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Abstract

We propose a new test for invertibility of moving average processes.
The test is based on an explicit local approximation of the likelihood
ratio. In a simulation study, we compare the power of the test with a
score type test of Tanaka (1990) and a numerical likelihood ratio test
suggested by Davis, Cheng and Dunsmuir (1995). Local to the null of
noninvertibility, our test is seen to have better power properties than the
score type test and its power is only slightly below that of the numerical
likelihood ratio test. Moreover, we extend our test to an ARMA(p,1)
framework. A simulation study compares size properties of the methods
under an ARMA(1,1) model.
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1 Introduction

We will study the moving average (MA) model
Yt = €¢ — 01, (1)

where 0 < 1, all &, are NID (0,02) for ¢ > 0 and we have observations at
t=1,...,T. Our focus is the test of nonivertibility, i.e. to test Hy : § = 1 versus
H, : 0 < 1. Traditionally, such tests are used to check for overdifferencing, see
e.g. Saikkonen and Luukkonen (1993), Leyborne and McCabe (1994) and the
discussion in Davies and Dunsmuir (1996).

Tanaka (1990) suggested a score type test, which he proved to be locally
best invariant and unbiased (LBIU). He argued that Likelihood Ratio or Wald
tests are not feasible since the maximum likelihood estimator (MLE) is not
explicit in MA models, see e.g. Cryer and Ledolter (1981). In spite of this,
Davis, Cheng and Dunsmuir (1995) and Davies and Dunsmuir (1996) exploited
likelihood methods. They showed the interesting result that the limiting distri-
bution of the MLE differs from that of the local maximizer (LM), which is the
estimator obtained when maximizing the likelihood under the parametrization
0 = 1—~/T. Davis et al (1995) also derived the asymptotic distribution of
the Generalized Likelihood Ratio (GLR) test. Moreover, they compared finite
sample and limiting powers of the score and GLR tests, as well as tests directly
based on the LM and ML estimators. They found that GLR outperforms the
other tests except for in the region v < 5, where the score test is slightly better.
Among the other two, the LM estimator based test uniformly outperforms the
ML counterpart in the studied range of « values. However, Tanaka presented
a generalization of the score test to the general ARMA case, while Davis et al
did not provide such a generalization of the GLR test.

More recent work includes Davis and Song (2011), who extend the GLR
test to the MA(2) case. Yabe (2012) generalized the asymptotic distribution
results of Tanaka (1990), which were obtained for § = 1 —~/T, to the moderate
deviation case, where § = 1—+ /T for some « € (0, 1). Vougas (2008) proposes a
new ML estimation method that avoids the pile-up phenomenon (the estimator
equals one with positive probability). A test for invertibility is based on the
suggested estimator.

In the present paper, we suggest an approximation of the Likelihood Ratio
(LR) test which, as in LM estimation, is based on a local approximation of the
parameter around 1. Simulations indicate that the power of our test is close
to the power of the GLR test, and larger than the power of the other explicit
one, the score test. We also generalize our test to invertibility testing in the
ARMA(p, 1) case, and derive the asymptotic distribution. A simulation study
in the case p = 1 investigates the size performances of the three tests. It is
found that our proposed test works well when the AR parameter is close to
zero, but that it is undersized in general. For small T', the score type test is
oversized for negative values of the AR parameter and undersized for positive
values. For large T', the score type test works fairly well, although it may be
severely oversized for values of the AR parameter close to —1. The numerical



likelihood ratio test appears rather robust except for when the AR parameter
is close to one, in which instance it may be severely oversized. Our test is non
similar with respect to the AR parameters, but incorporating a correction of its
critical values, it is seen to perform very well in terms of size.

The rest of the paper is as follows. In section 2, we derive the approxima-
tive LR test as well as some of its limiting properties. A simulation study is
conducted in section 3. Generalization to the ARMA(p, 1) model is discussed
in section 4. Under this framework, section 5 contains a simulation comparison
of small sample sizes of the studied tests, while section 6 concludes.

2 An approximative LR test
Writing y = (y1, ..., y7)’, € = (£0,€1,...,e7)’, (1) is equivalent to
y =He, (2)

where H is the (T + 1) x T matrix

-0 0 0
1 -0
H=[ o 1 0
S
0 0 1

Hence, the log likelihood is

yQly

l (0,02) = ,% log (27r02) ~ 50

— % log (det ©2) . (3)

where Q@ = H'H is the covariance matrix of y. Defining
Q;=(I-0L)(I-6L"), (4)

where I and L are the identity and lag matrices of dimension 7', we may write

Q=Q +06%6,8, (5)

where §; = (1,0,...,0)". (In fact, if one would assume gy = 0, then Q; would
be the covariance matrix of y.) The MLE of o2, 52 say, fulfills

ot =T"'y'Q ly. (6)

Hence, (3) implies

l (9,32) = —% {log (27) + 1} — glog (32) - élog (det ). (7)



Moreover, we find from (5) that
det @ = det Q; (1 + 626797 '61),
where det 21 = 1 and

-1 _ 2 2T—2_1_92T
8O e =1+60"+...+0 =
1-6
Le. oT 2T +2
1-6 1-6
det Q=1+ 62 -
1—6% 1— 62

Now, to facilitate an approximation of the LR test close to 8 = 1, the idea is to
write # = 1 — y, which yields

_ (1o )P
n_detﬂ——l_(1_7)2 . (8)
Thus, from (7),
1(6,6%) =~ flog (2m) + 1) - S log {f ()} o)
where .
fy=a*n" . (10)

Hence, in the following, we may confine ourselves to minimizing f (y). To this
end, using Taylor expansion in -y to the fourth order, we may derive the following
result.

Proposition 1

FO) =TT+ 0" (for —v2far =¥ for + 7' far) + 0 (+7)

where for i =0,2,4, fir = x'Dyrx with x = (I — L)_1 y and

1
D = I——-11
or T+1
T2 — 2T + 4 T+2 1
D = ——— 11"4+8S8 - —I— —— (11’SS’ +SS’11’
2T s+ o RS + )
8T 4 1473 — 30972 + 5297 — 602 T+8
D = 11’ — ——8¢’
o 360 (T + 1)
(T+2)(21*-T—61) T?-2T+7
— I 11'SS’ 11’
360 + 3(T+1) (1188’ +88'11)
n2 1 r11'eQ’ 1 ’ N2 n2 ’
+(88')" - FySS11'Ss —T+1{11 (8)* + (s8)*11'}.
where
S=1-L) 'L,

with I as the T dimensional identity matriz, L as the T dimensional lag matriz,
and 1 as the T dimensional vector consisting of ones.



Proof. See the appendix. m
To find the minimum of f (), we need to solve

0

= () =T (T + 1)T71 (=2vfor = 3V for + 4 far) + O (%) .

Disregarding the O (74) term, one solution is v = 0 and the other two are given
by

. 3for
T2 = =t vTT,
8far

o (3sz>2 for
g 8 far 2far

The asymptotics of 77, may be analyzed by employing the following propo-
sition. Without loss of generality, we assume that 0> = 1. The intuition is
that if # = 1 and if we put &g = 0 (which has no effect asymptotically), then
x = (e1,...,er)’, which means that T—/21'x converges to W (1) where W (t)
is a standard Wiener process. Similarly, 7~2x'SS’x converges to fol W (t)2 dt
where W* (t) = W (1) — W (¢), etcetera. Moreover, observe that the same re-
sults should hold without the normality assumption. It should be enough that
the e; form a martingale difference sequence, cf Chan and Wei (1987).

Proposition 2 If0 =1 and 02 =1, then as T — oo,

TilfOT E) ]-,
T_szT i f2,
T74f4T i f47
where
1 ! 1 !
o= W@ [ W@t o) [ a-owr@a
0 0
fi = iw(1)2_i+zw(1)/l (I—t) W™ (¢t)dt
T g5 180 ' 3 0

2 2

+/ti0< :_OW* (s)ds> dt—{/ol (18w (t)dt}

_%W (1) /01 (2= 3% + %) W™ (1) dt,

and where 5 and % denote convergence in probability and convergence in dis-
tribution respectively, W* (t) = W (1) — W (t) and W (t) is a standard Wiener
process.



