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ABSTRACT
This work addresses the modeling of shared cache contention
in multicore systems and its impact on throughput and
bandwidth. We develop two simple and fast cache sharing
models for accurately predicting shared cache allocations for
random and LRU caches.

To accomplish this we use low-overhead input data that
captures the behavior of applications running on real hard-
ware as a function of their shared cache allocation. This
data enables us to determine how much and how aggressively
data is reused by an application depending on how much
shared cache it receives. From this we can model how appli-
cations compete for cache space, their aggregate performance
(throughput)¸ and bandwidth.

We evaluate our models for two- and four-application work-
loads in simulation and on modern hardware. On a four-core
machine, we demonstrate an average relative fetch ratio er-
ror of 6.7% for groups of four applications. We are able to
predict workload bandwidth with an average relative error
of less than 5.2% and throughput with an average error of
less than 1.8%. The model can predict cache size with an
average error of 1.3% compared to simulation.
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General Terms
Measurement, Performance
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1. INTRODUCTION
The shared cache in contemporary multicore processors

has been repeatedly shown to be a critical resource for appli-
cation performance [13, 15, 18, 8, 14]. This has motivated a
significant amount of research into modeling the impact of
cache sharing with the goal of understanding applications’ in-
teractions through the shared cache and for providing insight
to schedulers and runtime systems [15, 20, 11, 10].

This work presents two models for predicting cache allo-
cations, bandwidth requirements, and performance of ap-
plication mixes in the presence of a shared last-level cache.
The models are developed for random replacement and LRU
caches, but are shown to be accurate for the pseudo-LRU
caches of modern Intel processors.

These models take into account the complexities of mod-
ern hardware (such as out-of-order execution and hardware
prefetchers) by leveraging input data that incorporates the
applications’ behavior on real hardware. This input data
consist of the applications’ fetch and hit rates, IPCs, and
hit ratios as a function of their cache allocation, and can
be acquired with low overhead on modern multicore ma-
chines [6]. This low-overhead data is in contrast to many
existing methods for modeling cache sharing which rely on
expensive data such as stack distance traces [2, 4, 3, 17].

To model cache sharing we use an application’s fetch and
hit rates as a function of cache size to determine how much of
its data is reused for a given cache allocation, and how often
that data is reused. With this information we can model how
multiple applications compete for shared cache space. The
model then uses a numerical solver to find a stable solution
that determines the final cache allocations. Once we know
the cache allocations we can use our input data to predict
performance (throughput) and bandwidth requirements for
mixes of co-scheduled applications.

This ability to model cache sharing and predict its impact
on performance and bandwidth is important for scheduling
and performance analysis on complex systems. Such model-
ing forms the basis for resource-aware placement in modern
memory hierarchies, scheduling on heterogeneous architec-
tures, and for making runtime decisions on future chips in
the presence of power constraints (e.g., dark silicon). By
combining low-overhead data that reflects the complexities
of the real hardware and a simple sharing model we are able
to quickly and accurately predict sharing and performance,
which is essential for such goals.

This paper makes the following contributions:

• We present a statistical cache-sharing model for random
caches that uses high-level, low-overhead input data.

http://doi.acm.org/10.1145/2370816.2370861
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Figure 1: Example Cache Pirate data showing fetch
rate as a function of cache size for two applications.

• We extend the model to LRU caches by deriving aggre-
gate data reuse information from the input data, and
using this to model competition for cache space based
on the data reuse frequencies of each application.

• We demonstrate the accuracy of the model for predict-
ing cache sharing and fetch ratios for mixes of two and
four co-scheduled applications through simulation and
on real hardware.

• We demonstrate the ability to accurately predict perfor-
mance (IPC) and bandwidth requirement of application
mixes on real hardware.

2. MODELING CACHE SHARING
Consider two applications sharing a cache. Their behavior

with respect to the shared cache can intuitively be thought
of as two flows of liquid filling an overflowing glass. The
two in-flows correspond to fetches into the cache and the
liquid pouring out of the glass corresponds to the replace-
ment stream from the cache. If the in-flows are constant, the
system will eventually reach a steady state. At steady state,
the concentrations of the liquids in the glass are constant
and proportional to their relative inflow rates. Furthermore,
the outflow rates of the liquids are proportional to their con-
centrations. This very simple analogy describes the behavior
of random caches.

