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Abstract

Shared cache contention can cause significant variabil-
ity in the performance of co-running applications from run
to run. This variability arises from different overlappings of
the applications’ phases, which can be the result of offsets
in application start times or other delays in the system. Un-
derstanding this variability is important for generating an
accurate view of the expected impact of cache contention.
However, variability effects are typically ignored due to the
high overhead of modeling or simulating the many execu-
tions needed to expose them.

This paper introduces a method for efficiently investi-
gating the performance variability due to cache contention.
Our method relies on input data captured from native execu-
tion of applications running in isolation and a fast, phase-
aware, cache sharing performance model. This allows us
to assess the performance interactions and bandwidth de-
mands of co-running applications by quickly evaluating
hundreds of overlappings.

We evaluate our method on a contemporary multicore
machine and show that performance and bandwidth de-
mands can vary significantly across runs of the same set
of co-running applications. We show that our method can
predict application slowdown with an average relative error
of 0.41% (maximum 1.8%) as well as bandwidth consump-
tion. Using our method, we can estimate an application
pair’s performance variation 213× faster, on average, than
native execution.

1. Introduction

Shared caches in contemporary multicores have re-
peatedly been shown to be critical resources for perfor-
mance [15, 23, 28, 8, 17]. A significant amount of research
has investigated the impact of cache sharing on application
performance [23, 30, 12, 11]. However, most previous re-
search provides a single value for the slowdown of an appli-
cation pair due to cache sharing and ignores the variability
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Figure 1. Performance distribution for astar
co-running together with bwaves on an In-
tel Xeon E5620 based system. Ignoring per-
formance variability can be misleading, since
the average (7.7%) hides the fact that the per-
formance can vary between 1% and 17% de-
pending on how the two applications’ phases
overlap.

that occurs across multiple runs. This variability occurs due
to different overlappings of application phases that occur
when they are offset in time. As the different phases have
varying sensitivities to contention for the shared cache, the
result is a wide range of slowdowns for the same application
pair.

In multicore systems, there can be large performance
variations due to cache contention, since an applica-
tion’s performance depends on how its memory accesses
are interleaved with other applications’ memory accesses.
For example, when running astar/lakes and bwaves from
SPEC CPU2006, we observe an average slowdown of 8%
for astar compared to running it in isolation. However, the
slowdown can vary between 1% and 17% depending on
how the two applications’ phases overlap. Figure 1 shows
astar’s slowdown distribution based on 100 runs with dif-
ferent offsets in starting times. A developer assessing the
performance of these applications could draw the wrong
conclusions from a single run, or even a few runs, since
the probability of measuring a slowdown smaller than 2%



is more than 25%, while the average slowdown is almost
8% and the maximum slowdown is 17%.

In order to accurately estimate the performance of a
mixed workload, we need to run it multiple times and es-
timate its performance distribution. This is a both time- and
resource-consuming process. The distribution in Figure 1
took almost seven hours to generate; our method reproduces
the same performance distribution in less than 40 s.

To do this, we combine the cache sharing model pro-
posed by Sandberg et al. [16], the phase detection frame-
work developed by Sembrant et al. [19], and the co-
execution phase optimizations proposed by Van Bies-
brouck et al. [25]. This allows us to efficiently predict the
performance and bandwidth requirements of mixed work-
loads. In addition, the input data to the cache model is cap-
tured using low-overhead profiling [7] of each application
running in isolation. This means that only a small number
of profiling runs need to be done on the target machine. The
modeling can then be performed quickly for a large number
of mixed workloads and runs.

The main contributions of this paper are:

• An extension to a statistical cache-sharing model [16]
to handle time-dependent execution phases.

• A fast and efficient method to predict the performance
variations due to shared cache contention on modern
hardware by combining a cache sharing model [16]
with phase optimizations [19, 25].

• A comparison with previous cache-sharing meth-
ods [16] demonstrating a 2.78× improvement in ac-
curacy (the relative error is reduced from 1.14% to
0.41%) and a 3.5× reduction in maximum error (from
6.3% to 1.8%).

• An analysis of how different types of phase behav-
ior impact the performance variations in mixed work-
loads.

2. Putting it Together

Our method combines and extends three existing pieces
of infrastructure: a cache sharing model [16], a low-
overhead cache analysis tool [7], and a phase detection
framework [19]. In this section, we describe the different
pieces and how we extend them.

