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The fusion of two cross-hyperconjugated 

segments in form of the small 1,4-

disilacyclohexa-2,5-diene cycle provides for 

electronic and optical properties which 

resemble to those of π-conjugated cycles. 
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Abstract: The electronic structures of 2,3,5,6-tetraethyl-1,4-disilacyclohexa-2,5-dienes with 

either four chloro (1a), methyl (1b), or trimethylsilyl (TMS) (1c) substituents at the two 

silicon atoms were examined in an effort to design cyclic compounds with strong neutral 

cross-hyperconjugation between π- and σ-bonded segments. Remarkable variations in the 

lowest electronic excitation energies, lowest ionization energies, and the first oxidation 

potentials were observed upon change of substituents, as determined by gas phase ultraviolet 

(UV) absorption spectroscopy, ultraviolet photoelectron spectroscopy (UPS), and cyclic 

voltammetry. The spectroscopic studies reveal a particularly strong neutral cyclic cross-

hyperconjugation in 1c. Its lowest electron binding energy (7.1 eV) is distinctly different from 

that of 1b (8.5 eV) and cyclohexa-1,4-diene (8.8 eV). Molecular orbital analysis reveals a 

significantly stronger interaction between filled π(C=C) and π(SiR2) group orbitals in 1c than 

in 1a and 1b. The energy shift in the highest occupied molecular orbital is also reflected in the 

first oxidation potentials as observed in the cyclic voltammograms of the respective 

compounds (1.47, 0.88, and 0.46 V for 1a, 1b and 1c, respectively). Furthermore, 1,4-

disilacyclohexadiene 1c absorbs strongly at 273 nm (4.55 eV), whereas 1a and 1b have no 

symmetry allowed excitations above 215 nm (below 5.77 eV). The fusion of two trisilane and 

two olefin fragments in form of the cyclic compound 1c clearly leads to a new chromophore 

with markedly different spectroscopic features than the separated fragments. Suitably 

substituted 1,4-disilacyclohexa-2,5-dienes represent novel building blocks for the design of 

larger cross-hyperconjugated molecules as alternatives to traditional purely cross-π-

conjugated analogues.  
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Introduction 

π-Conjugation and σ-conjugation are well-established concepts in chemistry since many 

decades, and an enormous number of compounds which exhibit either of these conjugation 

topologies have been investigated for purely fundamental reasons as well as in the course of 

development in a range of different applied areas.1-3 However, the combination of the two 

conjugation topologies into a strong σ/π-conjugation, or hyperconjugation, in a neutral 

compound is less explored,4 and even much less exploited in applications. Herein, we report 

on a joint theoretical and experimental study of a compound class, the 1,4-disilacyclohexa-

2,5-dienes (1, Figure 1), in which π- and σ- bonded molecular segments interact in a cyclic 

cross-hyperconjugated manner and for which the interaction strength can be varied 

extensively by the choice of substituents.5 These species could potentially rival 1-

silacyclopenta-2,4-dienes (siloles), organosilicon compounds which are extensively 

investigated and which have similar electronic properties to thiophenes. Due to this similarity 

the silole molecule and its oligomers and polymers (Figure 2) find applications in organic 

electronics.6  

σ-Conjugation is observed in heavy alkanes, such as oligo- and polysilanes.2 A strong mix 

of σ- and π-conjugation is therefore exceptionally rare in neutral pure hydrocarbons even 

though such neutral hyperconjugation is observed in the recent perfluoroaryltetrahedranes (2), 

of Sekiguchi and co-workers, composed of one or two strained tetrahedranes which interact 

with an adjacent phenyl group.7 Recently, we examined the electronic structure of 

bis(phenylethynyl)methanes and silanes in dependence of the substituents at the central C or 

Si atom, and we found that when the substituents at the central atom are σ-electron donor 

groups such as the trimethylsilyl group the electronic structures of these compounds resemble 

that of a regular cross-π-conjugated hydrocarbon.8 Such molecules have two hyperconjugated 

paths which are united by the π-symmetric group orbital of the central ER2 moiety having the 
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same function as a geminally connected C=C double bond. These compounds can therefore be 

labelled as cross-hyperconjugated. Indeed, hyperconjugative interaction between ethylene 

fragments bonded to the silicon atom in dimethyldivinylsilane has been shown earlier with 

photoelectron spectroscopy,9 but a SiMe2 segment only provides for very weak interaction.8 

Similarly, cyclohexa-1,4-diene has been studied theoretically as well as experimentally, both 

in the ground and the excited states, and weak hyperconjugation has been demonstrated and 

attributed to π(CH2) group orbitals composed of the C-H σ- and σ*-bond orbitals interacting 

with the π-orbitals of the C=C double bond.10  

 

 

Figure 1. The 1,4-disilacyclohexa-2,5-dienes (1) examined herein, and an example of the 

previously investigated neutral hydrocarbon 2 of Sekiguchi and co-workers which display 

significant neutral hyperconjugative interaction (ref. 7).  
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Figure 2. Earlier investigated oligomers and polymers with interacting σ- and π-bonded 

segments; the silanylene-thiophene (3) and silole (4) oligomers with six electrons in π(C=C) 

and π(SiR2) orbitals (refs. 11-19 and 6). 

  

Oligomeric and polymeric compound classes which contain σ- and π-bonded segments, 

e.g. the linearly linked silanylene-thiophene oligomers 3 (Figure 2), have been investigated 

earlier.11-19 However, the rotational flexibility about the single bonds of the polymer backbone 

affects the σ/π-coupling strength.9,10 Poly-1,1-siloles in which the monomers are connected 

via the Si atoms (5) reveal significant coupling between the localized π*-orbitals of the diene 

segment and the delocalized σ*-orbitals (cf., π(Si(SiR3)2 group orbitals) of the Si backbone, 

respectively.20 Linear and cyclic oligo-1,1-siloles have also been reported, and the UV 

absorption spectra of the tetra-, penta-, and hexamers have λmax in the range of 275 - 320 

nm.21-24  

The silole ring has six electrons in orbitals of π-character; four in the π-orbitals of the 1,3-

butadiene segment and two in the π(SiR2) group orbital. Yet, despite the 6π-electron systems, 

the geometries of various siloles indicate that cyclic conjugation is modest.25,26 In this context 

it is noteworthy that the electronic structure of siloles is valence isolobal to that of 

pentafulvenes (Figure 3), cross-π-conjugated hydrocarbons in which the optical properties and 

degree of aromaticity can be varied extensively through substitution, from the nonaromatic 

parent pentafulvene to the aromatic compound when the exocyclic substituent are amino 

groups.27-30  
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Figure 3. Schematic drawings of the valence isolobal analogy of the interactions between the 

π-symmetric basis orbitals of (A) pentafulvene and (B) silole, respectively. 

