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Abstract

Evaluation of a least-squares radial basis function
approximation method for solving the Black-Scholes
equation for option pricing
Cong Wang

Radial basis function (RBF) approximation, is a new extremely powerful tool that is
promising for high-dimensional problems, such as those arising from pricing of basket
options using the Black-Scholes partial differential equation. The main problem for
RBF methods have been ill-conditioning as the RBF shape parameter becomes small,
corresponding to flat RBFs. This thesis employs a recently developed method called
the RBF-QR method to reduce computational cost by improving the conditioning,
thereby allowing for the use of a wider range of shape parameter values.
Numerical experiments for the one-dimensional case are presented and a MATLAB
implementation is provided. In our thesis, the RBF-QR method performs better than
the RBF-Direct method for small shape parameters. Using Chebyshev points, instead
of a standard uniform distribution, can increase the accuracy through clustering of the
nodes towards the boundary. The least squares formulation for RBF methods is
preferable to the collocation approach because it can result in smaller errors for the
same number of basis functions.
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1 Introduction

As the financial markets are becoming more and more complex, people nowa-
days trade not only stocks, but also numerous types of financial derivatives.
The market requires updated information about the values of these deriva-
tives continuously. Thus, the market is in great need of more accurate and
faster computer simulations.

In this thesis we consider the problem of pricing financial contracts on
several underlying assets. As the demand of complex derivatives from the
customers and the speed of computers have increased over the years, these
contracts have become more and more popular. Here we have chosen to use
a European basket call option as an example which is simple but working
well as an indicator of the usefulness of our method.

One potentially effective way to price financial contracts is to solve the
Black-Scholes equation [2], a partial differential equation (PDE) in which
the number of spatial dimensions is determined by the number of underlying
assets. When the number of dimensions grows, solving this PDE becomes
computationally very demanding. That is why we really need to use fast and
memory efficient algorithms.

There are different modern numerical techniques for computational option
pricing in mathematical finance. Monte Carlo methods have the advantage
of scaling linearly with the number of dimensions, but have the drawback of
converging very slowly [14]. Several other recent deterministic approaches
have also been considered, such as sparse tensor [29] or sparse grid [6] ap-
proximations. Finite difference methods are generally well known. These
have better convergence properties but also suffer from the curse of dimen-
sionality [32]. Adaptive finite difference methods have also been successfully
used for pricing European options in [25], [28].

Here we consider Radial basis function (RBF) approximation [5], [9], [33]
as a potentially effective approach for solving the multi-dimensional Black-
Scholes equation. Option pricing using RBFs has been explored in one di-
mension for European and American options by Hon et al. [17], [34] and in
both one and two dimensions by Fasshauer et al. [8] and Marcozzi et al. [27]
with promising results. Hon has also applied a quasi-radial basis function
method to option pricing in one dimension [18]. Larsson et al. used RBFs
for pricing options in one and two dimensions [30] and in two and three
dimensions [23] for European options. Strategies involving least squares ap-
proximation and a multi-level approach for radial basis functions for Euro-
pean options are also discussed by Larsson and Gomes [21]. Recently, Belova
et al. described the penalty method for pricing American options [1] and
Golbabai et al. successfully used the RBF method for the American put
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option under jump diffusion [15]. Credit default swap (CDS) contracts were
priced using the meshfree RBF interpolation by Guarin et al. [16] and spline
approximations were used to solve a Black-Scholes partial differential equa-
tion modelling a European option pricing problem by Khabir et al. [19]. A
multilevel kernel-based interpolation method using anisotropic RBFs were
presented by Georgoulis et al. [13].

A typical RBF approximation has the form

s(x, ε) =
N∑
j=1

λjφ(ε||x− xj||) (1)

where φ(r) is the RBF and ‖ · ‖ denotes the Euclidian norm, xj, j = 1, ..., N
are centre points, and ε is a shape parameter. The coefficients λj are typically
determined by collocation with input data values at the center points. In
our thesis, we also consider another approximating scheme, the least square
(LS) formulation. Using LS, which can have advantages over interpolation
in RBF approximations, is presented in [5]. Numerous forms of useful radial
functions are available, such as the Gaussian RBF (GA) and the Multiquadric
RBF (MQ). A small value of the shape parameter ε leads to flatter RBFs.
The shape parameter is an important method parameter, with a significant
effect on the accuracy of the method. Since the method only needs pairwise
distances between points, it is meshfree. Therefore, it is easy to use in higher
dimensions and it also allows for problem adapted node placement.

