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ABSTRACT
On multicore processors, co-executing applications compete
for shared resources, such as cache capacity and memory
bandwidth. This leads to suboptimal resource allocation and
can cause substantial performance loss, which makes it im-
portant to effectively manage these shared resources. This,
however, requires insights into how the applications are im-
pacted by such resource sharing.

While there are several methods to analyze the perfor-
mance impact of cache contention, less attention has been
paid to general, quantitative methods for analyzing the im-
pact of contention for memory bandwidth. To this end we
introduce the Bandwidth Bandit, a general, quantitative,
profiling method for analyzing the performance impact of
contention for memory bandwidth on multicore machines.

The profiling data captured by the Bandwidth Bandit is
presented in a bandwidth graph. This graph accurately cap-
tures the measured application’s performance as a function
of its available memory bandwidth, and enables us to deter-
mine how much the application suffers when its available
bandwidth is reduced. To demonstrate the value of this data,
we present a case study in which we use the bandwidth graph
to analyze the performance impact of memory contention
when co-running multiple instances of single threaded ap-
plication.

1. INTRODUCTION
Prior research has shown that contention for shared

resources, such as cache capacity and off-chip memory
bandwidth, can have a large negative impact on appli-
cation performance [7, 23]. Current trends of increasing
core counts, without a corresponding growth in off-chip
bandwidth, indicate that the pressure on shared mem-
ory resources will only increase in the future [18]. Meth-
ods and tools to aid the analysis of applications’ per-
formance sensitivities to resources sharing are therefore
becoming increasingly important, both for application
developers and system architects.

In the case of cache capacity, the Miss Ratio Curve
(MRC) [16] is a quantitative tool for analyzing applica-
tions’ sensitivity to contention. MRCs present applica-
tions’ miss ratios as a function of their allotted cache
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Figure 1: CPI as a function of cache (left) and
bandwidth (right) for OMNet++ on an Intel
Nehalem system.

capacity and can answer questions such as, how much
an application suffers, in terms of cache misses, when its
cache capacity is reduced. MRCs have been the foun-
dation for many techniques to manage shared cache ca-
pacity [17, 21, 22]. Several other tools, such as Cache
Pirating [9] and Stressmark [24], have been proposed
that in a similar fashion plot various application perfor-
mance metrics as a function of cache capacity. The left
graph in Figure 1 shows data obtained using Cache Pi-
rating for OMNet++. It presents OMNet++’s Cycles
Per Instruction (CPI) as a function of its available cache
capacity. This data has been used to predict and explain
how cache contention impacts throughput in multipro-
grammed environments on contemporary multicore ar-
chitectures [9].

While there are several general methods to analyze
the performance impact of cache contention, less atten-
tion has been paid to general, quantitative methods for
analyzing the impact of contention for off-chip memory
bandwidth. The fact that contention for memory band-
width can impact an application’s performance, either
by increasing its memory access latencies or reducing
its available off-chip memory bandwidth, is widely un-
derstood. However, it is not always obvious when and
by much how these factors impact application perfor-
mance. To this end we introduce the Bandwidth Bandit,
a general, quantitative, profiling method for analyzing
the performance impact of contention for shared off-chip
memory resources, and determining the applicationÕs
degree of latency- and bandwidth-sensitivity.

The right graph in Figure 1 shows data obtained using
the Bandwidth Bandit for OMNet++ on an Intel Ne-

1



Core

L3
 C

ac
he

M
em

or
y

C
on

tr
ol

le
r D

IM
M

Row Buffer

Local Global

Core

D
IM
M

D
IM
M

DRAM Banks

Figure 2: The memory hierarchy.

halem system. It presents OMNet++’s CPI as a func-
tion its available bandwidth and quantitatively shows
how much OMNet++ suffers when its share of the avail-
able bandwidth is reduced. As such, this data enables
a new dimension of resource contention analysis by en-
abling existing cache contention analyses (e.g., [9]) to
be performed for bandwidth contention as well. Sec-
tion 8 presents an example, showing how it can be used
to explain how contention for memory bandwidth limits
the scalability of multiprogrammed environments.

