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It was the secrets of heaven and earth
that I desired to learn.

Mary Shelley, Frankenstein: Or, The
Modern Prometheus (1897).
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1. Introduction

We have a hunger of the mind which asks for knowledge of all around us, and
the more we gain, the more is our desire; the more we see, the more we are
capable of seeing.

Maria Mitchell, astronomer (1818-1889)

What motivates a person to devote years to studying certain mathematical
properties of models, that, from a very optimistic perspective, may be de-
scribed as distant relatives to a physical system?

From my point of view, it is part of a bigger quest originating from the de-
sire to understand the physical world we inhabit. Throughout history, mankind
has always been curious and has felt a need to explain the phenomena we en-
counter in life. What’s on the other side of the ocean? What is thunder? What
are the stars? Does the universe have an end?

Stories of creation and religion have provided their attempts to answer these
questions. Another approach, and the one I am exerting, is the scientific one.

The scientific principle is simple. Acceptable research has to follow certain
rules: it should be objective, independent of who is performing the research,
and repeatable. That is, if one experiment hints towards a new result, then
other experiments, performed in other laboratories and by other people, should
produce the same result. Independent readers should be able to follow the
steps of a proof of a theorem in order for it to earn its validity.

The scientific method is empirical, methodical and based on logic. But the
empirical observations do not always come first. Sometimes, theoretical con-
siderations based on logic, symmetries or mathematical structures lay out the
directions and make predictions for possible future observations. Theoretical
physics has celebrated many great triumphs when hypotheses have finally
been confirmed by experiments. Einstein’s theory of general relativity from
1915 was not tested in accuracy until in 1959, when gravitational redshift
could be measured to a great precision. Another example is the prediction
of the top quark, whose existence was suggested in 1973, but not confirmed
until 20 years later. And at the time of writing, it seems that the long foreseen
Higgs particle has finally been observed, and pictures of Peter Higgs, shed-



ding a tear of happiness at the press conference at CERN, have been cabled
out around the world.f

However, theoretical basic research doesn’t always come with predictions
for experiments. History has taught us, that in many important examples, the
application of a research result didn’t come until much later, and sometimes
from unexpected directions. Modern cryptography is to a large extent based on
number theory concerning prime numbers, an area developed by mathemati-
cians who did not have a clue about the major impact their research would
have in today’s computer society; nevertheless, they performed their research,
perhaps for the beauty of science itself, or for the intellectual challenge, or
simply out of curiosity.

Although the aim of science is to be objective, of course, research is not
independent of the cultural context. Even if a researcher believes that her or his
conclusions are objective, biased predictions or prejudices sometimes cloud
the interpretation of the results. A clear example is the research performed
at the State Institute for Racial Biology in Uppsala, Sweden, which was the
first of its kind when it opened in 1922. Even though the researchers claimed
to exercise good science and to explain the effect biological heritage and the
environment has on people, today we see that they were heavily influenced by
racist prejudices, and so were their “scientific” conclusions. Another, perhaps
less drastic example is when researchers tend to see the data that supports their
hypothesis, but overlook the data that contradicts it. The risk of subjective and
false conclusions is minimized when researchers are aware of the possibility
of biases, and when research is replicated and reviewed by different people
around the world.

There is a myth that science is driven forward by an exclusive group of
geniuses. True, not all scientists contribute to the major breakthroughs, some-
times new perspectives and methods are needed to solve a long-standing prob-
lem. But in general, doing science is a collective effort. Many detours have
to be taken before the right path is found, much data has to be collected for
patterns to arise, a lot of calculations have to be performed; for every suc-
cessful experiment there are a number of failed ones. Albert Einstein would
not have been able to develop his theory of general relativity without the, at
the time, newly developed tools in tensor calculus. James Watson and Fran-
cis Crick would not have been able to determine the structure of DNA, for
which they were awarded the Nobel Prize, if it had not been for the X-ray
images developed by Rosalind Franklin. To take a more recent example that

fAlthough the Higgs particle bears the name after Peter Higgs, his paper [Hig64] was not the first
one to suggest the existence of a Higgs-like particle. The same mechanism was presented before
by Englert and Brout in [EB64] and was further developed by Guralnik, Hagen and Kibble in
[GHK64]. It has been proposed that the Higgs mechanism should more accurately be called the
Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism.
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has already been mentioned, thousands and yet thousands of people have been
involved in the search for, and the recent discovery of, the Higgs-like particle
of the Standard Model. Theoreticians, experimentalists and engineers all de-
pend on mutual teamwork. They carry out their tasks in a methodic, controlled
way, and the hard work of each individual form a greater picture, that may be
broader than the sum of the separate parts.

But, despite the frames and rules for the scientific methods being fixed, re-
search is extremely creative. As the artist, the researcher starts from a white
sheet of paper; she then performs her experiment, collects her data or com-
pletes her calculation, and creates something new, a result that no one before
her has ever seen.

This, I believe, is what drives a person to spend several years studying geo-
metrical properties of supersymmetric sigma models.

1.1 A physics conception of the world

Physics is a natural science that tries to explain the fundamental properties of
nature, such as matter, dynamics, energy, forces.

The foundations for modern physics were laid during the Scientific Revo-
lution in the 16th and 17th centuries. Natural philosophers studied and found
explanations for the dynamics of mechanical bodies, the motion of astronom-
ical objects, optics, thermodynamics and other phenomena. During the 18th
and 19th century, the knowledge of physics was broadened with the theory
of electromagnetism and the theory of classical mechanics, together with im-
portant advancements in the language of physics: mathematics. These laws
govern what is called classical physics, that is, physics on macroscopic (non-
atomic) scales and for non-relativistic velocities, i.e., for bodies moving much
slower than the speed of light.

However, the laws of classical physics cannot explain how atoms behave,
or how the gravitational redshift of light occurs. New concepts were needed
to explain these and other phenomena. Two ideas that approached these prob-
lems were developed around a century ago and are now the basic frameworks
for modern physics: quantum physics and relativity. Both concepts have had
a major impact on our understanding of the physical world we inhabit. Of
course, the classical theories of physics are incorporated in the new theories
and are obtained in the classical limits.

Quantum theory explains physics at atomic scales and reveals that the quan-
tum world behaves according to rules that might feel counter-intuitive, like
the famous Schrodinger’s cat, that is both dead and alive at the same time.
The theory has been further developed and refined into relativistic quantum
field theories, which form the basis for the Standard Model that governs our



understanding of particle physics. The three fundamental forces that dictate
the behavior of the elementary particles (like electrons and quarks) are the
electromagnetic force, the weak force and the strong force. The dynamics of
quantum particles can be understood and predicted to an incredible precision
with the Standard Model.

The fourth fundamental force is gravity, which by the theory of general
relativity is understood in geometrical terms as the curvature of space-time
due to the mass or energy present. The theory makes predictions that differ
significantly from those of classical physics; for example, gravitational time
dilation in the gravitational field around the Earth, which has been measured
and confirmed numerous times using atomic clocks.

So, do we now have a perfect understanding of the laws of physics? Can
we relax, and go home? No, far from it. There are still many things we do
not understand. Measurements of cosmic microwave background show that
the energy density of the universe must be much higher than the observable
matter; around 22% must be made up of dark matter, and 74% of dark energy,
both of which are unknown to us. The Standard Model leaves many open ques-
tions. Why are there so many parameters, and why do they have their specific
values? Why are there three generations of matter? Why do we observe an
asymmetry between matter and antimatter? Can we fully explain black holes,
and what about the Big Bang?

Theoretical physicists still have a lot to work out, together with both ex-
perimentalists and mathematicians. One approach that suggests a new way of
looking at both particle physics and gravity at the same time is string theory.

1.2 String theory and sigma models

The basic assumption of string theory is that the fundamental objects in na-
ture are not zero-dimensional point-particles, but instead higher-dimensional
objects, such as one-dimensional strings.

The theory was first developed in the late 1960’s, not as a self-contained
fundamental physical theory, but as an attempt to model the strong interaction.
It had been found that a certain behavior of the hadron masses, the so called
Regge trajectories, could be explained if the hadrons were modeled not as
point-like particles, but as one-dimensional vibrating strings [Ven68]. But this
stringy description of the hadrons suffered from some technical problems, and
when a new promising theory for the strong force, quantum chromodynamics,
was developed, the strings were soon abandoned as a description for the strong
interaction.

Instead, with the discovery that the theory includes a particle that could
be interpreted as the graviton, the proposed quantum particle for the gravita-
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tional force, the awareness grew that string theory could perhaps be used for
something much more profound: a quantum theory of gravity.

The field has since grown rapidly and evolved in many directions. Whereas
the original theory included only bosons, fermions were soon included in the
theory by supersymmetry. Several different consistent string theories could be
defined, and were later unified by dualities into one single theory. The more
recent AAS/CFT duality [Mal98] relates string theory in a certain space to a
lower-dimensional field theory, connecting back to particle physics.

String theory predicts that space-time is ten-dimensional, instead of the or-
dinary four dimensions one would expect for a physical theory. Compactifica-
tion of the extra dimensions has significant implications for the geometry and
topology of the space; this is one of many examples of where rich mathemat-
ical structures appear in string theory, and the superspace formalism provides
powerful calculational tools, useful also outside string theory. As a summary,
string theory needs very little input, but has a huge output. Starting from vi-
brating strings, the theory implies both gravity and Yang-Mills theory, gives
insights concerning many other areas of physics and new results in mathemat-
ics.

But it should also be said that string theory is still a developing theory and
not yet fully understood. It is far from being a theory for everything, as it has
sometimes been proclaimed to be, and there are no experimental evidences.
If string theory is indeed the correct description of nature, or if it is only an
extremely powerful tool for understanding physics and mathematics, remains
to be seen.

1.3 Goals and research questions

The aim of the research presented in this thesis is to understand a branch that
is studied both in string theory and in mathematics, namely supersymmetric
sigma models and their intimate connection to geometry and topology. This, of
course, is a subject far too vast to be covered in one single thesis, and the focus
is therefore sharpened to a much more narrow area: two-dimensional sigma
models, to a large extent described by semichiral superfields, and the implica-
tions of N = (4,4) supersymmetry on the target space geometry. Further, the
ambition is to understand these models in relation to other known models and
geometries, in particular to sigma models parametrized by chiral and twisted
chiral fields and bihermitian local product geometry. The understanding of this
particular model also sheds light on sigma models and geometry in a broader
sense, involving generalized complex geometry, pseudo-supersymmetry, neu-
tral hyperkéhler metrics, supersymmetry representations, auxiliary superfields,



T-duality, Legendre transforms and quotient reduction, vector multiplets and
much more.

At the beginning of each of the chapters 6 to 8 in the part II, summarizing
the developments on the subject in the papers [I-V], the specific research ques-
tions belonging to each of the papers in the thesis will be reformulated in a
more detailed setting.

1.4 Outline of the thesis

The main part of the thesis is divided into two parts. The first part includes
chapters 2-5 and is a background and introduction to the research subject.
Chapter 2 is an initiation into the mathematical preliminaries: complex ge-
ometry, generalized complex geometry and related issues, such as neutral hy-
perkihler geometry. Supersymmetry is introduced from an algebraic point of
view in chapter 3, and the notation for superspace and superfields is set. Su-
persymmetric sigma models are treated extensively in chapter 4; special focus
is given to manifest N = 2 sigma models and their different manifestations of
generalized Kihler geometry. In chapter 5, the concept of T-duality is devel-
oped as a tool for relating and constructing new geometries, machinery that
will be necessary for later chapters.

The second part is devoted to the research results of the papers [I-V]. Pa-
pers [1], [II] and [IV] all discuss different aspects of semichiral sigma models
and N = (4,4) (pseudo-) supersymmetry, and the results will be presented in
a more coherent setting in chapter 6. Chapter 7 is based on paper [III] and
deals with the semichiral and large vector multiplets and extended supersym-
metry. Finally, the subjects of the preceding chapters meet in chapter 8, where
semichiral sigma models, extended supersymmetry and T-duality is discussed,
based on the results of paper [V].

Excerpts of the text have appeared also in the author’s licentiate thesis, suc-
cessfully defended at Uppsala University in March 2011. This concerns in
particular parts of the background chapters 3 and 4. The five papers that this
thesis is based on are reprinted at the end, but the thesis can be read inde-
pendently, as a comprehensive summary and discussion of the research and
results of the papers [I-V].



Part I:
Background






2. Geometry

No other field can offer, to such an extent as mathematics, the joy of discovery,
which is perhaps the greatest human joy.
Rozsa Péter, mathematician (1905-1977)

The first observations of the deep connections between supersymmetric sigma
models and geometry [Zum79, AGF80] sparked a great interest in further in-
vestigating the correlation between the subjects. As will be reviewed in detail
in chapter 4, the target space of a two-dimensional sigma model with N=(2,2)
supersymmetry is Kihler in the absence of torsion [Zum79], and bihermitian
if torsion is present [GHR84]. More supersymmetry requires more structures
on the target manifold; N = (4,4) supersymmetry implies hyperkihler geom-
etry in the torsion-free case [AGF80] and bihyperhermitian geometry in the
case with torsion.

The ambition to unify complex and symplectic geometry, two seemingly
different geometries, led mathematicians to study and develop the subject of
generalized complex geometry [Gua(03, Hit03, Cav05, Wit05]. Independently,
a connection between the two geometries had been studied from the viewpoint
of mirror symmetry in string theory [LVW89, GP90]. A special case of the
generalized geometry was shown to be equivalent with bihermitian geometry
[Gua03], which arises naturally in string theory when studying sigma models
with extended supersymmetry. This inspired both physicists and mathemati-
cians to study generalized complex geometry and supersymmetric sigma mod-
els. More recently, with the advancements of flux compactifications and su-
pergravity, the subject has continued to grow and now covers a wide spectrum
including non-geometries, double field theory, projective superspace, gerbes,
dualities, topology changes and much more.

In this chapter, the preliminaries of (generalized) complex geometry will
be given. Section 2.1 covers complex geometry, with particular focus on the
special case of hyperkihler geometry. Some subtleties will be omitted but can
be found in standard textbooks, such as [Nak03]. The formalism of general-
ized complex geometry is introduced in section 2.2, and the equivalence of
generalized Kéhler geometry and bihermitian geometry is explained.



2.1 Complex geometry

2.1.1 Complex manifolds

A topological space is a set X and a collection of subsets U = {U;} with
U; C X, such that the empty set and X are both elements of U, and U is closed
under finite intersections and arbitrary unions. A topological manifold is a
topological space that is locally Euclidean and Hausdorff, i.e., points are sep-
arable.

A smooth manifold is a topological manifold together with an atlas of charts
{Ui,¢i}, where {U;} is an open covering M = |JU; and ¢; are homeomor-
phisms ¢; : U; — R", such that the transition functions

piop: i @i(UiNU;) — ¢, (UiNU;) (2.1)

are infinitely differentiable on all non-empty intersections U; N U; # 0.

Consider a topological manifold M with an open covering {U;} and an at-
las of charts {U;,¢;} to C", assigning complex coordinates (z},...,7,) to all
points in U;. The space M is called a complex manifold if, for all non-empty
intersections, the change of coordinates

piogr ! 1 i(UiNU;) —  ¢;(UiNU)) (2.2
(& s — (@) )

are holomorphic. In other words, every neighborhood of the manifold looks
like the complex space C”" in a consistent way. A complex manifold necessar-
ily has an even number of real dimensions, and all complex manifolds are also
real differentiable manifolds, but not the other way around. The two-sphere S?
is a complex manifold, for example, whereas the four-sphere S* is not. For the
six-sphere S° it is not yet known if the manifold is complex, showing that the
classification of complex manifolds is indeed not trivial.

A complex n-dimensional manifold can be viewed as a real 2n-dimensional
manifold together with a complex structure J containing information about
how the real and imaginary parts of the complex vector fields relate to one
another and which differential equations they have to fulfill in order for the
change of coordinates between the vector fields to be holomorphic.

Consider a real 2n-dimensional differential manifold M, with coordinates
(x*,y*), where u = 1,...n. The tangent space and cotangent space are spanned
by

T,M = span <8 8) T;M = spang, (dx",dy"). (2.3)

p B \oxt o )7 7P R ’ '
The manifold can be complexified by introducing complex coordinates de-
fined as 7# = x* 4 iy*. The basis of the complexified tangent space and the
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dual basis of the cotangent space are now

TpM(C = spang <£“7 (;;#) , T[;‘M(C = spang (dZ*,dZ"). (2.4)
Any complex vector field Z € T,,M(C can be divided into a real and an imag-
inary part as Z = X 4+ iY. Consider a map J acting as multiplication of the
vector field with i. Applying this map twice gives J> = —1. Any map fulfill-
ing this condition is called an almost complex structure. Any almost complex
structure

J:T,M —T,M, J*>=-1 (2.5)

has eigenvalues +i. This implies that the tangent space of the manifold can be
divided into two disjoint vector spaces corresponding to the eigenspaces of J,

LME =T MY O T, M, T,M*={zeT,M®:yz=%iz}, (26)

where Z € T,M* is a holomorphic and Z € T,M~ an anti-holomorphic vector.
As already mentioned, not all real even dimensional manifolds are complex;
the six-sphere, for example, can be complexified and admits an almost com-
plex structure, but this doesn’t make it a complex manifold. The condition
J?> = —1 is not sufficient for the change of coordinates to be holomorphic;
a sufficient and necessary condition for the manifold to be complex is that
the almost complex structure J is integrable [NN57], that is, that the almost
complex structure defines integrable eigenspaces.

Consider two (anti-) holomorphic complex vectors X,Y € T,M*. The dis-
tribution TpMjE is called integrable if and only if it is closed under the Lie
bracket,

X,YeT,M* = [X,Y]eT,M*. 2.7)

Using projection operators P+ = %(1 FiJ), this condition for integrability can
be rewritten as PT[PEX,P*Y] =0 for X,Y € T,M®. The Nijenhuis tensor for
any tensor J of rank (1, 1) is defined as [Nij51]

Ni(X,Y)=J?[X,Y]—J[JX,Y] = J[X,JY]+ [JX,JY], (2.8)

or, in components,
N =Tl 1+ (2.9)

The integrability condition written in terms of the projection operators is pro-
portional to the Nijenhuis tensor. The integrability condition for the almost
complex structure J can thus be rewritten in terms of the vanishing of the
Nijenhuis tensor,

N;(X,Y)=0. (2.10)

11



A structure J fulfilling the two conditions J> = —1 and Aj(X,Y) = 0 is
called a complex structure, and a real differentiable manifold with a complex
structure is called a complex manifold.

For a complex manifold with corresponding complex structure, one can
always find a change to an (anti-) holomorphic coordinate system (z,Z) in
which the complex structure takes the canonical form with constant entries

i 0
J= . 2.11
(o —i) @D

For a manifold with more than one complex structure, the structures are
said to be simultaneously integrable when there exists an atlas on the manifold
such that on every patch, coordinates can be found in which all structures are
constant. The simultaneous integrability can be defined in terms of the Magri-
Morosi concomitant, defined in components as [ YA68]

MLy =10, = A5 = LT+ i, (2.12)

For I = J, the Magri-Morosi concomitant reduces to the ordinary Nijenhuis
tensor, M(J,J) = N (J). The sum of two structures is integrable if the struc-
tures are separately integrable and their Magri-Morosi concomitant vanishes,

NI+D)y =INI)+N )+ M(1T)+ M, D] (2.13)

The last two terms are also known as the Nijenhuis concomitant [FN56],
N(1,J) = M(1,J)+ M(J,I). Two commuting complex structures are simul-
taneously integrable if and only if their Magri-Morosi concomitant vanishes
[HP88]. For two general endomorphisms 7, J of the target space, the Magri-
Morosi concomitant is

My (X,Y) = [IX,JY] —1[X,JY]| = J[IX, Y]+ LJ[X, Y]+ [I,J]XY, (2.14)

from which it is clear that the Magri-Morosi concomitant takes the form of
the Nijenhuis tensor in (2.8) when [ = J.

2.1.2 Dolbeault cohomology

Consider first real p-forms w € QF (M), where M is an n-dimensional manifold
with metric g. Define the Hodge operator * : QP (M) — Q""P(M) by

Vgl .. v v
* (dxV A Ndar) = (n_p)!g’“ o g dXPEUN N dX(2.15)

where ¢ is the totally anti-symmetric tensor. The adjoint of the exterior deriva-
tive d : QP! (M) — QP(M) is an operator d' defined as

d' QP (M) — QPN (M), d" =4(—1)"PT" s dx, (2.16)
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where the sign in (2.16) depends on the signature of the metric. The Laplacian
A:QP(M) — QF(M) is defined in terms of the exterior derivative and its
adjoint as
A=(d+d") =dd" +d'd. (2.17)
A form satisfying Aw = 0 is harmonic. For real manifolds, the de Rham coho-
mology Hf;R (M,R) is defined as all closed p-forms modulo the exact p-forms,
kerd : Q (M) — QP (M)
HY (M,R) = . 2.18
ar MR = T (0) = or (M) 2.18)
The dimension of the vector space H 5R (M,R) is a topological invariant called
the Betti number bP. Hodge’s theorem for the de Rham cohomology groups
says, that on a compact orientable Riemannian manifold, the de Rham coho-
mology group is isomorphic to the group of harmonic forms,

H'(M) = Harm” (M). (2.19)

Now move over to complex forms. A form of bidegree (r,s) has a basis of r
holomorphic and s anti-holomorphic forms,

1 i )
W) = —— w5, dFN N AT NATTN - NDEY € QF (M), (2.20)
r.s.

Any complex p-form can be written as a sum of such forms of bidegree (7, s)
with r+s = p. For complex manifolds, the exterior derivative d can be split
into holomorphic and anti-holomorphic Dolbeault operators, d = d + 9. A
holomorphic r-form is defined as a form w € Q"*(M) satisfying dw = 0. This
happens precisely when the component function is a holomorphic function,
Wy, .., 1 = 0. The Dolbeault operators define the Dolbeault complex as
QL (M) <L Qs (M) -2 s (M), 2.21)

The Dolbeault cohomology is the complex analogue of the de Rham coho-
mology; with Z3" (M) and B3’ (M) denoting the d-closed and d-exact forms of

bidegree (r,s), the Dolbeault d-cohomology group is the quotient

HY' (M) =Z5 (M) /B5 (M). (2.22)

In other words, the elements in H g’s (M) are equivalence classes, and two (r,s)-
forms w and ' belong to the same Dolbeault cohomology equivalence class
if they are d-closed, dw = dw’ = 0, and differ only by w — ' = de for some
form @ € Q"~!(M). Analogously to the Betti numbers for the de Rham co-
homology, the complex dimension of the Dolbeault cohomology vector space
H 5’S(M ) is given by the Hodge number h"S. Generally, there is no simple re-
lation between de Rham and Dolbeault cohomology, and the latter carries no
topological information. But for Kéhler manifolds, the rich geometrical struc-

ture enables relations between them, as will soon be reviewed.
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2.1.3 Connections

To develop the concept of holonomy needed later, a short introduction to prin-
cipal bundles must first be given. A fiber bundle is the set of data (E,x,B,F),
where B is denoted the base space and F the fiber, and the projection7: E — B
is locally trivial, in other words, such that locally, the bundle looks like the
trivial bundle E = B x F. The inverse image 7~ ! (b) is the fiber at b € B. In
a differentiable fiber bundle, the base space, the fiber and the total space are
differentiable manifolds, which is from now on assumed. A global section is a
smooth map s : B — E that maps points of the base space to unique points on
the fiber, ns(b) = b € B. In a principal bundle (P,7,B,G), the fiber is a (Lie)
structure group G, acting free and transitive, 7(pg) = n(p) with g € G and
p € P. The base space is isomorphic to the space of orbits, B = P/G.

A connection on a principal bundle is a smooth and unique separation of
the tangent space of P into a vertical subspace V), P, tangent to the fiber, and a
horizontal space,

T,P =V,P®H,P, (2.23)

in such a way that choosing the horizontal subspace at one point, the hori-
zontal subspaces at all other points are uniquely determined, H, P = Rg. H,P,
where Ry : TP — TP is the push-forward of the right-translation of G. An
element A in the Lie algebra generates a flow along the fiber, o (p) = pe,
satisfying (o (p)) = n(p) = m € B. Consider an arbitrary smooth function
f: P — R and define a vector X4 € T,P by

Xa(f(p) = %f(m(p)) (2.24)

The vector field is tangent along the flow o (p) and defines the vertical sub-
space. It is called the fundamental vector field associated to A.

In a principal bundle, a horizontal lift yp can be defined that lifts a curve
in the base space, y = [0, 1] C B, to the fibers in such a way that all tangent
vectors to the lifted curve lie in the horizontal subspace H,P. Given a connec-
tion, the parallel transport of a point p € P along a curve vy in B can then be
uniquely determined by moving it along the horizontal lift yp. For a closed
loop y(0) = y(1) = m, the parallel transported endpoints lie on the same fiber,
7(yp(0)) = n(yp(1)) = m, but are not necessarily equal; the loop defines a
transformation 7, : 7~ (m) — x~!(m) on the fiber. Varying the closed loops
for a fixed point m € B and denoting all the loops by C,(B) generates the
holonomy of the connection,

Hol,,(P) ={g € G|ty(m) =mg, v € Cu(B)}, (2.25)

t:O.

measuring to which extent the parallel transport around closed loops fails to
preserve the geometrical data being transported. The holonomy depends on
both the connection and the principal bundle.
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A connection one-form is defined as a projection of the tangent space T,P
onto the vertical subspace, satisfying w(Xs) =A and w g (Re:X) = g~ 'w,(X)g,
where Ry, is the push-forward defined above. The last constraints implies that
the horizontal subspace is equivariant; if a vector X lies in the horizontal sub-
space H,P, then the push-forward vector R,, X lies in the horizontal subspace
H,,P. With this definition, the horizontal subspace can also be defined as the
vectors in the tangent space satisfying H,P = {X € T,P }a)(X )=0}. Let {U;}
be an open covering of B and s; be a local section defined on every subspace.
The local connection one-form is defined as the pullback of the local section
of w,

Ai=siwegaQ\(U). (2.26)

This is the Lie-algebra valued gauge potential that arises in physics and will be
used in later chapters; in particular the discussion presented here will become
useful when discussing the gauging of sigma model isometries in chapter 5.
On the non-empty intersections U; N Uj, the gauge potentials relate to each
other by the gauge transformations A ; = gfleigi i+ gfjldgi j» where g;; are the
transition functions, see, e.g., [Nak03].

A vector bundle is a fiber bundle whose fiber is a vector space. The pro-
totype of a vector bundle is the tangent bundle TM over an n-dimensional
manifold M, whose fiber is the tangent spaces T,M = R" at each point p € M.
The sections of a tangent bundle are vector fields over M. On a tangent bun-
dle, each fiber has a natural basis {d/dx"} given by the coordinate system on
U; C M. The basis vectors of the tangent spaces form a local frame over U;,
and the set of frames L,M at each point p € M defines the frame bundle. This
frame bundle is actually a principal bundle with the structure group being the
set of non-singular linear transformations, GL(n,R), and a local connection
one-form can be defined as in (2.26), where g is the Lie algebra of all invert-
ible n x n matrices. These matrix-valued forms define the Christoffel symbols
for a covariant derivative; hence any connection on the frame bundle defines a
covariant derivative on the tangent bundle. If the connection is torsion-free and
the covariant derivative preserves the metric, it is the Levi-Civita connection.