Describing LRU caches requires data reuse to be considered
since data reused frequently enough will stick in the cache
and avoid replacement. In the liquid analogy above, data
reused frequently enough can be thought of as ice cubes that
never leave the glass. The threshold for how frequently data
needs to be reused to exhibit “sticky” behavior varies between
sharing situations.

2.1 Low-Overhead Input Data
The goal of our cache sharing models is to find the amount

of cache allocated to each application in a mix of co-scheduled
applications at steady state. This requires per-application
information about fetch1 rate and data reuse characteris-
tics for all applications as well as how that information is
affected by cache contention. In order for this information
to accurately describe the target system, it needs to take
into consideration effects from complex dynamic hardware,
such as super-scalar out-of-order execution and hardware
prefetching.

1The term fetch is used extensively in this paper to describe
a movement of data from memory to cache caused by either
a cache miss or prefetching activity.

Cache Pirating [6] is a method to capture our required
input data on the target hardware. In Cache Pirating, the
studied application is co-scheduled to share a cache with
a small cache-intensive micro benchmark, the Pirate. The
Pirate is designed to steal only cache, leaving other shared
resources untouched. In a single run, the amount of cache
the Pirate steals is varied, while the effects on the studied
application are measured using hardware performance coun-
ters. The application’s miss rate, fetch rate, hit rate, miss
ratio, fetch ratio, hit ratio, memory bandwidth, CPI, etc., as
a function of cache size, can be measured with an average
overhead of 5.5%.

Cache Pirating typically measures sensitivity by stealing
a whole way at a time, while our models assume continu-
ous data. We therefore interpolate the measured data using
monotone cubic splines [7]. We chose this interpolation
method over linear interpolation because the resulting func-
tion estimates the behavior in applications with sharp steps
in their fetch rate curves (e.g., applications with a small
fixed data set) more accurately by making the edges sharper.
Figure 1 shows an example of data produced using Cache
Pirating: Fetch rate as a function of cache size for two appli-
cations, measured in 16 discreet steps and interpolated with
monotone cubic splines.

The following section describes how the fetch rate and hit
rate information measured using Cache Pirating is used to
determine the amount of cache allocated to each applica-
tion in a sharing situation. Knowing the amount of cache
allocated to each application allows us to predict additional
performance metrics. In Section 4 we show how throughput
and bandwidth demand can be predicted using knowledge
about cache allocations and the data from Cache Pirating.

2.2 Modeling Random Caches
In random caches, sharing only depends on two events:

fetches into the cache and replacements. At steady state,
the amount of data an application installs into the cache is
equal to the amount of data evicted from that application’s
cache allocation; that is, the application’s fetch rate (fetches
per cycle) must equal its replacement rate (replacements per
cycle). An application’s replacement rate is proportional to
the total fetch rate, F, into the cache and its replacement
probability. Since replacements are random, the replacement
probability is proportional to the amount of cache allocated
to the application. For a shared cache of size C and an
application, n; the application’s fetch rate, fn, and cache
allocation, cn, are related according to:

fn = F
cn
C

C =
∑
i

ci
(1)

We can solve the equation system above, given that we have
each application’s fetch rate as a function of cache size, using
readily available equation system solvers.

2.3 Modeling LRU Caches
LRU caches, unlike random caches, use access history to

replace the item that has been unused for the longest time.
We refer to the duration of time a cache line has been unused
as its age. Whenever there is a replacement decision, the
oldest cache line is replaced.

In practice, we can not determine the age of individual



cache lines based on our input data. Instead, we look at
groups of cache lines with the same maximum age2 and let
the groups from different applications compete for cache
space.

Cache lines that are fetched into the cache but are evicted
before they are reused are put in a separate group and
handled differently. After the initial fetch into the cache, the
age of these cache lines increases whenever any application
fetches new data into the cache. This allows us to treat them
as one group common to all applications, with one common
age. We will refer to these cache lines as volatile since they
are evicted from the cache before they are reused.

Cache lines which are reused before they are evicted from
the cache are referred to as sticky cache lines since their reuse
makes them resilient to eviction. Normally an application
reuses more data in the cache when the amount of cache
the application has access to grows. This means that some
data is potentially sticky and only becomes sticky when the
application has access to enough cache. The amount of sticky
and volatile data in the cache therefore depends on how much
cache an application has access to, which is a function of
what other applications are co-executing.

