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Abstract
Traditional compiler approaches to optimize power effi-
ciency aim to adjust voltage and frequency at runtime to
match the code characteristics to the hardware (e.g., run-
ning memory-bound phases at a lower frequency). However,
such approaches are constrained by three factors: (i) voltage-
frequency transitions are too slow to be applied at instruction
granularity, (ii) larger code regions are seldom unequivocally
memory- or compute-bound, and, (iii) the available voltage
scaling range for future technologies is rapidly shrinking.
These factors necessitate new approaches to address power-
efficiency at the code-generation level. This paper proposes
one such approach to automatically generate power-efficient
code using a decoupled access/execute (DAE) model.

In DAE a program is split into tasks, where each task con-
sists of two sufficiently coarse-grained phases to enable ef-
fective Dynamic Voltage Frequency Scaling (DVFS): (i) the
access-phase for data prefetch (heavily memory-bound), and
(ii) the execute-phase that performs the actual computation
(heavily compute-bound). Our contribution is to provide a
compiler methodology to automatically generate the access-
phases for a task-based programming system. Our approach
is capable of handling both affine (through a polyhedral anal-
ysis) and non-affine codes (through optimized task skele-
tons). Our evaluation shows that the automatically gener-
ated versions improve EDP by 25% on average compared
to a coupled execution, without any performance degrada-
tion, and surpasses the EDP savings of the corresponding
hand-crafted tasks by 5%.
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1. Introduction
The most widely used technique to reduce power consump-
tion is Dynamic Voltage Frequency Scaling (DVFS) which,
by virtue of the power equation1 P = aCV 2f , yields a
quadratic power decrease with (at most) linear performance
degradation. The common perception is that scaling down
voltage and frequency invariably increases power-efficiency,
since the quadratic power benefits are bound to outweigh
the linear performance losses. This expected DVFS bene-
fit holds if the useful range of voltage scaling (as a func-
tion of frequency) is significant enough to make a difference
in the total power. Unfortunately, this is no longer the case
due to the breakdown of Dennard’s scaling in recent pro-
cess generations[6]. As a result, the useful voltage range is
rapidly shrinking to the point of having a negligible effect
in the power equation. In practice, we can no longer expect
quadratic reductions in power as a trade-off for linear reduc-
tions in frequency.

Fortunately, it is also well known that performance is
not always proportional to frequency [14]. For example,
the performance of memory-bound programs (or program
phases) is largely unaffected by frequency scaling. Memory-
bound code is characterized by a high miss ratio in the last
level cache (LLC), which creates long stalls in the processor
pipeline. Scaling down frequency, in this case, causes com-
putation to overlap with memory access without harming the
total execution time [13].

Now that voltage scaling is unable to contribute to power
savings, it is clear that maximizing opportunities to exploit
the non-proportional relationship between frequency scal-
ing and performance is a promising direction. Ideally, we

1 Where a is the switching activity factor, C is the chip capacitance, V is
supply voltage, and f is frequency
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would like to scale frequency at the granularity of a cache-
missing instruction, i.e., whenever the processor is stalled
waiting for memory and only then (otherwise we loose per-
formance without outweighing power benefits). However,
frequency transitions are not instantaneous and would im-
pose a steep penalty at this granularity. Previous works fo-
cused on identifying memory- and compute- bound regions
of code, and setting the voltage and frequency accordingly,
thus increasing the granularity [28, 29]. Such region delim-
itation is performed either based on a fixed interval (execu-
tion time), fixed points in the program (branches), guided by
profiling, identified by a compiler or manually by the pro-
grammer. Such approaches are a compromise, since in most
cases computation and memory stalls are intermixed. Scal-
ing down frequency to exploit memory stalls in such coupled
code, slows down the coupled computation.

Decoupled access-execute [14] is a task-based approach
that modifies programs to have two distinct phases: the ac-
cess phase, which prefetches data into the cache, and the
execute phase, which does the original computation. The
motivation for this partitioning is that the access phase is
memory-bound, and can therefore run at low frequencies
without a performance loss, while the execute phase will run
after the data has been prefetched by the access phase and
can therefore run at high frequencies with minimal cache
misses. This explicit separation of the code into compute-
and memory-bound phases allows better use of DVFS for
power saving, due to the coarser granularity of the phases.
However, previous work required an expert programmer to
manually generate the code for the access phase, limiting the
applicability of the method.

Our goal is to automatically transform task-based par-
allel programs into access-execute programs by having the
compiler generate the access phase from the original exe-
cute phase. Further, a compiler approach has two significant
benefits over a manual approach. First, the compiler can de-
rive the access phase after applying traditional compiler op-
timizations to the original (execute) code, thereby leading
to leaner access phases; a programmer does not have this
option. Second, the compiler is able to apply complex anal-
yses to the memory access patterns and create access phases
which are not equivalent to the original tasks; performing
the same manually is demanding. To automatically gener-
ate the access phase at compile time we propose two meth-
ods based on statically available information. We demon-
strate that these two approaches cover most of our bench-
mark applications, and result in significant gains in energy
efficiency without performance penalties. The first approach
uses a polyhedral analysis to examine the memory accesses
and generate a new, simplified version, uniquely prefetching
the minimal set of addresses touched by the original code.
This method is able to generate extremely high-performance
access phases, but is restricted to affine codes, due to the
limitations of the polyhedral model.