 

Our hypothesis is now that 1 is a useful template for the design of neutral cyclic cross-

hyperconjugated molecules. In a similar way that the π-orbital interaction in siloles is valence 

isolobal with that of pentafulvenes, the π-orbital interaction in 1 is isolobal to that between the 

π-orbitals of the endocyclic and the exocyclic C=C bonds in para-quinodimethane (5, Figure 

4). Para-quinodimethane is a cyclic cross-π-conjugated compound,10 and by analogy, 

properly substituted derivatives of 1 are potentially cyclic cross-hyperconjugated. The 

question thus arises whether 1,4-disilacyclohexa-2,5-diene can provide a template for the 

design of optically and electronically useful compounds in a similar manner as 5 represents a 

template for tetracyanoquinodimethane (TCNQ), one of the cornerstones of organic 

electronics?31  
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Figure 4. Schematic drawings of the valence isolobal analogy of the interactions between the 

π-symmetric basis orbitals of (A) para-quinodimethane (5) and (B) 1,4-disilacyclohexa-2,5-

diene (1), respectively. 

 

The parent 1,4-disilacyclohexa-2,5-diene (1), has a ΔεH-L of 6.43 eV at B3LYP/6-

31G(d,p) level.32 Although the few earlier experimental studies focused on synthesis rather 

than spectroscopy,33-35 it is interesting that the 1H NMR chemical shift of the vinylic protons 

in 1,1,4,4-tetramethyl-1,4-disilacyclohexa-2,5-diene was found at 6.84 ppm, exceptionally 

low-field for vinylic protons.36 In the present study, 1,4-disilacyclohexa-2,5-dienes with either 

Cl (1a), Me (1b), or SiMe3 (1c, TMS) substituents at the Si atoms and ethyl substituents at the 

sp2 hybridized C atoms (Figure 1) were synthesized and examined by X-ray crystallography, 

gas phase UV absorption spectroscopy, UV photoelectron spectroscopy (UPS), and cyclic 

voltammetry. As a reference for a non-cross-hyperconjugated compound, the all-carbon 

analogue, i.e., cyclohexa-1,4-diene (6), was also examined by gas phase UV absorption 

spectroscopy. By quantum chemical calculations the investigation was extended to a larger set 

of 1,4-disilacyclohex-2-enes and related compounds (Figure 5) so as to reveal the effect of the 

neutral cyclic cross-hyperconjugation as compared to ordinary neutral linear hyperconjugation 
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and acyclic cross-hyperconjugation. Properties, such as electronic transitions, ionization 

potentials, and how these are coupled to the substitution pattern of the different compounds, 

are analyzed and discussed. Our aim is to deduce a new monomer unit which in an optimal 

manner combines σ- and π-bonded segments into a rigid and strongly cross-hyperconjugated 

cyclic framework. This unit could represent a novel structural motif to be used in oligomers 

and polymers for various optical and/or electronic applications, similar to the silole unit. 

 

 

Figure 5. The substituted 1,4-disilacyclohexa-2,5-dienes (1a – 1h), the all-carbon reference 

cyclohexa-1,4-diene (6), and model compounds (7 - 10) explored computationally to examine 

the extent of cyclic cross-hyperconjugation. 

 

Results and Discussion 

The goal of the presently reported investigation is to find ways to maximize the neutral cyclic 

cross-hyperconjugative interaction between the local π(C=C) and π(ER2) orbitals in 1,4-

disilacyclohexa-2,5-dienes 1a – 1c. For that reason we first discuss the qualitative molecular 

orbital (MO) diagram and the calculated MOs before progressing to the experimental data. At 

the end we compare, through quantum chemical calculations, the strongly cross-



9 
 

hyperconjugated 1c with several model compounds (7 - 10) which allows for an evaluation of 

the cyclic cross-hyperconjugation in 1c as compared to hyperconjugation and acyclic cross-

hyperconjugation. One purpose of the study is to show how qualitative MO theory and 

subsequent quantum chemical calculations can be used as design tools a priori to 

experimental studies, in contrast to the regular a posteriori usage of quantum chemical 

computations (and theory). 

Molecular orbitals: Figure 6 shows the MOs of π-symmetry and considers a D2h 

symmetric 1,4-disilacyclohexa-2,5-diene with substituents R and R’ at the silicon and carbon 

atoms, respectively. These MOs are derived through combinations of suitable local π-orbitals 

of the two C=C bonds combined into a 2x(C=C) fragment (marked blue in Figure 6) and the 

two SiR2 moieties of a 2x(SiR2) fragment (marked red). The interaction includes the 

symmetry-adapted in-phase and out-of-phase combinations of the four πCC and π*CC orbitals 

of 2x(C=C) with the symmetry-adapted in-phase and out-of-phase combinations of the four 

π(SiR2) and π*(SiR2) orbitals of the 2x(SiR2) fragment. 

The occupied group orbital of b1u symmetry on the 2x(C=C) fragment and the two 

occupied and unoccupied group orbitals of this symmetry on 2x(SiR2) combine into the three 

1b1u, 2b1u, and 3b1u MOs of which the first two are occupied. Similarly, the vacant b2g group 

orbital of 2x(C=C) combine with the two b2g orbitals of the 2x(SiR2) fragment into the 1b2g, 

2b2g, and 3b2g MOs, where the first one is occupied. One b1u and one au orbital also exist on 

the 2x(C=C) fragment, but neither of these can interact with a suitable π-symmetric orbital at 

2x(SiR2) constructed from two π(SiR2) or two π*(SiR2) orbitals. They may instead each 

interact with the two empty 3d(Si) AOs combined into b3g and au symmetric 2x(SiR2) group 

orbitals. The interaction between the occupied b3g group orbital of the 2x(C=C) fragment and 

the vacant b3g orbital of 2x(SiR2) should be negligible so that the 1b3g MO remains localized 

to the two C=C double bonds. However, the interaction between the vacant au group orbital of 
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2x(C=C) and the vacant au orbital of 2x(SiR2) can, on the other hand, be substantial (vide 

infra).  

