
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2nd International Workshop on Historical Document
Imaging and Processing.

Citation for the original published paper:

Wahlberg, F., Brun, A. (2013)

Feature space denoising improves word spotting.

In: Proc. 2nd International Workshop on Historical Document Imaging and Processing (pp. 59-66).

New York: ACM Press

http://dx.doi.org/10.1145/2501115.2501118

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206930

Feature Space Denoising Improves Word Spotting

Fredrik Wahlberg
Centre for Image Analysis

Uppsala University
fredrik.wahlberg@it.uu.se

Anders Brun
Centre for Image Analysis

Uppsala University
anders.brun@it.uu.se

ABSTRACT
Some of the sliding window features commonly used in off-
line handwritten text recognition are inherently noisy or sen-
sitive to image noise. In this paper, we investigate the ef-
fects of several de-noising filters applied in the feature space
and not in the image domain. The purpose is to target the
intrinsic noise of these features, stemming from the com-
plex shapes of handwritten characters. This noise is present
even if the image has been captured without any kind of
artefacts or noise. An evaluation, using a public database,
is presented showing that the recognition of word-spotting
can be improved considerably by using de-noising filters in
the feature space.

Categories and Subject Descriptors
I.4.3 [Image processing and computer vision]: En-
hancement—Filtering

General Terms
Keywords
OCR, handwritten text recognition, filtering

1. INTRODUCTION
In off-line handwritten text recognition of historical docu-
ments, the starting point is a photograph of a page of some
historical manuscript. The historical texts still in existence
were written hundreds (or even thousands) years ago. This
creates problems such as degraded ink, rough handling over
generations and geometrically distorted parchment due to
moisture. Transcribing these historical texts, in part or in
full, is immensely valuable to research in several humanist
disciplines.

The problem of doing a full recognition of a book is today
largely unsolved, with the exception of a small set of books
where extensive training data has been created manually.
To be able to search and index the treasures in our libraries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HIP ’13 August 24 2013, Washington, DC, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2115-0/13/08 ...$15.00.
http://dx.doi.org/10.1145/2501115.2501118

today, word-spotting has been proposed as a feasible solution
where only short text sequences are searched for.

Because of the linear structure of text (i.e. each line and
letter is read before the next, with few exceptions), sliding
window feature extraction has been employed both when
spotting words and doing a full transcription. This feature
extraction approach formulates the process of recognition as
a sequence labeling problem. The sequence in this case con-
sists of feature vectors, one for each pixel column in a text
line. Some of these sliding window features appear to be
noisy signals when we plot them as curves. This noise consist
of 1) extrinsic noise from the degradation of the manuscript
and image acquisition and 2) intrinsic noise stemming from
the complexity of handwritten letters and the ability of these
features to efficiently capture relevant invariances of the let-
ter shapes. In both image- and signal processing, techniques
exist to mitigate the effects of this noise. In this paper, we
will add to this by showing that de-noising filters can be used
in the sliding window feature space to improve recognition.

1.1 Previous Work
In [6], a collection of sliding window features for off-line text
recognition were proposed. Also, a preprocessing scheme,
called normalization, was introduced because the authors
did not consider the feature extractors robust enough to use
directly on the binarized image. By compensating for slant,
text height and other writer dependent characteristics, the
robustness could be considerably improved. In [7], some of
the proposed features were evaluated and extended. These
are still some of the most common sliding window features
in use.

We have implemented several noise reducing filters, most are
based on the papers below.

In [1], a popular approach to median filtering on vector val-
ued signals was proposed. In a window of a set size, the
vector being processed was replaced by the “middlemost“
vector using the l1 or l2 norm. This was shown to produce a
robust estimate of a received multichannel signal containing
bit errors and impulse noise. The filter was not applied to
an image but to a signal similar to a feature vector sequence.