To overcome this limitation, we designed a second method
for non-affine codes. Inspired by the helper threads and
inspector-execute techniques, we generate a clone of the
original task which contains only the memory accesses and
required control flow instructions. By itself, this approach
leads to complex access code, which hurts both performance
and efficiency. This occurs when the original code contains
pointer chasing or complex control flows. To overcome these
challenges, we present a set of compile-time optimizations.

Before evaluating this work we first introduce the decou-
pled access-execute model (Section 3) and explain the power
measurement and modeling methodologies used to evaluate
its effectiveness (Section 3.2). We then provide an overview
of the polyhedral model (Section 4 and Section 5.1), and
in particular its limitations and capabilities. From there we
walk through our approach to handling codes which are not
amenable to the polyhedral model (Section 5.2). Finally, we
evaluate the effectiveness of our automatic transformations
on a range of benchmarks, comparing them to manually gen-
erated access phases.

2. Related work
Power oriented compile-time approaches:

Previous approaches to improve power efficiency have
targeted interval or check-point based DVFS, namely iden-
tifying regions that exhibit potential for energy savings by
reducing frequency within certain performance degradation
bounds [10, 16, 24]. In practice, frequent DVFS switches
are inefficient, due to transition overhead and due to the fine
granularity of the code regions required to benefit from it, re-
sulting in disappointing power savings or high performance
penalties [7]. Hsu et al. [10] propose a compiler algorithm
to identify regions in which the CPU is idle due to memory
stalls. For these regions, they show that slowing down the
processor does not incur significant performance penalties
on architectures which allow overlapping of CPU and mem-
ory operations, achieving improvements in EDP by 9%, with
performance penalties of 2.15% on average.

Heath et al. [8] develop a compiler to perform code trans-
formations to increase processor idle time and inform the
operating system about the length of idle periods. By scaling
down frequency, this approach reduces energy consumption
at the cost of performance. Another frequently adopted strat-
egy known as “race to sleep”, is to highly optimize code for
performance such that it completes as quickly as possible.
This is well-suited to compute-bound applications, where
DVFS does not bring significant benefits [30] and energy
savings are just a positive side-effect of performance ori-
ented optimization.

In contrast, Saputra et al. [21] perform loop transforma-
tions that were originally intended for performance (tiling,
permutation, fusion, distribution), but instead of executing
the code at the same frequency to gain performance, they
determine a frequency by profiling so that execution time
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is unaffected, but energy consumption is reduced. Other ap-
proaches [28, 29] apply static techniques complemented by
runtime information to perform dynamic compilation to in-
sert DVFS instructions. Such dynamic approaches can adapt
better to the inputs or architecture than the purely static
methods. For example, the dynamic compilation scheme
proposed by Xiang et al. [15] detects hot paths and uses pro-
filing to determine the optimal DVFS, with minimal perfor-
mance loss.

In contrast to previous approaches, we attempt a better
adaptation of the code to the DVFS capabilities, by decou-
pling the memory accesses of a task from its computation.

Decoupled execution: Inspector-Executor techniques [2,
4, 32], traditionally employed in speculative systems, run a
skeleton of the code (inspector) in advance of the main code.
This skeleton performs just the memory accesses to obtain
information regarding dependences. The executor then fol-
lows, and can be optimized using the information obtained
from the inspection phase.

In general, such models can be efficient if the address
computation is clearly separated from the actual computa-
tion, thereby allowing the creation of an efficient inspector.
Codes relying on pointer chasing or data-dependent control
flow often yield highly complex and inefficient inspectors.
To address such problems we have developed optimizations
aimed to create a more lightweight access versions which do
not degrade performance.

A similar approach, the use of helper threads, makes use
of a prefetching thread to warm up the cache, followed by
the worker thread to consume the data, thus hiding memory
latencies. Both static [20] and dynamic [31] solutions to gen-
erating prefeteching threads have been proposed. Kamruzza-
man et al [12] proposed a simplified, profile-guided, manual
creation of helper threads, with the prefetching thread and
the worker thread running simultaneously. As soon as the
worker thread required data already prefetched by the helper
thread, it is migrated to the core where the helper thread ran,
thus benefiting from the warmed-up cache.

We build upon the decoupled access-execute technique
demonstrated by Koukos et al. [14], by automating the cre-
ation of an efficient and lightweight decoupled access phase
out of a task which forms the execute phase. Our approach
broadens the scope of this technique and allows optimiza-
tions and code transformations that are not practical for man-
ual optimization, in many cases producing better results.

3. Background: Decoupled Access-Execute
To evaluate the effectiveness of our automatic compiler-
generated access phases, we use a combination of a DAE
and DVFS-enabled runtime system and calibrated power and
performance models. With these tools we can both accu-
rately measure the power and performance of our generated
access phases and predict how effective DAE will be on fu-
ture systems with more precise DVFS control.