2.1. Cache Sharing

We use the cache sharing model proposed by Sand-
berg et al. [16] for cache modeling. It accurately predicts
the amount of cache used, CPI, and bandwidth demand for
an application in a mixed workload of co-executing single-
threaded applications. The input to the model is a set of

independent application profiles. These profiles contain in-
formation about how the miss rate (misses per cycle) and
hit rate (hits per cycle) vary for an application as a func-
tion of cache size. We use the Cache Pirating [7] technique
(discussed below) to capture the model’s input data.

The model conceptually partitions the cache into two
parts with different reuse behavior. The model keeps fre-
quently reused data safe from replacements, while less fre-
quently reused data shares the remaining cache space pro-
portionally to its application’s miss rate. The partitioning
between frequently reused data and infrequently reused data
is an application property that is cache size dependent (i.e.,
the partitioning depends on how much cache an application
receives). The model uses an iterative solver that first solves
cache sharing for the infrequently reused data and then up-
dates partitioning between frequently reused data and infre-
quently reused data.

The model however only works on phase-less applica-
tions where the average behavior is representative of the en-
tire application. In practice, most applications have phases.
To handle this, we extend the model by slicing applications
into multiple small time windows. As long as the windows
are short enough, the model’s assumption of constant be-
havior holds within the window. We then apply the model
to a set of co-executing windows instead of data averaged
across the entire execution.

2.2. Cache Pirating

The input to the cache sharing model is an application
profile with information about cache miss rates and hit rates
as a function of cache size. Traditionally, such profiles have
been generated through simulation, but such an approach is
slow and it is difficult to build accurate simulators for mod-
ern processor pipelines and memory systems. Instead, we
use Cache Pirating [7] to collect the data. Cache Pirating
solves both problems by measuring how an application be-
haves as a function of cache size on the target machine with
very low overhead.

Cache Pirating uses hardware performance monitoring
facilities to measure target application properties at runtime,
such as cache misses, hits, and execution cycles. To mea-
sure this information for varying cache sizes, Cache Pirat-
ing co-runs a small cache intensive stress application with
the target application. The amount of cache available to the
target application is then varied by changing the cache foot-
print of the stress application. This allows Cache Pirating
to measure any performance metric exposed by the target
machine as a function of available cache size.

The cache pirate method produces average measure-
ments for an entire application run. This is illustrated in
Figure 2a. It shows CPI as a function of cache size for as-
tar. The solid black line (Average) is the output produced
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Figure 2. Performance (CPI) as a function of cache size as produced by Cache Pirating. Figure (a)
shows the time-oblivious application average as a solid line. Figure (b) shows the time-dependent
variability of the cache sensitivity and the phases identified by ScarPhase above. The behavior of
the three largest phases vary significantly from the average as can be seen by the dashed lines in
Figure (a).

with Cache Pirating.
Just examining the average behavior can however be

misleading since most applications have time-dependent be-
havior. Figure 2b instead shows astar’s CPI as a function of
both time and cache size. As seen in the figure, the applica-
tion displays three different phases of behavior: some parts
of the application execute with a very high CPI (phase A
& phase B), while other parts execute with a very low
CPI (phase C). This information is lost unless time is taken
into account.

In this paper, we extend the cache pirate method to pro-
duce time-dependent data by dividing the execution into
sample windows by sampling the performance counters at
regular intervals.

2.3. Phase Detection

A naive approach to phase-aware cache modeling would
be to model the effect of every pair of measured input sam-
ple windows. However, to make the analysis more efficient,
we incorporate application phase information. This enables
us to analyze multiple sample windows with similar behav-
ior at the same time, which reduces the number of times we
need to invoke the cache sharing model.

We use the ScarPhase [19] library to detect and clas-
sify phases. ScarPhase is an execution-history based, low-
overhead (2%), online phase-detection library. It examines
the application’s execution path to detect hardware indepen-
dent phases [21, 14]. Such phases can be readily missed by
performance counter based phase detection, while changes
in executed code reflect changes in many different met-
rics [20, 21, 5, 22, 9, 18]. To leverage this, ScarPhase mon-
itors what code is executed by dividing the application into
windows and using hardware performance counters to sam-

ple which branches execute in a window. The address of
each branch is hashed into a vector of counters called a ba-
sic block vector (BBV) [20]. Each entry in the vector shows
how many times its corresponding branches were sampled
during the window. The vectors are then used to determine
phases by clustering them together using an online cluster-
ing algorithm [6]. Windows with similar vectors are then
grouped into the same cluster and considered to belong to
the same phase.

