UPPSALA
UNIVERSITET

D1VA

http://uu.diva-portal.org

This is an author-produced version of a paper presented at PARMA 2013,
4th Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures, Berlin, Germany, 23 January,
2013

This paper has been peer-reviewed but may not include the final publisher
proof-corrections or pagination.

Citation for the published paper:

Koukos, Konstantinos, et al.

“Towards Power Efficiency on Task-Based, Decoupled Access-Execute
Models”

In:

Proceedings of PARMA 2013, 4th Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures; 2013

Conference website:
http://conferences.microlab.ntua.gr/parma2013/

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-203249

Access to the published version may require subscription.



Towards Power Efficiency on Task-Based, Decoupled Access-Execute Models

Konstantinos Koukos, David Black-Schaffer, Vasileios Spiliopoulos, Stefanos Kaxiras
{konstantinos.koukos,david.black-schaffer,vasileios.spiliopoulos,stefanos.kaxiras } @it.uu.se

Abstract—This work demonstrates the potential of hardware
and software optimization to improve the effectiveness of dy-
namic voltage and frequency scaling (DVFS). For software, we
decouple data prefetch (access) and computation (execute) to
enable optimal DVFS selection for each phase. For hardware,
we use measurements from state-of-the-art multicore processors
to accurately model the potential of per-core, zero-latency DVFS.
We demonstrate that the combination of decoupled access-execute
and precise DVFS has the potential to decrease EDP by 25-30%
without reducing performance.

The underlying insight in this work is that by decoupling
access and execute we can take advantage of the memory-bound
nature of the access phase and the compute-bound nature of the
execute phase to optimize power efficiency. For the memory-
bound access phase, where we prefetch data into the cache
from main memory, we can run at a reduced frequency and
voltage without hurting performance. Thereafter, the execute
phase can run much faster, thanks to the prefetching of the access
phase, and achieve higher performance. This decoupled program
behavior allows us to achieve more effective use of DVFS than
standard coupled executions which mix data access and compute.

To understand the potential of this approach, we measure
application performance and power consumption on a modern
multicore system across a range of frequencies and voltages.
From this data we build a model that allows us to analyze
the effects of per-core, zero-latency DVFS. The results of this
work demonstrate the significant potential for finer-grain DVFS
in combination with DVFS-optimized software.

I. INTRODUCTION

Designing for power efficiency is necessary for all devices
from mobile to server. Due to the exponential increase of leak-
age at lower voltages , Dennard scaling [1] no longer provides
constant power density per device. As a result, the effective
voltage range available for DVFS is expected to shrink in
future technology nodes [2]. The ability to dynamically scale
both frequency and voltage, however, is a fundamental tech-
nique for reducing power consumption, promising quadratic
power savings for at most linear performance degradation. One
promising approach to prolonging DVFS’s effectiveness is to
exploit the non-linear relationship between frequency scaling
and performance that arises when the processor is stalled
waiting for memory.

It is well known that we can reduce CPU frequency in
memory-bound programs without affecting their performance
[3], since such programs spend their time waiting for memory.
In this case we can expect an improvement in power-efficiency
metrics such as EDP or ED?P due to reducing the fre-
quency. However this is only feasible for a few predominantly
memory-bound programs. In most programs, although there
are considerable opportunities to scale frequency while waiting
for memory, we are unable to benefit because memory oper-
ations are interspersed with (or tightly-coupled to) arithmetic
computation, whose performance is tied to frequency.

In such programs optimal DVFS could be achieved if on a
cache miss we could instantly scale down the frequency and
instantly scale up after the miss is resolved. Unfortunately, the
transition latency is prohibitive for modern CPUs to 2000ns
for the hardware (without including kernel/driver overhead),
which makes it impossible to apply DVFS at an instruction
granularity. The common approach today is to apply a global
frequency based on the overall application behavior, which
is far from the optimal in many cases. A better approach
would be to apply DVFS at a finer granularity than the whole
program. If program execution can be divided into distinct
phases with homogeneous memory behavior, then the optimal
frequency for each phase can be calculated separately [4]. The
finer the division, the more effective DVFS can be. But there
is a limit due to the DVFS transition latency. Thus, in any
execution model where memory operations are tightly coupled
to arithmetic computations we can only hope to exploit a
fraction of the potential DVFS benefit.