The design of the Bandwidth Bandit is inspired by
Cache Pirating. It co-runs the application whose perfor-
mance we want to measure (the Target) with a Bandit
application that “steals” memory bandwidth. Varying
the amount of bandwidth stolen by the Bandit, while
measuring the Target’s CPI, allows us to plot the Tar-
get’s CPI as a function its available bandwidth. As we
want to analyze applications’ sensitivities to contention
for memory bandwidth it is important that the Bandit
does not steal shared resources other than bandwidth.
For example, if the Bandit consumes large amounts of
shared cache capacity, it might inadvertently cause the
Target to slowdown and perturb the measurements.

2. BACKGROUND

2.1 Memory Hierarchy Organization
The memory hierarchy considered in this paper is

that of the Intel Nehalem processor, shown in Figure 2.
If a memory access cannot be serviced by the cores’ pri-
vate caches (not shown in the figure), it is first sent to
the shared L3 cache. If the requested data is not found
in the L3 cache, it is sent to the integrated Memory Con-
troller (MC). The MC has three independent memory
channels over which it communicates with the DRAM
modules. Each channel consists of an address and a
data bus. Memory requests are typically 64 bytes (one
cache-line) and require multiple transfers over the data
bus. Each DRAM module consists of several indepen-
dent memory banks, which can be accessed in parallel,
as long as there are no conflicts on the address and data
buses. The combination of independent channels and
memory banks provides for a large degree of available
parallelism in the off-chip memory hierarchy.

The DRAM memory banks are organized into rows
(also called pages) and columns. To address a word
of data the MC has to specify the channel, bank, row
and column of the data. To read or write an address,
the whole row is first copied into the bank’s row buffer.
This single-entry buffer (also known as a page cache)
caches the row until a different row in the same bank is
accessed.

On a read or write access three events can occur:
A page-hit when the accessed row is already in the row
buffer and the data can be read/written directly; a page-
empty when the row buffer is empty and the accessed
row has to be copied from the bank before it can be
read/written1; or a page-miss when a row other than
the one accessed is cached in the row buffer. In the case
of a page-miss, the cached row has to first be written
back to the memory bank before the newly accessed row
is copied into the row buffer. These three events have
different latencies, with a page-hit having the shortest
latency, and a page-miss having the longest.

2.2 Memory Hierarchy Performance
From a performance point of view the memory hier-

archy can be described by two metrics: its latency and
bandwidth. These two metrics are intimately related.
Using Little’s law [14], the average bandwidth achieved
by an application can be expressed as follows:

bandwidth = transfer size× MLP

latency
, (1)

where MLP is the application’s average Memory Level
Parallelism, that is, the average number of concurrent
memory requests it has in-flight, and latency is the aver-
age time to complete the application’s memory accesses.

The above equation clearly illustrates that the band-
width achieved by an application is determined by both
its memory access latency and its memory parallelism.
However, these parameters vary throughout the mem-
ory hierarchy, and from application to application. For
example, at the bank level, the parallelism is limited by
the number of banks. However, MCs typically queue
requests to busy banks. From the higher-level perspec-
tive of the MC, the parallelism, or number of in-flight
requests, will include the requests in these queues, and
appear larger. The latency will also appear different,
since the time spend in the queues has to be consid-
ered. The above equation will therefore have different
values for latency and MLP depending on where it is
applied in the memory hierarchy.

3. EXPERIMENTAL SETUP
The experiments presented in this paper have been

1Page-empties occur when the MC preemptively closes a
page that hasn’t been accessed recently to optimistically
turn a page-miss into a page-empty.
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run on a quad core Intel Xeon E5520 (Nehalem). Its
cache configuration is detailed in the following table:

L1 cache 32k/32k, 8/4 way, inst./data, private
L2 cache 256k, 8 way, unified, private
L3 cache 8MB, 16 way, inclusive, shared

In this system, an L2 cache miss is sent to a Global
Queue (GQ) [3] which tracks the in-flight L2 misses.
The GQ has three queues for in-flight accesses: a 32-
entry queue for loads, a 16-entry queue for stores, and
a 12-entry queue for requests to the QuickPath Inter-
connect (QPI). In a single socket system, upon receiving
a request for a cache line from one of the four cores, the
GQ first sends a request to the shared L3 cache. If the
cache line is not present in the L3 cache, it then sends
the request to the MC.

The MC for this system has three memory channels.
Our baseline setup uses one dual-ranked 4GB DDR3-
1333 DIMM. For experimenting with different numbers
of active memory channels we used up to three dual-
ranked 2GB DDR3-1333 DIMMs. All DIMMs have 16
memory banks (8 per rank) and 8kB page caches.