Proof. See the appendix. m
Proposition 2 and the Slutsky theorem imply that

372 -2
T?rp =T72 < 4f2T) 74f2T d 2
814 far 2T far  2f4
and so,
T’ﬁg
13T 2 for
= T'Q0—F— T2
8T~ fur .
d P .
— £ ’274 (I fapaz01 + il (fapu<0})

where I; 4y is the indicator function of the event A and i is the complex unit.
Now, let v* be the solution that maximizes the approximate likelihood. Inserting
into proposition 1,

FOO =TT+ (for — A7) +0 (7).,
where
A; = ng’y*z.
Then, from (9), with 6* =1 — *,
* o~ T * *
1(9 703) =c— EIOg(fOT_AT)"_O('Y %),

where T )
c=—7 {log (27) +1—logT} — §1og (T+1).

Moreover, under Hg, the MLE of ¢2 is &3 =T fyr, and so,
—1
FO=T"2T+1)"" for,
implying that the maximum log likelihood is
R T
l (1,02) =c— Elog(foT).

Hence, defining the likelihood ratio test statistic as Q1 the ratio of the maximum
likelihoods under Hy and H; respectively, we have

—2log Qr
= Tlog(for)— Tlog(for — A7)+ O (7*3)
= Tlog(1-T7'23)+0 (v, (11)



where

A*
Zr=T-L.
T Jor
Observe that regardless of which solution 77 5 that is chosen, as T" — oo,
x d f2 f2
2t = 5 |5 Uiagizor = Iigagcoy)
This motivates the statistic
g T for | for
T = - .
2for | far

(Simulations indicate that the power properties improve when the indicator
terms are disregarded. Also, they are slightly better when incorporating for in
the statistic.) Observe that for large enough 7', the approximation in (11) is
equivalent to the statistic Z7. It is also easily seen by Taylor expansion that
—2log Q7 and Z7 have the same asymptotic distribution.

3 A simulation study on power

In this section, we compare the power properties of the approximative LR test
statistic (Z7) with the score test of Tanaka (1990) and the GLR test of Davis
et al (1995). For T' = 50, table 1 and figure 1 give the size adjusted local
powers of these tests versus J, where § = 1 — §/T, together with the power
envelope. The latter is calculated under a known o2 and a known parameter
0 under the alternative. The simulations were performed in Matlab 7.10, using
100 000 replications'. For v < 3, the approximative LR test performs slightly
worse than the score test, but for larger -, its performance is clearly better. As
expected, comparing to the GLR test, the latter is always about equally good
or better than the approximative LR test, but up to about § = 8, the difference
is very small. Moreover, note that overall, the power of the GLR test is very
close to the power envelope. These numbers corroborate well with table 4.1 of
Davis et al (1995). Also, except for the score test far from the null, the tests
studied here perform better in terms of power than the ML estimator based
tests of Vougas (2008), cf table 3 in the latter paper.

In table 2 and figure 2, we present corresponding results for T = 200. The
conclusions are similar. As a by-product of these simulations, we got empirical
critical values of the test statistics. These are given in table 3.

In order for the reader to be able to apply the approximative LR test for
other sample sizes, we have performed response surface regressions for critical
values at the common significance levels 0.1, 1 and 5 per cent. The regressions
were based on 1 000 000 replications and T' € {25, 50, 100, 200, 400,800}. The
resulting regression equations are given in table 4.2

1We also simulated powers of the two least time consuming tests, i.e. the score test and the
approximative LR test, for 108 replications. These results deviated very little (as a maximum
one or two units in the third decimal point) from the ones presented here.

2In the first step, T2 terms were included, but these were insignificant at the 1% level.



6 Score | Approx. LR | GLR | Power envelope
05| 5.3 5.3 5.3 5.5
1.0 | 6.2 6.1 6.1 6.2
1.5 ] 78 7.6 7.5 7.8
2 10.1 | 9.7 9.6 10.0
3 16.2 | 16.0 159 | 16.4
4 24.0 | 24.2 24.0 | 24.6
5 32.0 | 32.7 32.9 | 33.3
6 39.5 | 41.2 41.8 | 42.1
7 46.4 | 49.1 50.1 | 50.3
8 52.3 | 56.0 574 | 57.6
10 | 61.8 | 67.0 69.4 | 70.0
12 | 69.3 | 75.2 78.3 | 79.3
15 | 77.2 | 83.7 87.3 | 88.8
20 | 85.6 | 91.5 94.9 | 964

Table 1: Local power in per cent for T=50, 100 000 replications.

1) Score | Approx. LR | GLR | Power envelope
05| 54 5.3 5.3 54
1.0 6.3 6.2 6.1 6.3
1.5 ] 7.8 7.6 7.6 7.9
2 10.1 | 9.8 9.6 10.1
3 16.2 | 15.8 15.7 | 16.3
4 23.8 | 23.8 23.6 | 24.2
5 31.5 | 32.2 32.1 | 32.5
6 38.9 | 40.3 40.6 | 40.8
7 45.5 | 47.8 48.6 | 48.7
8 51.4 | 54.5 55.7 | 55.9
10 | 61.1 | 65.5 67.5 | 68.1
12 | 68.9 | 74.1 76.4 | 77.3
15 | 77.5 | 82.8 85.4 | 86.7
20 | 86.3 | 91.0 93.6 | 94.8

Table 2: Local power in per cent for T=200, 100 000 replications.

T Score | Approx. LR | GLR
50 | 0.472 | 1.425 2.025
200 | 0.463 | 1.441 1.968

Table 3: Empirical critical values at the 5 per cent level. 1 000 000 replications
where used for the score and approximative LR tests, and 100 000 replications
were used for the GLR test.



Significance level | Regression equation
0.1% 11.834 — 84.2171
1% 3.187 — 14.80T !
5% 1.456 — 4.266T 1

Table 4: Response surface regressions from critical values of the approximative
LR test. 1 000 000 replications were used, and the regressions were based on
the sample sizes 25, 50, 100, 200, 400 and 800.

Figure 1 about here

Figure 2 about here

4 Extension

In this section, we will outline how our test may be generalized to the ARMA(p, 1)
model

¢ (L)ys = et — 041,
where L is the lag operator, # and ¢; are as above and

$(L)=1—¢1L—...— L7,

for some p. Moreover, we assume that yo = y—1 = ... = y—_py1 = 0. Then,
defining the T" x T matrix

p
=1-) oL, (12)
i=1
and we have via (2) that
by = H'e. (13)

Consequently, the log likelihood is

T yEly 1
2 2
1(6,¢,0%) = -3 log (2mo?) — 557 3 log (det ), (14)
and assuming that ® is invertible,
=308 Y,

with © as before. Moreover, noting that det ® = 1, (14) simplifies into

yEly

l (97¢702) = —g log (27702) ~ 5

1
~3 log (det €2) .



For fixed 6 and ¢, it follows that the MLE of o2 is
7' (¢) =T y'S"ly =T 'y'®'Q '@y,
and we get
~2 _ T T ~2 1
1(0.6.5° (@) = =5 {log (2m) + 1} — S log {5 (¢) | — 5 log (det ), (15)
where ¢ = (¢, ...,¢p)l. Here, via (12),

75 ()

p ! p
y’ (I -y aw‘) Q™ (I -3 @LZ‘) y

=1 =1

p p p
= YQly-2) oy Ly +) ) 60y L@ Ly

i=1 i=1 j=1

= m—- 2¢Im + ¢/M¢7

where, putting J; = Q7'L¢, J;; = L"Q L7,

m = yQly,

m = (y’le,...,y’pr)/7
yIuy - ¥ JIupy

M = : :
YIpny o Y'Ipy

Now, to minimize over ¢, we find

755 (@) = ~2m 4 (M + M) ¢ =2(-m + M9).

implying that the MLE of ¢ is ¢ = M~'m. This yields
T3 = T3> (;b) =m—-m'M 'm. (16)
Hence, with # = 1 — ~, (15) implies

1(0,6,5°(9)) =5 flogem) + 1} - S log lg ()} (17)

where o
gy =" . (18)

with 7 as in (8). Then, as above, Taylor expansion and minimization yields the
following result.

10



Proposition 3

-1
g =T T+D)" (901 — vo17 — V921 — V937 + 7 gar) + O (),

where

gor
ar
92T
gst

gar

fOT —Tor,

2TOT?
for + ror,

= for + 737,

f4T — T4,

with for, for and far as above and where ror, ror, r3r and rqr are defined in

the appendix.

Proof. See the appendix. m

The following proposition gives the asymptotics of the g terms. We note that
the order of convergence for gor, gor and g47 is the same as for the corresponding
f terms, but the limits are different.