The phases detected by ScarPhase can be seen in the top
bar in Figure 2b for astar, with the longest phases labeled.
This benchmark has three major phases; A, B and C, all
with different cache behaviors. To highlight the differences
in CPI, we have plotted the average CPI of each phase in
Figure 2a. For example, phase A runs slower than C, since
it has a higher CPI. Phase B is more sensitive to cache-size
changes than phase A since phase B’s CPI decreases with
more cache.

The same phase can occur several times during execu-
tion. For example, phase A recurs two times, once in the
beginning and once at the end of the execution. We refer
to multiple repetitions of the same phase as instances of the
same phase, e.g., A1 and A2 in Figure 2b.

In addition, Figure 2b also demonstrates the limitation
of defining phases based on changes in hardware-specific
metrics. For example, the CPI is very similar from 325 to
390 billion instructions when using 12MB of cache (the
gray rectangle), but clearly different when using less than
4MB (the black rectangle). This difference is even more
noticeable in Figure 2a when comparing phase A and B. A
phase detection method looking at only the CPI would draw
the conclusion that phase A and B are the same phase when
the application receives 12MB of cache, while in reality
they are two very different phases. It is therefore important



to find phases that are independent of the execution envi-
ronment (e.g., co-scheduling).

3. Time Dependent Cache Sharing

The key difficulty in modeling time-dependent cache
sharing is to determine which parts of the application (i.e.,
sample windows or phases) will co-execute. Since ap-
plications typically execute at different speeds depending
on phase, we can not simply use the ith sample windows
for each application since they may not overlap. For ex-
ample, consider two applications with different executions
rates (e.g., CPIs of 2 and 4), executing sample windows of
100 million instructions. The slower application with a CPI
of 4 will take twice as long to finish executing its sample
windows as the one with a CPI of 2. Furthermore, when
they share a cache they impact each others execution rates.
Instead, we advance time as follows:

1. Determine the cache sharing using the model for the
current windows and the resulting CPI for each appli-
cation due to its shared cache allocation.

2. Advance the fastest application (i.e., the one with low-
est CPI) to its next sample window. The slower appli-
cations will not have had time to completely execute
their windows. To handle this, their windows are first
split into two smaller windows so that the first window
ends at the same time the fastest applications sample
window. Finally, time is advanced to the beginning of
the latter windows.

This means that the cache model is applied several times
per sample window, since each window is usually split at
least twice. For example, when modeling the slowdown
of astar co-executing together with bwaves, we invoke the
cache sharing model roughly 13 000 times while astar only
has 4 000 sample windows by itself.

We refer to the method described so far as the window-
based method (Window) in the rest of paper. In the rest
of this section, we will introduce two more methods, the
dynamic-window-based method (Dynamic Window) and
the phase-based method (Phase), which both use phase in-
formation to improve the performance by reducing number
of times the cache sharing model needs to be applied1.

3.1. Dynamic-Windows:
Merging Sample-Windows

To improve performance we need to reduce the number
of times the cache sharing model is invoked. To do this,

1The cache sharing model is implemented in Python and takes approx-
imately 88ms per invocation on our reference system (see Section 4.1).

we merge multiple adjacent sample windows belonging to
the same phase into larger windows, a dynamic window.
For example, in astar (Figure 2), we consider all sample
windows in A1 as one unit (i.e., the average of the sam-
ple windows) instead of looking at every individual sample
window within the phase. Merging consecutive windows
within a phase assumes that the behavior is stable within a
that instance (i.e., all windows have similar behavior). This
is usually true and does not significantly affect the accuracy
of the method. However, compared to the window-based
method, it is dramatically faster. For example, modeling as-
tar running together with bwaves we reduce the number of
times the cache sharing model is used from 13 000 to 520,
which leads to 25x speedup over the window-based method.

3.2. Phase:
Reusing Cache-Sharing Results

The performance can be further improved by merging
the data for all instances of a phase. For example, when
considering astar (Figure 2), we consider all phase instances
of A (i.e., A1 + A2) as one unit. This makes the assumption
that all instances of the same phase have similar behavior
in an execution. This is not necessarily true for all appli-
cations (e.g., same function but different input data), but
works well in practice.

