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Abstract
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The energy content of our present universe is dominated by the dark-energy, or vacuum energy,
which provides accelerated cosmic expansion. Dark energy has a possible effective explanation
through a positive cosmological constant. The problem present in any fundamental theory is to
explain the underlying dynamics of what gives rise to the cosmological constant.

In string theory there are several scenarios that could give insight into what is behind the
positive cosmological constant. One such construction uses anti-branes to achieve a net positive
energy density of the vacuum. Anti-branes refers in this case to branes placed in a background
with oppositely charged flux. As backreaction and localisation procedures are considered for
anti-brane constructions a certain kind of singularity arise. This new type of singularity is present
in the surrounding flux, which is not directly sourced by the brane.

This thesis, and the works contained, considers several aspects of this type of singularity. The
first such flux singularity were discovered for the anti-D3-branes, in which the approximations
and assumptions of partial smearing and perturbative expansions are used. Included in this thesis
are new anti-D6-brane solutions which are placed in oppositely charged flux. It is shown that
after the anti-D6-branes are localised, they display the same type of singularity. The strength
of this result lies in that it is possible to show the presence of the singularity beyond partial
smearing and perturbative expansions. Similar to the anti-D6-brane solutions, new anti-M2-
brane solutions are presented. These solutions are also argued to display the same type of
singularity.

The investigation into the presence of the singularity is just the first step. The second step
is to deduce whether this singularity is acceptable and can somehow be resolved. Included in
this thesis are two works that considers exactly this. One way of interpreting the singularity
is through the absence of a no-force condition between the brane and the surrounding flux.
This interpretation leads to the conclusion that the singularity is present due to the use of static
Ansätze in a system that is inherently time dependent. Through an adiabatic approach it is here
argued that this interpretation leads to a new type of instability.

Another way of arguing for a possible resolution of this singularity is whether or not the
singularity can be cloaked by an event horizon. This condition have been successful in other
systems with singularities. It is argued in this thesis that it is not possible to hide the flux
singularity behind a horizon. This leads to one out of two conclusions, either the condition is
not a necessary one and the singularity can be resolved in a static manner, or the singularity
does not have a resolution.

To put these works in context the current singularities from anti-branes program is briefly
reviewed to give a full overview of the current situation of these investigations.
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• J. Bl̊abäck, A. Borghese, and S.S. Haque. Power-law cosmologies

in minimal and maximal gauged supergravity. JHEP, 1306:107,
2013, [arXiv:1303.3258]
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1. Introduction

String theory is a candidate theory of everything. A theory of everything
might seem a bit too overwhelmingly ambitious, and also is. The goal is
not as grand, or mad even, as trying to render all other fields of physics
obsolete, but instead to join the four fundamental forces of nature under
one description. Even saying four might not be a fair assessment of the
problem as three of them are already unified in a common framework.
So to better describe it, the goal is to unify the three forces of our
microscopic universe with the one force of our macroscopic universe.

The microscopic forces are unified in a framework called Quantum
field theory (QFT for short), this together with local (gauge) symme-
tries, i.e. a gauge theory, describe our three microscopic forces to high
precision. This gauge theory is called the Standard Model and unifies
the Strong, Electromagnetic and Weak forces. With the recent discov-
ery of the so-called Higgs particle, awarded with the 2013 Nobel prize
in physics [NFb], the standard model is more or less complete and obvi-
ous hints for physics beyond the standard model seems to be currently
absent.

The theory that describes the macroscopic force of Gravity is General
relativity. This is also a theory that have been put to the test and stood
tall every time; the precession of elliptic planet orbits, deflection of light
from massive objects, gravitational red-shift of light, and on an even
greater scale, the ΛCDM-model describing the evolution of our universe.
Related to this, the discovery of the accelerated cosmic expansion was
rewarded with the 2011 Nobel prize in physics [NFa].

While the standard model is a quantum theory, able to describe the
interactions of individual particles, no quantum description of general
relativity is easily available. Some more fundamental revision of the
underlying theory seems necessary. This is where string theory comes
in. One of the great achievements of string theory is that it can give rise
to gauge theories as well as a quantum description of gravity. Although
several “kinks” still remain to be worked out. String theory comes with
the concept of supersymmetry that mixes force mediating particles with
matter particles, and specifies the number of space-time dimensions to
be ten.

At an initial reflection over string theory one might conclude that,
since it contains supersymmetry and extra dimensions, it might not be
a realistic theory. However, one can instead argue that this could possi-
bly add predictability to the theory, i.e. it predicts supersymmetry and
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extra dimensions which remain to be observed experimentally. This
would also mean that realistic string theory scenarios involve a descrip-
tion of our universe where supersymmetry and extra dimensions are
effectively invisible to our current experiments. This can be achieved
through breaking of supersymmetry to some energy level above current
experiments as well as compactifying the extra dimensions to such a
degree that they are currently undetectable.

While working with string theory itself is quite cumbersome, there
exists classical low energy descriptions of string theory known as super-
gravity theories. There are several supergravity theories and only some
of them are described by low energy string theory. Two of these, called
type IIA and type IIB supergravity, are ten dimensional supergravity
theories that will be used in this thesis.

The hope is, even though supergravity does not include all features
of string theory, that it will be enough to describe realistic compacti-
fication scenarios with supersymmetry breaking. Another necessity is
that a realistic supergravity solution which would describe our universe
gives rise to accelerated cosmic expansion. Current observations are
compatible with that the present expansion of our universe is driven by
a positive cosmological constant Λ

S =
1

2κ2
4

∫
?4

(
R(4) − Λ

)
; Λ > 0 . (1.1)

A maximally symmetric space-time, i.e. a space-time that is homo-
geneous and isotropic, with positive cosmological constant is called de
Sitter (dS). In effective theories the cosmological constant is a param-
eter included by hand, while in string theory it should be possible to
describe the underlying dynamics of this parameter and hence give a
more fundamental understanding of the cosmological evolution of our
universe.

In principle this is how a compactification would work. Consider for
example the ten dimensional action of any of the type II supergravities
with an Einstein-Hilbert term and other string theory related fields LS

and reduce this to a four dimensional action

S =
1

2κ2
10

∫
?10

(
R(10) + LS

)
=

1

2κ2
4

∫
?4

(
R(4) − V

)
,

(1.2)

where

1

2κ2
4

=
1

2κ2
10

∫
?61 , and V = −

(
κ4

κ10

)2 ∫
?6(R(6) + LS) . (1.3)
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The potential energy V would correspond to the cosmological constant,
and our universe would reside on a slightly positive, (meta-)stable, ex-
tremal point1 of this potential. However achieving these properties of
the potential turns out to be a difficult task – the generic properties of
V are such that extremal points are negative and stable or positive and
unstable.

There are several more or less realistic supergravity solutions present
in the literature. One of the more appealing is described by [KKLT03]
which is a scenario where supersymmetry is broken, an effective four-
dimensional space-time arise and where the cosmological constant can
be made arbitrarily small and positive, possibly compatible with obser-
vations. This description does however leave some questions unanswered
needing a more detailed analysis. The aim of the articles included in
this thesis is to challenge some of these questions, directly or indirectly.

More concretely, [KKLT03] describes how a supersymmetry breaking
and a positive cosmological constant can be achieved by adding so-called
anti-branes to a certain type of background. This is done under some
seemingly reasonable approximations. One such assumption is that the
anti-branes do not influence the background too much if they are few
enough. This is however something that needs to be calculated in detail
to see if the approximations are as reasonable as they seem.

Recently it was realised that when the anti-branes influence on the
background were taken into account, i.e. their backreaction were cal-
culated, they produce a previously unseen singularity. This singularity
arises in the energy density of surrounding fluxes. These fluxes are fields
that string theory introduces and are a seemingly necessary ingredients
for realistic supergravity solutions.

With the discovery of this singularity, several new questions needs to
be answered. Does this singularity arise in other systems? Is it possible
to resolve this singularity, i.e. is it possible make the energy densities
finite? Why does the singularity arise? All of these questions will, if not
answered definitely, at least be considered here. The articles included
in this thesis all relates to these questions. To be able to describe
the included articles relation to parallel developments present in the
literature a brief review of this field will be presented together with a
summary of the articles.

1Stability meaning that the Hessian of V with respect to the various fields that it
depends on is positive definite, and extremal meaning that the first derivatives are
zero. Meta-stability means that there could be extremal points of lower energies into
which the elevated solution could tunnel to through quantum effects.
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1.1 Outline of the thesis
The thesis is organised in the following way.

Part I includes a rough sketch of what string theory is and where
the type II ten-dimensional and the 11D supergravity pictures come
from. This part will also introduce the Bianchi identities and equations
of motions that will be used. It will also define some terminology that
will be important for the later sections and the articles included. The
most relevant portion of Part I is Section 2.2.2 where several important
articles will be briefly reviewed. These articles will play a very important
role in Part II.

Part II is divided in the following way. In Chapter 3 there will be an
introduction of some of the solutions presented in Paper I and the moti-
vation for their study. Chapter 4 is the main chapter of this thesis and
summarises the result of all articles included. In addition, said chapter
also includes a brief review of articles by other collaborations that also
considers the issues related to the aforementioned flux singularity. The
idea of this layout is to put the works included in this thesis in a broader
context and emphasise their importance.

12



Part I:
Background material





2. Flux compactifications

The purpose of this chapter is to introduce some relevant background.
Most of the work included in this thesis is performed in the so-called type
II ten dimensional supergravity theories, which originate from string
theory. The exception is one paper that considers the eleven dimensional
supergravity theory, which has an M-theory origin. Given here is hence
the most basic parts of string and M-theory including a sketch of what
they are, how they are related, and what their field content is.

Later in this chapter some well known results will be presented. The
text in Part II will heavily rely on these results. Therefore they are
included here, not with the purpose of presenting a complete review of
them, but rather serving as background material so they can be dis-
cussed more briefly when needed.

2.1 String theory
The most simple summary of the idea of string theory is to extend the
point particle to a string to see what happens [Mun]. In this section
the aim is to introduce the string and its world-sheet action and also
to sketch the approach of finding the corresponding space-time action.
The equations of motion derived from the space-time action are the set
of equations that will be used through out the thesis. A lot of details
are left aside but the statements made and equations presented can be
found in any of the standard books on string theory: [Pol98a, Pol98b,
GSW87, BBS07]. The information concerning M-theory is mostly taken
from [Tow96].

The action governing the motion of a point particle in a curved back-
ground would be determined by

S = −m
∫ √

−ds2 , (2.1)

where the line-element squared is given by

ds2 = gabdX
adXb . (2.2)

This particle is embedded in the so-called target-space, i.e. the space-
time in which it moves. The target-space has a curvature given by the
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metric gµν with signature (−,+, . . . ,+), and Xa describes the embed-
ding. There is an equivalent action that does not contain a square root

S = −1

2

∫
dτ
(√
−hh−1∂τX

a∂τX
bgab −

√
hm2

)
, (2.3)

where h is the one dimensional metric on the world-line, i.e. the line that
represents the point particles path through space-time, parametrised by
the proper time τ . That is, the point particles path is traced out with
the parameter τ and it is embedded in a space with D dimensions, i.e.
a, b = 0, . . . , D − 1.

This action for the point particle can be generalised to a string

S0 = − 1

4πα′

∫
dτdσ

√
−hhαβ∂αXa∂βX

bgab , (2.4)

with a tension T = 1/(2πα′). Here hαβ is the metric on the two-
dimensional world-sheet. This is called the Polyakov action, although
usually attributed to [BDVH76] and [DZ76]. The indices α, . . . = τ, σ
are the world-sheet indices.