RBF approximations are sensitive to the treatment of the boundary con-
ditions. Possible solutions can be boundary clustering of nodes, or variable
shape parameter, as revealed by the studies in [12]. In this thesis, we make
sure to fulfil the boundary conditions exactly also when using the LS scheme.

The contribution of this thesis is a numerical study of the effects of the
method parameters on the accuracy and performance of the method, provid-
ing some insights regarding the limitations and possibilities of RBF methods.
We look at sample problems in one dimension and we also compare the re-
sults of the different RBF methods. Furthermore, we discuss how the optimal
shape parameter changes with time for the 1D solution of the Black-Scholes
problem and using multiquadric RBF in a collocation scheme to show that
the best shape parameter may even depend nonlinearly on the number of cen-
ter points N . The RBF-QR method [10] which has been presented to be able
to compute stably even in the ε → 0 basis function limit, is compared with
the RBF-Direct method which is associated with numerical ill-conditioning.
The RBF-QR method is proved to have better results for both interpolation
and derivatives. We also make a series of numerical experiments to find that
when ε is large, uniform node points perform better than Chebyshev node
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points, otherwise, when ε is small, Chebyshev node points get better results.
The outline of the thesis is as follows. In Section 2, we briefly review the

RBF methods and especially the ill-conditioning of the RBF-Direct approach.
Section 3 describes the RBF-QR approach for the 1D case, including expres-
sions for the first and second derivatives. Then, in Section 4, we present the
sample problems and boundary conditions and derive the space approxima-
tion and time discretization of the Black-Scholes model problem. The LS
formulation is also explained here. A series of numerical results for several
1D tests concerning efficiency of the simulations and the quality of the results
in terms of the different parameters involved. Finally, Section 5 gives some
conclusions.

2 RBF methods

A typical radial basis function usually has the form φ(r) = φ(ε‖x − xj‖),
where ε means the shape parameter of the radial basis function. Some of the
most popular used RBFs are showed in Table 1. In this thesis, the Gaus-
sian RBF (GA) and the Multiquadric RBF (MQ) are used in the numerical
experiments. When infinitely smooth RBFs are used, the approximations
feature spectral convergence as the points get more dense, which has been
proven in [4], [26].

Table 1: The definitions of some commonly used radial basis functions
Name Abbreviation Definition

Gaussian GA φ(r)=e− (εr)2

Multiquadric MQ φ(r)=
√
1 + (εr)2

Inverse multiquadric IMQ φ(r)=1/
√

1 + (εr)2

Inverse quadratic IQ φ(r)=1/(1 + (εr)2)
Polyharmonic spline PS φ(r)=rk, k = 1, 3, 5...; rkln(r), k = 2, 4, 6...

Another key feature of the RBF method is that it is mesh-free, which
means that it does not require a grid. It only depends on distances to cen-
ter points xj in the approximation. As pairwise distances are very easy to
compute in any number of space dimensions, it also works well for high-
dimensional problem.

A standard RBF interpolant is a linear combination of RBFs φ(r) cen-
tered at the scattered points xj, j = 1, ..., N which has the following form

s(x, ε) =
N∑
j=1

λjφ(ε‖x− xj‖) ≡
N∑
j=1

λjφj(x), (2)
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the unknown coefficients λj are determined through the interpolation condi-
tion s(xj, ε) = f(xj) and can be computed as the solution of the following
linear system

Aφλ = f, (3)

where the symmetric matrix A has elements aij = φj(xi) = φ(ε‖x−xj‖), and
the definitions of column vectors are λ = (λ1, ..., λN)T and f = (f1, ..., fN)T ,
respectively.

Furthermore, the implementation of an RBF method is also straight-
forward. However, there are still some issues left such as stability for the
time-dependent problems and computational efficiency.

With the advantages mentioned above of achieving spectral accuracy us-
ing infinitely smooth basis functions, the geometrical flexibility with arbitrary
choice of node locations and the ease of implementation, radial basis func-
tion (RBF) approximation is rising as an important method for interpolation,
approximation, and solution of partial differential equations (PDEs).