3.1 Matching program behavior to DVFS

Decoupled access-execute is a method of generating coarse-
grained phases that expose different program behaviors to
take advantage of DVFS. In traditional, coupled, execution
reducing frequency does help when the processor is stalled
waiting for memory, but because the memory and compu-
tation are interleaved, it also slows down the computation,
resulting in a performance loss. Ideally we would like to
run at a low frequency when we are waiting for memory
accesses and have no computation to do. Unfortunately, in
traditional coupled execution this slack happens at the gran-
ularity of just a few instructions, which is far faster than even
the fastest DVFS transition overhead on modern processors
(with on-chip voltage regulator and with DVFS transitions
of nano-scale latencies).

Decoupled access execute (DAE) tries to separate the
execution in two coarse-grained phases: a memory-bound
access phase (maximal slack) and a compute-bound execute
phase (minimal slack). The granularity for the task phases
considered in this paper varies from 5-100 usec, making it
far more amenable to DVFS.

DAE programs are executed at runtime by having two
versions, or phases, of each computation task: the access
version that just accesses (prefetches) the data and the ex-
ecute version that does the original computation. These ver-
sions are executed one after another on the same core with
the execute immediately following the access phase. The ac-
cess phase is created by removing the computation that is
not needed for address calculation from the execute codes.
As an optimization we turn loads into prefetches using the
builtin prefetch x86 instruction, which does not stall instruc-
tion retirement and can therefore provide us with more mem-
ory level parallelism (MLP) over simple loads. To ensure no
memory faults or incorrect execution paths occur, the com-
piler generates the access version only when it can be stati-
cally proven that: (a) the control flow graph and the compu-
tation of memory addresses do not depend on variables vis-
ible outside of the task scope (e.g., computing the addresses
does not affect any global state), and (b) the task does not
contain any function calls which cannot be inlined.

In our framework each task is a well-defined section
of code that operates on a small working-set of data. The
amount of data a task accesses, its working-set, is a crit-
ical parameter for determining the efficiency of the DAE
method for two reasons: First, the execute phase should be as
compute-bound as possible to maximize performance at max
frequency, which means that, ideally, no cache misses should
be incurred. This means that the working set of a task should
comfortably fit in a core’s L1 cache. Second, the DVFS tran-
sition latency overhead should be minimized, meaning that
we want the largest working set that can fit in the L1. As a
compromise, we size the task so that its working set just fits
the private cache hierarchy of a core (i.e., the L1 and the L2
cache), noting that in an out-of-order core a modest number
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of L1 misses that are serviced by the L2 does not affect the
“compute-boundedness” of the code and therefore the rela-
tionship of performance to frequency.

While the programmer is responsible for selecting the
task granularity, the runtime handles task scheduling, run-
ning the access phase before the execute phase, load bal-
ancing through work stealing and power saving using sleep
states and DVFS between each task phase. To choose the
voltage and frequency we have two approaches: (a) naive, in
which we select the lowest frequency for the access phase
and the highest for the execute phase, and, (b) optimal EDP,
in which we try to locally optimize the EDP of each phase
by selecting the frequencies that gives us the best EDP for
the specific task. (To determine the optimal frequency for a
task’s EDP we use the power model described in Sec. 3.2.)

Although our framework fully supports DAE-based DVFS
and runtime prediction of optimal DVFS for EDP, current
systems limit our ability to take full advantage of it in prac-
tice. Even in the latest Intel Haswell processors, which fea-
ture fast hardware DVFS transitions (with an on-chip voltage
regulator), the effective overhead is comparable to that of
the previous generation processors (Intel Sandybridge) due
to software driver limitations.1 For this reason our evalua-
tion uses the measured information from our runtime system
combined with our power models to predict the benefit that
we can achieve when we have low DVFS transition overhead
on future systems. To model this we run all the applications
at all available frequencies (on the real hardware) and profile
the execution time of the access phases, execute phases, and
the runtime overhead. Similarly to [14], we measure exe-
cution time and model the per-phase power to estimate the
overall power and EDP by combining the profiling data from
runs across different frequencies. By including the DVFS
transition overhead, we can accurately project the effect of
our DAE access for different degrees of DVFS latency in
future processor generations.

3.2 Power model

For the estimation of energy we employ the power model
from [14] in which the processor effective capacitance Ceff

is expressed as a linear function of the number of instruc-
tions executed per cycle (IPC) for the Intel Sandybridge pro-
cessor. [14] makes use of fine-grained measurements on real
hardware to find that Ceff = 0.19 ∗ IPC + 1.64 and there-
fore dynamic power is Pdynamic = CefffV

2. Static power
is modeled as a linear function of voltage-frequency for each
number of active cores. The following formula summarizes
the total power estimation.

Ptotal =
#cores∑
i=1

Pdynamic(fi, Vi, IPCi) + Pstatic(f, V,#cores)

1 Tested in linux kernels up to version 3.10 using the ACPI driver.

The total energy is Energy = Timetotal × Ptotal, while
the energy delay product EDP = Time2total × Ptotal, is a
more meaningful metric as it takes into account the desire
to maintain performance. This power model allows us not
only to compute the power estimates for the evaluation of
this paper but also to make runtime decisions as to the op-
timal frequency for each phase.The power model has been
evaluated by Koukos et al [14] against real hardware mea-
surements for the whole SPEC 2006 benchmark suite with
an average error of 3.1%.