To explain the LRU model, we will first describe how to
model sharing within the volatile group and how the age of
the group is determined. We will then describe how sticky
groups are modeled, and finally how our solver uses this
information to determine cache sharing.

2.3.1 Modeling Volatile Data
When applications do not reuse their data before it is

evicted from the cache, LRU caches degenerate into FIFO
queues with data moving from the MRU position to the LRU
position before being evicted. Similar to random replacement,
the amount of cache allocated to an application will be
proportional to its fetch rate. This observation allows us to
use the method devised for random replacement to model
cache sharing for volatile data. Assuming that we know the
amount of cache available to volatile data3, Cv, we can solve
Equation 1 for the volatile part of the cache. This allows us
to estimate the amount of volatile data, cv, each application
has.

Since sticky data and volatile data from different applica-
tions compete for cache space, we need to be able to compare
their maximum age. Because the cache degenerates into a
FIFO queue for volatile data, the maximum age of volatile
elements can be determined using Little’s law [9].4 Assuming
that we know the total size of the volatile part of the cache,
Cv, and the total fetch rate into the cache, the maximum
age of all volatile cache lines, Av, is:

Av =
Cv

F
(2)

2At any given moment, the cache lines in a group will have
different ages. It therefore only makes sense to talk about
the maximum age of a group.
3We can estimate the amount of sticky data each application
has, and therefore whatever is left of the cache is used for
volatile data.
4Little’s law sets up a relationship between the number of
elements in a queue (size), the time spent in the queue
(maximum age) and the arrival rate (fetch rate). The total
arrival rate into the queue is the sum of all fetch rates, F, in
the system.

W0

Cache Size

X1 Y0 X0

{X0,Y0}:

{X1,Y1}:

Cs

Cs

Sticky Data Volatile Data

Volatile Data

Y1

X0Y0
X1

F
et
ch

R
at
e

Cache Size0 C

H
it
R
at
e

Y1

0 C

W0

YXW

Figure 2: Fetch and hit rate curves for three sample
applications. Application W and X always miss in
the shared cache, while Y misses only when it has
less than cn(Y1) space in the cache. The cache alloca-
tions for the two stable cache sharing configurations
of X and Y are shown below.

Example 1: Consider application X and application W in
Figure 2. Both of the applications have fetch rates that are
independent of cache size and X has twice the fetch rate of
W. Since the hit rate is zero for both of them, neither reuses
any data in the cache (i.e., all data is volatile). Using the
random replacement model for the volatile data, we conclude
that X gets twice the cache allocation of W (i.e., X uses
two thirds of the cache) causing the applications to stabilize
at the solution {X0,W0}. Since the entire cache is filled
with volatile data, the maximum age of volatile elements is
described by:

Av =
Cv

F
=

C

f(X0) + f(W0)

2

2.3.2 Modeling Sticky Data
In most cases, there is both sticky and volatile data in the

cache at the same time. Unlike volatile data, sticky data
stays in the cache because it is reused while it is in the cache.
When sticky and volatile cache lines compete for cache space,
the decision to let a sticky cache line remain sticky depends
on its age. A sticky cache line becomes volatile if it is older
than the oldest volatile cache line. In our model, we make
this decision for entire groups of cache lines with the same
maximum age. A group of sticky cache lines with the same
maximum age, as, is allowed to stay in the cache as sticky
cache lines if it is younger than the oldest volatile cache line:

as < Av (3)

Similar to volatile data, we can estimate the maximum



age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (its hit rate is zero) when it has access to less cache
than c(Y1). However, it reuses all its data when it has access
to more cache (its fetch rate is zero). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is its hit rate, h(Y1).