2.1 The ill-conditioning of the RBF-Direct method

With the RBF-Direct approach to find the interpolant, we simply compute
the coefficients λj as the solution of the linear system (3) mentioned above.
However, in practical cases, convergence is often negatively affected by ill-
conditioning of the matrix A as the shape of the basis functions become
flatter.

The accuracy of the solution is typically highest for small values of the
shape parameter ε for smooth functions. However the coefficients λj become
extremely large in magnitude when ε → 0 and a huge amount of numerical
cancellation will occur as the quantity s(x, ε) obtained in (2) through the
combination of these large quantities. Therefore, in the flat basis function
regime, (2) and (3) form two successive ill-conditioned numerical steps in
obtaining a quantity s(x, ε) which we know in general depends in a well
conditioned way on the nodes xj and data fj [3], [7], [11], [24]. Moving to
larger shape parameter values (less flat values) will get conditioning better,
but make accuracy worse.

2.2 The RBF-QR method

With the RBF-QR method [10], we compute exactly the same quantity s(x, ε)
as in the RBF-Direct method, but instead the results remain stable for all
the values of ε, even when ε → 0. In this thesis, the RBF-QR method is
mostly used to solve the Black-Scholes model in finance approximation in
section 4.
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As mentioned above, if the data fj is sampled from an infinitely smooth
function, highly accurate interpolation results are typically achieved for small
values of ε. The main idea is to recognize that the RBFs themselves consti-
tute an ill-conditioned basis in a good approximation space [10]. In order to
make a change of basis, first we expand the RBFs in terms of the expansion
functions Tk, k = 1, .... Then we truncate the expansions at k = Tru ≥ N
based on the size of the contributions and QR-factorize the coefficient matrix,
please see more details in [10]. The new basis functions are then obtained as ψ1(x)

...
ψN(x)

 = D−11 R−11 QT

 φ1(x)
...

φN(x)

 ≈ ( IN D−11 R−11 R2D2

) T1(x)
...

TTru(x)

 ,

(4)

where IN is the unit matrix of size (N ×N) and the correction matrix R̃ =
D−11 R−11 R2D2 is small when ε is small. R1 and D1 is upper triangular and
both of them are N×N . Using the expression (3) for the new basis functions
ψj(x) , we can calculate the action of a linear differential operator L on the
basis functions through Lψ1(x)

...
LψN(x)

 =
(
IN R̃

) LT1(x)
...

LTTru(x)

 , (5)

We can use the transpose of relation (4) above at each evaluation point
xi, i = 1, ...N to compute the new interpolation matrix Aψ with elements
aij = ψj(xi) in the following way

Aψ = T

(
IN
R̃T

)
, (6)

where the matrix T has elements tij = Tj(xi),i = 1, ...N, j = 1, ...T ru.

2.3 Numerical comparison between the RBF-Direct method
and the RBF-QR method

First we choose a number of smooth functions as test examples to clearly
present the stability and accuracy of the respective methods. Even though
the methods also work for less smooth functions; these have been excluded
since for these it is rarely advantageous to use small ε, which is the shape
parameter range we are addressing here. The amount of variation is gradually
increased which means the functions are more and more difficult. All function
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values lie within the range [−1, 1]. The functions used in the numerical
experiments are as follows

f2(x) =
165

165 + (x− 0.2)3

f4(x) = sin(x2)− sin(2x2)

f5(x) = sin(2πx)

f6(x) = sin(2πx2)− sin(4πx2)

Then the evaluation points and the center points are defined and their
formats are showed in Figure 1.

Figure 1: Ten uniform evaluation points and ten center points for each type
within [−1, 1] are shown in the figures. The center points used here are
Chebyshev points.
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Figure 2: The best result with optimal ε (left subplot) and smallest errors
compared with the exact solution (right subplot) in the RBF-QR method
and the RBF-Direct method for N = 100 Chebyshev points.