4. Background: the Polyhedral model
The polyhedral model [3, 22] is a powerful mathematical
framework for providing a geometric representation of soft-
ware loops. In the polyhedral model, loop computations and
data dependences are represented using integer points in
polyhedra. This provides a unified framework for the com-
piler to reason about complex optimizing transformations,
including unrolling, loop-skewing, loop-fusion, loop-fission,
parallelization, etc. Polyhedral transformations enable the
compiler to perform a reordering of the program’s state-
ments, aiming to improve performance and expose paral-
lelization opportunities. Polyhedral optimizations have been
shown to have great potential (Pouchet at al. [19] report ab-
solute performance improvements of up to 15×) compared
to ICC with automatic parallelization enabled on the original
code (Intel ICC 11.0 with options -fast -parallel -openmp).

However, the polyhedral model relies on parametric lin-
ear algebra and integer linear programming. This restricts
it to loop nests containing static control structures and data
accesses which can be represented as affine functions of the
enclosing loop indices and parameters (from here on denoted
as linear or affine codes). This prevents the analysis of code
with pointer indirection, data-dependent control flow, or dy-
namic memory allocation.

The foundation of the polyhedral analysis consists of de-
termining the order and the dependences between the mem-
ory accesses. For prefetching purposes, we are only inter-
ested in the set of unique memory addresses accessed by a
task (i.e. considering multiple accesses performed by differ-
ent instructions to same address only once).

In this work we use the PolyLib [18] library to manipulate
the program’s polyhedral representation. For affine tasks, we
rely on the polyhedral abstraction and analysis for building
an optimized access version.

5. Compile-time code generation
To automatically generate the access phase, we extend the
LLVM compiler [26] to statically generate two versions of
the task: (i) the access version, designed to prefetch the re-
quired data and (ii) the execute version, which is the orig-
inal task with no further modifications. Since creating a
lightweight (low-overhead) access phase is crucial for pre-
serving performance, we first turn to the polyhedral model
for performing an analysis of the accessed memory locations
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and generating an optimized version, as described below,
Section 5.1. Since this approach is restricted to affine codes,
we handle non-affine codes by building an access version as
a skeleton of the original task, containing only instructions
required for the computation of the memory addresses to be
accessed or in the control flow. For the affine and non-affine
approaches we apply different optimization strategies to op-
timize the performance of the generated access tasks. Code
classification is performed at compile time by analyzing the
memory locations accessed by each memory instruction. For
this purpose, we use LLVM’s Scalar Evolution pass, which
analyzes loop-oriented expressions and captures how scalars
evolve as loops iterate. Based on the expressions provided
by the Scalar Evolution pass, we compute linear functions
to describe the access pattern of each memory instruction,
when possible.

5.1 Affine codes

The generated access code should prefetch only the ad-
dresses accessed in the execute phase, and do so as effi-
ciently as possible. However, the two versions need not ac-
cess exactly the same memory locations, nor access them in
the same order. As the access phase is a prefetching opera-
tion, correctness is not affected as the actual computation is
done by the unmodified execute code. However, the more ac-
curately and quickly the access phase can prefetch the data
used by the execute phase, the better the performance and
efficiency. This observation is the starting point of a suite
of optimizations that result in significant performance gains,
compared to an access version built as a simplified clone of
the original code. We can therefore generate an entirely new
version, whose only role is to prefetch the same memory lo-
cations. For affine code, this allows us to fully leverage the
abilities of the affine transformation to manipulate the loop
accesses to optimize prefetching.

As an example, consider the code in Listing 1(a), which
is extracted from our LU benchmark. Figure 1(a) illustrates
the memory locations accessed by each instruction. One
observes that the set of memory addresses accessed by a 3-
depth loop nest represents a matrix, which can be accessed
by a loop nest of depth 2. As a result, it is sufficient to
generate an access version consisting of a 2-depth loop nest
to prefetch these locations more quickly. To achieve this, we
perform a static analysis of the accessed memory locations
and generate the loop nest of minimal depth prefetching
them.

5.1.1 Memory range analysis

A simple approach to determine the set of accessed locations
is to compute the memory range accessed by each instruc-
tion, parameterized by the loop bounds, and build the union
of these ranges. For the example presented in Listing 1(a)
accessing the two-dimensional array AN×N , the memory
range of addresses accessed by A[i][i] is given by the access

1

1,3

1,3

1,3

2,3

2,3 2,3

3,4

3,4

3,42

2

2

4 4 4

(a) Accesses per-
formed by each
instruction in the loop
nest from Listing 1(a)

Accessed
Prefetched

(b) Prefetched array cells (light and
dark grey) based on the memory
range analysis of accessed cells (dark
grey)

Figure 1. Memory range analysis: efficient when the whole
array is accessed (a), inefficient when accesses target only a
block of the array (b)

Listing 1. Code extract from LU:

(a) /* Accessing the whole matrix */
for (i = 0; i < N; i++)
for (j = i+1; j < N; j++) {
A[j][i](2) /= A[i][i](1);

for (k = i+1; k < N; k++)
A[j][k](3) -= A[j][i](2) * A[i][k](4);

}

(b) /* Accessing a matrix block */
for (i = 0; i < Block; i++)
for (j = i+1; j < Block; j++) {
A[j][i] /= A[i][i];
for (k = i+1; k < Block; k++)
A[j][k] -= A[j][i]*A[i][k];

}

(c) /* Prefetch the convex union of
the accessed memory locations */
for (i = 0; i < Block; i++)
for (j = 0; j < Block; j++)
prefetch: A[i][j]

function2: f(i) = base add(A)+(N−1)∗i+i, 0 ≤ i < N .
This already covers the interval [base add(A), base add(A)+
(N − 1) ∗ N ], which already covers the whole matrix, and
is equivalent to the union of all memory ranges. While this
solution provides good results when the whole matrix is ac-
cessed, as in Listing 1(a), it becomes inefficient for loop
nests which only access a block of the matrix, as in the ex-
ample depicted in Listing 1(b), Figure 1(b). The union of
memory ranges in the latter case would return full rows of
the matrix, incurring an enormous amount of unnecessary
prefetching.