When Y starts it will bring its entire data set into the
cache and start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C − c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to
prevent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache con-
sists of volatile data since Y has not installed enough of its
data to be able to reuse it before it is evicted from the cache.
Since X has a higher fetch rate than Y, it fetches data faster
and will therefore get more cache than Y. In this case, Y
will never fit its entire group of potentially sticky data, and
its data it will instead remain volatile. Both {X0,Y0} and
{X1,Y1} are therefore valid sharing configurations, depend-
ing on the starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in
its fetch rate curve, which means that it has two groups
of potentially sticky data. This can happen in applications
reusing two arrays of different size. For a cache size of
c(Z0), the application is able to fit its first group of data in
the cache (the fetch rate drops just before c(Z0)) and that
group becomes sticky. If the application has access to more
cache than c(Z1), its fetch rate drops to zero and all of its
data becomes sticky. In order to calculate the age, as, of a
group of sticky data, we need to know how much that group
contributes to the total hit rate and how big the group is.
Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
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Figure 3: Z has two groups of sticky data of different
sizes. When a group of sticky data starts to fit in
the cache, the fetch rate starts to drop and the hit
ratio increases. Whenever the hit ratio increases,
the amount of volatile data at that point decreases
(it becomes sticky) by the same relative amount.

to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)− cs(Z0−)

h(Z0)− h(Z0−)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In general,
the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate generally increases as an appli-
cation gets access to more cache. This variation is accurately
captured in our Cache Pirate input data. Not compensating
for the change in execution rate leads an erroneous estimate
of a block’s contribution to the total hit rate. We address
this by using the difference in hit ratio (hits per memory
access) which is execution rate independent. We then scale
the difference in hit ratio with the application’s accesses
rate (which is execution rate dependent) to get the block’s
contribution to the total hit rate.

2.3.3 Estimating Sticky Group Sizes
The amount of sticky data can be estimated from how an

application’s hit ratio changes with its cache allocation. The



relative change in hit ratio is proportional to the relative
change in the sticky data.

Example 4: As seen in Figure 3, Z’s hit ratio increases in
two steps. This means that it has two groups of potentially
sticky data. When it has access to less cache than c(Z0), the
hit ratio is zero and it has no sticky data. The amount of
sticky data can be broken down into three different cases
based on the cache allocation c:

0 ≤ c < c(Z0)
Since the hit ratio is zero, there is no sticky data.

c(Z0) ≤ c < c(Z1)
When the amount of cache is increased to c(Z0), the
hit ratio increases from 0% to 50% (i.e., 50% of the
fetches become hits). We would therefore expect 50%
of the volatile data to become sticky. Since the amount
of volatile data just before Z0 is c(Z0), the amount of
sticky data in this range is 1

2
c(Z0).

c(Z1) ≤ c
At c(Z1), all of the fetches become hits. The sticky
data set size is therefore c(Z1).

Using Z’s hit ratio function, ĥ, the reasoning above can
be generalized into:

cs(Zx)− cs(Zx−)

c(Zx)− cs(Zx−)
=

ĥ(Zx)− ĥ(Zx−)

1− ĥ(Zx−)

2

The difference approximation above can be generalized
into the following differential equation:

dcs

dc

1

c − cs
=

dĥ

dc

1

1− ĥ
(5)

2.3.4 Putting It All Together
We have described how an LRU cache can be modeled by

splitting it into groups of cache lines with the same maximum
age. Volatile data is treated as a separate group of data where
the maximum age is determined by the total fetch rate into
the cache. Each application’s sticky data is allowed to stay in
the cache as sticky data as long as its maximum age is lower
than the maximum age of any application’s volatile data,
otherwise it becomes volatile. This leads to the following
requirement, which must hold for every application, n, at
steady state:

as
n < Av (6)

If the requirement does not hold for an application, its sticky
data that is too old to remain sticky becomes volatile.

Volatile data in the cache can be modeled using the model
derived for random replacement (Equation 1), that is:

fn = F
cvn
Cv

(7)

The total amount of cache an application has access to is
the sum of its sticky and volatile cache allocations:

cn = csn + cvn (8)

Using the requirements defined above, we can find a sharing
solution using a numerical solver. The solver starts with an
initial guess, wherein the application that starts first has

0:
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Figure 4: Solver steps for determining cache sharing
when running example applications X and Z from
Figure 2 and Figure 3 together. (See Example 5.)

access to the entire cache5 and the other applications do
not have access to any cache. The initial guess corresponds
to the state of the cache just before a new application is
started, which enables us to find the correct solution if the
application mix has multiple solutions.

