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Abstract

Adapting a Radial Basis Functions Framework for
Large-Scale Computing

Afshin Zafari

This work is aimed at extending a parallel computing framework for radial basis
functions methods for solving partial differential equations. Existing framework uses
Task Based parallelization method in shared memory architectures to run tasks
concurrently on multi-core machines using POSIX Threads. In this method, an
algorithm is viewed as a set of tasks each of which performs a specific part of that
algorithm while reading some data and producing others. All the dependencies
between tasks are translated into data dependencies which makes the tasks
decoupled. This work uses the same method but for distributed memory systems
using message passing scheme of inter-process conversations. These frameworks
cooperates with each other for distributing and running the tasks among nodes
and/or cores in a hybrid way of multi-threading and message passing parallel
programming paradigms. All the communication between processes (nodes) are
performed asynchronously (non-blocking) to be overlapped with computations and
the execution flow of the framework is implemented using state machine software
construct.
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Chapter 1

Background

Introduction

In this project, we are aiming to complete an existing software for solving radial basis function
(RBF) approximation problems. Initial objective of this existing software is reaching to a set
of library or program modules which give several functionalities and components to be used for
solving an RBF problem. The main user of such a software are the domain experts who know
the mathematical model of the problem and the crucial parameters regarding accuracy and
stability of the methods for solving them. On the other hand, the software has to be efficient
enough to make the best use of the computational capability of the underlying resources for
high performance computing (HPC). The software will hide the techniques and methods used
for best utilization of the computational resources from the main users by encapsulating the
required functionalities inside some prepared and tested program modules. This way, the main
user is no longer worried about the ways that the solution to the problem may be implemented,
and only needs to focus on the definition of a given problem by specifying various parameters
that are related to different questions to be answered and verified.

The efficient resource utilization implies that the modules are responsible for optimized
memory management and CPU usage. This means that the modules have to be aware of the
resources that are available to them and depending on the problem parameters decide which
methods fit better. The main important issue in considering the resources, as in any HPC
program, is how the program can be executed in parallel when multiple CPUs are available.
These CPUs may be hosted on a single computer or distributed over a network of computers,
or both. When the CPUs are hosted in a single computer they all have a shared access to
the main memory of the host and this is called a shared-memory system. On the contrary,
when the CPUs are distributed over multiple computers in a network, their memory access
is restricted accordingly, since the CPUs hosted on different computers have no direct access
to each other’s local memory. This model , that is called a distributed-memory system, uses
message-passing style of programming to let the programs running on different nodes of the
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network communicate with each other by transmitting and receiving messages. Due to these
distinct ways of programming for shared- and distributed- memory systems, efficient resource
utilization translates into a hybrid method of using both styles to gain the best performance of
each.

1.1 Introduction to radial basis functions method

The radial basis functions methods rely on the basic idea of approximating a multivariate
function with a linear combination of radial basis functions. For approximating a function u(x)
the linear combination

s(x) =
NX

j=1
�j�("kx� xjk) �

NX

j=1
�j�j(x) (1.1)

where �(r) is a radial basis function, x is a point in R
d, xj are the center points for RBFs,

� is the shape parameter and �j are the coefficients to determine. To find the �js from these
equations, it is sufficient to solve the following system of linear equations

A� = u; (1.2)

where A = (aij) = �j(xi) for i; j = 1; :::; N , � = (�j) and u =
�
u(xj)

�
. The most important

advantage of this method is that it works directly with scattered nodes for the approximation
which means that it is mesh-free and flexible with respect to the geometry of the computational
domain. This also means that this method is suitable for high-dimensional applications (like
option pricing , e.g. [22] ,[19]) since it uses only a single geometrical property (distance) of the
points. These are the main attributes (mesh-free and suitability for high-dimensional problems)
of this method that makes RBF methods different from other methods like finite difference
methods (FDM) and finite element methods (FEM) for solving partial differential equations.

1.2 Comparing RBF with finite difference and finite element
methods

The mesh-free attribute of RBF methods makes them more efficient in processing data and there
is no need to access to the points that lie in a stencil determined by the finite difference method
or come from a mesh constructed by finite element method. This makes some computations (like
matrix assembly) data-parallel while ate the same time produces a dense matrix of coefficients
to be solved.

In addition, the RBF methods can handle scattered data points and are dependent on their
structures, the data can be held in memory in an efficient way targeting better performance and
resource utilizations. In FDM and FEM methods, the resulting matrix of coefficients are sparse
and banded and thus many of the matrix elements would be zero for which computations would
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be skipped. Keeping the whole matrix in memory wastes the memory resource too much for
holding non useful elements and storing only the non-zero elements (as done in sparse storage
formats) shuffles the originally well-defined and predetermined access patterns to elements of the
matrix since the adjacent elements are no more accessed by easily incrementing or decrementing
indexes. Thus RBF methods neither waste memory for holding non useful elements nor miss
the possibility of efficient structuring of the elements for better performance.

1.3 Parallel RBF methods

Dealing with larger number of dimensions requires both handling much more computer memory
for computations and numerical solutions and efficient simulations within an acceptable time.
Limited resources of time and computer memory for a single computer requires using multiple
computers in parallel efficiently enough to handle large problems in terms of response time
and resource consumption. The major computations in RBF methods consist of preparing data
points, computing the distance and �(�) functions and finally solve the system of linear equations
of (1.2). The main focus of this work is on assembling the matrix of coefficients in (1.2). To
the best of our knowledge, all the efforts and research for parallel execution of RBF methods
are disparate and limited to specific algorithms or problems owned by researchers in this area
(e.g. [5] ,[28],[23],[14],[20]) and hence there is no single framework for RBF methods which can
run in multiple hybrid and/or heterogeneous processors environments. This work is a part of
a project whose main objective is to provide such a framework for the end users while at the
same time make the technical difficulties of high performance computing transparent.

1.4 Introduction to shared memory software framework

The existing software for solving the RBF problem designed and implemented is to be both
user friendly and efficiently parallelized for multi-core architectures. This part of the software
performs well in various experiments that can be found in [25] together with the details of the
design. To parallelize execution of any algorithm, the solution method is decomposed into tasks
that can be performed on different pieces of data. The data dependency of the tasks determines
when they can be executed without losing any data integrity of the program. The tasks are
scheduled to the available cores according to their dependency to any specific data. When a
task runs and updates any data, it will notify all other tasks that their required data is ready
and they will start or continue their execution on that newly available data. For the complete
discussion on how this scheduling works, see [27].

1.5 Mixing the old and the new framework
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Figure 1.1: RBF Framework Modules

As it is shown in Figure 1.1, the frame-
work consists of several modules that work
together to fulfill the user requests. There
are different modules for Geometry and PDE

Expression which can be used for specify-
ing the geometry and PDE expression re-
spectively. The Problem module lets user to
combine different geometries with single PDE

Expression to define different instances of
a single PDE problem. The Approximation

module provides functions for selecting the
types of the �(:) functions and their corre-
sponding parameters like shape parameter �. The Operation module contains an extensive set
of functions that can be invoked for different operations for the computations required for the
problem solution. Most of these functions are basic linear algebra operations that are used in
many solution algorithms, like matrix-matrix multiplication. Tailoring of all these components ,
i.e. Problem and Approximation and Operations, is the role of the Work Flow module. Using
the Work Flow module, user can organize sets of operations to be performed on some problems
using some approximations. Therefore, user has enough flexibility to define problems and try
to solve them in several different ways as well as several different approximations.

The actual computations that are accessible by Operation module are performed inside the
Kernels module and are implemented in a generic way to be suitable for being invoked easily
in different situations for different needs. The Kernels module uses two function libraries for
executing the requested operations concurrently on all the processors that are available to the
program. Since the available processors may be locally hosted by a single machine or be dis-
tributed among multiple machines accessible through a network , or both, two different sets of
functions are needed to handle different kinds of requirements respectively. The SuperGlue
Library, shown as SuperGlue module in Figure 1.1, implemented the required functionalities
for executing the operations on multiple processors of a single machine and Distributed Super-
Glue Library (shown as DuctTeip 1 module in Figure 1.1) is the main part of this project
that is new to the Framework and implements the procedures which are required for running
programs concurrently on multiple machines. More technically, the SuperGlue Library cov-
ers the functions for parallelization of Shared Memory architectures while the DuctTeip covers
the functionalities for Distributed Memory architecture. In other words, this is hybrid method
of parallelization in which both the shared and distributed memory architectures are used at
the same time for getting the most out of the processing power available to the program.

All these features of the Framework would have been useless if they were provided to the
1Distributed user annotated concurrent Tasks executed in parallel
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end user by a flat and long set of functions. In addition to the modularity, Framework is
organized in a hierarchical way such that details of the lower layers are hidden to the upper ones.
Therefore, the details of the operations and approximations, for example, are not seen by the
end user of the Framework. More importantly, the details of the parallelization considerations
and implementations are not seen by end user. In other words, the user does not have to involve
with writing any special piece of code that is for parallel execution of the program.