2.1.4 Kdhler geometry
A manifold endowed with a complex structure J always admits a hermitian
metric g satisfying

g(JX,JY) =g(X,Y), (2.27)

or differently expressed, J'gJ = g. Explicitly, given a Riemannian metric g,
the hermitian metric can be defined as g(X,Y) = 3 (§(X,Y) +(JX,JY)), ob-
viously satisfying (2.27). In the (anti-) holomorphic coordinates in which the
complex structure takes the canonical form in (2.11), the hermitian metric has
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only off-diagonal entries,
g = gud" ®dZ + gpd7 @ dz”. (2.28)

The Kdhler form is a two-form defined in terms of the metric and the complex
structure as
w(X,Y)=g(JX,Y), (2.29)

with X, Y € T,M. When the Kihler form is closed, the manifold is said to be a
Kdhler manifold and the metric a Kihler metric. This condition is equivalent
to the complex structure being covariantly constant with respect to the Levi-
Civita connection,

dw=0 <<= VJ/=0. (2.30)

Despite the fact that a complex structure is locally trivial in every coordinate
patch, in general, the integrability does not imply that it is invariant when
parallel transported along a closed curve that traverses several patches. A nec-
essary and sufficient condition for the complex structure to be covariantly con-
stant is that the Kéhler form is closed.

Since the Kéhler form is closed, non-degenerate and anti-symmetric, it is a
symplectic form. Writing the Kéhler form in components as w = ig,;d7* AdZ’,
the closeness constraint (2.30) implies that the Kihler metric satisfies the two
relations gy 1 = gav,u and g5 7 = 8,7 7- A metric written in terms of a Kdhler
potential as

J’K

8uy = 782“ o7
clearly satisfies these conditions. The converse is also true; if {U;} is an open
covering on a Kihler manifold, then locally on a chart U; the metric can be
written as second derivatives of a Kihler potential K; as in (2.31). On overlap-
ping charts, two Kéhler potentials may differ up to a Kihler transformation,
Ki(z,2) —K;(z,2) = fi;(z) + fi;(Z), where f;;(z) is a holomorphic function. The
constraints for the Kihler metric also imply that all Christoffel symbols in the
Levi-Civita connection with mixed holomorphic and anti-holomorphic indices
vanish, e.g.,

(2.31)

o0 =g (8,1,+0—8,1) =0. (2.32)

Since the Levi-Civita connection does not mix holomorphic with antiholo-
morphic indices, it preserves holomorphicity. In other words, a holomorphic
vector remains holomorphic after parallel transport. This in particular implies
that the holonomy of a Kihler manifold is contained in U (n).

The complex projective space CP" with the well-known Fubini-Study met-
ric is an example of a K&hler manifold. An important special case of Kihler
manifolds are Calabi-Yau spaces, defined as compact Kéhler manifolds that
are Ricci-flat. This restricts the holonomy of the manifold to SU (n) C U (n).
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Laplacians for hermitian manifolds can be defined analogously to (2.17) as

Ay=(0+03)?=00"+9d70,
As=(0+9")?=09" +970. (2.33)

A form satisfying Ajw = 0 is called d-harmonic. Generally, there is no sim-
ple relationship between the Laplacians in (2.17) and (2.33). But for Kéhler
manifolds, they are related simply by Ay = Ay = %A. This means, that a holo-
morphic r-form not only satisfies Ayw = 0, but also Aw = 0, in other words,
that all holomorphic forms are harmonic with respect to the Kéhler metric.
Moreover, for Kédhler manifolds, but not for hermitian manifolds in general,
de Rham and Dolbeault cohomology are related by the Hodge decomposition

H) (M)© = @, ,H™ (M), (2.34)

implying that the Betti numbers #” can be computed as the sum of all Hodge
numbers A"* with r+s = p.

2.1.5 Bihermitian geometry

If torsion is included in the connection via H = db,
Ve =v+lelH, (2.35)

and the manifold is equipped with two complex structures which are covari-
antly constant with respect to these connections,

VEJH =0, (2.36)

and further the metric is hermitian with respect to both complex structures,
the geometry of the manifold is called bihermitian. The corresponding Kéhler
forms are defined as in (2.29) as W™ = gJ*). For only one complex structure,
the geometry defined by the constraint VVJ) = 0 is also known as strong
Kdhler with torsion (SKT) [HP96], so bihermitian geometry is equivalent with
SKT-geometry in two directions.

Bihermitian geometry plays an important role in the study of supersymmet-
ric sigma models, as will be discussed in chapter 4. In the next section, the
equivalence between bihermitian geometry and generalized Kédhler geometry
will be reviewed.

2.1.6  Hyperkdhler geometry

A manifold with three integrable structures (I,J,K) satisfying the quaternion
algebra [Ham43]
P=J=K>=-1, IJK=-1 (2.37)
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is called a hypercomplex manifold. All linear combinations of (/,J,K), where
the coefficients a,b,c € R lie on a two-sphere,

J=al+bJ+cK, a+b*+c*=1, (2.38)
is again a complex structure. Thus, a hypercomplex manifold has a two-sphere
of complex structures and can be parametrized by a complex coordinate { us-
ing the stereographic projection S> — C with the complex coordinate defined
as { = (b+ic)/(1+a) with (a,b,c) € S* [HKLRS87],

T =51+ 550+ 52k (2.39)

If the metric is hermitian with respect to all three complex structures, the
manifold is hyperhermitian. Further, if each Kéhler form w; = (gl, g/, gK)
with i = 1,2,3, corresponding to the three complex structures is closed, or
equivalently, if the complex structures are all parallel with respect to the Levi-
Civita connection,

VI=VJ=VK =0, (2.40)

the manifold is hyperkdhler. Choosing coordinates that are (anti-) holomor-
phic with respect to the complex structure /, the Kahler form corresponding
to I is w; = —iddK, where K is the Kihler potential, and the combinations

w® = wy +iws (2.41)

are holomorphic symplectic (2,0) and anti-holomorphic (0,2)-forms, respec-
tively. The three Kéhler forms can be combined using the complex coordinate
{ into a holomorphic symplectic form with respect to the complex structure
J(¢) in (2.39),

Q) = w4+ fw) — P (2.42)

A Killing vector preserving all three symplectic forms, £;(w;) = 0, is called
triholomorphic. Triholomorphic Killing vectors will be relevant when gauging
isometries of hyperkéhler manifolds in later chapters.

The two-sphere of complex structures allows for an alternative definition of
a hyperkéhler manifold. A locally irreducible Riemannian manifold equipped
with two complex structures J®' is hyperkihler if the metric is Kéhler with
respect to both complex structures and the two complex structures are not
proportional, J©) # +J%) [Mor07]. It follows that the anti-commutator of the
two complex structures is proportional to the identity,

{79, T} =2¢1, (2.43)

with the constant ¢ € R satisfying |c| < 1. This implies that a third complex
structure can be defined as

K=——[J9,J9). (2.44)
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A four-dimensional Kéhler manifold is hyperkahler if and only if there are
holomorphic coordinates (z,w) such that the metric g;; = 0;d;K satisfies the
Monge-Ampere equation [Yau78, Cal79]

det(g) = gzz8ww — gowgzw = 1. (2.45)

In higher dimensions, this constraint generalizes to a system of partial differ-
ential equations for K. Corresponding to a non-vanishing constant |c| < 1 in
(2.43), equation (2.45) can be generalized to det(g) = (1 —c?)?.

An example of a hyperkéhler geometry is the Eguchi-Hanson metric [EH79],
which may be defined by the real function [Dyc11]

_ 1 -1
K:r—|—2ln<:+1>, 2 =1+4z7(1 +ww)>. (2.46)

The Kihler metric defined by g;; = 9;0,K for x' = (z,Z,w,w) satisfies the
Monge-Ampere equation det(g) = 1.

The name hyperkihler originates from Calabi [Cal79], but the concept arose
already in Berger’s classification of the holonomy groups of Riemannian man-
ifolds [Ber55, MS99]. Since the complex structures are covariantly constant
(2.40), the holonomy group of a hyperkihler manifold is contained in both
the orthogonal group O(4n) and the group of quaternionic invertible matrices
GL(n,H). The maximal such intersection is the group of n X n quaternionic
unitary matrices Sp(n) C SU (n) C U(n). All hyperkéhler manifolds are Ricci-
flat Kahler and hence Calabi-Yau. Since the holonomy group Sp(n) is also
an intersection of U (2n) and Sp(2n,C), the linear transformations of C?" that
preserve a non-degenerate skew-symmetric form, a hyperkédhler manifold is a
complex manifold with a holomorphic symplectic form [Hit92].

If the connection includes torsion as in (2.35) and preserves both the metric
and the three complex structures, the geometry is said to be strong hyperkdh-
ler with torsion (strong HKT) [HP96]. Of course, if the torsion vanishes, the
connection reduces to the ordinary Levi-Civita connection and the geometry
is hyperkéhler.

2.1.7 Neutral hyperkdhler geometry

A pseudo-hypercomplex manifold has three integrable structures (1,S,7) sat-
isfying the algebra of split quaternions,

—PP=8=7?=1, IST=1 (2.47)

In other words, the manifold has two local product structures S and T, squar-
ing to one, and one complex structure /. The individual integrability of the
structures is again equivalent to the vanishing of the Nijenhuis tensors (2.8).
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Oriented four-dimensional manifolds with pseudo-hypercomplex structures
always allow for a local skew-hermitian metric g which must have signature
(2,2) [Dun02]. Such a metric is referred to as neutral; accordingly, pseudo-
hypercomplex manifolds are sometimes referred to as neutral hypercomplex.

As for ordinary hypercomplex structures, the fundamental two-forms cor-
responding to the pseudo-hypercomplex structures are defined as in (2.29).
Again, if the fundamental two-forms corresponding to (1,S,7) are closed, or
equivalently, if the three structures are covariantly constant with respect to the
Levi-Civita connection, the manifold is neutral hyperkdhler [Kam99], also
known as pseudo-hyperkdihler or hypersymplectic [Hit90]. Four-dimensional
neutral hyperkahler manifolds may be either complex four-tori or Kodaira sur-
faces [Kam99].

2.2 Generalized complex geometry

Complex and symplectic geometry can be united in a larger framework called
generalized complex geometry, introduced in [Hit03]. As will be seen in chap-
ter 4, the most general sigma model with two manifest supersymmetries in
each chirality has a target space which is bihermitian. This special case of
generalized complex geometry is equivalent to generalized Kdihler geometry,
and the explicit map was given in [Gua03].

As was reviewed in the previous section, a complex structure is an inte-
grable map J : T,M — T,M with J 2 = —1. This concept can be generalized by
substituting the tangent bundle by the direct sum of the tangent bundle and the
cotangent bundle 7M & T*M and the Lie bracket [X,Y] by the Courant bracket

1
(X +&Y +njc =X, Y]+ Lxn—Lyé— Ed(ixfl —iy§), (2.48)

where the vector fields X,Y € TM and the forms &, € T*M pair up as ele-
ments X +& € TM @ T*M. The Lie derivative LxY of a tensor Y measures the
change of the tensor along a flow generated by a vector field X. When Y is a
vector field, the Lie derivative is simply the Lie bracket LxY = [X,Y]. The Lie
derivative acting on a differential form is given by the Cartan formula [Car45],

Lyxw= Lxd&)—i-d(LxQ)), (2.49)

relating the exterior derivative d with the interior derivative ¢.

The Courant bracket is skew-symmetric, but not a Lie bracket since it does
not satisfy the Jacobi identity. The Jacobiator can be introduced to measure the
Courant bracket’s failure to satisfy the Jacobi identity. It does so by an exact
form, namely the exterior derivative of the generalization of the Nijenhuis
tensor in generalized complex geometry [Gua03]. When projected down onto
TM, the Courant bracket reduces to the ordinary Lie bracket.
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X,YeTM X, YyeTMaoT™M

Figure 2.1: Comparison between complex and generalized complex geometry.

An important property of the Courant bracket is that it allows an extra sym-
metry in addition to diffeomorphisms, namely b-field transformations involv-
ing a closed two-form b acting as

X & X +&+ixb. (2.50)

The Courant bracket may be twisted by a closed three-form H, defining the
H-twisted Courant bracket as

X +&Y +nln = X +&Y +rlc+ixivH. (2.51)

If the three-form is exact, H = db, then the last term in (2.51) can be generated
by a b-transform (2.50) with a non-closed two-form b. The metric on TM can
be extended to a natural pairing T on TM & T*M defined by

(X +&Y +n) = 5 (ixn+iré). (2.52)

The natural pairing is symmetric and non-degenerate and takes the form

01
7= 2.
(1 0) 05y

in the local coordinates (d,,dx*) [LMTZO05]. With these generalizations, sum-
marized in the chart 2.1, a generalized almost complex structure 7 is defined
as an automorphism of TM & T*M which squares to minus one and preserves

the natural pairing,
TJr=-1, JI1J=1. (2.54)

The integrability condition is defined analogously as for complex structures.
With projection operators defined as [1. = %(1 FiJ), it can be written as

I+ ML (X + &), (Y +7)]-=0. (2.55)

A map J fulfilling the conditions (2.54)-(2.55) is called a generalized complex
structure, in analogy to the complex structures reviewed previously.
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2.2.1 Generalized Kdhler geometry

Generalized Kdhler geometry is defined as a pair of two commuting general-
ized complex structures 7;,./> for which G = — 717, defines a positive defi-
nite metric on TM & T*M. Strictly speaking, G has the wrong index structure
to be a metric, but it can be used to construct a metric H «< G [HHZ10]. Fol-
lowing conventional notation [Gua03], though, G will here be referred to as
the generalized metric.

If (J,g,w) defines a Kéhler geometry with Kéhler form w and two general-
ized complex structures are defined by

J 0 0 —w!
= = 2.56
jl ( 0 —Jt ) ; jZ ( w 0 ) ) ( )

-1
G=-TJ = ( 0 ¢ ) 2.57)

defines a generalized Kihler geometry where G is constructed from the Kéhler
metric g. More generally, given a bihermitian structure (J*), g, b) with corre-
sponding two-forms w®) = gJ*), a generalized Kihler structure can be defined
by the two generalized complex structures [Gua03]

Ty = l 1 0 JE £ JO) _[w(+)71 :Fw(f)—l] 1 0
2= 2 b 1 WP :FwH _[J(+)t j:_](f)z] b1 :
(2.58)

The generalized Kihler structures are integrable if and only if the Ké&hler
forms satisfy [Gua03]

then

dOo® 43w =0, ddPw® =0, (2.59)

where d“® = i(d") — d*¥)) and the (+)-index denotes holomorphicity with
respect to the complex structure J™ in respective canonical coordinates. The
torsion is then given by H = d“Vow™ = —d““w). Note, that if the torsion
vanishes, then 9w and d*)w™ vanish separately, implying that dw™ =0
and the geometry is simply Kéihler. This corresponds to the situation when
J®) = J5) = J in the case (2.56) above.

Equation (2.58) is is the explicit map between bihermitian geometry and
generalized K#hler geometry. The inverse is true up to the symmetries of the
Courant bracket; b-transforms and diffeomorphisms.

Real Poisson structures can be defined on a generalized Kéhler manifold as
[LZ02, Hit06]

& = (J(+> :E:JH) g*I’
o = [J”),J(*)]g*1 =1l gn'™. (2.60)
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Generalized Kihler geometry can, like ordinary Kéhler geometry, be described
by one single generalized Kéhler potential [LRvUZ07a]. The potential serves
as the Lagrangian for two-dimensional sigma models with two manifest su-
persymmetries, as will be discussed in detail in section 4.4. The geometric
structures are expressions of second order derivatives of the generalized Kih-
ler potential and become linear when the Poisson structure o vanishes, but are
non-linear in general. In fact, when o is invertible, Q = o~ ! is a symplectic
structure and the metric is given simply by

g=Q[J,J], (2.61)

which has important consequences for the geometry.

Recently, analogue relations between pseudo-hermitian geometries with in-
definite metrics and corresponding structures in generalized (pseudo-) com-
plex geometry have been developed [Gua07, HLMdS*09, DGMY11].

For a generalized Kéhler manifold with {J™,J} = 2¢ constant, the mani-
fold is hyperkéhler when |c| < 1 [LRvUZO07a]. This implies that the two com-
plex structures are not proportional, J*) £ +J). Actually, an equivalent state-
ment for a generalized Kéhler manifold to be hyperkihler is that the corre-
sponding spaces (M, g,J™) are Kihler and J* # +J) [OP09].

The description of generalized complex geometry in terms of a generalized
Kihler potential is valid locally away from irregular points. A regular point
is defined as a point in the manifold for which a neighborhood exist where
the ranks of the Poisson structures 7'*) in (2.60) are constant, or equivalently,
when the type of the generalized complex structure is constant. In this thesis,
we restrict to descriptions away from irregular points.
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3. Supersymmetry

Scientific work must not be considered from the point of view of the direct
usefulness of it. It must be done for itself, for the beauty of science, and then
there is always the chance that a scientific discovery may become like the
radium, a benefit.

Marie Curie, physicist and chemist (1867-1934)

Our understanding of physics relies on the framework of symmetries. Al-
ready Newton’s laws of mechanics embodied symmetry principles, and later,
Maxwell constructed the laws for classical electrodynamics, which were even-
tually understood to have both Lorentz invariance and gauge invariance. The
special relativity developed by Einstein is basically Poincaré symmetry of
space-time, and the underlying principle of general relativity is covariance
under diffeomorphisms of space-time.

The implications of symmetries in nature became more well understood
after Emmy Noether proved her famous theorem on conservation laws: that
for every global continuos symmetry of a system, there is a conserved charge
[Noe18]. For example, the total energy is conserved in a system that does not
depend on time, and angular momentum is preserved if the system is rotation-
ally invariant.

At the level of quantum mechanics, the significance of symmetries is even
more profound. A quantum state is an irreducible representation of a symmetry
group; in relativistic quantum mechanics the representations of the Poincaré
group lead to a complete classification of elementary particles, labeled by their
spin and mass, or, in the massless representations, helicity. This divides the
elementary particles into two groups: the bosons with integer spin and wave
functions that are invariant under the interchange of two identical particles,
and fermions with half-integer spin and wave functions that receive a sign
change.

The Standard Model of physics is a quantum field theory that unifies the
electromagnetic force, the weak and the strong force into one framework
and explains the dynamics of all known subatomic particles to an impres-
sive precision. It is defined by the symmetry under the local (gauge) group
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SU(3) x SU(2) x U(1). The latest achievement, and the missing piece in the
puzzle, is the discovery of a Higgs-like boson at the Large Hadron Collider
earlier this year (2012). But despite its many successes, the Standard Model
fails to explain certain fundamental questions. It predicts the neutrinos to be
massless, whereas new experiments have indicated that they do have mass.
The Standard Model does not provide an explanation of gravity, and since it
does not explain dark matter or dark energy, it only concerns 4% of the energy
present in the universe. Further, the theory depends on 19 free parameters, but
does not explain their value, and is unnatural, in the sense that it must be heav-
ily fine tuned to neutralize quantum corrections. This and other deficits seem
to hint that the theory is only the low energy limit of some deeper underlying
theory.

Seeing that the search for symmetries have provided a fruitful route of un-
derstanding the physical laws of nature, a natural approach was to introduce
a symmetry between bosons and fermions. This new extraordinary symmetry
that unifies force and matter was given the intriguing name supersymmetry
[GL71, VAT3, WZ74].

But not only does supersymmetry intertwine fermions and bosons, the the-
ory also suggests possible resolutions to problems in the Standard Model, such
as explaining the hierarchy problem and converging the gauge couplings of
the Standard Model at high energies. It moreover contains candidates for dark
matter and is an essential feature of string theory.

However, supersymmetry predicts that every known elementary particle has
a superpartner, and the existence of these particles have not yet been experi-
mentally verified. If supersymmetry is a fundamental symmetry of the physi-
cal world we inhabit, it must be broken at a high energy scale; it remains to
be seen if traces of supersymmetry can be observed in the future. Until then,
supersymmetry continues to play an important role in physics and mathemat-
ics, providing us with tools and insights in quantum field theory, differential
geometry, representation theory and string theory.

3.1 Supersymmetry and representations

Supersymmetry relates integer and half-integer spin particles by combining
them in one multiplet. At the algebraic level, the supersymmetry algebra is a
Super-Poincaré algebra, the extension of the Poincaré algebra to involve odd
generators.

The elements in the Poincaré algebra generate translations P, and Lorentz
transformations M,;,. In four-dimensional Minkowski space with metric 7,
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the commutators of the generators give rise to the Poincaré algebra

[P/UPV] == 07
[P#’MVT] - ny[vPT]7
[M,uvaMw'] = My[a"]‘r]v - Mv[a”]‘r]ya (3.1

see, e.g., [Wes86]. Coleman and Mandula showed on general grounds that,
in order to be compatible with relativistic field theory, any larger group con-
taining both the Poincaré group and an internal symmetry group with algebra
[B/,B,)] = f,fBy, must be a direct product of the two groups, i.e., the internal
symmetry generators commute trivially with the Poincaré generators [CM67].

In the superalgebra, this no-go theorem is circumvented by the introduc-
tion of fermionic (odd) generators that commute with the Poincaré generators
and anti-commute with each other in a Z,-graded Lie algebra [HLS75]. The
Z,-grading implies that the N odd generators Q commute with the Poincaré
generators to odd elements

[in PV] 07
[QéwM,uV] = %(O-/lv)nga 3.2)

and anti-commute with each other to even elements. Note that the vanishing
commutator between the supersymmetry and the momentum generators im-
plies that [P?, Q] = 0. Hence the mass operator P is a Casimir operator, which
means that all particles in an irreducible representation of the supersymmetry
algebra have the same mass.

Requiring that the anti-commutator satisfies the generalized Jacobi identi-
ties and normalizing the momentum operator constrains the anti-commutation
algebra to take the form

{0, 0} = 2(#*C)apPud"! + CapZ + (y5C)ap? . (3.3)

Here, the supercharges Qf,, with spinor index ¢ and i = 1,...,N in (3.2)-(3.3)

are Majorana spinors in the (0, %) @ (%, 0)-representation of the Lorentz group,
Cyp 1s the anti-symmetric charge conjugation matrix and ZUJ, Y are central
charges. The central charges exist only in extended supersymmetry, N > 1,
and commute with all generators O,

1Z,0] =[v,0] =0. (3.4)

In the Weyl representation, using two-component Weyl spinors, the algebra
(3.3) takes the form

{0, 0}} = 2Po ",
{0, 00} = eap(Z7 + YY), (3.5)
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where vector and spinor indices are combined in a more compact notation as
P, = (U“)adPﬂ and g1 = &j, = —1 is anti-symmetric.

Introduce an operator O = (—1)V/ where N ' is the fermionic number op-
erator. All bosonic states have eigenvalue +1 and all fermionic states —1 of
this operator, which implies that the operator anti-commutes with the super-
symmetry generators. The trace of the operator O will be the difference in
the number of bosonic and fermionic states, TrO = n;, —ny. Using the cyclic
properties of the trace together with the supersymmetry algebra (3.5), one can
see that the trace vanishes for all representations with nonzero momentum,

0=Tr[0{00, 03}] = Tr[O2*)pP] = 2(*)oppuTr[O].  (3.6)

This shows that every field theory representation of supersymmetry contains
the same number of bosonic and fermionic states.

The papers [I-V] that are the basis for this thesis all focus on supersymme-
try on two-dimensional world-sheets. In two dimensions, there is a Lorentz-
invariant notion of whether a massless particle is moving to the left or to the
right. For closed strings in two dimensions, supersymmetry thus induces two
independent left- and right-moving supercurrents corresponding to the two
chiralities [HW85], and the algebra is given simply by

(0", 0"y =25""p_,
{0.,0"1 =0, (3.7)

where the momentum operator can be represented as a space-time translation
P.. = id.. and the light-cone coordinates are defined in terms of the two coor-
dinates of the world-sheet as x™* =7+ 0.

Just as the Poincaré algebra was here combined with odd generators accord-
ing to a Z,-grading to form a Super-Poincaré algebra, other Lie algebras, such
as the conformal algebra, can be combined with supersymmetry, in the latter
case giving the superconformal algebra.

3.1.1 Twisted supersymmetry

The key feature of the supersymmetry algebra, that the supersymmetry gen-
erators anti-commute to a space-time translation, can be generalized to some
of the generators anti-commuting to minus a translation, so called pseudo-
supersymmetry [Hul98, AZH99]. This is made possible by the fact that the
supercharges with opposite chirality anti-commute in two dimensions. An al-
gebra with both supersymmetry and pseudo-supersymmetry is denoted twisted
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supersymmetry,
{0.,0,y=24P,.,
(0", 0"y =247 P_,
{0.,0"} =0, (3.8)

where 1"/ = diag (6“4, —¢6"") and u + v equals the number of positive super-
charges Qi, and similar for ni,j,.

The anti-commutator in the ordinary supersymmetry algebra (3.7) is a pos-
itive definite operator in a Hilbert space with positive definite metric, imply-
ing that supersymmetric systems have non-negative energy. The algebra of
a twisted supersymmetry (3.8), on the other hand, generates a system with
either constantly zero energy or with negative norm states [GH90]. Hence,
twisted supersymmetry is essentially irrelevant from a physical context. How-
ever, twisted supersymmetry is interesting from a geometrical point of view,
since imposed on sigma models it will require the target space to have indefi-
nite metric, and such geometries have received attention both in the context of
differential geometry [DJS05, AMTO08, DGMY11, BB11] and in string theory
[OV90, OVI1, Hul98, AZH99].

3.2 Superspace and superfields

By construction, superspace is the space in which supersymmetry is inherently
manifest, and superfields are functions defined on the superspace. The two
concepts are needed to construct models with manifest supersymmetry and
were introduced in [SS74] and [FWZ74].

Lorentz invariance is manifest in the Minkowski space, which can be de-
fined as the coset of the Poincaré group and the Lorentz group. Superspace
may be defined analogously, as the coset of the Super-Poincaré group and the
Lorentz group. In addition to the even coordinates x* of the Minkowski space,
superspace is equipped with odd Grassmann coordinates carrying spinor in-
dex, 8. The group element of the Super-Poincaré group are generated by the
operators in the Super-Poincaré algebra as

g(x,0) = Wt 0a) (3.9)

By definition, the Grassmann coordinates satisfy the anti-commutation rela-
tions {#%,6°} = 0, implying nilpotency (#%)? = 0. The Grassmann differential
operator is defined to act from the left and also satisfies anti-commutation re-
lations,

d
20¢

(9897)_£97_93@:

= Y &Y
=5 = B0 —o%6P. (3.10)
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The integration over the odd Grassmann coordinates is denoted the Berezin
integral [Ber66]. Requiring that the integral should be linear and invariant
under translations implies that the Berezin integral must pick out the highest
term in the component expansion of a superfield. In a one-dimensional anti-
commuting space with only one Grassmann variable, a general superfield has
the expansion ¢ = a + 6b, and the Berezin integral is thus

/ﬁ9w+ma~h (3.11)

Normalization is chosen such that [df# 6 =1 and [d6 1 = 0, which actually
means that the Berezin integral is identical to differentiation:

J
/w_%, (3.12)

where the differentiation operator is defined to act from the left.

A superfield is a function both of the space-time coordinates and the Grass-
mann coordinates, ¢ = ¢(x, ). Due to the nilpotency of the Grassmann coor-
dinates, superfields can be expanded in terminating Taylor series in 8. As such,
they can be viewed as a collection of component fields, a supermultiplet. For
example, in two dimensions and for N = (1, 1) supersymmetry, there is only
one Grassmann coordinate in each chirality, so the component expansion of a
superfield has four terms,

¢ (x,0) = XH(x) + 0 YL (x) +0 ¢ (x) +010 FH(x) (3.13)

and can be viewed as the collection of the fields (X*(x),y". (x), F#(x)). Obvi-
ously, linear combinations and products of superfields are again superfields.