 

Figure 6. Qualitative molecular orbital (MO) diagram of D2h symmetric 1,4-disilacyclohexa-

2,5-diene with the lowest few occupied and unoccupied MOs of π-character constructed from 
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suitable fragment orbitals. Red arrows indicate changes in fragment orbital energies in 

dependence of substituents R and blue arrows indicate changes of substituents R’. The 

orbitals are labelled in accordance with the irreducible representations of the D2h point group. 

The three C2 rotational axes are arranged as shown in the structure in the lower right corner.  

 

The energy of MO 2b1u will vary depending on the energy of the b1u group orbital of 

2x(SiR2) relative to that of the b1u group orbital of 2x(C=C). Thus, the less electronegative R 

becomes, the higher the energy of this MO will become. The variation in orbital interaction 

strength can be recognized from the suitable π-symmetry orbitals of 3-hexene and H2SiR2. At 

the B3LYP/6-31G(d) level the π(C=C) of 3-hexene is located at -6.40 eV whereas the π(SiR2) 

of H2SiR2 is found at -11.45 (R = Cl), -8.38 (R = Me), and -6.53 eV (R = TMS) (see 

Supplementary information for orbital plots). With R = TMS, 2b1u can thus be expected to be 

of particularly high energy, and indeed, this orbital becomes HOMO for 1c (orbital 2b1, 

Figure 7). The 1b3g MO, on the other hand, is not equally affected by the choice of the 

substituents at Si as it is primarily localized to the C=C bonds. This orbital should instead 

vary in energy upon a change of substituents R’.  
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Figure 7. Energy variations of the two occupied frontier molecular orbitals 1b3 and 2b1 and 

the two unoccupied frontier orbitals 1a and 2b2 of 1a – 1c calculated at the B3LYP/6-31G(d) 

level.  

 

For 1a – 1c, the HOMO-1, HOMO, LUMO, and LUMO+1 correspond to either of the 1b3g, 

2b1u, 1au and 2b2g orbitals of Figure 6, and as the symmetry is reduced from D2h to D2 the four 

MOs become 1b3, 2b1, 1a, and 2b2. These four MOs of 1c are displayed in Figure 8, and 

which orbital is HOMO (1b3 or 2b1) and which one is LUMO (1a or 2b2) depends on R 

(Figure 7). It is noteworthy that no occupied MO with σ-symmetry is found between the 2b1 

and 1b3 orbitals for any of the three compounds. Furthermore, there is a striking similarity of 

the calculated MOs of 1c with those of para-quinodimethane (5, Figure 8) because HOMO-1, 

HOMO, LUMO, and LUMO+1 of 1c closely resemble the orbitals of 5 in the order HOMO-1, 

HOMO, LUMO+1 and LUMO, respectively, i.e. LUMO and LUMO+1 change place between 

the two compounds. Two further items can in particular be noted. First, HOMO of 1c (-5.24 

eV) is nearly isoenergetic to the HOMO of 5 (-5.35 eV) at the B3LYP/6-31G(d) level. 

Secondly, the a-symmetric orbital which is LUMO+1 in 5 can interact with the a-symmetric 

group orbital of 2x(SiR2) composed of the two 3d(Si) AOs of 1c. As a consequence, this MO 

is lowered in energy so that it becomes the LUMO of 1c. 
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Figure 8. Frontier orbitals, orbital energies in eV, and orbital symmetries of 1c and para-

quinodimethane (5), as given for the D2 point group, calculated at the B3LYP/6-31G(d) level. 

The hydrogen atoms in 1c are omitted for clarity.  

 

When going from 1a to 1b, all four MOs move up in energy with a rather constant amount, 

but the energy change is slightly larger for the occupied 2b1 and the unoccupied 2b2 than for 

1b3 and 1a, reflecting the fact that the first two MOs directly involve the substituents R. 

However, the most significant change occurs when going from 1b to 1c because a large split 

in the orbital energies of 1b3 and 2b1 is observed; the latter is raised from -6.24 to -5.24 eV 

while 1b3 merely changes from -6.31 to -6.23 eV. It can furthermore be noted that 1b3 has no 

3d(Si) AO contribution from 2x(SiR2), in line with the qualitative MO-diagram of Figure 6.  

The LUMO of 1c also has an interesting character since it is the 1a symmetric MO (1au in 

D2h) which corresponds to an interaction between the a (au) symmetric combination of π*CC at 

2x(C=C) with the a (au) symmetric combination of the two 3d(Si) AO of 2x(SiR2) (Figure 6). 

Hence, this orbital shows that empty 3d(Si) AOs can contribute to the lowest unoccupied 

MOs when there are suitable local orbitals on adjacent molecular segments to interact with. 

With a nodal plane coinciding with the SiR2 plane, the variation in energy of this MO with R 

is the smallest among the frontier orbitals of Figure 7. The contribution of 3d(Si) AOs to 

LUMO is noteworthy because d-AO participation is generally regarded as negligible in the 

bonding of the heavy main group element compounds in their electronic ground states.37,38 In 

contrast, d-orbital participation should play a role for the bonding in the electronically excited 

states of 1c in which the LUMO is populated.  

Thus, the qualitative MO diagram agrees with the quantitative computations because the 

2b1u orbital (HOMO of 1b and 1c at the B3LYP level) changes substantially in energy by a 
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change of substituents R. In contrast, the LUMOs do not vary as extensively with R, and for 

this reason there are large differences in ΔεH-L between the three compounds, with values of 

5.47 (1a), 6.03 (1b), and 4.89 eV (1c) at B3LYP/6-31G(d) level. Taking into account the 

earlier reported ΔεH-L of 6.43 eV for the parent species at the same level of computation,32 one 

may argue that the 1,4-disilacyclohexa-2,5-diene can be a highly valuable template for 

extensive variations in electronic and optical properties. Cross-hyperconjugation could be a 

means for inserting a saturated, yet, conjugated molecular segment into a molecule, allowing 

for improved physical properties as compared to a purely π-bonded molecule, and at the same 

time keep the features of a compound with C=C double bonds. 

Synthesis: The synthesis of 1a is based on Jung’s procedure in which HSiCl3 and 3-

hexyne are heated together with a catalytic amount of Bu4PCl in a sealed tube, giving 1a in a 

yield of 75 % (Scheme 1).39 However, the reaction was now performed on a five times larger 

scale than previously reported, and we used a modified approach in which a torch-sealed glass 

ampoule with the reagents was placed in a steel bomb and heated at 180 °C for 10 hours. 