In Maxwell theory the point particle can be charged, which extends
the action with the following term

−Q
∫
AµdXµ . (2.5)

In a similar way one can add charges to the string. The string is charged
under the antisymmetric Kalb-Ramond [KR74] field Bab

SB = − 1

4πα′

∫
dτdσ

√
−h iεαβ∂αXa∂βX

bBab . (2.6)

The string could also be coupled to the gravitational interactions that
takes place on the world-sheet, which is done by adding an Einstein-
Hilbert term. It is also possible to couple this term to a scalar field
that is called the dilaton, here represented by Φ. This part of the action
would be

Sd =
1

4πα′

∫
dτdσ

√
hα′R(2)Φ . (2.7)

Adding these actions together gives the world-sheet action for the
Bosonic string theory

S = S0 + SB + Sd . (2.8)

What was the purpose of this? Well, the above presented action terms
give a string world-sheet action, with charge and with curvature, for a
string with only bosonic degrees of freedom. That is, they represent the
dynamics on the world-sheet of a string. What is important for the later
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parts of this thesis is the space-time action. How this action is derived
is what will be outlined here.

This world-sheet action might look good, but it does not obey all
the symmetries that one would expect. One symmetry that must be
imposed is that the world-sheet theory is conformal. This means that
the world-sheet metric can be written as

hαβ = eψηαβ , (2.9)

where the ηαβ is the flat metric. In other words, the world-sheet metric
can be rescaled to a conformally flat metric. By adding quantum cor-
rections to the presented actions, which is needed to match orders of
the coupling constant α′, it can be shown that conformal symmetry is
governed by the following equations, to the lowest order in α′,

0 = Rab −
1

2
|H2

3 |ab + 2∇a∂bΦ ,

0 = ∇cHc
ab − 2(∇cΦ)Hc

ab ,

0 = −1

2
∇2Φ + |∂Φ|2 − 1

4
|H3|2 ,

(2.10)

where H3 = dB2 and the square-rules will be introduced later, see
equation (2.29). These equations are not only possible to derive from the
above world-sheet action, but also through the Euler-Lagrange method
from a D-dimensional action

SD =
1

2κ2
0

∫
dDx
√
−ge−2Φ

(
R+ 4∂aΦ∂

aΦ− 1

2
|H|2

)
. (2.11)

This is the space-time formulation of the bosonic string theory. These
equations and the above action are only valid for D = 26 which is
called the critical dimension, and is demanded for consistency – other
dimensions gives rise to negative norm states or unitarity problems.
This action is written in the so-called String frame where the action
have a coupling between the dilaton and the Ricci scalar.

The bosonic string theory suffers from some problems, especially for
phenomenological reasons. One of these problems is that there exists no
fermions in this theory. To introduce fermions one reconsiders S0 with
an additional fermionic part (T = 1)

SS = −1

2

∫
dτdσηαβ

(
∂αX

a∂βX
b − iψ̄aρα∂αψb

)
ηab . (2.12)

Here the metrics are switched to a flat world-sheet (ηαβ) and a flat
space-time (ηab). There is a symmetry of this action that relates these
two terms

δXa = ε̄ψa ,

δψa = −ρα∂αXaε .
(2.13)
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This symmetry is known as supersymmetry, which in simple terms is
the symmetry that relates bosonic and fermionic fields.

What was done above for the bosonic string is that the available
massless fields were entered into the string action. Then, to obey con-
formal symmetry for this action, the space-time actions were derived.
For the superstring, i.e. the string with world-sheet supersymmetry,
other approaches are used. What will be sketched now is how the mass-
less modes for closed strings are identified. The work included in this
thesis is mostly concerned with closed string dynamics, and therefore
the emphasis will be put on the derivation of the closed string sector
field content. When the massless fields are identified, space-time super-
symmetry uniquely specifies the space-time actions. Since this is the
only goal with this section, details concerning the quantisation of the
string will be ignored. The important lesson to draw from quantisation
of the string, other than that the string is possible to quantise, is that
this forces the space-time dimensions to be ten dimensional. In other
words, the critical dimension of the superstring is D = 10.

The closed strings have to obey certain boundary/periodicity condi-
tions. For the bosonic fields these would be

Xa(τ, σ) = Xa(τ, σ + π) , (2.14)

while for the fermionic fields there are two possible conditions

ψa±(τ, 0) = ψa±(τ, π) ,

ψa±(τ, 0) = −ψa±(τ, π) .
(2.15)

The first boundary condition is known as Ramond (R) and the second is
called Neveu-Schwarz (NS). Here the sign labels +

(−) refers to left (right)
movers, i.e.

∂ +
(−)
ψ −

(+)
= 0 , where ψa =

(
ψa−
ψa+

)
, and +

(−) = τ +
(−) σ . (2.16)

For the left and right movers on the world sheet there is hence a pairing
of these boundary conditions. There are four different possible pairings
of two types – same and mixed

(R,R), (NS,NS) ,

(R,NS), (NS,R) .
(2.17)

The first type gives rise to space-time bosons, while the second type
will give rise to space-time fermions. It is however not enough to only
consider these parings of boundary conditions since they generally give
rise to tachyons. This can be avoided using the so-called [GSO77] pro-
jection. This associates a parity with the R and NS sectors, R± and
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NS±, which truncates the string spectrum such that these tachyons are
no longer present. This parity are related to the chirality of the spinors.
There are four ways of doing this, in order to preserve maximum super-
symmetry, where only two are independent. These are

IIA: (R+,R−), (R+,NS+), (NS+,R−), (NS+,NS+) ,

IIB: (R+,R+), (R+,NS+), (NS+,R+), (NS+,NS+) .
(2.18)

In type IIA where both chiralities are present, the theory is non-chiral,
while type IIB is chiral. These two have a common bosonic section of
space-time fields (NS+,NS+), which consists of a dilaton Φ, an anti-
symmetric tensor Bab and the metric gab. The fermionic sectors contain
a dilatino λ, which is a spin-1/2 field, and a gravitino Ψa, which is a spin-
3/2 field. The (R,R) sector contains different ranked anti-symmetric
tensors (differential forms)

IIA: C1, C3 ,

IIB: C0, C2, C4 .
(2.19)

These will act as potentials for field-strengths F̂q = dCq−1.
There is an extension of type IIA where a field-strength without po-

tential can be added, F0. This is called the Romans mass parameter
[Rom86]. This theory have some peculiarities, while type IIA can be
extended to M-theory, for massive type IIA no such uplift exists.

The action, or equivalently the equations of motion (which will be
presented later), derived in this way are part of a perturbative expansion

(E.o.m.)α′ +O(α′
2
) . (2.20)

This means that any solution of these equations must obey α′ � 1.1

There is also an expansion in terms of string loops. A string tree-level
diagram would consist of a surface that is topologically a two-sphere.
By adding what is called vertex operators, loops can be added to the
tree-level. The expansion of the string action with a vertex operator is
an expansion in gs = e〈Φ〉, so to be sure to keep string loop corrections
under control also gs � 1 is necessary. The tree-level and leading order
in α′ expansion that will be used here is known as 10D supergravity.
Supergravity is the theory which will be used throughout the rest of
this thesis.

Before moving on some notes should be made about M-theory. M-
theory is an eleven-dimensional theory with a low energy description,
in the sense of α′ � 1, that is 11D supergravity. This theory is the

1The characteristic curvature radius, call it R, also influence this expansion. Effec-
tively the expansion parameter is α′/R2.
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strongly coupled regime of string theory where gs → ∞. The radius of
the eleventh dimension is hidden from string theory perturbation theory
and is related to gs as

R11 = g2/3
s . (2.21)

In the weak coupling regime gs � 1 this is invisible while at gs → ∞
the eleventh dimension plays an equally important role as the other ten
[Tow96].

M-theory does not contain strings and should not be referred to as a
string theory. Instead, on the same basis as string theory has D-branes,
that will be covered shortly, M-theory has M2- and M5-branes. To the
content of the 11D supergravity belongs also a metric, a four-form G4

and a gravitino Ψa. The bosonic sector of the 11D supergravity will be
introduced later together with the type II supergravities.

2.1.1 String and M-theory sources

The two types of sources that will be most relevant to what is dis-
cussed in this thesis are the Dirichlet branes (D-branes) of a certain spa-
tial dimension p (Dp-branes), and the Orientifold planes (O-planes/Op-
planes). Although the use of these sources in this thesis will be only
distinguishable up to a sign change, their dynamics and properties are
very different. D-branes are objects which have dynamics on their world-
volume in terms of open strings that end on the brane. The O-planes
are instead non-dynamical objects, usually defined to be the set of fixed
points of an orientifold involution that it creates on the space in which
it is embedded.

The Dp-branes and Op-planes influence the ten dimensional action
through their Dirac-Born-Infeld (DBI) action and the Wess-Zumino
(WZ) action2

SDBI = −TDp

∫
dp+1ξ

√
|g(p+1)| e(p−3)φ/4 ,

SWZ = QDp

∫
Cp+1 ,

(2.22)

TDp is the tension and couples to the Einstein equation and the equation
for the dilaton. Whereas QDp is the charge and couples its correspond-
ing field-strength, F8−p, through the Bianchi identity. The g refers to
the determinant of the space-time metric, pulled back onto the world-
volume, and its superscript refers to the dimension. Written above

2The sign convention here is taken from [Koe11] since the same convention (up to a
sign change of the NSNS potential) will be used for the equations of motion that will
be introduced later.
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are the actions for a Dp-brane. To get the Op-plane actions simply
change the sign of the tension and charge.3 As mentioned earlier, the
D-branes have dynamic properties on its world-volume, the actions pre-
sented above are given in the lowest order expansion of this dynamics,
i.e. the world-volume gauge fields have been neglected here.

To be able to write a complete ten dimensional action, the (p + 1)
dimensional world-volume actions presented above needs to be extended
in the transversal space. Both actions are extended by adding a trivial
integral over the space transversal to the world-volume, that is

1 =

∫
δ(Dp) ?9−p 1 =

∫
δ9−p(Dp) . (2.23)

One important point that should be made here, which will be important
later, is that equation (2.23) shows that the sources used are localised.
The action written terms in (2.22) are localised to the world-volume
and the delta function introduced above, δ(Dp), represents the position
of the source (or a sum of sources) in the transversal directions.

The Neveu-Schwarz five brane (NS5-brane) will also be relevant for
this thesis. While the D-branes couple to the RR-sector fields though
its WZ-action, the NS5-brane couples to the NSNS-sector potential B6.
More specifically, the action of the NS5-brane is

SDBI = −τNS5

g2
s

∫
dp+1ξ

√
|det

(
g

(6)
µν + 2πgsFµν

)
| ,

SWZ = µNS5

∫
B6 .

(2.24)

Fµν is an object describing the world-volume fluxes. The relation be-
tween the two potentials B6 and B2 is given by

dB6 =
1

g2
s

?10 dB2 . (2.25)

The NS5-brane is hence the (electromagnetic) dual brane to the funda-
mental string and is therefore present in both type IIA and type IIB.

In M-theory the fundamental object is the M2-brane (also called (su-
per)membrane). When the eleventh dimension of M-theory is wrapped
by one direction of this brane it reduces to the type IIA string, and
when no directions of the brane wraps the eleventh dimension it re-
duces to the type IIA D2-brane. The M2-brane has a dual brane called
the M5-brane.

3There is a quantisation condition for the D-brane and O-plane charge that relates
to the D-brane charge with a certain magnitude factor. However these details, that
relates to quantisation, will not be relevant to anything presented in this thesis and
will not be discussed further.
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2.2 Type II and 11D supergravity compactifications
So far a short introduction of string theory has been presented and a
sketch of the origin of the type II and 11D supergravities. In the present
section a summary of all equations of motion will be presented so that
they can be easily referred to in the text avoiding unnecessary repetition.

Type II conventions
Let us quickly summarise the constituents of the type II supergravities
and their relations. The type II supergravities consists of the following
Ramond-Ramond (RR) form fields

RR: Fq , (2.26)

where q is even (odd) for type IIA(B). They have a common Neveu-
Schwarz (NSNS) sector consisting of

metric: gab ,

dilaton: φ ,

NSNS 3-form: H3 .