Supersymmetry covariant derivatives are defined to anti-commute with the
supersymmetry operators, {D,Q} = 0. Similarly to the momentum operator,
the supersymmetry generator and the supersymmetry covariant derivatives
may be represented as differential operators. In two dimensions, the N=(1,1)
operators can be represented as

0 0
Qi:45§;+eiaﬁ, Di::§@;+miaﬁ, (3.14)

and satisfy the supersymmetry algebra Q% = D% = id... Projecting out the
6-independent part of the covariant derivative in (3.14) implies the useful rela-
tion

d
D| = — 3.15
| =355 (3.15)
where | = |g—¢ is the notation for setting all Grassmann coordinates in an ex-

pression to zero. The components of the superfield (3.13) are obtained by pro-
jecting out the #-independent part. Then, the leading component field of (3.13)
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is a bosonic scalar field ¢| = X, whereas the component fields D1 ¢| = ¢+ are
fermionic (odd), since the covariant derivatives D are odd. As will be clear
later when discussing actions of superfields, X and 1 are physical fields, with
propagating degrees of freedom, whereas F' is an auxiliary field in the sense
that its equations of motion are purely algebraic and can be used to eliminate
it from the action.

A supersymmetry transformation of a scalar superfield is generated by the
supersymmetry operators Q as

0p = ¢’ — ¢ = "Co(x,0)e L — ¢(x,0), (3.16)

where € is the supersymmetry parameter. Using the Baker-Hausdorff formula
and discarding all infinitesimal terms smaller than or equal to €2, the infinites-
imal version of the supersymmetry transformations is

56 = i[eQ, ¢(x,0)]. (3.17)

The defining property of the supersymmetry covariant derivatives implies that
5(D¢) = D(6¢), hence the name covariant derivatives. The supersymmetry
algebra (3.7) implies that two subsequent supersymmetry transformations on
a field commute to a translation,

[6(e1),6(&)]X = €,€i0X. (3.18)

In the twisted supersymmetry algebra (3.8), some generators close to minus a
translation, a pseudo-supersymmetry

[6(€1),6(&2)]X = —€€))idX. (3.19)

From (3.17) and the explicit form of the supersymmetry generators in (3.14),
the supersymmetry transformations on the component fields can be read off as

8¢ =06X+0 0y, +6 5y +676 6F (3.20)
where the component fields transform as
X =—€yy—€y_, Sy =—ietd X—¢€F,
OF =ie o y_ —ie o_y, SY_ = —ie O_X+€'F. (3.21)

Note that the bosonic fields are transformed into fermionic fields and vice
versa, and that the §760~-term is a total derivative. This will be true for the
highest term in the #-expansion for all superfields. Schematically, expanding
the transformation of a superfield as 6X + --- + 890F, the transformation of
the highest component is

6F = 5(D79|) = D(59)| = D'(eQ9)| = D(eDg)],  (3.22)
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and the supersymmetry algebra for more than g supersymmetry generators
is proportional to a total derivative. Since the Berezin integral picks out the
highest superfield component (3.11), the fact that the last expression is a to-
tal derivative then implies that any action written in terms of superfields is
invariant under supersymmetry transformations, up to boundary terms,

5&ﬁﬁ%/ﬂ%@:/ﬂwnw. (3.23)

The superfields form a linear representation of the supersymmetry algebra,
but in general, the representations are reducible, that is, they contain a con-
strained superfield that serves as a non-trivial subrepresentation. The redun-
dant component fields can be eliminated by imposing covariant constraints. In
four dimensions, unconstrained superfields have 16 component fields, includ-
ing a vector field Ayy = (0*)aa Ay,

®(x,0,0) = X + 60y + 6y + M + N
+ 00 A s + 070 vq + 096%Z, + 6°0°F, (3.24)

where the notation 6> = 696, is used. Two irreducible representations that can
be constructed are given by the chiral superfield, constrained by the differen-
tial operator D;® = 0, and by the vector superfield, constrained by the reality
condition ®' = @, see, e.g., [WB92]. The chiral multiplet is constrained to
depend on only one scalar boson, two fermions and one scalar auxiliary field,
and derivatives of the same fields. The vector multiplet, on the other hand,
still contains a vector field A,, hence the name. We will return to constrained
superfields in the next chapter.
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4. Supersymmetric sigma models

It is impossible to be a mathematician without being a poet in soul.
Sonya Kovalevsky, mathematician (1850-1891)

In the previous two chapters, the topics of complex geometry and supersym-
metry have been reviewed. Now, the foundation is laid to merge the two sub-
jects.

The non-linear sigma models relate the concepts of complex geometry and
supersymmetry in a striking way. Imposing extended supersymmetry on sigma
models results in geometric constraints on the target space. For example, a
two-dimensional sigma model with extended N = (2,2) supersymmetry has a
target space geometry which is bihermitian, or generalized Kéhler. This con-
nection between sigma models and geometry provides a link between string
theory and mathematics.

Sigma models were introduced to describe a phenomenological model in-
volving a pion and a spin 0 meson denoted o [GML60]. The non-linear sigma
models discussed here are something much more general. In the first section,
the non-linear sigma model will be derived from the perspective of a prop-
agating string. But, despite the fact that sigma models are fundamental ob-
jects in string theory, they can be discussed without the context of strings.
A non-linear sigma model is simply a theory describing fields that span a
manifold, that is usually curved. They can be used to describe effective field
theories, quantum field theories or purely classical theories, the motion of
higher-dimensional branes, or to model different geometries.

Focus in this thesis is on two-dimensional non-linear sigma models. The
two-dimensional theories are special in several aspects, which will be dis-
cussed in more detail later.

Some details will be left out; the interested reader may consult any of the
standard textbooks for further details, for example [Pol98a, Pol98b, GSW87]
or [BBSO07].
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4.1 String theory and bosonic sigma models

A sigma model is a theory of maps from a D-dimensional parameter space X,
denoted the world-volume, into a d-dimensional target manifold M,

Xt X - M

4.1
£ XH(E), D

The set of maps X* with u = 1,...d are the coordinates of the the world-
volume in the target space. Let the target manifold be equipped with a metric
g = g(X). The pullback of the target space metric by the embedding X*,

N JoXH 0X"
(X*8)ap = Té‘“aifbgw(x)? (4.2)

induces a metric y,, = (X*g)4» on the world-volume. A measure that is invari-
ant under diffeomorphisms on the world-volume can be constructed as

dv =dP¢\/—dety. 4.3)

The invariant volume element can be used to construct an action. First, the
one-dimensional case of a point particle will be considered, then we move
over to the discussion of the string.

4.1.1 The relativistic point particle

A sigma model in one dimension describes the dynamics of a free particle.
The volume element is simply the infinitesimal line element along which the
particle is propagating,

ds* = —g,ndX"dX", (4.4)

which is real for a time-like curve. The dynamics of the particle is given by
extremizing the action

S= —m/ds, 4.5)

where the sign is chosen so that the action reproduces the action for a free
particle in the non-relativistic limit v < c,

mv2

S~ [ —dt. 4.6
> (4.6)

Chosing time as the parameter of the world-line, the Euler-Lagrange equa-
tions resulting from (4.6) are the geodesic equations describing a free massive
particle,

VXK =XH+T% XX = 0. 4.7
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The action (4.5) with the line element (4.4) has the disadvantages that it can-
not describe a massless particle, and the square root in the integral obstructs
quantization. Instead, a classically equivalent action can be introduced,

1 |
S=5 / dt <egWX“X” — em2> , (4.8)
where e = e(r) is an independent metric of the world-line. Varying the action
with respect to e implies that (me)? = —g,,X#X”, which inserted into (4.8)

recovers the initial action (4.5) and shows the equivalence of the two actions.
The sigma model for a massless particle is obtained in the limit where e = 1
and m = 0.

4.1.2 The bosonic string

The two-dimensional analogue of the line element (4.4) and action of the par-
ticle in (4.5), is a one-dimensional string sweeping out a two-dimensional
world-sheet, described by the action

12).G°) ¢4

&4 9¢gb”
The tension 7" has dimension mass per unit length and is, for historical reasons,
usually written in terms of the Regge slope parameter o’ as T = 1/(2nd’).
Denote the two coordinates of the world-sheet as £&* = (7,07) where 7 is time-
like and o space-like, with derivatives with respect to the parameters written as
d:X = X and d,X = X', respectively. Inserted, the Nambu-Goto action [Got71,
Nam86] takes the form

S = _T/dzé: _det77 Yab = 8uv (4'9)

S——T / drdo /(X -X')? - (X)? (X' (4.10)

As in the one-dimensional action discussed above, the square root obstructs
quantization; instead, a classically equivalent action is introduced. Endowing
the world-sheet with an independent metric Ay, the Polyakov action takes the
form

T
S=-3 / drdo/—hh®™y,,. 4.11)

This action was introduced independently in [DZ76] and [BDVH76] and later
quantized in [Pol81a, Pol81b]. As in the one-dimensional case, varying the
Polyakov action with respect to the world-sheet metric and reinserting the
resulting expression 2,/—y = h¢%y.q+/—h, reproduces the Nambu-Goto action
(4.10) and shows that the two actions are classically equivalent.

The two-dimensional sigma model differs from sigma models in other di-
mensions in several important ways. Under a local rescaling of the world-sheet

metric of the form
hap — €T b, (4.12)
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a so called Weyl transformation, the volume element dV is invariant in two
dimensions, which is not the case in other dimensions.

The Polyakov action (4.11) has two further symmetries: it is invariant un-
der global Poincaré transformations and under local diffeomorphisms of the
world-sheet, £ — £%/(£%). These invariances can be used to choose conformal
gauge in which the metric is conformally flat. First, a reparametrization of
the world-sheet coordinates can be performed to put the metric on a diagonal
form up to a scale change, Ay, — €14, where n,, = diag(—1,1). Then, the
Weyl invariance (4.12) of the two-dimensional surface can be used to rescale
the metric to the form A, = 1,4p. In this conformal gauge, the Polyakov action
takes the form

T
s=-3 / drdo 9,X"9°X g, (X), 4.13)

where g,,,(X) is again the metric of the target space.
Varying the action with respect to the embedding coordinates X gives, after
partial integration, a bulk term and a surface term,
5S=T / drdor (h™3,0,X,)6X* — T / dTXﬂ'(SX”‘U : (4.14)
o=
Appropriate boundary constraints must be applied in order to eliminate the
surface terms. For open strings, one of the two options is to constrain the
end points of the string to be fixed, a so called Dirichlet boundary condition,
X#(1,0) = X*(r,n) = 0. The other option is the Neumann condition, where
the component of the momentum normal to the boundary of the world-sheet
is required to vanish, X*'(7,0) = X*'(r,x) = 0. For closed strings, periodicity
is required, i.e., X*(1,0) = X*(7,0 + ) and X" (1,07) = X" (7,0 + x). For
the remainder of this thesis, focus is on closed, oriented strings with periodic
boundary constraints.
The bulk equations of motion in (4.14) is the two-dimensional wave equa-
tion, which in light-cone coordinates x** = 7 + ¢ takes the form d,, d_X* = 0.
The wave equation is solved by a left- and right-going wave,

X)) =X () + X (x), (4.15)

where the periodicity constraints of the closed string restricts the Taylor series
expansion to take the form

1 o
X'(x ™) = EX# +a'Pxt + i\/ZTy’Z h g2
n#0 n
| _ ay i~
Xp(7) = 2 X0+ o P 4 iv2al ) e (4.16)
n
n#0
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see, e.g., [BBSO7]. The integration constants X, and P, represent the center
of mass position and the momentum of the string, respectively, describing
the free motion of the string center of mass. The @, and o} represent the
oscillatory modes of the string.

The theory may now be quantized by defining raising and lowering oper-
ators in terms of the oscillatory modes. Although the details will be omit-
ted here, some relevant implications of the quantization procedure should be
stressed. First, the vacuum state of the closed bosonic string is a tachyon with
negative mass squared. Secondly, the excited states must be massless and re-
quire the dimension of the target space to be d = 26. The excited states trans-
form as a tensor product of two vectors under the group SO(24). The repre-
sentation is reducible and decomposes into three irreducible representations:
a symmetric traceless tensor g, an anti-symmetric tensor b and a scalar trace
part @,

gDbpD. 4.17)

These background fields correspond to the graviton, the Kalb-Ramond form
and the dilaton. The dilaton is of one order higher in the perturbative o’-
expansion and can therefore be neglected to lowest order, but the b-field is of
the same order as the metric and should be included for a general sigma model.
In light-cone coordinates, the action (4.13) with background field £ = g+ b
takes the form

S = / d*xd, X" E,,0-X". (4.18)

The field equations for a general bosonic sigma model with arbitrary metric
and a b-field then generalize to

d. d_X'+ (F“’)’V‘p +T4,)0 X"0_X" =0, (4.19)
which in a more compact notation can be written as
viHa_x+ =o. (4.20)

The metric gives rise to the ordinary Levi-Civita connection I'” and the b-field
gives rise to the torsion 7' = %gildb.

4.2 Imposing supersymmetry

When quantizing the bosonic sigma model, negative norm states appear, as
was briefly discussed in the previous section; to remove this unwanted tachyon,
fermions must be included into the theory.
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4.2.1 N=1 supersymmetric sigma model

By including the standard Dirac term for free massless fermions, y*p®dotp,
spinorial fields can be added to the bosonic action, and the supersymmetric
extension of the action (4.18) with flat metric and no b-field is

S = / d*x guy [0, X O_X" +ylio_y’ +ytid. y”]. (4.21)

The action is invariant up to a surface term (which is eliminated by periodic-
ity constraints) under the supersymmetry transformations identified in (3.21),
where the bosonic and fermionic field are transformed into each other,

X =—€ety,—e Y-, Opr=—ied.X. (4.22)
The equations of motion for the sigma model (4.21) are
0.,.0-X=0, d y_=0_y;=0. (4.23)

The action in (4.21) contains no auxiliary field F', implying that the transfor-
mations on the fermionic fields close to a supersymmetry algebra (3.18) only
on-shell,

é(€1),0(e)]X = ey€)idX,
[6(€1),6(€2)]¥ = €pey)idy + (field eqns). (4.24)

The supersymmetry can be made manifest and close off-shell by going
to superspace. This is achieved by replacing the fields in the bosonic sigma
model (4.18) by superfields (3.13), the derivatives by covariant supersymme-
try derivatives, and integrating over the full superspace,

S = / d*xd*0 D, ¢"E,,D_¢". (4.25)

The sigma model has manifest N = (1,1) supersymmetry and contains the
action (4.21) when the superspace coordinates are integrated out. For a flat
metric, the reduced action is

S = / d*x guy [0 XFO_XY +yLio_y” +yMid. .y’ —FFFY],  (4.26)

which takes the form of the action (4.21) after the auxiliary fields are elimi-
nated using their equations of motion, F* = 0. For an arbitrary metric and b-
field, terms involving derivatives of the metric and b-field will also be present.
The supersymmetry transformations (3.21) of the component fields close to a
supersymmetry algebra without the help of the field equations; the auxiliary
fields are needed for off-shell closure of the supersymmetry algebra.
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The fermions of the closed strings must be equipped with either periodic
(Ramond) [Ram71] or anti-periodic (Neveu-Schwarz) [NS71] boundary con-
ditions in the left- and/or right-moving sectors, which will give rise to four dif-
ferent closed-string sectors with differing background fields. The background
fields in (4.17) correspond to the NS-NS sector of closed type IIA and 1IB
strings.

The field equations for the supersymmetric sigma model are of the same
form as for the bosonic sigma model (4.20),

vi9p_ ¢ =0, (4.27)

and contain the geometric information that the target manifold is Riemannian
with torsion.

4.2.2 N=2 supersymmetric sigma model

The non-linear sigma model in (4.25) has one manifest supersymmetry in each
chirality. The field equations (4.27) reveal the target space geometry as Rie-
mannian with non-trivial metric and torsion. Adding another supersymmetry
to the model will constrain the possible geometries of the target space. This is
where the interesting connection between supersymmetry and complex geom-
etry begins.

Dimensional analysis shows that the unique ansatz for additional supersym-
metry can be constructed of some arbitrary (1, 1)-tensors J© and the covariant
supersymmetry derivatives (3.14) to act on the superfields as

St =€ JVED, ¢+ JND_¢. (4.28)

The action (4.25) is invariant under the transformations if and only if the tar-
get space metric is hermitian with respect to the two structures J*), and the
structures are covariantly constant with respect to a connection with torsion,

JDgJ® =g VHJH =0. (4.29)

The transformations represent a supersymmetry if two subsequent transforma-
tions acting on a superfield close to the supersymmetry algebra (3.18). A suffi-
cient requirement for this to happen is that the structures J™ square to minus
the identity, have vanishing Nijenhuis tensors (2.9), vanishing Magri-Morosi
concomitant (2.12) and commute,

6(er).6(e)]¢" = ey (~(2) % idue” + NS VoDt Dot ) (430)
+ e[;el—] (MU, TN D ¢"D ¢ —[J7,JD, D _¢").
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In other words, the supersymmetry algebra closes if J*) are commuting, com-
plex structures that are simultaneously integrable. Using the constraints (4.29)
from invariance of the action, the simultaneous integrability reduces to a van-
ishing covariant term plus a connection, and the last terms in (4.30) take the
form of a field equation,

[6(e1),6(e)]¢" = €6 (—(T)2i0p+ NIV, DLd" D)
—ehe, TRV D_g”. (4.31)

The transformations thus leave the action invariant and close to a supersym-
metry algebra on-shell if and only if J*) are two complex structures fulfilling
(4.29). Off-shell closure further requires that the two complex structures com-
mute.

Two covariantly constant complex structures that preserve the metric and
the b-field define a bihermitian geometry, as discussed in chapter 2. Hence,
the existing N=(1, 1) supersymmetry can be further extended to non-manifest
N =(2,2) supersymmetry if and only if the target space geometry is bihermi-
tian [GHR84]. If the b-field is zero, the torsion vanishes and the connection
reduces to the ordinary Levi-Civita connection, and the bihermitian geometry
simplifies to Kéhler geometry [Zum79].

Twisted N = (2,2) supersymmetry will imply the same constraints as the
supersymmetry, with the difference that the structures J© in (4.31) square to
plus the identity. Accordingly, the target space will be equipped with a pair of
product structures instead of complex structures. In the torsion-free case, the
geometry reduces to pseudo-Kihler geometry [AZH99].

4.2.3 N=4 supersymmetric sigma model

The scheme of adding more supersymmetry to the sigma model and analyzing
the arising geometrical constraints on the target manifold can be continued.
An ansatz for N=(4,4) supersymmetry can be constructed on the same form
as the N=(2,2) supersymmetry transformations,
H —(7NH
sod =6 (") Di¢" +€ (1) D ¢, (4.32)
for three independent structures in both chiralities J;i) with i = 1,2,3. In the
same way as before, the action is invariant under the transformations if the
target space metric is hermitian with respect to all structures and all are co-
variantly constant with respect to a torsionful connection. The algebraic re-
quirements from the supersymmetry algebra closure includes that all six Ji(i)
must be complex structures, but also that they must satisfy the quaternionic
algebra,
TS = =6ij+eipd”. (4.33)
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The conclusion is that N = (4,4) supersymmetry requires the target space
geometry of the sigma model to be bihyperhermitian, also known as strong
hyperkéhler with torsion (HKT) in both directions [GHR84]. In the case of
zero torsion, this reduces to hyperkédhler geometry investigated already in
[Zum79, AGF80].

An ansatz for N =(3,3) supersymmetry will imply the existence of two
complex structures satisfying J;J; +J;J; = —26'/, and their product will au-
tomatically generate another supersymmetry [AGF81], so N =3 supersym-
metry on the world-sheet implies N =4. Further, a supersymmetric sigma
model on an irreducible manifold has at most four conserved spinor charges,
so N =4 is the maximal extended supersymmetry of the two-dimensional
sigma model [AGF81]. The only interesting options are the ones discussed
here; N=1, N=2 and N =4, as well as combinations of these, such as sigma
models with supersymmetry in only one direction N = (2,0), N =(4,0) or
with different amount of supersymmetry in the directions, investigated, e.g.,
in [DS86, Hul98, AZH99, HLR " 12].

The geometrical constraints arising on the target space from extended world-
sheet supersymmetry on non-linear sigma models with background fields con-
sisting of a metric and possibly a b-field can be summarized as in the following
chart.

(2,2) supersymmetry (4,4) supersymmetry

no torsion Kéhler hyperkéhler

with torsion | bihermitian bihyperhermitian

Analogously to twisted N=(2,2) supersymmetry, twisted N=(4,4) supersym-
metry requires that the structures Jl.(i) satisfy the algebra of split quaternions.
In the case of vanishing torsion, the geometry reduces to pseudo-hyperkéhler
geometry, also denoted neutral hyperkéhler.

(2,2) twisted supersymmetry (4,4) twisted supersymmetry

no torsion | pseudo-Kihler pseudo-hyperkihler

4.3 Constrained N = (2,2) superfields

As for the N=(1,1) supersymmetry discussed in the previous section, the
extended supersymmetry can be made manifest by going to N =(2,2) super-
space. The N=(2,2) formalism enables the construction of new models with
extended supersymmetry.

The extended superspace is parametrized by four fermionic coordinates to-
gether with the ordinary space-time coordinates, (x*,6%,67), where @ = +, —.
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For later convenience, the real and the imaginary parts of the Grassmann co-
ordinates are denoted 6% = 6% 4-i67. A general superfield expanded in the
Grassmann coordinates will contain 16 independent component fields,

Ox,0,0) =X +0Ty, +6 ¢ _+0 xy, +0 x_+6T6TA
+0'0 B+070"C+0 0 D+6*°M+8N
+ 60T+ 620 A+ 620 + 670 p_ +6%6°F, (4.34)
where all the component fields are functions of the space-time coordinates

of the world-sheet, X = X(x), and #*> = §76~. The component fields can be
projected out by covariant N=(2,2) derivatives, defined analogously to (3.14)

as
d i - d i
Di=——+-60 Dy = ——+-60.. 4.3
They satisfy the algebra D% = D3 = 0 and
{Dy,D4} =idu, (4.36)

and their real and imaginary parts can be seen as independent real, commuting
N=(1,1) operators,

Di = DitDy = %=+itfo.,
1

) - ) (4.37)
0. = i(Dy—Dy) = % +i6F ...

For an action in N = (2,2) superspace that integrates over full superspace,
from dimensional considerations, the Lagrangian can only be a scalar function
of the superfields,

S = / d*xd*0d*0K (D, D). (4.38)

Like the superfields (3.24) discussed previously, the general N =(2,2) super-
fields in (4.34) form reducible representations of the N=(2,2) supersymmetry,
and the redundant component fields can be eliminated by imposing covariant
constraints. Since the action with unconstrained superfields (4.38) contains no
derivatives, the dynamics of the sigma model with two manifest supersymme-
tries will arise from the differential constraints on the superfields, i.e., from
the choice of representation.
The real operators in (4.37) can be used to impose differential constraints
of the form
0,® =JD,, (4.39)

where J@ is some tensor. Given the left-hand side, Lorentz invariance and
dimensional analysis implies that (4.39) is the most general differential con-
straint [ST97]. One of the constraints reduces half of the degrees of freedom;
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imposing constraints in both chiralities reduce the number of independent
component fields to four, resulting in a superfield with the same degrees of
freedom as a N = (1,1) superfield. Chiral and twisted chiral superfields are
constrained in both chiralities, whereas semichiral superfields are only con-
strained in one. In [ST97], it was conjectured that chiral, twisted chiral and
semichiral superfields fully describe a sigma model with two manifest super-
symmetries. This was later proven to be true in [LRvUZ07a] and will now be
discussed in detail.

4.3.1 Chiral and twisted chiral superfields

The chiral N=(2,2) superfields are defined by the covariant linear differential
constraint
Di¢ =0, (4.40)

implying that half of the components in (4.34) are restricted to vanish and only
four of the component fields are independent,
$(x,0,0) =X +0 Y, +6 Yy _+670" 10, X+070 Lo_X +6*M
—0°0" L0,y +6%0 Lo_y, + 16°670, 0_X. (4.41)

The component fields (X (x),¥+(x),M(x)) have helicity 0, 1/2 and 1, respec-
tively. In terms of the real operators in (4.37), the chiral constraint reads

Q+¢p=iDi¢. (4.42)

Splitting the Grassmann coordinates into their real and imaginary parts and
collecting the component fields into N = (1,1) superfields ¢ = ¢(x,6;7), it
becomes clear that the chiral superfields depend on only one N =(1, 1) super-
field,

$(x,0,,6;) = p+6,7iD o +06, iD_¢+6,6, D D ¢, (4.43)

a fact that could be seen already from the condition (4.42).
The twisted chiral superfields are defined analogously, in terms of two linear
differential constraints,
Doy=D_y=0. (4.44)

As for the chiral superfields, this constraint reduces the number of independent
component fields to four, or, equivalently, to one single N = (1, 1) superfield.
The twisted chiral analogue of the chiral constraint in (4.42) reads

Qix ==iDyy. (4.45)
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The constraints on the chiral and twisted chiral fields (4.42) and (4.45) can
be conveniently summarized in a unified notation X = (¢, ¢, x, ) as

J 0
0.X=J9D X, J¥ = ( . ) (4.46)

where J is the canonical complex structure (2.11).

4.3.2 Semichiral superfields

Semichiral superfields, on the other hand, are subject to only one differential
constraint [BLR88],

D.X‘=0, D_X'=0. (4.47)
The resulting superfields are denoted left and right semichiral superfields, re-
spectively. In terms of the real operators in (4.37), the constraints read

0.X'=ip, X!, 0. X'=iD X" (4.48)

As compared to the analogue constraints for the chiral and twisted chiral fields
in (4.42) and (4.45), it is clear that the semichiral fields depend on more inde-
pendent component fields, since they are less constrained. Whereas the chiral
and twisted chiral superfields depended on only one N=(1, 1) superfield each,
the semichiral fields depend of two; one bosonic superfield X (x,8:5) and one
fermionic ¥ = y(x,67). Defining the fermionic superfields as

pL=0-X|, ¥, =0.X], (4.49)
where the notation | denotes projecting out the 6,-independent part, the expan-

sion of the semichiral N = (2,2) superfields in terms of N=(1, 1) superfields
reads

X = X' +65iD, X" + 67y —676,iD.y’,

X'=X"+6,iD_X"+6]y" +6,6,iD_y’. (4.50)
The fermionic superfields are auxiliary but their existence is necessary to make
the supersymmetry algebra generated by Q4 close off-shell, in analogue to the
auxiliary component field in the N = (1, 1) superfield in (3.13).

Writing the semichiral fields in a collective notation as X’ = (X!, X!, X", X7),
the constraints on the fields in the N = (1, 1) formalism are again of the form
(4.46),

0+:X=J9D.X, (4.51)
but the chirality constraints on the semichiral fields are not sufficient to deter-
mine the full structure of the matrices J&,

0 ? 9
so= [’ R - . (4.52)
? 9 0 J
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4.4 N =(2,2) sigma models and bihermitian geometry

The three kinds of superfields defined in the previous section parametrize a
general two-dimensional sigma model with two manifest supersymmetries, a
model whose target space geometry is bihermitian. As will be described in
this section, the chiral and the twisted chiral superfields span the sector of the
target space where the two complex structures of the bihermitian geometry
commute, and the semichiral superfields span the complement.