Product 1a was obtained after filtration and distillations. Subsequent addition of four 

equivalents of MeLi to 1a gave 1b in a yield of 75%. 1,4-Disilacyclohexadiene 1c was formed 

with a yield of 71% from 1a with TMSCl and lithium. 
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Scheme 1. Reagents and conditions: (i) Bu4PCl, 180 °C (sealed tube reaction), 10 hrs, 75%; 

(ii) MeLi, Et2O, -78 °C to r.t., 12 hrs, 68%; (iii) TMSCl, Li, THF, -78 °C to r.t., 13 hrs, 71%. 

 
Geometric structure: The crystal structure of 1c reveals that this 1,4-disilacyclohexa-2,5-

diene adopts a slight twist-chair conformer (1c-I, Figure 9) with Ci symmetry and C-Si-C=C 

dihedral angles within the ring of approximately 13°. The non-planar structure should result 

from steric repulsion between the ethyl and TMS substituents, and the B3LYP/6-31G(d) 

calculations reveal that the replacement of the Et groups by smaller Me groups leads from a 

D2 to a D2h symmetric molecule with a planar ring. It is noteworthy that a second conformer 

with the Et groups arranged in an up-down-up-down fashion when starting at the C2-atom 

following the C2-C3-C5-C6 sequence (conformer 1c-II, Figure 9) is essentially isoenergetic 

with 1c-I when based on the calculated free energy at 298 K. However, using M06-2X, a 

dispersion corrected DFT method suitable to handle sterically congested molecules, together 

with the 6-311G(d) basis set indicates that conformer 1c-II is 2.0 kcal/mol higher in energy 

than a version of conformer 1c-I in which the symmetry is reduced from Ci to C1 (the Ci 

symmetric conformation of 1c-I is a second-order saddle point at 0.6 kcal/mol higher energy). 

Thus, the crystal structure is in accordance with the M06-2X/6-311G(d) calculations. Yet, 
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both conformers 1c-I and 1c-II should be populated at the elevated temperatures of the gas 

phase UV absorption and UPS spectral measurements (up to 350 °C).  

Noteworthy, the calculated B3LYP/6-31G(d) and MP2/6-31G(d) structures of conformer 

1c-I are very similar to the crystal structure and therefore not shown, although selected 

calculated bond distances and angles are given in the caption of Figure 9. The only notable 

differences are the B3LYP/6-31G(d) bond lengths, which are slightly longer than the 

experimental ones, in line with earlier observations.40  

 

 
 

Figure 9. (A) Crystal structure of 1c (conformer 1c-I) with the measured data (normal print, 

for full information see the Supplementary information), and the B3LYP/6-31G(d) calculated 

data (in italics), and (B) the calculated geometry of the conformer 1c-II (lower structure, data 

underlined). Selected bond lengths (Å) and angles (deg), hydrogen atoms omitted for clarity: 

Si(1)-C(1) 1.8845(13) (1.907, 1.905), Si(1)-Si(2) 2.3685(6) (2.410, 2.402), Si(1)-Si(3) 

C(5) 



17 
 

2.3690(6) (2.400, 2.402), C(1)-C(2A) 1.3456(18) (1.361, 1.361), C(1)-C(3) 1.5297(16) 

(1.533, 1.534), C(3)-C(4) 1.5307(19) (1.5421, 1.542), Si(2)-Si(1)-Si(3) 109.33(3) (110.04, 

110.36), Si(1A)-Si(1)-Si(2) 140.33 (137.06, 124.82), Si(1A)-Si(1)-Si(3) 110.33 (112.90, 

124.82), Si(2)-Si(1)-C(1) 113.66(4) (112.51, 111.28), Si(3)-Si(1)-C(1) 104.13(4) (104.67, 

106.21), C(1)-Si(1)-C(2) 111.67 (111.63, 111.57), Si(1)-C(1)-C(3) 114.42(9) (114.96, 

115.28), Si(1)-C(1)-C(2A) 124.05(9) (123.65, 123.12), C(1)-Si(1)-C(2)-C(1A) 13.08(14) 

(12.11, 10.82), Si(1)-C(1)-C(2)-Si(1A) 14.71 (13.54, 19.83).  

 

 

The important geometrical parameters for the evaluation of the potential cross-

hyperconjugation are the C=C and Si-C bond lengths. A discussion of these bond lengths 

should, however, be carried out in comparison with those of cross-π-conjugated para-

quinodimethane 5. In the X-ray crystal structure of 1c-I the C=C double bonds (1.346 Å) are 

slightly longer than ordinary C=C double bonds (1.33 Å),41 and the Si-C bond lengths (1.885 

Å) of the ring are moderately elongated as compared to regular Si-C single bonds (1.87 Å).42 

The elongation of the C=C bonds partially stem from steric congestion between the 

substituents as revealed through comparisons between the 1,4-disilacyclohexa-2,5-dienes 1d – 

1h (see Supplementary information), however, there is also a hyperconjugative component 

that impacts the geometry, and this is revealed through a comparison with 5. At the B3LYP/6-

31G(d) level the C=C double bond lengths of cross-hyperconjugated 1c are longer than those 

calculated for the cross-π-conjugated 5 (1.361 vs. 1.349 Å, respectively). Replacement of the 

ethyl groups (1g, Figure 5) with hydrogen atoms leads to a shortening of the C=C bonds to 

1.351 Å, i.e., essentially identical lengths as found for 5. In contrast, the two isolated C=C 

bonds in cyclohexa-1,4-diene 6 (1.335 Å) are significantly shorter than in 1g. The calculated 

C=C bonds in 1g are also longer than those of the parent 1,4-disilacyclohexa-2,5-diene (1h), 
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which are 1.344 Å. Thus, the C=C bond elongations observed in 1c to some extent stem from 

cross-hyperconjugation. This observation is also true at higher levels of computations because 

CCSD/6-311G(d) calculations show that 6 has C=C bond lengths of 1.339 Å compared to 

1,1,4,4-tetrasilyl substituted 1e at 1.355 Å and cross-π-conjugated 5 at 1.349 Å. 