In [11], a filtering technique very similar to a local weighted
average was proposed. The important contribution was that
differences in intensity were taken into account in the weight
function. The result was a weighted averaging filter that

preserved gradients in the data yet still acted as a smooth-
ing filter where no strong gradient occurred. Filtering was
performed on a local patch around the element being pro-
cessed. We have adapted the bilateral filter to our setting
where signals were vector valued and spatial relations one-
dimensional.

In [3], a filtering technique was proposed called non-local
means where no spatial distance in the image was considered
when doing a weighted average. The distance between two
image patches was measured by only using intensity values
in a local patch. Several image patches considered close, by
some similarity measure, were then merged by a weighted
average to create the filtered image patch. This was based
on the assumption that at some level of detail (defined by the
size of the local patch) a lot of similarity between different
image parts can be found. The non-local means filter have
successfully been applied in many situations including both
on 2D and 3D data. All local patches were transformed into
vectors in some “patch space.” Hence, the dimensionality
of the original data does not matter as long as it can be
processed into patch vectors. In our setting, this let us create
patches from neighbouring feature vectors along a sequence
and do filtering in the same way as on an image.

In [8], a word image matching algorithm based on dynamic
time warping (DTW) was shown to be successful for word-
spotting on the Washington letters. In their approach, the
results are greatly improved by using heuristics for finding
non-matches, before DTW, developed by [5]. A database
of the Washington letters, with segmented words, was later
made public in [4]. We wanted to be able to show the effects
of removing noise with filtering on a word-spotting setup
proven to work. We have done this without changing the
feature extraction process, the word matching method or
evaluation data from [8]. We have however removed the
pruning rules from our re-implementation since they intro-
duce false negatives.

2. METHOD
A common approach to handwritten text recognition is us-
ing sliding window features, formulating the recognition as
a sequence matching problem. When looking at the gen-
erated feature vectors, some are very noise sensitive (even
after normalization). When extracting the upper contour
feature, some pixel above the text line incorrectly classified
as foreground would cause the feature signal to “spike” be-
fore jumping back to the actual contour. Other features are
sensitive in similar ways.

To mitigate the effect of noise, we have investigated sev-
eral filtering techniques. In this paper, the filtering was
performed in the feature domain, though most filters have
an equivalent in the image domain. To evaluate the ef-
fects of noise filtering in the feature vector sequences, we
re-implemented the work from [8] using DTW. DTW is very
noise sensitive, letting us (as a starting point) investigate
the filtering without the extra robustness and learning ca-
pabilities added by HMMs or Neural Networks.

2.1 Sliding window features
Sliding window feature extraction, in handwriting recogni-
tion, creates a sequence with feature vectors along the text

Figure 1: A part of a page from the Washington
letters, used in our evaluation. The intention of the
writer was that other people should be able to read
the text without misinterpretations, as opposed to
taking notes for personal use. This gives a very reg-
ular and carefully written text.

lines [6, 7]. Several one-dimensional features are generated
for each pixel column, after segmentation, and concatenated
to form the feature vectors. Each element in the feature
vector capture some, to handwriting recognition, important
characteristic of the letter at that column. In [8, 7], a set of
four heuristic features were proven to work on our evalua-
tion data set. We have chosen to use these features for our
implementation though many others, notably [9], would be
interesting to explore.

Projection profile The vertical projection of the pixel col-
umn i.e. the sum of foreground pixels in one column.

Upper contour The position of the foreground pixel, in
the pixel column, with the highest position i.e. lowest
y coordinate value.

Lower contour The position of the foreground pixel, in
the pixel column, with the lowest position i.e. highest
y coordinate value.

Foreground/background transitions The number of tran-
sitions between the foreground and the background
while following the pixels in a column from lowest to
highest y coordinate value

After extraction, all feature values were normalized to the
range [0, 1]. This also restricts the vector length that can
not be longer than

√
4. The above features required some

preprocessing of the word images before feature extraction
called normalization [6]. This process increased the robust-
ness of the feature extraction (e.g. by removing slant from
the handwriting). In our evaluation database, this step had
already been performed on the segmented word images.