Proposition 4 If § = 1, 0> = 1 and if all roots of ¢ (2) = 0 are outside the
complex unit circle, then as T — o0,

where

g0
g1

92

g4

A0 —'C e,

2¢/'C ¢,

(1-1,C7c)’ Cc0? (fg + %) -

(1= 1,071 ¢ (4 15

T gor & go,
T gir 5 g,
T 227 % go,
T 3gsr 50,

_ d
T~ *gar = g4,

180

(c(o)* + c’Cflc) ,

L (c(o)* + c’C’lc) ,

180

where 1, is a p dimensional vector of ones, the kth entry of the p dimensional
vector ¢ is ¢¥* and the (k,l)th entry of the p x p matriz C is k=)= defining

(k)

o T—k-—1
as the limit of >, "~ ¢iciyr, where co,cq, ...

are the coefficients of the

moving average representation of the AR(p) process ¢ (L) z: = er. Moreover,
CO) s the limit of Z;TF:_Ol Ci.

11



Proof. See the supplement. m

It is interesting to see how the limits of this proposition translate to the
AR(1) case. We give these in the following corollary. In particular, we note the
special case ¢; = 0, where as expected, the limits coincide with the correspond-
ing limits in the p = 0 case.

Corollary 5 If p =1, under the assumptions of proposition 4, we have

g0 = 17

g1 = 2¢7

g2 = fa— %
_ o

g4 = fa 90’

where ~ -1

o=¢i(1-01) -
Proof. This follows since ¢(¥* = (1 — Qﬁ)il =C, M =g, (1- Qﬁ)il =c
and CO =(1-¢,)"". =

Next, we need to solve

0 -1
0= 5’_7 (M =T+ 1)T (—91T — 2vgor — 372 gsr + 473g4T) .

There are three solutions to this equation, which are given by

g 92/3¢, 51/ 4 g1/3
n 4941 3% 27 3gyp
N gsr 22/3 (1+ ’L\/g) s157 Y3 4 (1F Z\/g) s1/3
V2,3 Agar 3 % 210/3!}4T )
where
s=s5y4/—4s} + s = 2%’5‘3/2307
with
9 3 & 3/
So = 1—- 752517 — %251
s1 = 993r + 24gargar,

52 54957 + 216gargsrgar + 432917957

Moreover, since
s V3
i =5

12



we have

:}7 _ 37 . (\/g_z) 851/381/2 + (\/§+Z) 8(1)/351/2
! 4gar 24941 ’
5 gsr
723 4g4r
(12 v3) (V3— 1) 55 /sl 4 (1 7ivE) (VB +i) /s
48g47 '
implying
5, = gsT (V3+1) 881/381/2 + (V3 —1) 56/35}/2
2 4941 24947 ,
. gar isa1/381/2 B 3(1)/351/2
3 4941 12947

Relating to the corresponding result for p = 0, we find that it is most reasonable
to choose any of the solutions 7, or 4, which, asymptotically, have the same
modulus but opposite signs. This is so, because as is seen from proposition 4,
the g terms have the same asymptotic order of magnitude as the corresponding
f terms. Indeed, we find s; ~ 24gorgar = O, (TG), S52 = 0p (T9)3, implying
so ~ 1* and

~ d g2
T +4/|=—
V1,2 — ‘294

(1{929420} + i[{9294<0}) s

and T%4 is of smaller order. Hence, along the same lines as for p = 0, we will
choose the test statistic T

ZT _ g2

2g0r

As in the p = 0 case, from proposition 4 we get the asymptotic result

g2r
gar

92
94

> d
ZT—>g—22

Unfortunately, as is seen from proposition 4 and corollary 5, the asymptotic
distribution of Zp is non similar, i.e. it is a function of the AR parameters.
(Observe that the Tanaka test is also non similar, although a simple correction
of it is, see further below.) To alleviate this problem, we suggest to derive the
critical values of the test by response surface regression on the AR parameters.
Then, in a practical situation, the critical value may be obtained from this
regression equation by inserting the estimated AR parameters. In the simulation
section below, we will investigate the performance of this procedure.

3Xp = Op (T™) means that T~"Xr tends in distribution to a non degenerate random
variable as T — oo. Xp = op (T™) similarly means that T~ " X tends to zero in probability
as T — oo.

4 X1 ~ Y means that X7 /Y7 tends to one in probability as T — oo.

13



The GLR test may be readily generalized to the ARMA(p, 1) case, by numer-
ically maximizing the likelihood with the MLE of ¢ inserted, i.e. maximizing
(17) over v, and comparing to (17) with v = 0 inserted.

As for the score test, theorem 3 of Tanaka (1990) yields that under the
ARMA(p, 1) framework, 7St has the same asymptotic distribution as that of
St under p = 0, where

y (2I+L+L) %y
Y (QI+L+1) "y’

Sp=T

and o
2 j=0 %

oo o~ 2’
(Z50%)

where @j are ML estimates of the coefficients of the moving average represen-
tation. In particular, if p = 1, the corresponding population quantity is

Sredt _(1-6) " _1-4
(Smeed) (o0 1o

?:

T =

where ¢, is estimated by
- Yy 'Ly
o= L Ly
y'L'Q~ 1Ly
with R
Q=(1-L)(1-L) 46,8,

5 Simulation of small sample size

In this section, by means of simulation, we compare the size properties of the
tests in the case p = 1. The size of the approximate LR test is given both
without corrected critical values, as well as with critical values corrected via
response surface regression, with the estimated parameter inserted. The re-
sponse surface regression was performed with 1 000 000 replications on the sets
T € {25,50,100, 200,400,800} and ¢, € {—0.7, — 0.6, ..., 0.7}. (Inclusion of
+0.8 gave rather unstable results.) The results are given in table 5.5

For sample sizes T' = 50 and 200, in tables 6 and 7 and figures 3 and 4, we
give the empirical sizes for the tests at the nominal 5% level. Critical values
for the score test and for the GLR test are taken from table 3. As for the
uncorrected approximative LR test, we use the response surface regression of
table 5 with ¢; = 0. It is seen that the score test is oversized for negative ¢,

5The procedure to obtain the regressions was to initially include the terms ¢, d)%, 71
¢, T~1 and (Z)%T*l and then succesively delete terms with the highest p value when testing if
their coefficient is zero. The procedure was stopped when there were no p values larger than
1% left. We also tried bringing in terms involving 72, resulting in no real improvements.

14



Significance level | Regression equation

0.1% 9.136 — 81471 — 17.3¢; + 289, T~ + 720977 *
1% 3.110 — 14.67~! — 4.93¢7 + 21.2¢, T 4 89.9¢7 7!
5% 1.142 — 44271 — 3.14¢7 + 28.845T !

Table 5: Response surface regressions fro critical values of the approximative
LR test in the ARMA(1,1) case. 1 000 000 replications where used, and the
regression is based on the sample sizes 25, 50, 100, 200, 400 and 800 and AR
parameter -0.7, -0.6, ..., 0.7.

and undersized for positive ¢, especially for T' = 50. Moreover, note that the
score test is undersized at ¢; = 0, especially for 7" = 50. This might be due to
the estimation of ¢,. Without correction of the critical values, in general the
approximative LR test is undersized (conservative), but including the correction,
it works very well apart from in extreme cases. As long as ¢, is not too close
to one, the GLR test has good size properties, in particular for 7' = 200.

Figure 3 about here

Figure 4 about here

6 Conclusion

In this paper, we have compared the GLR test of Davis et al and the score test
of Tanaka for noinvertibility with a new approximative LR test. In terms of
local power, the GLR test outperforms the score test, although they are very
close in the neighborhood of the null. However, unlike GLR, the score test takes
an explicit form. The same is true for the approximative LR test, but in terms
of power, this test is seen to outperform the score test while it is only slightly
worse than GLR.

The tests are generalized to the ARMA(p,1) model. Unfortunately, the
distribution of the approximative LR test turns out to depend on the nuisance
parameters even asymptotically. As is seen in a simulation study for the p =1
case, this may materialize in conservativeness in terms of size. However, when
incorporating a correction of the critical values in terms of the estimated AR
parameter, the size properties are better and comparable to the score and GLR
tests.

Further extensions of our results could be generalizations to MA processes
of higher order (cf Davis and Song, 2011) or to models including deterministic
terms.