The most important calculated geometry parameters of 1a and 1b are similar to those of 

1c, and for both compounds conformers of type-I are more stable than those of type-II by 0.4 

– 1.0 kcal/mol at B3LYP/6-31G(d) as well as MP2/6-31G(d) levels. For 1a this relative 

stability between the two conformer types agrees with the previously determined X-ray 

crystal structure which was found by Jung and co-workers to correspond to the 1a-I 

conformer.39 The calculated C=C double bonds in both 1a-I and 1b-I are minutely shorter 

than those of 1c-I (Figure 10). Further discussions and comparisons between the calculated 

geometries of the 1,4-disilacyclohexa-2,5-dienes 1a – 1h are given in the Supplementary 

Information.  
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Figure 10. Optimized B3LYP/6-31G(d) geometries of 1b-I (normal print) and 1b-II (italics). 

Selected bond lengths (Å) and angles (deg), the hydrogen atoms are omitted for clarity: Si(1)-

C(1) 1.890 (1.891), Si(1)-C(5) 1.902 (1.903), Si(1)-C(6) 1.903 (1.903), C(1)-C(2A) 1.357 

(1.358), C(2)-C(5) 1.531 (1.532), C(3)-C(4) 1.542 (1.542), C(7)-Si(1)-Si(6) 106.54 (106.90), 

Si(1A)-Si(1)-C(5) 132.65 (131.77), Si(1A)-Si(1)-C(6) 120.80 (121.33), C(5)-Si(1)-C(1) 

110.56 (110.42), C(6)-Si(1)-C(1) 107.77. (110.14), C(5)-Si(1)-C(6) 113.33 (112.98), Si(1)-

C(1)-C(3) 114.92 (115.43), Si(1)-C(1)-C(2A) 123.02 (123.43), C(1)-Si(1)-C(2)-C(1A) 9.74 

(1.00), Si(1)-C(1)-C(2)-Si(1A) 8.88 (9.01). 

 

Photoelectron spectroscopy: The experimental verification of the substituent effect on the 

electronic structures of 1,4-disilacyclohexa-2,5-dienes comes through photoelectron and UV 

absorption spectroscopies, as well as through cyclic voltammetry. The cationic valence 

electronic states of 1b and 1c were studied by conventional photoelectron spectroscopy using 

HeIα radiation at hν = 21.22 eV for ionization. Interpretation of the spectra were made on the 

basis of outer valence Green’s function (OVGF) calculations at the OVGF/6-

311+G(d)//B3LYP/6-31G(d) level. The D2 symmetric conformers 1b-II and 1c-II were used 

to facilitate rationalization in terms of qualitative MO-theory. The ionization energies of the 

Ci symmetric conformers I differ minutely, and tables which enable comparisons between 

conformers I and II are given in the Supplementary information. 

With regard to 1b, the valence photoelectron spectrum shows a well-defined onset at 

7.9 eV followed by broad rounded bands (see Figure 11). The computed energies group 

around the spectral features so that a rather good understanding is achievable despite the 

strong overlap of bands. The experimental and calculated energies for the lower states are 

summarized in Table 1 along with our interpretations (for a complete table see the 

Supplementary information).  
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Figure 11. The photoelectron spectrum of 1,1,4,4-tetramethyl-2,3,5,6-tetraethyl-1,4-

disilacyclohexa-2,5-diene (1b) excited using HeIα radiation at 21.22 eV. The bands are 

numbered as in Table 1. Ionization energies calculated at the OVGF/6-311+G(d)//B3LYP/6-

31G(d) level are included as bars on the energy axis. 

 

 

Table 1. Experimental (peak maximum from the photoelectron spectrum) and calculated 

binding energies (eV),a with assignments (term) of 1b with D2 symmetry (1b-II conformer) 

Structure 

 number 

Binding  

energy 

(exp) 

Binding 

 energy 

(calc) 

Assignment  

(orbital 

type) 

Comment 

1 7.9   Onset 

1 8.5 8.20 b1 (π) Peak max 

  8.27  b3 (π) Peak max 
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2 8.9 8.38  b1 (σ) Shoulder 

3 9.4 9.24 b3 (σ) Peak max 

4 10.3 10.11 a (σ) Peak max 

  10.26 b2 (π)  

  10.32 b2 (σ)  

5 10.7 10.60 b1 (π) Shoulder 

 Calculated at ROVGF/6-311+G(d)//B3LYP/6-31G(d) level. 

 

The first band with a peak maximum at 8.5 eV represents ionization from three different 

orbitals that are close in energy according to the computations. The two lowest of these have 

b1 and b3 symmetries, in line with the qualitative MO-diagram of Figure 6. The splitting is 

rather small (70 meV) and the 2b1 MO is found above the 1b3 MO. It can also be noted that 

the first ionization energy of 1b is similar to those earlier reported for 2,3-dimethyl-2-butene 

and 6 (8.4 and 8.8 eV, respectively).43,44 The third orbital expected to give rise to appreciable 

intensity in this band is a b1 symmetric σ-type orbital composed of in-plane p and s atomic 

orbitals located on both the C and Si atoms of the ring, and it is slightly shifted to higher 

binding energy compared to the π-type orbitals. It can also tentatively be connected to the 

formation of the shoulder on the high binding energy side of the band. An angle resolved 

study could presumably confirm the assignment since the beta value distribution of σ-orbitals 

is normally rather different from that of π-orbitals. The band at 9.4 eV, assigned to feature 3 

in the spectrum, is connected to one single σ-orbital with b3 symmetry.  

The third band with a peak maximum at 10.3 eV is connected to ionization from four 

different orbitals, pair-wise similar of π-and σ-symmetry, respectively. The former two can be 
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characterized essentially as in-phase (b1) and out-of-phase (b2) combinations of the two 

π(SiMe2) group orbitals (cf. Figure 6). The b1 symmetric MO also has some contribution from 

π(C=C), and the calculated energy separation between the two resulting MOs is 0.34 eV. 

The pressure that could be obtained in the ionization chamber for 1c was much lower than 

for 1b, and the recording of the spectrum was very time-consuming. Due to these 

experimental constraints we recorded the spectral region between 5.5 eV and 9.5 eV several 

times and summed the individual spectra (Figure 12). However, the region above 9.5 eV was 

included in only one of the recordings. The statistics is therefore not as good as for 1b, in 

particular in the higher binding energy region where signals from remaining H2O and N2 in 

the spectrometer are present. Yet, in the lower energy range the spectrum seems to be free of 

such influences. Some broad structures can be identified in this part, and their energies are 

given along with orbital characters in Table 2. 