Looking at whole phases does not change the number of
times we need to determine an applications cache sharing.
It does however enables us to reuse cache sharing results for
co-executing phases that reappear later [25]. For example,
when astar’s phase A1 co-executes with bwave’s phase B,
we can save the cache sharing result, and later reuse the
result if the second instance (A2) co-executes with bwaves
B.

In the example with astar and bwaves, we can reuse the
results from previous cache sharing solutions 380 times.
We therefore only need to run the cache sharing model
140 times. The performance of the phase-based method is
highly dependent on an application’s phase behavior, but it
normally leads to a speed-up of 2–10x over the dynamic-
window method.

The main benefit of the phase-based method is when de-
termining performance variability of a mix. In this case, the
same mix is run several times with slightly different offsets
in starting times. The same co-executing phases will usu-
ally reappear in different runs. For example, when modeling
100 different runs of astar and bwaves, we need to evaluate
1 400 000 co-executing windows, but with the phase-based
method we only need to run the model 939 times.

In addition to reducing the number of model invocations,
using phases reduces the amount of data needed to run the
model. Instead of storing a profile per sample window, all
sample windows in one phase can be merged. This typically
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Figure 3. Bandwidth usage across the whole execution of our six benchmark applications, including
the four interference applications. Detected phases are shown above. The Single-Phase, Dual-
Phase, Few-Phase, and Multi-Phase behavior is clearly visible for the interference applications.

leads to a 100–1000x size reduction in input data. For ex-
ample, bwaves, which is a long running benchmark with a
large profile, reduces its profile size from 57MB to 82 kB.

4. Evaluation

To evaluate our method we compare the overhead and the
accuracy against results measured on real hardware. We ran
each target application together with an interference appli-
cation and measured the behavior of the target application.
In order to measure the performance variability, we started
the applications with an offset by first starting the interfer-
ence application and then waiting for it to execute a prede-
fined number of instructions before starting the target. We
then restarted the interference application if it terminated
before the target.

In order to get an accurate representation of the perfor-
mance, we ran each experiment (target-interference pair)
100 times with random start offsets for the target. We used
the same starting time offsets for both the hardware refer-
ence runs and for the modeled runs.

4.1. Experimental Setup

We ran the experiments on a 2.4GHz Intel Xeon E5620
system (Westmere) with 4 cores and 3× 2GB memory dis-
tributed across 3 DDR3 channels. Each core has a private
32 kB L1 data cache and a private 256 kB L2 cache. All

four cores share a 12MB 16-way L3 cache with a pseudo-
LRU replacement policy.

The cache sharing model requires information about ap-
plication fetch rate, access rate and hit rate as a function
of cache size and time. We measured cache-size dependent
data using cache pirating in 16 steps of 768 kB (the equiv-
alent of one way) up to 12MB, and used a sample window
size of 100 million instructions.

4.2. Benchmark Selection

In order to see how time-dependent phase behavior af-
fects cache sharing and performance, we selected bench-
marks from SPEC CPU2006 with interesting phase be-
havior. In addition to interesting phase behavior, we also
wanted to select applications that make significant use of
the shared L3 cache. For our evaluation, we selected four
interference benchmarks that represent four different phase
behaviors: Single-Phase (omnetpp), Dual-Phase (bwaves),
Few-Phase (astar/lakes) and Multi-Phase (mcf).

Figure 3 shows the interference applications’ bandwidth
usage (high bandwidth indicates significant use of the
shared L3 cache), and the detected phases. In addition to
the interference benchmarks, we selected two more bench-
marks, gcc/166 and bzip2/chicken, that we only use as tar-
gets. These benchmarks have a lower average bandwidth
usage than the interference benchmarks, but they are still
sensitive to cache contention. For the evaluation, we ran all
combinations of the six applications as targets vs. each of
the four interference applications.