Using a small micro-benchmark, we measured the
access latencies of page-hits (82 cycles), page-empties
(160 cycles) and page-misses (177 cycles). This micro-
benchmark traverses a linked list such that each mem-
ory access is data dependent on the previous memory
access. Its execution time is therefore limited by the
memory access latencies which allow us to measure its
access latencies. By carefully staging the linked list’s
layout in memory we ensure that the memory accesses
results in the desired event.

4. SOURCES OF MEMORY CONTENTION
4.1 Limited Memory Parallelism

According to Eq.1, it appears that an application’s
bandwidth is strictly proportional to its number of par-
allel memory requests. However, the memory hierarchy
cannot always accept as many parallel requests as the
application can generate. Such limitations can result
in contention and appear at both the local level (limi-
tations on the number of requests individual cores can
have in-flight) and the global level (limitations on the
total number of in-flight memory requests in the shared
memory hierarchy).

Local bottlenecks: Figure 3 shows the results of co-
executing multiple instances of a small micro-benchmark
whose MLP we can vary. The data shows the aggre-
gate bandwidth for one to four instances of the micro-
benchmark and for one, two and three active memory
channels. For the case of a single instance (lower red
line), regardless of the number of memory channels, the
bandwidth increases (almost) linearly with the mem-
ory parallelism until it reaches an MLP of 10, at which
point it levels off. This suggests that there is a limit of
10 in-flight memory requests for a single core.

By examining the data for two instances (green line),
for two and three active memory channels (Figures 3(b)
and 3(c)), we can see that this is indeed the local per-
core limit. For two instances (two cores) the bandwidth
increases linearly until the memory parallelism reaches
20 (10 per instance). This indicates that the system
can readily reach a total memory parallelism of 20, and
that the limit of 10 is the local limit for each core.

Global bottlenecks: The effects of global bottle-
necks can be seen in the data for one active memory
channel (Figure 3(a)). For a single channel, two or more
instances causes the bandwidth to level off at about
7.5GB/s. This occurs when the per-instance memory
parallelism is 8 (for 2 instances), 5 (for 3 instances),
and 4 (for 4 instances). In all three cases this repre-
sents a combined memory parallelism of 16. We can
therefore conclude that with one memory channel ac-
tive the memory hierarchy can keep only 16 parallel
memory requests in-flight at a given time. Repeating
the analysis for two and three memory channels (Fig-
ures 3(b) and 3(c)) shows that the bandwidth levels off
at 13.2GB/s and 15.9GB/s, respectively. This occurs
when the memory parallelism reaches a total of 32, in-
dicating that there is a global limit of 32 parallel memory
requests with two or more memory channels active.

In the case of two or more active memory channels,
we suspect that the limit of 32 memory requests is due
to the 32-entry queue for loads in the GQ in our Ne-
halem system. In the case of one active channel, the
limit may be due to the fact that there are only 16 mem-
ory banks per channel. However, from an application’s
point of view this distinction is unimportant. In both
cases the application’s parallel memory accesses will be
queued somewhere in the memory hierarchy, and the
finite length of these queues will impose a limit on the
maximum MLP.

4.2 Reduced Access Latencies
According to Eq. 1 the bandwidth should increase lin-

early with the memory parallelism until any of the MLP
limits are hit. However, Figure 3 clearly shows that
this is not the case as the bandwidth rolls off smoothly.
This is because the aggregate bandwidth increases when
the MLP is increased. Increased bandwidth increases
memory contention, which in turn can cause an increase
number of page-misses and bank contention, ultimately
resulting in increased access latencies2.

Page-Misses: Memory contention can turn page-
hits into page-misses and thereby increase access laten-
cies. To cause a page-miss, it is enough that one thread
accesses a bank whose page cache holds a row for an-
other thread, forcing the cached row to be replaced. As

2There is a third way in which memory contention can in-
crease access latencies: contention for the address and data
buses. This, however, is much less significant.
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Figure 3: Aggregate bandwidth as a function of MLP for different numbers of memory channels.

the access latency in the case of a page-miss is about
twice that of a page-hit, this can have large impact on
application performance (see Section 3).

Bank contention occurs when two or more threads
try to access the same bank at the same time. When
this happens, only one of the requests can be issued to
the bank and the other(s) must be queued in the MC
until the bank is available, causing their latencies to
increase.

