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1. Introduction and motivation

One of my friends, an experimental biologist, once time commented on my
work of theoretical modeling, "if a protein structure can be predicted solely
from its chemical sequence on computer, I am going to lose my job." Truly I
agreed with her real meaning that the most reliable way to determine a protein
structure is by direct experimentation. However, compared with the sequence
measurement it is much more difficult to experimentally determine a protein
structure, let alone the observation of protein motion on tiny time-scale.

Theoretical methods can help to match such a gap, giving us the insight on
the thorough behaviour of protein systems that are usually impossible even by
the fine-tuned experimental instruments. On the other hand, it is a necessity
and challenge to make sense of the experiment data, for purpose of finding the
most general law behind the complexity of molecular biology, and for the pur-
pose of aiding new drug design. This thesis is to cast some novel viewpoints
on some of this complexity, by integrating methods from both differential ge-
ometry and integrable systems into the modeling of protein structures.

The start point of our methodology is to simplify the protein backbone chain
as a space curve in three dimensions. In terms of space curves one can model
many problems in physics, such as a polymer chain [28, 13, 14, 15, 16], a
vortex filament in a fluid [30, 25, 46], and in a superfluid [52] and many other
applications. Some abstract objects can also described by space curves. In-
teresting cases include a spin vector in the magnetic spin chain model being
taken as the tangent vector to some space curve [17], and even the n−body
problem being approximated by smooth closed space curves [4].

It deserves attention to study the possible connections between the moving
space curves and integrable evolution equations [21]. An integrable system
has several excellent features that allows one to make global analysis about
it. For example, a system governed by integrable evolution equation has an
infinite number of integrals of motion. Mathematical structure of an integrable
system is also associated with a Lax pair and interesting solutions such as
solitons [17] . We found that these solitons solution describes the buckling of
the curve and is then applicable to model the helix-loop-helix motif in protein
structure [6, 31].

In this thesis, we shall first give an introduction of protein structure and dif-
ferential geometry of curves. Then we make the geometric analysis of protein
backbones and find a relation connecting both NCαC backbone and Cα -only
backbone. Analogue with Ramachandran plot, the distribution of virtual bond
angle and torsion of Cα -only backbone has clearly defined the regular features
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of protein secondary structures such as α helix and β -sheet. Since the curve
to describe protein structure is polygonal style and thus lots of our efforts have
been focused on the nontrivial discretization that preserve the integrable struc-
ture of the moving curves. The guide principle lies on the observation that the
conserved quantities must be invariant under local frame rotations. This ge-
ometric principle not only helps us systematically derive Hamiltonian energy
functions of curves but also inspires us an efficient algorithm for loop closure
in protein structure modeling.
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2. Protein structure and modeling

Proteins are involved in almost all cellular functions, from specific binding
of other molecules, to enzymes catalysis of chemical reactions, to molecular
switches for controlling cellular processes, to structural support elements of
living systems [12]. To perform a given function most proteins need to fold
into the a unique three-dimensional structure known as the native state. In-
correct folding can have disastrous consequences such as resulting prions or
Alzheimer’s disease. Consequently, the structure determination plays the cen-
tral role in protein research and has many biological/medical applications.

Proteins can be generally divided into three classes: globular proteins, mem-
brane proteins and fibrous proteins. From herein we concentrate on globular
proteins, the most frequent class.

Since solution of protein folding problem has been pursued over several
decades, there have exit many insightful concepts and observations in this
area and new progress is on-going. In this chapter, we only give a very short
introduction of protein structure and modeling. We here won’t touch on inter-
esting aspects of many closely related topics, e.g. the landscape and funnel,
φ -values analysis, CASP(Critical Assessment of Techniques for Protein Struc-
ture Prediction). These topics and others can be found, for example, among
two representative reviews by Ken A. Dill et al [10, 11]. Introduction of pro-
tein structures can be found in the book given by Petsko and Ringe [38].

2.1 Protein structure
Once synthesized, a protein chain is much loosy and irregular. But it quickly
folds to a structure of a well-organized hierarchy, which arranges from primary
level to secondary level, and to tertiary level, as illustrated in Fig. 2.1.

Proteins are linear heteropolymers, composed of a set of twenty amino acids
(also called residues). Each of these twenty amino acid is denoted by a Roman
letter. The composition of the amino acid letter forms a a sequence called the
primary structure of the protein. By structure, all of the twenty amino acids
share a common backbone, which consists of the amino group (NH2), the al-
pha carbon Cα and the caboxylic acid group (COOH). Amino acids differ by
the side chains attaching to Cα and thus have different chemical properties.
By losing a water molecule, two neighboring amino acids are covalently con-
nected together through peptide bonds (C(O)NH). Continuing this way, a long
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Figure 2.1. Protein structure hierarchy (PDB 1ay7 chain B). On the top is shown the
primary structure which is the amino acid sequence. On the middle are shown two
typical regular secondary structure elements, i.e. β -sheet (left) and α-helix (right).
It is worthy to notice the hydrogen bonding pattern in both. On the bottom is the
tertiary structure, which is the compact packing of the secondary structure elements
with the help of irregular loops. Highlight are the β -sheet (in blue) and α-helix (in
red), respectively.
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polypeptide chain is synthesized, as exhibited in the early stage of protein for-
mation in cell.

Frequently, local segment of around 3−30 amino acids form regular struc-
tures, either α-helices or β -sheets. It deserves notice of the regular pattern of
hydrogen bonds in both α-helix and β -sheet (middle plot on Fig. 2.1). In an
α-helix, the C=O group of the nth residue accepts a hydrogen bond from the
N-H group of the n+ 4th residue. In β -sheets, two or more strands that may
be distant along the protein sequence are dragged closely by hydrogen bonds
between them. Other regular secondary elements such as left-handed helices
(L-helices) are also observed, but not so often.

In a folded protein, the α-helices and β -sheets organize into a compact ob-
ject, called the tertiary structure of the protein. An amino acid sequence in
nature adopts a unique tertiary structure, ensuring the stability of its function.
While two similar sequence can share the structural resemblance, it also fre-
quently happens that many proteins have similar structures but low sequence
similarity.

In many cases, proteins don’t function by themselves. Rather they prefer
to forming a complex with other proteins. These corporative complexes may
preserve their complementarity under evolutionary pressure.

2.2 Protein structure modeling
It has been several decades for people to look for ways of simulating the pro-
tein folding on a computer and predicting the structure of a protein from its
amino acid sequence. In the 1950’s Anfinsen and coworkers proposed that
many proteins have a unique three-dimensional structure, corresponding to a
minimum of free energy [2]. How to calculate protein free energy and how to
efficiently find the global minimum of this energy are then the two main tasks
in protein structure prediction and modeling.