15



0N Score | Approx. LR | Approx. LR with corrected c.v. | GLR
—-0.8 1 9.0 0.3 3.1 4.4
—0.7 | 6.8 0.7 4.0 44
—0.6 | 5.8 1.3 4.3 4.5
—0.5 | 5.3 2.0 4.5 4.6
—-04 | 4.9 2.8 4.6 4.8
—0.3 | 4.6 3.5 4.8 4.8
—-02 | 44 4.1 4.9 5.0
—0.1 | 4.2 4.5 4.9 5.2
0 4.0 4.7 5.0 54
0.1 3.7 4.7 5.1 5.5
0.2 3.5 4.5 5.2 5.8
0.3 3.2 4.1 5.4 6.2
0.4 2.8 3.6 5.4 6.7
0.5 2.3 3.0 5.1 7.5
0.6 1.7 2.1 4.1 8.9
0.7 1.0 1.1 2.5 11.0
0.8 0.3 0.3 1.1 16.8

Table 6: Empirical sizes in per cent in the ARMA(1,1) case, T=50. 1 000
000 replications where used except for the GLR test, where the number of
replications was 40 000.

0N Score | Approx. LR | Approx. LR with corrected c.v. | GLR
—-0.8 | 5.7 0.1 3.0 4.7
—-0.7 | 5.4 0.4 5.1 4.7
—0.6 | 5.2 1.0 4.5 4.7
—-0.5 | 5.1 1.8 4.6 4.7
—04 | 5.0 2.7 4.8 4.8
—-0.3 | 4.9 3.6 5.0 4.8
—-0.2 | 4.9 4.4 5.0 4.8
—0.1 | 4.8 4.9 5.1 4.9
0 4.8 5.1 5.2 4.9
0.1 4.7 4.9 5.2 5.0
0.2 4.6 4.4 5.1 5.1
0.3 4.6 3.7 5.1 5.2
0.4 4.5 2.8 4.9 54
0.5 44 1.9 4.7 5.6
0.6 4.3 1.1 4.2 5.9
0.7 4.1 0.5 3.5 6.5
0.8 3.7 0.1 1.1 7.8

Table 7: Empirical sizes in per cent in the ARMA(1,1) case, T=200. 1 000
000 replications where used except for the GLR test, where the number of
replications was 40 000.
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8 Appendix: Omitted proofs

8.1 Proof of proposition 1

Via (5) and (6),
62 — T—ly/Q—ly

where with 1 = det €2,
Q= (0 46%,8) " =07 - 020,589,
Writing
A=(I-L)I-6L) "' (I-6L) " ' (I-1L),

17



we get
Q' =(I-60L) ' (I-6L) '=1-L)'Ad-L)",

implying )
Ql'=1I-L)"'BI-L)",

where because (I — L) ' é; =1,
B=A—-0?A11Ap" L.
Hence, with x = (I — L)f1 y, we get
o2 =T 'x'Bx.
Now, with # =1—~and S=(I— L)f1 L, Taylor expansion yields

I-(1-yL}y ' 1-L)
= (I4+48) " =T-7S++28%2 —4%8% +4%8* + O (+°),

implying
A=T—7A1 +7A; —YA3+7'A4+ 0 (7°),
where
A, = S'+58,
A, = S?4+8'S+82%
A; = S®+87S+8'S*+ 8%,
A4 = S/4 4 S/BS 4 S/QSQ T Sls3 + S47

which may be simplified into

A, = 11 -1,

Ay, = (T-2)11+1-SS,

A; = (T?°-3T+3)11' —1-11'SS’' — 88'11' + 28§/,
Ay = é(T—S)(4T2—9T+8)11’+I—(T—3)11’SS’

— (T —3)S8'11’ — 388’ + (SS')°,

and moreover, it follows that

1A, = (T-1)71,

1A, = (T-1)7°1-1'S¥,

VA, — % (T —2)(T —1) (4T —3)1' — (T — 2) 1SS/,

1A, = é (T —2)(T—1)(2T° — 6T +3)1' — (T — 3T + 3) 1'SS’

+1/(88)°.
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Consequently, via (22),

Al11'A

(I—vA; +7%As — Az +7'Ay) 11
(I—7A1 +7°A2 —*As +7*A4) + O (7°)
= Cy—7Ci++°Cs—7°C5++4*Cs+ 0 (%),

where via simplifications,
Co =11/,

Cy=11A; + A11' = 2(T — 1) 11/,

1Ay + Aj117A, + Ay11/
3(T—1)°11' —11'SS’ — SS'11/,

C,

Cs
11As + A 117 Ay + Ag11/A; + Agll’

= % (T —1) (2T —3) (5T —4) 11’ — (2T — 3) (11'SS’ + S8'11’),

Cy
= 11TA; +A1117A3 + A11'Ay + A3117A ) + Ayl
= % (T —1) (97° — 34T° + 41T — 15) 11/
— (3T — 8T +6) (11'SS’ + SS'11') + 11’ (8')* + (S8')* 11/
+88'11'SS’
Hence, via (20), (21), (8) and (10), Taylor expansion yields

i ,
F) =TT +1)" ¥ (Dor —*Dar = ¥*Dar +7'Dar) x+ 0 (+°) ,

where
Dor = I———11'
or = T+1 )
T? - 2T +4 T+2 1
Dy = —— v 81— (11'SS 11/
- sy LTSS T 7y (1SS 4851,
8T 4 1473 — 30972 + 529T — 602 T+8
Dy = 11/ - — s8¢’
o 360 (T + 1)
(T+2)(2T*-T—61)_ T?2-2T+7 , . Il
- I 11 11
360 g (1SS +ssr)
YA 1 Hi1'eQ’ 1 / 72 N2 447
+(88) - gogssrss’ - = {11/(s8))” + (88) 11}
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8.2 Proof of proposition 2
Observe that if § = 1, we have from (2) that with & = (1, ...,e7)’

x:(I—L)_l(—él,I—L)<€,E9 > =% 1g.

Now,
1 2
—xx— —— (1
for =x'x T+1( X) )
where
x'x = (€ — 1gg)' (€ — 1e0) = €' — 25012 + T}
and

1'x =1'e — Te.

Hence, it follows that

~ T
EO].IE: + 2

e 1 .
for =€ — ——(1'8)? T+1°0

T+1 CT+1

and since T~18'g £ 1 and T~1/21'Z is standard normal for all T, it follows that
T for 5 1. Similarly,

f2T
T2 — 2T 4+ 4 2 T+2 2

= = (1 'SS'x — 'x — ’11’SS’
ST (LX) HxSSx - —emxx - e %

where the above results and
x'SS'x = €'SS'e — 2¢71/SS'E + £21'S9'1,
x'11'SS'x
= E'11'SS'e — Teo1'SS'e — £9'11'SS'1 + T<21'SS'1,
yield, after simplification,

~ ~ 2
for = € Dare — g0Ya1 + €5 Ya2,

where
T2 —2T+4_,_ . T+2_ 2T _
Vo1 = 2T——— " 124 21'SS's — 1z — 1'Ss’
21 ST+ To cT T3 Tt T T €
2
———_1'SS'11’e
T4+1 €’
T2 — 2T + 4 T+2 2T
Yoo = TP——— = +1'SS'1 - T—= — —— _1'SS'1.
22 5T+ 6 T+l

20



Now, observing that
T—1 1
1'SS'1 = t?=-TQT-1)(T-1),
> ¢ =gTer - -1

we find that by simplification,

which shows that 72 times the €2 term tends to zero with 7'. Similarly,

2(T —1)% 2 _
Yo, = ( ) 1 + 11’SS/5,

3 T+1 T+

which, because 1SS’z is of order T°/2, is of order T°/2, and so, T~ 2Y>; tends
to zero with T. Then, we find the limit of for since by standard methods and
elementary matrix manipulations,

g B,
T2 Lw(),
1
T2%ssE 4 / W* ()2 dt,
0
d 1
T-%'11'SS'e —>W(1)/ (1—t) W™ (¢)dt,
0

In the same fashion, we get

~/ ~ 2
far = € Dyre — oY1 + £5Ya2,

where
Yi
_ T8T4+14T3—309T2+529T—602
- 180 (T + 1)
T+2) (272 — T — 61 T2 — 2T
_T+2)( ) . +7 591
180 3(T+1)
2 2 —
__1/ I 1 1/
e 5115
T+8 T2 2T +7 2 _
- oT - 1’SS’1 +1/SS’
+{ 3 T T3Trn) T } €
2T , N2~
+(2—T+1>1 (ss')°e
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and

Yo
T28T4+14T3—309T2+529T—602_T+8
360 (T + 1) 6
(T +2) (2T% - T — 61) T? 2T+ 7,
-T 2T 1'Ss’1
360 + 3(T+1)
1 2 2T 2
1 (88)°1 - —— (1SS'1)” — ——1/ (SS')° 1.
+1' (8S') T+1( SS'1) T (Ss’)