4.4.1 Chiral and twisted chiral section

Consider a sigma model where the Lagrangian is a function of chiral N=(2,2)
fields,

S = / d*xd*0d*0K (¢, ). (4.53)

By reducing one of the supersymmetries, the action can be compared to the
N=(1,1) action (4.25) with additional non-manifest supersymmetry of the
form (4.28). Using the properties of the Berezin integral, the N =(2,2) super-
space measure is

DyD_D,D_|=—-3DyD_0,0|, (4.54)

where the vertical bar denotes reducing to N = (1, 1) superspace by setting
65 = 0. Using partial integration, the action (4.53) reduces to

. . d%K
S [ d*xd®6, (g,sD+ " D_ 3" + gz,D . D_ " o= —— . (455
/ xd*0, (8vD+¢"'D-¢" + gD+ D_¢"), gy EREE (4.55)

By collecting the holomorphic and anti-holomorphic indices as ¢ = (¢*, @),
the action takes the well-known expression

S = / d*xd*6,D ¢'gi;D_ ¢’ (4.56)
and the N = (2,2) supersymmetry transformations are given by
00’ = €"Qu¢'| = €*JiDuy’, (4.57)

where @ = +, — and J is the canonical complex structure (2.11). The hermitian
metric is written in terms of second derivatives of the potential and there is
no b-field. Hence, the target manifold of a manifest N =(2,2) sigma model
written in terms of chiral superfields is Kidhler. The Kdhler metric is invariant
under Kdhler transformations,

K(¢,0) — K(¢,8) + () + (). (4.58)
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This model can be generalized to include torsion and non-Kihler manifolds
by including twisted chiral superfields. The sigma model

S = / d*xd*0d*0K (¢,,x, %) (4.59)

is equivalent to the N =(1, 1) sigma model with torsion (4.25) when reduced
to N=(1,1) formalism [GHR84]. The mixed terms with chiral and twisted
chiral fields give rise to the b-field; if only chiral or twisted chiral fields are
present, this again reduces to ordinary Kéhler geometry.

Now recall from section 4.2, that the non-manifest N = (2,2) supersym-
metry algebra closes only on-shell or if the two complex structures J® in
the supersymmetry transformations commute. As just discussed, a manifest
N =(2,2) sigma model parametrized by chiral and twisted chiral fields re-
duces to a general N=(1,1) sigma model with additional supersymmetry of
the form

6X = e JFD.LX, (4.60)

with J&) given in (4.46). Since J©) and J*) commute and are covariantly con-
stant complex structures, the non-manifest N = (2,2) supersymmetry closes
off-shell. The vanishing commutator implies that an integrable almost prod-
uct structure can be defined as IT = JJ©) [GHR84]. A bihermitian geometry
with this property is referred to as an almost product space, or a bihermitian
local product (BiLP) space. Since the two complex structures commute, coor-
dinates X = (¢, ®,x,¥) can be found in which they are simultaneously diago-
nalizable and take the form (4.46). In a BiLP-space, the geometric structures
can be expressed linearly in terms of second derivatives of the generalized
Kéhler potential [LRvUZ07b].

Any N=(1,1) model with additional supersymmetry and commuting struc-
tures J® can be written in a manifest way as (4.59) using chiral and twisted
chiral superfields [GHR84]. Locally, the sector of the tangent space where the
two structures commute can be decomposed as

ker[J©,J9] =ker (J+J) @ ker (J —J). (4.61)

The subspace ker(J") —J)) is always described by chiral fields and the sub-
space ker (/1" 4-J) by twisted chiral fields [IKR95].

4.4.2 Semichiral section

Consider a sigma model parametrized by semichiral superfields, where the
left semichiral superfields carry indices X¢ = {X/1, X%, ... X%} and the right
semichiral superfields XY = {X" X2 ... X"}, A short-hand notation for left
semichiral and left anti-semichiral fields Xt = {X% X9} will be used, as well
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as the right semichiral analogue XX = {X“/ ) Xf"}. The full set of left and right
semichiral fields is labeled by

X = (XG,X‘?,X“’,X‘?’), i=1,...,4n. (4.62)

For an action of the semichiral fields to reproduce the sigma model (4.25)
when reduced to N = (1,1) superspace, the Lagrangian must be a function
of both the left and the right semichiral fields, together with their complex
conjugates, hence the target space of the semichiral sigma model is always
4d-dimensional [BLR88]. The action is

S= / xd*0d* 9K (X%, X4, X4 X2). (4.63)

Denote derivation with respect to the semichiral fields as K, = dxady» K and
define a matrix notation as

Ky K Ky K
Kip=| " " ) k=" "), (4.64)
Ka‘zb’ Kdl_/ Kﬁ Kz

a.

When the semichiral action is integrated over one of the superspace coordi-
nates, the resulting N = (1,1) action contains both the bosonic and the auxil-
iary N=(1,1) superfield in (4.50). The fermionic superfields ¥ and ¢, are
auxiliary, however, and can be eliminated by their equations of motion. From
the definition in (4.49), the equations of motion for the auxiliary superfields de-
termine the lower rows of J and the upper rows of /) in (4.52). The remain-
ing entries were already determined by the semichiral constraints. Assuming
that the matrices in (4.64) are invertible, J& take the form [BLR8S8, ST97]

o J 0
(Kir) " 'Cre  (Kir) 'JKir

/= ( (KRL);JKRL (KRL)J_ICRR ) (4.65)

where, using the notation from [LRvUZ07a], the definition Cyz, = [J,Kyz] is
used, and similarly for Cgg.

Summarized, the semichiral sigma model (4.63) reduced to N=(1,1) su-
perspace yields an action (4.25) with one manifest supersymmetry of the form
(3.17), and a second supersymmetry of the form (4.28). Note that the super-
symmetry operator Q in (3.17) represents the first supersymmetry generator,
whereas the operator Q in (4.37) generates the second supersymmetry.

0X = €*Q,X!| = 2 @iD, X (4.66)
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where the matrices J* take the expressions in (4.65).

The expressions for J© reveal important information on the target space ge-
ometry. First of all, J*) and J©) do not commute. For a non-degenerate metric
g and in the semichiral parametrization, a Poisson structure o~ can be defined
as in (2.60), o = [J®),JO]g~!. Since the commutator is non-zero, o is invert-
ible and Q = 0! is a symplectic form with respect to both complex structures,
satisfying J#'QJ®) = —Q. Identifying the reduced action with the standard
N=(1,1) sigma model (4.25), the metric and the b-field can be read off. In the
semichiral parametrization, they take the simple expressions [BSvdLVG99]

g=QUY IO, b=Q{J",J} (4.67)

where the symplectic structure € is

1 0 K
Q=— ( LR ) . (4.68)
2\ —Kgr

The torsion can be defined only locally as H = db, but the b-field is globally
defined as in (4.67), away from irregular points in the manifold [Gua03]. Non-
degeneracy of the metric obviously requires that [J*),J)] # 0 everywhere
and that the matrix Kjp is invertible. As in Kihler geometry, the metric is a
function of second derivatives of the potential K, but due to the non-linearity
of the expressions for J®), the metric is a non-linear function of ddK.

The explicit form of the matrices J©*) and J) can also be found from an-
other point of view [LRvUZ07a]. As already seen, in the section parametrized
by the chiral and twisted chiral fields, the two complex structures are simulta-
neously diagonalizable, but this is not the case in the section parametrized by
the semichiral fields. But it is possible to choose coordinates in which one of
the matrices is diagonal. Denote by (g, p) = (X*,¥;) the coordinates in which

J™ is diagonal,
J 0
() _
Jdig = < 0 J ) , (4.69)

where J is the canonical complex structure (2.11). The symplectic structure
can be decomposed into a holomorphic and anti-holomorphic symplectic struc-
ture, and the coordinates (X%, Y;) can be chosen as the Darboux coordinates,

Q = dx! NdY, +dX' N dY;. (4.70)

Similarly denote by (P, Q) = (XR Yz) the Darboux coordinates for  in which
J©) take the same diagonal form. The coordinates (g, p) and (Q,P) are re-
lated by a canonical transformation, specified by a generating function K (g, P)
[LRvUZ10] satisfying
JdK JdK
== =—=—. 4.71
P=54 5P (4.71)
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In mixed coordinates (¢,P) = (XL, XR), the components of J©) can be com-
puted using the Jacobian for the coordinate transformation,

(Jac)_lza(q’p) :( Lo ) 4.72)

K Kir

where the matrices K;; and K; g are defined as in (4.64). In coordinates (XL, XR),
the matrix J*) now takes the form

J(+) — (Jac) J(+)

diag

(Jac)~!, (4.73)

which reproduces the matrix in (4.65). Starting from coordinates (X¥,¥z) in
which J© is diagonal, the matrix in mixed coordinates is found after a similar
transformation. In the mixed coordinates (XX, XR), the symplectic structure
takes the form given in (4.68). From this discussion, it is clear that the gener-
alized Kihler potential K (XL, XX) is simply the generating function between
the Darboux coordinates (X%, ¥;), holomorphic with respect to the complex
structure J©), and (X Yz), holomorphic with respect to the other complex
structure J,

The non-commutative property of the complex structures in the target space
spanned by semichiral coordinates allows for the construction of additional
structures. Since the kernel of the commutator [J©),J7)] is empty, the two
complex structures are not proportional, J) # 4+ J™), Recall the discussion on
hyperkihler manifolds in chapter 2 and in particular the definition in (2.43).
The manifold is hyperkéhler if the anti-commutator is proportional to the iden-
tity,

{JH T} =2c1, (4.74)

with |¢| < 1 constant.The manifold is then equipped with a two-sphere of com-
plex structures (2.38). Choosing the first structure as I = J), the remaining
two structures can be defined as [LRvUZ07a]

1 ) +) — 1 ) g

m(] +cd7), K 2@“ J7, (4.75)
such that (/,J,K) is a hypercomplex structure. It is easy to see that the torsion
vanishes since the b-field in (4.67) is constant, and that the covariant constancy
of J©® implies that all structures are covariantly constant with respect to the
Levi-Civita connection, hence the target space geometry is hyperkéahler.

Simultaneously, if ¢ is a number with absolute value greater than one, two
product structures can be defined as

J =

1
— 4+, T= W 79, (4.76)
ce— ce—

S:
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and the structures (/,S,7T) satisfy the algebra of split quaternions (2.47), en-
dowing the target manifold with a pseudo-hyperkihler structure.

In terms of the generalized Kihler potential, the anti-commutator in (4.74)
is equivalent to the system of partial differential equations

{(Ker) ' Cro(Kre) ™', J} =0,
J(Kre) 'JKge + (Kre) ' JKged + (Kge) ™ 'Crr(Kir) " 'CL=c¢,  (4.77)

together with the corresponding equations where all L and R-indices are inter-
changed. In a four-dimensional manifold, the first of these equations is identi-
cally satisfied, and the second reduces to the partial differential equation

(14 ¢)|Kee|* + (1 = ¢)|Kir|* = 2K 7K 7. (4.78)

In the limit where ¢ = 0, this is simply the equation det(K;g) = 1. By per-
forming a suitable coordinate transformation, this equation can be shown to
be equivalent to the Monge-Ampeére equation det(g) = 1 in (2.45), where g is
the metric [BSvdLVG99].

4.4.3 General sigma model with manifest N=2 supersymmetry

The full tangent space of the target manifold is a direct sum of the kernel of
the two complex structures and the complement,

TM =ker [J),JO] @ (ker [J),JO))*. (4.79)

The kernel decomposes as (4.61), and is parametrized by chiral and twisted
chiral fields [IKR95]. The dimension of the complement is always a multiple
of four, and can always be spanned by semichiral superfields [LRvUZ07a].

Conjectured in [ST97] and later proven in [LRvUZ07a], the most general
manifest N=(2,2) sigma model can thus be written in terms of chiral, twisted
chiral and semichiral superfields,

S= / dxd*0d*0 K (6,3, x5, X!, XL, X7, X). (4.80)

The generalized Kéhler potential K is defined modulo generalized Kihler
gauge transformations, a generalization of the Kéhler transformations in (4.58),

K~ K+ [, X+ F(3.0.%) +2(0, 0, X) + 3@, X)), (4.81)

Reducing the general N=(2,2) sigma model to N=(1, 1) superspace with ad-
ditional non-manifest supersymmetry of the form (4.28) again gives the struc-
ture of the matrices J© as well as the metric and b-field. With the kernel of
[/, J7)] non-empty, the metric and the b-field are obviously not given by the
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simple expressions in (4.67), since commuting structures would give a degen-
erate metric. The full structure of the metric and b-field including the chiral
and twisted chiral parametrizations was calculated in [LRvUZ07a].

As reviewed in section 2.2, bihermitian geometry is in one-to-one corre-
spondence with generalized Kéhler geometry. Since the target space of an
N=(2,2) supersymmetric sigma model with torsion must be bihermitian, and
(4.80) is the most general manifest N = (2,2) sigma model, the single func-
tion K(¢,,x, XXX XP ) describes generalized Kihler geometry. Con-
versely, generalized Kihler geometry can be described locally, away from ir-
regular points, by the sigma model (4.80). The generalized Kéhler potential en-
codes the full geometry of the model, including the metric, the b-field and the
complex structures [ST97]. The generalized complex structures J; > are given
as in (2.58) and the corresponding generalized Kéhler metric is G = —J1.7>.
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5. T-duality of sigma models

Reserve your right to think, for even to think wrongly is better than not to think
at all.
Hypatia of Alexandria, philosopher, mathematician, astronomer (370-415)

Dualities arise everywhere in physics. Usually, their existence reveal crucial
insights about the underlying properties of the physical system. In electro-
magnetism, for example, the fact that the source-free Maxwell’s equations are
symmetric under the interchange of the electric and the magnetic field relies
on the symmetry between the field strength and its dual form, that satisfies the
Bianchi identity. This duality between field equations and Bianchi identities
will be introduced in the setting of bosonic sigma models in section 5.2 and
will be one of the key ingredients for discussing the dualities between sigma
models with extended supersymmetry in chapter 8.

In string theory, dualities have continuously played a profound role. The dis-
covery that type IIA and type IIB string theory are actually equivalent descrip-
tions of the same theory related by T-duality preceded the so called second
string revolution, when the seemingly unrelated string theories were unified
into one single theory. Another duality that has had a major impact in string
theory is the AdS/CFT correspondence [Mal98]. This duality between physics
at strong and weak coupling has influenced our understanding of how gauge
theories and gravity relate to each other in general. As in the AdS/CFT cor-
respondence, a duality typically exchanges coupling regimes. In the simplest
setting of T-duality, the physical system of a closed string compactified on a
circle of radius R is equivalent to one compactified on a circle of inverse radius
1 /R, as will be discussed briefly soon.

Recently, T-duality has received renewed interest due to new developments
in flux compactifications and generalized geometry. It is known that mirror
symmetry for Calabi-Yau manifolds can be interpreted as T-duality on toroidal
fibers [SYZ96], and non-geometric backgrounds arising in flux compactifica-
tions can be understood and generated by T-duality. T-duality is also related to
several other constructions in mathematics, such as Takai duality and Fourier-
Mukai transform, see, e.g., [BoulO].
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In the context of supersymmetric sigma models, T-duality is a key tool for
understanding geometries and generating new ones. A related method is the
quotient reduction which will be introduced in section 5.4.

Locally, T-duality mixes the metric and the b-field and relates different
sigma model backgrounds. Globally, it has been shown that T-duality also
relates different topologies [AAGBL94, GLMWO03, KSTT03, BEMO4].

The N = (2,2) supersymmetric sigma models developed in the previous
chapter possess a rich variety of dualities that relate not only their target space
geometries, but also the corresponding different supersymmetry representa-
tions. This is the main aspect of T-duality in this thesis and will be discussed
in detail in this chapter and further developed in the chapters 7 and 8.

5.1 T-duality and double field theory

T-duality arises naturally in string theory due to the extended nature of one-
dimensional strings, as opposed to zero-dimensional point particles. The dual-
ity was first described for closed strings compactified on a torus X ~ X + 2R,
where R is the radius of the circle [GSB82, KY84, SS86]. Denoting by w the
number of times the string winds the circle, the boundary condition for the
closed string will be given by

X(r,042n) = X(1,0) 4+ 2nRw. (5.1

The classical solutions to the wave equation subject to closed string boundary
constraints are given in (4.15)-(4.16) and split into a left- and a right-going
wave. The momentum in the two directions quantizes for a compactified string
and is given by

K
pmzdﬁﬂﬂ, (5.2)
where K € Z is the Kaluza-Klein excitation number. The mass spectrum of the
string,
2 2

K R
M= (2) +(22) 4. (5.3)

R a

is invariant under the interchange of the Kaluza-Klein excitation number with
the winding number simultaneously with the interchange R < o’ /R [KY84,
SS86]. The physical interpretation is that a closed string compactified on a
circle of radius R is equivalent to one compactified on a circle of radius @’ /R.
From (5.2), one can see that the momentum of the right-going mode switches
sign under the duality, whereas the left-mode remains invariant,

X =X+ Xz — X =X, — Xz. (5.4)
ua
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The duality can be generalized to non-flat arbitrary backgrounds [Bus87]
and arbitrary toroidal compactifications [Nar86, NSW87, RV92], and is the
starting point for the formulation of closed string theory as a double field
theory, described by the two dual coordinates (X X ) [Tse90, Sie93, Hul05,
HZ09]. An action can be defined in the coordinates X = (X', X;) that is in-
variant under O(d,d,Z) transformations. On a circle of radius R, the transfor-
mation reduces to O(1,1,Z) = Z;, or simply R < 1/R. Reformulating string
theory in terms of double geometry is thus a general approach to finding a
formalism for string theory in which the T-duality symmetry is manifest.

5.2 Gauging isometries and T-duality
5.2.1 T-duality of bosonic sigma models

As a first illustrative example of T-duality of a sigma model, consider a bosonic
sigma model with constant metric and vanishing b-field,

S = / d*x9,X9°X, (5.5)

where x¢ are the coordinates on the two-dimensional world-sheet. The action
is invariant under a constant shift, X — X +s. If the isometry is taken to be lo-
cal, s — s(x), to keep the action invariant, a gauge potential V = V,dx must be
introduced transforming as V,, — V,, — d,s, and the derivative must be replaced
by the covariant derivative V,X = d,X +V,. The gauge invariant action is

S = / d*xV X VX. (5.6)

As in ordinary Yang-Mills theory, the gauge invariant field strengths can be
interpreted as a curvature,

Fup = [Va, V] = 914Vy- (5.7)

For simplicity, the considered isometry is abelian; non-abelian isometries will
be discussed later in this chapter. Introducing a Lagrange multiplier X gives
the first order action, which after gauge fix d,X = 0 takes the form

Sie = / d’x [V“Va+g“bXFab] - / &Px [V“Vu—zsabab)zva}, (5.8)

where &? is the totally anti-symmetric tensor. Extremizing the action with
respect to the Lagrange multipliers implies that the curvature vanishes, F' = 0.
The vanishing gauge field strength implies, for simply connected world-sheets,
that V is pure gauge and no extra degrees of freedom have been introduced.
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S=[(9¢)? — 5= [(9X)?

field equations d,V* =0 Bianchi identities

Bianchi identities  d|,V, =0 field equations.

Figure 5.1: The field equations and the Bianchi identities are dual.

This is solved by V,, = d,X, which inserted into the first order action recovers
the original action (5.5). The field equations for the original sigma model are
simply 9,0°X = 9,V¢ = 0. Defining the Hodge star operation in terms of &%,
the Bianchi identities are

0= 0,(xV) = 0.V}, = 9, V- (5.9)

It is clear from the form of the potential that the Bianchi identities are identi-
cally satisfied, since partial differentials commute.

On the other hand, integrating with respect to the gauge potential V gives
V, = 4,0"X. Substituting this expression for V¢ into the first-order action
gives the dual action,

5:/&%@XWX. (5.10)

The dual fields are related through the gauge potential as 9,X = &,,0”X. This
is in analogue to the duality condition (5.4) for the closed string winded
around a circle. The field equations for the dual model are given by varying
(5.10) with respect to X and are 8[aVb] = 0. The Bianchi identities then take
the form

0=20,(xV*) =9,V (5.11)

Again, from the expression of the potential, the Bianchi identities are automat-
ically satisfied since partial derivatives commute.

Hence, the field equations for the original model take the same form as the
Bianchi identities for the dual model, (5.11), and the Bianchi identities for the
original model (5.9) are replaced by the the field equations in the dual model.
To summarize, the dual models are related as in chart 5.1. These relations will
be generalized and studied for a sigma model written in terms of manifestly
N =(2,2) superfields in chapter 8. Several important subtleties arise when
the target space contains more geometrical data, such as torsion and complex
structures, as will now be discussed.

5.2.2 T-duality of supersymmetric sigma models

As seen above, if the target space of a sigma model possesses an isometry, T-
duality can be used to construct a map to another sigma model describing the
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same physical system. In general, the dual model may have drastically differ-
ent geometry and topology. This will now be studied for arbitrary isometries
and backgrounds.

Consider a manifold M with an isometry group G. The elements in the
corresponding Lie algebra can be written in a basis of Killing vectors k that
specify the isometry direction in the tangent space. The isometry group acts
infinitesimally on the coordinates of the manifold as

¢ = [k, )" = AL, (5.12)

where A" are constant parameters and the basis of the Killing vectors k, = k4 d,
generate a Lie algebra [k,, k;] = f,,kc. Exponentiation yields the finite trans-
formation ¢* — e“ak@t; if the Lie group is compact, all elements connected
to the identity can be written in this way.

Per definition, an isometry of a manifold is an endomorphism that leaves
the metric invariant,

8r(p) (LX, Y ) = gp(X,Y) (5.13)

for p € M and X,Y € T,M. In terms of the Lie derivative acting along the
Killing vector field, this can be rewritten as the defining property of a Killing
vector,

Lrg =0, (5.14)

which in turn is equivalent to the Killing equation, V,k,) = 0.
Consider a supersymmetric sigma model defined as in (4.25),

S= / d*xd*0D¢"E,,D_¢", (5.15)

with a target space geometry E,;, = g,,, + by, subject to an isometry generated
by a Killing vector k. Locally, coordinates can be chosen such that the geomet-
ric structures are independent of the direction ¢° and the Killing vector can be
written as

d

¢’
If the rigid isometry transformation in (5.12) is taken to be local, the gauged
action is obtained by introducing a gauge potential V. and replacing the deriva-
tive by a covariant derivative, V. ¢" = D¢’ + V.. Choosing a gauge such that
¢° vanishes and adding a Lagrange multiplier ¢ to impose pure gauge, the first
order action is obtained [IKR95],

k ¢ =(¢",0"). (5.16)

%F/fm%MMMAEme+aMwaapm®¢f
+¢(DyV_+D_V,)]. (5.17)
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As in the bosonic case, integrating over the Lagrange multipliers implies pure
gauge, D.Vy = 0. By inserting the solution V. = D@, the original action
(5.15) is recovered. On the other hand, eliminating V. by their equations of
motion gives the dual model

S= / d*xd*0D..¢"E,,D_¢", (5.18)

in terms of the dual coordinates ¢ = (¢,¢’) and the dual geometric structures
E = g+ b, given by the Buscher rules [Bus87]

y Do 3 1 B 1
Gi=— &=~ ——(8ugytbuby),  Fw=—,
00 8o 00
=~ 8oi = 1
by = =—, bij:bij—i-*(gioboj—biogoj)' (5.19)
8o 8oo

If, as here, the NS-NS flux is present in the background, the constraint that the
isometry leaves the metric invariant is not sufficient; the torsion must also be
preserved,

Ly (db) =0. (5.20)

Since the torsion is an exact form, this implies that locally, ¢, (db) = du, where
u is a one-form determined up to an exact, Lie-algebra valued one-form.

If the original sigma model has an additional non-manifest supersymmetry
defined in terms of two complex structures J® of the form (4.28), and the
Killing vector is holomorphic with respect to these, the dual complex struc-
tures can be derived and take the form [IKR95]

1 <EMO<J<+>>5‘ —Euo<f<+>>f:E,-o+E00Em<f<+)>f;)

= Fm (J(+))(t') EOO(J(H);_ _ (JH))Z)EJ'O
jo_ L[ EalU7) EnO) By~ EnEg () (5.21)
Ey \ () Ew(U7);=()Ey;

Hence, the dual complex structure J©) mixes the original complex structures
J®, the metric and the b-field. An important consequence is that even if the
original complex structures commute, the dual complex structures do, in gen-
eral, not [IKR95].

In a complex manifold, the isometry must, in addition to (5.14), and possi-
bly (5.20) if torsion is present, also respect the complex structures and their
corresponding two-forms,

LJH =0, L™ =0. (5.22)

Actually, one of these constraints together with (5.14) implies the other one
[HKLR&7]. In the Kidhler geometry case, the two-form w is closed, implying
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the existence of a moment map u such that locally,
Lw =du. (5.23)

By going to holomorphic coordinates that diagonalize the complex structure,
this expression can be integrated to give the moment map up to a constant. In
the bihermitian setting, however, the two-forms corresponding to the complex
structures J* are not closed, but instead satisfy the condition

dw® (J(i)Xy‘](i)Y,](i)Z) = +db(X,Y,Z), (5.24)

from which it follows that the combination w™®k F (J©)"u is closed. Locally,
two Killing potentials can then be found such that [MPZV(7]

WYk F (I u=du™. (5.25)

When p®) can be defined globally, they are called moment maps. Since sigma
models with extended supersymmetry have constrained target spaces with
complex structures, moment maps are needed to gauge sigma models with
extended supersymmetry [HKLR87, HPS91].

5.3 N =2 vector multiplets

In the previous section, sigma model isometries were gauged by the method
of minimal coupling, replacing partial derivatives with covariant derivatives.
In N=(2,2) superspace, the gauging of a sigma model with isometries can be
achieved either by minimal coupling or by introducing potentials of the gauge
multiplet directly into the generalized Kihler potential. The latter method
keeps all supersymmetries manifest and is useful for discussing dualities be-
tween manifest N = (2,2) sigma models, and will here be discussed for a du-
ality between chiral and twisted chiral superfields.

Consider a sigma model with two manifest supersymmetries where the gen-
eralized Kéhler potential is a function only of the real part of a chiral super-
field,

S = / d*xd*0d*0K (¢ + ¢). (5.26)

The sigma model has a translational isometry defined by the Killing vector k,
leaving the Lagrangian invariant,

k=i(0s—33), kK=0. (5.27)

Actually, as seen in previous chapter, the action (5.26) is invariant under Kéh-
ler transformations (4.58); hence, the Lagrangian K may transform under the
isometry up to a generalized K#hler transformation.
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The target space of a sigma model parametrized by (anti-) chiral superfields
is Kéhler, and the constraint that the isometry should preserve the complex
structure implies the existence of a moment map as in (5.23). Choosing holo-
morphic coordinates, the condition can be integrated and gives the moment
map as u(¢,$) = K, = K'. The chiral and anti-chiral fields transform under
the isometry according to (5.12) as §¢ = id and 6¢ = —id, where A is a real
constant parameter. These isometry transformations are gauged by promoting
the parameters to be local (anti-) chiral functions,

6¢ =iN(¢), 6= —iA(9). (5.28)

To ensure that the action remains invariant under the gauged isometry trans-
formations, an N =(2,2) gauge potential is introduced into the Lagrangian,

S = / d*xd*0d*0K (¢ + ¢+ V). (5.29)

The gauge potential V transforms under the local isometry as 6V = i(A — A)
and enables the construction of a gauge invariant field strength F = iD,D_V.

Introducing unconstrained Lagrange multipliers X and choosing gauge such
that ¢ + ¢ = 0, a first order action can be written as

Sia= [ KW, - (XF+XP)] = [ KW= @+0V], (530

where the integration measure d>xd’0d’0 is implicit and y = iD,D_X is a
twisted chiral field. Varying the first order action with respect to the Lagrange
multipliers constrains the gauge field strength F' to vanish, and the original
chiral model (5.26) is recovered. Varying instead with respect to the gauge
potential implies that Ky = y + ¥, hence the gauge potential is a function of
the sum of a twisted chiral and twisted anti-chiral field, and the dual twisted
chiral model K is obtained as a Legendre transform,

Sdual:/[K(V(X—F)_())—(,Y-i-)_()-V(X-F)_()] :/ng;(). (5.31)

Since Ky = K’ = p, the T-duality embeds the moment map as the real part of
the dual twisted chiral coordinates [MVO08].
The transformations in (5.28) are infinitesimal. The finite version of the
transformations are }
¢ — o, d— ge N, (5.32)

In the chiral representation, the covariant derivatives transform with the chiral
parameter A as
V — Ve i, (5.33)
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Gauge invariant objects can be obtained by inserting the converter ¢” between
the chiral field and its complex conjugate,

(Zev(ﬁ — ésefl'/_\eV%»i([_\fA)el’A(p — éev(p‘ (534)

This holds only in the abelian case. In the non-abelian, the fields transform
as ¢ — N T ¢, where T, are the elements in a Lie algebra. The non-abelian
version of the transformation of ¢¥ in (5.34) is

& — ei/_\eve_i’\, (5.35)

where the parameters are Lie-algebra valued, A = A*T, and V = V4T,.