5.1.2 Convex union of accesses

To address this problem, a more fine-grained analysis is
required. The solution relies on the polyhedral model to
statically detect the exact memory accesses performed by
each instruction and to compute the union of these accesses,
in contrast to computing the union of the memory ranges.
Once the set of accesses is detected, the compiler generates

2 Assuming size of an element is 1, for brevity
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the loop nest of minimal depth required to prefetch these
addresses.

For detecting the exact set of all accessed memory loca-
tions, we rely on the polyhedral framework to compute the
set of addresses accessed by each instruction and the union
of these sets (one set per instruction). In order to generate the
simplest and most efficient loop nest scanning the union of
memory addresses, we compute the convex hull of the union.

For the example in Listing 1(b), one obtains the convex
union of the accessed addressed, as a polyhedron:

{i,j | 0 ≤ i ≤ Block, 0 ≤ j ≤ Block}.

From this representation, the compiler automatically gen-
erates the access phase consisting of the loop nest in List-
ing 1(c).

Trade-offs and solutions

1. Wide convex hull: The trade-off of computing the con-
vex hull of the union of accessed memory addresses is that
it may be too large. By definition, to ensure convexity, the
convex hull includes the memory areas (whether accessed or
not) between the accessed locations. Therefore, as in the case
of the memory range analysis, it may also prefetch a number
of unnecessary locations. We propose a simple method to en-
sure that the generated loop nest for prefetching the memory
locations does not scan any un-accessed addresses. The solu-
tion we propose is to count the number of memory locations
accessed in the original loop nest (NOrig), and the number
of locations contained in the convex union (NconvUn). In
our approach, we decide to generate the loop nest scanning
the convex hull only if: NconvUn ≤ NOrig. Neverthe-
less, one can design heuristics to determine a threshold th,
NconvUn − th ≤ NOrig, such that this optimization still
provides benefits. This is equivalent to computing the num-
ber of unnecessarily prefetched memory locations allowed,
without hurting performance.

To compute NOrig, we need to determine the exact set
of locations accessed by each instruction and their (non-
disjoint) union, represented as a union of Z-polytopes [23].
Next, we sum up the number of integer points contained
in each of these polytopes, using Ehrhart polynomials [5].
Similarly, NconvUn is computed by counting the integer
points in the convex union.

2. Loop nests accessing different arrays: For loop nests
that access multiple arrays (such as in Listing 2(a) which ac-
cesses arrays A and D ), the access version should efficiently
prefetch data from each array. Ideally, this requires generat-
ing a unique loop nest that can scan both arrays, as depicted
in Listing 2(b), to minimize the overhead.

To achieve this, we compute the convex hulls correspond-
ing to the set of accesses to each array and generate the
corresponding loop nests. Next, we merge these loop nests
into one, only if they have the same number of iterations.
As before, we could consider relaxing this constraint and

merge the loops if the number of iterations differ by a cer-
tain threshold if this improves performance.

Listing 2. Loop nest accessing different arrays

(a) /* Execute version */
for (i = 0; i < Block; i++)
for (j = i+1; j < Block; j++)
for (k=0; k < Block; k++)
A[j][k] -= D[j][i] * A[i][k];

(b) /* Access version */
for (i = 0; i < Block; i++)
for (j = 0; j < Block; j++){
prefetch: A[i][j]
prefetch: D[i][j]

}

3. Loop nests accessing different blocks of the same ar-
ray: A particularly interesting situation is when a loop nest
accesses different blocks of the same multi-dimensional ar-
ray, as in Listing 3.

Listing 3. Loop nest accessing blocks of the same array

(a) /* Execute version */
for (i = 0; i < Block; i++)
for (j = i+1; j < Block; j++)
for (k = i+1; k < Block; k++)
A[Ax+j][Ay+k] -= A[Dx+j][Dy+i]

* A[Ax+i][Ay+k];

(b) /* Access version */
for (i=0; i<Block; i++)
for (j=0; j<Block; j++){
prefetch: A[Ax+i][Ay+j]
prefetch: A[Dx+i][Dy+j]

}

Accessed
Prefetched

A A A A
A A A A
A A A A
A A A A

D D D D
D D D D
D D D D
D D D D

Figure 2. Ac-
cesses to blocks of
a matrix: classA,
classD

In such cases the convex hull
would include the accessed blocks,
together with the memory areas in-
between as depicted by the light
grey area in Figure 2. Our solu-
tion to avoid unnecessary prefetch-
ing in this case is to separate mem-
ory accesses into classes which use
the same parameters. In the ex-
ample in Listing 3(a), we would
have classA (depending on param-
eters Ax and Ay) and classD (de-
pending on Dx, Dy) as shown in
Figure 2. Next, as in the example
with accesses to different arrays,

we compute the loop nests individually, and we merge them
if the number of iterations coincide. Hence, we obtain the ac-
cess version illustrated in Listing 3(b), efficiently prefetch-
ing only the locations illustrated as dark grey cells in Fig-
ure 2.
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5.2 Access version for non-affine codes

For code that is not amenable to the polyhedral model, the
compiler starts out by creating a simplified clone of the
original loop nest. However, this simple approach generates
inefficient access codes, and needs to be complemented with
several optimizations to produce acceptable results.