5. THE BANDWIDTH BANDIT
The Bandwidth Bandit method enables us to measure

how an application’s performance is affected by con-
tention for shared off-chip memory resources. It works
by co-running the application whose performance we
want to measure (the Target) with a Bandit application
that generates contention for the shared off-chip mem-
ory resources. To accomplish this, the Bandit accesses
memory at a specified rate and in a controlled pattern
that ensures it generates the desired amount and type
of contention. By measuring the Target’s performance
while varying the amount of contention the Bandit gen-
erates, we can obtain the Target’s performance as func-
tion of contention for the memory system.

5.1 Requirements
Since we want to isolate the performance impact due

to memory contention, it is important that the Ban-
dit does not fight with the Target for any other shared
resources. In particular, the Bandit must avoid using
a significant amount of the shared cache, as the Tar-
get’s performance may be sensitive to its shared cache
allocation.

As we saw in Section 4, contention for shared off-chip
memory resources can result in both reduced bandwidth
and increased latencies, at different points in the mem-
ory hierarchy. These effects are due to 1) reduced mem-
ory parallelism, 2) increased bus and bank contention,
and 3) an increased number of page-misses. To generate
realistic memory contention, the Bandit must be able to
cause all of the above.

1) Reduced memory parallelism occurs when co-running
applications generate memory request at such a rate
that they start to compete for the limited number of
GQ entries.

2) Bus and bank contention arises when multiple ap-
plications accesses the same bank. However, to access
the bank the applications must first generate memory
accesses, have them queued in the GQ, and then gain
access to the address and data buses for the access. If
the rate at which the application access the bank is in-
creased, the contention for that bank will increase, but
this will also cause both more GQ entries to be allocated
and more bus contention.

3) Increased page-misses is a function of both the
co-running applications’ relative access rates and their
page locality, i.e. how many times they access a given
page without intervening accesses to different pages. In
general, applications with higher access rates are more
likely to cause page-misses for other applications.

5.2 Implementation
In order to generate a specific amount of realistic

memory contention the Bandit application has to be
able to generate a specific amount of parallel memory
accesses and access a set of banks at a given rate. To
expose the impact of request reordering in the MC, the
Bandit has to be able to vary the page locality within
the access stream. To accomplish this we first need a
mechanism to access individual memory banks.

In order access individual banks we allocate 32 large
(2MB) pages. With only one memory channel active,
one large page span across all (16) memory banks. (We
discuss the case of more active memory channels be-
low.) This allows us to access all memory banks from
within a single large page. We initialize the large pages
with 16 independent linked lists. Each list has one el-
ement in every large page that all reside in the same
memory bank. (These elements are necessarily in dif-
ferent rows). Therefore, when traversing one of these
linked lists the Bandit generates 32 memory requests to
different rows within the same bank. Furthermore, the
elements in a list are laid out such that they all map into
the same cache-set. Traversing all 16 lists will therefore
only thrash 16 cache-sets3. As the associativity of the

3While one could completely avoid thrashing the shared
cache by using non-cacheable memory [2], the maximum
access rate to this type of memory is too low to generate
significant amounts of contention.
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last-level cache on our system is 16 and the lists have 32
elements each, all accesses will result in cache misses.

To control the amount of row locality (i.e. the num-
ber of consecutive accesses to the same row), we can
insert additional elements into the linked list that are
allocated at addresses immediately following the origi-
nal elements. To ensure that all access to the elements
result in cache misses they are 64B aligned, which guar-
antees that they are on different cache lines. For exam-
ple, to generate contention with a locality of four (e.g.,
every fourth access causes a page-miss), we insert three
elements after each original element. However, for each
additional element we will use one extra cache-set, lim-
iting the amount of locality we can generate without
consuming too much of the shared cache capacity. On
our machine, a locality of eight uses 1.5% of the cache-
sets.

When more than one memory channel is active (i.e.
populated with DIMMs) the MC spreads the physical
address space across the channels with a 64B granular-
ity in a round robin fashion. In the case of two (three)
channels, two (three) consecutive large pages are re-
quired to span all 32 (48) memory banks. However, in
user space we have no control over whether the (virtual)
pages we allocate are backed by physically consecutive
pages or not. To work around this, we wrote a small
kernel module that we can query for the physical ad-
dress of a virtual page. This allows us to ensure that
our allocated pages span the correct channels.