The vector potential V described here may be used to gauge an isometry of
chiral superfields in manifest N =(2,2) superspace. Likewise, a vector poten-
tial transforming into (anti-) twisted chiral parameters can be used to gauge
the isometry of twisted chiral fields, K = K(y + ).

In chapter 7, two multiplets gauging isometries mixing chiral and twisted
chiral directions on the one hand, and semichiral directions on the other hand
will be introduced, the so called large vector multiplet and the semichiral mul-
tiplet, respectively. The two multiplets have different properties; e.g., one can
incorporate additional supersymmetry, whereas the other cannot. The large
vector multiplet will further be used in chapter 8 to understand the discrep-
ancy between one model with linear off-shell N = (4,4) supersymmetry, and
the dual model with non-linear on-shell N = (4,4) supersymmetry.

5.4 Quotient reduction

In the dualization process of the sigma models discussed earlier in this chap-
ter, the gauging of the isometry with gauge potentials was followed by the
introduction of gauge field strengths and Lagrange multipliers to ensure pure
gauge. The resulting dual action depends on the dual coordinates and may
have very different geometry as compared to the original model.

A related method that gauges isometries using gauge potentials to construct
geometries is the quotient reduction [HKLR86, HKLLR87]. In the quotient con-
struction, the gauge degrees of freedom are reduced by restricting to the space
of orbits M /G, where G is the isometry group acting on the manifold M.

5.4.1 Reduction of sigma models

Consider the sigma model with one manifest supersymmetry in (4.25), but
restrict to the case with no b-field,

S— / &xd?0D. gD, (5.36)
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and let the target manifold M be subject to an isometry group G acting on the
field as in (5.12), 6¢# = A*K;. The gauging 1 — A(x) is performed as before
by the minimal coupling procedure D¢ — V¢ = Do¢* + VL, where V1
are Lie-algebra valued gauge potentials, Vi = V4k{ with appropriate gauge
transformations. The gauged action, analogous to (5.6) in the bosonic case, is

Sy = / d*xd*0V ¢ g,V _¢". (5.37)

Now, instead of introducing a field strength and Lagrange multipliers, the con-
nection that extremizes the gauged action is chosen, Vi = —g,, kyH* D ¢",
where H*? = (g,,kik}) 1. The reduced quotient action is obtained by insert-
ing this connection [HKLRS87],

Sred = / Pxd2OD ., 8D 8, By = Guv — o ATHY. (5.38)

The quotient metric ¢ is defined on the reduced space Mg = M /G.

However, if the manifold is equipped with additional geometrical structures,
the quotient space does not, in general, inherit the same structures. If, for
example, M is a symplectic manifold, then in general the quotient space is
not. As seen previously in this chapter, the gauging of a sigma model with
a target space equipped with complex structures implies the existence of a
moment map (5.23). The existence of the moment map, also known as the
Killing potential, enables the quotient reduction to a subspace with preserved
additional structures, as will now be discussed from a geometrical viewpoint.

5.4.2 Geometric interpretation

Recall the discussion on fiber bundles in chapter 2. A manifold M with isome-
tries is a principal G-bundle over the quotient space M/G. The points in the
manifold can be projected to points on the quotient space by a projection map
n:M — M /G, and the quotient space can be given the structure of a manifold
[HKLRS&7]. As seen in section 2.1.3, given a connection, for each point p € M,
the tangent space T,M can be split uniquely into (2.23), a vertical subspace
V,M, tangent bundle to the orbit of G through p, and a horizontal subspace
H,M. If the Lie group acts by isometries, the Killing vectors of the Lie alge-
bra form a basis of the vertical subspace.

Given the metric g of the manifold, the quotient space M /G can be en-
dowed with an induced metric . At a point 71(p) € M /G in the quotient space,
two tangent vectors X,Y € Ty, M can be lifted uniquely to the horizontal
subspace X,Y € H,M, and a metric can be defined on the quotient space as
&(X,Y) =g(X,¥) [HKLR87]. The splitting of the tangent space (2.23) defines
a connection one-form as a projection of the tangent space onto the vertical
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subspace. The quotient space inherits the connection by pullback of a local
section, i.e. local gauge, A; = sjw, as seen in (2.26). This is the geometri-
cal understanding of the gauge connection that minimizes the gauged action
above.

Assume that M is a symplectic manifold. Given the moment map y: M — g*
and choosing a subspace in M that consists of elements that are mapped onto
the same element in the dual Lie algebra (without loss of generality, usually
the element O € g* is considered), the quotient space

Mg =p"1(0)/G (5.39)

is a symplectic manifold [HKLR87]. This is the symplectic reduction [MW74].

Similarly, if the manifold M is Kihler, the quotient space constructed in this
way is also Kéhler. For example, the target manifold of the chiral sigma model
with two supersymmetries discussed in section 5.3 is K&hler; a K&hler quotient
can be defined using the existence of a moment map, which ensures that the
reduced sigma model K defined on the orbit space is also Kihler [HKLRS7].

The same construction can be used to construct hyperkidhler metrics by the
hyperkihler quotient [HKILLR87]. Consider a hyperkdhler manifold M. There
exists three complex structures and their corresponding closed Kéhler forms
wi, i = 1,2,3. If a triholomorphic Killing vector exists, i.e., Lrw; = 0, then
three Killing potentials exist as in (5.23) such that locally, (w; = du;. By
defining the subset 1~ !(0) as the intersection of all three subsets x; ' (0) C M,
the quotient space defined as in (5.39) is hyperkihler [HKLRS87].

Isometries mixing other superfields require the use of more involved gauge
multiplets, e.g., the semichiral vector multiplet that gauges isometries mixing
semichiral directions, and enables the semichiral quotient reduction. We will
return to N = 2 vector multiplets in chapter 7.
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Part II:

Developments






6. Semichiral sigma models with N = (4,4) super-
symmetry

Sometimes I find [mathematical problems] difficult, but my old obstinacy re-
mains, for if I do not succeed today, I attack them again on the morrow.
Mary Somerville, physicist, astronomer, mathematician (1780-1872)

Adding supersymmetry to non-linear sigma models has proven to be an effec-
tive route for investigating new geometries, as has been discussed in the pre-
vious chapters. Sigma models with manifest N = (2,2) supersymmetry were
reviewed in chapter 4. Their target space geometries are bihermitian, or gen-
eralized Kihler, and can be parametrized by three kinds of superfields; chiral,
twisted chiral and left and right semichiral.

It has long been known [GHR84] that a two-dimensional sigma model
parametrized by (anti-) chiral and twisted (anti-) chiral fields admits N=(4,4)
supersymmetry if and only if the generalized Kihler potential K (¢, , x, ) sat-
isfies the Laplace equation. But the analogous situation for a semichiral sigma
model K (X, X’ X", X") was previously not known, although similar sigma
models had been studied previously in harmonic or projective superspace, e.g.,
in [LIR94, Iva96, GK98].

To understand the details and the geometry of this model was the main
goal of the papers [I], [II] and [IV], that this chapter is based on. Initially, the
question was believed to be simply resolved, but the scope of the problem
grew and can be summarized as follows.

RESEARCH QUESTIONS:

* Does a sigma model parametrized by one set of semichiral fields admit
off-shell N = (4,4) supersymmetry, in an analogous way to the chiral and
twisted chiral model? If not, what are the obstructions? Can the model in-
corporate additional twisted supersymmetry instead, and what are the re-
sulting constraints on the target space geometry?

67



* Does the situation change if the model has more than one set of left and
right semichiral fields, i.e. if the target space dimension is enlarged? How
can the supersymmetry transformations be described geometrically?

* Can the field equations be used to make the supersymmetry algebra close
on-shell? What additional constraints are imposed on the generalized Kéh-
ler potential, and what is the geometrical interpretation?

* Can interesting examples of the found sigma models and their correspond-
ing geometries be constructed?

The material in the chapter is not presented chronologically, instead a sys-
tematical overview over the full area is given, as displayed in chart 6.1 at the
end of the chapter. Section 6.2 is a review of paper [I] and summarizes the first
approach to solve the first question posed above, which resulted in a descrip-
tion of a new sigma model with twisted supersymmetry and neutral hyper-
kihler target space. In sections 6.1 and 6.3, the generalization to an enlarged
target space is discussed, based on paper [II]. The on-shell supersymmetric
sigma model and the corresponding target space geometry are summarized in
section 6.5 and 6.6, respectively, based on the results of paper [II] and [IV].
The precise relation to the chiral and twisted chiral sigma model with off-
shell N = (4,4) supersymmetry was saved for paper [V] and will be treated
separately in chapter 8.

6.1 General ansatz

Consider a sigma model parametrized by left and right semichiral superfields
labeled as in section 4.4 by XL = {X¢ X7} and XX = {X¢ X7}, respectively,
and X! = {X% XR} denoting the full set of semichiral fields,

§— / Prd?0d*K (X4, K4 X %), 6.1)

When the action is reduced to N=(1, 1) superspace formalism, the underlying
geometry is revealed as bihermitian, as described in section 4.4.2. Hence, two
complex structures J™*) exist, that in the basis of left and right semichiral fields
{XL XR} take the form (4.65). They are both covariantly constant with respect
to a torsionful connection and the target space metric is hermitian with respect
to both of them. An important feature of the geometry is also that the two
complex structures do not commute.

The N = (4,4) supersymmetry transformations should act covariantly, that
is, the ansatz should respect the chirality properties of the semichiral fields,

D, (6X%) =0, D_(6X*)=0. (6.2)
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Based on this simple requirement, a general ansatz for additional supersym-
metry transformations can be constructed as [1I]

SX4 = eTD, (X, X, X, X)) + g8(X)e D_X + Al (X)e D_X?,
5T = €D FA(X¢, XX, X) + g4(X%)e D_XP + B (X)e D_XP,
SXY =& D_f7 (X6, X%, X, XY + g0 (X)et D, XY + 7 (X)) et D, X

67 = e D_f7 (X6, XX X) 4+ 50 (X7t D, X 4R (X )et DL, XV
(6.3)

ml

7
f

The question of whether this ansatz can be further generalized to include cen-
tral charges will be discussed in section 6.7 at the end of this chapter. Note
that, in order to satisfy the chirality properties, the functions f and f may de-
pend on all the semichiral fields, whereas g,k and g, & are functions of only the
left semichiral and right semichiral fields, respectively. The ansatz is covari-
ant under holomorphic coordinate transformations of a form that preserves the
separation into left and right semichiral coordinates,

X9 X4(XP), X — X9(XY). (6.4)

It will prove very useful to write the ansatz (6.3) in a more compact nota-
tion. Writing all the semichiral fields in the unified notation X' and defining
transformation matrices as

* Jy Sy Ty & 0 x 0

po=| * 0 0 0 e O e 0 s
£ 0 g 0 Iy o= f
x 0 0 A 0 0 = 0
* 0 0 By 00

G I A TR A I (35
0 * hY 0 00 0 =«
0+ 0 & BRR

the N=(4,4) supersymmetry ansatz (6.3) for all semichiral fields simply reads
OX! = e UiD X7 + VW' DX/, (6.7)

where the spinor indices & = +, — are summed over. There are a few important
properties to note about the transformation matrices. The first is that the lower
indices of the functions f and f are derivatives, whereas this is not necessarily
the case for the functions g, &, & and h. Secondly, one column in each of the
matrices is arbitrary, due to the semichiral constraints. Third, the matrices V*)
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are the complex conjugates of U*) in the sense that the coordinates X‘ and d
as well as X" and X" are interchanged under the complex conjugation,

0100 0100
1 000 |- 1 000

V& = U* (6.8)
000 1 000 1
0010 0010

The invariance of the action (6.1) under the transformations (6.3) and the
closing of the transformations to a supersymmetry algebra will now be dis-
cussed. First, a special case with constant transformation parameters and four-
dimensional target space will be considered, then the general transformations
will be discussed in section 6.3 and finally the on-shell analysis will follow in
section 6.5.

6.2 Off-shell pseudo-supersymmetry
6.2.1 First approach

To attack the problem, two simplifications that can be made are to restrict to a
four-dimensional target space, and/or to linear transformations. In this section,
corresponding to paper [I], both these simplifications are considered.

A four-dimensional target space is parametrized by only one set of left and
right semichiral fields, so the indices labeling the fields can be dropped,

K =K(X, X X7, X7). 6.9)

Linear transformations mean that all the functions f7', g7, hj and the tilde-
versions are constants. In paper [I], the following notation was used for the
constant parameters:

e=—ify, b=—ify, c=-—ify, «k=-ig,, A=ih, (6.10)
and analogously for the parameters &, b, ¢, k and A. The ansatz

oX! = ie Dy (eX+ X + X)) +ike D_X' —ide D_X,

oX" = ie D_(eX7 + bX! + &X) + ke D, X" —ide ™D, X", (6.11)

can close to a supersymmetry only if the algebra decouples, meaning that
the left semichiral fields possess only a left-going symmetry, and the right
semichiral fields a right-going. However, an action is invariant under the de-
coupled supersymmetry only if the Lagrangian (6.9) is linear, implying that

70



the action vanishes. Hence, the ansatz cannot close to a supersymmetry off-
shell.
The transformations can, however, close to a pseudo-supersymmetry (3.19),

[6(e1),6(6)]X = —ig; €0 X (6.12)

for all the semichiral fields, provided that some of the transformation param-
eters are solved in terms of the others. All remaining parameters but one can
be absorbed in a rescaling of the semichiral fields, leaving only one constant
k arbitrary.

The action is invariant under the transformations if and only if the La-
grangian satisfies a system of partial differential equations,

K);— Ky —kKj. =0,
(kk — 1)K,7 + Ky — kK7 = 0, (6.13)

where the indices denote derivatives with respect to the semichiral fields. A
family of solutions to this system is given by the generalized Kéhler potential

K=F3)+FF), y=aX 48X +yX" +6%X, (6.14)
where two of the coefficients in the variable y are determined in terms of the
others as

Y= aﬁ_ , 0= b (6.15)
a+kB ka+p

The metric of this solution is non-degenerate if the parameters further satisfy
|a|? # |B|* and |«|*> # 1. Due to the linearity of the system, a general solution
is a superposition of potentials of the form (6.14),

S = / d*xd*0d*0 / dadBK (a,B;y,7), (6.16)

where the free parameters are integrated over.

6.2.2 Twisted supersymmetry and neutral hyperkdihler geometry

As just revealed, the semichiral sigma model with four-dimensional target
space cannot incorporate linear N = (4,4) supersymmetry off-shell. Although
not presented here, the same result holds for non-linear transformations [IV].
The off-shell algebra can only close to twisted supersymmetry, where the ad-
ditional N = (4,4) transformation is a pseudo-supersymmetry. This has impor-
tant consequences on the geometry of the target space.

A neutral hypercomplex structure is defined by a set of integrable endo-
morphisms on the tangent bundle, satisfying the algebra of split quaternions
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(2.47), as reviewed in section 2.1.7. In chapter 2, it was shown that every
complex manifold admits a hermitian metric. But unlike the positive definite
case, in a pseudo-Riemannian manifold, given a complex structure, a global
pseudo-hermitian metric does not always exist, despite the fact that a local one
can always be defined [DGMY11]. However, by going to a global cover, the
metric can be defined globally [DGMY09].

An oriented four-dimensional smooth manifold admits a neutral hypercom-
plex structure if and only if there exist two complex structures J* with the
same orientation, such that their anti-commutator is proportional to the iden-
tity,

{JD T} =2¢ (6.17)

with |¢| > 1 [LRvUZ07a]. If this condition holds, the complex structure can be
chosen as I = J", and the two product structures can be constructed explicitly
as in (4.76) [LRvUZ07a]

1 1
JO+c), T=—ncn—=—=[",J"], (6.18)
Va1 b T=vaE
as was discussed in section 4.4.2. In four dimensions, the anti-commutator
(6.17) of the complex structures J*), that in the semichiral parametrization
take the form (4.65), gives the generalization of the Monge-Ampere equation
(4.78),

S =

(1+0)|Ker* + (1 = ¢)|Kerl* = 2K Ko,

and reduces to an equation that is equivalent to the Monge-Ampere equation
for ¢ = 0. Inserting the solution (6.14) into this equation gives

kk+1
kk—1"

c= (6.19)
The function c is a constant in the sense that it is independent of the semichiral
fields, thus, this results show that the torsion vanishes, db = 2¢-dQ = 0. The
transformations collapse for |x| — 1 as well as || — oo, so ¢ is a well-defined
number with |¢| > 1.

Hence, the target manifold is neutral hyperkéhler. The neutral hyperkihler
structures can be constructed using (6.18) and (6.19) and take the form

1

~ x]

((kk—1)J7 = (kk+1)J7), T = KK|K_|1 (7, J0].
(6.20)
The corresponding fundamental two-forms can then be constructed as in (2.29).
The metric has neutral signature (— — ++) and can be derived for the mod-
els with Lagrangian (6.14). The quadratic solution F(y) = y? with the param-
eters chosen as k = v/2, a =1 and 8 = —(1 + ﬂ) for example, gives the

[=J9, §
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metric

0 -1 10
-1 0 0 1

=8(1+V2) o o1 6.21)
0 1 10

To summarize, a sigma model parametrized by one set of left and right
semichiral fields cannot incorporate linear N = (4,4) supersymmetry off-shell,
but linear pseudo-supersymmetry may be imposed if and only if the target
space is neutral hyperkihler [I].

6.3 Enlarging the target space

Approaching the problem by simplifying it to a four-dimensional target space
and linear transformations showed that off-shell linear supersymmetry was
not possible for a single set of left and right semichiral fields [I]. Constraining
the target space to be four-dimensional but leaving the transformations arbi-
trary gives the same result; a semichiral sigma model with four-dimensional
target space cannot incorporate off-shell N = (4,4) supersymmetry [IV]. To
find off-shell supersymmetry, a larger target space with at least two sets of
semichiral fields must be considered. This was investigated in paper [II] and
will be reviewed in this section.

6.3.1 Off-shell algebra closure

Two subsequent transformations given by the general ansatz in (6.3) acting on
a semichiral field commute tof

61,65 = &5 [N(U<i>);ku§>ixf®ixk] T e [N (VD XD X
(6.22)
) D XID_Xk — [U“&UW@@,X/}

—|—€21[ (U, vO) k]DJrXf]D),Xk—[U”),V(*)];]ﬁu]]),xq
(6.23)
U

+E,6; (MUY, V), D XD, X

— (V) DLDLX — (V<i)U<i>)§Di®in} . (6.24)
Closing this expression to a supersymmetry (3.18) off-shell implies four kinds
of constraints. First, the vanishing of the first line (6.22) implies the vanishing

f Complex conjugate expressions of (6.23) corresponding to e[ ] and 6[2 1 - also appear but have
been omitted here for clarity.
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of an expression involving the Nijenhuis tensor for all transformation matri-
ces,

NUW)DeX/ DX =0, (6.25)
and similarly for V®. Note, that the Nijenhuis tensor multiplies derivatives
acting on semichiral fields, so the vanishing of AV is only required in all sec-
tions that are not projected out by the semichiral constraints. As discussed in
chapter 2, the vanishing of the Nijenhuis tensor for the transformation matri-
ces corresponds to them being integrable.

Secondly, requiring that the second two lines (6.23) vanish and the third
line (6.24) closes to a translation implies a constraint of the generic form

M(II,IQ)DIXDQX = (1112 +(5)D1D2X + (12]1 +5)D2D1X, (6.26)

where I1,I, are any of the transformation matrices U, V® and Dy, D, the
corresponding derivatives. Since, off-shell, second order differentials DIDX
and products of first order differentials DXIDX are unrelated, the relation in
(6.26) implies that both sides must vanish independently.

The vanishing of the right-hand side in (6.26) when the transformation ma-
trices are I; = U™ and I, = V™ implies that the products of the matrices equal
minus one, since their corresponding derivatives D4 and D do not commute,

UV DLDLX) = —DiDi X,
(VEUD)DLDLX) = —DiDi X' (6.27)

Evaluating the constraint U*)V*) = —1 at the level of the transformation func-
tions in (6.5)-(6.6) shows that it requires, e.g., that fg fcb = —0j. In a four-
dimensional target space, f - f can never equal minus one, but it is possible
in larger target spaces with a > 1. This is the reason why the supersymmetry
algebra can close off-shell in a larger target space with at least two sets of
semichiral fields, but not in a four-dimensional space parametrized by only
one set of semichiral fields.

The remaining constraints from (6.26) state that the Magri-Morosi concomi-
tant must vanish for all pairs of transformation matrices, and that they all com-
mute. The Magri-Morosi concomitant relating matrices of the same chirality
can be rewritten in terms of derivatives of products plus curl-terms,

MU V)= =(UV) o+ (VU ;= Ul i+ Vi g U, (6.28)

where matrices of the same chirality are combined, UV = U®V®), The first
two terms in this expression vanish due to (6.27). Using also the integrability
(6.25), the remaining two terms can be shown to vanish. Hence, the Magri-
Morosi concomitant M (U™, V™)) vanishes without further constraints. Mov-
ing on to the constraints (6.23) relating matrices of different chirality, requir-
ing that the transformation matrices of opposite chirality commute,

[, U<7)]§'®+D—X‘i =0, [U(+),V(’)]§D+D_X~i =0, (6.29)
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implies that the corresponding Magri-Morosi concomitants contain only curl-
terms,

M(UH),UH);/( = U(+)§,U<*>ltk7l] _ U(*)iU(Jr)l['j’l] _ (U(HUH)I[‘](J]. (6.30)

In summary, the off-shell closure of the N =(4,4) supersymmetry algebra
in 4d-dimensional target space with d > 1 implies that, in the sections that
are not multiplying zeros, the transformation matrices are commuting (6.29),
integrable (6.25) and simultaneously integrable (6.30) structures, and further
that the products UV and VU equal minus the identity (6.27) [II].

6.3.2 Yano f-structures

As just discussed, the algebraic constraints hold only in the sections that are
not projected out by the semichiral constraints. By inserting zeros in the arbi-
trary columns of the transformation matrices (6.5)-(6.6), the constraints hold
for the full structures. The drawback of full integrability is degeneracy of the
matrices,

VU™ = —diag (0,1,1,1), UPvV® = —diag (1,0,1,1),
VOUS) = —diag (1,1,0,1), UV = —diag (1,1,1,0).  (6.31)

Instead of complex structures, one is lead to define a generalization of complex
structures allowing for degeneracy,

f(FA+1)=0, (6.32)

so called Yano f-structures [Yan61]. The f-structures are endomorphisms of
TM @& TM and can be defined as the 8d x 8d matrices

0 uU%
() —
o= ( Ve o ) : (6.33)

Two complementary projection operators can be defined from the f-structures
asm = 1+ f% and [ = — f? for both directions ), satisfying / +m = 1 and
Im=0inaddition to fl =1f = f and fm =mf = 0. The operator [ defines the
so called first fundamental distribution with dimension 64 and m the second
fundamental distribution, with dimension 2d. The integrability of the distri-
butions is given by the vanishing of the Nijenhuis tensor contracted with the
projection operators [[Y64]; the first and the second fundamental distributions
are integrable if and only if

mN (f) =0, N(f)imimf =0 (6.34)

hold, respectively. Given the off-shell algebra of the transformation matrices,
these integrability constraints are satisfied, such that the f-structures are inte-
grable [I].
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6.3.3 Twisted supersymmetry

As in the case with four-dimensional target space treated in the previous sec-
tion, the algebra could just as well be closed to a pseudo-supersymmetry. The
difference would be that the products of the transformation matrices (6.27)
would have to equal one instead of minus one. The corresponding structures
(6.33) would then be generalizations of product structures instead of complex
structures [I],

F(f2=1)=0, (6.35)
so called f-structures of hyperbolic type [Kir88].

6.4 Action invariance

6.4.1 Action invariance in arbitrary dimensional target space

The action (6.1) is invariant under the supersymmetry transformations (6.3)
if and only if the generalized Kéhler potential satisfies the partial differential
equations . ‘

(Ki ;U™ + KU ) DeX/DaXf =0 (6.36)
and analogously for V®). Expressed at the level of the component functions,
the equations are

==/

(Kaf+ Ko & + Kah)jg = 0 (6.37)
and similar for U”) and V® [II]. In the case of linear transformations closing
to a pseudo-supersymmetry and four-dimensional target space, this reduces to
the system of equations (6.13) which were solved in section 6.2.

The system of partial differential equations (6.37) simplify and are more
transparent in a four-dimensional target space, where one can explicitly see
how they are required for the underlying bihermitian structures to be covari-
antly constant and satisfy hermiticity conditions, and solutions can be found.

6.4.2 Action invariance in four-dimensional target space

The system of partial differential equations simplify in a four-dimensional
target space. In a target space parametrized by only one left and one right
semichiral field (and their complex counterparts), the indices i = {a,a,d’a'}
can be omitted. As a consequence, all lower indices will be derivatives and
thus commute, no curl-terms of the kind g, ;) will arise. The invariance of
the action under the U™ supersymmetry transformation will thus result in the
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partial differential equations
JrKog — fiKer + 8Kp, = 0,
fKg = fiKer+ hK g = 0,
(g - il)Krf — JiKr + frKr = 0, (6.38)
and the U transformations will imply the equations
JiKri — Ky + 8Ke = 0,
f[KrF - ffKr[+ BKF[ = 0,
(g —h)Ky;— fiKir + fiKz, = 0. (6.39)
The invariance of the transformations defined by the matrices V* imply the
complex conjugates of these equations. Assuming that the system of equations

(6.38)-(6.39) have a solution and rewriting them for some of the parameters in
terms of the others gives

) A R
fr (Kérfe Kng)v fﬁ = 7(K€rff - Kéfg)v
Ky K
1 ~ 1
f’: KN (Kfrff Kﬂr ) ff K, (Kfrfi’ Klr )
74 rr
i = KeeKor = |Kir” ’K”E z, j = KeKor = |Kir” ‘Kﬁ’z (6.40)
KyiKyr — ’K€r| KyiKrr — ‘K€r|

From the definition of the transformations in (6.3), the lower indices are deriva-
tives and must satisfy, e.g., fj,;; = 0. Leaving f7 and g to be free parameters
as in (6.40) and assuming that partial derivatives commute, f[ﬂi} =0, one can
check that the solutions in (6.40) satisfy f}; ) = O for all indices. The con-
straints in (6.40) are necessary to close the algebra on-shell, as will be dis-
cussed in section 6.5.2.

Action invariance is usually related to hermiticity and covariant constancy
of the geometrical structures. The same is true here, as will be clear in section
6.6; the connection to underlying structures that are covariantly constant and
bihermitian can be made if the relations in (6.40) are used [IV]. The same is
valid for the integrability; integrability of the transformations matrices U™
and the identification with the integrable complex structures Jl.(i), will follow
if the relations (6.40) hold, as will be discussed in sections 6.5.2 and 6.6.

6.5 On-shell supersymmetry

Sections 6.2-6.3 showed that off-shell closure of the N=(4,4) supersymmetry
is only possible in a target space parametrized by at least two sets of left and
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right semichiral fields. In this section, the results from paper [II] and paper
[IV] will be reviewed, showing that the supersymmetry algebra closes on-shell
independently of the target space dimension.

The field equations for the semichiral sigma model (6.1) is

D.K,=0, D_K,=0, (6.41)

plus the complex conjugate expressions. As before, the indices are derivatives
with respect to the left and right semichiral fields X¢ and X, respectively.