The first band is located at 7.1 eV (peak maximum), and according to the calculations it 

corresponds to the ionization from a single π-orbital of b1 symmetry. It should particularly be 

noted that the energy is substantially lower than for any orbital of 1b, suggesting that the 

influence of the SiMe3 substituent character is significant. Thus, in line with the MO-

theoretical description of Figure 6, the Si(SiMe3)2 segment provides local π(ER2) orbitals 

which are matched energetically with the π-orbitals of the 2x(C=C) fragment, pushing up the 

MO which is the out-of-phase combination of the b1 symmetric group orbitals of the 2x(C=C) 

and 2x(SiR2) segments when compared to 1b. This confirms experimentally the large energy 

difference between HOMO and HOMO-1 of 1c, as compared to 1a and 1b, observed in the 

B3LYP calculations (cf. Figure 7).  
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Figure 12. The photoelectron spectrum of 1,1,4,4-tetrasilyl-2,3,5,6-tetraethyl-1,4-

disilacyclohexa-2,5-diene (1c) excited using HeIα radiation at 21.22 eV. The bands are 

numbered in accordance with Table 2. Ionisation energies calculated at the OVGF/6-

311+G(d)//B3LYP/6-31G(d) level are included as bars on the energy axis. 

 

Table 2. Experimental (peak maximum from the photoelectron spectrum) and calculated 

binding energies (eV) with assignments (term) of the 1c molecule with D2 symmetry (1c-II). 

Structure 

number 

Binding 

energy (exp) 

Binding 

energy 

(OVGF) 

Assignment 

(orbital type) 

Comment 

1 6.7   Onset 

 7.1 6.76 b1 (π) Peak max 

2 7.6   Onset 

 8.3 8.02 b3 (π)  

  8.18 b2 (π)  

  8.28 b1 (σ)  
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  8.43 b3 (σ)  

3 9.3 9.03 a (σ)  

  9.52 b1 (π)  

  9.98 b2 (σ)  

a Calculated at the ROVGF/6-311+G(d)//B3LYP/6-31G(d) level. 

 

The second band is broader and stronger, indicating ionization from more than one orbital. 

The peak maximum is observed at approximately 8.3 eV, and the calculations put four 

orbitals in this energy range. These orbitals are mostly of π-character and primarily located on 

the ring. The photoelectron band is therefore expected to resemble the outermost band of 1b, 

both in energy and general shape, due to the mutual similarity between the orbitals. This 

similarity is indeed observed as seen in Figure 13 where the lower binding energy region of 

the photoelectron spectra of 1b and 1c are shown in comparison to the numerical results. The 

most notable difference is the energy for ionization from the HOMO in the two compounds.  
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Figure 13. A comparison of the lower binding energy regions of the photoelectron spectra of 

1b and 1c excited using HeIα radiation at 21.22 eV. Ionisation energies calculated at the 

OVGF/6-311+G(d)//B3LYP/6-31G(d) level are included as bars on the energy axis. 

 

Cyclic voltammetry: To provide further evidence for the role of the substituents on the 

frontier orbital energies, compounds 1a - 1c were investigated by cyclic voltammetry. Figure 

14 displays the anodic scan of compounds 1a (black), 1b (blue) and 1c (red). All three 

compounds show electrochemically irreversible oxidation processes at 1.47, 0.88 and 0.46 V 

vs. Fc/Fc+, respectively. Thus, the oxidative peak potential of 1c is cathodically shifted by 400 

mV compared to that of 1b and by 1 V relative to 1a. These findings strongly support the 

results obtained in the UPS spectroscopy as well as in the computational studies. The findings 

also hint to extensive variations in redox properties that could be useful for future 

applications.  

 

Figure 14. Cyclic voltammograms (anodic scans) of 1a (black), 1b (blue), 1c (red) (1mM 

solutions in CH2Cl2) containing 0.1 M NBu4PF6 vs. Fc+/0, v = 200 mV/s. * Fc+/Fc0 couple as 

internal standard.  
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UV absorption spectroscopy: The electronic excitation energies of the three 1,4-

disilacyclohexa-2,5-dienes 1a – 1c and cyclohexa-1,4-diene 6 were recorded by gas phase UV 

absorption spectroscopy (Figure 15), as described in the experimental section below. The 

wavelengths and extinction coefficients at the absorption peaks are summarized in Table 3 -  

5. The UV absorption spectra of 1a and 1b were only recorded in the gas phase as solvent 

interferences when recorded in cyclohexane were so strong that no reliable spectral 

information was obtained. For 1c, both gas phase and solution spectra were recorded, and the 

gas phase measurement clearly reveals a thermal redistribution of the curve as compared to 

the measurement at room temperature in cyclohexane, a result of vibrational broadening.  

Compounds 1a and 1b have similar characteristics as their spectra are composed of two 

overlapping bands; one centered at 210 – 220 nm and the second in the range 190 – 200 nm. 

The strongest absorptions are found in the lower wavelength range (198 and 196 nm for 1a 

and 1b, respectively). 1,4-Disilacyclohexa-2,5-diene 1c, on the other hand, shows notably 

different spectral features, with the most intriguing feature being the strong absorption at 273 

nm (4.55 eV). A comparison with the UV absorption spectrum of cyclohexa-1,4-diene (6) 

further reveals the difference between the SiR2 and CH2 units as mediators between the two 

C=C bonds because 6 does not absorb above 220 nm. Moreover, the molecular extinction 

coefficients of the excitations of 6 are much smaller than for the excitations of any of the three 

1,4-disilacyclohexa-2,5-dienes.  

In 1c, two weakly chromophoric trisilane segments have been incorporated, and it is 

apparent from the UV spectrum that these couple strongly with the two C=C bonds because 

the first absorption of permethylated trisilane, Si3Me8, has been reported at 216 nm (5.75 

eV).45 Hence, the chromophore of 1c constitutes the complete cycle involving the two C=C 

bonds and the two trisilane segments.  
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Figure 15. UV absorption spectra of 1a (black), 1b (blue), 1c (red), and 11 (green) recorded 

in gas phase, and for 1c also the spectrum recorded at room temperature in cyclohexane 

solution (black dashed curve). The temperature gradients for 1a and 1b went from 240 °C 

(bottom) to 340 °C (top), and for 1c from 250 °C at the bottom to 350 °C at the top. The gas 

phase UV absorption measurement of 6 was performed at room temperature. For further 

details on the UV measurements see the Supplementary information.  