In the next sections of this chapter, we will investigate existing methods and implementa-
tions of parallel execution of programs in hybrid models. While the most famous method for
distributed memory architectures is the MPI, there are some methods which tried to extend
it or even introduce a new one in such a way that be more appropriate for shared memory
architectures as well. Some of these methods are targeted for Linear Algebra computations
while others are more general and the following sections are categorized accordingly. This in-
vestigation aims for finding useful measures for comparing the requirements of our project to
what features the methods deliver to their users. By comparing these features we will reach to
a decision on an appropriate methods which suits our project needs as much as possible.

1.6 Partitioned global address space(PGAS) models

1.6.1 Shared memory(SHMEM)

The SHMEM is a library of functions provided as an application programming interface(API)
and contains functionalities related to exchanging data between processors in a distributed
environment. It is very similar to the message passing interface (MPI) style of programming
and the programs can also be combined with or cooperate with MPI functions. Like MPI,
SHMEM is in single program multiple data (SPMD) style and all processes start at the same
time and run the same program. Like other programming facilities in the PGAS family, SHMEM
provides remote memory access (RMA) between processors via individual function calls that
allow one processor to read, write or even reference any data that resides on another remote
processor. Collective and synchronization operations are also provided as they are necessary for
any distributed memory architecture. There are also individual memory allocation functions
that have to be used for preparing a specific amount of memory shared among processors. This
API is also equipped with atomic memory operations on a remote or local data object. To let
the data of any processor be accessible by any other remote process, they have to be ’symmetric’
in the way that they are arrays or variables that have the same size, type and relative address on
all the processors. The communication functions in SHMEM are not thread safe and when they
are used in a multithreaded environment, it is the responsibility of the programmer to ensure
that no such function is invoked by multiple threads simultaneously. The cache management
for coherency issues in SHMEM, is intentionally left to the specific hardware on which the API
is aimed to be run.
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1.6.2 Global address space programming interface (GPI)

The PGAS programming model is based on existence of a (logical) global memory that is acces-
sible for multiple processors and every process (physically) owns a specific part of it. According
to this partitioning of the global data, any processor can determine which parts of the global
data resides locally or belongs to other processors. The Global address space programming
interface (GPI) provides this model to the application for direct and full access to a remote
data location. This functionality is provided by communication and synchronization primitives.
The communication overhead is minimized by overlapping the computation and communica-
tions through asynchronous communications [15]. To achieve different kinds of synchronizations,
the programmer can use different queues of GPI for grouping the communication requests and
manage them independently. If the network layer is based on Infiniband (or 10GE), GPI also
provides the passive communication functionality in which the blocking receive operation takes
no CPU time and is woken up directly by the network layer. In passive communications, the
receiver does not require to know the exact sender of data since this can be identified by the
arguments after the connection is established. This feature, that cannot be found in other so-
lutions like MPI [15] is useful particularly for situations where parts of the global data have to
be updated by processors. The only limitation of the passive receive operation is that it is not
thread-safe, while all other functions in GPI are thread-safe either through MCTP, OpenMP
or PThreads schemes [11]. Relying on the multicast feature of Infiniband networks, GPI can
achieve faster barriers in collective operations among large numbers of nodes. By providing
global atomic counters and operations such as fetch-add and fetch-compare-swap for them, GPI
makes the load balancing and complex synchronizations more straight forward to implement.
Combining all these features together with the fact that data exchange is based on one sided
asynchronous communication, the GPI shows better performance than pure MPI programs in
some experiments [12].

1.6.3 Global Arrays(GA)

The Global Arrays (GA) toolkit provides distributed array data structures (called ”global ar-
rays” ) which can be seen by programmers as shared memory programming. GA complements
the message passing programming model and allows the user to combine shared-memory and
message-passing styles of programming in the same program. The main operations for global
shared memory are put, get, scatter and gather and can only be executed for global Arrays and
not on any local memory location. These are one-sided operations that means that regardless of
the remote processors who own the data these operation will complete. There is no need to use
methods like polling some status variables nor calling any other GA functions to understand the
completion of the operations on the remote side. The global data in GA are specified simply by
providing the global map of the data portions and their locations. With this map, the shared
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global data can be accessed using indexes rather than their addresses. Using GA would be ben-
eficial in situations in which there is a need to control data locality explicitly, one-sided access
to global data and also high-level operations on distributed arrays. Although, the GA use for
algorithms like Cholesky factorization in which the synchronizations should be performed by
point-to-point message passing is not so helpful [17].

1.7 Parallel Linear Algebra Libraries

1.7.1 Scalable LAPACK(ScaLAPACK)

ScaLAPACK is a library of high-performance linear algebra routines for distributed-memory
message-passing computers and is a continuation of the LAPACK project. Both libraries contain
routines for solving systems of linear equations, least squares problems, and eigenvalue problems.
The goals of both projects are efficiency, scalability, reliability, portability, flexibility, and ease of
use. ScaLAPACK can also handle many associated computations such as matrix factorizations
or estimating condition numbers. Like LAPACK, the ScaLAPACK routines are based on block-
partitioned algorithms in order to minimize the frequency of data movement between different
levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACK library
are distributed-memory versions of the Level 1, Level 2, and Level 3 BLAS, called the Parallel
BLAS or PBLAS, and a set of basic linear algebra communication subprograms (BLACS)
for communication tasks that arise frequently in parallel linear algebra computations. The
BLACS is a message-passing library designed for linear algebra. The computational model
consists of a one- or two-dimensional process grid, where each process stores pieces of the
matrices and vectors. The BLACS include synchronous send/receive routines to communicate a
matrix or submatrix from one process to another. Since several ScaLAPACK algorithms require
broadcasts or reductions among different subsets of processes, the BLACS permit a process to
be a member of several overlapping or disjoint process grids, each one labeled by a context [1, 2].
The synchronous communication between processes implies that there will be occasions that
some processors wait (block) for others to complete message transfers. This blocking message
transfer between processors may be avoided using other types of communications that do not
require parties of communications wait for completion of transfer in other parties. This is a
crucial concern for overlapping computations and communications and make the processors as
independent as possible from each other.

1.7.2 PLASMA

The parallel linear algebra software for multi-core architectures (PLASMA) is a software li-
brary designed to be efficient on homogeneous multicore processors and multi-socket systems
of multicore processors. PLASMA can solve dense systems of linear equations and linear least
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squares problems and associated computations such as matrix factorizations. PLASMA has
been designed to supersede LAPACK (and eventually ScaLAPACK), principally by restruc-
turing the software to achieve much greater efficiency, where possible, on modern computers
based on multicore processors. Currently, PLASMA neither serve as a complete replacement
of LAPACK due to limited functionality , nor replace ScaLAPACK as software for distributed
memory computers, since it only supports shared-memory machines. LAPACK routines are
written so that as much as possible of the computation is performed by calls to the Basic Linear
Algebra Subroutines (BLAS). Highly efficient machine-specific implementations of the BLAS
are available for most modern processors, including multi-threaded implementations. The par-
allel algorithms in PLASMA are built using a small set of sequential routines as building blocks.
These routines are referred to as core BLAS. The core BLAS routines are built in a somewhat
suboptimal fashion, by using the standard BLAS routines as building blocks. For that rea-
son, just like LAPACK, PLASMA requires a highly optimized implementation of the BLAS in
order to deliver good performance. To achieve high performance on multicore architectures,
PLASMA relies on tile algorithms, which provide fine granularity parallelism. The standard
linear algebra algorithms can then be represented as Directed Acyclic Graphs (DAG) where
nodes represent tasks and edges represent dependencies among them. The programming model
enforces asynchronous, out of order scheduling of operations. In LAPACK, parallelism is ob-
tained through the use of multithreaded BLAS while in PLASMA,it is not hidden inside the
BLAS but is explicitly brought to the fore to yield much better performance. ScaLAPACK
and PLASMA interfaces allow the user to provide data distributed on the cores. However, by
better cache utilization,for example for matrix factorization operations, the PLASMA library
gain much better performance. In the PLASMA shared-memory multicore environment, since
the caches are not flushed, these libraries have the advantage to start the factorization with
part of the data distributed on the caches [4].

There is also a new distributed implementation of three linear algebra kernels ( QR,LU
and LLT) based on the PLASMA and called Distributed PLASMA (DPLASMA). This im-
plementation uses a generic distributed Direct Acyclic Graph (DAG) engine for high perfor-
mance computing. Other than overlapping the computations and communications, DPLASMA
takes advantage of task prioritizing and management of tasks on distributed architecture. In
DPLASMA, a sequential algorithm is translated into some fine interrelated tasks that are dis-
tributed and executed as soon as their dependency are resolved. The DPLASMA engine sched-
ules the created tasks in a distributed environment dynamically and gains good scalability [6].
To better fit the architecture of multicore platforms, the PLASMA library uses tile algorithms
to achieve a finer task granularity together with the dynamic task scheduling [13].

Parallel programming based on the idea of representing the computation as a task graph
and dynamic data-driven execution of tasks shows clear advantages for multicore processors and
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multisocket shared-memory systems of such processors. One of the most interesting questions
is the applicability of the model to large-scale distributed-memory systems [18].