6.5.1 Using the underlying bihermitian structures

As reviewed in section 4.2, a N =(1,1) supersymmetric sigma model admits
N =(4,4) supersymmetry if and only if the target space has a set of six com-
plex structures Ji(i), i = 1,2,3, satisfying the quaternion algebra (4.33). In-
variance of the action under the supersymmetry further requires the complex
structures to be covariantly constant with respect to a torsionful connection,
and the metric to be hermitian with respect to all of them. In other words,
N = (4,4) supersymmetry requires the target space to be bihyperhermitian.

In paper [II], field equations were used to relate the transformation matri-
ces of the N = (4,4) supersymmetry to the underlying bihyperhermitian struc-
tures. This identification then provides a proof for the on-shell closure of the
N = (4,4) supersymmetry. When analyzing the closure of the algebra, the ex-
istence of the underlying complex structures can be used without restriction.
The hermiticity of the target space metric and the covariant constancy of the
complex structures can only be used, however, if the action is assumed to be
invariant.

The semichiral constraints can be written using the real operators defined
in (4.48) as

0. XL=Jp,XE, 0 XF=JD_XR&, (6.42)

as discussed in section 4.3.2. Writing the field equations (6.41) in terms of the
real operators defined in (4.37) implies the relations

1 1
JK rQ+XF = EJCLLDJFXL — KD XE — ECLLQ+XL7

1 1
JKrQ_XE = 5JCRRD_XR — K D_XE — 5CRRQ_XR , (6.43)
where the matrices K;z and Kgy, are defined as in (4.64), and the remaining

matrices are defined as Crz = [J, Ky | and Crg = [J, Kgg|. Using the semichiral
constraints (6.42) and solving for O, XX and Q_ X’ gives

0-X'=JHiDLX/, (6.44)
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where the complex structures J* take the well-known form as in (4.65). The
obtained expression can further be used to relate the complex derivatives D
and the real derivatives D using a projection operator m as

_ 1
DX = DX, % = 5( 1+iJ%). (6.45)

Note that both relations (6.44) and (6.45) hold only on-shell.

The supersymmetry transformations written in terms of the transformation
matrices U™ in (6.7) can now be related to the N = (4,4) transformations
written in terms of the bihypercomplex structures in (4.32). In N=(1, 1) super-
space formalism, the non-manifest N = (4,4) supersymmetry transformations
take the form 6X = ef’]i(")DaX , where @ = +,— and i = 1,2, 3. The three com-
plex structures form the basis of an SU(2) worth of complex structures. Choos-
ing the complex structures corresponding to the N =(2,2) transformations as
J§i> = J), the additional transformations for the N=(4,4) supersymmetry are

6X = €/ J"DoX + €315" Do X. (6.46)

Using the on-shell conditions (6.44)-(6.45), the N = (4,4) supersymmetry
transformations (6.7) on the semichiral fields are

X =e"UD X + VDX
=e'U"n <‘”D X+eVW79D,X
& (U + VO8N DX+ €5i(U ) — VW7D X, (6.47)

Denoting the N = (1, 1) superspace fields of the semichiral fields as in (4.50)
and comparing the lowest N=(1,1) superspace component DX‘ = DX with
the transformations in (6.46) enables the identification of the transformation
matrices in terms of the underlying bihermitian structures as

JE = Un® 4y
I = i(UHa® —y @), (6.48)

The bihyperhermitian structures J;i) satisfy the quaternion algebra (4.33) and
are all integrable. Further, assuming that the action is invariant under the su-
persymmetry transformations, they are all covariantly constant with respect to
a torsionful connection. These facts together with the on-shell constraints can
now be used to show that the algebra in (6.22)-(6.24) closes to a supersymme-
try on-shell.

The identification in (6.48) together with the fact that the Ji(i) are hypercom-
plex structures imply a number of useful identities for the projection operators
in (6.45) and the transformation matrices,

ar =0, Jin=Un, aUn=Un, VUr=—
ar =0 Jimn=Vn, aVa=Vn, UVr=—n, (6.49)
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where all identities are valid for structures of the same chirality, 77 = 77,
Using the on-shell identification in (6.48) and the related identities in (6.49)
together with the fact that J;i) are hypercomplex structures, implies that the
expression in (6.24) closes to a translation,

MU,V DXIXE — (UV)iDDX! — (VU) DDX/
= -D[(UV)|DX/] - D[(VU):DX/|+(U}V ) — ViU],; ) DX/DXH
— X, (6.50)

where the last terms vanish due to integrability of the complex structures.

For the vanishing of the terms (6.23), the invariance of the action must also
be evoked. A covariant expression for the Magri-Morosi concomitant can be
introduced as

M) = () VP (B — (VY () = (0)iVF ()i + (R)iVy (1)
= M(I, )y + 31, R (5 + T, (6.51)
where I, are any of the bihyperhermitian structures Jl.(i) and the covariant
derivatives V® differ on the sign of the torsion and act on the correspond-
ing complex structure, V(i)Jl.(ﬂ, ie., if I} = U™, then VIV = V). The covari-
ance of the hermitian structures implies that both M (J® J©)) = 0 and that

M\(U(+),U(’)) = /T/I\(UW,V")) = 0. Using this object, the vanishing of the
algebraic expression (6.23) can be rewritten as

MU, U, DXDXE = [U®, UP) VDX, (6.52)

where the left-hand side vanishes due to the covariance with respect to a tor-
sionful connection. The right-hand side is a commutator contracted with a
field equation, defined in terms of the supersymmetry derivatives as

VDX = DiDe X + 9D, XD X. (6.53)

That the vanishing of this expression is a field equation can be seen by first
rewriting it in terms of the real derivatives as

PR | . .
VDX = §{n<i>,n<1>};v§)D$XJ. (6.54)

From the anti-commutator of supersymmetry generators of opposite chirality
(3.7) one can deduce that the expression vanishes on-shell,

0={0,0 X =[2,J9VD_X. (6.55)

Since the J© and J~) do not commute in a manifold parametrized by semichi-
ral coordinates, VDX = ( is satisfied on-shell, and the right-hand side of (6.52)
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vanishes. Thus, the algebraic constraints (6.23) are satisfied on-shell, using the
identification with the underlying bihyperhermitian structures and requiring
that the action is invariant.

Finally, the Nijenhuis expressions (6.22) have to vanish. It is expected that
the closure should follow due to the on-shell identification of the transforma-
tion matrices with the underlying bihyperhermitian structures. However, the
attempts to show this failed in paper [II], and the vanishing of the Nijenhuis
tensor for the transformation matrices had to be imposed as an extra condition.

All in all, the on-shell identification with the underlying bihyperhermitian
structure implies that the algebra closes on-shell, provided that the transfor-
mation matrices are integrable in terms of a vanishing Nijenhuis tensor. The
additional constraint of integrability is unsatisfactory, however, and it would
be desirable to be able to derive the results explicitly in the N=(2,2) formal-
ism, without making use of real N = (1, 1) operators. This is precisely what
was done in paper [IV], where it was shown that the Nijenhuis tensor indeed
vanishes on-shell, and will be reviewed next.

6.5.2 On-shell closure explicitly

The main quest of paper [IV] was to see explicitly how the N = (4,4) algebra
closes on-shell for a semichiral sigma model. Since paper [II] showed that
off-shell closure cannot occur in a four-dimensional target space, paper [IV]
focused on a semichiral sigma model with four-dimensional target space.

The ansatz for the N = (4,4) supersymmetry takes the general form (6.3),
but since there is only one set of left and right semichiral field, the indices can
be omitted,

oX! = &tD, f(X, XXX +g(XOe DX +h(X)e D_X,

oX" =& D_f(X, XX X+ 8(XN)e D X +A(Xe Dy X, (6.56)

As seen in section 6.4, the invariance of the action under these transforma-
tions constrains the Lagrangian K(X?) to satisfy a system of partial differen-
tial equations (6.38)-(6.39). In (6.40), some of the transformation parameters
were solved in terms of the others and second derivatives of K. This is the key
feature that together with the field equations provides on-shell closure of the
algebra.

First, two subsequent transformations in the minus direction commute on
the left semichiral field to

(677,05 1X" = &, ) (—gh)io_X". (6.57)

Closing this to a translation, and similarly closing the plus-part of the algebra
for the right semichiral field, implies

gh=—1, gh=—1. (6.58)
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These algebraic constraints together with the relation between 4 and g in (6.40)
then imply an important result regarding the geometry of the model. The func-
tion c in (4.78) takes the expression

_I-gP 18P

g T+gP

and further, the geometry is non-degenerate, det(Kzg) # 0. Since g and g are

functions of only the left and the right semichiral field, respectively, equation
(6.59) implies that ¢ must be constant, hence the geometry is torsion-free.

The rest of the algebra closes on-shell without any further constraints. The

field equations (6.41) provide a relation between the derivatives of the semichi-
ral fields,

(6.59)

K€2D+XZ+ Kg,D+Xr + KZFD+Xi =0,
KD _X + KD X+ KD X' =0. (6.60)

The terms (6.22) involve the Nijenhuis tensors for the transformation matri-
ces and close on-shell using the identifications in (6.40) and the fact that c is
constant,

(67,65 1X" =&j&] {N(UH) kD-l-X/D-I—Xk}

_ Ko 28 A F
=&k, (co1) DED X

=0. (6.61)

To investigate the remaining terms (6.23)-(6.24), useful combinations of the
transformation parameters can be defined as

,U:fffr“'frila V:fiff+ff<§a
7= fi(g—h) = fifp w = fig = fefr (6.62)
The mixed terms in the algebra close as
6,785 X = &g [M(U“), U)yD XD_XE — (U9, U D D_X/
— g[géﬁ D, [TD_XE-F wD_ X"+ (—frﬁg)D_Xf]
= &5 D+ (g8 - gh)D_X'
-0 (6.63)
and the plus-part of the transformations for X’ closes to a translation,
617,55 1x! = &tes [M(U<+>,v<+>)§kD+XfD+X’< + (U<+>v<+>)§ID>+1D+Xf}
=&t D, <—| FPDy X — D, X" — vmxf)

- egeﬁiaﬂxf . (6.64)
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The on-shell closure of the right semichiral fields follows completely analo-
gously. To summarize, the action is invariant under the non-linear transforma-
tions (6.56) and the transformations closes to a N=(4,4) supersymmetry alge-
bra on-shell if and only if the partial differential equations in (6.38)-(6.39) are
satisfied, together with the constraint (6.58). A result of this system of equa-
tions is that the metric is non-degenerate and that the target space geometry is
torsion-free.

6.5.3 Linear on-shell supersymmetry

As presented in section 6.2, additional linear off-shell pseudo-supersymmetry
leads to a semichiral sigma model with four-dimensional neutral hyperkéh-
ler target space, and non-trivial examples of this model could be constructed.
However, supersymmetry imposed on the same model closes only on-shell,
and the supersymmetry transformations (6.56) are non-linear. In contrast to
the off-shell pseudo-supersymmetry, linear on-shell supersymmetry transfor-
mations necessarily lead to trivial solutions.

Consider a linear transformation that closes to a supersymmetry, schemati-
cally depicted as

X =0X, Q°X=[6,6)X=0X+F (6.65)
where F is a field equation that vanishes on-shell,
F=(0*-9)X =0. (6.66)

This implies that the Lagrangian of the model must be quadratic. The same
fact can be derived explicitly in the notation from the previous section. The
partial differential equations (6.38)-(6.39) from the invariance of the action
implies that the Lagrangian must satisfy, e.g.,

UK = vKj,. (6.67)

If the transformations are linear, the coefficients ¢ and v defined in (6.62)
are constant, so (6.67) implies, when taking derivative with respect to X’ and
again using the partial differential equations, that either |u|*> = |v|?, which
leads to degenerate metric, or that Ky, = 0. The same can be shown for remain-
ing third derivatives on K, hence a non-degenerate Lagrangian is quadratic.

Hence, linear transformations that close only on-shell will imply that the
model is trivial in the sense that the metric is flat, and so any non-trivial
semichiral sigma model with N = (4,4) supersymmetry and four-dimensional
target space has non-linear supersymmetry transformations. This will be an
important fact when discussing the duality between a chiral and twisted chiral
model with linear off-shell N = (4,4) supersymmetry and a semichiral model
with on-shell supersymmetry in chapter 8.
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6.6 Hyperkihler geometry

As reviewed in section 4.4, a necessary condition for a four-dimensional mani-
fold parametrized by semichiral fields to be hyperkéhler is that {J7,J7} =2¢
with ¢ constant and |c| < 1.

In the first section of this chapter, we saw that linear pseudo-supersymmetry
constrains a four-dimensional target space to have ¢ constant with |c| > 1,
implying a pseudo-hyperkihler geometry.

In the four-dimensional target space analyzed in section 6.5.2, the algebraic
constraints from the ordinary on-shell supersymmetry algebra closure implied
a constant ¢ with |c¢| < 1. Hence, the geometry is hyperkihler and one should
be able to identify the hyperkdhler structures. This is straight-forward using
the connection with the underlying bihyperhermitian geometry developed in
section 6.5.1. There, the identification of the transformation matrices in terms
of complex structures was given as

US g — %(Jii) _ ijéﬂ),
VIR = (07 +id7). (6.68)

Choosing J3 = J%) and Ji, J> according to the recipe given in (4.75), the
first of the structures in (6.68) takes the expression

1

JUi i) =
—2K Ky —2K, K. —2K,:K}, —2K,:K;;
1 0 0 0 0
AWT=c2| (1=0)KKir (1-c)KiKy (1= )KgKg (1 —c)KKir
(I+c)KyKey (1+c)KyKy (1+c)KyKy (14 c)KiyKp
(6.69)

where A = det(Kyg). Using the equations from the invariance of the action
(6.38)-(6.39), one can show that the matrix Uz takes the same expression
as in (6.69) if the parameters g and & are phases, § = —h = €®.

But there is an ambiguity in the choice of direction; if instead one chooses
J3 =J9) and Ji, J, according to (4.75) but with J©) and J interchanged,
then one can analogously identify %(Ji’) —iJy)) with U9z, again if the
parameters g and h are phases, g = —h = ¢#. The ambiguity in the choice of
the complex structure J3 does not result in six independent complex structures;
the latter structures JZH are simply the former ones Ji(” rotated among each

other,
I =V1=c2 + e,
=) (+)
‘]2 - _‘]2 ’

I = V1= 219 — e, (6.70)
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Hence, the relation (6.68) has been verified. The fact that g and g are phases
implies that ¢ vanishes, which in turn has the consequence that the generalized
Kiéhler potential satisfies the Monge-Ampere equation.

6.6.1 Example

It is not evident that a non-trivial generalized Kihler potential and transfor-
mation parameters can be found such that the partial differential equations in
(6.38)-(6.39) are satisfied. In paper [IV] an example fulfilling these constraints
was found by the Legendre transform related to the construction developed in
[LR83, HKLR87]. More examples of semichiral sigma models with N=(4,4)
supersymmetry and hyperkéhler target space were constructed in paper [V].
These examples and more throughout discussions of dualities between super-
symmetric sigma models will be given in chapter 8.

Starting from a function F (x, v, ) of one real coordinate x and one complex
coordinate v, satisfying the Laplace equation, Fy, + F,; = 0, a Kéhler potential
that is a function of combinations of semichiral fields can be constructed by a
Legendre transform [BSvdLVG99],

K(Z7y7}7):F(-x7v7‘7)_-xz_vy_\7}_]~ (671)

Choosing F to be the function F = r—xIn(x+r) where r*> = x> +4vv, and solv-
ing the identities originating from the Legendre transform, the dual potential
is

K=1le 23 (1-Lyy), 6.72)

where y and z are combinations of the semichiral fields and define the isometry
of the model, ) y )
y=X+X+2X", z=X'-X’ (6.73)

Transformation parameters that together with the potential (6.72) satisfy the
system of partial differential equations (6.38)-(6.39) arising from the invari-
ance of the action, can be chosen as

2—1y - . -
f:2iln<2_g>, f=—lz+iy’, g=g=-h=—h=1. (674

The sigma model is invariant under the transformations (6.56) with the param-

eters defined as above, and the transformations close to a N = (4,4) supersym-
metry on-shell. The hyperkihler metric of this model is non-trivial and given

by
g= 8L  8LR (6.75)
8RL 8RR
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where the entries are the matrices

:ie*iz/2(4+yy‘) 4—yy—2i(y+y) 4+yy
SLL 16(y —y) 4+yy 4—yy+2i(y+7y) )’
g L [ Qi@ —ily=3) Q=)@+ tily=Y)

A=)\ Q+i)@+yy+iy—y) Q@+iy)d+yy—iy-3) )’
gRL:(gLR)ta

ie %2 [ 445 4+yy

- . 6.76
srr (y—y‘)<4+y>7 4+y? (670
6.7 Results

In three separate papers, the research questions posed at the beginning of
this chapter were analyzed and solved. The general ansatz for supersymme-
try transformations on a semichiral sigma model is given in (6.3), or in a more
compact notation in (6.5)-(6.7). It proved fruitful to analyze certain special
cases of this ansatz and model.

In paper [I], it was found that a sigma model parametrized by one set of
semichiral fields does not admit linear off-shell N = (4,4) supersymmetry.
(The same result for non-linear transformations was shown in [IV].) Only
twisted supersymmetry can be imposed, resulting in a target space geometry
that is neutral hyperkéhler. The situation changes if the target space is enlarged.
A sigma model parametrized by at least two sets of left and right semichiral
fields admits off-shell N=(4,4) supersymmetry [II]. The transformations can
be analyzed geometrically in terms of Yano f-structures.

For a semichiral sigma model with four-dimensional target space, the addi-
tional supersymmetry can close only on-shell. For non-quadratic generalized
Kiéhler potentials, the transformations are necessarily non-linear. The on-shell
N =(4,4) algebra is realized if and only if the potential satisfies a system of
non-linear partial differential equations together with an additional algebraic
constraint (6.58), implying that the target space geometry is hyperkéhler [II,
IV].

The scope of the papers analyzing semichiral sigma models with N = (4,4)
(twisted) supersymmetry can be summarized as in chart 6.1. Non-trivial ex-
amples of models with neutral hyperkéhler geometry and also with on-shell
N =(4,4) supersymmetry and hyperkihler geometry were constructed.

Attempts were made to generalize the transformations in (6.56) to involve
central charges and arrive at a four-dimensional target geometry with semichi-
ral coordinates and non-vanishing torsion. In [HKLR86], an ansatz involving
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Off-shell On-shell

4-dim Paper 1 Paper IV
(Section 6.2) (Section 6.4.2, 6.5.2, 6.6)
Only pseudo-susy On-shell susy
— neutral hyperkédhler | — hyperkéhler
> 8dim | Paper 11 Paper 11
(Section 6.1, 6.3, 6.4.1) | (Section 6.5.1)
Off-shell susy On-shell susy
— f-structures — bihyperhermitian

Figure 6.1: Overview of the papers [I, II, IV], investigating semichiral sigma models
and N =(4,4) (twisted) supersymmetry.

central charges and acting on chiral superfield coordinates was constructed as
60" = D*(eQ). (6.77)

These transformations on the chiral fields close only on-shell and, as for the
transformations of the semichiral fields considered here, the invariance of ac-
tion has to be used to make the transformations (6.77) close to a supersymme-
try. However, no generalization of the transformations in (6.56) similar to the
one in [HKLR86] was found.

In paper [ V], reviewed and discussed in chapter 8, a semichiral sigma model
with N = (4,4) supersymmetry is obtained by a duality transformation along
a translational isometry from a chiral and twisted chiral sigma model. The
resulting semichiral sigma model also has a hyperkéhler target space geometry.
A way to find a semichiral sigma model with N=(4,4) supersymmetry and a
torsionful four-dimensional target space geometry could be to dualize a chiral
and twisted chiral sigma model along a rescaling isometry [Cril2].
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7. Vector multiplets and N=(4,4) supersymmetry

What has been done is little-scarcely a beginning; yet it is much in comparison
with the total blank of a century past. And our knowledge will, we are easily
persuaded, appear in turn the merest ignorance to those who come after us. Yet
it is not to be despised, since by it we reach up groping to touch the hem of the
garment of the Most High.

Agnes Mary Clerke, astronomer (1842-1907)

In the previous chapter, results from the three papers [I, 1I, IV] analyzing
semichiral models with N = (4,4) (twisted) supersymmetry were presented.
The question of how a semichiral model with non-linear on-shell N = (4,4)
supersymmetry can be related by T-duality to a chiral and twisted chiral model
with linear off-shell supersymmetry was briefly touched upon, a question that
will be studied in detail in the next chapter, based on paper [V].

T-duality between sigma models is obtained by gauging isometries of the
Lagrangian, as was reviewed in chapter 5. The corresponding gauge poten-
tials must be introduced in the Lagrangian to ensure invariance under the
gauged isometry. The vector multiplets needed to gauge a translational isom-
etry mixing chiral and twisted chiral fields, and one mixing semichiral fields,
is the large vector multiplet, and the semichiral vector multiplet, respectively.
The dualities corresponding to these multiplets were introduced in [GMST99]
and [BSvdLVG99]; the vector multiplets were introduced in [GMO07] and
[LRR*07] and further analyzed in [Ryb07, LRR"09].

The conditions for additional N = (4,4) supersymmetry of these two multi-
plets was investigated in paper [III]. The aim of the paper can be summarized
in the following research questions.

RESEARCH QUESTIONS:

* Does the semichiral vector multiplet allow for N = (4,4) supersymmetry?
How can the transformations be constructed, both in the case of abelian and
non-abelian field strengths?

* Can the large vector multiplet have N = (4,4) supersymmetry? How can the
similarities/differences from the semichiral vector multiplet be explained?
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7.1 The semichiral vector multiplet

Recall the duality between an (anti-) chiral and a twisted (anti-) chiral sigma
model, reviewed in section 5.3. Consider now a sigma model with an isometry
mixing the semichiral fields, described by the Killing vector

kLR:i(Qg—ang&,—a;), (7.1)

specifying a direction in the tangent bundle. A generalized Kihler potential
that is invariant along this direction can only depend on certain combinations
of the semichiral fields, e.g.,

K =K(¢,@x, 0, X + X X+ X7, —i(x! =X - X"+ X7)). (7.2)

Under the gauged isometry, the semichiral fields transform into local semichi-
ral gauge parameters, analogously to the gauge transformations in (5.28),

6XE=iAY(XE), 6X"=iA"(X"). (7.3)

Invariance of the action under the gauged isometries is obtained by introduc-
ing the semichiral vector multiplet (V¢,V", V") [LRRT07, GM07]

K(¢,@ox, 0, X 4+ X4 VX4 X4V —i(X - X X+ X))+ V) (7.4)

with transformation properties defined to cancel the gauge transformations of
the semichiral fields,

SV = — AL~ AL AT+ AT (7.5)

To construct gauge invariant field strengths, gauge potentials transforming into
parameters with definite chirality properties must be defined,

V=1V +Vi-V"),  6Vs=i(A =AY,
V, =V +V 4V, 6V, =i(AT—A"). (7.6)
The potentials satisfy a reality constraint saying that their imaginary parts are
the same,
Vo—Vy=V,-V,. (7.7)
Field strengths can now be defined as
F=iD,D_V,, F=iD,D_V, (7.8)

together with their complex conjugates. The field strengths are chiral and
twisted chiral, respectively. Reducing to N =(1,1) superspace, the semichi-
ral gauge multiplet is described by one N = (1,1) gauge multiplet and three
real unconstrained N = (1, 1) scalar superfields [LRRT07].
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7.1.1 Non-abelian semichiral multiplet

The finite version of the infinitesimal gauge transformations of the fields in
(7.3)is X! — ¢ X! and similar for the right semichiral field. If the gauge
parameters take value in a non-commutative Lie group, analogous to the trans-
formations in (5.35), the non-abelian extension of the gauge transformations
in (7.5) are [LRR"07]

AN ei[\Z oV gkt PN AN GV i (7.9)

The non-abelian generalization of the gauge transformations for ¢V is not as
straight-forward. Instead, the equivalent description

AT _ Al iAT _iAl
e’ — N VoM eVh N Vi IN (7.10)

is used, subject to a reality constraint as in the abelian case. The non-abelian
version of the reality constraint (7.7) on the gauge potentials reads

. _ _
eV = gVX eV¢ = eV¢ eVX ,

r vV, V _
eV =e VoeVx = eVxe™ Vs, (7.11)

The two expressions are equivalent and can be obtained from each other.
Covariant derivatives can generally be written in terms of the gauge poten-
tials V and the ordinary (supersymmetry) derivatives as

V=e"De" =D+T, (7.12)

where I' is the connection. In the left semichiral representation, covariant

. . Al Al
derivatives are defined to transform as V — ¢/ Ve~ and can be constructed
as
v_;,_ = D+, 6_ = eiV‘ﬁD_eV(b,
74 74
V,=e "D,e", V_=e¢ "¥D_e"r. (7.13)

A symmetric and real representation can be obtained by introducing two gauge
potentials satisfying

eVt = ¢ UR eUL, e = ¢UreUL (7.14)
with corresponding transformation properties

. ol . At
eUL N elKeULe iN ’ eUR N elKeULe iA ’ (715)
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where K is an arbitrary real Lie-algebra valued parameter. Covariant deriva-
tives transforming as V — ¢KVe~K can be defined in a symmetric setting
using these gauge potentials as

er = €ULD+€_]UL, v, = eURID),e_UR,

V, =e 0D, e, V_ =e¢ UrD_Uk, (7.16)

The non-abelian form of the field strengths in (7.8) can be expressed in terms
of the covariant derivatives as

F=i{V,,V_}, F=i{V,V_}L (7.17)

The expressions are independent of the representation and gives the usual in-
terpretation of the field strengths as a curvature.

7.1.2 Additional supersymmetry

In the abelian case, linear transformations acting on the field strengths and
closing to a N = (4,4) supersymmetry can be constructed as

oF = 6+]D+IE:7 +e D_F,

of = —eD, F—e D_F, (7.18)

where the transformations are to be seen as commutators. The transformations
close to a supersymmetry (3.18) off-shell. The corresponding supersymmetry
transformations for the gauge potentials can be derived using the expressions
of the field strengths in terms of the potentials (7.8), together with the reality
constraint (7.7),

o0Vy = —E+D+VX — Ei]D_VX + E’D_V(,) — §+®+V¢,
Vy= €D Vy+e D Vy+e'D,V,—€ D_V,. (7.19)

From the definitions of the field strengths in (7.8), it is clear that any chiral
term in the transformations for Vy, and similarly any twisted chiral term in
the transformations V), will not appear in the physical spectra and are to be
viewed as gauge transformations of the form (7.6). With this observation, the
transformations for the gauge potentials close to a supersymmetry up to a
gauge transformation,

Vo v [V A7 — AL 4201 4 2&F
6(¢),0 = 0 + .. _ ],
[6(er),0(&)] < v, ) ST ( v, A" — Al +24F +2aF

(7.20)
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where supersymmetry parameters are labeled collectively as @ = iEEEﬁ and
a= ié[;r eﬁ and the gauge transformations are defined as

Aé = E[JZFEHD_FD-F (VX + Vq}),

A = E[EEHH_),]DL(VX —Vy). (7.21)

The supersymmetry transformations in (7.18) can be assumed to generalize
for non-abelian field strengths,

ofF = €+[v+vF] +€7[6*7F]a
oF = — €[V, ,F]—e [V_,F]. (7.22)

In the abelian case, the gauge field strengths are gauge invariant. In the non-
abelian case, however, the field strengths transform covariantly under gauge
transformations, and the supersymmetry transformations close up to gauge
transformations. Writing the gauge field strengths in a collective notation as
F = {F,F,F,F}, two subsequent supersymmetry transformations commute to

8(e0).0(@)IF = i) [Vo F] +igg e [V F] + [K(e1,€).Fl,  (7.23)

where the non-abelian generalization of the anti-commutator of the supersym-
metry derivatives is V.. = {V4,V_}, K is the gauge parameter

K = —aF +aF — aF + &F (7.24)

and « is the collective notation for supersymmetry parameters defined above.

