växelverkan överförs med hjälp av

åtta olika partiklar kallade gluoner, g, associerade med gaugegruppen SU(3).
I motsats till fotoner kan gluoner växelverka med sig själva vilket ger upp-

hov till intressanta fenomen, som att när man försöker dra isär kvarkarna i en

proton så ökar styrkan hos attraktionskraften mellan dem snabbt vilket håller

kvarkarna bundna till varandra på ett avstånd runt 10−15 m.

Trots dess framgångar är det tydligt att standardmodellen inte kan vara en

komplett teori för partikelfysik. Skillnader mellan observerade hastigheter

hos stjärnor i galaktiska omloppsbanor och hastigheter beräknade baserat på

mängden av direkt observerbar materia indikerar existensen av en icke-obser-

verad mörk materia, uppskattad till att utgöra 84% av materien i universum.

Eftersom ingen av partiklarna i standardmodellen utgör kandidater för mörk

materia så är en utvidgning av modellen nödvändig.

En mer spekulativ, men icke desto mindre attraktiv, idé är den om en fören-

ing av krafterna där teorierna för elektrosvag och stark växelverkan vid lämplig
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energiskala utgör delar av en storförenad teori (GUT) med en större symmetri-

grupp, exempelvis SU(5). Mekanismen för att bryta den större symmetrin till

standardmodellens gaugesymmetri, SU(3)×SU(2)×U(1), tros likna Higgs-

mekanismen. Förutom att elegant förena de fundamentala krafterna i en enda

teori förklarar SU(5) GUT kvarkarnas icke-heltaliga elektriska laddning som

beroende av deras laddning under SU(3): i ett nötskal, kvarkar har 1/3 av lep-

tonladdningen eftersom de har tre färger. GUT teorier kan också förklara var-

för neutrinomassorna är så små genom den såkallade gungbrädemekanismen.

En förening av den elektromagnetiska, svaga och starka kopplingskonstanten

är dock bara approximativ inom standardmodellen.

Ett särskilt elegant scenario beskrivs av supersymmetriska utvidgningar av

standardmodellen. Sådana utvidgningar innehåller kandidater för mörk ma-

teria, åstadkommer en förening av de fundamentala krafterna samt stabilis-

erar Higgsmassan mot stora radiativa korrektioner. Dessutom verkar super-

symmetri (SUSY) att vara en viktig ingrediens i ändliga teorier för kvant-

gravitation. Ett speciellt paradigm inom supersymmetriskt modellbyggande,

som inte tycks hotat av aktuell data från LHC, är “split supersymmetry”. För

dessa modeller är skalan för brott av SUSY hög, runt GUT-skalan på 1016

GeV, och alla supersymmetriska skalärer mycket tunga. Detta undertrycker på

ett naturligt sätt oönskade sidoeffekter såsom protonsönderfall och “flavour-

changing neutral currents” vilka skulle förmedlats via dessa skalärer. Super-

symmetriska fermioner kan å andra sidan förbli lätta då de skyddas av chiral

symmetri. Bland dessa fermioner kan de lättaste elektriskt neutrala utgöra kan-

didater för mörk materia medan de lättaste elektriskt laddade kan koppla till

fotoner som produceras i Higgssönderfall, och leda till ett överskott av dessa.

En analys gjord nyligen visar att om överskottet av två-fotonssönderfall visar

sig korrekt så kräver split SUSY existensen av en ny laddad fermion runt 115-

150 GeV.

Det kan mycket väl visa sig att idéerna ovan inte har något med naturen att

göra, anledningen att vi beskriver dem här är för att visa att ny fysik kan vara

inom räckhåll för LHC. Syftet med LHC är dubbelt. Ett syfte, som i skrivande

stund mycket troligt har uppfyllts, är att upptäckta Higgsbosonen. Det andra

är att upptäcka ny fysik bortom standardmodellen.

I LHC kollideras hadroner. Detta betyder att QCD-bakgrunden är stor i

experimenten, den svarar för över 99% av händelserna. Att identifiera den

signal man söker efter kräver därför en kvantitativ förståelse av bakgrunden

vilken, i viss mening, måste subtraheras från den insamlade datamängden.

Figur 7.1 illustrerar typiska exempel på signal- respektive bakgrundsprocesser.

En förståelse av QCD-bakgrunden kräver en förståelse av tvärsnitten hos

alla relevanta processer i standardmodellen med tillräckligt god precision.

En viktig ingrediens, om ej alls den enda, för att beräkna tvärsnitt är sprid-

ningsamplituder för processerna.
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Figure 7.1. Ett exempel på (a) en signalprocess och (b) en bakgrundsprocess.

Traditionellt sett har spridningsamplituder beräknats med hjälp av Feynman-

diagram, och mycket imponerande beräkningar har gjorts på detta sätt. Trots

detta blir detta angreppssätt vid en viss punkt ohanterligt då antalet och kom-

plexiteten hos de Feynmandiagram som ingår i amplituderna ökar explosion-

sartat. Effektiva metoder för att beräkna amplituder på träd-nivå har utvecklas

under den senare tiden, dessa inkluderar bland annat BCFW-rekursionsrelatio-

nerna.