(2.27)

The equations of motion that govern their interactions, in the ten di-
mensional Einstein frame4. These are the trace reversed Einstein equa-
tion

Rab =
1

2
|dφ|2ab +

1

2
e−φ

(
|H3|2ab −

1

4
gab|H3|2

)
+
∑
q≤5

1

2(1 + δq5)
e

5−q
2 φ

(
|Fq|2ab −

q − 1

8
gab|Fq|2

)
+

1

2

(
T `ab −

1

8
gabT

`

)
.

(2.28)

The Kronecker delta have been introduced in this expression to account
for the self-duality of the F5; F5 = (1 + ?10)F5. The squares are taken
according to the following rule

|Aq|2ab =
1

(q − 1)!
Aa a2,...aqA

a2,...aq
b , |Aq|2 =

1

q!
Aa1,...aqA

a1,...aq ,

(2.29)
for a q-form, where contractions have been done with the inverse metric
gab. The part of the stress tensor representing the localised sources is
given by

T `ab = −e
p−3
4 φTDpgµνδ

µν
ab δ(Dp) . (2.30)

4In previous sections equations have been written in the string frame. From now on
a ten dimensional Einstein frame will be used where the relation between the two
frames are given by gEab = e−φ/2gSab.
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Ten dimensional indices are labelled a, b, . . . = 0, 1, . . . 9 and world-
volume indices µ, ν, . . . = 0, 1, . . . p, while the transversal directions are
labelled with i, j, . . . = (p+ 1), . . . 9, unless otherwise specified for each
section.

The dilaton equation of motion is given by

∇2φ = −1

2
e−φ|H3|2 +

∑
q≤5

5− q
4

e
5−q
2 φ|Fq|2 −

p− 3

4(p+ 1)
T ` , (2.31)

with the Laplace operator defined as

∇2 · = 1√
|g10|

∂a

(√
|g10|gab∂b ·

)
. (2.32)

The form fields obeys the following Bianchi identities

dH3 = 0 ,

dF8−p = H3 ∧ F6−p +QDpδ9−p(Dp) .
(2.33)

The equations of motion for the RR sector fields are given by

d
(

e
p−1
2 φ ? F6−p

)
= −e

p−3
2 φH3 ∧ ?10F8−p

+ (−1)
(6−p)(5−p)

2 QD(4−p)δ5+p(D(4− p)) ,
(2.34)

where every RR field satisfies the following duality relation

e
5−q
2 φFq = (−1)

(q−1)(q−2)
2 ?10 F10−q . (2.35)

By assuring that both Bianchi identities and equations of motion are
satisfied for each RR q-form it is sufficient to only consider q ≤ 5.
Keeping all the forms for all q is called the democratic formalism, which
will not be used here. For the NSNS 3-form

d
(
e−φ ? H3

)
= −

∑
q

e
5−q
2 φ ?10 Fq ∧ Fq−2 . (2.36)

The above are given in not-necessarily extremal Dp-brane charges
and tensions; TDp = |TDp| and QDp = |QDp|. Extremality, on the other
hand, is given by TDp = QDp. To convert to any other source Table 2.1
can be used.

The type of solutions that is considered in this thesis all have a com-
mon structure. Generally considered here are (anti-)Dp-branes or Op-
planes that sources a F8−p field-strength. These solutions are also sur-
rounded by a flux built up by the RR-flux F6−p and the NSNS-flux
H3. Only few exceptions to this is present in this thesis and will be
emphasised in each corresponding section.
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Tension Charge
Dp TDp QDp

Dp TDp −QDp

Op −TDp −QDp

Op −TDp QDp

Table 2.1. The different sources relation to each other in terms of tension and
charge.

11D supergravity conventions
The 11D supergravity is much more concise since there are nothing
equivalent to an RR- and NSNS-sector, nor does there exist a dilaton.
Instead there exists a 4-form G4 that obeys the following equation of
motion and Bianchi identity

d ?11 G4 =
1

2
G4 ∧G4 +QM2δ8(M2) ,

dG4 = 0 ,
(2.37)

where QM2 = |QM2| is the charge of a M2-brane. Einstein’s equation is
given by

Rab =
1

2

(
|G4|2ab −

1

3
|G4|2gab

)
+

1

2

(
T lab −

1

9
T lgab

)
, (2.38)

where the stress-tensor for the localised sources is

T `ab = −TM2gµνδ(M2)δµνab . (2.39)

Some terminology
Let us specify the meaning of some of the terminology frequently used
throughout this thesis.

Localisation: The string theory sources used here are multidimensional
objects with a world-volume. Their spatial dimension will occasionally
be labelled p for an unspecified number of dimensions and their corre-
sponding world-volume is then p + 1 dimensional. These sources have
lower world-volume dimension than the space-time dimension of the su-
pergravity and hence there are transversal directions to the source. The
position of the brane in the space of the transversal directions will be
specified with an object δ(9−p)(Dp) for a Dp-brane. This is essentially a
(9− p)-form proportional to the Dirac delta function with certain nor-
malisations that will be specified later. When the source position in the
transversal space is specified by this object, i.e. as a point, the source
is localised.
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Smearing: A smeared source refers to an object that have more spa-
tial directions than specified by p. If the extra directions are less than
9− p, such that it does not cover the whole ten dimensional space-time,
the source is considered to be partially smeared. To make a consistent
smearing the delta function, introduced above, is exchanged for the cor-
responding integrated value of the source term. This integration takes
place in the direction in which smearing is considered.

Probe: The sources that are considered here will influence the form-
fields present in a setup. If a brane is added to an already existing
background, and the effect of the branes interaction with the fields can
be neglected, the brane is said to be in the probe approximation.

Backreaction: The backreaction of a source refers to when one ac-
counts for the influence of a source on the other objects present in a
solution.

The Ansätze used for the metric will differ in between sections, how-
ever some general terminology can be introduced here. A common
Ansatz for the metric related to a source of p spatial dimensions will be
of the form

ds2
D = e2A

(
ds̃2
p+1

)
+ e2B

(
ds̃2
D−1−p

)
, (2.40)

where the factors included here are:

A: The warp-factor. This is a general function on the internal coordi-
nates, coefficient to the world-volume of the source considered.

B: The conformal factor. This is a general function on the internal coor-
dinates, coefficient to the transversal directions of the source considered.

Tilde: Tilde over any object means that warping, conformal and any
other added factors have been explicitly accounted for. For example

gµν = e2Ag̃µν , ?dFq = edA−2qA?̃dFq , and |Fq|2 = e2qA|F̃q|2 , (2.41)

in these examples Fq is a q-form with only space-time components.

The two general metrics will be referred to as

External: ds2
p+1 = g̃µνdxµdxν ,

Internal: ds2
D−1−p = g̃ijdy

idyj .
(2.42)

For some sections another factor will be added, the metric then has
the form

ds2
D = e2A

(
−e2fdt2 + ds2

p

)
+ e2B

(
e−2fdr2 + ds2

D−2−p
)
. (2.43)
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This new factor is:

f : The blackening factor, representing a horizon, dependent on r.

The field-strength related to a source of p spatial dimensions is the
F8−p RR-flux, for type II. Also including 11D supergravity, the common
Ansatz for this form will be

FD−2−p = eX ?D−1−p dα . (2.44)

The factor X has no physical relevance, but the important field here
is α, i.e. the potential associated to the field-strength. There are some
special cases for this Ansatz. For (D, p) = (10, 3) this is the F5-form
which is self dual according to (2.35), the Ansatz is then extended by
taking FD−2−p → (1 + ?D)FD−2−p. Since the democratic formalism is
not used here, for (D, p) = (10, 2) the field-strength is F6, which is dual
to F4 which is the highest form kept. Similarly for 11D supergravity,
(D, p) = (11, 2) there does not exist a seven-form. Hence in both these
cases the field-strength will instead be added to the F4/G4 according to

?DeX ?D−1−p dα = (Four-form for p = 2) . (2.45)

2.2.1 Smearing versus localisation

As was introduced earlier, the position of a localised brane is specified
by the object δ(9−p)(Dp). This object enters for example the Bianchi
identity for the field-strength corresponding to such a source

dF8−p = H3 ∧ F6−p +QDpδ(9−p)(Dp) . (2.46)

The source also influences the dilaton equation of motion and the Ein-
stein equation. This object is normalised such that when integrated
over the transversal space, call it M9−p, it obeys∫

M9−p

δ(9−p)(Dp) = 1 . (2.47)

The full expression for this object is

δ(9−p)(Dp) = δ(Dp) ?9−p 1 = δ̃(Dp)?̃9−p1 , (2.48)

where δ̃(Dp) is the ordinary delta function on the 9− p dimensional in-
ternal space. This means that a consistent smearing procedure involves
the following substitution

δ̃(Dp)→ ṽ−1 , (2.49)
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with ṽ being the internal volume, without any conformal factor. This
smearing procedure also makes the corresponding field-strength vanish
and the warping and conformal factor are zero

F8−p = 0 , A = 0 , B = 0 . (2.50)

For partial smearing, that is, when the brane’s position is only speci-
fied in some directions, the procedure is similar. The full object δ(9−p)(Dp)
is integrated over a q < 9−p dimensional subspace of the internal space
and for those direction the 9 − p dimensional delta function δ̃(Dp) is
replaced by a delta function in 9−p− q dimensions. A partial smearing
retains a profile for the field-strength, warping and conformal factor, in
the directions in which the source is still localised.

For the cases of complete smearing, the Bianchi identities and equa-
tions of motion reduce to algebraic equations, and hence significantly
eases the effort of finding solutions. An effort which in general involves
solving coupled non-linear partial differential equations.

The smearing procedure is heavily used in the literature. One of
the most common uses is in the field of lower dimensional effective field
theories where indeed the dynamics of the internal space have been inte-
grated out, and substituted by the values of the corresponding integral.

2.2.2 Review of some legendary papers

In the present section some particular articles will be briefly reviewed.
The results presented here will all be significant for what will be con-
sidered in Part II. The reason for introducing this work is to be able to
emphasise the relevance of the work presented in this thesis, and to also
give a broader perspective on the complete field.

Some of these works are covered in modern textbooks which considers
this topic, e.g. [BBS07].

Klebanov-Tseytlin [KT00]

[KT00] is a type IIB solution with the following field content

RR: F5, F3 ,

NSNS: H3, gµν , φ .
(2.51)

Present is also one or several D3-branes. The field F5 is the field-strength
associated with a D3-brane and F3 and H3 are surrounding fluxes. The
D3-branes are so-called space-filling which means that it covers the en-
tire external space, i.e. the space-time part of the metric. Topologically
the ten dimensional space-time is

Mink4 × CY6 , (2.52)
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S3

S2

UV IR

R+

D3

Figure 2.1. The [KT00] conifold, where the two spheres of the base ends in a
singular point in the IR where D3-branes are positioned.

where CY6 is a non-compact Calabi-Yau manifold of six real dimensions.
This Calabi-Yau has a conical structure, meaning that it has a base,
denoted T 1,1, and a radial direction R+. The base of the conifold has
the topology S2×S3. The fields (2.51) are then positioned in the internal
space as

F5: T 1,1 ,

F3: S3 ⊂ T 1,1 ,

H3: R+ × S2 ⊂ CY6 ,

(2.53)

and the dilaton, φ, is a constant. The 3-form fluxes F3 and H3 are
organised in such a way in this solution that if one considers the following
complex combination

G3 = F3 − ie−φH3 , (2.54)

then they obey
?6 G3 = iG3 , (2.55)

where ?6 is the Hodge-dual of the internal space. This condition will be
referred to as the ISD condition, meaning imaginary self-dual. There is
a corresponding real statement of this duality which looks like

H3 = eφ ?6 F3 . (2.56)

However, this will still be referred to as the ISD condition.
The conifold geometry can be described by four complex coordinates

zα that satisfies the following relation

4∑
α=1

z2
α = 0 . (2.57)
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This conifold gives rise to a naked singularity at the bottom of the coni-
fold – the warp factor diverges without being shielded by a horizon. The
D3-branes present are positioned at the singular point of the conifold.
A depiction of the background can be found in Figure 2.1.