The supersymmetry transformations of the non-abelian gauge potentials are
less straight-forward. In the real representation, the supersymmetry transfor-
mations of the covariant derivatives are

oV, =ie F—ie T,

oV_ =ietF+ie'F, (7.25)
which can be derived either by making an ansatz for the covariant derivatives
that is compatible with the chiralities and the supersymmetry transformations
of the field strengths (7.22), or by starting from the transformations in the
left representation and performing a gauge transformation to the real repre-

sentation. Independent of the representation, a covariant derivative transforms
under supersymmetry as

oV =[V,eVs(e")]. (7.26)
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The transformations on the gauge potentials can then be derived using (7.25)-
(7.26) and take the form

6(eUL) =g eURD_e UreUr — e Urp_UreUL

6(eUR) =ete Ui eVrer —gTeliD e Vielr,
6(6 L) = eVLePrRD_e Uk e_eULe_URIDLeUR,
6(eUR) = 6+eURe_ULID)+eUL — E+eUReUL]D+e_UL. (7.27)

Finally, the supersymmetry transformations for the gauge potentials "¢ and
eVx can be derived using (7.14),

5(€V¢) =—cte D eveV —e Ve YD eV + e D eV —etD e,
6(eVX) =ete D eeVr t e eV e D eV + et D e —e D _e'x.
(7.28)

It serves as a consistency check that these transformations reduce to the trans-
formations (7.19) in the abelian limit.

7.2 The large vector multiplet

The isometry corresponding to the large vector multiplet (LVM) is similar to
(7.2), but mixes chiral and twisted chiral directions with the Killing vector

k¢X = l(8¢ — 8¢; — 8)( + 8);) (7.29)

The T-duality corresponding to the large vector multiplet will be studied in
great detail in chapter 8. In this section a notation will be used that differs
slightly from the one in paper [III], but instead agrees with the notation used
in the next chapter. A Lagrangian invariant along the direction defined by this
Killing vector may be a function of any of the combinations

x:¢+¢_§7 y=x+x, u=¢+xy, v=¢—x (7.30)

plus their complex conjugates. These are not independent, however, but re-
lated by the expressions

2Reu=x+y, 2Rev=x—y, z=-2Imu=-2Imv. (7.31)

Hence, a Lagrangian invariant under the isometry (7.29) is a function of, e.g.,
the combinations (x,y,z),

K=K@+¢x+iuilp—d+x—1),X XX X). (132
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Under the gauged isometry, the chiral and twisted chiral fields transform
into chiral 6¢ = iA and twisted chiral dy = iA parameters, respectively. As
discussed in section 5.3, gauge potentials with suitable transformation proper-
ties,

6V, = —i(A—A),
8V, = —i(A—A),
V.=A+A+A+A, (7.33)

are introduced to keep the action invariant under the gauged isometry. The set
of gauge potentials (Vy,V,,V;) is denoted the large vector multiplet [LRR*07,
GMO7]. The gauged action is

K=K(x+Vy, y+V, z+V2). (7.34)

Complex gauge potentials transforming into gauge parameters with definite
chirality properties can be defined from the real gauge potentials in the large
vector multiplet as

Vi=3Vetiet W, sVL=A+A,
Ve= 3 VetilVe=W)l,  oVe=A+A. (7.35)

The potentials have the same real part, V; +V; = Vg + Vi, and are not indepen-
dent. Using the complex gauge potentials, gauge invariant field strengths can
be defined as

Gy.=D,V;, G_=D_Vs. (7.36)

The field strengths satisfy left and right semichiral constraints, respectively.
The field strengths G4 for the the large vector multiplet are not the only
gauge invariant objects that can be constructed from the gauge potentials in
(7.35). Higher-order field strengths involving two derivatives can be defined
as [LRR*07]

W =—iD,D_V,, B=-D,D_(V,+iVy),
W=—-iD,.D_V,, B=-D.D_(V,—iVy). (7.37)

As opposed to the field strengths G, the higher-order field strengths W, B and
W, B are chiral and twisted chiral, respectively.

In contrast to the semichiral vector multiplet, the large vector multiplet con-
tains, when reduced to N=(1, 1) superspace, four extra gauge invariant spinor
multiplets in addition to the N=(1, 1) gauge invariant field strength and three
gauge invariant scalars [LRR*07]. The large number of gauge invariant com-
ponents motivates the name large vector multiplet. An action for the large
vector multiplet was constructed in [Ryb07], where the higher derivative terms
resulting from the gauge invariant spinors were removed by a field redefinition
and gauge invariants in the Kéhler potential.
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7.2.1 Non-abelian large vector multiplet

The non-abelian version of the large vector multiplet was developed in paper
[LRR*09]. Similarly to the semichiral multiplet, the gauge transformations
of the vector potentials (7.35) generalize straight-forwardly to the non-abelian
case. But an important difference between the semichiral and the large vector
multiplet is that two copies of covariant field strengths can be constructed for
the large vector multiplet. For example, in the chiral representation, there are
two covariant derivatives containing the supersymmetry derivative D_ to the
lowest order, .

V_o=D_, V_=¢"D_e "k, (7.38)

The non-abelian generalization of the field strengths in (7.36) is the difference
in these two sets of covariant derivatives,

Gy =i(Vy—V,), G_=i(V_—-V_). (7.39)

Being the difference of two covariant derivatives, the field strengths are indeed
covariant tensors. The chirality constraints of the non-abelian field strengths
are defined using both sets of covariant derivatives [LRRT09],

(Vi+Vi)Ge =0 (7.40)

In addition to the gauge invariant tensors (7.39), two sets of additional field
strengths can be constructed, that are the non-abelian generalizations of (7.37),

A

F=1{V,V_}, F={V,V_},
F={V,V_}, F={V,V_}, (7.41)

together with their complex conjugates. The approach of [Ryb07] to construct
actions of the large vector multiplet was generalized in [LRR*09], where it
was found that an action of the large vector multiplet can contain only com-
binations of the field strengths (F,F,F F) or of the hatted field strengths

(F ,ﬁ, ﬁ,ﬁ ). Mixed terms from the two sets of field strengths gives rise to
higher derivative terms that cannot be eliminated by field redefinitions.

7.2.2 Additional supersymmetry

In the same way as in section 7.1, one can ask if and under what conditions the
large vector multiplet allows for N = (4,4) supersymmetry. Noting, however,
that the two field strengths in (7.36) together with their complex conjugates
are semichiral, and using the results from [I], [II] and [IV] saying that off-shell
N = (4,4) supersymmetry can only be imposed on a sigma model described
by semichiral superfields if the target space is larger than four-dimensional,
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one can draw the conclusion that no ansatz on the field strengths G can
close to a supersymmetry algebra. As in the semichiral sigma model in four
dimensions discussed in section 6.2, there is also the possibility to impose
twisted supersymmetry; linear transformations can be constructed acting on
the field strengths that close to a pseudo-supersymmetry off-shell [1II].

7.3 Results

The semichiral vector multiplet (V, V", V') with the corresponding gauge
field strengths (IF, ) allows for N = (4,4) supersymmetry [III]. In the abelian
case, linear supersymmetry transformations can be constructed for the gauge
potentials and for the field strengths. The corresponding non-abelian transfor-
mations can also be constructed and close to a supersymmetry up to gauge
transformations.

The large vector multiplet (Vi,V;,V;), however, has gauge field strengths
G4 with semichiral chirality properties. This is the important difference from
the semichiral vector multiplet, whose field strengths satisfy chiral and twisted
chiral chirality properties. This semichirality of the large vector multiplet
obstructs the N = (4,4) supersymmetry, as is expected from the results of
semichiral fields and off-shell N = (4,4) supersymmetry reviewed in chap-
ter 6. As discussed in the same chapter, one could consider N = (4,4) twisted
supersymmetry, or only left/right-going supersymmetry. There is also a possi-
bility that one could impose additional supersymmetry on-shell, analogously
with the discussion in section 6.5. The on-shell discussion would be action
dependent, and was not further investigated in paper [I11].

From the result of paper [I, II, IV] and earlier work [GHR84], it is clear
that a set of four chiral and twisted chiral fields allow off-shell N = (4,4)
supersymmetry, whereas a set of semichiral fields does not. The results of
paper [III] is therefore expected and in agreement with previous results.
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8. T-duality and N = (4,4) supersymmetry

I never am really satisfied that I understand anything; because, understand it
well as I may, my comprehension can only be an infinitesimal fraction of all I
want to understand about the many connections and relations which occur to
me, how the matter in question was first thought of or arrived at, etc., etc.

Ada Lovelace, computer programmer, mathematician (1815-1852)

From chapter 6 it is clear that a semichiral model with four-dimensional target
space does not admit off-shell N=(4,4) supersymmetry [I]. The supersymme-
try can only be obtained on-shell [IV] or in a larger target space [1I].
However, from [GHR84], it is known that a model parametrized by a chiral
and a twisted chiral field may be enhanced to to off-shell N = (4,4) super-
symmetry if and only if the generalized Kihler potential satisfies the Laplace
equation. It is also known [IKR95, GMST99] that a chiral and twisted chiral
model can be related to a semichiral model by T-duality, similar to the duality
relating a chiral and a twisted chiral model as discussed in section 5.3.

Chiral/twisted chiral Semichiral

S = [K(¢,d.x.7) $=[R(X{, XXX
off-shell N =(4,4) susy «—— | on-shell N=(4,4) susy

iff K satisfies the Laplace eqn iff K satisfies a system of PDEs
linear transformations non-linear transformations

This situation raises several questions. The overall question and setup for pa-
per [V] was: Starting with a chiral and twisted chiral sigma model with off-
shell linear N = (4,4) supersymmetry, and dualizing into a semichiral sigma
model — what happens to the supersymmetry? In particular, the following ques-
tions were addressed.

RESEARCH QUESTIONS:

* Is the N =(4,4) supersymmetry of the chiral and twisted chiral model pre-
served along the isometry, or is the isometry incompatible with geometric
data generated by the supersymmetry?
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* Can the non-linear supersymmetry transformations of the semichiral model
be related to the linear transformations of the chiral and twisted chiral
model? From where does the non-linearity originate?

* How is the off-shell closure in the chiral and twisted chiral model and the
on-shell closure in the semichiral model to be interpreted? Do the field
equations of the latter model have any analogue in the former?

* What does the Laplace equation correspond to in the dual semichiral model?
Is the corresponding equation sufficient to make the semichiral action in-
variant under the supersymmetry transformations? If not, what are the ad-
ditional constraints, and how can they be understood?

* Does the T-duality provide a complementary and/or more insightful under-
standing of the on-shell N = (4,4) supersymmetry of the semichiral model?

These questions were all investigated and answered in [V]. In the next sec-
tions, the details and methods of the paper will be discussed. The results of
the paper and the answers to the questions will be summarized in section 8.6.

8.1 The N =4 puzzle

The sigma model with manifest N = (2,2) supersymmetry was introduced in
sections 4.3-4.4 and can be parametrized by chiral ¢, twisted chiral y and
semichiral X¢, X" superfields. The chiral and the twisted chiral fields are con-
strained in two chiralities, D+ ¢ = 0 and D y = D_y =0, whereas the semichi-
ral fields are constrained only in one, D, X’ =0 and D_X" = 0.

8.1.1 Linear off-shell supersymmetry in chiral/twisted model

The geometry of a sigma model parametrized by chiral and twisted chiral co-
ordinates, K(¢,®, x, i), is bihermitian local product space (BiLP), and corre-
sponds to the situation when the two complex structures enabling the extended
N=(2,2) supersymmetry commute, [/, J©)] = 0. A system of one chiral and
one twisted chiral superfield and their complex conjugates admits transforma-
tions

op=¢etDiy+e D_y,
Sy=—¢D,¢p—e D_g, 8.1)

that are linear and close to a N = (4,4) supersymmetry off-shell. The action
with Lagrangian K(¢,¢, x, ) is invariant under the supersymmetry transfor-
mations if and only if the generalized Kihler potential satisfies the Laplace
equation [GHR84],

K45+ Kyz = 0. 8.2)
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The additional supersymmetry implies the existence of two commuting inte-
grable quaternionic structures (4.33),

J,-&)J}i) == +eiuy, =123

with [J;”,J;.’)] = 0, satisfying the compact algebra SO(4) ~ SU(2) x SU(2).
This implies that nine product structures can be formed from any two products
of the six structures, IT = in)Jf) [GHR84].

8.1.2 Non-linear on-shell supersymmetry in semichiral model

However, as shown in [I, I, IV] and reviewed in chapter 6, the analogous situa-
tion for a sigma model in semichiral coordinates is very different. If the target
space is four-dimensional, the transformations for N = (4,4) supersymmetry
can only close on-shell, and are non-linear (6.56),

oX! = et D, f(XL, XX, X) 4 g(Xe D_X! + h(X)e D_XY,
oX" =& D_F(X, XX, X 4+ 5(XN)etD, X+ A(X)et D, X

The action is invariant under the transformations if and only if the generalized
Kihler potential K (X, X! X" X") satisfies the system of non-linear partial
differential equations (6.38)-(6.39), relating derivatives of the functions f, f
with the functions g, g, A, h and second derivatives of the generalized Kihler
potential.

Invariance of the action and on-shell closure of the supersymmetry algebra
imply, together with the fact that the complex structures from the N = (2,2)
supersymmetry do not commute, that the target manifold is necessarily hyper-
kéhler, as described in section 6.6.

8.2 Duality between the models

Recall from chapter 5 that the existence of isometries enable dualities between
different sigma models. The vector multiplets needed to gauge an isometry
mixing chiral and twisted chiral fields as described in section 7.2 is the large
vector multiplet.

8.2.1 Duality transformations

Consider a sigma model parametrized by chiral ¢ and twisted chiral y super-
fields, subject to an isometry defined by the translational Killing vector (7.29),
k = i(dy — d3 — J) + dy). Writing combinations of the fields as in section 7.2,

x=¢+¢, y=x+x. z=il¢—0+x—X) (8.3)
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together with the forth coordinate that parametrizes the direction of the isom-
etry as w = i(¢ — ¢ — x + ¥ ), an action respecting the isometry is given by the
Lagrangian in (7.32), where here the light-cone coordinates of the world-sheet
are written as &+,

S:/J%fw@K@m@. (8.4)

This action, parametrized by coordinates that are combinations of chiral and
twisted chiral fields, will in this chapter be referred to as the original action.
Under the gauged isometry transformation, the chiral and twisted chiral su-
perfields transform into gauge parameters of the same chirality. The gauge
potentials of the large vector multiplet V¥ = (V,,V,,,V;) transform as in (7.33).
By choosing a gauge such that x = y = z = 0 and introducing semichiral field
strengths as in (7.36),

Gy = 1Dy (V. +iVi £iVy) (8.5)

together with unconstrained spinorial Lagrange multipliers X, a first order
action can be constructed as
&M:/d%f&ﬂﬂKO%WJ@—%X+G++X+G++X_G,+X‘GJ]
' (8.6)

Varying this action with respect to the Lagrange multipliers constrains the
field strengths to vanish, G+ = 0, which is solved by V;y = x, V, =yand V, =z,
reproducing the original chiral and twisted chiral model (8.4).

Instead integrating by parts and introducing semichiral fields as X =D X+
and X" = D_X", the first order action takes the form

&m:/ﬁ%f&ﬂﬂK@;%JQ—ﬂ@—ﬂ@—ﬂq, (8.7)
where the coordinates & = (%, ¥,7) are combinations of semichiral superfields,
(Xﬁ Xf_ 4 X — X7)7
(! - X - X"+ X7),

(X! + RO+ X+ X7). (8.8)

|| H
[IE T TR

Varying with respect to the gauge potentials implies that they are not indepen-
dent, but rather functions of the combinations of semichiral fields,

K _ 9K _ 9K _
TVX =X, TVy =Y, TVZ =2 (89)

Inserting the relation V¥ = V#(&') gives the dual semichiral action,

5= [ [KOE @) V@) - (@) - 3w (@) - V()] = [R@5.2),
(8.10)
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where the integration measure is implicit. This semichiral action will hereafter
be denoted the dual action. From the Legendre transformation (8.9)-(8.10), the
following useful identities are obtained,

K, =06u%, Ki=—6,V" (8.11)

Assuming that the Hessian K, is invertible, these relations from the Legendre
transform further imply that K; = —0i (K~ hwvs, jand Dx* = (K~ hws, D

8.2.2 Field equations and Bianchi identities

The Bianchi identities for the original model are obtained when varying the
first order action (8.6) with respect to the Lagrange multipliers and obtaining
the pure gauge condition,

Gy = 3D (V. +iV, £iVy) =0. (8.12)

The Bianchi identities are automatically satisfied when the gauge potentials
are identified as the combinations x* of the chiral and twisted chiral fields,
due to their chirality constraints,

5Dy (z+ix+iy) =Dyx, =Dy (p+x) =0,
D_(z4+ix—iy)=D_xzg =iD_(¢— ) =0. (8.13)

NI— 1|

The field equations for the dual semichiral model (8.10) are found by varying
the dual action (8.10) with respect to the unconstrained X * in the semichiral
fields, and take the form

Dy (K:+ iKz +iK5) = 0. (8.14)

In the usual semichiral coordinates, (8.14) correspond to the field equations
DK, = D_K, = 0 in (6.41). Using the identities (8.11) from the Legendre
transform, the Bianchi identities (8.12) for the chiral and twisted chiral model
are replaced by the field equations (8.14) in the dual semichiral model.

8.3 Supersymmetry and T-duality

8.3.1 Isometries preserving N = (4,4) supersymmetry
Along which isometries can the twisted chiral multiplet be dualized while still
preserving the N = (4,4) supersymmetry?

As described in section 8.1, the target space geometry of the N = (4,4)
supersymmetric chiral and twisted chiral model has six complex structures
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J,-(i) with i = 1,2, 3, that are constant in the coordinates (¢, .y, ) [GHR84].
For an isometry defined by a Killing vector k to maintain the supersymmetry,
it must be holomorphic with respect to the all the complex structures, i.e., the
complex structures must be preserved by the isometry,

Ly, = K 9pJH, — 9okt JF, + 0,k JH, = 0. (8.15)

Since all complex structures are constant, the first term vanishes and the van-
ishing of the remaining terms imply that the Killing vector is diagonal of the
form

k= k? ()9 + k% (8) 93+ k¥ (x) 9y + k¥ () g, (8.16)

with the derivatives of all coefficients equal; k% = k¢- = k% = K%.. The solu-
tions to these constraints are either that all coefﬁ(:lents are constants so that
the isometry represents a translation, e.g., k = i(dy — dj — 9\ +dg), or that they
are linear with the same derivative, k = ¢dg 4 ¢dj + xJy + ¥ dy, which repre-
sents a rescaling. The isometry considered here and in [V] is translational and
should therefore preserve the additional supersymmetry.

8.3.2  Supersymmetry in the original model

In coordinates adapted to the duality transformation, the supersymmetry trans-
formations (8.1) of the combinations of chiral and twisted chiral fields are

ox=eDyy+e D y+eDyy+e Dy,
Sy=—¢eDx—e D_x—eDyx—e D_x, (8.17)
oz=ie Dy (y—x)+ie D_(y+x)—ie Dy (y—x)—ie D_(y+x),

and the Laplace equation that follows from invariance of the action is
Kyx + Kyy + 2K, = 0. (8.18)

However, if the chirality constraints for the chiral and twisted chiral fields had
not been used, the action would not be invariant under the transformations;
non-linear terms would have to be added, and the new terms would have to
satisfy certain differential equations.

8.3.3 Adding non-linear terms

As just seen, the transformations of the chiral and twisted chiral fields are
linear, whereas the semichiral analogues are non-linear. The underlying reason
for the linearity of the former model is the first order differential constraint in
the Bianchi identities for the original model, i.e. the chiralities of the chiral
and twisted chiral fields.
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Consider a model of unconstrained gauge potentials, K(V,V,,V;) and add
non-linear terms that are proportional to the Bianchi identities,

Ve =& [DyVy+ LaD (V4 iV +iVy)] +...
Vy =& [=Dy Vit LyD (Vo +iVe +iVy)] +...
oV, = iet Dy (Vy — Vi) + LeDy (V. + iV +iVy)] + ... (8.19)

where «, vy, € are arbitrary functions. When the Bianchi identities (8.12) are
evoked, these transformations on the unconstrained fields V# reduce to the
linear transformations (8.17) on the chiral and twisted chiral coordinates. It
will be useful to write the transformations in the same compact notation used
in chapter 6,

SVH = eFUDHD LV + €EVEEDLYY, (8.20)

where the notation for the unconstrained fields V* should not be confused with
the transformation matrices V®). The transformation matrices are

| —a 2—a) ia
U(+) — 5 _(2"[")/) —y l’y ,
—i(2+¢) i(2—e) —&
1 -8 (2+B) B
U = 3 —(2+9) 5 io |, (8.21)

i(2—«k) i(2+«k) —k

and V@ are the complex conjugates of U™,

Now consider invariance of the action. If the Bianchi identities (8.12) hold,
the action with Lagrangian K (V*) is supersymmetry invariant if and only if the
Laplace equation is satisfied. But for unconstrained fields V#, invariance of the
action implies K, U Mg | = 0. This system of partial differential equations can
be solved if the non-linear terms in the transformations are certain functions
of second derivatives of K and first order derivatives of a function f,

a=—i(K ") +1, B=—i(K "YHf—1,
y=—i(K~")*f,—1, 6= —i(K ")#f—1,
e=—(K1)Hf, k=—(K""*f,, (8.22)

where the functions f and f satisfy the partial differential equations

fotife=—(K+Ky)y —i(Ki +Ky):,
fitify= (Kit+ Ky +i(Ki+Ky)e,
fetife=—(Ki—Ky)y +i(K— Ky).,
fo—ify = — (K — Ky)x — i(Ky — K. (8.23)
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This solution for the transformation parameters may seem ad-hoc, but is cho-
sen to agree with the transformations found in [IV] and the notation used in
chapter 6. The important observation that should be stressed is the following:
in the first order action (8.7), the V# are unconstrained and the & are combi-
nations of semichiral fields. The action with Lagrangian K(V*) is no longer
invariant provided that the Laplace equation is satisfied, instead invariance of
the action implies the equations K, U (*)ﬁ | = 0. Transformations for V¥ can be
defined in terms of certain functions (8.22), such that these constraints are sat-
isfied. Using the Bianchi identities for the original model, the unconstrained
fields convert to combinations of chiral and twisted chiral fields, V# = x*, and
the transformations reduce to the known transformations (8.17) for the origi-
nal chiral and twisted chiral model.

8.3.4  Supersymmetry in the dual model
With the added non-linear terms in §V# together with the Legendre identities

(8.11) from the T-duality, the transformations for the dual semichiral coordi-
nates can easily be derived,
6% = MK, 6V
= 01K,y (€°U DV + €7V ¥ D, VP)
=“ (5iﬂKﬂvU(G); (K*I)P(r(so_j)ﬂ_)afj Ny (5i,ll[(#vv((l); (Kfl)p(r(so_j)ﬂ)ax«j
=0 Do + €7V ViD, (8.24)
where the chirality indices @ = 4, — are summed over. From this expression,
the transformation matrices of the semichiral coordinates can be read off in
terms of the transformations of the chiral and twisted coordinates as
O@i — sitg U(@)V(K—l)lﬂé .
J 74 P ajs
V= K, VO (K16, (8.25)

Inserting the explicit expressions for @,(, ... from (8.22) and again using Leg-
endre identities, the dual transformations read

ifi—1 ify—1 i(fz—2)

U9 =-| ife+1 ifs+1 i(z+2) |,

fit+i  fy—i fz

ife+1 ify—1 i(fz+2)

09 =21 —ifi+1 —(if+1) —i(:=2) |- (826)
fi—i fi—i f
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Explicitly, the combinations of the semichiral fields ¥ then transform under
the N= (4 4) supersymmetry as

ox=Let[Dyf—Di(2z—ix—iy)] + i [D- f+ID> (2z—ix+iy)],
67 =4e" [Dyf+Dy (22— ix— ] e [D_f-D_(2z—ix+iy)],
0z =T Dy f+iDy (¥—F)] + 5& [D f—iD_(%+7)] (8.27)
plus complex conjugate parts. These agree with the obtained transformations
for semichiral fields (6.56) with g =1 and § = —1.1
An illuminating consequence of this procedure is that the on-shell condition
for algebra closure now becomes evident. The algebra closure in the original
model follows due to the Bianchi constraints. From the T-duality, these equa-

tions are replaced by field equations in the dual semichiral model, hence, the
transformations on the semichiral fields are expected to close only on-shell.

il
N\N- I~

8.3.5 Duality between BiLP and hyperkdhler geometry

As discussed in section 4.4, the target space parametrized by chiral and twisted
chiral fields describes the section of bihermitian geometry where the two com-
plex structures of the N =(2,2) supersymmetry commute, so called BiLP ge-
ometry, whereas the semichiral fields parametrize the region where they don’t.
With additional supersymmetry, the target space of the chiral and twisted chi-
ral model is bihyperhermitian with two commuting quaternionic structures
[GHR84], whereas the semichiral model is hyperkihler [IV].

From the previous section it is clear that translations and rescalings pre-
serve the N = (4,4) supersymmetry of the twisted chiral multiplet. When du-
alized along a translational isometry with equal amounts in the chiral and the
twisted chiral directions, the Laplace equation transforms into an analogue of
the Monge-Ampere equation {J™,J©} = 2¢ with vanishing ¢, implying that
the semichiral model is hyperkihler [BSvdLVG99]. In the coordinates x*, the
Laplace equation is the linear equation (8.18), whereas the Monge-Ampere
analogue (4.78) with ¢ = 0 in the dual coordinates is the non-linear relation

(Kix + Ky5) Kz + 2K K5 — 2K5 — K — K = 0. (8.28)
One could also consider a translational isometry with unequal amounts in the
chiral and twisted chiral directions, where now c is non-vanishing but still con-
stant, such that the torsion vanishes and the geometry is hyperkihler [Cril2].

Another option is dualizing along a rescaling isometry. This gives a non-
constant ¢ [Cril2], hence the dual geometry has non-trivial torsion and is not
hyperkihler, while the N = (4,4) supersymmetry is still preserved. Investigat-
ing this route would be an interesting research project for the future.

f In paper [IV], the obtained result was that g and g are phases and gh = gh = —1. For simplifica-
tion, the special case g = —g = 1 was considered here.
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8.4 Reducing to (1,1) superspace

Reducing the original chiral and twisted chiral model (8.4) to a sigma model
in N=(1,1) superspace (4.25) reveals that the geometric structures £ = g+ b
are independent of the forth coordinate that parametrizes the direction of the
isometry, w‘ =i(¢p—d—x+i)- The same is true for the semichiral dual model;
when reduced to N = (1, 1) superspace, after eliminating the auxiliary fields,
the action is

o 1 o N
S = / d*&d*oR (7) m S=-3 / d*éd*0D, XE,,D_Xb,  (8.29)

where the coordinates are X¢ = (X%, XR)| = (X, X', X", X"), and E,, depends
only on derivatives of the potential K. In other words, the coordinate functions

of the metric and the b-field are independent of the coordinate that is excluded
by the isometry, w| = 3(X* + X/ — X" — X7),

g~ gu(%,5.2)dX dX" + g ,7(%,5,2)dX'dX" + ... (8.30)

which does not alter the fact that the metric is non-degenerate.