An energy function differs according to the framework within which the
folding forces are tackled. Quantum mechanics has the advantage of accurate
description but are computationally very intensive, even for simulations of
even very small peptides. As a tradeoff, the study of protein is usually done
within the semi-empirical classical mechanical methods. They are empirical
in the sense that a good design and clever guess is often necessary. One main
goal of my thesis project is to model a more realistic energy function from
differential geometry and integrable theory.

It is convenient for the classical energy functional to associate with the tra-
ditional minimization methods, such as force-field molecular dynamics (MD)
and Monte Carlo (MC) simulations. The MD simulation method is based on
Newton’s second law,

Fi = mi
d2ri

dt2 , Fi =−
∂

∂ri
E ({ri}) , (2.1)

13



where Fi is the force exerted on the atom i, mi its mass, ri the atom coordinate,
and E ({ri}) the free energy of the protein. Integration of the equation of
motion for each atom in the system then results in a trajectory that describes
the dynamics of a protein. From this trajectory, we can then get the average
values of properties of interest, based on the ergodic hypothesis, which states
that the time average equals the ensemble average. MD simulations can be
time consuming and computationally expensive. However, with the advance
in the speed of computers, and new advanced methods, it is now possible to
determine the structure of the native state directly from the sequence of small
proteins [11].

Rather than modeling the dynamics of a system, the goal of an MC simu-
lation is to capture statistical (thermodynamical) properties of a system by a
stochastic search. While the types of moves in an MD simulation are strictly
dictated by Newton’s laws of physics, there is no such restriction on the moves
in an MC simulation. The only requirement is that the simulation is not biased,
which can be ensured by enforcing detailed balance and ergodicity. As a re-
sult, MC simulation potentially enhances the scope of simulations in terms of
size and timescale, and is therefore widely applied for ab initio protein struc-
ture prediction. The popular implementation is done with the framework of
Markov Chain MC, in which the equilibrium generates the Boltzman distribu-
tion of the protein system.

2.2.1 Representation
In the protein modeling, the choice of representation matters a lot since it af-
fects both the design of energy function and the searching strategy. Because
of the large degrees of freedom in protein system, the theoretical investigation
becomes extremely difficult for the full atom representation. Therefore, re-
duced model or coarse-grained representation is preferred, with the trade-off
between computational cost and accuracy.

Traditionally, MD studies of protein take all atoms into account explicitly.
For MC studies and MD simulations in recent time the coarse-graining tech-
niques are widely used. It have been shown that it is allowed to recover the
fine-grained representation from coarse-grained representation in protein sys-
tems without significant loss of information [23, 7].

Among the simplified representations a common choice is to only take the
heavy atoms of the protein backbone (N, Cα , C) (sometimes to also include the
side chain as a pseudo atom). In convention, the dihedral angles between the
plane defined by C-N-Cα and the plane defined by N-Cα -C is called Ψ. And
the dihedral angle between the plane defined by N-Cα -C and the plane defined
by Cα -C-N is called Φ. In the now being considered backbone representation,
only these two angle Ψ,Φ (called Ramachandran angles) are assumed to be the
dynamical variables, while others, including the backbone lengths, covalent
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Figure 2.2. Two representations of protein structure. For the N-Cα -C backbone repre-
sentation (in red), covalent bond angles and lengths are largely invariant while varying
Ramachandran angles (Ψ,Φ) give the protein different configurations. Shown in grey
is the peptide plane (including O, H atoms) which is determined by the ideal torsion
angle ω = π . For the coarse-grained representation of Cα -backbone (in gold), the
bond length of Cα -Cα is fixed while bond angle θ and torsion angle γ are dynamical
variables.

bond-angles and the ω torsion angle are taken as fixed parameters, since they
display only insignificant fluctuations from their average values. Yet we found
that this small fluctuations matter the modeling of the long chain structure
of proteins. For example, replacing the bond angles or the ω torsion angle by
their own average values, commonly yields protein structures that are different
from the native structures. In Paper IV, we address this problem in details.

Another coarse-grained representation is the Cα -backbone where each residue
is represented by its Cα atom only. Now bond angle θ (defined over three
consecutive Cα atoms) and torsion angle γ (defined over four consecutive Cα

atoms) are the dynamical variables while bond length between two neigh-
boring Cα atoms is fixed (3.806Å). Though more coarse-grained, the Cα -
backbone with uniform bond length surprisingly reproduce the protein struc-
ture, regardless of the beneath fluctuation of covalent bond-angles and the ω

torsion angle that make trouble in the NCαC backbone representation.
We will discuss more about these backbone representations mathematically

in next chapter.
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3. Differential geometry of curves

This chapter reviews some basic definitions and results concerning the dif-
ferential geometry of curves, both continuous ones and discrete ones. These
results will be immediately applicable to the analysis of protein structures,
whose backbones are represented by curves. Yet the application of differential
geometry of curves is very general and much beyond the scope of this thesis.

3.1 Frenet frame and equations
There is an intuitive way of thinking the differential geometry of curves: we
can take a curve as the trajectory of a moving particle. This dynamic perspec-
tive suggests a local frame at each point on the trajectory. Neighboring frames
are not necessarily the same and thus the connection between them will of the
key interest for the learning of the trajectory shape.

Among many possibilities of defining the local frame, Frenet frame is a
natural choice. Consider a space curve r(s) parameterized by its arc length s,
such that

|∂sr(s)|2 = 1. (3.1)

The arc length s denotes a kind of time the moving particle has moved. Define
the tangent vector t = ∂r/∂ s ≡ r′(s), the normal vector n(s) = t′(s)/|t′(s)|
and the binormal vector b(s) = t(s)×n(s) (Fig. 3.1). These three unit vectors

Figure 3.1. Frenet frame along a continuous curve. Adapted from Paper I.

16



form an orthogonal frame, called Frenet frame, at any point on the curve and
satisfy the Frenet equations [19, 48]

d
ds

 t
n
b

=

 0 κ 0
−κ 0 τ

0 −τ 0

 t
n
b

≡Q(s)

 t
n
b

 , (3.2)

where κ is called the curvature and τ the torsion. The curvature κ describes
how different the curve is from a linear line and the torsion τ denotes the
deviation of the curve from planarity. The shape of the curve is uniquely
decided by both functions κ(s) and τ(s), up to a global translation and/or
rotation.