The PLASMA in distributed environment uses a task-based library to replace existing lin-
ear algebra subroutines , like PBLAS, which encapsulates the dynamic scheduling of the fine
grained tasks and handling the dependencies by DAGs. It targets scalability of the programs
and proposes solutions that manage the dependencies without any direct cooperation of the
processors in a distributed manner. PLASMA performance strongly depends on tunable ex-
ecution parameters trading off utilization of different system resources. The outer block size
trades off parallelization granularity and scheduling flexibility with single core utilization, while
the inner block size trades off memory load with extra-flops. PLASMA is currently scheduled
statically with a trade off between load balancing and data reuse. Although this library suffers
from non-optimized cache hit rate for large block sizes, at least with respect to BLAS, using
the method for other classes of problems would be beneficial [24].

1.8 Other task based parallelization libraries

1.8.1 SMPSs framework

SMPSs, stands for symmetric multiprocessor superscalar, is a programming environment pro-
vided by Barcelona Supercmputing Center (BSC) and is based on a source to source compiler
and a run time library. In this environment, programmer writes program as in sequential execu-
tion case but specifies functions that can be run in parallel by using #pragma task constructs
before their definitions and determine what input and/or output parameters they require. Then
at run time, the library will extract data dependencies between tasks and generate correspond-
ing graph and keep it in memory to be used throughout the program execution for scheduling
purposes;[8]. There are also other constructs for marking non-task codes to be synchronized
on some data that their dependencies cannot be handled at run time, e.g. #pragma wait on

(data); [9].
To write programs for distributed memory architecture, BSC provides Nanos++ runtime that

can be used for compiling the same SMPSs programs for cluster targets which include multiple
nodes of computations. The service for supporting the clusters is still not public [7](at the time
of writing this report).

1.8.2 StarPU

StarPU [10] is another software tool which helps programmer to write task based parallel pro-
grams. The programs written by StarPU can be targeted for either CPU or GPU processors
without any need to extra effort for adapting the program with different types of the targets.
Programmers can use StarPU either in #pragma constructs mixed with C source codes or by
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using API functions for determining the tasks and their required input and/or output data and
the actual functions for executing the tasks. Dependencies between tasks based on their required
data can be manually set by programmer or left them for the StarPU to detect and use them as
efficiently as possible. Submitting tasks to StarPU for execution is done asynchronouly and the
task completeness is notified by using a call back function provided at submittion time. All the
required transfering of data among tasks are handled automatically at run time and there is no
need for programmer intervention. Once the tasks and data are introduced to library, the tasks
are scheduled algorithmically based on their durations which have to be estimated in advance.
It is also possible to use history of tasks executions or using their real durations at run time as
well as using different predefined scheduling algorithms or new extended ones.

For distributed memory architectures, StarPU provides some functions equivalent to the
MPI library except that they can use data that defined in StarPU instead of general buffers
in MPI. Communication is two sided between nodes which means that both the sender and
receiver of a given data must know this read/write relationship between each other and issue
corresponding send and receive commands to another. Alternatively, the whole data can be
partitioned and assigned to different nodes (owner of data) and then the whole task graph will
be loaded by (distributed to) every node to let the library decide about the actual data transfers.

1.8.3 Other Task Based Frameworks

There are also some other Task Based Parallel programming frameworks that worth to mention
here although they have no support of parallel programming for distributed memory archi-
tectures. Threading Building Blocks (TBB)[16] from Intel provides a rich set of classes and
templates for C++ programmers for parallel execution of the program. By using the ”task
based programming” subset of these classes and templates, programmers explicitly define tasks
and create their corresponding dependency graph using parent-child relationships between task
objects. Task scheduler in TBB traverses the graph (or more precisely, the tree ) of tasks while
it can grow or shrink at run time. Careful use of scheduler efficiency factors is required for
programmer to control the parallel execution of the tasks and gain a good performance.

In the OpenMP 3.1, new pragma directives are introduced for tasks that let programmers to
define, create and control parallel execution or termination of tasks (blocks of C/C++/Fortran
code). However, there is no explicit data dependency and hence no task graph structures in
this programming model.[21]

In the Cilk extension to C language (either its original version [26] or its latest one for
C/C++ language by Intel[3]) there are spawn and sync constructs that can be used to fork
and join execution of specific lines of codes or functions. The forked pieces of program are the
tasks and the scheduler uses ”work stealing” for load balancing among threads but there is no
explicit construct for specifying the data dependencies between tasks.
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1.9 Selecting the Method for Project

After the compact description of features of different methods in previous sections, we can now
decide on which features are more suitable to our project needs. Obviously, we need our program
be able to run in hybrid model while avoiding missing good features or accepting extra efforts
for development or even maintenance of the program. More explicitly, we need the program to:

� Run in hybrid model of shared and distributed memory architectures.

� Overlap Computations and Communications.(asynchronous communications)

� Make parties of communications are as independent as possible.(passive communications)

� Be thread-safe.(without programmer responsibility)

� Be suitable for Basic Linear Algebra computations.(e.g. Cholesky factorization)

� Be as free as possible in its own data structures (not necessarily symmetric).

� Have a good cache utilization in multi-core processors(not suffering from low cache hit
rate).

It can easily be observed that none of the methods described in previous sections possesses
all these features together. In other words, some methods tried to achieve some of the objec-
tives itemized above while sacrificing other ones. However, there are some successes in these
methods which can be extracted as guidelines for constructing a new method which combines
all the benefits while discarding all drawbacks. These successes can be consolidated into task-
based parallelizations in distributed memory environments which are built on asynchronous and
passive communications provided by MPI library. The same concepts and algorithms for task-
based parallelization in multi-core machines ( which is implemented in SuperGlue Library
in existing Framework) can be extended to distributed memory architectures similarly. The
performance issues of shared memory architectures, like thread-safety and cache locality, will
be handled by SuperGlue Library inside every node of networked machines; and the perfor-
mance of communications between nodes is managed by distributed task library (DuctTeip).
The next chapter of this report explains the design and implementation of this new method and
its corresponding functionalities.
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Chapter 2

Design

Introduction

One of the main reasons for making programs run in parallel is gaining better performance
and getting the most out of the computational capacity of the underlying system. However,
it does not happen automatically. Running a program in parallel introduces some overhead
for example in the way that different processors are communicating. There are several ways
of communication between processors which let programmers better manage and decide about
the manner the communication should happen. Using these different ways, the programmer
can control the program to either halt or continue execution during the communication process.
This control may halt the program until the transmission and receiving are completed, or may
let the program to continue and check the completeness of the communication at later points
in the program. The decision about either way of controlling the program execution has a
great effect on performance of parallel execution of the program. When the processors send
and receive messages in a blocking mode, for example, both parties of the communication waits
for another to complete the communication. The duration that the processors wait for each
other might be seen as wasting time, if the waiting is not necessary. Therefore, the expert
programmers try to avoid such waiting times as much as possible when they are deciding about
the parallel execution of the program.
In this chapter, we explain the ways that we used for communications to avoid unnecessary
waiting times among different processors in a parallel execution environment. This discussion
is particularly applicable for distributed memory systems where the processors may reside on
different machines in a cluster of processors networked together. Hence, the communication
duration may be considerable due to message travels among different processors. Although
there is no networked machines in shared memory systems, the communication overhead still
applies when the messages or data are to be transferred between the local memories (caches)
of the processors. However, the ways to overcome the communication overhead in these two
environments are different and we will only focus on ones used for the Distributed Memory
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architectures.

2.1 Previous Work

In this section, we describe how programs can be run in parallel using tasks. The tasks are pieces
of software programs that can be run individually to process their input data and generate the
output data. The input data for any task may be the output data of some other tasks. A task
is executable whenever its input data are ready and also there is a free processor to run it.
Therefore, using the availability of input data to tasks, we can determine which task can be run
at which time. On the other hand, we need also to detect when a processor is free to execute
a piece of code. This is performed by the manager whose responsibility is preparing queues of
tasks for all available processors and whenever their input data are ready runs them by moving
them to worker queues. to detect which processor is free and which tasks are ready to run. The
manager keeps a list of tasks and a list of available processors and assigns ready tasks to free
processors. The tasks whose input data are not ready remain in the list as waiting and those
tasks which are finished will be removed from the list. To implement it practically, some other
information are required such as: the states of the tasks in terms of is running , is waiting or
finished ; state of processors (free or busy) and data definitions and their states(e.g. ready or not
ready). Using this way information, task based parallelization assigns as many tasks as possible
to all the available processors in a machine.

In this way of parallelization there is no need for any explicit synchronization between
different pieces of program because the tasks can be run independent of each other. Explicit
synchronizations (like wait or barrier) makes the light-loaded processors go idle until their
heavy-loaded siblings reach to the synchronization points. The objective of the task based
parallelization is minimizing these idle times of processors caused by synchronization.