REF Single-Phase (omnetpp) Dual-Phase (bwaves) Few-Phase (astar) Multi-Phase (mcf)
Time # Model Invocations Speedup # Model Invocations Speedup # Model Invocations Speedup # Model Invocations Speedup
ISO W D P P W D P P W D P P W D P P

astar 5.9h 723k 302 84.0 2.1k× 1.4M 123k 938 88.7× 797k 1.8k 460 506× 575k 6.9k 465 435×
bwaves 24.3h 4.9M 62.0k 174 113× 7.3M 2.4M 2.0k 54.9× 5.2M 249k 1.0k 105× 4.3M 973k 1.1k 98.5×

bzip2 1.3h 242k 3.7k 63.0 103× 383k 475k 711 31.6× 272k 17.0k 373 59.7× 213k 64.0k 414 58.3×
gcc 0.8h 119k 870 140 133× 209k 203k 1.5k 18.9× 139k 4.5k 759 38.4× 101k 16.0k 786 36.6×
mcf 12.3h 1.0M 1.2k 97.0 1.9k× 2.3M 578k 1.1k 86.0× 1.2M 8.6k 518 798× 702k 30.9k 589 594×

omnetpp 10.3h 1.1M 33.0 14.0 18.6k× 2.2M 52.8k 172 110× 1.2M 358 85.0 2.5k× 856k 1.4k 99.0 1.8k×
average 9.2h 1.3M 11.4k 95.3 695× 2.3M 634k 1.1k 54.9× 1.5M 46.9k 540 250× 1.1M 182k 582 215×

global average 1.6M 219K 572 213×

Table 1. Performance statistics for 100 runs with different starting time offsets. The number of model
invocations for the three methods (W:Window, D:Dynamic-Window, and P:Phase) is shown along
with the speedup for running the phase-based model vs. reference executions on the hardware. We
discuss the highlighted results in the text. The model-based approach is on average 213× faster
than hardware execution.

4.3. Performance: Speedup

Table 1 presents the performance of the three methods,
Windows (W), Dynamic-Windows (D) and Phase (P) per
interference application. The Model Invocations columns
shows the number of times the cache sharing model was in-
voked. For example, when astar co-executes with bwaves
(see the highlighted area), the cache model is invoked
1 400 000, 123 000, and 938 times for the window, the
dynamic-window and the phase-based method respectively.

The reference column (REF) shows the execution time
to run each target in isolation 100 times. For example,
on our system, it takes 5.9 hours to run astar 100 times.
The speedup column shows the speedup to model 100 co-
executed runs with the phase-based method compared to
running the target 100 times2. For example, it is 88.7×
faster to model 100 co-executions of astar with bwaves than
to run astar 100 times in isolation.

Single-Phase. As expected, the speedup is greatest for
omnetpp since it consists of just one phase. The dynamic-
window method can therefore use a single large window
for the whole execution. The phase-based method can then
easily reuse cache sharing results whenever the target ex-
ecutes more instances of a phase. The geometric mean of
the speedup is 695×, the highest of the four interference
benchmarks.

Dual-Phase. In a similar sense, we should expect a high
speedup for bwaves as well. However, bwaves executes
much longer than the other interference benchmarks. So,
even though the phase-based method reduces the number of
times the cache sharing model is used, it has a high over-
head from reading through all application profile data. On
average the speedup is only 54.9×.

Few-Phase and Multi-Phase. The three methods have
roughly the same performance for astar and mcf, and fall in

2The speedup excludes the time to collect the applications profiles with
Cache Pirating. That data is collected only once, and is then used in all the
application mixes, and hence not included.

between Single-Phase and Dual-Phase in performance. On
average the speedup is 250× and 215× for astar and mcf
respectively.

It is clear from the table that the phase-based method
provides the best performance for all benchmarks, with an
average speedup of 213× for all interference benchmarks3.
Next, we will evaluate the accuracy of three methods to de-
termine if there are any trade-offs associated with the phase-
based method.

4.4. Accuracy: Average Slowdown Error

Figure 4 presents the relative error when predicting the
average slowdown for the three methods. On average, the
windows-based method has an error of 0.39% and a max-
imum error of 2.2% (bzip2 + omnetpp), while the phase-
based method has an average error of 0.41% and a maxi-
mum of 1.8% (omnetpp + bwaves). We can therefore safely
use the much faster phase-based method without sacrificing
accuracy. In the rest of this paper, we will therefore only
look at the phase-based method.

In addition to the three methods, the figure also includes
the error of using the previous phase-oblivious cache shar-
ing model [16] that does not take time-varying phase be-
havior into consideration. The phase oblivious method has
a reasonably good accuracy for omnetpp since it only has
one phase. However, the error is noticeably larger for ap-
plications with more phase behavior. For example, 6.3%
when astar co-executes with bwaves. This indicates that
even when considering average slowdowns (i.e., ignoring
variability), it is still important to consider the time-varying
behavior and how the two applications’ phases overlap.