To attack this problem, we propose a software decoupled
access-execute (DAE) model [5] in combination with guided
DVFS. We execute programs as a series of asynchronous
tasks, where each task is a C/C++ function. Each task is
split into 2 fine grain phases: access (data prefetching) and
execute (original computation). The key idea is that decoupling
data access from computation allows us to make different
voltage-frequency decisions for each phase (access vs. exe-
cute). Prefetching data in the access phase transforms most of
cache misses into hits for the execute phase, thereby improving
its performance. The access phase spends only a small fraction
of its time computing addresses and most of its time waiting
for data from memory. As a result it is not affected by core
frequency. In the execute phase most of the cache misses have
been eliminated by the prefetching behavior of the access
phase. This reduces stalls and makes highest frequency the
best fit in terms of EDP.

To obtain the best power efficiency, modern CPUs require
applications to be parallelized and scaled to many cores.
For that reason our work focuses on parallel workloads.
An important question that arises is how to implement a
decoupled access-execute model for parallel programs. For
this, we turn to task-based programming models which lead
to an elegant solution for implementing DAE. In a task-based
programming model, parallel execution is divided into tasks
that can be scheduled independently. Because of this, we can
easily break each task into an access and an execute phase.
We do this the simplest way possible: the access phase of
a task is the task without any computation or data stores,
while the execute phase is the whole task. Although this
leads to redundant execution of all address calculations and



memory access instructions, it requires minimal programmer
or compiler effort. The redundant execution of all memory
access code makes our results conservative, and presents the
possibility of significantly better results if this redundancy can
be eliminated.

We use a custom task based parallel runtime system where
each task is a C/C++ function and its arguments. From that
function we create the access phase by removing all result
computation. In terms of correctness, the access phase cannot
cause any side effects, given that it has no stores. This can be
either generated automatically by the compiler or manually
by the programmer. The unmodified task function (execute
phase) is executed on the same core after the access phase.
The task-based model affords us considerable latitude in
exploring decoupled access-execute. By controlling the input
data size of the tasks we control the granularity of prefetch
and DVFS. Thus, we can amortize the DVFS overhead with
how much data we can prefetch into the cache during the
access phase. We perform our experiments on modern systems
using accurate, fine-grain, power measurements taken directly
from the processor power rails and model the results as if we
had instantaneous per core DVFS. We are restricted to this
approach because state of the art CPUs do not yet feature
on chip voltage regulators [6] to enable low-latency per core
DVES [7].

Our benchmarks show that using DAE we can achieve EDP
results comparable to or even better than the optimal EDP
of a coupled access-execute (CAE), without any performance
degradation if we have per core DVFS and low latency
DVEFS transitions. This demonstrates that decoupling access
from execute can improve the effectiveness of DVFS. Our
evaluation further shows that we can achieve performance
comparable to CAE at max frequency (and in many cases
better) and at the same time reduce EDP.

II. RELATED WORK

The idea of decoupling access from execution was initially
proposed by Smith [5] in 1982. In his approach the exe-
cution units were unaware of address calculation and were
only capable of performing an arithmetic operation on the
next available operands. The use of hardware prefetchers in
modern architectures to hide memory hierarchy latencies has
similar effect. Kamruzzaman et.al. [8] presented a technique
to parallelize the memory accesses for single-threaded appli-
cations using a decoupled approach with helper threads to
speculatively prefetch data. Their work targeted execution time
reduction compared to the sequential execution with a minimal
compiler or programmer effert. In terms of energy and EDP
efficiency, their work shows reduced scalability compared to
parallel execution because they parallelize only the prefetch
phase (up to 60% speedup using 4 cores), at the trade-off of
linear power increase when enabling cores (up to 4x power
consumption). Karlsson and Hagersten [9] discuss run-ahead
execution for conserving memory bandwidth. Decoupled ex-
ecution preserves bandwidth by improving prefetch accuracy

and at the same time preserves power by enabling per phase
DVEFS.

Dark silicon [10] describes a problem on which technology
advances allow us to increase the number of transistors on chip
linearly per generation creating thermal-power constrains that
restricts us from being able to turn all of them on at the same
time. Turning on and off cores implies significant overhead
compared to that of DVFS. This is a strong motivation to
create program or task phases with different power demands to
keep high performance and low overall TDP (Thermal Design
Power) on multicores. Keramidas et.al. [3] presented tools and
techniques for efficient DVFS on CAE. Spiliopoulos et.al. [4]
further improve that work and embed it in the linux kernel,
using MSHR based models to detect and DVFS application
phases. Instead of trying to adjust DVFS granularity to pro-
gram demands, in our approach we adjust program demands
to DVFS granularity.