 

In order to analyze the experimental UV absorption spectra, excitation energies and 

oscillator strengths were calculated using time-dependent DFT (TD-DFT) at the TD-PBE0/6-

31+G(2d)//B3LYP/6-31G(d) level (Table 3 -  5). To allow for a facile comparison with the 

D2h symmetric 5 we discuss the type-II conformers for all three compounds, although both 

conformers I and II will be nearly equally populated at the elevated temperatures used. The 

calculated excitation energies and oscillator strengths of conformer I closely resembles those 

of conformer II (for full comparison between conformer types I and II, see the 

Supplementary information). In general, the calculated excitation wavelengths (energies) of 

the three compounds 1a-II to 1c-II agree with the recorded values of Figure 15. 
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The first calculated transition of 1a-II, which is dark and of B3 symmetry, appears at 262 

nm (4.74 eV) and involves excitations from HOMO-1 and HOMO-2 to LUMO (see 

Supplementary information). The second calculated transition, which also is dark but of B1 

symmetry, is calculated at 253 nm (4.89 eV) and it is the transition that most clearly 

corresponds to an excitation from HOMO to LUMO. The first transition with a significant 

calculated oscillator strength is of B3 symmetry and it is found at 231 nm (5.37 eV), likely 

corresponding to the shoulder at ~220 nm in the experimental spectrum. The strongest 

allowed transition (B3 symmetry) is found at 198 nm and calculated at 203 nm (6.09 eV). This 

transition has a substantial contribution of HOMO to LUMO+1 excitation. In particular, it is 

noteworthy that all allowed transitions of 1a-II are of B3 symmetry.  

The first calculated transition of 1b-II found at 240 nm is of B3 symmetry and weakly 

allowed. Indeed, a longer tail towards longer wavelengths is observed in the experimental 

spectrum of 1b than in that of 1a (Figure 15). The first strong transition according to the 

calculations is the fourth transition (B3 symmetric) with a λmax of 226 nm (5.48 eV), which 

together with the weakly allowed fifth transitions at 220 nm (5.64 eV, B1 symmetric), and the 

sixth transition at 212 nm (5.84 eV, B3 symmetric) should represent the shoulder in the UV 

absorption spectrum at ~215 nm. This shoulder occurs at a similar position as for 1a. Yet, the 

most visible transition in the experimental spectrum occurs at 196 nm (6.33 eV) and is of B3 

symmetry according to the computations. This transition is, however, difficult to interpret in 

terms of excited configurations. 

The most interesting spectrum among the 1,4-disilacyclohexa-2,5-dienes studied is 

displayed by 1c. Its first calculated excitation is a dark transition at 311 nm (3.98 eV) of B1 

symmetry and it has significant character of an excitation from HOMO to LUMO (cf Figure 

8). However, the second excitation calculated at 276 nm (4.50 eV) is strongly allowed and of 

B3 symmetry. This transition should correspond to the strong peak observed experimentally at 
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273 nm and it has a strong contribution of the HOMO to LUMO+1 excitation, but also of the 

HOMO-1 to LUMO excitation. As the transition has strong HOMO to LUMO+1 excitation 

character, i.e., a transition between the two MOs which have clear cross-hyperconjugative 

character involving both trisilane and olefin fragments, this transition can only be observed in 

1c and closely related 1,4-disilacyclohexadiene derivatives. In the wavelength range 230 – 

240 nm there is a clear, yet slightly weaker transition which should correspond to the B3 

symmetric transition calculated at 229 nm (5.41 eV). According to TD-DFT this state has no 

simple description in terms of excited configurations. The last calculated strong visible 

transition above 200 nm (6.21 eV) is found at 214 nm and the calculations give a B3 

symmetric transition at 222 nm (5.58 eV). Finally, the experiments reveal a strong transition 

at 196 nm (6.33 eV), but this excitation was not calculated as it is less than 1 eV from the first 

ionization energy of 1c making the computed excitation dubious.  

We also examined the emissive properties of 1c but no emission could be detected upon 

excitation at 273 nm. However, 1c also does not photodecompose when irradiated with λ > 

220 nm light, indicating that non-radiative pathways bring it back to the electronic ground 

state. In contrast, a rapid photodegradation, potentially due to silylene extrusion from the 

trisilane segments, is observed upon irradiation at shorter wavelengths than 220 nm.  

 

Table 3. Gas phase UV spectral data compared with calculateda values of 1a. 

Exp
 

[nm] 

ε 

[dm-3mol-1 cm-1] 

Calc. 

[nm (eV)] 

Sym. (D2) f 

- - 262 (4.72) B3 0.002 

-  - 253 (4.89) B1 0.007 

(220) - 231 (5.36) B3 0.115 

-  - 225 (5.51) B1 0.025 
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-  - 208 (5.95) A 0.000 

- - 205 (6.05) B1 0.001 

198 14500 203 (6.09) B3 0.485 

- - 202 (6.11) B1 0.018 

- - 199 (6.22) A 0.000 

- - 198 (6.25) B2 0.040 

- - 195 (6.35) B3 0.091 

 a TD-PBE0/6-31+G(2d)//B3LYP/6-31G(d) 

 

Table 4. Gas phase UV spectral data compared with calculateda values of 1b. 

Exp
 

[nm] 

ε 

[dm-3mol-1 cm-1] 

Calc. 

[nm (eV)] 

Sym. (D2) f 

- - 240 (5.16) B3 0.015 

-  - 232 (5.35) B1 0.008 

- -  227 (5.46) B1 0.004 

-  - 226 (5.48) B3 0.067 

-  - 220 (5.63) B1 0.023 

(215) - 212 (5.84) B3 0.326 

- - 206 (6.02) B1 0.011 

- - 201 (6.16) B1 0.026 

- - 199 (6.22) B3 0.091 

- - 199 (6.23) B2 0.002 

- - 197 (6.30) B1 0.002 

- - 197 (6.30) A 0.000 

196 12400 196 (6.33) B3 0.114 
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a TD-PBE0/6-31+G(2d)//B3LYP/6-31G(d) 

 

Table 5. Gas phase UV spectral data compared with calculateda values of 1c. 

Exp
 

[nm] 

ε 

[dm-3mol-1 cm-1] 

Calc. 