On average, our phase-based method is 2.78× more ac-
curate than previous work, with an average error of 0.41%

3Note that the speedup numbers are based on our Python implemen-
tation. A C/C++ implementation would most likely result in greater
speedups.
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Figure 4. Relative error in predicted slowdown for the three methods and the previous phase-
oblivious cache sharing model [16]. This shows that the phase-based method (the fastest) can
be used without lowering the accuracy. In addition, ignoring applications phase behavior will result
in noticeable larger prediction errors (e.g., a 6.3% error for the phase-oblivous method when astar
co-executes with bwaves).

instead of 1.14% and a 3.5× lower maximum error of 1.8%
instead of 6.3% (astar + bwaves).

4.5. Performance Variability

The average slowdown is a good metric for evaluating
the overall accuracy of the different methods. However, it
does not take performance variation into consideration. We
therefore use another more descriptive metric, the cumula-
tive slowdown distributions (CDF), to display the perfor-
mance variations. Figure 5 presents the CDF for the phase-
based method along with results from the reference hard-
ware runs. The graphs with white backgrounds highlight the
benchmark pairs with interesting performance variations.

The cumulative slowdown distributions can be inter-
preted as showing the probability for a certain maximum
slowdown. For example, in Figure 5b, when astar is co-
running together with bwaves, it has a 50% probability of
having a slowdown less than 6.5%. At the same time, there
is a 25% probability that the slowdown is larger than 15%.

Single-Phase. The CDF curves are mostly flat when om-
netpp is used as a interference application. For example,
Figure 5e, where bwaves is co-running with omnetpp, the
curve is basically flat at 1% slowdown. This means that
there are no performance variations for bwaves co-running
with omnetpp, which is to be expected since omnetpp does
not have any time-varying behavior.

Dual-Phase. In contrast to omnetpp, bwaves has two
phases with very different behavior. The higher bandwidth
usage in the second phase indicate that it uses a larger part
of the L3 cache, and will thus impose a larger slowdown

on the target application. The effect on the target appli-
cations will therefore depend on the starting offset. Since
the two phases have roughly the same length, we expect
the target’s behavior to depend on how it is aligned with
the phase change. For example, short targets (e.g., bzip2
in Figure 5j and gcc in Figure 5n), have a sharp turn in the
CDF because their execution is not likely to overlap with the
phase change. Longer targets (e.g., mcf in Figure 5r), have
smoother distribution since they are more likely to overlap
with the phase change, causing the part of the application
running before the phase change to have a small slowdown,
while the parts after the phase-change have a larger slow-
down. Since the position of the phase change relative to
the target application will change, the CDFs will tend to be-
come smooth.

Few-Phase. There are both flat and curved CDFs for
astar as interference application. This is due to differ-
ences in the execution lengths (see Figure 3). The CDF in
Figure 5g (bwaves) is flat because astar is much shorter than
bwaves. Whenever the interference application terminates,
it is restarted. This means that astar will be restarted over
and over until bwaves terminates. The phase behavior will
therefore appear homogeneous from a distance, and it re-
sults in a flat CDF. However, shorter targets (e.g., gcc in
Figure 5o) will overlap with different phases in astar. We
therefore see different target performance between runs and
we find a curved CDF.

Multi-Phase. The CDFs for mcf are similar in shape to
astar’s for mostly the same reasons. However, mcf has a
slightly different phase behavior. The same set of phases
reappear several times in mcf (see Figure 3e). Since astar
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Figure 5. Cumulative distributions of target-slowdowns for 100 runs of each pair of applications
with random start time offsets. The 100 application runs were sorted by slowdown, with the largest
slowdown on the right. A flat line indicates no performance variation between the slowest and fastest
run, and hence no variation. A steep curve indicates significant performance variation across the
100 runs. In general, the performance will vary depending on how the phases overlap.



takes about half the time to execute, its execution will over-
lap with several of mcf’s phases. Changing offsets in start-
ing time will therfore not change astars performance, since
astar will just co-execute with the same set of phases but
with different instances of the same phases. We therefore
see a flatter curve for astar co-running with mcf (Figure 5d)
than with astar (Figure 5c).