This differential system in Eq. (3.2) has the ordered exponential solution,
with the form t(s)

n(s)
b(s)

 = U(s)

 t(0)
n(0)
b(0)

 , (3.3)

U(s) ≡ P

(
exp
{∫ s

0
Q
(
s′
)

ds′
})

= 1+
∫ s

0
ds′Q

(
s′
)
+
∫ s

0
ds′
∫ s′

0
ds′′Q

(
s′
)

Q
(
s′′
)
+ · · ·(3.4)

It is important to notice that U(s) is an orthogonal transformation matrix,
i.e. UT = U−1, which follows the exponentiation construction and the skew-
symmetric Frenet matrix of Q(s), i.e. QT = −Q. The orthogonality ensures
that the Frenet basis are always orthogonal and normalized, i.e.

|t(s)|2 + |n(s)|2 + |b(s)|2 = |t(0)|2 + |n(0)|2 + |b(0)|2 . (3.5)

The Taylor expansion of U(s) comes a closed form when κ (s) and τ (s) are
constant or piecewise constant. The former case corresponds to a helix while
the latter corresponds to a so-called polyhelix. Supposed κ (s) and τ (s) are
constant within ∆s, we then have

U = eQδ

= exp

 0 κδ 0
−κδ 0 τδ

0 −τδ 0

=

 a b c
−b d e
c −e f

 , (3.6)

a =
τ2 +κ2 cos(qδ )

q2 ,b =
κ

q
sin(qδ ) ,c = (1− cos(qδ ))

κτ

q2 ,

d = cos(qδ ) ,e =
τ

q
sin(qδ ) , f =

κ2 + τ2 cos(qδ )

q2 ,q = κ
2 + τ

2.
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Figure 3.2. Left: the polyhelix model of protein structure ([22]). Cα atoms are con-
nected by helicies. The curvature and torsion functions are piece-wise constant. Right:
the polygon model of protein structure. Cα atoms are connected by straight lines. The
curvature and torsion (not shown here) profiles are a series of impulse functions lo-
cated at Cα atoms.

3.2 Discretize the curve
There are lots of different schemes to discretize the curve, for different pur-
poses. For example, computer scientists utilize the discrete curve for real time
applications. What they focus on is the simulation speed and physical cor-
rectness rather than the curve structure itself [51]. Here we review several
approaches of curve model of protein chains.

The first one is the polyhelix model of protein structure, taking the expres-
sion (3.7) on its basis [22]. In this representation, Cα atoms are connected by a
serie of connected helices, whose curvatures, torsions and arc length are non-
linearly fitted. The values of curvature and torsion can be used to characterize
the structure preferences.

There is, however, an simpler choice of representation, the impulse func-
tion for both curvature and torsion profile along the arc length, that is, having
nonzero values only at vertices. This implies the polygonal representation of
protein structure. In Fig. 3.2 we show the comparison between these two ap-
proaches. The advantage of impulse profile of curvature and torsion lies on the
fact that arc length equals the distance between two consecutive Cα atoms, i.e.
s = iδ , i = 0, . . . ,N (δ is the bond length and N is the number of Cα atoms).
So the ordered exponential matrix only involve once Q to switch from one Cα

atom to its neighbor,
U((i+1)δ ) = eQ(iδ ). (3.7)

From the Trotter-Suzuki formula [49], one can show that

eQ = eκT3+τT1 = eκT3eτT1 +O (κτ) , (3.8)

where T1 and T3 are generators of SO(3) rotation, i.e. (Ti) jk = ε i jk. It comes
a surprise to see that the above approximation expression becomes exact when

18



Figure 3.3. Discrete Frenet frame along the Cα -backbone of a protein chain. Cβ atoms
are shown for reference.

we choose a special discretization of Frenet frame, as following

ti =
ri+1− ri

|ri+1− ri|
,bi =

ti−1× ti

|ti−1× ti|
,ni = bi× ti, t

n
b


i

= eκiT3eτiT1

 t
n
b


i−1

. (3.9)

In Fig. 3.3 we illustrate this discrete Frenet frames along the protein Cα back-
bone..The above formula can be regarded as two-point difference of the con-
tinuous equations if we compare it with the continuous case (3.2). The dis-
cretized curvature κi and torsion τi have now the geometrical meaning of bond
angle and torsion angle (see Fig. 2.2). In fact, the derive of Eq. (3.9) is
straightforward. Firstly two consecutive discrete Frenet frames are related by
an SO(3) rotation, which can be specified by three Euler angles. Since of the
orthogonality of bi with ti−1, one Euler angle can be excluded. The other two
remaining angles are further identified as bond angle and torsion angle. We
have discussed this approach in more details in Paper I. We draw attention to
[18] since it has early utilized the same formula (3.9) for modeling the long
chain of polymer molecules.

In Ref. [40, 41, 42] they proposed another approach which is essentially
the three-point difference scheme, which makes the computation more com-
plex and parameters less geometrical meaning. In Ref. [27] , they used the
discretization scheme by means of Cayley transform [45]

U≈
(

1+
δ

2
Q
)(

1− δ

2
Q
)−1

. (3.10)

It serves a good approximation if δ is small. When it comes to the application
on proteins, such a scheme has no direct geometric meaning of curvature and
torsion.
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3.3 Protein backbone geometry
Here we illustrate the applicability of differential geometry on protein chain.
There are more than one possibility we can go. Here as the main example,
we focus on one geometric relation between NCαC backbone and Cα -only
backbone. Then we mention several other applications.

3.3.1 Geometric relation between NCαC backbone and Cα-only
backbone

In Subsection 2.2.1, we have shown two representation of protein backbone
structure. One is NCαC backbone and the other is Cα -only backbone (also
see Fig. 2.2). The dynamical variables of the former representation are the
Ramachandran angles (Ψ,Φ), while the dynamical variables of the latter are
the virtual bond and torsion angles (θ ,γ). Here we show how these two sets of
angles are related, by applying the differential geometry theory in last section.

Firstly denote the frame matrix as Fi = (ti,ni,bi) and form a new 4× 4
matrix as following

Gi =

(
Ai ri
0 1

)
. (3.11)

Then the discrete Frenet equations (3.9) can be rewritten in the new form

Gi+1 = Gi

(
Rx (τi) ∆iex

0 1

)(
Rz (κi+1) 0

0 1

)
, (3.12)

where Rx (·) and Rz (·) are the rotation matrix around the x,z-axis respectively,
and the unit vector ex = (1,0,0)T . This above formula has the advantage that
it has compact form and is thus easily implemented in the numerical way.

We use the convention for indexing the atoms and the peptide planes as
shown in Table 3.1. Then we set the initial point at Cα,k and define the local
frame as

r3k−2 =

 0
0
0

 , t3k−2 =

 1
0
0

 ,n3k−2 =

 0
1
0

 ,b3k−2 =

 0
0
1

 .