To place the elements in the linked list such that they
reside in the same memory bank, we need to know how
the MC maps physical addresses to banks, rows and
columns. This information has been partially docu-
mented by Intel [1]. Guided by this information we
were able to experimentally find the complete address
mappings.

The Bandit application allocates linked lists as dis-
cussed above and traverses them at a rate that gener-
ates the desired amount of memory contention. As each
core is limited to 10 in-flight memory requests, we run
three parallel instances of the Bandit application to be
able to generate high levels of contention Since we have
different linked list for the different memory banks, we
can control how much contention we generate for each
bank individually.

6. RESULTS
6.1 Methodology

In this section we present data obtained using the
Bandwidth Bandit method on a set of applications from
the SPEC2006 [11] and PARSEC [5] benchmarks suites.
We selected eight benchmarks (six from SPEC and two
from PARSEC) that have large bandwidth demands;
as such applications are believed to be more sensitive
to memory contention. All benchmarks were run to
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Figure 4: Bandwidth Bandit data: Target’s
bandwidth (left, red) and IPC (right, blue); and
total system bandwidth (left, green), as a func-
tion of the bandwidth stolen by the Bandit.

completion with their reference input sets. Our goal is
to investigate how sensitive individual threads are to
memory contention and therefore we ran the PARSEC
benchmarks with a single thread.

To obtain the Bandit data we co-executed three in-
stances of the Bandit application with benchmark ap-
plication multiple times, each time increasing the band-
width demand of the Bandit4. For every 100M instruc-
tions executed by the Target application5, we recorded
both the Target’s and the Bandit’s time stamp counter
and number off-chip fetches from the hardware perfor-
mance counters. All data presented throughout the rest
of the paper represent one 100M instruction window of
the most representative memory behavior. To find such
windows, we used Cache Pirating [9] to measure fetch
ratio curves (i.e. fetch ratio as a function of cache size)
of each 100M window. These curves captures the mem-
ory behavior of the windows. To find the most represen-
tative window we applied a simple clustering algorithm
which groups windows with similar fetch ratio curves
and selected one window from the group with the most
windows.

6.2 Bandwidth Bandit Data
Figure 4 shows an example of the raw data obtained

using the Bandwidth Bandit for milc on our Nehalem
system. The graphs show milc’s bandwidth and IPC,
and the total bandwidth (Target plus Bandit), as a
function of the bandwidth stolen by the Bandit. When
the Bandit does not steal any bandwidth, milc’s base-
line bandwidth is about 2.7GB/s and its baseline IPC
is about 0.70. However, when the Bandit steals only
2GB/s, milc’s bandwidth and IPC have dropped to 2.5GB/s
and 0.65, respectively. At this point the total band-
width is 4.5GB/s (2.5GB/s Target + 2GB/s Bandit).
At increased Bandit bandwidths (moving to the right

4This overhead be avoided by dynamically changing the
Bandit’s bandwidth demand during execution, as has been
successfully demonstrated for stealing cache space [9].
5This window size is commonly used for program phase de-
tection [20] since programs typically have stable behaviours
across many different metrics on this time scale.
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on the x-axis), the total bandwidth levels out at a Ban-
dit bandwidth of about 4.6GB/s, at which point we have
reached the saturation bandwidth.

The saturation bandwidth (the horizontal dashed line
in Figure 4) is the largest bandwidth that can be achieved
for milc and three instances of the Bandit application,
and is about 6.4GB/s. Therefore, when we increase the
Bandit’s bandwidth beyond 4.6GB/s, milc’s bandwidth
drops by the same amount, and it starts to follow the
45◦ dashed line, which indicates the points where the
total bandwidth equals the saturation bandwidth.

Based on this data, we can make the following two
observations. First, the bandwidth saturates well below
the system peak bandwidth of 10.7GB/s. Second, the
performance of milc starts to drop long before the sat-
uration bandwidth is reached. This demonstrates that
we cannot assume that co-running applications will not
be impacted by bandwidth contention as long as the
total bandwidth is below the system peak bandwidth.