In the above numerical comparison, N = 100 Chebyshev center points
are chosen as an example and Ne = 700 evaluation points are used. An
example function f5 = sin(2πx) is interpolated over the unit interval using
both the RBF-QR method and the RBF-Direct method and the best results
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and smallest errors compared with the exact solution with each method are
showed in Figure 2. After comparing with the errors in the two right subplots,
we can easily find that the RBF-QR method performs much better than the
RBF-Direct method to interpolate the example function.

Figure 3: Interpolation max errors as a function of the shape parameter ε
using RBF-QR (solid lines) and RBF-Direct (dashed lines) for functions f2,
f4, f5 and f6. In all cases N = 100 Ne = 700 was used. All figures were
shown using Chebyshev nodes.

Figure 3 shows results for a fixed N and a range of ε values. For small ε,
the RBF-QR method produces more accurate results than the RBF-Direct
method, whereas, for large ε, they give the same results.

3 The RBF-QR method in one dimension

3.1 Expansion of the GA radial function

The RBF-QR expansion in 1-D is stated in [10] without derivation. Here, we
include the derivation of the interpolation case and also derive the expressions

13



for the first and second derivatives.

In the one-dimensional case, we expand the Gaussian RBFs only through
exchanging powers for Chebyshev polynomials. From Table 1, the GA radial
function has the form φ(r) = e− (εr)2 . For an RBF centered at the point xk,
we have

φ(x, xk) = e−ε
2‖x−xk‖ = e−ε

2(x−xk)·(x−xk) = e−ε
2(x·x)e−ε

2(xk·xk)e2ε
2(x·xk). (7)

Since only the last factor above mixes x and xk values, we get the Taylor
expansion of it

e2ε
2(x·xk) = 1 + 2ε2(x · xk) +

(2ε2)2

2!
(x · xk)2 + · · · =

∞∑
j=0

(2ε2)j

j!
(x · xk)j. (8)

We expand (8) using the following formula

xj =
1

2j−1

j−p
2∑
l=0

(
j
l

)
tj−2lTj−2l(x), (9)

where Tj(x) are the Chebyshev polynomials, tj = 1
2

if j = 0 and tj = 1
otherwise. See more details in [10].

We can get

e2ε
2xxk =

∞∑
j=0

(2ε2xxk)
j

j!

= 2
∞∑
j=0

ε2jxjk
j!

j−p
2∑
l=0

(
j
l

)
tj−2lTj−2l

= 2
∞∑
j=0

ε2jxjk
j!

∞∑
l=0

ε4lx2lk
j!

(j + 2l)!

(j + 2l)!

l!(j + l)!
tjTj

= 2
∞∑
j=0

ε2jxjk
j!

0F1([], j + 1, ε4x2k)tjTj

In order to keep the Chebyshev evaluation positive, we instead let x = sr,
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where s = −1, 1. Some delicacy is required when r = 0, we then let s = 1.

e2ε
2xxk =

∞∑
j=0

(2ε2sskrrk)
j

j!

= 2
∞∑
j=0

ε2jsjsjkr
j
k

j!

j−p
2∑
l=0

(
j
l

)
tj−2lTj−2l

= 2
∞∑
j=0

ε2jrjk
j!

∞∑
l=0

ε4lx2lk
j!

(j + 2l)!

(j + 2l)!

l!(j + l)!
tjTj

= 2
∞∑
j=0

(ssk)
pε2jrjk
j!

0F1([], j + 1, ε4r2k)tjTj

Then we get the final form of expansion

φ(x, xk) =
∞∑
j=0

djcj(xk)T̃j(x), (10)

with expansion functions

T̃j(x) = e−ε
2x2Tj(x). (11)

where
Tj(x) = cos(arccos(xj)). (12)

and with the scale factors and coefficients in our case are

dj =
2(ssk)

pε2j

j!
, cj(xk) = tje

−ε2r2krjk 0F1([], j + 1, ε4r2k), (13)

where p = 0 if j is even and p = 1 if j is odd.
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3.2 The computation of the first derivative and the
second derivative

Now we can compute the first derivative of T̃j(x) to get

d

dx
T̃j(x) = (−2ε2xe−ε

2x2)Tj(x) + (e−ε
2x2)

d

dx
Tj(x), (14)

And the second derivative of T̃j(x) is

d2

dx2
T̃j(x) =

d

dx
(−2ε2xe−ε

2x2)Tj(x)− 2ε2xe−ε
2x2 d

dx
Tj(x)