Herzog-Klebanov [HK01]

The [HK01] solutions are generalisation of [KT00] to various dimensions.
This means that they consider space-filling Dp-branes in type IIA(B) for
p being even (odd). They considered conical internal spaces of topology

R+ ×M2 ×M6−p , (2.58)

where the field content is, and have been placed, according to

F8−p: M2 ×M6−p ,

F6−p: M6−p ,

H3: R+ ×M2 .

(2.59)

The two spaces M2 and M6−p are chosen by [HK01] as whatever spaces
that satisfies the supersymmetry conditions. Since the internal space is
flat and 9− p dimensional, the external space-time is

Minkp+1 , (2.60)

whose dimension is implied since space-filling Dp-branes are used.
Similar generalisations to various dimensions will be considered later,

which is why [HK01] is mentioned here.

Klebanov-Strassler [KS00]

S3

S2

UV IR

R+

Figure 2.2. The [KS00] conifold, where the S3 has a non-zero radius in the IR.
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As was mentioned earlier, the [KT00] solution has a warp-factor sin-
gularity. The [KS00] solution is the successful deformation of the coni-
fold that resolves this singularity. This is called the deformed conifold,
not to be confused with the resolved conifold of [PZT00]. Both the de-
formed and resolved conifold can be described by adding a constant to
equation (2.57) according to

4∑
α=1

z2
α = ε2 , (2.61)

where ε is related to the radius of the finite submanifold at the bottom
of the conifold. For the deformed conifold the S3 has a finite size at the
bottom, see Figure 2.2, while the resolved conifold has a finite sized S2.
This deformation needs no new field content and the topology of the
internal space remain the same. However it introduces new components
to the fields. The internal metric are usually described by a radial
coordinate τ and five one-forms gi|i=1,2,3,4,5 describing the T 1,1. The
position of the fields and their components are in the [KS00] solution

F5: g12345 ,

F3: dτ ∧ (g13 + g24) + g125 + g345 ,

H3: dτ ∧ (g12 + g34) + g5 ∧ (g13 + g24) ,

(2.62)

up to coefficient τ -dependent functions. The g1,2 describes the S2 and
g3,4,5 the S3 of the base. See for example [BG13] which describes an
Ansatz that interpolates between the [KT00] and [KS00] Ansätze.

The D3-brane that was present at the singularity at the bottom of
the [KT00] conifold is now gone, together with the singularity. This
solutionis now supported only by ISD flux.

Giddings-Kachru-Polchinski [GKP02]

Calabi-YauOp

Dp

Figure 2.3. A representation of the [GKP02] solution.

All the solutions introduced above are non-compact. There is a simple
reason as to why they cannot be made compact and this comes from
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the so-called tadpole condition. Considering a D3-brane, the charge of
this brane sources the Bianchi identity corresponding to F5, that is

dF5 = H3 ∧ F3 +QD3δ6(D3) . (2.63)

The charge of the brane is represented by QD3 = |QD3|. For the solu-
tions considered above, the fluxes obey the ISD condition (2.56) which
means that the flux charge density can be written as

H3 ∧ F3 = e−φ|H3|2 ?6 1 , (2.64)

that is, a positive quantity. On a compact internal manifold, equation
(2.63) can be integrated to give an inconsistency

0
!
=

∫
M6

e−φ|H3|2 ?6 1 +QD3 > 0 . (2.65)

Hence D3-branes surrounded by ISD flux can not be placed on a com-
pact manifold, nor can ISD fluxby itself support a compact manifold.
Therefore all of the solutions have to be non-compact.

The non-compact solutions described above are all supersymmetric
because the ISD flux and the D3-branes are mutually BPS, meaning
that they can preserve the same supersymmetries. There is however
other objects that are also mutually BPS with the ISD flux and the
D3-branes. One such object is the three dimensional orientifold plane,
O3-plane. As mentioned in Section 2.2, the O3-plane have opposite
charge and tension, compared to the D3-brane. That is, QO3 = −QD3.
This makes it possible to substitute the D3-brane for a O3-plane and
make the space compact.

This is the [GKP02] solution. It consists of the same field content as
previously considered. The fluxes F3 and H3 obeys the ISD condition
(2.56), and the source is a O3-plane. Of course it is not that strict,
but any such solution allows for a number of D3-branes as well, as long
as there is net O3-plane charges, see Figure 2.3. The internal space is
then a compact Calabi-Yau. The exact placement of the fields in this
manifold is not specified and the solution is only implicitly stated as one
differential equation that solves all equations of motion and satisfies all
Bianchi identities.

The BPS property of the [GKP02] solution can be seen from the
following expression

∇̃
(
e4A − α

)
= e2A+φ|iG3 − ?6G3|2 + e−6A|∂(e4A − α)|2 , (2.66)

where each term is trivially satisfied. This type of expression is expected
for supersymmetry, however does not imply it. The form G3 can have
two complexity types, (2, 1) and (0, 3). Only for (2, 1) is supersymme-
try present for the [GKP02] Ansatz. See [BJVRV12], by the present
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author (article not included in this thesis), on how supersymmetry can
be restored for the (0, 3) complexity type case.

Kachru-Kallosh-Linde-Trivedi [KKLT03]

Up to this point some well-known supergravity solutions have been pre-
sented. The desired step now is to construct some phenomenologically
relevant solutions. As mentioned in the introduction the purpose here
is to break supersymmetry, keep the internal space compact, achieve a
positive cosmological constant, and have the solution meta-stable, i.e.
the solution is able to persist through times of the order of the age of
our universe.

A solution capturing these effects is [KKLT03], and can be described
as a three-step procedure. To start off, lets present the steps and then
consider the details of each step.

1. Take a solution that is a no-scale compactification to Minkowski,
such as the [GKP02] solution.

2. Add small non-perturbative terms which gives a negative contri-
bution to the energy and hence makes the space Anti-de Sitter
(AdS).

3. To make the energy positive and break supersymmetry, add an
anti-D3-brane in a highly warped region.

The first step starts out with a nice compactification. However,
[GKP02] does not have all moduli stabilised. Moduli are fields that
represents the deformation of the internal space and should be fixed.
Much of the discussion of moduli stabilisation is left out of this thesis.
For more information on the moduli stabilisation issue for these solu-
tions see the original papers [GKP02] and [KKLT03]. [GKP02] leaves
the Kähler moduli unfixed so not only does the potential energy need
to be lifted, but the Kähler moduli should also be stabilised.

The second step takes care of the Kähler moduli. The added non-
perturbative effects depends on these moduli and the resulting extrema
will have all moduli fixed. There is also a negative contribution to
the potential energy from the non-perturbative fluxes, because they are
added in such a way that the extrema is still supersymmetric. So Kähler
moduli has been fixed, but supersymmetry remains and the potential
energy corresponds to AdS.

For the last step, anti-D3-branes are added. These branes give a
large positive contribution to the potential energy and would give de
Sitter. Because of the smallness of the observed cosmological constant,
one wants the positive contribution of the anti-D3-branes to overcome
the negative contributions of the non-perturbative effects only slightly.
This can be achieved by placing the anti-D3-branes in a very warped
region, because their contribution to the potential energy is scaled down
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by warping. [KKLT03] suggests that this can be done by adding the
anti-D3-branes to the tip of the [KS00] conifold.

Kachru-Pearson-Verlinde [KPV02]

D3
(south)

NS5

S3

D3
(north)

time

Figure 2.4. The [KPV02] process where anti-D3-branes decay to D3-branes
through the Myers-effect, here showing the S-dual NS5-channel.

Similar to [KKLT03], [KPV02] consider anti-D3-branes on the [KS00]
conifold. Assuming that the full backreaction of this problem will not
affect the background significantly – such as fluxes – [KPV02] studies
the physics of the (probe) anti-D3-branes living at the S3 at the bottom
of the conifold.

More precisely they consider the possibility of the anti-D3-branes po-
larising into a D5-brane5 that wraps an azimuthal S2 inside the S3. This
phenomena takes place through the so-called Myers-effect of [Mye99].
This polarised brane then have a possibility to traverse the remaining
direction of the sphere and move from one pole to the other. Starting
from say the south pole of the S3 the polarised brane still have the same
properties of the anti-D3-branes. As it gets closer to the north pole the
effective charge changes and what remains are D3-branes, see Figure
2.4. This means that if the polarised branes manage to reach the north
pole the uplifting properties of [KKLT03] would be lost.

The calculation of [KPV02] derives a potential that governs the move-
ment of the polarised brane. This potential has a barrier that prevents
the polarised brane to traverse the sphere and end up on the north
pole. That is, the effective potential has a minimum close to the south
pole where the polarised brane will reside. [KPV02] also estimates the
possible tunnelling through this barrier and concludes that this effect
is very small and the decay time would be much larger than the age of
our present universe.

5Since type IIB is self-dual under S-duality, where NS5-branes are interchanged with
D5-branes, [KPV02] actually considers the NS5-channel.
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ψ

V (ψ)/A0

Figure 2.5. The [KPV02] meta-stable potential for the NS5-brane.

The observation of [KPV02] is that there seems to be a meta-stable
state, but only for small p/M , where p is the amount of anti-D3-brane
charges and M is the amount of background fluxes. In their notation

M =
1

4π

∫
A

F3, p = N̄D3 , (2.67)

where A represents the cycle where the F3 flux is placed, in general it has
all the [KS00] legs, but considering the bottom of the conifold A = S3.
Their estimation is that a meta-stable state is present for p/M . 8%,
see Figure 2.5.

Polchinski-Strassler [PS00]

Several of the solutions presented here have applications in the AdS/CFT
duality which will not be mentioned much in this thesis. For this section
it suffice to say that the supergravity background AdS5×S5 is dual to a
stack of N coincident D3-branes under AdS/CFT. A certain perturba-
tion of the three-form fluxes, which corresponds to a mass deformation
in the CFT, gives rise to a naked singularity [GPPZ00].

In [PS00] it is argued how this singularity can be resolved via the
so-called Myers-effect [Mye99]. As mentioned previously, when the
[KPV02] calculation was discussed, the Myers-effect describes the po-
larisation of Dp branes into D(p + 2) branes. [PS00] describes how
polarised D5-branes could stabilise themselves and how they shield off
the singular region, leaving a regular solution.

The [PS00] approach is summarised in for example [BGKM14] which
itself will be briefly reviewed in Chapter 4. The important aspect of
[PS00] which is relevant for the discussion in Chapter 4 is how they
describe the possibility of certain polarisation channels to resolve sin-
gularities.

Gubser [Gub00]

The important subject of Part II is singularities and which type of sin-
gularities that should be considered as allowed, as well as how they can
be resolved. Singularities can develop for various reasons in classical
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theories. The subject of [Gub00] is to construct a necessary condition
for singularities, in order for them to be allowed.

The idea is to consider the same system that presents a singularity,
but at finite (Hawking) temperature. That is, an event horizon is in-
serted to surround the singular region. This is done through adding a
blackening factor, as was introduced in Section 2.2. If the singularity
remains hidden behind the horizon, it should be accepted. This is a
criterion that will be used later.

Cvetič-Gibbons-Lü-Pope [CGLP03], [CGLP02]

In the same way as [KS00] is a smooth solution with dissolved D3-brane
charge into flux in a non-compact Calabi-Yau, [CGLP03] is a smooth
solution with M2-brane charge dissolved in flux. The geometry of the
[CGLP03] solution is a conical Calabi-Yau with a base that is an S4

fibre over an S3, slightly more complicated than the conifold with T 1,1

base. The base of this conifold is a part of a classification of so-called
Sasaki-Einstein manifolds, and is usually denoted V5,2.