Since of the planarity of peptide bond (ω = π), we can simplify the formula
() into blocked form. Let us do it step by step, as following

Cα,k : G3k−2 =

(
(t3k−2,n3k−2,b3k−2) 0

0 1

)
= I , (3.13)

Ck : G3k−1 = G3k−2

(
Rx (Ψk) ∆1ex

0 1

)(
Rz (κ2) 0

0 1

)
, (3.14)

Nk+1 : G3k = G3k−1

(
Rx (ω) ∆2ex

0 1

)(
Rz (κ3) 0

0 1

)
, (3.15)
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N-Cα -C backbone atom Cα,k Ck Nk+1
index i 3k−2 3k−1 3k

Bond angle κi (
◦) κ1 =68.9 κ2 =63.4 κ3 =58.6

Torsion angle τi Ψk ω = π Φk+1
Bond length ∆i

(
Å
)

∆1,k =1.525 ∆2,k =1.330 ∆3,k =1.460
Virtual Cα bond angle θk - -

Virtual Cα torsion angle γk - -
Virtual Cα bond length

(
Å
)

∆α =3.806 - -

Table 3.1. The convention for indexing the atoms and the peptide planes, and the
values of bond/torsion angles and bond lengths along the protein NCα C backbone.
Here k denotes the amino acid indexing. We have assumed the chain start from its
N-terminus.

Cα,k+1 : G3k+1 = G3k

(
Rx (Φk+1) ∆3ex

0 1

)(
Rz (κ1) 0

0 1

)
=

(
A3k+1 r3k+1

0 1

)
, (3.16)

A3k+1 = Rx (Ψk)Rz (κ2)Rx (ω)Rz (κ3)Rx (Φk+1)Rz (κ1) , (3.17)
r3k+1 = (∆1 +∆2Rx (Ψk)Rz (κ2)+∆3Rx (Ψk)Rz (κ2)Rx (ω)Rz (κ3))ex

= Rx (Ψk)p, (3.18)

p ≡

 ∆1 +∆2 cosκ2 +∆3 cos(κ2−κ3)
∆2 sinκ2 +∆3 sin(κ2−κ3)

0

 . (3.19)

Note that this expression of p involves only the constant parameters, reflecting
the repeating unit of polypeptide chain. Geometrically, it is the relative direc-
tional vector for one alpha carbon to its neighbor. Its norm is then the bond
length of the alpha carbons, i.e. |p|= ∆α = 3.806Å.

For the next peptide bond (Cα,k+1−Ck+1−Nk+2−Cα,k+2), we can readily
get Gi matrix at Cα,k+2 (i = 3k+4):

G3k+4 =

(
A3k+1 Rx (Ψk)p

0 1

)(
A3k+4 Rx (Ψk+1)p

0 1

)
=

(
A3k+1A3k+4 Rx (Ψk)p+A3k+1Rx (Ψk+1)p

0 1

)
.(3.20)

For this formula we can read out the position of Cα,k+2,

r3k+4 = (Rx (Ψk)+A3k+1Rx (Ψk+1))p. (3.21)

Similarly we can get the position of next alpha carbon Cα,k+3,

r3k+7 = (Rx (Ψk)+A3k+1Rx (Ψk+1)+A3k+1A3k+4Rx (Ψk+2))p. (3.22)

21



Now we have four consecutive alpha carbons which is enough to calculate the
virtual bond and torsion angles . The unit tangent vector Tk that points from
Cα,k towards Cα,k+1 is constructed using

Tk =
r3k+1− r3k−2

|r3k+1− r3k−2|
=

Rx (Ψk)p
∆α

. (3.23)

Similarly, the next two tangent vectors are

Tk+1 =
r3k+4− r3k+1

∆α

=
A3k+1Rx (Ψk+1)p

∆α

, (3.24)

Tk+2 =
r3k+7− r3k+4

∆α

=
A3k+1A3k+4Rx (Ψi+2)p

∆α

, (3.25)

The binormal and vectors of the virtual Cα atoms are computed as in the stan-
dard way

Bk =
Tk−1×Tk

|Tk−1×Tk|
,Nk = Bk×Tk. (3.26)

Thus the cosine value of virtural bond angle is

cosθk = Tk−1 ·Tk

=
pT Rz (κ2)Rx (ω)Rz (κ3)Rx (Φi)Rz (κ1)Rx (Ψi)p

∆2
α

=
1

14.4856
(4.72711−3.36108cosΦk−0.475692cosΦk cosΨk

−4.49331cosΨk +1.32138sinΦk sinΨk) . (3.27)

When Φ,Ψ =±π , we get the minimum value of θmin = 33.3◦. When Φ,Ψ =
0, we get the maximum value of θmax = 104.4◦. This result consists with the
statistics of PDB data (c.f. Fig. 3.4). We can also calculate the virtual torsion
angle , as following

cosγk+1 = Bk ·Bk+1 =
(Tk−1×Tk) · (Tk×Tk+1)

|(Tk−1×Tk)| |(Tk×Tk+1)|

=
(Tk−1 ·Tk)(Tk ·Tk+1)−|Tk|2 (Tk−1 ·Tk+1)

sinθk sinθk+1

= cotθk cotθk+1− cscθk cscθk+1 (Tk−1 ·Tk+1) , (3.28)
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and the involved vector product has the explicit form as

∆2
αTk−1 ·Tk+1 = cosΦk+1(cosΨk+1(0.0522293−0.474024sinΨk sinΦk)+

sinΨk(−4.49331sinΨk+1−3.34929sinΦk)+

cosΨk(1.6119cosΨk+1−1.32138sinΨk+1 sinΦk +11.3892)+
0.369034)+ cosΦk(cosΨk+1(1.1461−0.171248sinΨk sinΦk+1)−

1.20998sinΨk sinΦk+1 +0.103157sinΨk+1 sinΦk+1 +

cosΨk(0.0371361cosΨk+1−0.474024sinΨk+1 sinΦk+1−0.0390685)+
cosΦk+1(−0.475692sinΨk sinΨk+1 + cosΨk(0.170647cosΨk+1 +1.20573)−

0.0371361cosΨk+1−0.262391)−1.20573)+0.350782cosΨk+1 cosΨk−
0.369034cosΨk−1.6119cosΨk+1 +0.108524sinΨk sinΦk−

11.4292sinΨk sinΦk+1−0.475692cosΨk+1 cosΨk sinΦk sinΦk+1−
3.36108cosΨk sinΦk sinΦk+1−0.103157sinΨk cosΨk+1 sinΦk−

1.61758sinΨk cosΨk+1 sinΦk+1 + sinΨk+1 sinΦk+1(−4.47755cosΨk +

1.31675sinΨk sinΦk−0.145083)+1.69578.