−2ε2xe−ε
2x2 d

dx
Tj(x) + e−ε

2x2 d

dx2
Tj(x)

= (4ε4x2e−ε
2x2 − 2ε2e−ε

2x2)Tj(x)

−4ε2xe−ε
2x2 d

dx
Tj(x) + e−ε

2x2 d

dx2
Tj(x)

Then the derivatives of T̃j(x) is used in the equation (5) in Section 2 to
approximate the derivatives of example test functions.
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3.3 Numerical experiments for the first and second
derivatives

Figure 4: Derivative errors compared with the exact solution as a function of
the evaluation points xe for first derivatives of functions f2, f4, f5 and f6. In
all cases N = 14 ε = 0.1 was used. All figures were shown using Chebyshev
nodes.

The errors between the RBF approximation of the first and second derivative
of four different test functions and the exact solution are shown in Figure 4
and Figure 5, repectively. The RBF-QR method can really get accurate re-
sults in the derivative approximation and the errors grow as the test functions
have more variation or grow more complicated.
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Figure 5: Derivative errors compared with the exact solution as a function
of the evaluation points xe for second derivatives of functions f2, f4, f5 and
f6. In all cases N = 14 ε = 0.1 was used. All figures were shown using
Chebyshev nodes.

Figure 6 shows maximum errors in the derivatives as a function of N
with a fixed ε value and figure 7 shows maximum errors in the derivatives
as a function of ε with a fixed N value. From both figure 6 and figure 7, we
can clearly see that the interpolation approximations for the first and second
derivatives of smooth test function f5 can get a really accurate result with
different number of node points and a range of ε values. Errors for uniform
nodes grow with N . The most accurate result is achieved for a small non-zero
value of ε in the region where RBF-QR is needed.
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Figure 6: Derivative errors compared with the exact solution as a function
of the evaluation points xe for the first and second derivative of function f5.
Different number of points N = [14 : 5 : 100] were used. All figures were
shown using Chebyshev nodes (star lines) and uniform nodes (dashed lines)
and with ε = 2.

Figure 7: Derivative errors compared with the exact solution as a function
of ε for the first and second derivative of function f5. Different values of
ε = 10[log10(0.5):0.01:log10(2)] were used. All figures were shown using Chebyshev
nodes and with N = 14.

4 Modeling Black-Scholes equation

4.1 The Black-Scholes model

The multi-dimensional Black-Scholes partial differential equation (PDE) which
is linear, time-dependent, and parabolic can be used for pricing of options
based on several underlying assets. Here we use the transformed version of
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the PDE and a European basket option as an example. Time is reversed to
make standard texts on time-integration for PDEs applicable, and all vari-
ables have been scaled to be dimensionless. The details of the transformation
can be found in [23], [28]. The transformed problem can be written

ut(x, t) = Lu(x, t), x ∈ Ω, t > 0, (15)

u(x, t) = g(x, t), x ∈ Γ, t > 0, (16)

u(x, 0) = Φ(x), x ∈ Ω, (17)

where, x ∈ Rd
+ contains the scaled values of the d assets, t is the time left to

the exercise time T of the option, Ω is some sub-region of Rd
+, and u(x, t) is

the value of the European option. The spatial operator in equation (15) has
the form

Lu(x, t) = r
d∑
i=1

xi
∂u

∂xi
+

1

2

d∑
i,j=1

[σσT ]ijxixj
∂2u

∂xi∂xj
− ru, (18)

where σ is the volatility matrix and r is the risk free interest rate. The
contract function Φ(x) depends on the type of option we are solving for. In
our numerical examples, we use the European basket call option with the
following contract function

Φ(x) = max(0,
1

d

d∑
i=1

xi −K), (19)

where the exercise price K is always equal to 1 due to scaling. The bound-
ary conditions are linked to the contract function [30]. At the near-field
boundary, which defined as x = 0 we use

u(x, t) = 0, (20)

then at the far-yield boundary, here defined as the part of the boundary
where 1

d

∑d
i=1 xi ≥ 4K, then we impose

u(x, t) =
1

d

d∑
i=1

xi −K exp(−rt), (21)

Here we need to note that Γ ⊂ ∂Ω, we do not impose boundary conditions
on the whole boundary.
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4.2 Notational conventions

The RBF solution is computed at discrete times and the approximation is
expressed in terms of the coefficients of the basis functions. Here we use
a systematic way to index variables and give the following conventions, see
more details in [21]:

• Affiliation with a named set is denoted with a superscript, such as xcj,
where c stands for the set of center points.