6

It has several similarities to the [KS00] geometry. At the bottom of
the conifold, the S4 base of the fibration remains at non-zero size, while
the S3 fibre vanish. The flux placed in the [CGLP03] has the four-form
flux G4|non–field-strength part = F4 of 11D supergravity with a self-dual
(SD) relation

F4 = ?8F4 . (2.68)

Self-duality here is the equivalent of ISD in the case of [KS00], and it has
the same charge as M2-branes. The base of the conifold is parametrised
by seven one-forms {σ̃i}i=1,2,3, {σi}i=1,2,3 and ν. The F4 has four legs

F4 ∼ ν ∧ σ123 + dτ ∧ σ̃123 + εijkν ∧ σi ∧ σ̃jk + εijkdτ ∧ σij ∧ σ̃k , (2.69)

up to coefficient factors dependent on τ . The notation here is taken
from [KP11] which will be reviewed later. The first leg is proportional
to the volume form of the S4 that remains at τ = 0

ν ∧ σ123 ∼ ?S41 . (2.70)

In another paper [CGLP02], by the same authors, the same type of
setup is considered but this time on the space denoted A8. This space
has a vanishing tip which is a property that will be used later – anti-
M2-brane on this tip can be fully localised.

Klebanov-Pufu [KP11]

Since it is possible to create a meta-stable state of anti-D3-branes in the
[KS00] background, where the decay channel is via an NS5-brane as in

6So is the base of the [KS00] solution where T 1,1 = V4,2.
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[KPV02], perhaps the same works for anti-M2-branes in the [CGLP03]
background. Indeed this is what [KP11] finds.

The geometry and the objects available are slightly different in 11D
supergravity. The decay channel for the anti-M2-brane is through an
M5-brane that wraps an azimuthal S3 inside the S4 at the bottom
of the conifold. The same events then transpires, as for the [KPV02]
calculation. What is found by [KP11] is that for p/M as small as 0.054
the effective potential for the M5-brane has a barrier with a meta-stable
minima, see Figure 2.6.

ψ

V (ψ)/(M̃V
(0)
string)

Figure 2.6. The [KP11] meta-stable potential for the M5-brane. Here drawn
for p/M = 0.05 < 0.05989.
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Part II:
Developments





3. T-duality and new solutions

This chapter will discuss Paper I, with the focus on the BPS solutions
of that paper. There are additional results contained in that paper that
are postponed for Chapter 4.

3.1 T-duality
In the early days of string theory, it was believed that there were several
independent string theories, five to be exact. Further down the line,
relations between them started to emerge. With the discovery of M-
theory they were reinterpreted as all being a part of one grand theory.
M/string-theory can be seen as a web that relates them through so-
called dualities.

The string theories discussed in this thesis are the type II theories.
It has been noted that when type IIA was compactified on a circle or
radius RA, it gave the same compactification scenario as type IIB would,
compactified on a circle of radius RB, provided

RA =
α′

RB
. (3.1)

For the purpose of this thesis, the following information about T-
duality is needed for the results of Paper I, and also for some of the
results presented in Chapter 4.

It is possible to perform T-duality in different directions. Depending
on the direction used, the resulting dual solution will be different. The
two examples that will be important here is T-duality along RR-sector
fields or along NSNS-sector fields.

A T-duality along an RR-field would result in new RR-fields according
to

Fa1...aq → Fa1...aq−1
. (3.2)

The source giving rise to a Fq flux is of p = 8 − q spatial dimensions,
and after the T-duality operation it is now a p+ 1 dimensional source.
However, if the source was localised in the original solution, it will now
be smeared along the T-duality direction. Hence, to be able to localise
the source one has to go through the complete analysis with localised
sources again.
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T-dualities along the NSNS three-form flux H3, will create new types
of “fluxes”. By dualising one direction of the NSNS three-form one gets

Hijk → f ijk , (3.3)

where f ijk is usually called a metric-flux. One might wonder whether
additional T-dualities along the NSNS three-form is a sensible thing to
do, and this happens to be an interesting field of its own. The complete
T-duality chain is commonly denoted

Hijk → f ijk → Qijk → Rijk , (3.4)

where Q and R are called non-geometric fluxes. They are called non-
geometric because they lack a complete geometric understanding in
terms of ten-dimensional supergravity. The subject of non-geometric
fluxes is not relevant for this thesis and will not be discussed further.
The interested reader might want to consider the review [AMN13], and
references within, which considers their interpretation as coming from
Double Field Theory. This review also touches upon the subject of
non-geometric fluxes having an origin in string theory compactifica-
tions (as opposed to supergravity compactifications) or non-commuting
(Qij ∼ [xi, xj ]) and non-associative (Rijk ∼ [xi, xj , xk]) internal coordi-
nates.

3.2 New solutions
In Paper I several new solutions are presented. These are all T-dual,
and they are considered both fully smeared and fully localised. This
serves as good examples for what information that smeared solutions
can provide and how it helps to find, for solutions that are BPS, the
corresponding localised solutions.

3.2.1 BPS on Ricci-flat internal space

The solutions that will be presented here are Op-plane solutions. The
field-strength corresponding to an Op-plane is the F8−p RR-flux, and
should therefore be included. Internally, the space will be made compact
and hence due to a sort of generalised Gauß’s law no net charge can
remain on the internal manifold. So, in order to cancel the internal
charge introduced by the Op-plane, charged fluxes have to be included∫

dF8−p = 0 =

∫
H3 ∧ F6−p −

∫
QOpδ9−p(Op) , (3.5)

as also explained in the discussion in Section 2.2.2.
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In addition to this, the geometry is a warped external space and a
conformal internal space

ds2
10 = e2Ads̃2

p+1 + e2Bds̃2
9−p . (3.6)

Note also that the dilaton is in general a dynamical field that is included
aswell.

Smeared solutions

As was described in Section 2.2.1 the smearing procedure constitutes
removing the field-strength, warping, the conformal factor and making
the dilaton constant. What remains is then simply

F6−p, H3, φ = φ0 = log gs , (3.7)

and of course the charge and tension of the Op-plane. In Paper I these
are referred to as µp, but here they will be denoted QOp = TOp to make
them distinguishable to charge and tension of other objects that will be
used in subsequent sections.

To find the solutions for the smeared planes one have to make sure
that all form and dilaton equations of motion, together with the Einstein
equation, are satisfied. In the present setup, the equations become
algebraic equations and are solved by two conditions

H3 = e(p+1)φ0/4 ?9−p F6−p ,

QOp = e(p+1)φ0/4|F6−p|2 ,
(3.8)

where these are Minkowski solutions on Ricci flat internal manifolds

Rµν = 0 ,

Rij = 0 .
(3.9)

The duality condition in (3.8) is for p = 3 often called the imaginary
self-dual (ISD) condition. This is since the H3 and F3 can be combined
into a complex three-form

G3 = H3 + SF3 , (3.10)

where S = C0 + ieφ, and C0 is the potential for the RR flux F1 (put to
zero here), which then is ISD

?6 G3 = iG3 . (3.11)

These T-dual solutions give rise to similar duality relations between the
fluxes.
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Localised solutions
To proceed in finding the localised solutions, some information can be
taken from the smeared solutions. One should expect the flux relation
of equation (3.8), i.e. the first line, to still hold when the dilaton is pro-
moted to a function. Also, the properties of the Ricci tensors should be
preserved, but only for the unwarped and non-conformal counterparts.
Using these hints, it is very easy to spot that the solution is given by
four conditions and one partial differential equation

H3 = e(p+1)φ/4 ?9−p F6−p ,

α = (−1)p+1e(p+1)A+(p−3)φ/4 + α0 ,

φ =
4(p− 3)

7− p
A+ φ0 ,

B = −p+ 1

7− p
A ,

∇̃2e
16

p−7A = −e
p−1
2 φ0 |F6−p|2 + e

p−3
4 φ0QOpδ̃(Op) .

(3.12)

These are implicit solutions, in the sense that the internal space is
not specified, but the differential equation solves all other equations.
To refer back to the smeared solution, the first and last equation of
(3.12) corresponds to the same in (3.8). Setting A = 0 reproduces the
whole smeared setup. These localised solutions are again a (warped)
Minkowski on a (conformally) Ricci flat internal manifold

R̃µν = 0 ,

R̃ij = 0 .
(3.13)

3.2.2 BPS on negatively curved internal manifold

Again Op-planes will be considered, and one has to include charged flux
to cancel the tadpole, as well as warping, conformal factor and a field-
strength. In this case it looks a bit different since F8−p will represent
both the flux charge density and the field-strength. It has the following
Ansatz

F8−p = m7−p ∧ e9 − e−2(p+1)A−(p−3)φ/2?̃9−pdα , (3.14)

where the one-form e9 contains the metric flux

e9 = dx9 +
1

2
f9
ijx

idxj , (3.15)

and comes from a T-duality along the NSNS three-form, i.e. f9
ij = Hij9.

The Op-plane position and the positioning of all other flux components
are according to Table 3.1.
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(external) (internal)
µ = 0 . . . p− 1 i = p . . . 8 9

Op x x
f9
ij x

dx9 x
m7−p x

Table 3.1. Table of constituents for the compactification including metric flux.
The x marks the respecive objects position.

Smeared solutions

The smeared solutions are again solved by two conditions

de9 = (−1)pg99e(p−3)φ0/4 ?9−p m7−p ,

QOp = e(p−3)φ0/4|F8−p|2 ,
(3.16)

that is, a duality relation like before and a condition that solves the
tadpole. Where this is again a Minkowski space-time, but in p space-
time dimensions, and now on a negatively curved background

Rµν = 0 ,

gijRij + 2g9iR9i + g99R99 < 0 .
(3.17)

Localised solutions

For the localised solutions the field-strength is included according to
(3.14).

de9 = (−1)pg99e(p−3)φ/4 ?9−p m7−p ,

α = (−1)p+1e(p+1)A+(p−3)φ/4 + α0 ,

φ =
4(p− 3)

7− p
A+ φ0 ,

B = −p+ 1

7− p
A ,

∇̃2e
16

p−7A = −e(p−3)φ0/2| ˜̂F8−p|2 + e(p−3)φ0/4QOpδ̃(Op) .

(3.18)

This is warped p-dimensional Minkowski with negatively curved internal
manifold∫
√
g(10)R(10−p)

=

∫ √
g̃

(
−8

p+ 1

7− p
(∇̃A)2 − 1

4
e

16
7−pAg̃99g̃

ij g̃klf9
ikf

9
jl

)
< 0 .

(3.19)

43



3.3 Motivation for the new solutions and summary
The complete T-duality schema that relates these solutions can be de-
scribed as

H ∝ ?9−pF6−p
TOp

�
TF7−p

H ∝ ?10−pF7−p
TH

�
Te9

de9 ∝ ?9−pı9F8−p .

(3.20)
Even though these solutions are just T-duals of each other, they could
be useful for the study of higher dimensional space-times. This could
be interesting since the dimensionality of the internal space would be
smaller and hence easier to classify. For an example of applying this
logic for de Sitter searches see [VR12].

The BPS expression for the Ricci flat solutions looks like

∇̃2
(
e(p+1)A+p−3

4 φ+ (−1)
p
α
)

= e
(p−3)2

p−7 Ae
p−3
4 φR̃p+1

+ e
(p+1)(9−p)

p−7 A−p−3
4 φ

∣∣∣∂ (e(p+1)A+p−3
4 φ + (−1)

p
α
)∣∣∣2

+ 1
2e

(p+1)(p−5)A
p−7 + 3p−5

4 φ
∣∣∣F6−p − (−1)pe−

p+1
4 φ ?9−p H

∣∣∣2 ,
(3.21)

Two conditions enter here; the duality condition for the fluxes and the
relation between the field-strength potential and the warping and dila-
ton. Integrating this expression over the compact internal space, the
total derivative on the left hand side vanish. Consequently, the two last
terms lowers the curvature of the external space. Only using these con-
stituents hence can therefore only give AdS space-times, or Minkowski
when the BPS conditions are saturated. For a smeared setup, only the
curvature term and the flux term would be present. Breaking the dual-
ity condition would give AdS and these solutions will be covered in the
next chapter.
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4. Branes in oppositely charged fluxes and
their singularities

The so-called de Sitter landscape is a concept in which the expansion
of our universe, i.e. one that could possibly be explained via a positive
cosmological constant, is just one of many. Subscribers to this idea
would say that there are several universes. Some of which would have
similar properties to ours and others would be significantly different
and even hostile to life as we know it. The construction [KKLT03],
reviewed shortly in Section 2.2.2, gives credence to this point of view.
Our universe would be at an elevated extremal point in this landscape
and could decay into other regimes of the landscape with lower vacuum
energy. The important thing about such construction is that the decay
time is much larger than the age of our universe, or else it would be
difficult to explain why our universe still would look like it does. This
concept is called meta-stability, i.e. a solution is meta-stable when it
has decay channels but the decay times of these are very large.