I[II. METHODOLOGY

Our experimental setup consists of (1) the runtime system
that handles parallel execution and profiling of workloads
using coupled and decoupled execution, (2) modified versions
of the applications with manually created access phases and
(3) a power consumption model to estimate power for low-
latency per-core DVFS and the required infrastructure to verify
the power estimates.

A. Task parallel runtime system

The runtime system is responsible for the parallel execution,
synchronization, scheduling, and load balancing of tasks. For
our experiments, the runtime also collects information on the
IPC of the tasks and their execution times, which are then
used by our power model to determine the optimal DVFS
setting for each task and compute its power and execution
time. This allows the programmer to adjust the application
power behavior from the runtime by selecting different DVFS
policies.

In our runtime a task is a C/C++ function that can be exe-
cuted asynchronously and in parallel. The runtime stores the
function pointer and the arguments of the function internally
and schedules the task for parallel execution. The scheduling
of the task is a runtime decision that tries to balance load
across all cores. We also support manual binding of tasks
to cores to enable application defined scheduling policies.
To support the execution of decoupled tasks we provide an
interface that defines two functions for a task: one for access
and one for execute.

The runtime uses a single (main) thread that issues tasks to
multiple queues that other (worker) threads poll. Each active
thread has a private and a shared queue to store and schedule
tasks descriptors. Load balancing is enabled by work stealing
of tasks through shared queues, while private queues enforce
local FIFO execution. The runtime supports two synchroniza-
tion primitives: barriers for global synchronization and point
to point for fine synchronization across tasks. Synchroniza-
tion primitives and internal memory allocators use lock free



algorithms to reduce overhead. The runtime is designed to
have very low execution overheads with total overhead for an
empty task being only 400 core cycles on Intel SandyBridge
processor.

B. Generating access tasks

The access phase serves to prefetch the data for the execute
phase into the cache. To create the access phase for a task
we remove all stores and arithmetic calculations and keep
only the loads and address calculation required for the loads.
Eliminating stores guarantees that there will be no side effects
from the access phase. To optimize prefetching we replace
load instructions with the builtin x86 PREFETCH instruction
[11] because it does not stall instruction retirement and does
not require a destination register. The access tasks can prefetch
both load and store data into the cache. However only loads
can stall the pipeline and are therefore performance critical.
Stores are less likely to create stalls as they are buffered.

In DAE we are forced to perform the address calculation
once for the access phase and once again for the execute phase.
The impact of this is to execute extra instructions compared
to the initial coupled execution. This includes not only the
extra prefetches but also the address calculations for them.
In terms of performance, the duplicate address calculation is
overlapped with the long latencies of prefetch misses thereby
reducing its impact. From an energy perspective increasing the
number of instructions executed on the core results in a direct
power increase. In practice this affects power significantly less
than frequency but still remains a source of inefficiency.

C. Power Model

Ceff =0.57*IPC + 1.69
33 = sandy bridge

31 » nehalem

N
©
-

Effective Capacitance (nF)
NN
bW W
" "
.
-
n [um
"
- [
"
=
.
"
-
.
]
.
-
-
o
ol
-

= Ceff =0.19*IPC + 1.64

1.7 =

15

0.5 1 15 2 25 3 35
uops executed per cycle

Fig. 1: Correlation between effective capacitance-uops exe-
cuted per cycle for nehalem and sandy bridge. Methodology
described in [4]

The fine granularity of our task-based approach (each task
lasts from a few microseconds up to a millisecond) does not
allow us to measure power consumption per task directly.
Current power measurement infrastructures (both integrated

on-chip power sensors and external measurement hardware)
provide sampling periods at the order of milliseconds. To
overcome this limitation, we employ an IPC-based model
to estimate power consumption. Similar to [4], we assume
that effective capacitance correlates linearly with the micro-
ops executed by the processor per cycle. In order to derrive
the parameters that best describe this dependence between
effective capacitance and uops executed per cycle, we execute
the whole SPEC2006 benchmark suite and measure the power
consumed by the processor. By subtracting the static power
(measured when the processor is idle and thus not consuming
any dynamic power) we obtain the dynamic power for each
benchmark.

Since dynamic power is given by P = fCV?2, dividing the
derived dynamic power with the the product of f*V 2 results in
the average effective capacitance of each benchmark. Figure 1
shows the effective capacitance-IPC pairs for the SPEC2006
suite. The figure also shows how effective capacitance can
be approximated as a linear function of IPC. This equation
describes the behavior of each of the 4 cores of our processor.
Effective capacitance (and consequently dynamic power) can
then be estimated for any task executed in a processor core.
If we know its IPC, f and V the total processor power can
then be derived by adding the corresponding power estimation
for each of the cores and the static power, depending on the
number of active cores. This approach enables us to estimate
power consumption of any interval of a given IPC, however
short in its duration with an average error less than 5%.