• Indices related to space are presented as subscripts.

• Time is indicated by a superscript such as in vn(x), which is the ap-
proximate solution at the time tn.

• The row index descriptors and column index descriptors of matrices
are subscripts separated by a semicolon. For example, Ab;λ has rows
corresponding to the boundary points (b) and columns corresponding
to the first partition (λ) of center points.

We also follow the notations above to make the MATLAB code easy to
understand.

4.3 Approximation in space and discretization in time

Here we use the scheme which is spectrally accurate in space and second-
order accurate in time for constant shape parameter. For other non-optimal
choices of shape parameter values, the resulting convergence rate is algebraic,
which has been proved by Pettersson et al. [30].

After using a time-dependent linear combination of N radial basis func-
tions, centered at the points xcj, j = 1, ..., N . we get the approximate solution

u(x, t) =
N∑
j=1

λj(t)φ(‖x− xcj‖) ≡
n∑
j=1

λj(t)φj(x). (22)

Then we divide the time interval [0, T ] into M steps of length kn = tn− tn−1,
n = 1, ...,M , and denote the approximate solution at the discrete times tn as

vn(x) =
n∑
j=1

λnj φj(x) ≈ u(x, tn). (23)

Next our PDE problem is discretized in time using the unconditionally stable,
second-order accurate, implicit BDF-2 method [3] and we get

v1(x)− k1Lv1(x) = v0(x), x ∈ Ω, (24)
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vn(x)−βn0Lvn(x) = βn1 v
n−1(x)−βn2 vn−2(x) ≡ fn(x), x ∈ Ω, n = 2, ...,M,

(25)
vn(x) = g(x, tn) ≡ gn(x), x ∈ Γ, n = 1, ...,M, (26)

υ0(x) = Φ(x), x ∈ Ω, (27)

where

βn0 = kn
1 + ωn
1 + 2ωn

, βn1 =
(1 + ωn)2

1 + 2ωn
, βn2 =

(ωn)2

1 + 2ωn
, (28)

and ωn = kn

kn−1 . After choosing ωn such that βn0 = k1 ≡ β0. we will have the
same operator in the left hand sides of equations (24) and (25) for all time
steps. And a recursion formula for this purpose was derived in [23].

4.4 The least squares formulation

Instead of collocation, which is a common formulation in the RBF context,
we adopt a least squares scheme, which turns out to be more efficient to
reduce the error in the region of most interest, where we mean stock prices
close to the strike price.

The least squares scheme also fulfils the boundary conditions exactly
and is used only for the discrete differential operator formulation. Let xbi ,
i = 1, ..., Nb, be the points where we enforce boundary conditions and let
xlsi , i = 1, ..., Nls, where Nls + Nb >= N be the equation points we use for
the least squares fit of the Black-Scholes equation. Then the unknown coeffi-
cients at each time level are the two vectors λn = (λn1 , ..., λ

n
N−Nb

)T and µn =

(λnN−Nb+1, ..., λ
n
N)T . Then we define the vectors υnls = (vn(xls1 ), ..., vn(xlsNls

))T

and υnb = (vn(xb1), ..., v
n(xbNb

))T . Then we can get the following relations

υnξ = Aξ;λλ
n + Aξ;µµ

n, ξ = b, ls (29)

Lυnls = Bls;λλ
n +Bls;µµ

n, (30)

where
[Aξ;λ]ij = ψj(x

ξ
i ), i = 1, ..., Nξ, j = 1, ..., N −Nb (31)

[Aξ;µ]ij = ψj+N−Nb
(xξi ), i = 1, ..., Nξ, j = 1, ..., Nb (32)

[Bls;λ]ij = Lψj(x
ls
i ), i = 1, ..., Nls, j = 1, ..., N −Nb (33)

[Bls;µ]ij = Lψj+N−Nb
(xlsi ), i = 1, ..., Nls, j = 1, ..., Nb (34)