5.2.1 Straightforward approach and its refinements

Intuitively, the access code generated from the execute code
should retain instructions that determine the control flow and
compute memory addresses, and should replace load and
store instructions (read/write accesses in the LLVM interme-
diate representation) with prefetch instructions. This leads
to a naive implementation that simply prunes instructions
not needed for memory access and replaces loads and stores
with prefetches. Empirically, we discovered that prefetch-
ing the memory addresses accessed for writing does not im-
prove performance, hence, we discard the store instructions
and only prefetch the read memory accesses3. To improve
on this naive approach, we:
• prefetch only global variables and values transmitted as

parameters to the task;
• detect the set of accessed addresses and prefetch each of

them only once;
• accompany, rather than replace, each load with a prefetch

instruction, relying on dead code elimination to remove
instructions that are not required for memory address
computation nor for preserving the control flow graph.

Finally, the generated access code (denoted access ver-
sion) is optimized using traditional compile time optimiza-
tions (-O3).

5.2.2 Simplified CFG

One drawback of creating simplified versions using the pre-
vious approach to prefetch the accessed memory addresses is
that the access versions might actually be as complex as the
original execute code. Thus, not only the address calculation
but also part of the computation is replicated in the access
version, turning it into a heavy code which is no longer only
memory-bound. Such situations commonly occur when the
code has a data-dependent control flow.

To avoid such cases and to limit the overhead, we per-
form a simplification of the control flow graph in the access
version, by eliminating conditionals embedded in loop bod-
ies, if they do not maintain the control flow of the loop. This
optimization has two consequences. First, the access phase
is considerably faster, since it contains only a simple control
flow. Second, by eliminating the conditionals, we ensure that
only data which is guaranteed to be accessed in all iterations
is prefetched, thus reducing unnecessary prefetching.

3 Part of this is due to the less critical nature of store instructions as they are
unlikely to stall the processor pipeline during the execute phase.

Algorithm summary: The algorithm first marks all in-
structions required to generate the prefetch addresses and
then discards the remaining instructions when generating the
access code. The main steps are listed below:

1. Inline function calls in the task, when possible. If any
function calls cannot be inlined, we do not generate an
access version to avoid unwanted side-effects.

2. Create an identical clone of the task. By creating a copy,
all local variables of the original task are privatized in the
clone access version.

3. Identify and mark uses (reads) of variables visible out-
side the scope of the task (global variables, function argu-
ments) and associate corresponding prefetch instructions.

4. Identify and mark instructions required to preserve the
loop control flow.

5. Starting from the marked instructions (reads and loop
control flow), identify and mark address computations
and values required for the loop control flow by following
the use-def chain. If a write to a value visible outside the
task boundaries is required either for computing memory
locations or for maintaining the loop control flow, then
we do not generate an access version.

6. Finally, discard all unmarked instructions. Followed by
dead code elimination, this step removes unnecessary
computations and branches. To further simplify the con-
trol flow, reads of variables visible outside the task, which
are not guaranteed to execute (e.g. embedded in condi-
tionals) are also discarded. Note however, that instruc-
tions required for the control flow of the loop (such as
instructions determining the loop exit) must be preserved
whether they execute conditionally or not.

While eliminating conditionals within loops gives a gen-
eral improvement, some applications would benefit from the
additional or more precise prefetching of keeping the condi-
tionals. This is likely if particular conditional-branches are
executed for the majority of the iterations. To address such
situations, we could detect the hot path through profiling and
create a specifically tailored access version. Moreover, opti-
mization opportunities in codes that exhibit phases could be
explored by means of multiple statically generated access
versions selected based on the appropriate phase at runtime.

5.2.3 Avenue of further optimizations

There are numerous optimizations that could improve the
efficiency of the decoupled access-execute model, includ-
ing: prefetching only one access per cache line, instead of
per memory address; avoiding recomputation of memory
addresses; and adjusting the granularity of the task auto-
matically at compile-time to optimize the amount of data
prefetched by the access phase.
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6. Evaluation
We evaluated our automatic access phase generation on a
selection of benchmarks ranging from compute- to memory-
bound applications: LU, Cholesky and FFT (SPLASH2 [27])
are examples of computational intensive kernels, CIGAR [1]
and libquantum (SPEC CPU2006 [9]) are memory-bound,
while CG (NAS parallel benchmark suite [17]) and LBM
(SPEC CPU 2006 [9]) exhibit an intermediate behavior.
These applications were manually ported to a task-based
runtime where the granularity of each task can be adjusted
by a runtime parameter. Energy and performance numbers
were generated using the runtime and power models de-
scribed in Section 3.2, following the configuration displayed
in Table 1.