2.1.1 Task Based Parallelization

The basic objective of task based parallelization is to avoid explicit synchronizations among
parallel parts of the program. Other methods of writing parallel programs provide some pro-
gramming constructs (such as functions, data structures in MPI, and compiler directives in
OpenMP) that can be used together with sequential programs which may be existing imple-
mentations of some algorithms. These methods have been designed for minimizing the efforts
required for converting existing sequential programs to new ones that can exploit the parallel
execution of the programs in modern systems. In these methods, there are cases in which it is
required to synchronize all the concurrent parts of the program to continue at a specific point
at the same time due to some dependencies between them. This kind of synchronization (ei-
ther explicitly imposed by programmer or implicitly by compiler) introduces idle times for the
processors that reach to the synchronization point sooner than others and have to wait for them.
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Figure 2.1: Task and Data Dependencies

Task based parallelization looks to the al-
gorithm in terms of decomposable tasks with
their own input and output data. Tasks
are the computational parts of the algorithm
that process some data and modify them or
produce new data. In this view, when all
input data of a task are ready it can be exe-
cuted and produce its output data or change
the input one. Therefore, the execution con-
ditions of tasks can be regarded as availabil-
ity of their required data. In Figure 2.1, three
tasks are shown that read some data as their
input and change them or produce new data
as their output. This figure shows that some
data may be common both in input and out-
put of a single task, tasks may read from or
write to multiple data and a single data may be shared between inputs and outputs of multiple
tasks. As mentioned above, the tasks can be executed whenever all of their input data are
available. SuperGlue Library uses this fact and runs as many ready tasks as possible concur-
rently. Therefore the question of how to run tasks in parallel is changed to the question of how
the data availability can be recognized. The difficulty of the question stems from multiplicity
and share attributes of data. To better understand how SuperGlue Library handles these
dependencies the same tasks and data shown in Figure 2.1, are redrawn in top of the Figure 2.2
but all instances of the same data are close together this time.

As can be seen in this figure, there might be different types of accesses (read or write) to a
single data during the execution of the algorithm. It is obvious that any read -access to a single
data that happens (chronologically) after any write to that data should wait until the write
finishes and then start reading from that data. To be able to implement these chronological
dependencies, SuperGlue Library considers a version for every data which counts the number
of reads and modifications that happened for that data. Any data is given a version, say v,
and all the read-accesses to a data that are before a write-access to it are considered for that
version v. All the consequent read-accesses after that, and up to the next write-access will be
considered for a new version which is greater than the previous one, e.g. v + 1, see middle part
of the Figure 2.2.

By using these versions, the input data of tasks are considered together with versions and
hence when any task is finished, the versions of its output data should be upgraded accordingly.
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Figure 2.2: Top: Task and Data Access. Middle: Data are labeled different Versions after
Write operations and all Read accesses after that considers a higher Version of the Data.
Bottom:Input Data for every Task is appended by a Version of the Data as well. To check
the ability of a Task to execute it is sufficient to check the availability of the Versions of its
input Data.

Therefore any task whose input versioned-data are available can be executed, see the bottom
part of the Figure 2.2, and all such tasks can be run in parallel independently. So to let the Su-
perGlue Library execute tasks in parallel, it is sufficient to give it the list of tasks with their
data access annotations and the versions would be internally generated and managed by the
SuperGlue Library itself. In addition to read and write access annotations, there is another
one, add, which is used in cases when data is used for both reading and writing. These cases
happen, for example, in reduction operations in parallel execution of programs where multiple
parallel tasks perform some aggregate functions (such as sum, minimum or maximum) on their
output data. The add annotation for any data access of tasks means that the result of the tasks
operations will be added to the content of the data at the end of the task execution.

Figure 2.3 shows how this takes place inside the library as an example. In that figure,
different versions of some data become available during different time slots ( t0 to t4 ) when
some tasks get finished. As new versions of data become available, other tasks get ready and
can be executed. The vertical sections of that figure show the available versions of data and
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Figure 2.3: Top: At different times, new versions of some Data get available and new
Tasks get ready to execute. Middle: Queue of Tasks for every core. Bottom: Actual
duration of Tasks execution.

tasks that are ready to run using these data. Thus, in any time there might be some tasks that
can be executed concurrently. The SuperGlue Library enqueues distributes all such tasks
to the task queue for every available free processor of the host machine. For example, in the
bottom part of the figure, it is shown that how these tasks can be assigned to distributed over
three cores of a machine in the order which tasks get ready to execute.

Task Dependencies Formulation

After explaining how the SuperGlue Library works, the steps for using our task based par-
allelization method to run a program in parallel can be defined as follow:

� Algorithm is decomposed into tasks.
The algorithm for the program (e.g. algorithms for vector or matrix algebra or algorithms
for image processing) is translated into a series of inter-dependent tasks which denotes
the order of the tasks executions.

� Input/Output data for the tasks are identified.
To distinguish between different pieces of data that are moving between input and output
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of tasks, data is labeled uniquely making it traceable when tasks dependencies to data are
examined.

� Accesses to data are categorized as read, write and add.
The flows of data for every task are determined by read access to data for in-flow and
write/add accesses for out-flow.

� Dependencies to data are handled by versions of the input/output data.
At this time that tasks, data labels and versions and flow of data are modeled, the tasks
can be compiled into lists in which all tasks and the data flow of the algorithm are specified.

� Tasks are enqueued for execution.
The tasks and data lists are delivered to SuperGlue Library to be enqueued in list
of tasks for available processors. check which task is ready to run and assigns the task
to a free processor. There exists a task queue for every processor and whenever the
data dependencies of any task in this list are satisfied the task will be executed by that
processor. cases when there are more ready tasks than free processors.

� Data Versions are upgraded Version of the data of any executed task is upgraded accord-
ingly.
After finishing a task, the version of its output data will be updated denoting that a new
version of that data is ready now. Then other tasks which were waiting for this version
of the data can be detected easily and then executed.

� Idle processors steal tasks form other busy ones Different processors can steal tasks from
each other when they become idle.
As another optimization in this method, SuperGlue Library lets the idle processors
steal tasks from other busy processors for better load balancing purposes.

SuperGlue and Framework

The method mentioned in the previous section has been implemented and used in some re-
searches [27, 24] using the Framework mentioned in section 1.5 Existing Framework of
Chapter 1. SuperGlue Library [27] uses Pthread for running codes in parallel and pro-
vides interfaces for other programs to issue tasks to the library. This interface is successfully
used in connecting the library to Fortran programs and has gained very good results [25]. Using
this library one can prepare procedures in Fortran and pass their addresses and also their re-
quired data to the library to be checked against dependencies and then be executed. When the
procedure (task) can be executed, SuperGlue Library internal functions call the procedures
and pass them the data specified already at issuing time. We have used this library for paral-
lelization in the shared memory architecture where multiple cores or processors are available in a
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single machine. However, since our project is aimed for parallelization in a hybrid model ( both
shared and distributed memory architectures), we reused the positive features of this method
for designing and implementing a new program which can act in the same way as SuperGlue
Library but for distributed memory architectures. The next sections of this chapter explain the
details of what ideas have been used and how this method is implemented in the project.

2.2 Distributed Memory Task Based Parallelization

In the Distributed Memory environment the processors are not necessarily hosted in a single
machine and hence their cooperation may be done by data transferring among them through
the network interface which interconnects the machines together. Although this kind of com-
munication between processors is more expensive relative to the case where they are hosted
in a single machine, it gives a great opportunity to parallelization due to the fact that all the
communications between remote processors can be performed in parallel to their local activities
by the network interface card (NIC). That is, all processors can run programs locally while they
send or receive data from the remote processors in parallel at the same time. On the other hand,
when a processor needs a piece of data from other processors to run a program, it has to wait for
the data being received. Therefore processors have to be synchronized in different occasions of
the program execution to get sure that their required data are received from remote processors.
These synchronizations, like the ones mentioned in the shared semory srchitecture paralleliza-
tion, may make some processors idle until all their other siblings reach to the synchronization
point in the program code and communications between them complete. Thus by removing
global synchronization points we can gain better performance if we can balance the parallel
data transfer opportunity and the possible performance decrease due to synchronization. The
objective of Distributed Task Based Parallelization is finding this balance by minimizing the
idle times of processors while at the same time transferring required data to the requesting
processors. This can be achieved by using the same concepts of tasks whose dependencies are
determined by their type of data access. This time, however, the tasks and data may be remote
and the data-flows can happen across the network.

Following the same concept of tasks and data, an algorithm can be decomposed to some global
tasks and data which are hosted by different nodes of machines in a networked environment.
Figure 2.4, shows the same tasks and data dependencies as depicted in Figure 2.1 but this time
with these new global tasks and data. The boxes in this figure show the boundaries of nodes and
it can be seen that reading from data may require transferring data from one node to another.
These global tasks are larger tasks that can be subdivided locally when they are received in
every node. Then in every node, these local and subdivided tasks and data can be delivered to
the SuperGlue Library as mentioned before for parallel execution, see Figure 2.5.
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Figure 2.4: Global Task-Data Dependencies

All the required functionalities for communication of global tasks and data and interacting
with SuperGlue Library for their parallel execution are provided as another library in the
Framework, Distributed SuperGlue Library or DuctTeip in Figure 1.1, so that all the concur-
rent execution considerations of the program be transparent to the end user of the Framework.
In the next section we show how we used these concepts for achieving the balance between
benefits of parallel communications and costs of idle times due to synchronizations.