Mer effektiva metoder för att beräkna amplituder på loop-nivå utvecklades

under mitten av 1990-talet genom att utnyttja unitariteten hos S-matrisen till-

sammans med en ansats för 1-loopsamplituden i termer av enklare integraler

än de som är involverade i Feynmandiagramberäknarna. Genom att utnyttja

den analytiska strukturen hos 1-loopsintegranden blev det möjligt att bestämma

koefficienterna framför dessa integraler i termer av träd-nivå amplituder. Detta

tillvägagångssätt kallas för unitaritetsmetoden. Metoden har visat sig effektiv

vid en loop där den lett till att ett antal amplituder framgångsrikt har kun-

nat beräknas, speciellt för processer med många partoner i sluttillståndet. 1-

loopsunitaritet finns även i en mer modern form, kallad generaliserad uni-

taritet. Här används ett större antal on-shell villkor på loopintegranden vilket

leder till formler för integralkoefficienterna i termer av trädamplituder utan att

algebra behövs i mellanstegen.

Ämnet för den här avhandligen är utvecklandet av ett systematiskt tillväga-

gångssätt för att beräkna två-loopsamplituder genom generaliserad unitaritet.

En sådan utvidgning av unitaritetsmetoden är nödvändig för en effektiv nu-

merisk implementation men det är också troligt att denna typ av formalism

kommer att resultera i kompakta analytiska uttryck för spridningsamplituder,

resultat som uppnåtts på enkel och rättfram väg. Det bör påpekas att gener-

aliserad unitaritet har används tidigare bortom en loop, primärt för att beräkna

amplituder för N = 4 supersymmetrisk Yang-Mills (SYM) teori och N = 8

supergravitation. I dessa beräkningar har det första steget varit att konstruera

en ansats genom att omsorgsfullt välja ut ett antal lämpliga integraler. Det har

därför inte tidigare funnits något systematiskt sätt att använda generaliserad

unitaritet bortom en loop.

127



Två-loopsamplituder behövs för att kunna göra kvantitativa uppskattningar

av QCD-bakgrunden vid LHC. Som exempel kan nämnas processer (såsom

gg → γγ och gg →W+W−) vars amplituder börjar vid en loop och vars diffe-

rentiella tvärsnitt därför inte börjar som O(α0
s ) utan istället O(α2

s ). Tvärsnit-
tet till näst-till-ledande ordning (NLO) får därför bidrag från interferensen

mellan 1- och 2-loopsamplituder. (Processen gg → γγ är effektivt sett NLO

eftersom de extra faktorerna av αs jämfört med qq̄ → γγ kompenseras av den

höga densiteten av gluoner för små x.) Vidare så kräver alla beräkningar vid

NNLO två-loopsamplituder som input. NNLO-beräkningar utgör den teo-

retiska grunden för precisionsmätningar (utöver processerna e+e− → 3 jets,

gg → H och W,Z produktion vilka redan har beräknats), används för att upp-

skatta onoggrannheten hos NLO-beräkningar samt för att minska beroendet av

renormaliseringsskalan ytterligare, exempelvis för gg →W +n jets.

Även om det inte är ämnet för den här avhandlingen är det värt att nämna

att stora framsteg har gjorts under de senaste 8-9 åren för amplituder i N = 4

SYM, med upptäckter som dualiteter med Wilson-loopar och korrelations-

funktioner för lokala operatorer; en integrabel struktur som lett till en lösning

till alla loopordningar; och en rekursionsrelation för integranden till alla loop-

ordningar à la BCFW. Minst lika spektakulär är omformuleringen av teorins

S-matris som en konturintegral på en Grassmannmångfald vilket gör en for-

mulering av partikelspridning utan en manifest rumtid möjlig. Förhoppningen

är att man genom att studera spridningsamplituder kan lära sig något funda-

mentalt nytt om kvantfältteorier, eller till och med om själva rumtiden.

Artiklar
I artikel I tar vi första steget mot att utveckla en systematisk generalisering av

generaliserad unitaritet till två loopar. Enligt detta tillvägagångssätt utveck-

las två-loopsamplituden i en bas av integraler. Expansionskoefficienterna fås

genom att integrera produkter av träd-amplituder längs konturer i det kom-

plexa planet. Vi beskriver en urvalsprincip för att bestämma konturerna som

garanterar ett korrekt resultat för amplituder i vilken gaugeteori som helst,

QCD exempelvis.

I artiklarna III och IV beskriver vi hur dubbel-lådeintegralerna i två-loops-

integralbasen var och en är associerad med en unikt definierad kontur som ger

dess koefficient. Dessutom identifierar vi en klass av basintegraler som högst

troligt i hög grad förenklar unitaritetsberäkningarna vid två loopar. Slutligen

beräknar vi två sådana integraler analytiskt för fyra punkter.

I artikel II kontrollerar vi en nyligen utvecklad BCFW-lik rekursionsrelation

för integranden av N = 4 SYM amplituder genom att undersöka 2-loop 6-

gluon MHV-integranden.
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