[nm (eV)] 

Sym. f 

- - 311 (3.98) B1 0.000 

273 16200  276 (4.49) B3 0.356 

- - 254 (4.87) B1 0.039 

- -  252 (4.92) B3 0.016 

- - 247 (5.03) B1 0.000 

- - 246 (5.03) B3 0.019 

- - 243 (5.10) B2 0.002 

- - 241 (5.13) A 0.000 

- - 241 (5.15) B1 0.019 

- - 235 (5.28) A 0.000 

- - 233 (5.33) B2 0.046 

- - 230 (5.39) B1 0.031 

(237) 18100  229 (5.41) B3 0.138 

- - 224 (5.54) B2 0.002 

- - 223 (5.55) B3 0.001 

214 25200 222 (5.58) B3 0.381 

- - 221 (5.62) B1 0.000 

- - 220 (5.63) B2
 0.017 

- - 219 (5.65) B3
 0.000 
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- - 219 (5.66) A 0.000 

- - 215 (5.77) B1 0.000 

- - 215 (5.78) A 0.015 

- - 212 (5.86) A 0.013 

- - 211 (5.88) B1
 0.000 

- - 210 (5.90) B3
 0.024 

- - 208 (5.96) B1
 0.008 

- - 207 (5.99) A 0.000 

- - 203 (6.10) B3
 0.024 

- - 203 (6.10) B2
 0.008 

196 26000    

a TD-PBE0/6-31+G(2d)//B3LYP/6-31G(d)  

b Calculated peaks are reported until 6.10 eV, i.e., 1.00 eV below the first ionization peak at 

7.10 eV according to our photoelectron spectrum of 1c. 

 

On the impact of cyclic cross-hyperconjugation in 1c: To determine the importance of 

the cyclic nature of cross-hyperconjugation in 1c vs linear hyperconjugation and acyclic 

cross-hyperconjugation we calculated the UV absorption and electron binding energies for a 

series of additional compounds (7 – 10, Figure 5) at TD-PBE0/6-31+G(2d)//B3LYP/6-31G(d) 

and OVGF/6-311+G(d)//B3LYP/6-31G(d) levels (results of additional TD-M06-2X/6-

31+G(2d)//B3LYP/6-31G(d) calculations is found in the Supplementary Information). The 

tetra ethyl analogue of one of these compounds, 7, could at first glance be generated 

experimentally through hydrogenation of 1c. However, despite numerous attempts using 

different conditions we were unable to reduce any of the double bonds in 1c, presumably due 

to the extensive steric bulk of the four ethyl and four TMS substituents.  
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Computations of 1g, the derivative of strongly cross-hyperconjugated 1c with the ethyl 

groups replaced by hydrogens reveal that the ethyl groups have only a small effect on the 

electronic structure of 1c (first excitations at 299 and 311 nm (4.16 and 3.98 eV) for 1g and 

1c, respectively) and a moderate effect on the first binding energy (7.14 and 6.76 eV, 

respectively). Replacing one of the C=C double bonds by a saturated C-C bond to yield 7, 

rendering this compound linearly hyperconjugated, results in a significant change in the 

calculated UV absorption spectra with the first transition at 263 nm (4.71 eV) and a first 

binding energy of 7.76 eV. Breaking the cyclic nature of the cross-hyperconjgation by 

replacing one of the Si(SiMe3)2 groups with a CH2 group, yielding the acyclic cross-

hyperconjugated 8, has a similar large effect leading to a first transition at 261 nm (4.75 eV) 

and a first binding energy of 7.53 eV. Replacing one of the C=C double bonds of 8 with a 

saturated C-C bond leading to 9, with a short linearly hyperconjugated path, gives a 

compound which is less hyperconjugated according to the TD-DFT and OVGF results (first 

transition at 236 nm (5.25 eV), binding energy 7.77 eV). Finally, replacing both the double 

bonds of 1g with saturated C-C bonds results in a compound, 10, with two isolated Si(SiMe3)2 

segments. This compound has experimentally been found to not absorb above 220 nm in 

accordance with computations.46 

Taken together, 1,4-disilacyclohexadiene 1c clarifies that neutral cyclic cross-

hyperconjugation can be used similarly as regular cyclic cross-π-conjugation, and that a 

Si(SiMe3)2 moiety can replace an exocyclic C=C double bonded segment in a conjugated 

molecule. This finding should provide for new opportunities for the design of optically and 

electronically active compounds.  

  

Conclusions 
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1,4-Disilacyclohexa-2,5-dienes are a compound class that allows for remarkable variations in 

the electronic and optical characteristics through the choice of the substituents. Herein, the 

effects of the substituents R at the two silicon atoms (R = Cl (1a), Me (1b), or SiMe3 (1c)) on 

the valence photoionizations energies, the first oxidation potentials, and the lowest UV 

absorption energies have been analyzed. The cause of the large tunability stems from the fact 

that the two SiR2 segments when incorporated in the cyclic cyclohexa-1,4-diene fragment 

allow for neutral cyclic cross-hyperconjugation to various degrees. A strong cyclic cross-

hyperconjugation is found with R = SiMe3 and much weaker when R = Cl and Me. One can 

predict that a change of the substituents at the C=C double bonds provides for further tuning 

of the electronic and optical properties, as suggested by the results of the 1,4-disilacyclohexa-

2,5-diene with the 2,3,4,5-tetraethyl substituents replaced by hydrogens. Thus, it is likely that 

even larger variations in the spectral properties than those reported herein can be achieved.  

Among 1a – 1c, valence photoelectron spectroscopy shows that 1c has the lowest binding 

energy of ~ 7.1 eV, i.e., about 1.4 eV lower than that of 1b. The cyclic voltammograms of 1a 

– 1c show substantial differences in the observed oxidation potentials. Compound 1c features 

the lowest oxidation potential, while those of 1a and 1b are anodically shifted by 400 mV and 

1 V, respectively. Gas phase UV absorption spectroscopy of 1c reveals a strong absorption at 

273 nm (4.55 eV), whereas compounds 1a and 1b have no strongly allowed excitations above 

215 nm (below 5.77 eV). The neutral cross-hyperconjugation strengths in these compounds 

were clarified with quantum chemical calculations combined with a MO-theoretical analysis. 

Interestingly, the orbital pattern and the electronic structure of 1c has similarities with that of 

the cross-π-conjugated para-quinodimethane (5). The 1,4-disilacyclohexa-2,5-diene is 

therefore a new monomer unit which in an optimal way combines σ- and π-bonded segments 

into a rigid neutral hyperconjugated framework. It should represent an interesting structural 

motif for new molecules with applications in the molecular and organic electronics areas. 
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