[KKLT03] describes a possible construction for de Sitter space-times,
leaving several aspects of the construction for future, more detailed,
investigation. One of these aspects, that will be the only one consid-
ered here, is the last step of their procedure. This step involves plac-
ing an anti-D3-brane at a highly warped region of a compact internal
manifold. A brane is associated with supersymmetry projectors that
partially breaks supersymmetry of the background. The background
where the anti-branes are placed already have supersymmetry broken
to some degree. The anti-brane is not only responsible for uplifting the
vacuum energy to become positive, but also for breaking the remaining
supersymmetry.

When the details of placing anti-branes in backgrounds that preserve
opposite supersymmetry were investigated, it was discovered that a cer-
tain singularity develops. Some singularities are already expected. This
is a classical theory involving sources, and as such the field-strength
associated to a certain source would develop singular self-energy. This
singularity can however be easily understood. An analogy can be made
to the self-energy of the electron, which is a classical singularity resolved
by the quantum theory. In contrast to this understood singularity, the
newly found singularity is present in the flux charge density that sur-
rounds the source and so far has no universal resolution nor a fully
understood interpretation.
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As this singularity of the flux charge density was ascertained, assump-
tions and approximations were used, in particluar partial smearing and
perturbative expansions. A first important step is to verify that the
singularity is still present beyond these assumptions. That is, perhaps
the singularity is simply a result of a careless use of these tools? If the
singularity remains after this step it becomes important to investigate
the possible resolutions of the singularity. For example, just as with the
self-energy that is resolved by the quantum theory, perhaps the super-
gravity (classical theory) singularity is resolved by the quantum theory
(string theory). If even this step fails one have to investigate possible
interpretations of the singularity.

All of these aspects will be considered in the rest of this chapter.
Although only the anti-D3-brane construction was mentioned above, a
similar flux charge density singularity have been observed in other sys-
tems, for anti-D6-branes and for anti-M2-branes.1 These three systems
will be covered in this chapter.

As a starting point the anti-D6-brane will be considered, the papers
relevant to this setup which are included in this thesis are Papers I, II
and III, as well as a particular case of Paper V. In the analysis of the
singularity associated to the anti-D6-brane it will be concluded that a
singularity is present beyond partial smearing and perturbative expan-
sions. Furthermore, a short review will be presented regarding other
developments that concerns the resolution of the singularity.

The next step is to consider the anti-D3-branes. The conclusions
made by other authors, and their working assumptions, will be reviewed,
and a summary of Paper IV will be presented. Paper IV considers a
possible interpretation of the singularity. The main idea is that the
singularity is present due to the fact that in all of these cases a static
Ansatz is used to describe a time-dependent system which ultimately
leads to the singularity. By introducing this time-dependence in an
adiabatic manner, a new channel of instability arise.

A flux energy density singularity is also present in the 11D supergrav-
ity, and the status of this will be reviewed subsequently. The relevant
paper included in this thesis is Paper VI.

The chapter ends with a summary of the present status of this pro-
gramme, collecting all results into a final conclusion.

1It would also be possible to consider anti-D2-branes in the [CGLP01] background.
However none of the articles included into this thesis considers them explicitly and
hence they will also be left out of the discussion. The reader is instead referred to
[CGLP01] and [GGO12].
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4.1 The anti-D6-brane solution and their singularity

4.1.1 The smeared solutions

In the effort of investigating the solutions of Paper I, discussed in Chap-
ter 3, a BPS type of relation was derived where equations of motions
have been combined to form squares

∇̃2
(

e(p+1)A+ (p−3)
4 φ + (−1)pα

)
= e

(p−3)2

p−7 A+ (p−3)
4 φR̃p+1

+ e
(p+1)(9−p)

p−7 A−p−3
4 φ

∣∣∣∂ (e(p+1)A+ (p−3)
4 φ + (−1)pα

)∣∣∣2
+

1

2
e

(p+1)(p−5)
p−7 A+ 3p−5

4 φ
∣∣∣F6−p − (−1)pe−

p+1
4 φ ?9−p H3

∣∣∣2 .
(4.1)

The BPS relation between the fluxes are such that both squares and the
term containing the Laplacian are trivially zero. In the last term one
can define a generalisation of the ISD relation (2.56) to any dimension,
determined by p. Even if this relation does not imply the existence
of a complex form that is ISD, from here on even this more general
type of flux will be referred to as the ISD-relation. If one would break
any of these BPS relations, one would get AdSp+1 solutions. Since the
BPS solutions have already been covered, the interest lies in what these
AdSp+1 solutions are.

Before continuing, between Papers I and II it was noticed that the
generalised broken ISD relation on the form

F6−p = (−1)pκe−
p+1
4 φ ?9−p H3 , (4.2)

does not capture the whole dynamics. This relation is referred to as
broken ISD because of the inserted parameter κ. It turns out, however,
that one instead should use

H3 = λe
p+1
4 φ ?9−p F6−p , (4.3)

with λ = 1
κ . The use of the parameter κ will from now on be dropped

completely. The reason is that λ will be shown to have regular sign
switches in the bulk, which means κ would have bulk singularities.
Therefore the appropriate function to use is λ.

The first simplifying step towards determining these solutions is to
use the smearing procedure. This will set the warp factor A and the
potential α to zero and the dilaton to a constant φ → φ0 = log gs.
This is according to what have been explained already in Section 2.2.1,
and this reduces the equations to algebraic ones. Before leaving the
discussion of the ISD condition it should be mentioned that the relation
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can be broken even further. The smeared AdSp+1 solutions of Paper I
considers an ISD relation of the form

H3 = λe
p+1
4 φ ?9−p

(
F6−p − F 6−p

)
, (4.4)

where F 6−p is closed and co-closed and satisfies F 6−p ∧H3 = 0. Drop-
ping this newly introduced flux component induces a condition on the
parameter λ which now have to be fixed to the value

λ = −p− 1

2
. (4.5)

The important result here is that this value is necessarily negative, hence
it sources the Bianchi identity for the F8−p field-strength with the op-
posite signed charge. Two other important aspects that needs to be
derived are the curvature of the internal space and the tension/charge
of the source. Via the trace of the internal and external components of
the Einstein equation one deduce the internal curvature to be

R9−p = − 2p

p+ 1
Rp+1 , (4.6)

hence necessarily positive. The internal space can be split such that
there is a three dimensional subspace containing H3 and a (6−p) dimen-
sional one containing Fp−6 flux, where the curvature of each subspace
is given by

R
(3)
ij = 2(p+ 1)(p− 2)e(p−1)φ0/2|F̃6−p|2g(3)

ij ,

R
(6−p)
ij = 2(p+ 1)e(p−1)φ0/2|F̃6−p|2g6−p

ij .
(4.7)

Except for a two special cases; p = 5 where 6 − p = 1 no positively
curved space is available since the space is one-dimensional, and p = 2

where the R
(3)
ij vanish, the internal space can then be taken to be a

direct product of spheres

M9−p = S3 × S6−p . (4.8)

By combining the ISD relation (4.3) and the Bianchi identity the charge
is given by

QDp = −λe
p+1
4 φ0 |F6−p|2 . (4.9)

As mentioned in Section 2.2.2 the [GKP02] solution is possible to make
compact since the positive ISD-flux charge is cancelled by the negative
O3-plane charge. In this case the tadpole is instead solved via a can-
cellation of negative, imaginary anti-self-dual IASD2 flux (IASD) and
positive D-brane charge. For a better overview of these solutions Table
4.1 have been added.

2Note that only the for p = 3 the flux determined by (4.5) is strictly IASD. What is
meant with IASD here is that this flux has the opposite signed charge dissolved in
the fluxes, or in other words net IASD “components”.
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ISD IASD

Dp
[KT00] + [HK01] Paper I + [Sil04]

(non-compact) (compact)

Dp
(Paper I + [Sil04])∗ ([KT00] + [HK01])∗

(compact) (non-compact)

Op
Paper I + [GKP02]

(non-compact)
(compact)

Op (non-compact)
(Paper I + [GKP02])∗

(compact)

Table 4.1. All the solutions. Charge conjugation labelled with an asterisk.
Note that some of these are explicit solutions while others are implicit (given
in terms of one differential equation that solves all equations of motion), and
some are smeared and some are localised.

4.1.2 Localising the non-BPS solutions

The first indication that localisation would be problematic came from
considering how the source term influences the external Ricci curvature.
By examining an implicit Ansatz for the metric

ds2
10 = e2Ads̃2

4 + ds2
6 , (4.10)

where ds2
6 is left unfixed but could include a conformal factor. The warp

factor A and the potential α for the field-strength F5 are both included
to capture some of the localisation effects. Using this Ansatz one can
relate the external curvature to only source terms

e−2AR̃4 = −(1∓ 1)QD3δ(O3/D3) . (4.11)

The negative sign refers to the O3-plane charge, which accurately repro-
duces the Minkowski space-time of [GKP02]. The positive sign, however,
corresponds to the D3-brane charge and there is a constant negative
curvature when the source is smeared δ(D3) → 1. When the source is
localised, the AdS4 curvature instead collapses to a point. This analysis
does not prove much, it should only be taken as a hint: localisation will
get troublesome.

From here on only the charge conjugated solution from the previous
section will be used. This is to make connection to the [KKLT03] con-
struction where anti-brane uplifting is usually referred to as “placing
anti-branes in an ISD background”. The dimension will also be set to
p = 6 such that localisation will only occur on a single manifold – S3.

An important effect that happens upon localisation is that the profile
of the flux distribution (4.3) will change such that it can vary across
the internal manifold. For a stable solution to arise one might expect
the flux around the source to be mutually BPS, as in Figure 4.1. Since
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the global charge of the internal flux is mutually non-BPS, it should
therefore get a non-trivial profile which respects the smearing procedure,
that is the net amount of flux is ISD. Consequently

λ =
5

2
→ λ(θ) such that

∫
λ(θ)e7φ/4+3B ?̃3 1 =

5

2
g7/4
s

∫
?̃3 1 .

(4.12)

IASD ISD

S3

D6

Figure 4.1. Mutually BPS flux close to the brane.

The generalisation by including λ can also be motivated by [BGH10]
where is was shown that the backreaction of anti-D3-branes in the
[KS00] conifold also changes the background ISD profile. This will be
elaborated further upon later, see Section 4.2.1.

The statement made above, i.e. that the flux will arrange itself such
that it becomes mutually BPS at the brane depicted in Figure 4.1,
while desired for a stable solution, it will be shown that this is not what
happens.

Regularised sources

1 z(θ) δ(θ)

Smeared Regularised Delta

Figure 4.2. The source profiles to be considered.

One attempt made in Paper II was to localise the source to a regu-
larised source profile, see Figure 4.2. This was done by introducing a
function z(θ) that relates to the source term as

δ
(
D6
)

=
1√
g(3)

δ̃
(
D6
)
→ e−3Bz(θ) . (4.13)
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All functions were evaluated in a Taylor series at an arbitrary point
on the three-sphere and one regular source profile solved all equations
of motion. However, all fields except z(θ) and B(θ) turned out to be
constant. In fact, the combination of z and B that appears in the
source term (4.13) is also constant. This means that what has been
found is just the smeared solution in terms after a change of coordinate
θ. This attempt showed that there are only two possible sources – the
completely localised and the smeared source.