1'Ss'1

Here, because

s ror_t—1\? 1
1(sSs')"1= t— — ") =TT -1)(T-1)(2T*-2T +1
(58)"1=3 (5 ) = ggrer - nr - +1),
it follows that

1 T-2

and so, T~*Y}s tends to zero with 7. We also find that

Y

1 8T3 + 2272 — 167T + 122
_ (1) 8Lt +
T+1

— — I~
180 e
raql/~ 2 / N2~
1'S8’e + ——1'(SS') "¢,

72T2—2T+4
3 T+1 T+1

which because of previous arguments and the fact that 1’ (SS/)QE is of order
T9/2 implies that T—*Yy; tends to zero with 7. The limit of f47 follows using

the results above, proposition 1 and
1 2
( / W™ (s) ds) dt,
0 s=0
1 2

(1—t)W* (t) dt} ,

T (s8')’s &

T

T-5¢'ss'11'ss's &

S—

I

D=~

1
T9¢11 (88’ L (1)/ (2 =32 +¢%) W (t) dt.
0
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8.3 Proof of proposition 3

Proposition 1 gives the expansion of f(v) = T_lmanl. As for m, note that

from (19) and (20), for all i, with x = (I—L) 'y,
y'Jiy
= x'BL'x =x'AL}x — 9277_1X’A11'ALiTx
= X (I-7A,+ v?Ay — A5+ ’y4A4) bx
— (1= (Co —vC1 +7°C2 —4°C3 +7'Cy) Lix + O (7°)
= x'(Eg —vE1 +v*E2 —y°E;3 + 'y4E4) Lx+0 (75)

where via simplifications,

E, = I- T%Llu’,
E, = I+ %Hll/ = —E,
E, = I- %11’ —-Ss'+ %ﬂ (11'sS’ +ss'11'),
E;s = _I+2TZ’,2(;’7?1;F911/ + 2SS’ — TLH (11'SS’ + 85'11') = Eq — 2Eo,,
£, I+4T4 + 16T3180221j 1+) 5761 — 72011, e
W (11'SS’ +8S'11') + (S8')?
—TLH {11 (s8) + (88)" 11" + s8'11/8 |

It follows that
m =my — ym;y +7°my —7’ms +7'my + 0 (7°),
where for j =0,1,2,3,4,
m; = (x'E;Lx, ...,XIEJ-LPX),.
In a similar fashion,
M = My — YM; + 7*M; — v*Ms + 7'My + O (7°),
where for j =0,1,2,3,4,

xL'E;Lx --- xL'E;LPx
M, = : :
x'L"E;,Lx --- xL7E;L’x
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Moreover, because
M-!
= (Ip — My "M, + My ' M, — /* My "M + M 'M,) ' M
= Po+P1 +7°P2 +°P3 + 4P, + 0 (7°),

where, defining 2. (A, B) = AB + BA etcetera,

P, = M,
P, = M;'M;M;",
P, = {(Mg'™Mn) - MGV MG
Py = {(Mg'ML)” -2, (MG M1, MG M) + MG My | Mg
Py = {(Mg'ML)" - 8. (MG My, MG My, Mg M) + (M 'Ms)
+2. (Mg "My, My 'M3) — Mg "M, } Mg,
we get
m'M™'m = qor + yq17 + V’er + Vasr + Y ur + 0 (7°),
where
gor = myPomy,
Qr = —2m6P0m1 + m{)leo,
Qo = 21’116]?011’12 — 2m6P1m1 + m6P2m0 + m’lPoml,
qsT = —2m6P0m3 + 2m6P1m2 — 2m6P2m1
+m6P3m0 — 2m'1P0m2 + 1’1’1’1P1m1,
qr = 2m6P0m4 — 2m6P1m3 + 2m6P2m2 — 2m6P3m1

+m’OP4m0 + 2m’1P0m3 — 2m’1P1m2 + m’ngml

/
—l—m2Po ms.

Observe that because E; = —Eq and E3 = Eg — 2E,, corresponding equalities
hold for the m; and M, implying

P, = M;',

P, = -M;!'=-Py,

P, = (I-My'M,)M;,

P; = {-I+2M;'Mo+M; ' (Mg —2M,)} My ' =0,
P, — {—1+M51M2+(Mg1M2)2—M51M4}M51,
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and

ar = 2myPomy —myPomy = m{Pomy,

@r = -—-myPomy+2miPom; + mPomy,

@r = -3miPomg+ 4myPoms + 2myPomy,

ur = —2miPoms + 2m{Pymy + myPymg + m{Pym,

+2m6P2m2 + m/QPOmQ.

Furthermore,

where

Tor

mr

Tor
r3rT

TaT

Hence,

_ _mp—1
m'M~tmy~ T

-1
= (T+1 T {rOT + 71 + ¥ror +VPrsr + y'rar + O (75)} )

= dqoT,

= qor + Q1T = 2907 = 2707,
T—4 T —10
= - qor + 1T + Qo = — 6 qor + qor,

6
T-1 T—4 T-2
3 qor — 6 QT + qer + Q37 = — 9
273 + 1372 — 143T + 38 T-1 T—14
360 qor — 3 QT — 6
_ 273 4+ 1372 — 263T + 158 T—4
- 360 bor =4

qor + g2 + Q3T

Q2T + Q37 + Qa1

Q21 + Q37 + Q-

via proposition 1, (16) and (18),

-1
g() =TT +D)" " (gor — vo11 — V21 — V2931 + 7 gar) + O (7°),

where

gor = for —ror,
gar = riT =217,
gor = for + o7,
g3r = for + 737,
gar = far —Tar.

This completes the proof.
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Figure 1: Local size adjusted power, § =1 — /T, T = 50, 100000 replications.
Score test in blue, approximative LR test in red, GLR test in magenta and
power envelope in black.

power

Figure 2: Local size adjusted power, § =1 —6/T, T = 200, 100000 replications.
Score test in blue, approximative LR test in red, GLR test in magenta and
power envelope in black.



Figure 3: Size for T = 50, Score test in blue, approximative LR test in red,
approximative LR test with corrected critical values in magenta and GLR test
in black. 1 000 000 replications where used except for the GLR test, where the
number of replications was 40 000.
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Figure 4: Size for T = 200, Score test in blue, approximative LR test in red,
approximative LR test with corrected critical values in magenta and GLR test
in black. 1 000 000 replications where used except for the GLR test, where the
number of replications was 40 000.
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A likelihood ratio type test for invertibility in
moving average processes. Supplement: Proof of
proposition 4

Rolf Larsson

June 27, 2013

Under Hy, as in the proof of proposition 2, we have

(I-L)x=dy= (—61,I—L)( 2 )
and since ® and I — L commute and I — L is invertible,
Px = —1gy + €.
Hence, writing x = (z1, ..., 27), we get
¢ (L) zt = &t — €0,
ie.
xy =C(L)ey — C (1) e,

where the inverse operator C (L) fulfills C (L) ¢ (L) = 1.

Now, assume that all roots of ¢ (z) = 0 are outside the complex unit circle.
In Larsson (1998), it is shown that under this assumption, certain functionals of
C (L) &; are asymptotically equivalent to the same functionals under the AR(1)
framework. Indeed, with the assumption of zero initial values, a simplified
version of lemma 2.2 in Larsson (1998) (which is in turn a slight extension of a
univariate version of theorem 2.1. of Johansen, 1995) is given by

Lemma 1 Let

¢)(L) Ut = &,
o(L) = 1-6L— . — 6,17,

fort =1,...,T, where all ¢; are independent standard normal and the starting
values ugp = u_1 = ... = u_py1 = 0. If all roots of ¢ (2) = 0 are outside the
complex unit circle, then

u =C (L) e,



where C\) (L) = S AOL with Y = S mine-1.4) 9 ¢ Moreover, for
k=12,

o) =i ”<1>+<1—L>c£’“><L>,
where C’t(k) (L) = Zl 0 Ek)L’ with ¢ (k) — = -3 MY Purthermore, for

Jj= z+1 Cj
some 0 > 0, the sums

B (L) = lim CY( }:c , k=0,1,2,

are absolutely convergent for |L| < 1446, and cl(. ) tend to zero exponentially fast
as i1 — 0.