Table 1. Application characteristics. # affine loops: number of
loops handled with the polyhedral approach, out of the total number of
target loops; TA%: Average fraction of the application’s execution time
spent in the access phase; TA(usec): Average duration of the access phase.

Application # affine loops / # tasks TA TA

total loops % (usec)

LU 3/3 89440 1.83 6.82
Cholesky 3/3 45760 1.80 6.05

FFT 0/6 82304 19.24 30.74
LBM 0/1 2600192 47.95 7.90
LibQ 0/6 51603486 47.01 2.64
Cigar 0/1 10576778 49.27 5.11
CG 0/2 35634375 42.84 2.89

6.1 DAE vs. regular task execution

We compare the results of DAE execution in terms of time
(performance), energy and EDP vs.: (1) CAE: original task
execution (coupled access-execute), (2) Manual DAE: de-
coupled access-execute wherein the access version was man-
ually crafted by an expert programmer, and, (3) Auto DAE:
decoupled access-execute wherein the access version was
automatically generated by the compiler. In Figure 3, re-
sults are normalized to the original task coupled execution
(CAE) running at the Linux default maximum frequency.
Min/max f data is from running the access phase at the
lowest frequency and the execute phase at highest frequency.
Optimalf selects the most suitable frequency for each
phase of an application in order to achieve optimal EDP,
using a prediction model which relies on offline profiling, as
discussed in Section 3.2.

Since the focus of this work is to demonstrate the poten-
tial of DAE, we perform an exhaustive search to select the
optimal frequency in terms of EDP. Online techniques, how-
ever, have also proven to be accurate enough to minimize
EDP by scaling frequency at runtime. It has been demon-
strated that analytical-based models can be approximated us-
ing performance counter events on real hardware to achieve
near-optimal EDP savings [11, 25]. For future hardware with
lower DVFS transition latencies, similar approaches will be
effective for optimal DEA frequency selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LU Chol. FFT LBM LibQ Cigar CG G.Mean

(a) Time (Normalized to Max Frequency)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LU Chol. FFT LBM LibQ Cigar CG G.Mean

(b) Energy (Normalized to Max Frequency)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LU Chol. FFT LBM LibQ Cigar CG G.Mean

CAE (Optimal f.)
Manual DAE (Min/Max f.)
Manual DAE (Optimal f.)

Compiler DAE (Min/Max f.)
Compiler DAE (Optimal f.)

(c) EDP (Normalized to Max Frequency)

Figure 3. Performance, Energy, and EDP results on a quad-
core Intel Sandybridge, assuming state-of-the-art 500ns fre-
quency scaling transition latency.

DEA can significantly improve the Energy×Delay Prod-
uct (EDP) with negligible impact on performance, as demon-
strated by Koukos et al. [14]. While both coupled and de-
coupled executions benefit from DVFS, coupled execution
shows a significant performance penalty when the frequency
is reduced to save energy. In contrast, the decoupled ex-
ecution preserves performance in addition to reducing the
energy consumption. Note that decoupled execution deliv-
ers benefits for both compute- and memory-bound applica-
tions, and provides a similar EDP improvement to that of
the lower-frequency coupled execution. An exception to this
overall trend is the LBM benchmark, in which the EDP im-
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provement for coupled execution is larger than for decou-
pled, due to the fact that its write accesses are coupled with
computations during the execute phase. Thus, this applica-
tion does not take the complete advantage of the decou-
pled execution which decouples only the read accesses from
computation.

Our experiments were carried out assuming the frequency
scaling transition latency of current generation processors
(Intel Haswell), estimated to 500 nanoseconds. During each
DVFS transition we count only the static energy, since no
instructions are executed. We also evaluated our approach
considering the ideal case of instant per-core DVFS of future
processors. Assuming zero transition latency, both Manual
DAE and Auto DAE slightly outperform CAE at max fre-
quency, regarding execution time. Moreover, Manual DAE
yields 25% EDP improvement with Optimalf policy, while
Auto DAE delivers 29% EDP improvement (geometric mean
across all applications). Considering the more realistic tran-
sition latency of 500ns, both DAE approaches pay a perfor-
mance penalty of approximately 4% with Optimalf pol-
icy, while improving EDP by 23% (Manual DAE) and 25%
(Auto DAE) respectively, as shown in Figure 3.

An in depth analysis comparing the decoupled and cou-
pled execution from performance and energy viewpoints is
presented in previous work by Koukos et al [14].

6.2 Manual DAE vs. Auto DAE

To evaluate the effectiveness of the compiler optimizations
introduced with this work we examine detailed time and en-
ergy results across coupled execution (CAE), Manual DAE,
and Auto DAE in Figure 4. We chose as case studies 3 appli-
cations where the Auto DAE and the Manual DAE versions
differ in performance and energy consumption: (a) Cholesky,
where the compiler generates the access version guided by
polyhedral analysis, (b) FFT and (c) LibQ, for which the au-
tomatically built access versions are optimized skeletons of
the original tasks. Each graph displays the behavior of CAE,
Manual DAE and Auto DAE as a function of frequency, left-
to-right from fmin (1.6GHz) to fmax (3.4GHz), in steps of
400MHz. For both DAE versions, the access phase is exe-
cuted at fmin, while the execute phase is varied from fmin

to fmax.