In similar way we can compute the sign of the torsion angle. Though the above
result is somewhat complicated, the general relation can be read out as

θk = θk (Φk,Ψk) , γk+1 = γk+1 (Φk,Ψk,Φk+1,Ψk+1) . (3.29)

It indicates that if we are given four Cα atoms, or equivalently (θk,θk+1,γk+1),
then we need one more condition to determine two sets of Ramachandran an-
gles (Φk,Ψk,Φk+1,Ψk+1). This extra condition is enough to decide the rest
part of protein chain by iterating the above relation. So in principle there is es-
sentially only one different degrees of freedom between NCαC representation
and Cα -only representation. Yet in reality it is not true. Even small derivation
of covalent bond lengths and angles from their average values will result in a
large difference of ending position in the above iterative construction. What is
addressed in Paper IV is the same issue from another aspect.

We can use the formula to calculate the virtual bond and torsion angles of
typical secondary elements. The result is shown in Table 3.2. These regularly
occurring elements exhibit as either major or minor peaks on the Ramachadran
plot (Fig. 3.4(a)). Equivalently, we do the statistics of virtual bond and torsion
angles, as shown on Fig. 3.4(b-d). As expected, such a distribution also reflect
the secondary structure preferences. On the plots, we distinguish two virtual
bond angles θ1 and θ2 at two consecutive Cα atoms, as different pairings with
the virtual torsion angle γ (see Fig. 2.2). That is, θ1 of the first three Cα atoms
is plotted again either γ or θ2 of the last three Cα atoms. Surprisingly, the
θ1− θ2 distribution plot is not symmetric. This feature is also shown by the
difference between θ1− γ and θ2− γ plots. In the future we shall analyze the
structure clusters by combing all these three subplots.

23



Figure 3.4. (a) Distribution of Ramachandran angles Φ,Ψ. (b-d) Distribution of vir-
tual bond angle θ1,θ2 and torsion angle γ . Statistics is done over a pruned set of PDB
structures, the same as in Paper IV. Density is in logarithmic scale. On subplots (c-d)
the torsion angle τ has been shifted by 360◦ if it is negative, for the purpose of better
showing the clusters. It is interesting to compare the clusters with the ideal value in
Table 3.2.
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α-helix β -sheet polyproline helix L-helix
(Φ,Ψ) (−63◦,−43◦) (−120◦,130◦) (−75◦,150◦) (50◦,50◦)
(θ ,γ) (88◦,50◦) (55◦,−168◦) (60◦,−106◦) (89◦,−56◦)

Table 3.2. The values of geometric values of four regular secondary structures.

3.3.2 Remark on three other applications to protein geometry
We finally remark on three more applications of differential geometry on pro-
tein structure modeling. The first one is a soliton model of protein backbone.
Lots of our effort has been focused on this direction from the very beginning of
the project. In Paper I and in [36, 6, 31] we have extensively addressed on this
idea. The topological soliton has been identified as the helix-loop-helix motif
in protein, in contrast with the classical Davydov soliton which representing
an excitation propagation along the α-helix self-trapped amide I [9, 8, 29].

The second application is to address the question that to what extent the var-
ious angles and bond lengths can be replaced by their average values. For pro-
tein structure modeling and prediction people construction of coarse grained
force fields which take only a subset of the full set of atomic degrees of free-
dom as dynamically active variables. Along the main chain these dynamical
variables are identified as Ramachandran angles (Φ,Ψ). In Paper IV, we show
that a coarse graining where a subset of angular variables is replaced by uni-
form values, commonly yields geometrically incorrect protein structures. Re-
lated work also shows that the cases peptide bonds strongly deviating from
planarity (ω other than π or 0) is not rare, instead, "conserved but not biased
toward active sites" [3].

The third possible application comes to structural alignment of protein chains.
Though lots of relating work has been done on this subject (see, for example,
review [20]), there is still need to design more reliable, fast and automatic
algorithms. In most existing methods, the core idea is to find a good defini-
tion of similarity for structure segment. Here we utilize the discrete Frenet
equations to propose a new definition of similarity measurement. Still refer
to Fig. 2.2. For four consecutive Cα atoms, we have two virtual bond angles
θ1,θ2 and one virtual torsion angles. We can use them to form some sort of
hyperspherical coordinates on S3, e.g.

u = (cosθ1,sinθ1 cosθ2,sinθ1 sinθ2 cosγ,sinθ1 sinθ2 sinγ) . (3.30)

Then the similarity would be simply the dot product between structure seg-
ments from each chain. By evaluating the similarity between successive frag-
ments, we can further calculate a distance matrix. Based on this distance ma-
trix, methods like dynamical programming would find optimal alignment.
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4. Time evolution of space curves

In this chapter we are interested in a typical model of a moving space curve, the
local induction motion. It was originally constructed to describe the motion of
vortices, which are regions of fluid flow that rotate around a central axis. Other
typical examples of a moving space curve in three dimensions include the
winds surrounding hurricanes, vortex filaments in superfluids and especially a
protein chain in the cell.

The local induction model has been well known to support an integrable
structure, allowing one to take global analysis about the system behavior. For
example, a system governed by integrable evolution equation has an infinite
number of integrals of motion, which can be tackled via the inverse scattering
transform method [17]. Mathematical structure of an integrable system is also
associated with a Lax pair and interesting solutions such as solitons. A soliton
emerges when nonlinear interactions combine elementary constituents into a
localized collective excitation that are stable with respect to weak perturba-
tions and behave like a particle with invariant shape and velocity. When two
solitons collide, they first merge into one and then separate into two with the
same shape and velocity as before the collision.

Here we firstly review the integrable motion of a continuous curve. Then we
emphasize on the discrete version of the model, which preserves the integrable
structure. The theoretical study has provided benefits to the applications for
learning bifurcation behavior of closed curves (addressed in Paper III), and for
designing algorithm of loop closure.