At first, we study the asymptotics of gor = for — ror. As for

T for =T 'x'x— 1’x)2 , (1)

T(T+1) (
we have

T—l /

T a2 = Y {00 (0 - 00 e}
-t Z { O ( et}Q —2¢oT! ZCt(O) (L)e,C” (1)
w3 Y e W) 2)

where by lemma 1, the first term is

Ty {c§0> (L) st}2

t—1t—1
_ -1
= T35 > AV e
t =0 j=0
T-1T-1
_ (0) (0) -1
= E E ¢ic T g E4—i€t—j + R1, (3)
i=0 j=0 t
where
t—1T-1 T-1T-1

O 1§
C Et iEt— ]+T
t

1=t

Il
=)

i=0 j=t

=27 12 chO 5t i€t—j
t J=t
(0)

tends to zero with 7' since the ¢; ° decay exponentially fast with ¢. The main
term of (3) asymptotically behaves as its expectation, which is

T-1T-1 T-1 T-1
SIS SLCRONES MELE AP IICOES oL
=0 75=0 1=0 t 1=0



and because of the exponential decay of the cl(-o)

constant, c¢(9* say. Hence, the probability limit of the first term of (2) is ¢
It is similarly seen that

-1 Z C(O) ) et C(O) (1) ~ 021 th,
t

where C(?) is the limit of ZlT " c( , showing that the second term of (2) tends
to zero with T'. As for the last term we find as above that

1 © 1% X=X 00 02
T Z{Ct (1)} szci c; ~C%,
t

i=0 j=0

, this sum converges to a finite
0)*

and so, (2) implies
T 'x'x ~ O 4 0022, (4)

As for the second term of (1), we find that
T2 =172 0y =772 O (L) e, ~ 7723 ¢ (1) e,
t t t

where as above, the first term satisfies

772N O (L) ey ~ COT2N g COW (1),
t

and the second term tends to zero. Hence,
T-121'x ~ COW (1), (5)
Moreover, note that

T2 (1'x)?
= 7! {T‘l/QZCt(O) (L)at}
—2T3/2¢, {T—1/2 S gt} {ZCS)) (1)}
2
+53T2{ZC§°) (1)} : (6)

where the first two terms are negligible but in fact, the third term gives a
contribution because

2 T t—1 s—1 T-1T-1
) {Xt:ct(o) (1)} — -2 ZZZ ZCEO)C§O) N Z Z Cgo)cgo) ~ 02
(7)



Hence,
T2 (1'x)* ~ 0022, (8)
and together with (1) and (4),
TﬁlfOT ~ C(O)*. (9)
As for ror, we have from the proof of proposition 3 that
T Yror = (T~ 'mp) (T~ M) ™" (T"my) (10)
where T~ 'mg has components, for k =1, ..., p,
T 'X'EoLFx = T7'x'LFx—

TTTD (1'x) (1'LFx), (11)

where as in (2),

T x'LFx

= 17! thxtfk
= {0 e - 0 Wah {C) (D e - €0 )20}
t
= 7730 ()0, (L) ey — 20T ZC(O) 1209 (1)
t
—eoT ™! Z (1) CY, (L) ey + 2T Z cl oM. (12
t
Here, as above,
1200) stCt(k( Lyerp~T" 12
t

which behaves as its expectation

t—1t—k—1

k—
g C Etzetkja

i=1

<.
—

1t—k—1

122 Z ¢ (O)E(et i€t—k—j)

j=1

— t—1
- TIYY Y OB ) =T Y
t

t i=1 j=k+1

t—
) (0)
H—k:

M
O
o

1

K2

T—k—1 T—k—1

12 Z C(O z+k: Z C §O+)k7

*

which tends to a finite limit, ¢(*)* say. Moreover, in the usual manner, the
second and third terms of (12) may be neglected, while as for the fourth term,

t—11t 1

120 O (1yc® (1 Z i 0l iicgo%a) ~ 02,

i=1 j=1 i=1 j=1



and so, (12) yields
T X' LFx ~ % 4 0022, (13)

Further, analogous to (8),

T72(1'x) ('LFx) ~ 772 {Zc”” } ~ C02e2

which together with (11) and (13) implies
T X' E(LFx ~ P, (14)

It is similarly seen that the components of T-'My satisfy, for k,l =1, ..., p,

1
T 'X'L'*E(\L'x = T_lx’L’kle—iT EsY (1'L*x) (1'L'x) ~ cIF=1h=,

Conclusively, from (10),
T_lT()T ~ CI(\J_1 (15)

where the kth entry in ¢ is ¢(*)* and the (F, l)th entry of C is ¢(/*~!)* Hence,
T gor ~ O —¢'C~

The limit result for g1 follows immediately, since g1 = 2rgp.
Next, considering for, we have

T2 for
T2 — 2T + 4 s T+2
= _ 1/ _ / T72 / /
g ) T e <Xt xSSx
1 / / !
275 T (1'x) (1'SS8'x) (16)

where at first, we note that the tth component of S'x is

T T T
Soai= Y PV We- Y ¢ (M),

i=t+1 i=t+1 i=t+1

and so,

T 2x'SS’x

= T*2Z ti T;

,—/H /\
: -
+

~

[\)



. t .
Now, defining s; = >, _, €k, we have via lemma 11,

T
ST oL

i=t+1
T T
= Y W+ > P (L)A- L)
i=t+1 i=t+1
T i—1 T i—1
= Z ZCEO)EZ- + Z ZC§1) (1 — L) Ei—j
i=t+1 =0 i=t+1j=0
T-1 T T

T-1
= cho) Z EiJchEl)(lfL) Z €imj
7=0

j=0 i=(jve)+1 i=(jVt)+1
1

T— T-1
= c;o) (ST — 5]\/t) + Z C; ET—(jvt)>
Jj=0 Jj=0

implying

t 7=0 j=0
T—1T-1
— 0
= 77 Z Z Cg )cl(c : (57 — sjve) (ST — Skvt)
t j=0 k=0
T—-1T-1
+277 Z CE'O)Ck (87 — 85) €T~ (kvt)
T =0 k=0
T—-1T-1
- 1 1
+T72) P efDer_uner—gvn-
t j=0 k=0

Tn the following, a A b = min (a,b) and a V b = max (a, b).



As for the first term of (19), we find in the usual manner that

T-1T-1
T2 Z Z Z cg-o)c,(co) (s — Sjvt) (ST — Skvt)
t =0 k=0
T-1T-1
= Z Z % (O)T 2 Z s7 — Sjvt) (87 — Skve)
7=0 k=0
T-1T-1
L T Y 072 3 (g5
§=0 k=0 t=jVk

T—1 T—1
+2 Z cg‘o)Tf2 Z (sT — st Z Cp (0) (sT — sk)
j=0 t k=t
T-1T-1
+772 Z Z Z C;O)cg)) (s — s;5) (s7 — si)
t

j=t k=t
T—-1T-1
~ ZZC(O) (O)T 22 ST_St
7=0 k=0

)2 * 2
/0 W ()2 dt, (20)

and it is similarly seen that the second and third terms of (19) are asymptotically
dominated by this term. Analogously, considering the second term of (17), we
have

T T
723 % m)e 3 c® )
toi=t+1 i=t+1
T_1 T-1 T i—1
T Z Z C§O) (87 — sjve) + CE'I)ETf(th) Z Z CI(CO)
p =0 j=0 i=t+1 k=1
T-1 T i—1
~ 2 ZC )T 3/2Z(ST75t)ZC](€O)’
j=0 i=1 t k=1

which tends to zero with T'. However, the third term of (17) is not asymptotically



negligible, but rather

T 2
> a” <1>}
=t+1
T i—1j-1
= T3 3 2 > > ald”
=t+1k

|

T2 Z
t

0

0l=

T
=t+1j

14

T

t

C](;))Cl((])

—

=0
1T-1

(Ang =133 e
=0

where the first term is

= COPP2N N (A —1) +o(1)



the second term is essentially

and similarly, the third term is o (1). Hence, it follows that

T_ta:{

implying via (17) and (20) that

i=t+1

T72x'SS'x

1
2 /O w* (1)

Similarly, via (18),
T-5/21'SS8'x

T
= TP (T—1) Y

i=t+1

= T°PY (T -1)
t i=t+1
T-1

~ TN T -1y 0
t

=0

1
~ O / (1— &)W (t) dt,
0

T
S a”a

2dt + 2002 (%T - %) +o(1).