6.2.1 Cholesky

Cholesky is a compute-bound kernel. Consequently, a straight-
forward generation of an access version preserving the mem-
ory accesses would incur a performance degradation of up
to 1.7× compared to the original execution time, with sig-
nificant energy penalties as a consequence. However, since
Cholesky is an affine kernel, it can be abstracted to a polyhe-
dral representation, thus enabling advanced analysis of the
accessed memory locations and the generation of a highly
optimized and more efficient access version.

The manually created version is similarly optimized, but
performs selective prefetching, thus less data is actually

brought in the cache. As a result, the access phase has a
shorter execution time compared to the automatically gener-
ated one, but the overall execution time is slightly greater be-
cause the execute phase has to fetch the missing data. From
an energy viewpoint, the automatically generated access ver-
sion outperforms the hand-crafted one because it saves more
energy by prefetching more data at the lower frequency and
then executing for less time at the higher frequency. This ex-
ample demonstrates that while the automatically generated
access phase prefetches more data than the manually written
one, the tradeoff is a win in energy.

6.2.2 FFT

The parallel tasks of the FFT kernel contain calls to other
functions, each of which contain a number of loop nests.
Compile time optimizations inline these functions and per-
form advanced loop optimizations, merging the loop nests
originating from different functions. Thus, a simplified and
more efficient version of the original task is available to
the compiler as a starting point in building the access ver-
sion. Conversely, the manually crafted version was gener-
ated from the unoptimized source code. Yet, the hand-made
version uses the expert’s knowledge regarding data accesses
and is greatly simplified. By being simpler, the manual ac-
cess version completes faster than the auto-generated ver-
sion, but prefetches less data, hence the execute phase re-
quires longer time to complete. From the performance stand-
point, both Manual DAE and Auto DAE are competitive
with the original coupled execution. Nevertheless, the ad-
vantage of the automatic version consists in an access phase
prefetching more data while running at a low frequency,
which reduces the energy consumption and yields overall
improvements in EDP.

6.2.3 LibQ

LibQ is an example where both Manual DAE and Auto DAE
access versions were generated as an optimized clone of the
original task. Additionally, Manual DAE eliminates redun-
dant prefetch instructions (i.e. targeting data residing in the
same cache line, such as different fields of a complex data
structure). Such optimizations are possible for the expert
having knowledge of the data layout, but difficult to discover
at compile-time. A solution to overcome this limit and im-
prove the automatically generated access versions is to per-
form a profiling step to identify instructions that regularly
incur cache misses and only prefetch those.

The effect of selective prefetching in LibQ is a faster man-
ually crafted access phase, compared to the automatically
generated version. Although the execute phase in Auto DAE
requires shorter time to complete, the total execution time is
slightly increased. On the other hand, the benefit of a longer
executing access version translates in energy gains, hence
both Manual DAE and Auto DAE yield similar EDP.
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Figure 4. Comparison of coupled execution, Manual DAE and Auto DAE as a function of execute frequency. O.S.I. is the
aggregate of Overhead, Sequential, and Idle times (typically includes all time that is not within task access or execute).

6.2.4 Conclusions

In two of these examples (Cholesky and FFT) we see that
while the Auto DAE access code takes longer to execute than
the Manual DAE access code, it does not result in an overall
increased execution time, whereas in LibQ, the performance
advantage gained by the Manual DAE code is minimal.
This means that the overall proportion of execution time
in the access phase is increased, which allows the runtime
to run at the lowest frequency for a greater portion of the
time, resulting in an overall improvement in EDP compared
to the Manual DAE code. The three benchmarks analyzed
in detail reflect the results obtained in all other evaluated
applications.

7. Conclusions
In this work we have demonstrated new compiler optimiza-
tions to improve energy efficiency via automatic access
phase generation for decouple access execute. To exploit the
full potential of DVFS, we perform code transformations
that generate a memory-bound access version of each task.
This allows the DAE runtime to execute the access task im-
mediately before the execute task, which prefetches its data
and makes the original execute task effectively compute-
bound, since the data is already available in the cache. Hav-
ing coarse-grained memory- and compute-bound execution
phases allows the runtime to adjust frequency accordingly,
exploiting the maximum potential of DVFS.

Unlike previous approaches relying on a decoupled access-
execute model (as for instance the inspector-executor paradigm
used in dynamic speculative parallelization) we do not re-
quire equivalent access and execute phases because our ac-

cess phase is a speculative prefetch. This enables us to de-
velop advanced static analyses to generate highly optimized,
although not equivalent, access versions. As a result we can
preserve or even enhance overall performance by prefetch-
ing data with a minimal overhead. For memory bound ap-
plications we have a significant EDP improvement of up to
50% and 25% on average compared to coupled execution.

Using these optimizations, we compare the automati-
cally generated access code with hand-crafted versions and
demonstrate that the compiler generated versions are com-
petitive both in performance and energy efficiency. More-
over, these complex static optimizations even exceed the
ones prepared by an expert in several benchmarks. As fu-
ture work, we consider employing a profiling step in guiding
static transformations, by complementing the information
retrieved at compile time.
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