2.2 Word-spotting
Our evaluation data was segmented into words that we have
compared using dynamic time warping (DTW). We aimed
to replicate the important paper [8], where they show the
viability of DTW in a real world application, but with added
filtering.

50 100 150 200 250

20

40

60

80

100

120

140

160

Figure 2: Illustration of the Sakoe-Chiba constraint
on the cost matrix of DTW. The lowest cost path
through the weight matrix is shown in green. The
words along the left and bottom illustrates how the
sequences are aligned. At every set point of the cost
matrix, one feature vector from each of the words
have been compared.

Dynamic time warping finds the optimal stretching, or warp-
ing, to fit two sequences of vectors together. By using dy-
namic programming, an optimal match can be found with
respect to the dissimilarity measure between single points of
the sequences. Let A and B be the feature vector sequences
generated from any two words. A match cost matrix com-
paring every element in sequence A with every element in
sequence B is created. Often, the square of the euclidean
distance between the feature vectors is used as a cost func-
tion. The cost of the lowest cost path through the matrix,
from the upper left corner to the lower right corner, is the
difference cost for the word pair. The allowed steps through
the matrix are down, right and down right. The diagonal
step signifies matching elements of the sequences while down
or right steps skips an element in one of the sequences. Each
step that is not a perfect match will add a cost to the lowest
cost path.

The warping path was normalized by dividing its cost with
its length to not make cost proportional to word length.
Dynamic programming is significantly less computationally
demanding than brute forcing a warping but still takes some
time. An important way to increase accuracy and lower
computational cost is the Sakoe-Chiba band constraint[10].
By only allowing a narrow strip along the diagonal of the
cost matrix for the lowest cost path, pathological warpings
and a lot of calculations can be avoided. We have used a
restriction of 15 elements around the diagonal (the same as
in [8]). In figure 2, an example is shown of the cost matrix
with the Sakoe-Chiba band constraint and the lowest cost
path.

In [8], pruning was an important step in the word spotting
pipeline. Unlikely matches were ruled out before DTW to
lower the computational cost. These pruning rules used as-

pect ratio, bounding box area and a fast way to detect the
number of descenders to exclude word pairs. Since these
rules also created many false negatives, setting a limit on
the best possible recognition, we have not used them in our
implementation.

2.3 Gaussian filter
Using a Gaussian filter is a common approach to removing
noise. The assumptions are that neighbouring signal/image
elements are often very similar (on some chosen scale) and
that noise in the data is uncorrelated. Hence, averaging data
elements with their neighbours can then strengthen the sig-
nal and eliminate noise. By using a Gaussian function for
a weighted average, neighbouring pixels are given a higher
weight than neighbours of neighbours further away. A dis-
crete Gaussian window w was given by equation 1.

w(n) =
1

K
e
− n2

2σ2 . (1)

Here, n was an interval of integers (e.g. [-20,20]) defining the
filtering window with an odd number N giving the width.
The discrete case normalization constant K were given by
equation 2.

K =

bN/2c∑
n=−bN/2c

w(n). (2)

Performing a weighted average on the feature vectors is
equivalent to averaging each dimension separately. Hence,
filtering was performed by separately convolving each di-
mension of the feature data with the filtering window. A
drawback with using this method on images is that edges
are smeared out. The same effect was observed here.

2.4 Median filter
The median filter is a common approach to removing spiking
noise (salt and pepper noise) in images. It was not obvious
how to apply this approach in the sliding window feature
sequences.

The naive approach would be to filter each feature type sepa-
rately (i.e. contour separately from FG/BG transition etc).
This would remove extreme values in each feature dimen-
sion separately, without taking the full feature vector into
account, which might not be desirable. We have however
implemented and evaluated this approach.