2.2.1 Techniques and Main Ideas

For implementing the Task Based Parallelization in hybrid (both shared and distributed memory
archtictures) model we need features and facilities which let us issue data transfer requests
and at the same time assign the tasks to processors to run. This is generally referred to as
overlapping computations and communication, and is one of the ways to reduce the overhead
of communications in the distributed memory systems. In other words, we want to make the
communication as independent of computations as possible. To reach this goal, we designed our
program in an abstract and general level that can be suitable for any kind of tasks dependencies.
We have selected the message passing interface (MPI) API to provide us the aforementioned
features and facilities. This API contains a rich list of functions that can be combined together
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Figure 2.5: Hybrid Task-Data Dependencies. Global tasks and data are transferred across
nodes and inside every node they are subdivided into local tasks and data. Local tasks and data
in every node are delivered to SuperGlue Library and there they get executed concurrently.

to fulfill all our needs. We used special functions of the MPI for three major purposes each
of which increases the independence of the communications from the computations. First, we
used the non-blocking versions of the send and receive operations that gives us the possibility to
issue the data transfer requests and continue computations without the need to wait for their
completion. Second, in the receiving side of the communications between any two processor, we
used probing from any sender instead of waiting for a specific sender. Thus, the receivers don’t
have to be aware of the sender(s) in advance and they will accept data as soon as they arrive.
Finally, for checking whether any data transfer is completed or not (either in the sending or the
receiving side of the communications) we used testing the status of the issued communication
requests instead of waiting for their completions. These features are powerful enough and act
as building blocks for our program. We can summarize them as follow:

� Overlapping Computation and Communication
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– Non-Blocking Communications: Using MPI ISEND instead of MPI SEND that only
initiates the communications and returns immediately back to the caller of the func-
tion.

– Probing vs. Receiving: Using MPI IPROBE instead of MPI PROBE and MPI RECV

to not wait for receiving data from a specific processor and also do this in a non-
blocking mode of communication in which the function immediately returns if no
data is received and let the caller continue its computations. To let the function
probe for received data regardless of the sender(s), we pass the MPI ANY SOURCE to
it as the source parameter. Although there is a similar argument for this function
for specifying which kind of messages are we interested in to probe for, we did not
use it since we need to distinguish different kinds of messages and follow a specific
sequence of events accordingly.

– Testing the communication vs. Waiting: Using the MPI TESTxxx instead of
MPI WAITxxx to not wait for completing the requested communication and just testing
whether it is finished or not and then continue the computations. Also using the
MPI TESTANY instead of MPI TESTALL to return immediately when any requested
communication is completed and not necessarily all of them. This makes different
communications independent of each other.

With this level of generality and flexibility in the communication layer of our program, we
can proceed to handle the task dependencies and define various components that are involved
in the implementation.

2.2.2 Design of Framework Components

The starting point of the design is answering the question of how can we implement the task
dependencies in our program. The data are as important as tasks in our method particularly
when the flow of data between tasks should happen remotely via the network. In addition,
the data can flow from one task to multiple tasks as their input and also multiple data can
flow from multiple tasks as their outputs to a single task. Thus, there is many-to-many rela-
tionship between tasks and data Since the communications between processors are performed
asynchronously, the order of sending and receiving data are not haappened deterministicaly and
any processor that needs a specific data requests it from its owner and whenever a data gets
ready in a processor it will be sent to all its requesters. To implement such a relationship we
need also to another component, named listener, that handles the flow of data between tasks
when they require them as input. In other words, any task that needs any data that resides on
a remote processor, creates a listener for that data and sends it to its remote owner. It is like
the publisher-subscriber design pattern in which the tasks are the subscribers and the owner
plays the role of publisher and the listener is the subscription.
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Using these three components and following the same scheme as of the SuperGlue Library
mentioned in section 2.1.1, we can define the static structure of the tasks using the following
objects:

� Task. Encapsulates all information for the tasks including: status, the host machine that
will run them, data requirements and their access types.

� Data. Holds information like: unique label of the data, host of data,version numbers and
status of the data.

� Listener. Determines which processor requires what data from which other processor.

Therefore, the tasks dependencies can be compiled into lists of these three objects which are
related to each other according to the flows of data between tasks.
The dynamic behavior of the program in our method can be explained more efficiently by con-
sidering the following steps :

1. The distribution pattern of the tasks and data over the processors is decided.

2. Hosts for all Task and Data objects are set accordingly.

3. All List of Tasks are is distributed over the network to their corresponding hosts.

4. Every processor that receives Tasks, owns them and processes them to find out which
Data objects they it needs.

5. For every Data object which is not owned by the Task owner, a Listener object is
created and sent to the owner of that Data.

6. Every processor that receives Listeners keeps them until their requested Data gets ready.
Then it sends the Data to the requesting processor.

7. Every processor that receives Data, saves it and sets the status of the Data to ready
and two procedures have to be performed: proceed in parallel: 1) The Tasks that are
dependent to this Data are checked that whether all their required input Data are ready
or not. If yes, they get scheduled to run. 2) All the Listeners that have been listening
to this Data get activated, that is , this new ready Data will be sent to the requesting
processors.

8. When any Task gets finished, the status of its output Data are changed to ’ready’.

9. The steps 7-8 repeat until all the Tasks get finished and all Listeners sent their Data
to their destinations.
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The first two steps are step is problem dependent and are is explained in more details in
Chapter 5. Figure 2.6 on page 36 illustrates a complete example of remaining general steps. In
this figure three sample nodes of networked machines are shown that are communicating the
global tasks and data with each other. Node1 does not need any global data and produces the
global data x using its own local data (not shown in the figure). Node2 reads the global data x

and produces global data s. Node3 reads as its input both the global data x and s and produce
some other global data. There are icons in the figure for every node which are smaller versions
of the Figure 2.3 and show that inside every node the global tasks and data are subdivided into
local tasks and data and run concurrently using the SuperGlue Library. A sample execution
of the above mentioned steps can be seen in the figure as follow:

� Three types of global tasks are distributed over three nodes.

� Tasks are checked upon arrival for their data dependencies:

– The global Task in Node1 needs only local data, then it will be delivered to the
SuperGlue Library for execution.

– The global Task in Node2 needs global data x from Node1 , then it generates a
Listener for x and sends it to Node1. (Shown by dashed arrows).

– The global Task in Node3 needs global data x from Node1 and s from Node2. Thus
it generates Listeners for these data and sends them to owners of the data ( i.e.
Node1 and Node2 respectively).

� Nodes that receive Listeners store them locally for future invocations.

� Node1 finishes its task and thus the global data x gets ready. The corresponding Listeners
are woken up and the data x will be sent to the remote listening nodes (i.e. Node2 and
Node3).

� Nodes that receive Receivers of global data checks their own tasks to find that whether
all their input data of any of the local tasks are ready or no.

� The task in Node2 can start running using the received global data x. The task in Node3

must still wait for receiving the global data s as well.

� The global task and global data x in Node2 are subdivided and given to SuperGlue
Library and are executed there concurrently.

� After finishing the task the global data s in Node2 gets ready.

� The Listener of s in Node2 is waken up and global data s is sent to the remote listening
node (Node3).
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� The global data s is received by Node3 and then tasks are checked there for possible
execution.

� Task of the Node3 can run and thus is subdivided and delivered to SuperGlue Library
for concurrent execution.

These steps implicitly show two more required objects for controlling the execution of the
program. One of them handles the underlying communications between processors in the man-
ner which described so far. The other one is responsible for checking and running tasks. These
two objects can be defined in this way:

� Mailbox object: acts as a container of the messages being passed between processors.
Every message is put into the Mailbox for being delivered to the destinations, and when-
ever any message is received from other processors the Mailbox will detect it and notify
corresponding objects to react.

� Scheduler object: checks the Task objects to find whether they can run or not. If any
Task can run it will be subdivided and delivered to SuperGlue Library for execution
on the available local processors.

In addition to these objects, one can observe that the steps also imply an intrinsic state
machine in the dynamic behavior of the method. Every object will operate differently in different
situations of the program. All the communications are being made asynchronously between
processors and various objects may have to react to some specific events happening in Mailbox.
It is also possible that a single action in an object causes multiple reactions in other ones. This
kind of interaction between objects by events or notifications based on states of the objects,
gives us an important clue to consider a state-transition mechanism for implementing the inter-
connections between various objects. That is, in an abstract description, every object is in a
single state among all its possible ones, and based on which event happened performs something
and goes to another state while at the same time notifying other related objects to react upon
its new state. For example some important states and events can be listed as follow:

� Important States of the Data object are: ready to read, ready to write, wait for task finish

� Important States of the Task object are: waiting for data, ready to execute

� Important States of the Listener object are: waiting for data, activated(its data received)

� Important Events of the program are: Task/Data/Listener received, sent and Task
finished.