D. Putting it all together

The methodology described above for estimating power
consumption is necessary for quantifying the energy benefits
of our DAE programming model. Using this approach we are
able to overcome two key limitations of current hardware,
and thereby accurately estimate energy and execution time.
These two limitations are: 1) the inability to measure per-task
energy consumption for fine-grain, simultaneously executing
tasks, and, 2) the inability of current hardware to provide
per-core, low-latency DVFS. Per-task energy measurement
is impractical on modern hardware due to the very short
execution time of our tasks and overlapping of different tasks
across different cores. Our hardware measurement infrastruc-
ture provides only per-socket power measurements at a much
coarser time granularity, and therefore tends to report average
power consumption across many tasks. For DVFS, the current
overhead for frequency and voltage switching is between 2
and 10 usec, which implies great overhead in applications
that require fine grain tasks. Furthermore, current hardware
does not provide per-core DVFS, with some machines having
all cores under a single clock domain (Intel) and others with
multiple clock domains but a single voltage domain (AMD).
These hardware restrictions are expected to change with the
introduction of on-chip voltage regulators in future generations
[6].

To overcome the above restrictions we have developed a
model that allows us to accurately predict the energy and



performance we could obtain if we added per-core, low-latency
DVFS to modern processors. This model uses our hardware-
calibrated IPC-based power model to predict the power con-
sumption of our fine-grained tasks based on their measured
execution IPC across all available frequencies and voltages.
Because this model is calibrated on our test hardware, we
expect the power and performance estimates to accurately
reflect the performance we would obtain if we could add per-
core, low-latency DVFS to current processors. To verify these
results, we ran all applications at all available frequencies and
measured the power with our external measurement infras-
tructure [12]. This information was then used to compare the
modelled total execution energy with the measured energy for
each frequency, and demonstrates an error below 5%.

IV. EVALUATION

The goal of the decoupled access-execute model is to obtain
optimal power efficiency through DVFS with minimal per-
formance degradation. We implement two DVFS policies: (1)
naive, where the access phase runs always at lowest frequency
and the execute phase always at highest and (2) optimal EDP
in which the runtime adjusts the frequency of each phase
based on IPC and power model to obtain the best EDP.
We expect that the naive approach will keep total execution
time very close to the execution time of coupled execution
at highest frequency because the access phase performance
is not affected by DVFS and the execute phase runs at the
highest frequency. The EDP improvement for this policy is
limited to the energy saving of access phase. In some memory-
bound applications with very irregular memory access pat-
terns, the total execution time is significantly lower over
coupled execution due to prefetching accuracy of the access
phase, which leads to an additional EDP improvement. For the
optimal EDP policy the runtime tries to intelligently DVFS
each phase based on power model thus total performance
may be reduced because the execute phase is allowed to run
slower in order to improve overall EDP. As a baseline for our
experiments we use the original coupled execution at highest
frequency. To demonstrate the full potential of our technique
we additionally compare both DAE policies with an optimal
EDP coupled execution, found by brute force exploration of
available frequencies.

Increasing parallelism in any class of applications make the
application more memory-bound as it increases the number
of requests to the shared DRAM resulting in longer stalls
per request due to memory bandwidth saturation. This limits
program scalability. Our technique eliminates these stalls by
prefetching data into the access phase at low frequency,
thereby achieving improved power efficiency. For Intel’s latest
architectures we have found that bandwidth is not affected by
the core frequency. This behavior makes our model a natural
fit for these machines because we can efficiently reduce the
power spent by the cores with DVFS in the access phase,
without sacrificing bandwidth.

TABLE I: Application characteristics and task configuration

Application || % Tyccess Task Size Access Pattern
LU 33 16K - 48K Tiled
Cholesky 5.6 16K - 48K Tiled
FFT 10.5 16K - 128K Butterfly
LBM 51.0 38K Stream Collide
LibQ 56.9 8K - 16K Regular
Cigar 66.2 32K Indirection

A. Evaluation framework

For the evaluation framework we ported FFT [13], LU
[14] and Cholesky from the SPLASH?2 [15] micro-benchmarks
to our runtime. We optimize the execution kernels using
SSE. These applications represent rather computationally in-
tensive applications. Additionally we parallelized and ported
two applications from SPEC CPU2006 [16], 470.]bm and
462.libquantum. Both of these applications can be charac-
terized as memory-bound. Finally we include CIGAR as
described in [17]. This set of benchmarks covers a wide range
of memory access patterns and bounds, from computation-
bound represented by LU and Cholesky to memory-bound
(CIGAR and libquantum). FFT and LBM have an intermediate
behaviour.