Then we substituting (29) and (30) into (24) − (27) and get the system of
equations to solve for each time step as follows(

Als;λ − β0Bls;λ Als;µ − β0Bls;µ

Ab;λ Ab;µ

)(
λn

µn

)
=

(
fn

gn

)
, (35)
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where we have

f 1 = υ0ls = (Φ(xls1 ), ...,Φ(xlsNls
))T ,

f 2 = β2
1

(
Als;λ Als;µ

)( λ1

µ1

)
− β2

2υ
0
ls,

fn =
(
Als;λ Als;µ

)(
βn
1

(
λn−1

µn−1

)
− βn

2

(
λn−2

µn−2

) )
, n = 2, ...M.

(36)
and gn = (gn(xb1), ..., g

n(xbNb
))T . Then we enforce the boundary conditions

and eliminate µn from the first block row in the system of equations by block
Gaussian elimination, resulting in the system(

Sls;λ 0
Ab;λ Ab;µ

)(
λn

µn

)
=

(
fn − (Als;µ − β0Bls;µ)A−1b;µg

n

gn

)
, (37)

where Sls;λ = (Als;λ − β0Bls;λ) − (Als;µ − β0Bls;µ)A−1b;µAb;λ, see more details
in [21].

In this thesis, a least squares solution of the system (23) is implemented
in MATLAB. The basic steps for the algorithm are presented as follows:

1. Solve Ab;µω = gn.

2. Solve Sls;λλ
n = fn − (Als;µ − β0Bls;µ)ω in the least squares sense.

3. Solve Ab;µυ = Ab;λλ
n.

4. Compute µn = ω − υ.

Because we use the special choice of time step, see more details in [7], the co-
efficient matrices in Step 1-3 above are all constant and can be factorized once
prior to the time stepping. Then we have to do the following computations
first

1. Factorize Ab;µ = LU .

2. Form Sls;λ using the factorization of Ab;µ.

3. Factorize Sls;λ = QR.

These factorizations are then applied in the usual way in our time stepping
algorithm.
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4.5 Numerical experiments

All the following numerical experiments are implemented in the one-dimensional
case, where the number of assets d = 1.

Figure 8 shows the node points xc and xb, least squares points xls and
evaluation points xe which we use to evaluate the solution and errors in our
Black-Scholes model problem. Here we always use five times the number of
the center points as least squares points to make sure to have a fine enough
grid.

Figure 8: The center points with N = 5 with two boundary points, the
evaluation points with Ne = 15 and the least squares points Nls = 5 × N .
All the points are scaled in the interval [0,4]. All figures were shown using
uniform nodes.

Maxnorm errors with different values of ε are shown in Figure 9 for both
the RBF-Direct method and the RBF-QR method. Here we use the test val-
ues for ε as ε = 10[log10(0.5):0.01:log10(2)]. From the figure, we can see apparently
that when ε is small, it is better use the RBF-QR method, otherwise, when ε
is large, it is better use the RBF-Direct method. Chebyshev points generate
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better results than uniform points in all the three cases.

Figure 9: Maxnorm errors compared with the exact solution as a function
of ε with different basis function MQ and GA. As the RBF-QR method just
exists for GA basis function, so we just show one kind of basis funcion here.
Here N = 20 M = 120 were used. The Black-Scholes model is solved with
both the RBF-Direct method and the RBF-QR method here. All figures
were shown using uniform nodes (star lines) and Chebyshev points (dashed
lines).

In Figure 10 the errors are pretty small for different values of N , which
means our RBF-QR method in the collocation approach and the least squares
approach both work well for the Black-Scholes model. We can also find
that the least squares approach performs better result than the collocation
approach.
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Figure 10: Errors compared with the exact solution as a function of the
evaluation points xe. Different values of N : N = 5, N = 17, N = 25,
N = 33, with optimal ε: ε = 0.7, ε = 1.5, ε = 2, ε = 2.4, were used.
M = 120 Nls = 10 × N in all cases. All figures were shown using uniform
nodes and the basis function GA in the collocation approach (solid lines) and
the least squares approach (star lines).