6.3 Bandit Access Pattern
To investigate how the applications are affected by

the Bandit’s access pattern, we ran the experiment de-
scribed in Section 6.1 with the Bandit’s locality set to
one, four and eight. (E.g., accessing one, four or eight
cache lines from each row before moving on to the next
row.) This causes the Bandit to generate contention
that is more similar to that generated by an application
with a sequential access pattern. The results for milc
and soplex are shown in Figure 5. The other applica-
tions displayed similar behaviors and are not shown.

The figure shows both the Bandit data collected with
a page locality of one (e.g., random access pattern) and
four (e.g., sequential). Increasing the locality to eight
had a negligible further impact. The first thing to note
is that the saturation bandwidth is greater (increasing
from 6.4GB/s to 7.3GB/s for milc). This is because the
bank access times for the Bandit are reduced (due to the
increased number of page-hits), and the throughput of
the memory banks therefore increases.

Furthermore, if we look at the shape of the Target’s
bandwidth and CPI curves, the curves for a locality of
four appear to be stretched. Indeed, if the data is pre-
sented as a percentage of the saturation bandwidth, the
two curves match almost perfectly. (Figure 6) This sug-
gest that applications’ relative sensitivity to contention
for bandwidth does not change significantly with its co-
runners’ access patterns. As a result, plotting the band-
width stolen by the Bandit (the x-axis of the bandwidth
graph) as percentage of the saturation bandwidth, fac-
tors out the impact of the access patterns.

6.4 Bandwidth Graphs
Figure 7 shows Bandwidth Bandit data for the eight

benchmarks. In order to factor out the impact of the
Bandits access pattern, bandwidths are express as a
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Figure 8: Correlation of slowdown with base-
line bandwidth (a) and IPC (b) when the total
bandwidth is 90% of the saturation bandwidth.
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(b)
Figure 9: Correlation of slowdown with baseline
bandwidth (a) and IPC (b) when the total band-
width just reached the saturation bandwidth.

percentage of the saturation bandwidth. The result-
ing bandwidth graphs (BWGs) present a general, quan-
titative description of the applications’ sensitivities to
bandwidth contention, and allow us to determine how
much an application suffers when its available band-
width is reduced. In the following section, we use these
BWGs to investigate the benchmark applications’ sen-
sitivities to contention for memory bandwidth.

7. SENSITIVITY TO CONTENTION
Since applications with large baseline bandwidths have

high demand for off-chip memory bandwidth, it is com-
monly believed that they are more sensitive to con-
tention for off-chip bandwidth. To investigate this we
plot the correlation between application slowdown due
to memory contention and baseline bandwidth in Fig-
ure 8(a) and Figure 9(a). The baseline bandwidths are
the applications’ bandwidth demand when run alone on
the machine. Figure 8(a) and Figure 9(a), show slow-
down due to contention (baseline IPC relative to IPC
under contention) at the point when the total band-
width (Target plus Bandit) reaches 90% and 100% of
the saturation bandwidth, respectively. This allows us
to investigate the applications’ sensitivities both before
and after the total bandwidth saturates.

The graphs in Figure 8(a) and Figure 9(a) show hardly
any correlation between slowdown and the baseline band-
width. For example, in Figure 8(a), canneal and stream-
cluster have the lowest (but different) baseline band-
widths, but large (and very similar) slowdowns, while
lbm and soplex have virtually the same baseline band-
width, but very different slowdowns. Figure 9(a) shows
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Figure 5: Effect of access patterns on sensitivity. Data captured with a random-access bandit (thin
lines) and a sequential-access bandit (thick lines).
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Figure 6: Bandit bandwidth as percentage of the saturation bandwidth. Data captured with a
random-access bandit (thin lines) and a sequential-access bandit (thick lines).

a similar lack of correlation. Furthermore, Figure 8(b)
shows the correlation between slowdown and the corre-
sponding baseline IPCs. This graph shows even less cor-
relation. These graphs indicate that neither the baseline
bandwidth nor the baseline IPC are good indicators of
an application’s sensitivity to memory contention. To
quantitatively analyze this lack of correlation we intro-
duce the concepts of latency- and bandwidth sensitivity.