The solver then lets all applications compete for cache
space by enforcing the age requirement between sticky and
volatile cache lines. If the age requirement can not be satisfied
for an application, the solver shrinks that application’s cache
allocation until the remaining sticky data satisfies the age
requirement. If multiple applications fail to satisfy the age
requirement, we shrink the application with the oldest cache
lines. The cache freed by the shrinking operation is then
distributed among all applications by solving the sharing
equations for the volatile part of the cache.

The process of shrinking and growing the amount of cache
allocated to the applications is repeated until the solution
stabilizes (i.e., no application changes its cache allocation
significantly).

Example 5: Assume that we run application Z from Figure 3
and X from Figure 2. Z starts first. The solver will then
make the following decisions (illustrated in Figure 4):

0. Since Z starts first, it is given access to all cache and all
its sticky data will fit in the cache. This is the initial
guess.

1. X starts and the random sharing equations are solved
for the volatile part of the cache. X fills the entire
volatile part of the cache with its data since Z has a
fetch rate of 0.

5The start order can be generalized to more than two applica-
tions by first determining the sharing for two applications and
using that as the initial guess when start the next application
and so on.



Cache line size 64 B
L1 latency 3 cycles
L1 associativity 16
L1 size 64 kB
L2 latency 30 cycles
L2 associativity 16
L2 size 8 MB
Memory latency 200 cycles

Table 1: M5 Simulator parameters

2. Based on the access rates and group sizes, we compute
that Z’s oldest sticky cache lines are now older than the
oldest volatile cache line (i.e., the age requirement does
not hold). Z can therefore not keep all its sticky data in
the cache. The solver decides to shrink Z until the age
condition can be satisfied. The condition is satisfied
when the second sticky group becomes volatile.

3. Sharing in the volatile part of the cache is updated
using the random model.

4. When the age conditions are satisfied, applying the
random model to the volatile part of the cache does
not change cache allocations and a stable solution is
found.

2

3. EVALUATION (SIMULATOR)

3.1 Experimental Setup
To evaluate the quality of the model, we simulated a simple

in-order quad-core processor without prefetching using M5 [1].
The simulated processor implemented a snooping MOESI
protocol with all L1 caches connected to a shared L2 cache
through a common bus. The simulator does not enforce
inclusion between cache levels. The detailed parameters are
listed in Table 1.

To obtain the input data for the model, we simulated each
application running in isolation and changed the L2 size from
512 kB to 8 MB in steps of 512 kB and measured its cache
behavior.

We evaluated our models against three different L2 replace-
ment policies: random replacement, LRU, and the pseudo-
LRU algorithm used in the Intel Nehalem microarchitec-
ture [6]. We included the pseudo-LRU policy to determine
if our LRU model generalizes to the hardware we use for
evaluating the model in Section 4.1. In our experiments, this
pseudo-LRU algorithm behaved very similar to normal LRU,
so we will limit our discussion to random and LRU.

We selected benchmarks with time-stable behavior from
SPEC CPU2006 and PARSEC, and tried to select applica-
tions with a wide variety of fetch rate behaviors. Applications
with high fetch rates or fetch rates that change significantly
when their cache allocation changes are particularly inter-
esting because they are affected by cache contention the
most. To avoid unstable start-up behavior, all benchmarks
were fast forwarded 85 billion instruction before starting the
simulation. The subsequent 2 billion memory accesses were
used to drive the simulation.

To further stress our models, we included the two classes
of microbenchmarks shown in Figure 5. The first class,
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Figure 5: Shared cache fetch ratios for the block and
random microbenchmarks.

App 0 App 1 App 2 App 3
block 5MB random 3MB streamcluster bodytrack
bodytrack soplex astar lbm
bodytrack streamcluster blackscholes lbm
lbm leslie3d astar bodytrack
libquantum block 5MB random 5MB random 7MB
libquantum lbm astar bodytrack
random 5MB streamcluster astar leslie3d
random 7MB lbm leslie3d bodytrack
random 3MB block 5MB lbm astar
streamcluster leslie3d soplex bodytrack

Table 2: Mixes of four applications

block, repeatedly accesses its data in a sequential order. This
behavior causes the fetch ratio for LRU caches to drop sharply
when the cache size is larger than the data set size. The block
benchmark is particularly challenging for the LRU model for
two reasons: First, since it has a sharp edge on the fetch ratio
curve, estimating group ages is hard as it involves taking
a derivative of the curve at the point of the sharpest drop
off. Second, as seen in Example 2, such benchmarks have
a tendency to induce multiple stable sharing configurations
in a given pair of benchmarks. The correct configuration
generally depends on which application started first.