All these steps can be summarized as Algorithm 1 Distributed Task Execution including
a general syntax of Object.MethodName([ parameter1 j , parameter2 j , ... ]). Generally this
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Algorithm 1 Distributed Task Execution
1: while : Tasks.Finished() do
2: event Mailbox.CheckInbox();
3: if event = Task Received then
4: Tasks.Add(received task);
5: Scheduler.CheckTaskDependencies(received task);
6: else if event = Listener Received then
7: l Listeners.Add(received listener);
8: if Data.GetStatus(l.Data) = ready to read then
9: Mailbox.Send( l.RemoteNode , Data.GetData(l.Data));

10: end if
11: else if event = Data Received then
12: Data.SetStatus(received data,ready to read);
13: Scheduler.CheckTasksForReadyData(received data);
14: Listeners.CheckForActivation(received data);
15: end if
16: CheckStatusAll();
17: end while

algorithm checks the global communications as long as there exists any (line 2) and performs
their corresponding reactions until all tasks are finished (lines 1,17). It checks whether any Task
is received or not and if yes it adds the received Task locally and check its data dependencies
using Scheduler.CheckTaskDependencies() procedure (lines 3–5). If no, checks whether any
Listener received or not, if yes it just adds it locally for future references(line 6–7). If the
requested data by the listener is already available, then the data will be sent immediately
to the remote listener (lines 8–10). Otherwise, if any Data received, first it sets its status
to ready to read and then checks which Task can be run by this new received Data using
Scheduler.CheckTasksForReadyData() procedure and checks which Listeners are waiting for
this Data using Listeners.CheckForActivation() procedure (lines 11–15). After processing all
events, the status of all objects will be checked to find whether any further state transitions
should happen or no (line 16).

Algorithms 2–7 show inside the procedures mentioned above. CheckTaskDependencies()
procedure of Scheduler (Algorithm 2) sends Listeners for all remote input data of the task
given as input (lines 1–8) and then checks that whether the task can be executed or no us-
ing Scheduler.CheckTasksForRun() procedure (line 9). For all other types of data accesses
of the task and all the local input data there is no need to check the dependencies for the
task . Scheduler.CheckTasksForReadyData() procedure (Algorithm 3) checks all Tasks that
need the given data can be executed or no using Scheduler.CheckTasksForRun() procedure.
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Algorithm 2 Scheduler.CheckTaskDependencies(task)
1: for all d in task.Data do
2: if d.DataAccess = Read then
3: if d.Host 6= local Host then
4: l Listeners.CreateListenerFor(d);
5: Mailbox.Send(l);
6: end if
7: end if
8: end for
9: Scheduler.CheckTasksForRun(task);

Algorithm 3 Scheduler.CheckTasksForReadyData(data)
1: for all t in Tasks do
2: if data 2 t.DataList then
3: Scheduler.CheckTasksForRun(t);
4: end if
5: end for

Scheduler.CheckTasksForRun() procedure which is shown in Algorithm 4, checks that whether
all input data of the given task are ready to read or no and all the output data of the task are
ready to write or no; and if yes to both, it executes the task. In this checking also only the
read access types to data are checked to be ready or not and other types of data accesses
have no impact on the task execution. Algorithm 5 shows the Listeners.CheckForActivation()
procedure that checks which Listeners are waiting for the given data and sends the data to
remote listening nodes and after that the listener can be removed from the list of Listeners. In
CheckStatusAll() algorithm shown in Algorithm 6 on page 35, all the Listeners and Tasks are
checked again for reacting to state changes of other objects (lines 1–3 and 11–13 respectively).
State of Data objects whose states are ready to read and all their Listeners are activated will
be changed to ready to write to let depending tasks to write on them (lines 5–9).

In Algorithm 7 the Tasks.Finished() function is shown which checks whether the pro-
gram can be finished or no and returns true or false respectively. If there is no local task
in Tasks list and there is no global Task in its way from other nodes(detected by calling
Tasks.IsFinalTaskReceived() function), then the program can finish (lines 13–15). Final Task
is a specific predefined Task which is used for signaling the possibility of ending the program,
more details on this will be given in Chapter 3. However, as long as there are some local finished
tasks (lines 1–12), their output Data have to get ready to read status (lines 3–5) and thus any
other dependent Tasks and Listeners have to be rechecked again for this new ready Data
(lines 6,7). All the local tasks that are finished and rechecked will be removed from the local
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Algorithm 4 Scheduler.CheckTasksForRun(task)
1: can execute = TRUE;
2: for all d in task.DataList do
3: if d.DataAccess = Read then
4: if d.Status 6= ready to read then
5: can execute = FALSE;
6: end if
7: end if
8: end for
9: if can execute = TRUE then

10: Scheduler.Run(task);
11: end if

Algorithm 5 Listeners.CheckForActivation(data)
1: for all l in Listeners do
2: if l.Data = data then
3: Mailbox.Send( l.RemoteNode, data);
4: Listeners.Remove(l);
5: end if
6: end for

list of Tasks (line 10).
The details and techniques for performing the operations mentioned above will be presented

in the Chapter 3.
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Algorithm 6 CheckStatusAll()
1: for all l in Listeners do
2: Listeners.CheckForActivation(l.data)
3: end for
4: for all d in Data do
5: if Data.GetStatus(d) = ready to read then
6: if : Listeners.IsPendingFor(d) then
7: Data.SetStatus( d, , ready to write);
8: end if
9: end if

10: end for
11: for all t in Tasks do
12: Scheduler.CheckTasksForRun(t)
13: end for

Algorithm 7 Tasks.Finished()
1: for all task in Tasks do
2: if task.Status = Task Finished then
3: for all d in task.DataList do
4: if d.DataAccess = Write then
5: d.Status = ready to read ;
6: Scheduler.CheckTasksForReadyData(d);
7: Listeners.CheckForActivation(d);
8: end if
9: end for

10: Tasks.Remove(task);
11: end if
12: end for
13: if Tasks.IsEmpty() ^ Tasks.IsFinalTaskReceived() then
14: return TRUE
15: end if
16: return FALSE
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Figure 2.6: Three nodes communicate global data x and s for their global Tasks through
Listeners. When data is received locally, the global Task and its data are subdivided into
smaller local tasks and data and then delivered to SuperGlue Library for parallel execution
on available local processors. In every node, there may exist multiple Listeners : for a single
data requested by multiple remote nodes(Node1), for sending and receiving data (Node2) and
for multiple data (Node3).
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Chapter 3

Design Details

Introduction

In this chapter, more detailed discussions about the design model of the program are provided.
To keep the general discussions in Chapter 2 more understandable some details are deferred
here. The important details are related to the state-transitions of the objects based on different
events and the way different nodes can be coordinated together for entering or leaving some
stages of the program. There are at least two stages for any program: 1) when sending Tasks to
nodes is completed, and 2) when all Tasks are finished and the program can terminate. There
may be other stages between these two ones, for example one that all listeners are distributed
and nodes can be sure that there is no listener on its way and they can deallocate memory
for any unused Data. So, entering into this data-cleaning stage requires coordination with all
other nodes.

3.1 Communication

As stated in Chapter 2, the communications are performed in non-blocking mode which means
all send and receive operations are performed asynchronously. In this method, all the send
operations are actually requests to send and their completion is not recognized immediately so
it is necessary to check the receipt of messages by explicitly receiving parties, which we call them
Acknowledgment in our program. Therefore, for each send of data, task or listener we will have
data ACK, task ACK and listener ACK events respectively showing that the corresponding
requests are completed. These events together with other ones that shown in Table 3.1 cause
the status of Task, Data and Listener objects to change from one to another. Whenever the
status of any object changes, other objects may need to be notified. Table 3.1 summarizes these
relationships between objects, events, state-transitions and notifications in the program. This
table shows that after some events happened for objects, which operations of them have to be
performed that cause their status change from one to another and finally which other objects
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have to be notified. For example reading the first row of the Data section in the table says
that will be read as: when a Data object detects a Task Finished event, if it is output of the
finished task its Get Ready operation will be executed and changes its status from Wait to
Ready (to Read) and notifies Mailbox and Listener objects for probable sending of new
available data.

3.2 Coordination

There are some cases in the program that the communicating nodes have to be coordinated
together to fulfill some specific criteria. One of these cases, for example, is when they can finish
the program and terminate. This case is mentioned first in Algorithm 7 on page 35 where
the Tasks.Finished() function has been shown. Here in this function, one of the conditions
for finishing the program is checked by IsFinalTaskReceived() of Tasks that returns TRUE if
no global task is remained to be received. To detect this condition, program sends a special
predefined task, say Final Task, to all nodes signaling that there will be no more tasks to be
sent/received. Only after Final Task is received, nodes can finish the program if their local list
of tasks gets empty (line 13 in Algorithm 7).

As another example case, the same may happen when there are some listeners in their way
to receive a node which decided to finish the program. Therefore, that node is not allowed to
terminate until gets sure that no incoming listener is remained otherwise the data request from
other remote listening nodes will be left unsatisfied. Generally speaking, there may exist cases
when nodes race each other to reach or pass a certain stages of the program. For correctness
of the program, it is required to coordinate the nodes for entering or leaving these stages. This
coordination between nodes is implemented by introducing a mechanism of seeking for specific
predefined messages in every node, like Final Task, to allow/disallow the program to enter into a
stage or to leave it. In addition to Final Task message in this category, there are other instances
of such messages like Final Listener that is used to allow node to deallocate memories holding
Data objects when all corresponding local listeners are cleaned.