Median filters for multi channel signals were introduced in
[1]. A noise reducing filter in a multi channel digital receiver
handles sequences of signal vectors, the same type of data
as given by a sliding window feature extraction. For each
vector in the sequence, the neighbouring set X of vectors in
a window of a given width w was collected. In this set, the
median vector xm ∈ X was chosen as the vector in the local
set X minimizing the sum in equation 3.

∑
x∈X

‖x− xm‖ (3)

The median feature vector from each local set X, replaced
the original feature vector at each position in the feature
vector sequence. The norm in equation 3 is defined in [1] as
being either the l1 or l2 norm, depending on application. We
have implemented both and compared them with the above
described naive median filter.

2.5 Bilateral filter
In [11], the authors improved the performance of smoothing
filters (like the Gaussian filter) by taking local image similar-
ity into account. A common drawback of a smoothing filter
is that when it encounters an edge, it does not preserve the
strong gradients.

To mitigate the problem of the smoothing of edges, the au-
thors of [11] proposed a local modification of the smoothing
kernel. At each point in the area covered by the local ker-
nel, the distance in intensity space from the middle point
(i.e. the point being processed) was calculated. After some
normalization, each point in the local kernel was multiplied
by the normalized intensity distance at that point. This cre-
ates a smoothing that does not assume any neighbourhood
to be similar, but takes differences into account according to
some normalization method (with some parameter settings).

Adapting the bilateral filter to sliding window features vec-
tors was done by defining closeness along the vector sequence
and using vector distances as intensity similarity. In equa-
tion 4, the similarity function for the feature space is shown.
It is the euclidean distance between two feature vectors nor-
malized using a Gaussian function with the parameter σv

(σ-value) as standard deviation. It was not necessary to use
a Gaussian function for normalization in the original for-
mulation of the filter. We have chosen to build upon the
Gaussian case bilateral filter.

s (vi, vj) = e
−
‖vi−vj‖2

2σ2v (4)

The closeness in our case is defined as a euclidean distance
between pixels inside a Gaussian function, given by equation
5, with the standard deviation σs (σ-spatial).

c(i, j) = e
− ‖i−j‖

2

2σ2s (5)

Given the above equations, the filtering is performed as in
equation 6 at each position i given the set of feature vectors
v. To ensure that the weights given by equations 4 and
5 sum to 1, the normalization constant K is defined as in
equation 7.

BL(i) =
1

K

∑
j

c(i, j)s(vi, vj)vj (6)

K =
∑
j

c(i, j)s(vi, vj) (7)

Note that if the parameter σv is set too high, the Gaussian
case bilateral filter degenerates to a plain Gaussian smooth-
ing.

2.6 Non-local means filter
In [3], a global weighted means filter was presented called
the non-local means filter. Filtering was performed on lo-
cal patches without taking geometric vicinity into account.
Similar patches, with respect to some similarity measure,
were joined by a weighted average to form the filtered data.

When filtering a 2D or 3D image using the non-local means
filter, patch vectors are created from a local neighbourhood,
of some predefined size, around each data element. Geomet-
ric vicinity in a patch can, if needed, be included into the
patch vector by a Gaussian function suppressing elements
further from the centre. A weight function for the weighted
average is defined, comparing all patch vectors to the one
being processed, with the sum of all weights normalized to
1. Higher weights are given to patch vectors similar to the
patch vector belonging to the point being processed

Adapting the non-local means filter to sliding window fea-
ture vectors was straight forward. We defined vicinity along
the sequence instead of in two or higher dimensions, the
equivalent of local patches being concatenated neighbour-
ing feature vectors. Feature vectors were concatenated from
a local set of N vectors around each vector in the original
sequence. Also, a weight function was defined, equation 8,
that was only dependent on distances in the feature space.
All feature vectors multiplied by the weight function were
then summed to form the new filtered vector as in equation
10.

w(i, j) =
1

Z(i)
e
−
‖vi−vj‖2

2h2 (8)

The vectors vi and vj are the concatenated vectors from the
neighbourhood around the positions i and j in the sequence.
Here the variable i is the position currently being processed
and j traverses the sequence. The normalization constant
Z(i) is given by equation 9 and assures that

∑
j w(i, j) = 1

for any i. In our discrete implementation, Z(i) is the sum
of the values given by equation 8.