4.6. Error: Performance Variability

The CDFs produced with the phase-based method have
an overall good accuracy, but do not always overlap com-
pletely with the reference curves. There are two main
sources of error: cache pirating data and bandwidth limita-
tions. We will discuss these two problems in the following
sections.

4.6.1. Pirate Data

To measure cache-size dependent data, cache pirating
co-executes a cache intensive stress application that tries to
steal parts of the cache. This approach has two limitations:
First, if the target is also cache intensive, the pirate will have
trouble keeping its working set in the cache. Second, when
stealing a large portion of the cache, the pirate will have
trouble reusing all of its the data before it is evicted.

Figure 5k shows the CDF for bzip2 when co-executing
with astar. The problem here is that bzip2 is cache intensive
and only uses a small part of the L3 cache compared to the
others (see Figure 3c). This makes it hard for Cache Pirat-
ing to steal the required cache space. As a consequence, we
incorrectly estimated some cache-size dependent effects,
which leads to our overestimating the slowdown in the CDF.

One solution would be to instead use more cumbersome
and expensive methods to acquire the data. For example,
page coloring [10] could be used to limit the amount of
cache the target application is allocated.

4.6.2. Bandwidth

The cache sharing model assumes that the system has
infinite bandwidth. This is obviously not the case, and as
a result the model will underestimate the slowdown when-
ever the targets need more bandwidth than the system can
provide. Figure 5 shows that we tend to underestimate the
slowdown of bwaves. The second phase in bwaves (see
Figure 3b) consumes more bandwidth than the other appli-
cations. If this is a problem, we should expect that we will
find the largest errors when modeling bwaves, which is in-
deed the case.

One feature of the cache sharing model is that it can
predict the bandwidth an application mix requires to avoid
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Figure 6. Predicted cumulative bandwidth de-
mand (Estimated) and measured cumulative
bandwidth usage (Measured) for the fastest
and the slowest run when co-executing with
bwaves.

being bandwidth limited. Figure 6 shows the estimated
cumulative bandwidth demand4 and the measured cumu-
lative bandwidth the application mix received during the
fastest (i.e., run 1 in Figure 5) and the slowest (i.e., run 100
in Figure 5) runs. We interpret the figures as follows: x
percent of the execution has a bandwidth demand of more
than yGB/s. For example, during the slowest run with
mcf (Figure 6r), 50% of mcf’s execution needs more than
7.5GB/s to avoid slowing down due to bandwidth limita-
tions.

The bandwidth demand is lowest for the fastest run since
the target applications is co-running with the first phase in
bwaves. Here, the estimated bandwidth demand and the
measured bandwidth usage closely match each other. This
means that the system can provide the required bandwidth.
But also, since we accurately estimate the slowdown, this
also implies that the method can accurately estimate the
bandwidth demand.

The slowest runs occur when the targets are co-running
4The model produces bandwidth estimates using the input profile to

estimate the application’s bandwidth consumption for a given cache allo-
cation.
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Figure 7. Cumulative slowdown distributions
for 100 runs (as in Figure 5) with the band-
width corrected model. This shows that
the accuracy can be improved by combin-
ing a bandwidth model with our cache shar-
ing model to handle both cache sharing and
bandwidth.

with the second phase in bwaves. Here the bandwidth de-
mand is much higher, and sometimes the estimated band-
width demand is higher than the measured bandwidth re-
ceived. This means that the target is slowing down due to
bandwidth limitations. To see if we can correct the slow-
down estimations by taking this into consideration, we use
the measured bandwidth the application mix receives from
the reference hardware runs. To do this, we update the esti-
mated number of executed cycles (cest) with the following
formula:

cnew_est = cest +
(BWest −BWm) ∗ cest

BWMAX

where cnew_est is the new estimate, cest is the old esti-
mate, BWest is the estimated bandwidth demand, BWm is
the measured bandwidth received and finally, BWMAX is
the maximum bandwidth our system can provide5. In other

5We estimated the real-world bandwidth limit of our reference system
to approximately 12GB/s using the STREAM benchmark [13].

words, we extend the modeled execution time by the num-
ber of additional cycles incurred by bandwidth limitations.

Figure 7 shows the result of estimating the slowdown
with the bandwidth corrected model. This correction re-
duces the slowdown error for bwaves, mcf, and omnetpp.
However, we still underestimate the slowdown slightly for
gcc, and now overestimate the slowdown for astar.