Figure 11 compares the time errors using the RBF-QR method to solve
the Black-Scholes equation in the collocation approach and the least square
approach. The least squares approach performs better result than the collo-
cation approach.
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Figure 11: Time errors as a function of the time. Different values of N :
N = 5, N = 17, N = 25, N = 33, with optimal ε: ε = 0.7, ε = 1.5, ε = 2,
ε = 2.4, were used. M = 120 Nls = 10 × N in all cases. All figures were
shown using uniform nodes and the basis function GA in the collocation
approach (solid lines) and the least squares approach (star lines).

In Figure 12 the errors are pretty small for different values of N , which
means our RBF-QR method in the collocation approach works well for the
Black-Scholes model and gets accurate result. After comparing two kinds
of points used here, we can find that the Chebyshev points performs better
result than the uniform points and the Chebyshev points gets better result
as N becomes larger.
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Figure 12: Errors compared with the exact solution as a function of the
evaluation points xe. Different values of N : N = 5, N = 17, N = 25,
N = 33, with optimal ε: ε = 0.7, ε = 1.5, ε = 2, ε = 2.4, were used.
M = 120 in all cases. All figures were shown using uniform nodes (star
lines) and Chebyshev nodes (solid lines) with the basis function GA in the
collocation approach.

Figure 13 shows the errors using the RBF-QR method to solve the Black-
Scholes equation in the least squares approach with the Chebyshev points
and the uniform points. With growing N , the time errors decrease. After
comparing, we can find that the Chebyshev points performs better results
than the uniform points.
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Figure 13: Errors compared with the exact solution as a function of the
evaluation points xe. Different values of N : N = 5, N = 17, N = 25,
N = 33, with optimal ε: ε = 0.7, ε = 1.5, ε = 2, ε = 2.4, were used.
M = 120 Nls = 10 × N in all cases. All figures were shown using uniform
nodes (star lines) and Chebyshev points (solid lines) with the basis function
GA in the least squares approach.

In Figure 14 the errors become smaller when the number of the least
squares points Nls increases and our RBF-QR method works well for the
Black-Scholes model.
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Figure 14: Errors compared with the exact solution as a function of the
evaluation points xe. Different values of Nls: Nls = 25 Nls = 40 Nls = 60
Nls = 120 were used. M = 120 N = 25 ε = 2 were used. All figures were
shown using uniform nodes and the basis function GA in the least squares
approach.

Figure 15 compare the maximum errors with the uniform points and the
Chebyshev points. The Chebyshev points improves the accuracy compared
with a uniform distribution for small ε. For large ε, it is less obvious and it
may work with both points, possibly the uniform points are better. We can
also find there is a gap in the middle where none of the methods work.
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Figure 15: Max-norm errors compared with the exact solution as a funtion
of ε. Different values of N N = 6 N = 56 N = 182 N = 800 were used.
Here ε = 10[log10(0.1):0.05:log10(20)] was used for each value of N . All figures
were shown using uniform nodes (dashed lines) and Chebyshev points (solid
lines). The basis function GA was used in the collocation approach here.
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5 Conclusions

In this thesis we have derived an RBF-QR method for option pricing with
infinitely smooth Gaussian RBFs in one dimension, including boundary con-
ditions. We have shown that it can be difficult to take full advantage of
the spectral property due to the ill-conditioning of the RBF-Direct matrices
for small shape parameter values. So we have to strike a favorable balance
between unavoidable accuracy losses for large ε and avoidable RBF-Direct
accuracy losses for low values of ε.

The RBF-QR method is numerically stable for small shape parameters,
even when ε → 0. It is the only numerical algorithm that can deliver an
accurate result for small ε with the range of intermediate to large N .

Furthermore, we have shown how an adapted placement of the node points
such as Chebyshev points, instead of a standard uniform distribution, can
increase the accuracy by up to an order of magnitude by performing the
clustering towards the boundary.

For the type of PDE application that we have studied here, the LS for-
mulation for RBF methods is preferable to the collocation approach. This is
because typically the LS approximation makes the error small in the inter-
esting region.

We conclude that overall, the RBF-QR method performs significantly
better than the RBF-Direct method. There are further improvements to
be made such as evaluating the efficiency of the methods more closely and
trying to find a rule for choosing optimal parameters, and we expect that the
RBF-QR method for option pricing will be competitive in higher dimensions
also.
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