Z(i) =
∑
j

e
−
‖vi−vj‖2

2h2 (9)

Euclidean distance is used as a dissimilarity measure be-
tween vectors in the feature space. The exponential func-
tion provides a normalization giving greater weight to small
distances in a non-linear way. The parameter h tunes the
normalization to be more or less tolerant of large distances.

Figure 3: Segmented, binarized and normalized
words from the Washington database, used in our
evaluation. Note the difference in slant of the let-
ters compared to the words in figure 1 showing an
unprocessed part of a page. The normalization is
also responsible for the slightly unusual backward
slant of some ascenders.

A small h lets the most similar feature vectors influence the
element being processed to a higher degree than with a larger
h. Since h affects the shape of a Gaussian weight function, it
is important to remember that values beyond three standard
deviations (σ = h in this case) are very small.

NLM(i) =
∑
j∈I

w(i, j)vj (10)

In equation 10, the non-local weighted average is shown.
This function is repeated for every position in the feature
vector sequence. Running a non-local means filter is com-
putationally heavy since all elements have to be compared
to every other. If memory was not limited all distance cal-
culation could be done only once, though this is not the case
today.

3. EXPERIMENTS
The different filters were evaluated using a public database
for several selected parameters. The parameter intervals
were chosen to find an optimal parameter combination, as-
suming the test data.

3.1 The evaluation database
George Washington Papers is a collection of letters written
by George Washington found at the Library of Congress 1.
From the pages of letter book 1, series 2, pages 270-279 &
300-309 (written between Aug. 11, 1754 and Dec. 25, 1755)
a database has been made public in [4]. Examples of words
found in the database can be seen in figure 3. All word
images were delivered segmented, binarized, normalized and
labeled.

3.2 Performance measure
We have chosen a performance measure with its base in the
Receiver Operating Characteristic (ROC) type of analysis.
In a ROC plot, the y-axis shows the rate of true positive
matches (TPR) (i.e. the rate of correctly identified true
matches at a specific classifier threshold) and the x-axis

1http://memory.loc.gov/ammem/gwhtml/gwseries2.html

shows the corresponding rate of false positives (FPR). To
get a single value to characterize the performance of a clas-
sifier, the area enclosed by the ROC curve is integrated to
create the Area Under the Curve (AUC) performance mea-
sure[2]. A weakness in using a single scalar to characterize
performance is that many relevant aspects might be lost.
However, showing the ROC curves for a two-dimensional
parameter search in a meaningful way is hard on paper. In
the following sections AUC will be used to show the perfor-
mance of each filtering technique, along with a comparison
without using filtering called “baseline.“

3.3 Gaussian filtering
Results from the performance evaluation can be seen in fig-
ure 4, with selected data points shown in table 1 . Evalua-
tion was performed for several sample points of the standard
deviation parameter σ in the interval [0, 10]. Note that σ
was not the width of the filter. Filter width was variable,
depending on σ, as to include as much of the Gaussian func-
tion as possible without doing unnecessary calculations. The
Gaussian filtering approach is very fast since it only consists
of one convolution per feature dimension. This makes it
suitable for larger collections of text.

Table 1: Selected results for the Gaussian filter to-
gether with the baseline. The number in bold font
shows the best performance.