Implementing this mechanism is simply done by sending these special messages and probing
their corresponding ACK messages from other parties. Sending these messages means asking
for permission of doing something and receiving acknowledgment means positive response. In
this mechanism, when a node wants to enter/leave a stage sends specific message to others and
won’t enter/leave until receives acknowledgments (positive responses).
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Table 3.1: State Transitions
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Chapter 4

Experiments

Introduction

In this chapter we will show details of the implementation by following the required steps for
solving a given problem. The problem here is assembling the RBF Matrix for a PDE problem
over a set of scattered points. We first give a definition of the problem and its solution and then
enter into more details of decomposing the solution into some global and local tasks that help us
to run the method on parallel processors in a hybrid model using both shared and distributed
memory architectures.

4.1 Problem Definition: RBF Matrix Assembly

In the RBF method mentioned in Section 1.4 Introduction to RBF, the vector x contains
data points and the objective here is to compute the '(jjxi � xj jj) 8i; j ; where '(�) is the
basis function and jj:jj is the distance of two points. Computing the basis function between
all pairs of points results in a matrix which is the coefficients of a linear system of equations.
The construction (computation) of this matrix is the problem that will be solved using parallel
execution of tasks in the hybrid model.

Figure 4.1 on page 45 shows the steps of the solution in a single view. In this figure it is
shown that first geometry of the problem is discretized in x and y dimensions (generally it can
be Nd dimensions in the program) and the resulting points will be held in a vector x. The
point vector x is divided evenly into Nn (number of nodes of networked machines) partitions,
one partition for each node. All nodes are responsible of computing the distance of points and
'(�) function for their own partitions Pi and all other ones pairwise. In other words, nodei for
example computes the distance and '(�) function of its Pi with all other Pj ; j 2 [0; Nn) partitions
from other nodes and saves the result as the blockij of the final RBF Matrix. Therefore, all
partitions have to be distributed to all nodes. This can be performed in various ways discussed
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later in this chapter. When partitions Pa and Pb get ready in a node, the node will subdivide
them into smaller blocks(Bi and Bj in the bottom part of the figure) and create local tasks
for computing the distance and '(�) functions reading these blocks. The result of distance
computations are written in a local sub-matrix of Dij which is then read by local task of '(�)-
computations and then written to Rij of Result Matrix. These write and read dependencies are
handled automatically and transparently by the SuperGlue Library. When all the global and
local tasks are finished the row-blocks ( all columns of partitioned adjacent rows) of resulting
RBF Matrix will be available in every node.

Algorithm 8 Assembling The RBF Matrix-Sequential Version
1: for all xi; xj in x do
2: dij  (x2

i � x2
j )1=2 ;

3: Mij  '(dij) ;
4: end for

4.1.1 Implementation

The sequential version of the solution for the RBF Matrix assembly problem is shown in Algo-
rithm 8. For implementing this algorithm in a distributed task based parallelization method, we
need first to partition the data points into available number of nodes. This implementation is
summarized in Algorithm 9 whose preconditions are existence of the partitions. This algorithm
uses DuctTeip object that provides the functionalities of the DuctTeip Library through its
methods. The lines 1–23 of the Algorithm 9 on page 46 repeat the computations for all pairs of
the partitions. For every pair of partitions, a global task is generated (line 3) and added to the
library(line 21) for later delivery(line 25). The destinations of the global tasks are determined in
line 4 of the algorithm which sets the Host of the task to the index of the main partition, i.e Pi.
Other patterns of distribution for global tasks will affect only this line by replacing the nodei

right-hand-side to any other value determined by the specific patterns. For every partition we
have to tell DuctTeip how the global tasks access the partitions and from which node they have
to be requested (lines 6–14). Decisions about pattern of data communications between nodes
are reflected only in lines 7 and 12 where the Host of the global data are determined. Later in
this section, we will show various possibilities of these patterns. The result of the computations
for any two pair is written to a local data by setting the Host of the data to wherever the task
resides (lines 16–19).

When all the global tasks are created, their version can be set for their different access
types to global data by simply traversing the list of tasks using the DuctTeip.CreateVersions()
function in line 24 of Algorithm 9. Then all the tasks will be distributed to their destinations
which are determined in their Host using the DuctTeip.DistributeTasks() function in line 25.
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Finally when all global tasks are sent to their destinations, by calling the DuctTeip.Execute()
function the main loop of the program also starts and the communications between nodes
are handled in the same way as specified in the Algorithm 1 in Chapter 2. In addition to
communications, the main loop of the program is also responsible of computations which are
encapsulated in Scheduler.Run() function in the Algorithm 1.

The execution of RBF Matrix assembly method, is performed locally in every node and
implemented in the Scheduler.Run() function as specified in the Algorithm 10 on page 47.
The preconditions of this function enforce that the first two DataAccess members of the given
global task are the two partitions for which the RBF Matrix have to be computed; and the
number of subdividing blocks inside every partition and the block sizes are known before calling
this function. This function extracts the pair of partitions from the global task (lines 1,2).
Then for every two subdivided blocks (indexed by i and j in the range of number of blocks Nb)
inside every partition, it creates some local tasks together with their data access types to the
blocks (lines 3–35). The block Bi is mapped to the ith slice of the partition Pi and the same
for Bj of Pj (lines 5,6). For every pair of blocks two local tasks are created, one for distance
(mathematically shown as jj:jj) and another for '(�) computations (lines 7 and 23, respectively).
The local task of distance has to read from blocks (lines 10,14) and writes the result into a local
matrix Dij (lines 17,18). The local task of '(�) has to read from the result matrix of the distance
task (line 25 where dt still holds the Dij created earlier at line 17) and writes the final result to
matrix Rij (line 29). Then these two local tasks are delivered to the SuperGlue Library for
execution in parallel (lines 21,32). Down in the SuperGlue Library when it is the time for
running these tasks, corresponding actual functions provided as kernels inside the Framework
will be executed.

4.2 Executing Program

After implementing the solution as explained in previous sections, the program has been ex-
ecuted with different values of parameters to investigate its behavior in terms of scaling and
performance.

4.2.1 Task Execution

One of our main objectives by Task Based Parallelization is to remove any unnecessary idle time
of processors due to using explicit synchronization between different pieces of code. So, to assess
achievement of this goal we instrument the code for measuring the duration of various events
during the program execution. Among these events, starting to execute a task and finishing it
are the most important and relevant ones by which we can observe the actual execution time
of the tasks and the idle time of the processors between any two consequent tasks. The results
of these experiments are shown in Figure 4.2 that shows the execution time of tasks running
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on eight nodes. The scheduled plots in these figures have separate sub-plots for every node and
inside each node (sub-plot) the cores are shown along the y-axis. The tasks are shown by boxes
whose lengths show their execution duration and whose colors distinguish between two types of
tasks in our program (i.e Distance and �(�) calculation). The starting time of each sub-plot is
the time of the first Data-Ready event for the corresponding node and it is the time that some
tasks also get ready to run. The vertical black lines at the right edge of the boxes show the
finish time of the global tasks (which have been sub-divided into these local tasks).

Figure 4.2 shows how the tasks are executed one after another for the mentioned computa-
tions. Figure 4.2a depicts the durations for solving a problem of 8000�8000 matrix assembly by
8 nodes of 7 cores each. It can be seen in this figure that there are very small/few gaps between
finishing a task and starting another although in our program there are dependencies both on
global data and between several local tasks. That is, the computations have been performed
while global data (and tasks) have been communicated between nodes without explicit waiting
for communication to complete. This is true while there is sufficient local computation work
to overlap with the communication work of sending or receiving global data. If the problem
size, for instance, is not too large then the required time for the computations will be shorter
than the communication time. This can be observed in Figure 4.2b where the global matrix
size is 800�800 and every node computes matrices of size 25�25 ( 800 partitioned over 8 nodes
and there sub-divided into 4�4 blocks). Here, since the computations complete faster than the
communication then threads will be idle waiting for their required input data to be received
from remote nodes. The elapsed time for communication consists of times for network latency
and message transfer. The latency time depends only on underlying network characteristics (
independent of message size) while message transfer time is almost a constant multiplied with
message size. Therefore, by decreasing the problem size (hence the message size) time for trans-
ferring messages decreases as well but the latency time remains the same. So regardless of the
message size, there is a lower bound on communication time whereas the computation time
will decrease by decreasing problem sizes. Therefore for small problems there may be times
when the computations finish much sooner than their data communication. Specifically for the
machines used in these experiments; Intel Xeon E5420; the minimum sizes of the input data
after which this behaviour can be seen are approximately 180 for 7 cores,150 for 5 cores and 30
for 1 core. These values could stem from the processor’s L1 cache size which is 16K and can
contain completely a 40�40 matrix of double precision elements plus the required input vectors
of points. So, when the input data of the tasks are small enough to fit in the L1 cache of the
cores the cache hit ratio will be higher and we expect that the task’s execution time be much
shorter due to less accesses to main memory.
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4.2.2 Speed Up

We have designed and executed experiments for measuring the speed up of the program in
which we provide more processors to the program while keeping the total problem size fixed
and compare the execution time relative to the one-core configuration. Figure 4.3 on page 49
shows the results of these experiments. Together with the experiment results the ideal speedup;
when 100% of the program is parallelizable; is shown as dashed line. The program is executed
for computing RBF matrix of size 8400�8400 and the results are the best ones among different
nodes and cores configurations which are shown in boxes in the figure for some sample points.
In this figure we can observe that up to almost 16 cores the speedup of the program is aligned
with the theoretical speedup line and thereafter for more cores it starts deviating from it. For
the last point in the graph, the speedup is 52 out of 56 cores or 92% which is very good.