T
S e (Lye — TN (T 1)

)}2 _ 02 (%T - %) +o(1),

(21)

T
> G (e

i=t+1

ST — Sth)

(22)



and

T3 (1'x) (1'SS'x)

= T*SthZ(T—S) Z x;

1=s+1

— 73 {Z oV (Lye, - Yo (1) 60}
t T t T
{Z(Tt) S o Wwe-Y -1 (1)50}

t i=t+1 t i=t+1

= 123 0 (W)ed (T-1) Y ¢V (L)e;

i=t+1
T
~eT 330 (We > (-1 Y )
t t 1=t+1
T
—eoI Y WY (-1 Y ¢V (L)
t t i=t+1
T
+T Y G WY (T -1 Y (), (23)
t t i=t+1

where the first term converges to C(921/ (1) fol (1 —t) W* (¢) dt, and the second
and third terms vanish asymptotically. As for the fourth term, we have

S o)

t T
= Y= (1-i)d” =1C® W 1+ 0(1), (24)
t=11

|
—

|
—

Il
=
.
Il
=

where C) = 3% icl® and

TN (T 1) i ¢ (1)

i=t+1
T -1
- Y Y Y
t i=t+1j=0
T T-1 T T
SO MDD SELEES YLD vh il
t i=t+1 j=0 t i=t+1 j=i

10



where

and

Il
3
1
1M -4
.
1=
+

[
b
w
(]~
.
S
£

<.
||
[
o~
Il I

and so,

-3 (0) O T -1
T ;(T—t)‘Z C (1)_0()<§—5T )+0(T ). (25)
Hence, via (23),
T-%(1'x) (1'SS'x)
1
CO2yy (1)/ (1— &) W™ (t) dt
0
1 1
270 [ _p1cm) (L Ly
+e2TC {C T-i¢ }<3 ST )+op(1)
1
c<0>2W(1)/ (1= &) W™ (t) dt
0
+€2 {%TC’(O)Z —~ %0(0)2 - %C(O)C(l)} +0,(1). (26)

Also, we have to refine (8). A modification of (6) is

T (1'x)?
2

{Tl/Q Z Ct(O) (L) 5t}

—2T 2%, {T—1/2 S gt} {ZCS)) (1)}
2

+epT {Z c <1)} ,

11



where the first term converges to C'(9211 (1)2, the second term is negligible and
as for the third term, we refine (7) into

implying
T (%) = COPW (1) + &3 (TC©? = 20000 +0(1).  (27)

Hence, inserting this together with (4), (21) and (26) into (16), we obtain

T2 for
T2 — 2T + 4
= m {C(O)2W (1)2 + 83 (TC(O)2 — 20(0)0(1))}
1
_ 2 (05 4 (02,2
5 (c +C 60)
! 5 1 1
+C(0>2/ W* () dt +€2CO2 ( =T — =
0 372
T (0)2 !
—2—— |CO2W (1 / 1—t)W* (t)dt
e [ )
2 i ez _ Loz _ L ooo
13 2 3
+op (1)
1\ 1
= 2 <f2 + 6) —~ 60(0)* +o,(1). (28)

To tackle gor = for + ror, we need

q2T
—m6P0m0 + 2m6P0m2 + m(/)Png
= —m(M; 'mg + 2m{Mg 'm, + m{ (I — My ' M) Mg "'mj
= 2m{M; 'my — m{M; ' MyM, 'm,, (29)

where mg and M have been treated above. Moreover, in the usual manner we

12



find that my has components

x'E;LFx
272 — 5T + 12
6(T+1)

b (%) (USSTh) + (1188'x) (1T4%)}

= x'LFx— (1'x) (1'L*x) — x'SS'L*x

where as in (27),

771 (1'x) (1'LFx) = CO2W (1)% + &2 (T0<°>2 - 2c<0>c<1>) +o(1).

Similarly, as in (21),

1
1 1
—2x/SS'LFx = c<0>2/0 W* (t)* dt + 2002 <§T - 5) +o(1),

and as in (26),
T3 (1'x) (1/SS/LkX)
1
_ cozy (1)/ (1— )W (1) dt
0

ve2dlpcor _Loor _looeml ;)
3 2 3
= T3 (1'sS'x) (1'LFx).
Hence, inserting into (30) together with (13), we find

T 2x'E,LFx
272 — 5T + 12

= o on s {C(°>2W (1) + &8 (TC©2 — 200 M) |

67 ( T+1)

1 1
(02 ”r* _ 20002 ) Zp _ =
2T !
(0)2 o *
T—&—l{c W()/O(l HW™ (t)dt

1 1
+e {chW - 50<0>2 - 5c<0>c<1>H + 0, (1)

- 02 (f2+1)+op<1>,

+

and it is easily seen that the components of My have the same behavior. Hence,

it follows from (29) that
T 2qor ~ — {2 (1C7'c) - (1'C o) } c2 (f2 + (15)

13



and since qor = ror satisfies (15), we find

T™2rar ~ —%c’c—lc— {2 (1'C'e) - (1’C_lc)2} 2 (fQ + é) :

Thus, together with (28),

1 1
T 2gor ~ (1- 1’(]*1c)2 Cc(0)2 (fz + E) -3 (C(O)* + C’Cflc) )

The limit result for gsr = for + r3r follows because as we have seen, for
is O, (T2) and since it may be seen along similar lines as above that rsp is
Op (TQ) as well.

To tackle fy7, we have

T far
_ 87" +14T% — 3097 + 5297 — 602 (1'%)° T + 8x'ss’x
N 36074 (T + 1) 674
(T+2) (21 =T—-61) , 2(T°=2T+7) _, e
_ =~ = J1'x)(1
3607 XX+ = x) (1'88)
4 2 2
+T X/ (SS/) X — m (].ISS/X)
2 ’ / n2
ey 1) {1/(s8)"x}. (34)
The first new term to study is
T4/ (SS’)2 X
T t T 2
Sl 3] DI
t=2 \ i=2 j=i
2
T t T
= 7 Z Z Z C](.O) (L)e;
t=2 | i=2 j=i
T t T t T
=277 > AN NS0 (Lye p 3D (1)
t=2 | i=2 j=i i=2 j=i

2
T t T

+1743 NN e )y (35)

t=2 | i=2 j=i

14



where as in (18),

[a\]
<A1
[\
/N
S
¥
— =)
NN
~
T
&~
2 S
—— o~
Pl & =3
= S “w
S 5 =
SR A
C '~ = W
SIPNLESIPN ER
™~ [a\] Iu
th tZF ——

The second term of (35) vanishes asymptotically, while as for the third term,

we have

Ji—1j2—-1

TY Y Y S S 00

t

t

T
Ty

i1 j2=t2 k1=0 k2=0

2 i2:2 j1:

t=2 11

Jji—1j2—1

= YN T r1-ivi) Y Y YT Y D

T

T

T

T

0

i2 k1=0 ko=

T

= T N (T+1-irvig) > > Y ch)czﬁ)

=iy j2
T

J1

21i9=2
T

T

i1

T

T

0

=0 ko=

12 k1

T

Y Y v Y Y Y Y A

J1=t1 j2

2

2o

11

T

T

T

T

T

=iz k1=0 ka=j2

i1 j2

J1

=24y=2

i1

T

T T T

474 Z Z (T+1—141 Vig) Z Z Z Z CI(C?)C’(CZ)’ (36)

T

T

iz k1=7j1 k2=j2

i1 J2

J1

2

2142

i1

15



where in the usual manner, the first term is

T T T T T T
DI WEEIED D 3P P LR
11=212=2 J1=11 j2=ti2 k1=0 k=0
T T
= COPTN N (T+1—iy Vig) (T+1—i1) (T +1—is) +0(1)
11=212=2
T i1—1
= 20027743 N (T4 1 - 0)P (T +1—d)
11=212=2
T
+COPTAN (T +1—i1)° +o(1)
11=2
_ o2 ( T 1) +o(1)
15° 3 ’
and moreover,
T T T T T T
T 42 Z (T+1—11 Vi) Z Z Z Z c,(:i)cg;)
i1=2i2=2 J1=t1 jo=t2 k1:0k2:j2
T T
= COTAN N (T +1—iy Vig) (T +1—iy) Z Z Y +
i1=21i9=2 J2=t2 ka=j2
T T T
= COTHAN N (T +1—iy Vig) (T +1—i1) Y (ka+1—iz)ch)
11=212=2 ko=1io
+o(1)
= o(1).