8.5 Examples
8.5.1 Flat space

To illustrate the results reviewed in this chapter, consider the special case of a
quadratic Lagrangian. A potential for flat space that satisfies the Laplace equa-
tion is, in terms of the combinations of chiral and twisted chiral coordinates,

1
K= =)+ 7 (2= (x=3)?), (831)
2 4
where r is an arbitrary real constant. The dual semichiral model is obtained by

the T-duality procedure described in section 8.2 and is
o Lo oy om0 42
K=—x-7)—-|EF+y)"+—= - (8.32)

For any value of r, this potential satisfies (8.28) with ¢ =0, i.e., the Kihler po-
tential will satisfy the Monge-Ampere equation and there is no b-field, which
is expected, since the dualization was performed along a translational isometry
by equal amounts on ¢ and y.

For the supersymmetry transformations, the analogue of (8.31) with uncon-
strained fields V# is considered. Functions that satisfy the partial differential
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equations in (8.23) can easily be found,

f=sVL—i(Vi+ V),
f=tVe+ir(Ve+ V) +i(Ve — V), (8.33)

where s and ¢ are two arbitrary constants and V7 g are the combinations of the
chiral and twisted chiral fields defined in (7.35) that vanish when the Bianchi
identities are evoked, (8.12). The terms multiplying the integration constants
sand ¢ in f and f will vanish due to the Bianchi identities for the original
model, and on-shell in the dual model. This holds in general; a term s- g(Vy)
in f will transform the fields as

68 =" D. (sg(V1)) = &"5¢/ (Vi) D4 Vi = —&" S¢ (VD (Re+iRs + i),
(8.34)
and the last expression vanishes due to the field equation (8.14). The same is
valid for a term 7 - (V) in f. The parameters in U are defined in (8.22) and
take the constant expressions

D= N|—

(=2r+rs+s),
(=2r+rs—s),

N

r’

2r(r+1)+1),

x O ™
[
D= B—
—
[\®]

S
—
~
|
—_
N~—
+
-~
N~—

m R R
I

~

(8.35)

~

The dual transformation matrices can then be derived by Legendre transform
and take the form

2r—s—rs  —442r—rs+s 2i(—2+3)

- 1
UH):Z 442r—rs—s 2r—rs+s 2i2+3) |, (8306
i(—2r+rs+s) i(—2r+rs—s) 2;
and
[ D a2 - 2024 )
09 = | 4+2r(r+ )41 2= D41 202-1) | 837
i2r(r+1)+t)  i2r(r—1)+1) 27

The semichiral action (8.32) is invariant under these transformations. The field
equations in flat space defined by the generalized Kéhler potential in (8.32) are

0
D_s+D_j—ZD_z=0. (8.38)

The integration constants s and ¢ in the transformations multiply field equa-
tions and vanish when (8.38) are used. Using the field equations, one can
then check explicitly that the transformation defined by the matrices in (8.36)-
(8.37) close to a supersymmetry on-shell.
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8.5.2 Non-quadratic potential

Non-flat generalized Kihler potentials can also be constructed. One example,
inspired by similar examples in [BSvdLVG99], is

K(x,y,2) =z (F(x+iy) + F(x—iy)). (8.39)

The potential satisfies the Laplace equation (8.18), hence the original chiral
and twisted chiral sigma model has N = (4,4) supersymmetry off-shell. As
the functions F, F' one can consider, for example, F = %(x +iy)?, so that the
original Lagrangian takes the cubic form

K(x,y,2) =z (x> =»%). (8.40)

Gauging the potential by introducing the unconstrained gauge potentials V¥,
the Legendre transform gives the identities corresponding to (8.11),

Ky = 2V.-V, = X,
Ky, = —2V.-V, = 3, (8.41)
KVz = sz_vyz = Z

Solving for V# and inserting back into the first order action, the dual general-
ized Kihler potential takes the form

K(%,7,2) = —/2(#2 — 72). (8.42)

This potential satisfies (8.28), which is equivalent to the Monge-Ampere equa-
tion, hence the dual model describes hyperkihler geometry. The dual potential
in semichiral coordinates reads

RO KX R7) = =/ L&+ K4 X7+ Ki(X! - XDi(X — 7). (8.43)

The determinant of the Hessian corresponding to this Lagrangian is well-
defined as long as the potential (8.42) is non-vanishing.

To find the supersymmetry transformations, functions satisfying (8.23) are
required. Making an ansatz for f and f to be quadratic, in order to satisfy the
partial differential equations, they must be of the form

f=2(sVE+2ViV, —i(Vi + V) V,),

F=2(tVg +2ViVy +i(Vi — V,)V2), (8.44)
where s and ¢ are arbitrary integration constants. Again, the terms multiplying
s and ¢ in the transformations will vanish when Bianchi identities are used,

or equivalently, on-shell for the transformations of the semichiral fields. With
these functions, the transformation parameters take the form in (8.22). For
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clarity, only the on-shell part of the transformations are displayed here and
are

V2+V2 \/2+v2
. V +V V +V
o 4V,\V) o 4VxVy
&= Ty K= _VXLV}'

The supersymmetry transformations for the semichiral model can now be de-
rived by the Legendre transform U = (K)(U)(K~'). The on-shell content of
the transformation matrices is

2P+ 21x(x2+)2) _ . 2ify
(iz,ya)z ( 2)2 l F2r)
~ 2 2 .
" = 1+ ’(yf; ;rzy)) - l(xi(x +2)2)Z - ;i?;z (8.46)
2y(x +j ) 2x(x +)2)z 2%y
()22_)72)2 ( 2)2 552_)72

and similar for U"). One can explicitly check that, for arbitrary values of the
integration constants s and ¢ (not displayed in (8.46) since this is the on shell
part only), D (6*)%) = 0 and the partial differential equations K, iU ] =0
are satisfied, hence the semichiral action with generalized Kihler potent1a1
(8.42) is invariant under these supersymmetry transformations.

8.6 Results

The questions posted at the beginning of this chapter have now been answered
and are summarized in table 8.1.

Translational and rescaling isometries are compatible with the additional su-
persymmetry, hence the N=(4,4) supersymmetry of the chiral and twisted chi-
ral model is preserved. To relate the non-linear transformations of the semichi-
ral model to the linear ones for the chiral and twisted chiral model, new non-
linear terms must be added to the transformations of the chiral and twisted
chiral fields. These terms vanish when the chiral and twisted chiral Bianchi
identities are imposed, and equivalently when the semichiral field equations
are used, but they are crucial for the invariance of the semichiral action.

On the chiral and twisted chiral side, the N=(4,4) supersymmetry algebra
closes due to the Bianchi identities. These equations are T-dual to the field
equations for the semichiral model, and hence, from the point of view of T-
duality, it is clear that the algebra closes on-shell for the semichiral fields.
This is related to the approach in [LR83], where additional supersymmetry is
constructed for a first order action and then derived for the two dual actions.

The chiral/twisted chiral action is invariant under the supersymmetry trans-
formations if the potential satisfies the Laplace equation, which by T-duality
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Chiral/twisted model Semichiral model
§S=JK)=JK(xy7z) §=[K(F)=[K(%5,2)
Bianchi identities: Bianchi identities:

D, (z+ix+iy) =0 D.D_(2—ix)=0
D_(z+ix—iy) =0 DiD_(2—i5) =0

Field equations: Field equations:
D,D_(K,—iKy;) =0 D, (K: + iKz +iK;) = 0
D.D_(K,—iK,) =0 D_(K:+ Kz — iKy) =0
Supersymmetry: Supersymmetry:

Sxt = U DED, x" + c.c. 6% = E“U(”);Daij +c.c.
U'®) constant 3 x 3 matrices U = (d9K)U(dIK)™!
susy algebra closes off-shell susy algebra closes on-shell
(using Bianchi identities) (using field equations)

Figure 8.1: The N = (4,4) supersymmetry transformations for the chiral and twisted
chiral model and the semichiral model can be understood from T-duality.

corresponds to the Monge-Ampere equation on the semichiral side. This im-
plies that the target space of the semichiral model is hyperkéhler but does
not, however, imply that the semichiral action is invariant under the N = (4,4)
supersymmetry.

The generalized Kihler potential K must satisfy an additional system of par-
tial differential equations in order for the semichiral action to be supersymme-
try invariant. That no additional constraints appear for the chiral and twisted
chiral Lagrangian is again due to the Bianchi identities; but the equivalent
equations of motion on the semichiral side cannot be used in the invariance of
the action, hence the constraints remain for the semichiral Lagrangian. These
differential equations are more transparent in the original chiral and twisted
chiral coordinates, hence, finding transformations for N = (4,4) supersymme-
try is more straight-forward in the T-duality setting.
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9. Summary

Science makes people reach selflessly for truth and objectivity; it teaches people
to accept reality, with wonder and admiration, not to mention the deep awe and
joy that the natural order of things brings to the true scientist.

Lise Meitner, physicist (1878-1968)

The research presented in this thesis concerns non-linear sigma models, su-
persymmetry and geometry. Non-linear sigma models with extended super-
symmetry have constrained target space geometries, and can serve as tools
for investigating and constructing new geometries. Since sigma models are
fundamental objects in string theory, analyzing the geometrical and topolog-
ical properties of sigma models is necessary for a full understanding of the
underlying structures of string theory.

The most general two-dimensional sigma model with two manifest super-
symmetries in each chirality can be described by a Lagrangian that is a scalar
function of three kinds of superfields: chiral, twisted chiral and semichiral su-
perfields, together with their complex conjugates, K (¢, d, x, v, X', X!, X", X7).
The choice of superfields, i.e., the choice of supersymmetry representation,
determines the geometry of the target space. A sigma model parametrized by
only chiral and anti-chiral superfields ¢, @, or by twisted and anti-twisted su-
perfields y, i, has a target space which is necessarily Kéhler. Geometry with
torsion can be described if both chiral and twisted chiral superfields are used
as coordinates, implying a bihermitian target space with two commuting com-
plex structures, so called BiLP geometry. The section of the target space where
the two complex structures do not commute is described by a semichiral sigma
model, parametrized by left and right semichiral superfields,

K(¢,¢) and K (v,y) Kihler,
K(¢,0.x.X) bihermitian with [J¢),J)] = 0, ©.1)
K(Xev Xﬂ, X" X?) bihermitian with [JV, J)] £ 0.

Since bihermitian geometry is equivalent to generalized Kihler geometry, the
N =(2,2) supersymmetric sigma model gives a local description of general-
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ized Kéhler geometry, with the Lagrangian K being the generalized Kéhler
potential.

The sigma model parametrized by one (anti-) chiral and one (anti-) twisted
chiral superfield can be enhanced with additional linear supersymmetry if the
generalized Kéhler potential satisfies the linear Laplace equation. The target
space geometry becomes bihyperhermitian with two commuting quaternionic
structures. The corresponding situation for a semichiral sigma model was pre-
viously not known.

In [I], it was found that a semichiral sigma model with four-dimensional
target space, i.e., parametrized by only one set of left and right semichiral
fields, cannot incorporate additional supersymmetry off-shell. However, lin-
ear transformations can be constructed that close to a pseudo-supersymmetry,
resulting in a sigma model with N =(4,4) twisted supersymmetry. The action
is invariant under the twisted supersymmetry provided that the Lagrangian sat-
isfies a system of linear partial differential equations. Non-trivial solutions can
be found, and the corresponding target space geometry is neutral hyperkihler,
with vanishing torsion and a metric with indefinite signature.

Off-shell N = (4,4) supersymmetry can be imposed if the target space di-
mension is increased, as was described in paper [II]. The supersymmetry trans-
formations leave the action invariant if and only if the generalized Kihler
potential satisfies a system of partial differential equations. The geometrical
structures can be encoded in Yano f-structures, a generalization of complex
structures allowing for degeneracies in the transformation matrices.

Using the field equations, the N = (4,4) supersymmetry can close on-shell
in arbitrary 4n-dimensional space. This was first observed in paper [II] and
further investigated in paper [IV]. The transformations are necessarily non-
linear. For the case of a four-dimensional target space, the non-linear partial
differential equations resulting from the invariance of the action simplify, and
solutions can be found. The geometrical constraints from the additional on-
shell supersymmetry imply that the target space geometry is hyperkihler.

Hence, the semichiral sigma model with four-dimensional target space dif-
fers from the chiral and twisted chiral sigma model in several ways. Whereas
linear off-shell N = (4,4) supersymmetry can be imposed on the latter model,
the semichiral model has non-linear transformations that close only on-shell.

Different sigma models can be related to each other by T-duality. The du-
ality process involves gauging isometries using certain gauge potentials. The
N = 2 vector multiplet that gauges isometries mixing chiral and twisted chi-
ral fields is called the large vector multiplet, and the vector multiplet gauging
isometries mixing semichiral fields is the semichiral multiplet. In paper [II],
it was found that the semichiral vector multiplet allows off-shell N = (4,4) su-
persymmetry, and the explicit transformations were constructed for the gauge
potentials and the field strengths in both the abelian and non-abelian case.
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No transformations can close to additional supersymmetry on the large vec-
tor multiplet, however. This is in agreement with the results of the previous
papers, since the large vector multiplet has semichiral field strengths; from
[1] and [II] it is known that one set of semichiral fields does not allow for
additional off-shell supersymmetry.

In paper [V], the discrepancy between the semichiral model and the chiral
and twisted chiral model was investigated. Starting from the latter model with
linear off-shell N = (4,4) supersymmetry, the semichiral analogue was con-
structed by T-duality. Non-linear terms have to be added to the transformations
in order to arrive at the semichiral sigma model obtained in paper [IV]. These
non-linear terms vanish due to Bianchi identities and never appear for the chi-
ral and twisted chiral fields. The Bianchi identities are dual to field equations
for the semichiral model, hence by T-duality, the supersymmetry transforma-
tions are expected to close only on-shell on the semichiral fields. The T-duality
replaces the Laplace equation by the Monge-Ampere equation on the semichi-
ral side, implying that the target space parametrized by semichiral coordinates
must be hyperkihler, in agreement with the results of paper [IV]. As shown in
paper [II] and [IV], the generalized Kéhler potential K (XK,XE,X’ ,X") has to
satisfy a system of non-linear partial differential equations for the action to be
invariant under the N=(4,4) supersymmetry. Using T-duality, these equations
take a more transparent form, and solutions are easier obtained.

As a summary, the papers [I-V] give a conclusive understanding of the
semichiral sigma models and N = (4,4) supersymmetry. Off-shell supersym-
metry can be obtained if the sigma model is parametrized by at least two
sets of semichiral fields. For one set of left and right semichiral fields, the ad-
ditional supersymmetry transformations are necessarily non-linear and close
only on-shell, which is to be expected from T-duality.
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Svensk sammanfattning

Jag tror att det finns en inneboende nyfikenhet i ménniskan. Vi vill veta vad
som finns pa andra sidan havet, vad dska dr, om universum har ett slut. Genom
historien har minniskor vént sig till religioner och skapelseberittelser for att
forsoka forsta svarforklarliga fenomen. En annan vég, som jag foljer, dr den
vetenskapliga. Metodiskt och logiskt undersoker forskaren virlden genom ob-
servationer, experiment och teoretiska modeller. Ibland kommer observatio-
nen forst, ibland foregas den av teori. Men trots att den vetenskapliga principen
foljer vissa lagar och strukturer, sa #r forskning en vildigt kreativ process.
Utifran ett vitt ark skapas nagot nytt, resultat som tidigare varit okénda.

Under 1900-talet har var forstaelse av fysikens lagar helt revolutionerats.
Einsteins allménna relativitetsteori har gett en helt ny forstaelse av gravitation
som en krokning i rumtiden. Kvantfysiken som utvecklades ungefir samtidigt
var en nyskapande forklaring till fysik pa atomniva, och ligger till grund for
den standardmodell som beskriver partikelfysik, hur atomer &r uppbyggda och
samverkar.

Men det finns fortfarande fragor inom fysiken vi dnnu inte har svaret pa. Var-
for finns det tre generationer partiklar? Hur kan hierarkin mellan olika krafter
tolkas, eller virdet pa alla olika parametrar? Hur forklaras neutrinons massa?
Vad dr mork materia och mork energi? Hur ska universums tidiga inflation och
nuvarande homogenitet forstas? Varfor observerar vi mer materia dn antima-
teria?

Stréngteori &r ett forsok att formulera en teori som beskriver bade kvant-
fysik och gravitation. Det grundliggande antagandet i stringteori ir att de
minsta bestandsdelarna i virlden inte dr punktformiga partiklar, utan endimen-
sionella stringar. Tanken &r att olika vibrationer hos stringarna ska ge upphov
till de partiklar som vi observerar, pa samma sétt som en gitarrstring ger up-
phov till olika toner. Sedan striangteori borjade utvecklas pa 1970-talet sa har
teorin ront stor uppmérksamhet och inspirerat manga virldsledande fysiker.
Experimentella data som skulle kunna bekréfta eller dementera teorin har dock
hittills lyst med sin franvaro. Men skulle det visa sig att stringteori inte dr en
korrekt beskrivning av var fysikaliska verklighet, s& har teorin #nda lett till
manga viktiga resultat inom andra delar av fysik, samt inom matematik.
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Bakgrund

De fem artiklarna som den hir doktorsavhandlingen baserar sig pa handlar om
sdrskilda sigmamodeller med utdkad supersymmetri, och om deras korrelation
till rummet de ror sig i. Intuitivt kan man ténka sig en sigmamodell som en
string, en gummisnodd, som ror sig i nagot rum. Det har visat sig att nir
man kréver att en sigmamodell har en viss symmetri sa hander det saker med
rummet som sigmamodellen befinner sig i: det kroks, vrids eller far andra
strukturer.

Eftersom de supersymmetriska sigmamodellerna &r en viktig bestandsdel
i strangteori, sa kan man forstd den matematiska strukturen hos stringteori
genom att studera sigmamodeller med supersymmetri. Omvint sa kan nya
spiannande geometrier och topologier forstas och modelleras med hjélp av su-
persymmetriska sigmamodeller. For att forsta bakgrunden till artiklarna intro-
duceras hér i tur och ordning de tre koncepten: geometri, supersymmetri och
sigmamodeller.

Geometri

Geometri handlar om hur en yta eller en volym ser ut. En badboll dr rund, och,
dven om vi inte ser det fran jordytan, s& vet vi att var planet dr (approxima-
tivt) rund. Detta beskrivs matematiskt som att ytan har positiv krokning. En
histsadel, & andra sidan, har negativ krokning. Metriken g miter avstand och
beskriver en ytas krokning lokalt, torsionen H beskriver istéllet hur ett rum
4r vridet. Topologi handlar om en ytas globala egenskaper. Aven om en kaf-
fekopp och en munk ser olika ut sa har de bada ett hal. Om munken var gjord
av lera sa skulle man kunna omforma den till en kaffekopp utan att skapa eller
fylla igen nagra hal: de har samma topologi.

I denna avhandling studeras i huvudsak olika aspekter av komplex geometri.
En mdngfald ar ett rum (av godtycklig dimension) dér varje punkt beskrivs av
reella koordinater (x!,. .., x"), exempelvis det reella talplanet R?, som beskrivs
av tva koordinater (x,y). For att alla punkter i mangfalden ska tilldelas ko-
ordinater pa ett konsistent sitt sa krdvs att det finns deriverbara funktioner
mellan koordinatsystemen. P4 samma sitt dr en komplex mangfald ett rum dér
varje punkt beskrivs av komplexa koordinater (z',...z"), dir z = x+ iy. For att
dvergangen mellan tva koordinatsystem ska ske konsistent sa maste koordinat-
bytesfunktionerna vara holomorfa. Detta dr ekvivalent med existensen av en
komplex struktur, en integrabel struktur som kvadrerar till minus ett, J 2—_1.
Intuitivt kan man tiinka sig den komplexa strukturen som en multiplikation
med det komplexa talet i eller —i.

En Kdhlermdngfald dr ett specialfall av en komplex mangfald, dir den sa
kallade Kahlerformen w = gJ ar sluten, dw = 0. Detta innebér att metriken
lokalt kan skrivas som derivator pa en Kdhlerpotential, g, = 0, 0;K.
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En hyperkomplex méangfald har inte en, utan tre komplexa strukturer (,J, K)
som alla kvadrerar till minus ett, dr integrabla och dessutom uppfyller kvater-
nionalgebran, IJK = —1. Pa samma sitt har en mangfald som &r hyperkdiihler
tre Kéhlerformer som alla ir slutna.

Supersymmetri

De fysikaliska lagar som bygger upp den fysikaliska virldsbilden bygger i
stort pa symmetrier. En symmetri dr en transformation under vilken systemet
ir invariant. Exempelvis sa fordndras inte klotet om man roterar pa det, eller
triangeln om man vrider den en tredjedels varv. Triangeln har en global diskret
symmetri, medan klotet dr ett exempel pa ett system med en global kontin-
uerlig (rotations-)symmetri. Einsteins allménna relativitetsteori bygger istillet
pa en lokal symmetri, nimligen invarians under koordinatbyten av rumtidsko-
ordinaterna. Lokala symmetrier kallas ocksa gaugeteorier.

Naturen dr uppbyggd av tva fundamentalt skilda sorters partiklar: bosoner
och fermioner. Bosoner har ett inre spinn som alltid 4r ett heltal. De ar kraft-
partiklar, exempelvis fotoner, som utgor ljus och férmedlar den elektromag-
netiska kraften. Fermioner ddremot har ett inre spinn som alltid 4r ett halvtal.
De utgdr materia, exempelvis elektroner och kvarkar, som bildar atomer. Su-
persymmetri relaterar dessa tva sorters partiklar och stoppar ihop dem i en och
samma supermultiplet. Matematiskt dr supersymmetrialgebran en utvidgning
av Poincarésymmetri, som dr grunden for speciell relativitetsteori, med udda
supersymmetrigeneratorer . Om X betecknar ett bosoniskt félt och  ett
fermioniskt, sa kan ett superfilt definieras som en kombination av dessa tva
falt, ¢ = X + Oy, dér 6 dr en sa kallad Grassmannkoordinat.

Supersymmetriska sigmamodeller

Intuitivt kan man forestilla sig en sigmamodell som en strdng som ror sig i
nagot rum. Det &r ocksa fran denna bild som man kan hérleda deras verkan,
som beskriver deras dynamik och rorelse. Nir stringen ror sig i tiden sa skapas
en vdrldsyta, som beskrivs av en koordinat ldngs stringen och en tidskoordinat.
Verkan &r en integral, som i ett sérskilt val av koordinater pa vérldsytan tar
formen

S = / d*xd, X (g+b)o-X, 9.2)

dér aterigen g betecknar metriken och b-filtet ger upphov till torsion H = db,
och X idr en boson. Nér metriken dr en funktion av filten, g = g(X) sa kallas
sigmamodellen icke-linjdr. Mer generellt dr en sigmamodell en avbildning
fran en virldsyta (som inte behdver vara tva-dimensionell) till ett mélrum, till-
sammans med en verkan. I en supersymmetrisk sigmamodell dr det bosoniska
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filtet X utbytt mot ett superfilt som dven innehaller fermionska filt, och
verkan dr en integral dven 6ver de udda Grassmannkoordinaterna.

Transformationer som formar en utdkad supersymmetri kan konstrueras om
méalrummet dr utrustat med tva komplexa strukturer och metriken g uppfyller
vissa geometriska krav. I ett utdkat superrum &dr denna N = 2 supersymmetri
manifest och den mest generella modellen beskrivs av sérskilda koordinater
som kallas kirala ¢, tvistat kirala y respektive semikirala X*, X",

S= / xd*0d*0K (¢,3, .0, X', XX X7). 9.3)

Geometrin som beskrivs av denna modell kallas bihermitsk, eller generalis-
erad Kahler, och funktionen K kallas den generaliserade Kdhlerpotentialen.

Fragestillningar och resultat

Som har beskrivits ovan, sa finns ett intimt samband mellan supersymmetriska
sigmamodeller och geometri. Att addera supersymmetri till olika sigmamod-
eller och analysera vilka geometriska krav som blir f6ljden har varit en effektiv
metod dels for att undersoka och konstruera nya geometrier, och dels for att
forsta de matematiska strukturerna i strangteori.

Semikirala sigmamodeller och N = 4 supersymmetri

En allmén tvadimensionell sigmamodell med tva manifesta supersymmetrier
kan skrivas i termer av kirala, tvistat kirala och semikirala superfilt. Den mod-
ellen som beskrivs av kirala och tvistat kirala superfilt kan ha ytterligare su-
persymmetri om den generaliserade Kihlerpotentialen uppfyller en viss slags
partiell differentialekvation, Laplaceekvationen. Motsvarande situation for en
semikiral modell, som skrivs i termer av semikirala koordinater, var tidigare
inte kénd. I artiklarna [I], [II] och [TV] studerade vi ddrfor fragorna:

x Kan en semikiral sigmamodell ha fyra supersymmetrier, pa samma sditt som
den kirala och tvistat kirala modellen? Pdverkas situationen av mdlrum-
mets dimension? Kan filtekvationer anvdndas for att sluta supersymmetri-
algebran pa skalet? Vad blir den resulterande geometrin?

Det visade sig att en sigmamodell som beskrivs av ett vinster- och ett
hogersemikiralt filt inte kan ha ytterligare supersymmetri av skalet. Ddremot
sa kan transformationer som sluter till en pseudo-supersymmetri konstrueras
[I], vilket innebér att geometrin &r neutralt hyperkihler, med en metrik av
obestdmd signatur.

Forutsittningarna for extra supersymmetrier dndras helt om malrummets
dimension utokas. Med tva uppsittningar semikirala falt sa dr det mojligt att
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sluta den utokade supersymmetrialgebran (utan att anvinda sig av filtekva-
tionerna) [II]. Situationen dndras dven om féltekvationerna anvinds. Da kan
dven en semikiral modell med fyradimensionellt malrum ha extra supersym-
metri.

I fyra dimensioner forenklas ekvationerna och algebran sluter sig pa skalet
med endast ett ytterligare villkor. Den resulterande geometrin &r hyperkéhler,
och konkreta exempel for denna geometri kan konstrueras [IV].

Vektormultipleter

Olika sigmamodeller relaterar till varandra genom sa kallad 7-dualitet, som
genomfors med hjélp av olika vektormultipleter. 1 artikel [1II] studerades:

x Kan den semikirala och/eller den stora vektormultipleten ha extra super-
symmetrier?

Resultatet blev att den semikirala vektormultipleten kan ha extra supersym-
metri, och de explicita linjdra transformationerna kunde konstrueras. Diaremot
visade det sig att den stora vektormultipleten inte kan inkorporera extra super-
symmetri [II1]. Detta gar att forsta och star i 6verensstimmelse med resultaten
beskrivna ovan. Den semikirala vektormultipleten liknar den kirala och tvistat
kirala sigmamodellen och kan séledes ha extra supersymmetri. Den stora vek-
tormultipleten ddremot liknar den semikirala sigmamodellen. Fran resultaten
i artikel [I] och [II] vet vi, att en modell med fyra semikirala filt inte kan ha
extra supersymmetri om man inte anvinder sig av filtekvationerna.

T-dualitet och N = 4 supersymmetri

Sigmamodellen med kirala och tvistat kirala félt kan relateras till den semiki-
rala modellen som studerades i [I, I, IV] med hjélp av T-dualitet. Detta in-
spirerade till fortsatta studier for att forstd hur den semikirala sigmamodellen
forhaller sig till andra modeller. T artikel [V] undersoktes slutligen:

x Hur relaterar de extra supersymmetrierna i de semikirala och (tvistat) ki-
rala modellerna, finns det samband genom T-dualitet? Varfor krdvs féltek-
vationerna for att algebran ska slutas, och vad dr den semikirala motsvarig-
heten till Laplaceekvationen?

Resultatet var intressant och gav en djupare forstaelse for supersymmetriska
sigmamodeller och T-dualitet. Genom T-dualiteten &r det véntat att supersym-
metrialgebran i den semikirala modellen kan slutas endast med hjélp av fil-
tekvationer, med andra ord pa skalet. Laplaceekvationen motsvaras av Monge-
Ampereekvationen, vilket innebér att geometrin hos den semikirala modellen
ar hyperkihler, i 6verensstimmelse med resultaten i artikel [IV].
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