4.1 Integrable motion of continuous curves
Under the local induction approximation, Levi-Civita and Da Rios discovered
on 1906 [44] a time evolution equation for closed curves as the model of very
thin isolated filament r = r(s, t) in incompressible fluid,

dr
dt

=
dr
ds
× d2r

ds2 . (4.1)

This equation is also known as the smoke ring flow. Associating the curve r
with Frenet frame (t,n,b), we can transform Eq. (4.1) into

dr
dt

= t×κn = κb. (4.2)
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Sometimes the above equation is also called binormal curvature flow, as its
form indicates. In 1972 Hasimoto [2] discovered that by introducing a map

ψ(s) = κ(s)exp(i
∫ s

0
τds′) (4.3)

the local induction motion is in fact equivalent to the nonlinear Schrödinger
(NLS) equation

i∂tψ =−∂
2
s ψ− 1

2
|ψ|2 ψ, (4.4)

which is a completely integrable Hamiltonian system. From Eq. (4.1), it is
easy to observe that the arc-length is differentially conserved by the flow:

∂t |∂sr|2 = 2∂sr ·∂s (∂sr×∂ssr) = 2∂sr · (∂sr×∂sssr) = 0. (4.5)

In similar way one can show that the total squared curvature,
∫
|∂ssr|2 ds =∫

κ2ds is also conserved. In fact, there are infinitely many more conserved
quantities, i.e. the system is completely integrable. In Paper II, we systemati-
cally derive these conserved quantities.

The corresponding Poisson structure of NLS equation is

H =
∫

ds
(
|∂sψ|2−

1
4
|ψ|4

)
,{

ψ (s) , ψ̄
(
s′
)}

= iδ
(
s− s′

)
. (4.6)

In terms of curvature and torsion, the above equation translates into

H =
∫

ds
(
(∂sκ)

2 +κ
2
τ

2− 1
4

κ
4
)
,

{
κ (s) ,τ

(
s′
)}

=
1

2κ (s)
∂

∂ s
δ
(
s− s′

)
. (4.7)

Equation of motion is then followed

∂tκ =−2(∂sκ)τ−κ∂sτ, (4.8)

∂tτ =
∂

∂ s

(
∂ 2

s κ−κτ2 + 1
2 κ3

κ

)
. (4.9)

4.2 Integrable motion of polygonal curves
We expect a suitable discretization scheme would preserve the integrable struc-
ture. Lattice Heisenberg model (LHM) [17] is such a natural discretization of
local induction equation. The integrable LHM model has the Poisson structure
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as

H =− 2
δ 2 ∑

i
log(1+ ti · ti+1) ,{

ta
i , t

b
j

}
=−ε

abctc
i δi j. (4.10)

The corresponding Heisenberg flow is as following

dti

dt
= {H, ti}=−ti×

∂H
∂ ti

=
2

δ 2

(
ti× ti+1

1+ ti · ti+1
− ti−1× ti

1+ ti−1 · ti

)
=

2
δ 2

(
tan

κi+1

2
bi+1− tan

κi

2
bi

)
. (4.11)

In the last line, relations from discrete Frenet equations (Eq. (3.9)) have been
introduced. One feature of the model is its preservation of the end-to-end
distance of the curve

d
dt

N

∑
i=1

ti =
2

δ 2

N

∑
i=1

(
tan

κi+1

2
bi+1− tan

κi

2
bi

)
= 0. (4.12)

Here the periodic condition of the closed curve is assumed, i.e. ti = tN+i. The
conclusion is also true for an open curve. This feature can be regarded as the
discrete analogue of length conservation as in the continuous case (see Eq.
(4.5)).

The curve is then reconstructed as ri = ri−1 +δ ti−1. In the explicit way the
flows on ri reads

dri

dt
=

2
δ

ti−1× ti

1+ ti−1 · ti
=

2
δ

tan
κi

2
bi. (4.13)

Compared with Eq. (4.2), we can define the discrete curvature as

κ(s = iδ )→ 2
δ

tan
κi

2
. (4.14)

The denotation may be a bit confusing but κi on the right-hand side is bond an-
gle. When κi→ π , the discrete curvature diverges; in consequence, Hamilto-
nian in terms of squared discrete curvature doesn’t prefer super-bending struc-
ture. This is particularly useful to model the Cα structure since the bond angle
there is limited to [33.3◦,104.4◦].

Here we would like to start from the Poisson bracket in Eq. (4.10) to derive
the Poisson brackets between bond/torsion angles, for the purpose of future
application of more general interactions. Since one bond angle involve two
consecutive tangent vectors while one torsion angle involve three, there are
seven non-vanishing brackets, i.e. {κi,κi+1}, {κi−2,τi}, {κi−1,τi}, {κi,τi},
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{κi+1,τi}, {τi−2,τi} and {τi−1,τi}. Since the calculation takes the same skill
for each bracket, here only the details of computing {κi,κi+1} is given, as
following

{cosκi,cosκi+1} = {ti · ti−1, ti · ti+1}
= ti · {ti−1, ti · ti+1}+{ti, ti · ti+1} · ti−1

= ti ·
(

ti−1×
∂ (ti · ti+1)

∂ ti−1

)
+

(
ti×

∂ (ti · ti+1)

∂ ti

)
· ti−1

= 0+ ti× ti+1 · ti−1

= ti−1× ti · ti+1

= sinκi sinτi+1 sinκi+1. (4.15)

So we get
{κi,κi+1}= sinτi+1. (4.16)

In the similar way, we can calculate the other brackets. The results are sum-
marized as following

{κi,κi+1} = sinτi+1,

{κi−2,τi} = −cosτi−1 cscκi−1,

{κi−1,τi} = cot
κi−1

2
+ cosτi cotκi,

{κi,τi} = −cot
κi

2
− cosτi cotκi−1, (4.17)

{κi+1,τi} = cosτi+1 cscκi,

{τi−1,τi} = cscκi−1 (sinτi cotκi + sinτi−1 cotκi−2) ,

{τi−1,τi+1} = sinτi cscκi−1 cscκi.

At the same time, the Hamiltonian is translated into (the factor
2

δ 2 has been
rescaled to be one)

H =−∑
i

log(1+ ti · ti+1) =−2∑
i

logcos
κi

2
. (4.18)

And the equation of motion (4.11) becomes

dκi

dt
= tan

κi−1

2
sinτi− tan

κi+1

2
sinτi+1. (4.19)

dτi

dt
= cosτi

(
cotκi tan

κi−1

2
− cotκi−1 tan

κi

2

)
+ tan

κi+1

2
cosτi+1 cscκi− tan

κi−2

2
cscκi−1 cosτi−1. (4.20)

It is also straightforward to check the Jacobi identity.
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Define the discrete Hasimoto map as

ψi = tan
κi

2
eiϑi ,ϑi =

1
2

(
i

∑
k=1

τk−
N

∑
k=i+1

τk

)
. (4.21)

Combining both Eq. (4.19) and Eq. (4.20) we otain the LNS2 equation [17] (a
factor of 2 has been rescaled)

i
dψi

dt
=−(ψi+1−2ψi +ψi−1)−|ψi|2 (ψi+1 +ψi−1) . (4.22)

The corresponding Poisson structure is

H =−∑
i
(ψiψ̄i+1 + ψ̄iqi+1) =−2∑

i
tan

κi

2
tan

κi+1

2
cosτi+1, (4.23){

ψi, ψ̄ j
}
= i
(

1+ |ψi|2
)

δi j,
{

ψi,ψ j
}
=
{

ψ̄i, ψ̄ j
}
= 0. (4.24)

Thus we have established the equivalence between the LHM and LNS2 mod-
els, by a direct calculation in terms of the discrete Frenet equations. More
interesting results are presented in Paper II. Similar work from different ap-
proaches can be found in [1, 26, 24].