Topological no-go
The main result of Paper II is that by a certain combination of the H3

equation of motion and the F2 Bianchi identity, it is possible to find a
relation that restricts the behaviour of the potential function α.

The way it works is that the H3 equation of motion provides a relation
between α and flux density λ

α = λe7A+ 3
4φ + β . (4.14)

By choosing a gauge3 where β = 0, the dependence of λ can be com-
pletely removed from the Bianchi identity for F2 to get an equation
involving all but λ

1

e3B sin2 θ
∂θ

(
e−7A+B− 3

2φ sin2 θ∂θα
)

= αe−7A+φF 2
0 −QD6δ(D6) .

(4.15)
This is a quite complicated differential equation, especially since it cou-
ples to the dilaton equation of motion and the Einstein equation. How-
ever, when considering the above at a point θ = ϑ such that ∂θα|θ=ϑ = 0,
this equation can be reduced to the following statement

sgnα = sgnα′′ . (4.16)

This simple relation restricts the profile of the function α and in turn,
through (4.14), the flux distribution λ. The importance of (4.14) is that
it shows that

sgnα = sgnλ . (4.17)

In fact, one can also integrate the Bianchi identity and find that at the
source position

sgnα′|θ=0 = −sgnQD6 . (4.18)

As motivated earlier, λ was introduced in order to establish a degree of
freedom that could make the flux become mutually BPS with the brane
at the brane position. A anti-D6-brane in a mutually BPS flux back-
ground, λ = −1, would have the following behaviour for α = −e7A+ 3

4φ

α′|θ=0 < 0 , α(0) = 0 , (4.19)

3This gauge parameter β is referred to as α0 in Paper II.
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as depicted in Figure 4.3. However, since the smeared solution should

θ

α

Figure 4.3. The would be BPS α profile.

originate from the integrated localised solution, α must switch sign.
The reasoning is as follows: a correspondence between the smeared
and localised solution means that λ must satisfy (4.12), i.e. have an
integrated positive sign, and α must have the same sign as λ according
to (4.14). Although this statement must be obeyed, according to (4.16)
α cannot change signs in this way, see Figure 4.4.

θ

α

Figure 4.4. The behaviour of α satisfying the smearing procedure.

This shows that the localised anti-D6-brane solution cannot have mu-
tually BPS flux at the position of the brane. There is however one way
to resolve this issue. It is possible to find a profile for α that satisfies all
the conditions stated above. This is if α procures a non-zero, positive,
value at the brane position, as in Figure 4.5. This does make λ diverge

θ

α

Figure 4.5. The allowed behaviour of α satisfying the smearing procedure and
all topological conditions.

at the brane position, with a positive sign, since (4.14) contains e7A+ 3
4φ

which is expected to be zero at the position of the brane. Note that this
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is an assumption and the exact boundary conditions at the brane have
to be calculated explicitly to see if they indeed satisfies this assumption.
However, if the assumption holds, then the flux density will diverge with
a sign that is non-BPS with respect to the brane, see Figure 4.6.

ISD

S3

D6

Figure 4.6. Flux distribution that satisfies the topological restrictions.

It should be noted that all of the above conclusions also hold when
another anti-D6-brane is placed at the opposite side.

Confirming the boundary conditions

As just mentioned, the above reasoning are based on the assumption
that a constant α at the brane position will lead to a singularity in λ.
This only holds if e7A+ 3

4φ tends to zero at the brane position and λ
diverges at the same rate.

To be able to classify all possible boundary conditions the four func-
tions A,B, φ and λ are expanded in terms of θ with arbitrary powers

e−A = a0θ
a + a1θ

a+ζ + a2θ
a+ξ + . . . ,

e−2B = b0θ
b + b1θ

b+ζ + b2θ
b+ξ + . . . ,

e−
1
4φ = f0θ

f + f1θ
f+ζ + f2θ

f+ξ + . . . ,

λ = λ0θ
l + λ1θ

l+ζ + λ2θ
l+ξ + . . . ,

(4.20)

where all expansion parameters and powers4 can take any real values.
Note that one assumption is that 0 < ζ < ξ, and so on, such that
the expansions can be consistently truncated. These expansions are
then inserted into the equations of motion and all possible values for
{a, b, f, l, ζ, ξ} that would consistently solve all equation of motion to
zeroth order would be candidate boundary conditions.

Since these are small θ expansions, these expressions will only capture
close to brane behaviour, such as sign of charge. The topological restric-
tions, which are enforced in the bulk, will have to be imposed when the

4In Paper III the powers are in two cases referred to with the same symbol as the
function. Some caution is needed to distinguish the functions from the expansion
powers.
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global properties are considered. The only goal here is to classify the
boundary conditions, which is the subject of Paper III.

There are only three boundary conditions that are physical, in the
sense that the rest of them have inconsistent sources. The physical
boundary conditions are

1. No source at θ = 0
a = b = f = l = 0 , (4.21)

implying constants at leading order.
2. The BPS boundary conditions

a = − 1

16
, b =

7

8
, f = − 3

16
, l = 0, λ0 = −1 . (4.22)

These hence obey the BPS conditions −16A = 16B/7 = −4φ/3 at
least locally.

3. Boundary conditions with singular λ

a = − 1

16
, b =

7

8
, f = − 3

16
, l = −1 . (4.23)

The first boundary condition tells us that one can have one pole without
source, however to be able to cancel the tadpole there must be an anti-
D6-brane on at least one of the poles. The second boundary condition
is the BPS one, and as was shown in the previous section, these will not
obey the global topological constraints. The third boundary condition is
new, and is exactly what was assumed to exist. This boundary condition
have a singular λ at θ = 0 such that α becomes finite at the same point.
This is the only boundary condition that obeys the (global) topological
constraints.

Resolving the singularity
It was just shown that the flux density, when the brane is localised, dis-
plays a singularity. Whether this singularity is physical5 or not remains
as an unsolved problem. To resolve this question one can consider the
criterion of Gubser [Gub00]. This is a suggested criterion that a singu-
larity is physical and will be resolved in some way, if the singularity can
be hidden behind a horizon.

This criterion has been shown to be true in several cases. As men-
tioned in Paper V, which deals with this issue, the Gubser criterion re-
solves the [GPPZ00] singularity, the [FM01] black hole, and the [KT00]
singularity [KS00, Buc01, BHKPZT01, GHKT01, ABK07, Buc11].

To apply the criterion to these anti-D6-branes a horizon needs to be
added that shields the branes and one should then investigate whether
the singularity can be avoided. The approach will be to again write

5“Physical” here means that the singularity can somehow be resolved or interpreted.
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down the topological constraints and see if they are modified in such
a way that the either a constant α does not imply singular λ or that
α = 0 at the brane position.

It is shown in Paper V that the topological constraints remain the
same. The only difference is that the argument is now made around a
point θ = k, where k is the position of the horizon, instead of the origin
θ = 0. The important difference appears in how 4.14 changes when a
blackening factor

e2f = 1− k

r
, (4.24)

is added. The new form of the relation between α and λ becomes

α = λe7A+ 3
4φ+f . (4.25)

This relation shows that α must be zero at the horizon unless λ is
singular. Again, the only way to satisfy the topological constraints is
if α acquires a positive value. Therefore the singularity in the flux
density is still present. The flux singularity has now only moved and is
positioned in front of the horizon.

By working under the assumption that the Gubser criterion is a nec-
essary one, the conclusion to be drawn here is that the singularity is
non-physical. The backgrounds considered here are actually the toy
backgrounds R3 × T6−p, which have a type of conical structure. This
should be a good approximation for the near-brane behaviour, when the
internal space curvature is not visible.

It should be mentioned that the same conclusions were reached in
[BBD13] by the means of a numerical analysis. The above argument
strengthen the conclusion of their paper and gives a stronger intuition
as to why the singularity is still present.

4.1.3 Parallel developments regarding anti-D6-branes

In the previous section it was shown that a singularity arises in the flux
density when the anti-D6-branes are localised. However it might be
possible to avoid this singularity. One method in which the singularity
could be resolved is through a procedure described by [PS00]. The
idea is that at a finite distance from the anti-D6-brane there resides a
polarised D8-brane, using the Myers effect [Mye99]. This would resolve
the singularity by cutting it off the flux density to a finite density that
ends on the D8-brane.

To determine the possibility of a D8-brane, [BJKVRWZ12] derives the
potential that would govern the motion of the D8-brane. This potential
is a part of a Taylor series around the anti-D6-brane position, and hence
only local statements can be made from this potential. The Taylor series
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is made when the internal space is non-compact R3, see Figure 4.7, which
approximates the S3 only at short distances. The external space is also
without curvature, i.e. Minkowski. What they do find when using this
approach is that the polarisation potential has a certain shape without
a minimum. Hence there is no (meta-)stable position for the D8-brane
to reside at.

D6

D8

Figure 4.7. The [BJKVRWZ12] non-compact D8-polarisation.

Although, in the appendix of [BJKVRWZ12] the same calculation is
performed for R6,1 × R3 → AdS7 × S3, and their conclusion is that the
global properties of the solution must be known before a clear statement
can be made. The non-compact analysis, however, gives an argument,
since this solution is T-dual to anti-D3-branes on R3×T3 which is similar
to the [KT00] and [KS00] backgrounds.

In [AFRT13] a very general analysis of the possible AdS7×M3 com-
pactifications are studied. This is for the most part an implicit study
where they find that only type IIA can support such geometries. In
both massive and massless type IIA they verify the presence of a flux
singularity in H3, unless D8-branes are inserted to resolve them.

The difference from [BJKVRWZ12] is that [AFRT13] considers the
global structure of the internal space, that is, respecting flux quantisa-
tion and tadpole cancellation. Even tough the analysis is mainly implicit
they give a non-trivial numerical example in which the singularity is re-
solved. They place a D6- and an anti-D6-brane at each opposing pole,
which are then polarised into two separate stacks of D8-branes at a fi-
nite distance from the poles. These two D8-brane stacks carry opposite
D6-brane charges. At each pole the solution is BPS, see Figure 4.8, even
though the supersymmetry preserved by by the two branes are opposite,
the supersymmetry parameters are rotated from one pole to another and
hence the system can become BPS and restore supersymmetry.

This indicates that D8-polarisations are possible, but this is numerical
analysis and to determine whether more general D8-polarisations are
possible, an analytic approach is needed.

The corresponding analytical answer to the the question about the
possible D8-polarisations is studied in [JSZ14]. There it was analytically
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F0
<
> 0

S3

D8D8

Figure 4.8. A depiction of the [AFRT13] example. The D8 stacks increase the
value of F0 integral steps from negative on the left to zero in the centre and
positive on the right.

found that the external AdS curvature is responsible for the possibility
to retain supersymmetry and find the meta-stable state for the polarised
D8-brane. They extend the study also to more general D8-polarisations
and find numerical evidence that there also exist non-supersymmetric
solutions with a polarised D8-brane.

4.2 An interpretation of the anti-D3-brane
singularity

Before discussing the results of Paper IV that concerns the singularity
related to anti-D3-branes, there will be a short review of the develop-
ment of other contributions to this area.

4.2.1 Parallel developments regarding anti-D3-branes

The singularity at a perturbative level

The anti-D3-brane flux singularity was first discovered by [MSS11].
They were considering a perturbative approach, invented by Borokhov-
Gubser [BG03]. Using this approach the backreaction of the anti-D3-
branes is computed as an expansion p/M , where p is the number of
anti-D3-branes and M is the amount of background flux, around the
supersymmetric [KS00] background.