B. Performance and EDP evaluation

The overall idea of DAE is to eliminate cache misses from
the execute phase to allow it run efficiently at the highest
frequency. Ideally the total execution time for the naive DAE
policy would be very close to the original at max frequency.
Fig. 2 shows performance (left) and EDP (right) results. The
data is normalized to the coupled execution at the highest
frequency (e.g., a value of 1.0 is equivalent to the non-
decoupled program with the default linux frequency governor).
The first bar shows the performance (or EDP for the right plot)
of CAE at the frequency that has the optimal EDP. The second
and third bars show the performance (or EDP respectively) for
the naive and optimal EDP DAE policies, respectively. The
results in Fig. 2 show an average performance improvement
of 5% compared to the baseline and over 15% compared to
CAE at optimal EDP. DAE keeps EDP slightly lower than
that of the optimal EDP of a coupled execution, which itself
is 25% better than the baseline. The average execution time
for DAE optimal EDP policy is 5% worse than in the DAE
naive policy but still 10% better than the CAE optimal EDP.
DAE optimal EDP policy achieves an average of 30% EDP
improvement over the baseline and 5% over the best coupled
execution.

Fig. 2 also shows that all of our applications (with an
exception of Cholesky) have an execution time less or equal
to the baseline. More specifically DAE improves execution
time by 12% for libquantum and 17% for Cigar and EDP
by 46% and 54%, respectively. This is because both appli-
cations are memory-bound (as shown in Table I) and have
a memory access pattern that the hardware prefetcher cannot
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Fig. 2: Overall execution runtime and EDP using coupled and decoupled models using 4 cores, Intel Sandybridge

detect. The software prefetching of DAE can therefore improve
performance (and also EDP). Libquantum by default has a
regular memory access pattern that dynamic scheduling and
load balancing at fine grain tasks can convert into rather
irregular for the hardware prefetcher.

IPC improvement of execute phase for DAE
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Fig. 3: IPC improvement of DAE - execute phase over coupled
execution for Intel SandyBridge

C. Understanding performance

An increase in the IPC of the execute phase under DAE
is the result of locality improvement caused by the access
phase. We have verified a significant decrease at L1 and L2
miss rate of the execute phase as a result of data prefetching
from the access phase. Fig. 3 shows the IPC increase of the
execute phase due to the access phase. For computation-bound
applications such as LU, Cholesky and FFT, we observe only a
slight increase in IPC of 5% on average. For these applications
there is no significant performance benefit from DAE and the
time spent to the access phase is typically less than 10%.

For the memory-bound applications (LBM, libquantum and
Cigar) we achieve a significant IPC increase due to DAE.
The time spent in the access phase for these applications is

significant and is shown in Table 1. For these applications
more than half of the time is spent in the access phase and
the rest in execute and runtime overhead. For LBM the IPC
improvement of the execute phase for 4 threads is more than
100% as shown in Fig. 3. Libquantum and CIGAR have an
average IPC increase of 200% and 350%, respectively due to
prefetching from the access phase. For this applications the
average IPC of both (access and execute) phases is increased
over the initial CAE IPC. This explains the total execution
time reduction shown in Fig. 2, which in turn improves EDP
for these applications. For correct operation of the model is
not necessary to increase performance and in practice it is only
feasible for memory access patterns that are very irregular and
impossible for the hardware prefetcher.

V. CONCLUSIONS

In this work we explored the DVFS potential of decoupling
access from execute in a task-based parallel environment. For
applications with irregular memory accesses decoupling out-
performs coupled execution both in terms of performance and
power efficiency. For the computation-bound and moderately
memory-bound applications, DAE can achieve equal EDP
improvements to coupled execution at optimal frequency but
without the trade-off of reduced performance. Using models to
predict optimal EDP per task phase at runtime we can adjust
the application performance and EDP dynamically. We have
shown that by decoupling access from execute on a machine
with low latency per core DVFS could achieve a 25% EDP
reduction without sacrificing performance. Our optimal EDP
policy can further reduce EDP by 5% over optimal CAE policy
at the trade-off of 5% performance degradation.
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