7.1 Latency vs. Bandwidth Sensitivity
As we saw in Section 4, memory contention can cause

both increased access latency and/or reduced the avail-
able memory parallelism. Roughly, when the total band-
width is below the saturation bandwidth contention can
cause increased latencies. When the total bandwidth
reaches the saturation bandwidth, increased contention
causes both increased latencies and reduced memory
parallelism. Furthermore, as shown in Figure 8 and
Figure 9, different applications exhibit different sensi-
tivities to memory contention. Some applications expe-
rience large slowdowns as the latency increases but the
total bandwidth is still below the saturation bandwidth.
These applications are latency sensitive. Other appli-
cations experience significant slowdowns only when the
total bandwidth saturates. These applications are band-
width sensitive.

Latency Sensitivity: Milc and soplex are latency
sensitive applications. They suffer the highest slow-
downs before the bandwidth saturates (see Figure 8(a)).
Before the bandwidth saturates contention mainly re-
sults in increased access latencies. The large slowdowns
experienced by milc and soplex therefore suggests that

they are sensitive to increased access latencies. This can
be seen in their BWGs (Figure 7) where their IPCs drop
significantly long before the total bandwidth saturates.

Bandwidth Sensitivity: Lbm and leslie3d are band-
width sensitive applications. They experience only mod-
est slowdowns before the bandwidth saturates (see Fig-
ure 8(a)). At the point where the total bandwidth satu-
rates, the memory parallelism becomes the bottleneck.
At this point, if the Bandit (or other co-runners) steals
additional bandwidth, it will use more of the avail-
able memory parallelism (e.g., GQ entries and memory
banks). Hence, the Target gets to use less, and its band-
width is therefore reduced by the same amount stolen by
the Bandit. For example, lbm performs a stencil com-
putation and has a very regular access pattern. The
prefetchers in modern processors will easily detect this
pattern and prefetch the data in advance, thereby hid-
ing its access latency. The performance of lbm is there-
fore not directly affected by increased access latencies
as long as there is enough memory parallelism available
and the prefetcher can fetch far enough ahead. This
can be seen in lbm’s and leslie3d’s BWGs (Figure 7)
where their IPC virtually flat until the point where the
bandwidth saturates.

8. CASE STUDY
In this case study we show how to use BWGs ob-

tained with the Bandwidth Bandit to analyze how con-
tention for memory bandwidth impacts throughput as
we increase the number of co-running instances of OM-
Net++.
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Figure 7: BWGs: Target’s bandwidth (left, red) and IPC (right, blue), as a function of bandwidth
stolen by the Bandit (x-axis). Bandwidths are presented as a percentage of the saturation bandwidth.

8.1 Experimental Setup
In this study we are concerned with the impact of con-

tention for memory bandwidth. Therefore, to eliminate
the impact of cache contention, we use cache coloring
to partition the 8MB shared L3 cache of our Nehalem
machine into four 2MB partitions, effectively emulat-
ing a processor with four 2MB private L3 caches. To
achieve this we use an adaption Lin et al.’s cache color-
ing patch [13] for Linux.

To obtain the reference throughputs, we co-ran one to
four instances of OMNet++ on the above setup, pinned
to different cores and cache partitions, and measured
the throughput using hardware performance counters.

8.2 Estimating Throughput
Given the BWG of an application, finding the through-

put of a given number of co-running instances is a two-
step process. First, we use the bandwidth graphs to find
the bandwidths of the co-running instances. Then, we
use these bandwidths to find the co-running instances’
individual IPCs, which gives us the overall throughput.

Bandwidth: When co-running multiple instances of
the same application, all instances get an equal amount
of bandwidth. Therefore, finding how much bandwidth
one of the co-running instances get amounts to finding
the (x, y)-point on its bandwidth graph where y = x,
y = 2x and y = 3x for two, three and four co-running
instances, respectively. These equations can be easily
solved using standard fixed-point methods. The solu-
tions of are marked with circles in Figure 10.

Throughput: To find the IPC of one of the co-
running instances, we first compute the total bandwidth
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of its co-runners, T (the sum of their individual band-
widths). Then, we use the first instance’s IPC curve
to find its IPC when its co-runners have a total band-
width of T . Since we are co-running multiple instances
of the same application, all co-runners have the same
IPC, and the overall throughput is therefore the sum of
the co-running applications’ individual IPCs.

8.3 Results
Figure 11 show the throughput predicted using the

Bandwidth Bandit (“Bandit-Predicted”) and the refer-
ence throughput (“Reference”). It also show a “naive”
throughput prediction (“Naive-Predicted”). Because the
baseline bandwidth demand of OMNet++ is slightly
less than 25% of the saturation bandwidth, which is less
than the system peak bandwidth, we would not expect
four instances to saturate the bandwidth. Therefore,
without any additional information, our best (although
naive) prediction would be that the throughput scales
linearly.