Filter type σ AUC
Baseline - 0.852
Gaussian 0.34 0.853
Gaussian 2 0.876
Gaussian 8 0.849

As shown in figure 4, a large span for the parameter σ gave
an improvement. The smoothness of the curve suggests a
stability when it comes to the choice of σ. When σ is set to
2, two standard deviations include 8 pixels. The mean letter
width in our evaluation database is about 30 pixels (and as
many feature vectors). Hence, a feature signal can still after
filtering change several times during one character. Single
pixel noise stemming from the binarization is smoothed by
the filter keeping the important characteristics of each letter.
When σ approaches 8, two standard deviations cover an area
comparable to the mean letter width, letter characteristics
are obscured. If σ is too small, the discrete Gaussian func-
tion peaks at its centre and values at neighbouring points
are negligible. The convolution then returns the unfiltered
sequence. In table 1, the best result using the Gaussian fil-
ter is shown along with sample point before and after the
interval where performance improved.

3.4 Median filtering
The median filter (described in section 2.4) was run with
the parameter width set to odd numbers between 3 and 23.
In figure 5 and table 2, the evaluation results are shown
for the three median filter types investigated. A dimension
wise mean filter was implemented for comparison. The mean
filtering was performed dimension wise where the mean value
was found in a local neighbourhood as wide as the width
parameter (in the same way as with the median filters).

As shown in figure 5, the dimension wise median filter did

0 1 2 3 4 5 6 7 8 9 10
0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

σ

A
U

C

Filtered

Baseline

Figure 4: Evaluation results for the Gaussian filter
with the parameter σ in the interval [0, 10] (section
3.3).

Table 2: The dimension wise median filter per-
formed better than the baseline. However, no pa-
rameter setting for the vector median filters gave a
higher evaluation result than the baseline. Above
the highest obtained result from each median filter
type are shown. The numbers in bold font show the
best results from the two filters performing better
than the baseline.

Filter type Width AUC
Baseline - 0.852
Dimension wise mean 7 0.875
Dimension wise median 5 0.859
l1 vector median 3 0.8497
l2 vector median 3 0.8497

improve the results. It performed under the baseline above a
width of 9 and best at 5. This implies that extreme values at
a very small local neighbourhood can be filtered out. With
larger widths, filtering removes more important information
than noise. However, the performance of the mean filter was
the best in the collection implying that the median removed
important local extreme values in most cases.

The vector median filter from [1] did not reach above the
baseline for any parameter setting. An expectation with
the vector based filters was that the extra dimensions would
increase stability in the signal, and performance as a conse-
quence. However, the opposite turned out to be the case. In
contrast to the dimension wise filters, extreme vectors were
removed when trying to find the local “middlemost” vector
in the vector median filters. This is an advantage when,
for example filtering a signal with spiking noise, assuming a
smooth sequence of vectors. Here it might have destroyed
outliers, carrying important information. Another possibil-
ity is that the order of the vectors are scrambled, some re-
moved and some duplicated. Performance were hardly af-
fected by changing the norm from l2 to l1. The noise found
in our evaluation database or feature selection could not be

4 6 8 10 12 14 16 18
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Width

A
U

C

Baseline

l
2

Dimension wise

l
1

Mean

Figure 5: Evaluation results for the Median filter
with the parameter width set to odd numbers in the
interval [3, 19] (section 3.4). The baseline and the
mean filter are included for comparison.

improved using the vector median approach.

3.5 Bilateral filtering
Evaluation results for the Bilateral filter (described in sec-
tion 2.5) can be seen in table 3 and figure 6. Several sample
points for each parameter were investigated in the interval
[0, 10] for σs and the interval [0, 2] for σv.

Table 3: Evaluation results for some parameter set-
tings for the Bilateral filter (section 3.5).

Filter type σs σv AUC
Baseline - - 0.852
Bilateral 2 4 0.876
Bilateral 8 0.4 0.861
Bilateral 8 4 0.852

When σv ≈ 0.5 and σs was in the interval [5, 9], a ridge ap-
peared on the parameter surface. Here the spatial Gaussian
was wide but the influence of the feature vector similarity
compensated by focusing on smoothing similar vectors.