Unfortunately, such a bandwidth correction will not
work in practice since it uses oracle information (i.e.,
BWm), but it illustrates that a better slowdown estimate can
be obtained by combining the cache sharing model with a
bandwidth model to model both cache sharing and band-
width limitations. This is a promising direction for future
work.

5. Case Study – Modeling Multi-Cores

In the previous section we investigated performance vari-
ations of application pairs. However, modern processors
have more than two cores. In this section, we perform a
small case study to demonstrate that our method can be
used to model larger application mixes, and to model sys-
tem throughput.

Since all of the techniques we integrate in this method
scale beyond two cores, we demonstrate that our method
can scale as well by estimating the system throughput when
co-running a mix of four applications on our four core ref-
erence system. To do this we compare the estimated be-
havior (IPC and bandwidth) to that of the actual behavior
for a max of four applications. Figure 8 shows the IPC and
system throughput over time for the first ten seconds when
co-running gcc, bzip2, astar and bwaves. The figure shows
that the estimated IPCs matches the reference well.

The two main sources of error, pirate data and band-
width, will become more problematic when modeling larger
application mixes. The amount of cache available to each
application is reduced when adding more programs to the
mix, which puts more pressure on the cache pirate to col-
lect data for smaller cache allocations.

The bandwidth limitation will also become more notice-
able for two reasons: First, more applications will con-
tend for bandwidth, and thus lower the amount available to
each application. Second, when an application receives less
cache space, its bandwidth usage increases since it misses
more in L3 and that data needs to be fetch from memory
again.

6. Related Work

Techniques to explore and understand multicore perfor-
mance can generally be divided into three different cate-
gories; full system simulation, partial simulation/modeling,
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sured IPC (Reference) for four co-running ap-
plications over time on a four-core system,
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and higher level modeling. The most expensive but also the
most detail approach is full system simulation [25, 1, 24]
where all cores and the entire memory system are simu-
lated. A faster, but less detailed, approach is to only simu-
late/model parts of the system, and in particular the memory
system. Such methods are either trace driven [2, 4, 3, 27]
or use high-level data [29, 16] similar to the data we
use. Finally, the least detailed approach simply aims to
identify which applications are sensitive to resource con-
tention [28, 17, 11].

Simulation normally requires combinations of applica-
tions to be simulated together, which leads to poor scal-
ing. Van Craeynest and Eeckhout [26] combine simula-
tion and memory system modeling to reduce the cost of
simulating co-scheduled applications. Instead of simulating
how applications contend for shared resources, they sim-
ulate applications running in isolation and use the output

from the simulator to drive a cache sharing model. A ma-
jor difference between our methods is that they depend on
a single high-fidelity simulation to generate the application
profiles used by their model, whereas we measure our in-
put data with a relatively low overhead on the target sys-
tem. Also, accurately simulating commodity hardware is
often hard, or even impossible, since manufacturers seldom
release enough information to implement a cycle-accurate
simulator. Additionally, their evaluation focuses on the per-
formance variations of the underlying hardware due to dif-
ferent application mixes, whereas we focus on the perfor-
mance variations of the individual applications.

The method most similar to ours is the phase guided sim-
ulation methods by Van Biesbrouck et al. [25, 24]. Similar
to our phase-based method, they use phase information to
reuse simulation results. However, since their method relies
on simulation they need to find and simulate representative
regions (i.e., sample windows) of co-running phases. We do
not have this problem since we can use the average behavior
for the entire phase in our profiles.

7. Conclusions

In this paper, we have presented an analytical method
that predicts performance variability due to the cache shar-
ing effects imposed by other co-running applications. The
per-application profile data the method requires can be cap-
tured cheaply and accurately during native execution on real
hardware for each application in isolation. Three alternative
cache-sharing methods with different performance proper-
ties were compared. We showed that the fastest method
provides excellent accuracy. We have analyzed the perfor-
mance variations caused by bandwidth sharing and showed
that even a simple bandwidth sharing model could explain
most of the deviations observed when the bandwidth con-
tention is high. In future work, we plan on extending our an-
alytical method to include such bandwidth-sharing effects.

Due to its speed, simple input data, and accuracy, this
method can be used to build efficient tools for software de-
velopers or system designers, and is fast enough to be lever-
aged in scheduling and operating system designs.
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