The curve labeled “Bandit-Predicted” is the through-
put predicted using the Bandwidth Bandit. This pre-
diction almost perfectly match the reference through-
put. This almost perfect match between the “Bandit-
Predicted” and the “Reference”, and the large discrep-
ancy between the“Naive-Predicted”and the“Reference”
emphasize the importance of using the contention aware
data provided by the Bandwidth Bandit.

9. RELATED WORK

9.1 Cache Contention
Several methods have been proposed to reduce neg-

ative impacts of contention by actively manage both
shared cache capacity and memory bandwidth. While

some of these methods use fairly simple measures for
contention (e.g. cache miss ratios [10]) their manage-
ment desicions are based on how much applications ben-
efit/suffer when their allocation of the managed resource
is increased/reduced. These methods use different mech-
anisms (e.g. partitioning [13] or scheduling [25]) and
have different objectives (e.g. maximizing throughput [21,
17] or fairness [12, 26]). In the case of partitioning, the
managed resource is partitioned and distributed among
the co-running applications/threads, effectively avoid-
ing contention. In the case of scheduling the contention
is minimized by selecting which applications to co-run.
To make this selection, both the amount of contention
applications generate, as well as their sensitivity to con-
tention from others, have to be considered.

Contention for shared cache capacity has been well
studied and understood. How much an application ben-
efits from the amount of cache capacity it receives can
be quantified by its Miss Ratio Curve (MRC). Many
methods have been proposed to collect MRCs [6, 4,
22, 19]. However, miss ratio, i.e. cache misses per in-
struction, does not necessarily correlate well with per-
formance. Eklov et al. [9] presented Cache Pirating, a
method to measure performance, such as CPI and off-
chip bandwidth, as a function of shared cache space.

9.2 Bandwidth Contention
Dey et al. [7] and Tang et al. [23] present studies on

how contention for both cache capacity and memory
bandwidth impact the performance of multithreaded
applications. To evaluate the effects of contention they
vary the assignment of applications to cores to adjust
cache and bandwidth sharing.In terms of memory con-
tention they conclude that higher bandwidth applica-
tions generate more contention and are more sensitive
to it.

Mars et al. [15] present the Bubble-Up method, simi-
lar to Doucette et al. [8]’s base vectors, which measures
both applications’ sensitivities and contentiousness by
co-running them with a set of micro benchmarks. Fur-
thermore, they propose a resources aware scheduling al-
gorithm that leverages the Bubble-Up data. This work
has many similarities to the approach taken in this pa-
per. However, the key difference, is that their micro
benchmarks stress all the resource in the memory hi-
erarchy at the same time, while the Bandwidth Ban-
dit goes to great length to only stress (“steal”) memory
bandwidth, which makes it more suitable for general
analysing of applications’ sensitivity for bandwidth con-
tention.

Xu et al. [25] found that the common scheduling pol-
icy of co-scheduling applications to reach a total band-
width close the system’s peak degrades performance
more than expected. They further found that band-
width demands are typically bursty, and that using av-
erages to estimate the total bandwidth is therefore in-
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accurate. Our results suggests that their observations
might in addition be due to the latency sensitivity of
their applications.

Rogers et al. [18] studied the impact off-chip band-
width will have on future multicore scaling. They found
that the performance of future multi-cores will be severely
limited by the lack of bandwidth scaling with conven-
tional techniques, thereby highlighting the importance
of understanding the impact of off-chip bandwidth con-
tention, for present and future chip-multi processors.

10. CONCLUSIONS
The goal of this work is to develop a method that

enables us to quantitatively understand how contention
for off-chip memory bandwidth affects applications’ per-
formance. Using the Bandwidth Bandit method intro-
duced in this paper we were able to quantitatively ana-
lyze application latency sensitivity and bandwidth sen-
sitivity. We see that latency sensitive applications are
likely to experience large slowdowns (up to 25%) be-
fore the memory hierarchy is saturated, while the per-
formance of applications that are not latency sensitive
is not significantly affected until the memory hierarchy
becomes saturated. This new quantitative method pro-
vides the data needed to explain and understand the
impact of sharing off-chip bandwidth on modern hard-
ware.
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