4.3 Binormal flow algorithm for loop closure
The theoretical study of local induction model in previous section has shown
an interesting feature that the equation of motion preserves the end-to-end
distance (see Eq. (4.12)). This feature inspired us to devise an algorithm for
loop closure in protein structure modeling. Loop closure problem requires to
efficiently construct a protein segment for matching two fixed endings. This
problem arises either in homology modeling or in de novo structure prediction
(for example, see review [34]).

We try to circumvent the loop closure problem by two general steps. The
first step is to generate a segment of given end-to-end distance (defined by the
two fixed target points), from an arbitrary configuration. The second step is
to globally move the segment to bridge the fixed target points. This global
move is simply a translation and a rotation. But if there is steric hindrance
between the segment and the rest of the protein structure, further deformation
of the segment is possible under the motion of Eq. (4.12) that preserve end-to-
end distance. So in principle, the second step is always solvable and thus not
considered here. In sequel we focus on the first step, that is, how to generate
a segment of a given end-to-end distance. Our method doesn’t need to depend
on the physical energy, so it is essentially a sampling strategy.

The dynamical variables we choose are the tangent vector defined on the
bond Cα -C, denoted as t1,k, k is the index of residue (see Table 3.1), and on
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the bond C-N, denoted as t2,k. The tangent vector on the bond N-Cα (denoted
as t3,k) will be taken as dummy variable so that its motion is passive to keep
ω invariant. Apparently, in order to preserve the bond angle κ1,κ2,κ3, the
motion of a tangent vector be restricted on the cone defined by the bond angle.
Mathematically the general equation of motion would be

dti

dξ
= citi× ti−1, (4.25)

which preserves the bond angle for arbitrary difference step δξ ,

cosκ
new
i = ti−1 ·

(
ti +δξ

dti

dξ

)
= ti−1 · (ti +δξ citi× ti−1) = cosκi. (4.26)

The variable ξ is not the real time but denote the searching time of loop closure
in the configuration spacetime. Similar with Eq. (4.2), the motion of ti is along
the binormal vector direction, giving the method the name of binormal motion
algorithm (BMA). In practice, we start from the N-terminal and change the
tangent vectors ti’s in the sequential way or in the random way. When in
the sequential way, we first update the beginning tangent vector according to
Eq. (4.25) which has an analytical solution using Rodrigue’s rotation. This
rotation has to globally apply on all the atoms in the rest part of the chain.
Moving along the chain we can change the tangent vectors (only t1’s and t2’s)
in the same manner, until the end. When in the random way, tangent vector
at random site is updated and rotation has to be done over the rest part of
the chain. By this way, we can remove the bias of larger changing for the
beginning part as in the sequential way.

It is worthy to notice that the tangent vector in Eq. (4.25) isn’t necessar-
ily normalized, in other words, the equation automatically preserves the bond
length. This observation in fact indicates the separation of the radial and an-
gular part of the bond motion. The bond vibration along radial direction can
be further treated by a different way.

The motion according to Eq. (4.25) is arbitrary, similar to the pivot move
in Monte Carlo approach. However it can be a directed move if we associate
the coefficient ci with some target function (not necessarily the physical inter-
action). For example, in loop closure problem we propose a choice as

ci = Bi · ti−1, Bi =−
2
δ

(
1− d0

|Re|

)
Re, (4.27)

where Re = rN−r1 = ∑
N
i=1 ti is the end-to-end vector of the moving segment,

and d0 is the distance between two target points. Intuitively, this equation tries
to minimize the difference between d0 and |Re|. The vector Bi is the analogue
of magnetic field as in Landau-Lifshitz spin model [17].

Some local interactions can be introduced as well to model the Ramachan-
dran torsion angles preferences. For instance, we can write a local interac-
tion as fk = fk (cosΨk,cosΦk) which is assumed to depend on the amino acid
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Figure 4.1. Three typical loop closure results with lowest RMS distance, generated
from 5000 sampling of BMA. Left: 1qnrA_195-198; middle: 1ctqA_144-151; right:
1f74A_11-22. For each pair, in red is the native structure read from PDB. In blue is
the simulation result.

residue type. The exact form can be derived from the statistics over some
known structure dataset. Then the explicit form of Bi is computed as follows,

B1,k = − ∂ fk

∂ t1,k
=− ∂ fk

∂ cosΦk

∂ cosΦk

∂ t1,k
,

=
∂ fk

∂ cosΦk
cscκ3 cscκ1t2,k−1, (4.28)

B2,k = − ∂ fk

∂ t2,k
=− ∂ fk

∂ cosΨk

∂ cosΨk

∂ t2,k
,

=
∂ fk

∂ cosΨk
cscκ1 cscκ2t3,k−1. (4.29)

Again the similar calculation techniques as in Eq. (4.15) are used here.
In Table 4.1 we show a parallel simulation (no consideration of local in-

teraction), as comparison with the classical approach of Cyclic Coordinate
Descent (CCD) method [5]. In Fig. 4.1 are shown three typical loop closure
results with lowest RMS distance, generated from 5000 sampling of BMA.
Overall, the performance of BMA is similar with or better than the CCD re-
sult, especially for the longer chain. There are two reasons for this improve-
ment. The first is due to the reduce search space of the configurations. Let us
remember BMA focus on the end-to-end distance instead of ending position.
This simplification reduce the degenerate configurations related by a transla-
tion or rotation. The second reason lies on the intrinsic rotation feature of the
present algorithm. When moving, each tangent vector rotates around the end-
to-end vector. This results a twisting configuration that matches the global
feature of loops.