The random microbenchmark class accesses its entire data
set randomly. This causes the fetch ratio to decrease linearly
with cache size. An interesting observation is that all three
replacement policies behave the same in this case. One of
the main reasons to include this benchmark is that its steep
fetch ratio curve means that a small error in estimating cache
allocation will translate into a large error in fetch ratio. For
example, a 1 MB error in predicted cache allocation would
lead to a fetch ratio error of 20 percentage points, which is
larger than the fetch ratio of most normal applications.

We ran all pairs of the following benchmarks from PAR-
SEC: blackscholes, bodytrack, streamcluster ; SPEC CPU2006:
astar, LBM, leslie3d, libquantum, soplex ; and the follow-
ing microbenchmarks: block (3MB, 5MB, 7MB), random
(3MB, 5MB, 7MB). Since the simulation time needed to
simulate all possible combinations of four applications would



be prohibitive, we limited our study to the groups shown in
Table 2.

3.2 Simulation Results

3.2.1 Random Replacement
We simulated a random replacement cache and measured

the cache allocation and fetch ratio per co-scheduled ap-
plication. Figure 6a shows the predicted cache size versus
simulated cache size and predicted fetch ratio versus simu-
lated fetch ratio for all pairs of applications. The better a
prediction, the closer it is to the diagonal. As seen in the
figure, there is an excellent agreement between the amount
of cache used by the applications and that predicted by the
random model. The average error in cache size prediction as
a fraction of the total cache size was 0.8%.

Some applications, such as the microbenchmarks in Fig-
ure 5, change their fetch ratio significantly when there is
only a slight change in cache size. The effect an error in
cache size has on the memory system will therefore depend
on the shape of an application’s miss ratio curve. In order to
more accurately assess how the model predicts cache perfor-
mance, we also evaluated how well the model predicts fetch
ratio. We define the relative fetch ratio error as the absolute
difference in predicted and simulated fetch ratio over the
simulated fetch ratio. It makes little sense to look at relative
errors for benchmarks with small fetch ratios, since with a
fetch ratio close to zero, even an insignificant error will cause
the relative error to explode. Excluding benchmarks with a
simulated fetch ratio less than 0.5%, we measure a relative
fetch ratio error of 6.1%. The average absolute error for the
excluded benchmarks was 0.04%, which corresponds to an
insignificant difference in performance.

As seen in Figure 6c, groups of four applications can be
predicted with similar accuracy. In this case, the average
error in cache size was 0.9% and the average relative error
in fetch ratio was 3.3%.

3.2.2 LRU Replacement
Figure 6b shows the predicted and simulated behavior for

pairs of applications with LRU replacement. The scatter
plot compares the simulator solutions with their predicted
counterparts. The average error in predicted cache size
was 0.9% and the average relative error for the fetch ratio
prediction was 5.4%. Similar to the random replacement case,
we excluded applications with a fetch ratio lower than 0.5%
from the fetch ratio average. The average absolute error for
the excluded benchmarks was 0.05%. The model accurately
solves the more complex task of modeling cache sharing for
LRU caches, even the microbenchmarks with sharp edges in
their fetch ratio curves can be handled accurately.

As seen in Figure 6d, the average error for groups of four
applications is similar to when modeling random replacement.
The average error in cache size in this case is 1.3% and the
average relative error in fetch ratio is 4.2%.

The solver typically finds a solution within 5 to 10 itera-
tions. Our prototype Python-based solver normally finds a
solution in less than 100 ms.

3.2.3 Multiple LRU Sharing Solutions
As seen in Section 2.3, some combinations of applications

can result in multiple stable sharing configurations. It turns
out that such benchmark combinations are uncommon, and
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Figure 6: Predicted vs. simulated sharing and fetch
ratio

we only observed such behavior for microbenchmarks running
in the simulator. In order for a pair of applications to have
multiple stable sharing configurations, at least one of the
applications must have a sharp knee in its fetch rate curve. In
that case, the configuration the simulator finds will depend on
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Figure 7: Fetch rate and cache sharing as a func-
tion of time for libquantum and the 5 MB block mi-
crobenchmark. The shaded part of the graph is the
warm-up period where libquantum is executes in iso-
lation.

the start order of the applications. To find such application
pairs, we ran every application pair twice, starting one of
the applications 5 billion cycles after the other.