4.2.3 Scale Up

To measure the scale up performance of the program, we have investigated both the weak and
strong scaling behavior of the program. In weak scaling, the problem size for every core is kept
the same while more cores are provided to the program whereas in the strong scaling the total
problem size is fixed and more cores made available to the program. In both experiments the
relative execution times to the one-core configuration are measured. Figure 4.4a on page 50
shows the results of strong scaling experiments. For these experiments the program executed
for a matrix size of 8400 � 8400 and the execution time of the program is normalized to the
one-core instance of the program. In this figure, the curves are categorized in terms of the
number of cores per node configurations and for each configuration the perfect scale up lines
are also shown as dashed lines. As can be seen from this figure, the scale up behavior of the
program for 1- and 3-cores per node configurations are completely aligned with the perfect ones.
For the 5- and 7-cores per node configurations the scale up is not perfect but is as high as 97%
and 95% of the ideal for the 40 and 56 cores, respectively.

Figure 4.4b on page 50 shows the weak scaling results of the program execution. In this
experiment, the work per core is fixed at one million elements or computing a 1000 � 1000
matrix. The figure shows the speed of program relative to the one-core configuration. Since the
work per core is fixed for all configurations of this experiment, it is theoretically expected that
the relative speed be 1. That means the time of computation of a fixed work by one core should
be the same as computing n works of the same size by n cores. This figure shows that for all
configurations, the scale up improves by increasing number of cores and for 1- and 3-cores per
node configurations the scale up is better than 1 which means the scale up is magnified by more
than number of cores. For 5- and 7-cores per node configurations, the scale up is improving by
adding more cores and eventually is close to the perfect value of 1.
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Figure 4.1: RBF Matrix Assembly
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Algorithm 9 Assembling The RBF Matrix-Distributed Tasks Version
Require: 8i 0 � i < Nn; Pi � x.
Require: 8i; j 0 � i; j < Nn ^ i 6= j; Pi \ Pj = ;.
Require:

SNn�1
i=0 Pi = x.

1: for i; j 2 [0; :::; Nn) do
2:

3: task  DuctTeip.CreateTask (’Assemble’);
4: task.Host  nodei;
5:

6: dt  DuctTeip.CreateDataAccess (Pi);
7: dt.Host  nodex;
8: dt.Access  Read;
9: task.DataAccess0  dt;

10:

11: dt  DuctTeip.CreateDataAccess (Pj);
12: dt.Host  nodey;
13: dt.Access  Read;
14: task.DataAccess1  dt;
15:

16: dt  DuctTeip.CreateDataAccess (Dij);
17: dt.Host  task.Host;
18: dt.Access  Write;
19: task.DataAccess2  dt;
20:

21: DuctTeip.Tasks.Add (task);
22:

23: end for
24: DuctTeip.Execute();
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Algorithm 10 Scheduler.Run(global task) for RBF Matrix Assembling
Require: Nb > 0 is the number of blocks for points vectors Pi ; i 2 [0; Nn) .
Require: Sb > 0 is the size of each block in Pi ; i 2 [0; Nn).

1: P0  global task.DataAccess0;
2: P1  global task.DataAccess1;
3: for i 2 [0; Nb) do
4: for j 2 [0; Nb) do
5: Bi 7! P0[i:Sb : (i + 1):Sb] ;
6: Bj 7! P1[j:Sb : (j + 1):Sb] ;
7: local task  SuperGlue.CreateTask( jj:jj );
8:

9: dt  SuperGlue.CreateDataAccess (Bi);
10: dt.Access  Read;
11: local task.DataAccess0  dt;
12:

13: dt  SuperGlue.CreateDataAccess (Bj);
14: dt.Access  Read;
15: local task.DataAccess1  dt;
16:

17: dt  SuperGlue.CreateDataAccess (Dij);
18: dt.Access  Write;
19: local task.DataAccess2  dt;
20:

21: SuperGlue.Tasks.Add (local task);
22:

23: local task  SuperGlue.CreateTask( '(�) );
24:

25: dt.Access  Read;
26: local task.DataAccess0  dt;
27:

28: dt  SuperGlue.CreateDataAccess (Rij);
29: dt.Access  Write;
30: local task.DataAccess1  dt;
31:

32: SuperGlue.Tasks.Add (local task);
33:

34: end for
35: end for
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(a) Node Problem Size=1000000 elements

(b) Node Problem Size=10000 elements

Figure 4.2: Task Execution of 8 nodes of 7 Threads, Different Problem Size
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Figure 4.3: Speed Up of the Program,Matrix Size=8400� 8400
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(a) Strong Scaling

(b) Weak Scaling

Figure 4.4: System Performance for Different Sizes of the problem and Number of Cores
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Chapter 5

Summary

5.1 Summary

This project started with some needs to parallel execution of programs for radial basis func-
tions problems which may require great amount of computations due to, for example, either
the size of the problems or investigating optimum values of some parameters for a single prob-
lem. The required parallelism has been provided by SuperGlue Library for shared memory
architectures and has shown exciting and competitive results in several efficiency and perfor-
mance experiments. The key point of this library is using Task Based model for providing or
implementing concurrent execution of programs and this project aimed at extending it further
toward for distributed memory architectures. In this model, a program is viewed as a set of
tasks which read data and produce other set of data that other tasks may need. All the de-
pendencies between tasks are translated by data dependencies and are tracked by data versions
attached to both data items and also data accesses by tasks. All the tasks that their required
input data at specific versions are ready can run in parallel. To translate a program to set
of tasks and data needed by framework, it is sufficient to determine tasks and annotate their
input/output data accesses accordingly. Then at run time, framework will execute tasks whose
input data are ready and upgrade the version numbers of involved data. All ready tasks are
queued at available threads for execution in parallel.

The same model of tasks and data versioning is used for distributed memory architectures
in which processors talk about tasks and data which may reside in remote nodes using message
passing. All the communication between processors (nodes) are implemented in non-blocking
mode to be overlapped with computations. Tasks are distributed into nodes and nodes who need
to any remote data, send request for the data to its owner and the owner will send it whenever
the data gets ready locally. Whenever a task is ready to run, it will be sub-divided locally
and delivered to SuperGlue Library for being executed in parallel on available threads which
constructs a hybrid of message passing and thread parallelizations models. All the cooperation
among nodes are performed in an asynchronous way which is implemented by using of state
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transitions and event handling methods for controlling the program execution.

5.2 Conclusion

In this project, we have designed and implemented Task Based Parallelization for distributed
memory architecture by extending an existing shared memory architecture framework. The
main objective of this project was to improve the parallelism of a program by avoiding unnec-
essary explicit synchronizations and barriers for different spots of the program. This provides
us good opportunities to remove the idle times of processors waiting for other ones to complete
their work and reach the synch point and make the total make span of the program shorter.
One of the key aspects of this project is using hybrid method of parallelizations for shared and
distributed memory archtitectures. Our experiments show that this work reveals acceptable
scalability and speedup results for solving large problems with more processors in differrent
cores and nodes configurations.

5.3 Future Works

This project prepared a suitable foundation for examining other capabilities of the Task Based
Parallelizations. In its current state, the framework contains a few simple matrix operations
(multiplication and assembly) which are implemented for assessing the new hybrid method
of parallelization. To extend its usability, developers need to provide more operations ( e.g
basic linear algebra ones) by implementing task-generating programs and corresponding kernels.
Once these more general operations are implemented in the framework, they can be used by
more applications than RBF methods. To reach to this state of generality, the framework
needs to be equipped with more functionalities (e.g general data definition and partitioning)
and hence can be extended in several research directions. In one direction, for example, it is
possible that new computational kernels be implemented and the program be examined and
compared with other available frameworks in Task Based Parallelization for solving the same
computational problems. In other direction, it is also possible to enhance the features of the
work by introducing such functionalities as load balancing and automated task generation to the
program. Enabling the work for very large scale parallel computers in future clusters which will
certainly consist of heterogeneous processors can also enrich the framework. To let the end user
to utilize all the intrinsic features of this work for parallelization, it can be extended toward
a user friendly framework which hides from its end user the technical details and hardware
dependent considerations of writing programs for parallel execution.
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