Of course we shall remind that we still need a further rotation to move the
generated segment toward the target positions. Those samples of segment that
have other than minimum RMS distance might be more consistent with the
rest part of the whole protein chain. Combined with an energy function the
present algorithm would model the loop structure in more realistic way. This
shall be the direction of the future work.
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Length 4

Loop Min RMSD (Å)
CCD BFA

1dvjA_20-23 0.606 0.564
1dysA_47-50 0.676 0.330

1eguA_404-407 0.675 0.379
1ej0A_74-77 0.337 0.322

1i0hA_123-126 0.616 0.336
1id0A_405-408 0.671 0.276
1qnrA_195-198 0.491 0.260
1qopA_44-47 0.627 0.547

1tca_95-98 0.393 0.825
1thfD_121-124 0.495 0.347

Avg. min RMSD 0.559 0.419

length 8

Loop Min RMSD (Å)
CCD BFA

1cruA_85-92 1.753 1.133
1ctqA_144-151 1.344 0.859

1d8wA_334-341 1.506 1.063
1ds1A_20-27 1.581 1.530

1gk8A_122-129 1.684 1.117
1i0hA_145-152 1.351 1.482
1ixh_106-113 1.605 1.483
1lam_420-427 1.604 1.297
1qopB_14-21 1.849 1.488
3chbD_51-58 1.659 1.106

Avg. min RMSD 1.594 1.256

Length 12

Loop Min RMSD (Å)
CCD BFA

1cruA_358-369 2.538 1.527
1ctqA_26-37 2.487 1.506
1d4oA_88-99 2.487 1.838
1d8wA_46-57 4.827 1.914

1ds1A_282-293 3.042 1.789
1dysA_291-302 2.478 1.624
1eguA_508-519 2.137 1.804

1f74A_11-22 2.715 1.511
1q1wA_31-42 3.378 1.686

1qopA_178-189 4.568 1.740
Avg. min RMSD 3.050 1.694

Table 4.1. Minmum RMSD from X-ray structure in 5000 trials per loop. We take the
same test loops as in CCD [5]. The loop is considered to be closed if the difference
between the moving end-to-end distance and the target distance is less than 0.08Å.
The maximum search step is limited to 5000. The difference step δξ is taken as 0.02.
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5. Concluding remark

Now let us have a very general overview of what we have done. We utilize
the transfer matrix formalism to consecutively map the discrete Frenet frame
from one vertex of discrete curve to its neighbor. This intrinsically discrete
approach enables us to conveniently describe curves, the backbone of folded
proteins for example, for which the continuum limit has a nontrivial Hausdorff
dimension. Integrability study and bifurcations analysis further provides us
the insights on the time evolution of the curves. The theoretical study has
inspired us the applications on protein structure modeling, such soliton model
of protein backbone, and the binormal motion algorithm of loop closure.

Though our the framework remains within a homopolymer representation
of the protein structure, our work with the folded protein suggests that protein
folding is probably subject to the geometric constraints, at least at the early
stage when the non-covalent interactions have not yet dominated the driving
force. The further introduction of amino acid specific information, even within
a hydrophobic-hydrophilic scheme, should be compatible with the shape ge-
ometry of the protein backbone. The competition between them would proba-
bly help to successfully discriminate the correct target fold, as well as to suit-
ably describe the dynamics of folding process. These considerations would be
the directions of the future work.

Loop modeling would be of great interest since most of protein functional
sites lie on the loop region, instead of on the regular α-helices or β -sheets.
Our work have shown two aspects of loop structure. One is the soliton model
of main chain, in which the helix-loop-helix motif has been identified with
soliton solution of the gauge-invariant energy functional. On the other hand,
we have devised an efficient algorithm for loop closure sampling. We hope
we can combing both approaches and then provide better modeling of loop
structure. One possibility would be the consideration of evolution, in order to
efficiently distinguish the conserved sites that might be related with functions.

On even more general scope, it is always helpful to keep in mind those big
problems, such as what’s the drive force and mechanism of protein folding,
how to design a protein sequence from given structure, what happen exactly
inside of the diseases like Alzheimer’s. The work in this thesis might be only
very tiny step towards the answer of these big problems, but that’s enough.
Maybe what I have done is no better than a folding game on the computer. Yet
life has no ending. I hope there is always something to fold.
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Summary in Swedish

För att utföra en viss funktion, så behöver ett protein veckas ihop till ko-
rrekt struktur. Huvudfokus i denna avhandling är att, med hjälp av differen-
tialgeometri och generella koncept som gaugeinvarians och solitoner, skapa
teoretiska modeller av veckade proteiners struktur.

Ett proteins ryggrad kan sägas vara en styckvist linjär flersidig kedja, där
hörnen är de centrala Cα kolatomerna i aminosyrorna. Konstruktionen kan
beskrivas av Frenetekvationer, vilket förtydligar gaugestrukturen och leder till
en effektiv energifunktional. En speciell, topologiskt stabil lösning kallad
soliton har kunnat relateras till helix-loop-helixmotivet i proteinstrukturen.
Parametrarna som karaktäriserar hur ett protein veckar sig är globala på den
sekundära nivån, och därmed definierade bortom alla detaljer och komplex-
itet av aminosyror och deras interaktioner. Huvudkedjans veckning till full-
ständiga protein byggs därmed upp genom att multipla solitoner monteras
ihop. Vi har funnit att modelleringen av ett antal biologiskt aktiva protein
återskapar den ursprungliga strukturen med experimentell noggrannhet.

Motiverade av dessa framgångsrika tillämpningar av kurvteori för simuler-
ing av proteinstrukturer har vi retroaktivt undersökt de teoretiska egenskaperna
hos kurvor i tre dimensioner. Först härleder vi Hamilton-energifunktioner
för både kontinuerliga kurvor och diskretiserade kedjor, inom ramen för in-
variansprincipen och integrabla hierarkier. För kontinuerliga kurvor finner
vi att en Weyldual existerar för den icke-linjära Schrödingerekvationshier-
arkin, vilket även relaterar till energidensiteter relevanta för strängar i tre rums-
dimensioner. Vi föreslår att denna ytterligare hierarki också är integrerbar,
och undersöker detta explicit till den första icke-triviala ordningen. En ko-
rrekt diskretiserad version av den icke-linjära Schrödingerekvationen, som
bevarar integrabiliteten, har granskats för jämförelse med de kontinuerliga
motsvarigheterna.

Vi undersöker även bifurkationen genom tidsutvecklingen hos en sluten
ramad kurva. Vi argumenterar att dessa strängar uppför sig som ett band,
men med en utökad repertoar som inkluderar inflektionspunkter: självlänkn-
ingstalet är inte en global topologisk invariant, utan gör diskontinuerliga hopp
när perestrojka inträffar.

Vi hoppas att vårt teoretiska angrepssätt kan ge en systematisk grund för den
generella beskrivningen av både kontinuerliga och diskreta sträng-lika konfig-
urationer i tre dimensioner, i synnerhet rumsutfyllande strukturer. Baserat på
detta tillvägagångssätt och den fortsatta introduktionen av aminosyrors speci-
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fika information, förväntar vi oss en mer realistisk modellering av protein-
strukturer i framtiden.
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