Out of the 98 benchmark pairs, the simulator found mul-
tiple stable solutions in three cases, all involving the 5 MB
block microbenchmark. The model accurately found both
solutions in all of these cases by modeling the start order of
the applications.

In two benchmark pairs, the simulator found a stable so-
lution, but later switched to a different solution. This can
occur for applications, which despite having fairly time stable
behavior, have short hiccups where their fetch rate temporar-
ily drops. Figure 7 shows the 5 MB block microbenchmark
running together with libquantum. In this case, libquantum
started first and was allowed to execute in isolation for 5
billion cycles before the block microbenchmark was started.
When the block application starts, its fetch rate immediately
rises and stays high since it is unable to make its data sticky.
Later libquantum has a short drop in its fetch rate which
allows the block microbenchmark to install its entire data
set into the cache and stabilize at the second solution. The
model, being unaware of libquantum’s time-varying behavior,
predicts that the simulator will stay in the first solution.

In addition to the five benchmark pairs where the simulator
found multiple solutions, our model found an additional
solution in four other benchmark pairs. As in the cases
where the simulator found multiple solutions, all of these
cases involved the 5 MB block microbenchmark. The main
reason for the additional solutions found by the model is
input data limitations. The model uses sparse data collected
for a limited set of cache sizes for each benchmark. This
makes it feasible to apply the model to real-world systems,
but causes numerical problems for benchmarks with sharp
edges in their fetch rate curves. For example, inaccuracies
in the input data caused the model to predict two sharing
configurations when running the 5 MB block microbenchmark
together with the 7 MB random microbenchmark.

4. EVALUATION (HARDWARE)

4.1 Experimental Setup
Our evaluation system consisted of a 2.4 GHz Intel Xeon

E5620 system (Westmere) with 4 cores and 6 GB DDR3
memory. Each core has a private 32 kB L1 data cache and a
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(b) Four co-scheduled benchmarks

Figure 8: Predicted vs. measured fetch ratio for ap-
plications running on an Intel Xeon E5620 based
system.

private 256 kB L2 cache. All four cores share a 12 MB 16-way
L3 cache with a pseudo-LRU replacement policy.

Our cache sharing model requires information about ap-
plication fetch rate, access rate and hit ratio as a function
of cache size. We used Cache Pirating [6] to measure this
data for different cache sizes in steps 16 steps of 768 kB (the
equivalent of one way) up to 12 MB.

We used the same benchmarks in the hardware study and
the simulation study. However, we increased the size of the
microbenchmarks’ data set by 50% to better stress the 50%
larger shared last-level cache.

While measuring the microbenchmarks, we discovered that
the Cache Pirate slightly overestimates working set sizes. The
average error in working set for the random microbenchmark
was 256 kB due to the Pirate application and the monitoring
framework using some of the shared cache. We compensated
for this error by shrinking the total cache size in the model
by this amount and offsetting the input data.

4.2 Results
Figure 8a compares the predicted and measured fetch ratio

of pairs of co-scheduled applications. We do not show the
amount of cache allocated to each application since there is
no accurate way to measure this on the hardware. Unlike the
simulator, we only found one solution for each benchmark
pair. We believe that the reason for this is that the fetch rate
curves of the applications running on our reference hardware
do not have as sharp edges as in the simulator. The average
relative error in predicted fetch ratio was 7.1%. Similar to
the simulator evaluation, we excluded applications with a
fetch ratio lower than 0.5% from the average. Figure 8b
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Figure 9: Estimated bandwidth vs. measured band-
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of benchmarks running on an Intel Xeon E5620
based system. The gray area indicates the band-
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shows the results for groups of four co-scheduled applications.
The average fetch ratio error was 6.7%.

4.3 Estimating Bandwidth and Throughput
Knowing how applications share cache allows us to predict

other performance metrics, such as bandwidth requirements
and throughput. The data measured using Cache Pirating
contains information about each application’s individual CPI
and bandwidth requirement as a function of cache size. Since
we can predict each application’s cache allocation, we can
trivially find its bandwidth demand. Assuming that a mix is
not bandwidth limited, we can calculate the combined IPC
of the mix (throughput) and its expected bandwidth usage.