As σv approached 2, the bilateral filter degenerated into the
Gaussian filter. Because of how the features were normal-
ized and the number of dimensions of the feature space, the
maximum length of a feature vector was

√
4 = 2. This gave

that all vectors were within 1 standard deviation in the nor-
malizing function (equation 4). The effect from the feature
vector similarity function were then negligible.

Overall, the effects of the similarity function in the bilateral
filter were small. Only in a small regions did it dominate over
the geometrical closeness function. However, at no point did
the bilateral filter perform below the Gaussian filter. The
additional computational cost of running the bilateral filter
instead of the Gaussian filter were small. Even when the
number of pages grows, bilateral filtering is a good strategy
for fast de-noising.

Figure 6: Evaluation results for the Bilateral filter
(section 3.5). The curved surface shows the AUC
at different settings for the two filtering parameters
(each mesh crossing is a sample point). The semi-
transparent green plane shows the AUC without us-
ing filtering as a comparison.

3.6 Non-local means filtering
Evaluation results for the Non-local means filter (described
in section 2.6) can be seen in table 4 and figure 7. The
parameters investigated were odd numbers from 1 to 7 for
N and several points between 0.01 and 8 for h. Note that
the parameter h has the same role in the non-local means
filter as the parameter σv in the bilateral filter.

Table 4: Evaluation results for some parameter set-
tings for the Non-local means filter (section 3.6).
The numbers in bold font shows results from the
plateau in figure 7, those are also the maximum per-
formance.

Filter type Neighbourhood h AUC
Baseline - - 0.852
Non-local means 3 4 0.913
Non-local means 1 4 0.903
Non-local means 3 0.05 0.847

The non-local means filter gave the highest performance of
the investigated filters. As seen in figure 7, the performance
is below the baseline for low values of h but increased steeply
when raising the value of the parameter. At h ≈ 2, the im-
provement from the filter reached a plateau. On this plateau
a small increase in performance could be observed when let-
ting h approach 8, but not very much. This result was unex-
pected since the maximum length of a feature vector is inside
the span of one standard deviation in the weight function.

An important point of the non-local means filter is that a lot
of feature vectors are necessary for increasing the evaluation
results. When running the filter on just 500 words (i.e. 10%
of the database), evaluation results was considerably lower
than when using more words. A higher number of similar
patches to choose from gives a higher probability of removing

Figure 7: Evaluation results for the Non-local means
filter (section 3.6). The curved surface shows the
AUC at different settings for the two filtering pa-
rameters (each mesh crossing is a sample point).
The semi-transparent green plane shows the AUC
without using filtering as a comparison.

noise.

3.7 A Visual Inspection
To gain insight into the effects of de-noising, we have visu-
alized the feature signals in figure 8 and the corresponding
spectra in the Fourier domain in figure 9. The non-local
means filter appears to“invent”information in the individual
feature signals. This can be explained as borrowing informa-
tion from the other feature dimensions to “repair” missing
information in individual features. Also, the most success-
ful filters (non-local means, Gaussian) both remove higher
frequencies.

4. CONCLUSIONS
We have introduced de-noising for sliding window features
and been able to show that it improves performance in word
spotting. This new kind of filtering that we propose for word
spotting is significantly different from filtering the image it-
self, like in image restoration.

The selection of filters that we have evaluated is far from
complete. In our experiments, the non-local means filter
was the most efficient de-noising method with a 6% increase
of AUC score. Variants of the median filter performed better
than no filtering, but not much. An interpretation of that
might be that averaging, combining of information from sev-
eral feature points (image columns) is important. Weighted
averaging, using Gauss- and box functions, gave a 2% in-
crease of AUC. Finally, the optimal bilateral filter was in
fact a filter with a large σvalue, in essence a Gauss weighted
average filter.