It is similarly seen that the third term of (36) is o (1), and consequently, (36)
implies

T t T
_ 2 1
T4y §j§:c§°>(1) :C(0)2(1—5T—§>+0(1).
t=2 | i=2 j=1i

Hence, (35) yields

7% (89')%x

— 2 tio{/ W* (s s} dt +c© (125T—%)+0(1)- (37)

16



Moreover, as in (22),

=5 (1/SS/X)2

T 2
= {T5/2Z(T—t) > x}

i=t+1

- T‘5{Z(T—t) ET: c© (L)ez}

t i=t41

+2T‘550{Z(T—t) ET: cO(L }{

i=t+1

T 2

+T553{Z<Tt) S o <1)} :
t 1=t+1

where the first term satisfies

T 2

t i=t+1
the second term vanishes and (25) implies
T
-5 0
T {Z(T—t) S e
t i=t+1

and so, via (38),

=5 (l’SS'x)2

2

1
c<0>2{ / (1w (t)dt} + 0022

0

Finally, we have

1 (S8')"x
1T7 t+1 T
= 3 QT —t-1)t> >
t=1 i=2 j=i
1T 1 t+1 T
= 52 27 —t—1) tZZ{C(O)
t=1 1=2 j=1

17

/1(1t)W* (t) dt

0

1)}2 =2 (

1 1

§T—§>+0(1),

(%T— %) +o,(1).

51 + CJ(O) (1) 50} )



implying

775 (1'x) {1’ (s8')’ x}
1 . © T-1 t+1 T ©)
= 5T ;ct (L) e, ;(2T—t—1)tZZCj (L)e;

i=2 j=i

el

t=1 =2 j=1i

1 T-1 t+1 T
+§T*5 c“” Z @r—t-1)t>. > ¥ (L)e;

t=1 i=2 j=i

T-1 t+1 T
553{20,50) }{Z 2T—t—1)ti20§°>(1)}, (40)

t=1 i=2 j=i

where to handle the first term, we have

t+1 T
T*9/QZ @r—t-1ty. > (L)
t=1 =2 j=1

t+1

T-1
—9/2 Z (2T—t— 1)tZ(ST — 52;1)
t=1 =2

1 t 1 1 .
~ CO / 2-t)t / W* (s) dsdt = 50“” / (2362 +£7) W™ (1) dt,
t=0 =0 0

which yields

T-1 t+1 T
-5 {Zq}") (L)et} {; @r—t-1)tY > (L) ej}

1=2 j=1i

~ éC(O)QW (1) /01 (2 =382 +¢3) W (t) dt. (41)

18



The second and third terms of (40) tend to zero with T, while

t+1 T
42 @ —t-1)tY > ¢
=2 j=1
t41 T j—1
= 42 @r—t-1)t> 3 e
=2 j=i k=0
T-1 t+1
= COTHN QT —t—-1)t)Y (T+1-4)
t=1 i=2
—1 t+1 T T
—T 42 @r—t-1t> 3 > e’ +o
t=1 1=2 j=1i k=j
where the first term is C(¥) (27 — 2) + 0(1) and the second term is
t+1 T T
42 Er—t-1t> 3 >
=2 j=i k=j
t+1 T
= 42 @ —t—1)tY > (k+1—i)c
=2 k=t
= T*4Z(2Tft71
=1
t+1 k T t+1
{ZCOZIC—FI—Z Zc?Z(k—i—l—z)}
k=2 =2 k=t+2 =2

1 T-1 t+1
= 3T N Er—t-1t> o Vk (k
t=1

T-1 T
+3 L- Ser-t-ne Y &V @k-t-1)
t=1 k=t+2

1 0 =
= 3T 4Zc,§)k( Z (2T —t—1)t
k=2 t=k—

T
1
+§T—4Zc,§°) SEr—-t-1)2@2k—t—1)
k=3

19



we get via (24) that

{Z 9 }{2(2T—t—1)t

(0 -1
4

_ A o2
—Co2r

t+1

4

2
—
156’ ot

30(0>2 +0(1).

Hence, from (40) and (41),
7% (%) {1 (88)*x}

1
= 1c<0>2W(1)/ (2= 362 + %) W™ (t) dt

1,/4
+EOE

1), (4), (26), (37), (39) and (42

Now, insertion of (27), (2

T far
8T4 4 1473

0

— 30972 4 529T — 602

36073 (T + 1)

{c@2w 1)+

T+8,

18T £C1” —

2(T? - 2T +7)
3T (T +1) {

+e3{ 3T -

1
+C2 / {
t=0

T

T+1

02 {/01 (1— )W (1) dt}

&3 (TC®2 —2ccm)}

(T+2) (21° -T-61) ¢
3607 (

C<0>2W(1)/1 (1—t)w*

0

12 C<0>C<1 H
)

t 2

s=0
2

T+1
Lof(4 qo2p 4 0q0) _ 2a02
+250< o0 — —ccth - 2o

W™ (s) ds} dt + 3002 (1—25T - 5)

1 1
(0)2 T_ 2
+ 007 (3 3)1

> > (1)}

i=2 j=i

4. 2
1) oo (Ap_2
c) (15 3>+0(1)

cO2p %c“’)c(l) - gc@ﬂ) +o(1).

) into (34) gives

0 4 0023)

(t)dt

1

(42)



Finally, we focus on g4r = far — r47, Where

_ 1, _ _
T *ryr ~ @T Ygor + T gz + T *qur. (44)

where it is easily seen that T~*gs7 vanishes asymptotically. To handle q47, we
need my and My,. The components of T~*m, are

T~*x'E,L"x
= T %LFx
AT* 4+ 16T — 28172 4 576T — 720
180T (T + 1)
—3T7*x'SS'LFx
272 — 5T + 24
674 (T + 1)
+T*x' (SS)° LFx
—m {x) 1 (s8) L' + (1'L%) 1/ (88')*x
+ (1'SS'x) (1'SS'L*x) }, (45)

(1'x) (1'L*x)

{(1'x) (1’SS'L*x) + (1'L¥x) (1'SS'x) }

where as above, the first term vanishes while the second term behaves as in (31).
Via (32), the third term vanishes, while the fourth term is as in (33). As for the
remaining terms, we have as in (37) that

QLk

T (SS)
_ 0(0)2
t

X
1 t 2 2 1
{/ w* (s)ds} dt +C022 <—T —) +o(1),
=0 (Js=0 15 3

7= (1'x) {1/ (ss')? ka}

as in (42),

1
= %C(O)2W(1)/ (232 +¢3) W™ (t) dt
0

Lo(4 (0)2 4 (0) (1) 2 (0)2
Z — p— _Z 1
+260 (150 150 C 30 +o(1)

= 77 (1) {1/(88) x}
while as in (39),

T-°(1'SS'x) (1'SS'L¥x)
2

)2 {/01 (1= )W (1) dt} + 0022 (%T _ %) o, (1).
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Hence, (45) yields

T *x'E,LFx
AT* 4+ 1673 — 28172 + 576T — 720
18073 (T + 1)

{0(0)2W (1)? +¢2 (T0<0>2 - 2C<0>c<1>)}

272 — 5T + 24 ! .
D {C<0>2W (1)/0 (1—t) W™ (t)dt

1 1 1
el {chW lgwe §0<°>c<1>}}

1 t 2 9 1
+C<0>2/ {/ w* (s)ds} dt + C©22 (ET - g)
t=0 s=0

_ 2T Loz /1 (2362 + ) W (¢) dt
T+116 0

Lof4 02 4 o) _ 202
Z — — _Z
+250 <156’ crC 30

15
T ! 1 1

__t )2 _ x 22 (Ltp_ L
TH{C {/0 (1-t)W (t)dt} +C 50<9T 3)}

+op (1)
C02 <f4 + L) +0,(1).

2

180

Since, as is readily seen, the components of T~4M, have the same behavior, we
have since

daT

= —ngPomg + 2m6P0m4 + m6P2m0 + m6P4mo
+2m6P2m2 + m/QPomg

= —2m{Mj 'm; + 2m{M; 'm4 + m{ (I - My 'M;) Mg 'm,

+m), {I — 3My "M, + (Mg 'My)? — 2M; ! (M) — 2M,) — M51M4}
Mg 'mg + 2mj (I — Mg 'Ms) My 'ms + m5Mg 'm;
~ 2m{M; 'my — m{M; ' M,;M; 'm,
that
T~ *qur

1 -1 1
~ -1 (0)2 1917 (0)2
2(1'C'¢)C <f4+—180> dC'11'C cC (f4+ 180)

- _ 1
= (2-1C'¢)(1C 'c)C®? (f4 + @) :

22



and so, (15) and (44) imply

T ~ /G et (210 ) (10 e) 007 ( ot L) |

Consequently, together with (43),

T gar

1 1 1
~ (0)2 I T (1) E R P T |
¢ (f4 * 180> 180° 0°C ©

- _ 1
—(2-1C'c) (1C tc) 2 <f4 + 1—80>
1 1

= (1- llc_lc)Q c? (f4 + @) ~ 180 (C(O)* + C/C_lc) .
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