Knowing the combined bandwidth demand of an applica-
tion mix can guide a scheduler to avoid mixes with bandwidth
demands too close to the system’s bandwidth limitation. For
mixes well below that limitation, our throughput estimates
should be accurate enough to find the best mixes.

We estimated the real-world bandwidth limit of our refer-
ence system to approximately 12 GB/s using the STREAM
benchmark [12]. We consider an application mix to be band-
width limited if it uses more than 90% of the maximum
bandwidth.

Figure 9 compares the combined bandwidth and through-
put of our estimation with the corresponding numbers mea-
sured on real hardware. As seen in the figure, as long as
the estimated bandwidth is low enough (below 11 GB/s),
our bandwidth estimate is quite accurate. Excluding the
mixes with a too high bandwidth demand, we can predict
the bandwidth of a mix with an average relative error of less
than 5.9% and throughput with an average error less than
2.5%.

5. RELATED WORK
Cache sharing models can be divided into two categories:

trace driven and high-level data driven. The trace driven
models generally use memory access traces or stack distance6

traces. The benefit of using traces is that they contain

6A stack distance is the number of unique between two
accesses to the same cache line.

detailed information about the execution. Unfortunately,
acquiring a memory access trace is slow and storage intensive.
Using high-level data, such as sampled memory accesses or
statistics provided by performance counters, has become a
common approach to reduce data collection overhead.

There are several models [2, 4, 3, 17] using stack distance
traces. Chandra et al. [2] pioneered the field with a statistical
model that estimates the probability that an access becomes
a miss by prolonging its stack distance with the expected
number of accesses performed by other applications. One
drawback with their model is that it assumes that an ap-
plication’s execution rate is independent of the amount of
cache it has access to. Chen and Aamodt [4, 3] extended
Chandra’s model by including variable execution rate. They
also improved the accuracy of the model for low cache as-
sociativity by taking the access distribution across sets into
account.

The method most similar to ours is CAMP [19] by Xu et al.
They use high-level input data, similar to the input data used
by our model to model sharing among pairs of applications.
However, their model depends on a linear approximation of
CPI as a function of fetch ratio. Such an approximation is
often inaccurate for processors with out-of-order execution
and prefetching. We do not need to model execution rate as
this is implicit in our input data. Xu et al. also evaluate two
simpler models, which assume that an application’s cache
share is either proportional to its access rate or its fetch
rate. The latter is equivalent to the model we use for random
caches, but is applied to LRU caches and approximates fetch
rates using their linear execution rate model.

Eklöv et al. proposed a statistical cache sharing model [5]
using memory access samples, which can be measured with
low overhead. They use a performance model similar to the
one used by Xu et al. to estimate the relative execution rate
of co-scheduled applications and merge the sampled access
streams from each of them. Unfortunately, since they use a
linear approximation of execution rate, they suffer from the
same drawbacks as the model by Xu et al.

Two recent works focus on estimating how resource con-
tention affects performance. Mars et al. [10] use a stress
benchmark to induce contention in an application and then
measure its slowdown. The slowdown is used as a contention-
sensitivity metric which can be used to guide schedulers.
Unlike our method, they do not try to estimate the per-
formance of specific combinations of applications. Instead
they focus on a general classification of applications as either
being sensitive or insensitive to contention. The approach
by Van Craeynest and Eeckhout [16] is more similar to our
method in that they estimate the throughput of mixes of
applications. A major difference between our methods is
that they depend on a single high-fidelity simulation to gen-
erate the application profiles used by their model, whereas
we measure our input data with low overhead on the target
system.

6. FUTURE WORK
We are currently working on extending our models to han-

dle time-varying application behavior. A simple approach
would be to slice applications into time windows and estimate
sharing between windows. Such an approach would work,
however, the amount of data needed would most likely be
prohibitively large. Instead, we envision using phase infor-



mation, which would enable us to analyze larger regions of
stable behavior.

Another exciting direction is to extend the model to more
accurately predict throughput for bandwidth limited mixes.
This, however, most likely requires a detailed analytical
performance model of the processor or performance data as
a function of bandwidth.
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