The averaging effect in weighted averaging using Gauss- and
box functions may also be interpreted as a de-localization of
the image features along the text line, i.e. it is easier to com-
pare two slightly shifted or warped feature signals if they are

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

original
bilateral
median
Gaussian
NLM

Figure 8: A comparison of the filters on feature data
from the evaluation database. Note in particular
that non-local means appears to sharpen individual
features by using information from all feature di-
mensions.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

b/w transitions
0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

200

upper contour

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

lower contour
0 0.1 0.2 0.3 0.4 0.5

0

50

100

150

200

projection

original
bilateral
median
Gaussian
NLM

Figure 9: A comparison of the Fourier spectrum of
feature data with different filters. Non-local means
appears to remove higher frequencies, while at the
same time enhancing the signal (in particular peaks)
in the lower frequency bands.

first filtered with a low-pass filter. One explanation is thus
that local averaging makes the elastic matching in dynamic
time warping easier, a hypothesis that we have not been able
to test yet. The efficiency of non-local means is well known
in the imaging community, for 2-D and 3-D signals, but in
this context we have not been able to fully explain why this
method is the best. The large size of the optimal kernels
in NLM, for instance h = 2, was also unexpected. This
resulted in a compression of the feature space, where each
feature channel approached its average value. In images of
the feature signals, where the signals have been scaled to be
easier to compare, we also see that non-local means appears

to both smooth and sharpen the signals. The suppression
of high frequencies, combined with some kind of sharpening
in the lower half of the spectrum, is also confirmed from
Fourier analysis of the feature signals seen in figure 9.

We conclude that feature space de-noising of sliding window
features increases performance in word spotting. Possibly,
this is also true for other kinds of handwritten text recog-
nition, where feature space de-noising could be included as
an intermediate step. These results also point in the direc-
tion to search for more efficient and stable features, which
are less prone to intrinsic noise and better captures the rele-
vant shape variation of handwritten characters. Indeed, we
have only evaluated the effects of feature space filtering on
a single popular feature set in this limited study.

5. REFERENCES
[1] J. Astola, P. Haavisto, and Y. Neuvo. Vector median

filters. Proceedings of the IEEE, 78(4):678–689, 1990.

[2] A. P. Bradley. The use of the area under the roc curve
in the evaluation of machine learning algorithms.
Pattern Recognition, 30:1145–1159, 1997.

[3] A. Buades, B. Coll, and J.-M. Morel. A non-local
algorithm for image denoising. In Proceedings of the
2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05)
- Volume 2 - Volume 02, CVPR ’05, pages 60–65,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] A. Fischer, A. Keller, V. Frinken, and H. Bunke.
Lexicon-free handwritten word spotting using
character hmms. Pattern Recogn. Lett., 33(7):934–942,
May 2012.

[5] S. Kane, A. Lehman, and E. Partridge. Indexing
george washington’s handwritten manuscripts. Center
for Intelligent Information Retrieval, Computer
Science Department, University of Massachusetts,
Amherst, MA, 1003, 2001.

[6] U.-V. Marti and H. Bunke. Using a statistical
language model to improve the performance of an
hmm-based cursive handwriting recognition system.
International Journal of Pattern Recognition and
Artificial Intelligence, 15(01):65–90, 2001.

[7] T. M. Rath and R. Manmatha. Features for Word
Spotting in Historical Manuscripts. In International
Conference on Document Analysis and Recognition,
pages 218–222, 2003.

[8] T. M. Rath and R. Manmatha. Word image matching
using dynamic time warping. In Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 2, pages
II–521–II–527 vol.2, 2003.

[9] J. A. Rodrıguez and F. Perronnin. Local gradient
histogram features for word spotting in unconstrained
handwritten documents. ICFHR 2008 (Int. Conf. on
Frontiers in Handwriting Recognition), 2008.

[10] H. Sakoe and S. Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
Acoustics, Speech and Signal Processing, IEEE
Transactions on, 26(1):43–49, 1978.

[11] C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In ICCV, pages 839–846, 1998.