What was observed by [MSS11] is that one of the modes that enters
the expression for the fluxes have a singular mode in the first order of
the expansion6

|F3|2 ∼ |H3|2 ∼ S2

τ2
, (4.26)

6The coordinate τ here is the radial coordinate of the conifold. See Appendix A of
[BGH10] for a dictionary between different conventions for the radial coordinate.
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where S is a constant from the perturbative expansion that can be
determined by matching UV and IR boundary conditions. In [BGH10]
the singularity was confirmed, again by the same linearised perturbative
approach. [BGH10] also calculates the force on a probe D3-brane that
is placed at some r to be

FD3 ∼
X1

r5
, (4.27)

where X1 is a parameter determined by boundary conditions. It is
furthermore argued by [BGH10] that this result is the correct force by
comparing to [KKLMMT03]. [KKLMMT03] investigates the a scenario
of cosmic inflation from a probe anti-D3-brane falling down the [KS00]
background when D3-brane charges are present at the bottom of the
conifold. The radial dependence of the force of [BGH10] agrees with
the result of [KKLMMT03]. One important part here is that this force
is proportional to X1, this parameter is related to S used by [MSS11]
and the singularity that arise in the fluxes behaves as

|F3|2 ∼ |H3|2 ∼
X2

1

τ2
. (4.28)

This gives a strong argument that the singularity must be present, at
least in this perturbative expansion, if an anti-D3-brane is present at
the bottom of the [KS00] conifold.

[BGH10] also finds that the ISD relation is necessarily broken. The
three legs of the three-forms, see equation (2.62), in [KS00] satisfies the
ISD relation (2.56). However, when an anti-D3-brane is added, the ISD
relation is broken and obtains a non-trivial profile dependent on τ . This
is elaborated further in [Mas12a].

These perturbative and implicit (in terms of nested integrals) solu-
tions, have since then been quite rigorously studied. In [BGGHM13]
the nested integrals were to a large extent solved (only a few remain).
The singularity was also commented upon in [Dym11] where it is argued
that the singularity is only a artefact of the perturbative expansion. It
is hence argued that beyond the perturbative approach, or to higher or-
ders, new terms would cancel the singularity and make the flux densities
finite at the position of the branes. It was later argued by [Mas12a] that
the argument presented by [Dym11] is flawed, in the sense that [Dym11]
only has an argument that would resolve one singular component of the
fluxes if only one component was singular. As pointed out in [Mas12a]
the flux has two singular components from the perturbative approach.

Not only do these approaches suffer from a perturbative expansion,
but also partial smearing. The anti-D3-brane is only localised in the
radial direction of the conifold and is smeared along the finite S3 at the
bottom. Arguments beyond both of these assumptions will be discussed
next.
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Beyond partial smearing and perturbative techniques

As mentioned above, the existence of the singularity is quite firmly
established – under the assumptions of partial smearing and a pertur-
bative approach. So far, in this presentation, only the anti-D6-brane
singularity is established beyond these assumptions.

One argument for the existence of the singularity for the anti-D3-
brane, made in [Dym11], is that it could simply be a relic of these
assumptions. However, because of the well established existence of the
anti-D6-brane singularity one would expect it to survive for the anti-
D3-brane as well. There might be reasons not to expect this, although
such opinions are absent in the literature.

The collaboration [GJZ13] discovers a new method to argue for the
existence of the singularity. They derive an expression of the following
form

8vV
d− 2

Λ =
∑
p

(
1 +

p− 3

2
c

)[
S

(p)
DBI + S

(p)
WZ

]
+

∫
F(c) . (4.29)

The first term is proportional to the unwarped curvature of the external
space-time Λ ∼ R̃p+1. V and v are related to the internal and external
volume respectively. On the right hand side there is a term involving the
DBI and WZ actions of the sources and the last term is an expression
involving the fluxes. For the full details of this expression see [GJZ13],
also covered in the Ph.D. thesis [Jun13].

The importance of this expression is that they can verify the singu-
larity of the anti-D6-branes. This is done by showing a non-perfect can-
cellation between the sources that gives the AdS curvature Λ ∼ QD̄6α0,
while the F(c)-term can be gauged to zero. α0 being the field-strength
potential at the position of the brane is hence a constant. This constant
implies a singularity in the flux charge density, in the same way as it
was argued in Section 4.1.2 where Paper II was covered.

It is important to note that their argument goes beyond any expan-
sion and assumption of smearing since all statements are global.7 The
importance lies in their ability, using (4.29), to determine the presence
of the singularity for [KKLT03]. That is, the full compact situation
when an anti-D3-brane has been placed in the [KS00] conifold and made
compact, and including non-perturbative contributions. This is a very
strong argument for the existence of the singularity.

Another note to be made here is the similarity between the very
well formulated argument of [GJZ13] and the not so well formulated
argument presented in Section 4.1.2, covering Paper I. The equation

7One way of interpreting the smearing procedure is that the equations considered are
integrated. However [GJZ13] goes beyond this, even though they consider integrated
equations only, since warping and the field-strength are appropriately accounted for.
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(4.11) also displays a problem due to the imperfect cancellation of the
source terms, just as for (4.29).

The singularity has also been established beyond a perturbative ap-
proach in [BGKM13a] and later strengthened in [BGKM13b]. Although
these approaches involve partial smearing they still use the [KS00] back-
ground explicitly. The importance of these works is that they can verify
the singularity beyond the perturbative approach.

Attempt for resolving the singularity

As was suggested by [Dym11], the singularity might be an artefact of the
perturbative expansion. It was observed by [BGKM13b] that beyond
the perturbative approach one singular component remains, i.e. the
component of F3 that occupies the S3.

As mentioned in Section 4.1.3, one approach to resolve the singu-
larity is to allow for the polarisation of a D(p + 2)-brane through the
Myers effect [Mye99], according to the description of [PS00] which was
summarised in Section 2.2.2.

In [BGKM13b] the D5-brane polarisation potential was studied. The
method used was to calculate a potential for the D5-brane to determine
if there exists a minimum at which the D5-brane can reside. The result-
ing potential is shown by [BGKM13b] to have no minimum and hence
there cannot be any (meta-)stable position for the D5-brane. Hence
reaching the same conclusion as for the non-compact anti-D6- to D8-
brane polarisation.

Another possibility is to by hand add external curvature to the back-
ground in which the anti-D3-branes are placed. This analysis has been
performed by [BG13] who finds that the singularity is not possible to
resolve in this way. This is done numerically in both the [KT00] and
[KS00] backgrounds. The efforts to extend their results analytically still
remains.

Warping corrections and the influence of the singularity on
KKLT

Often when effective theories are considered, localisation effects are left
out of the calculation under the assumption that they are under control.
In light of the presence of the still unresolved singularity, the [KKLT03]
calculation should be redone. While revising the calculation, it should
be kept in mind that localised sources induce warping and this warping
is related to the singularity, even though it is present in the flux charge
density [GJZ13]. This is the aim of [Jun14], where it is found that the
outcome depends on a choice of boundary conditions. The singularity
can show up in the effective potential, and hence problematic to inter-
pret, or the original result of [KKLT03] can remain but only under the
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assumption that this boundary condition holds. Whether this choice is
reasonable still needs to be investigated further.

The existence of a CFT dual

There is another direction available arguing for a non-singular anti-D3-
brane solution. This argument utilizes the AdS/CFT correspondence.
The idea is that if a regular anti-D3-brane solution exists there should
also exists a CFT dual to this solution. Presently no such solution has
been revealed. Since none of the works included in this thesis contains
any calculation or argument regarding the existence of a sensible CFT,
this discussion will be kept very short. The latest developments of this
approach can be found in [DM13] and [Hoo14], and the author would
advice the interested reader to consider mentioned references instead of
reviewing them here.

4.2.2 Resolving the anti-D3-brane singularity using
time-dependence

An important observation made in the analysis of the singularity, in
the case of the anti-D6-branes and the anti-D3-branes, is that the ISD
components of the flux are found to be singular at the brane position.
Consider the Bianchi identity for the field-strength associated with a
Dp-brane

dF8−p = H3 ∧ F6−p +QDpδ9−p(Dp) . (4.30)

The ISD signed flux makes the flux charge density positive

ρ9−p(ISD) = H3 ∧ F6−p = λe(p+1)φ/2|F6−p|2 ?9−p 1 ≥ 0 . (4.31)

That is, it has the same signed charge as a Dp-brane. For the BPS
solutions where (anti-)Dp-branes are placed in I(A)SD fluxes the net
force between the flux is cancelled and a so-called no-force condition is
achieved. While if the charge has a sign change, as in the case of an anti-
Dp-brane in a ISD dominated background, there will be an attractive net
force. The tension and charge signs are listed in Table 4.2. This is not
an original idea, but the same type of flux–brane attraction is mentioned
in [DKV04]. This leads to a simple interpretation: if there are net forces
in the system the Ansatz should be time dependent. In fact, ignoring
time dependence have been known to give rise to singularities in other
systems, see [DGS03] and [Gre96].

It seems very plausible that in the system where a brane exists in a
mutually non-BPS background the flux will be attracted to the brane.
When the flux is great enough the brane will be annihilated by the
surrounding flux, through the same channel as described by [KPV02].
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Tension Charge
ISD + +

IASD + −
Dp + +
Dp + −

Table 4.2. The effective tension and charge signs of fluxes and sources.

By trusting this interpretation, the singularity would then arise because
of two factors. The first being that in all cases where the singularity
have been observed the Ansätze have been static. The second is that
the computation, for the Ansätze where the singularity is present, are
a pure closed string computation while flux-brane annihilation is an
open-string process. From this interpretation one should conclude that
the singularity is signalling the need of a time-dependent computation
and/or a computation where flux-brane annihilation needs to be taken
into account.

The idea outlined above is the motivation for Paper IV. The idea
would be to revisit the [KPV02] calculation, where the flux-brane anni-
hilation channel for the [KKLT03] construction is considered, and see if
the conclusion made by [KPV02] changes as a possible time-evolution
of the system is included in the analysis.

Approaching this problem with a full time-dependent Ansatz would
be computationally a very difficult problem – not only would all func-
tions acquire time dependence but also currents would be induced as
the charged flux-density starts moving. Assuming that these effects are
small and the fall in of flux is adiabatic, one can consider the [KPV02]
computation for different times where time is only measured in the
amount of flux that have fallen in. More explicitly this means that
the parameter that governs the magnitude of the flux density, λ, is
traced through the original calculation and appropriately included in
the potential, see equation (4.32). The parameter λ is then increased to
simulate the flux being attracted.

As mentioned in Section 4.2.1 the F3 has three different components
however only one component is singular. As the [KPV02] is performed
at the bottom of the conifold, only the component that is occupying the
S3 at the bottom remains. This is also the component that becomes
singular when the backreaction is computed.
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Figure 4.9. All graphs are drawn with p/M = 3% and b20 = 0.93266. The left
most picture is the [KPV02] result with λ = 1. The middle plot is after a slight
build up of ISD corresponding to λ = 1.3. The right most graph corresponds
to λ = 1.7 where meta-stability is lost.

The effective potential that governs the the NS5-brane movement,
derived by [KPV02], acquires the following form when λ is included

1

A0
V (ψ) =

1

π

√
b40 sin4 ψ +

(
π
p

M
− ψ +

1

2
sin(2ψ)

)2

− λ

2π
(2ψ − sin(2ψ)) .

(4.32)

This computation takes place at the bottom of the [KS00] conifold where
only the S3 remains. The coordinate ψ above is the direction in which
the NS5-brane moves, as explained in Section 2.2.2. A0 and b0 are two
constants, and p/M is the ratio of anti-D3-branes (p) versus the amount
of background flux (M). The first term of this expression is positive and
will give rise to a barrier that prevents the NS5-brane to progress over
the S3 and fully annihilate. The second term is negative, and linear in
the parameter λ. This means that as λ increases, the barrier will be
suppressed, see Figure 4.9.

In conclusion, singularities can arise if one ignores time dependence.
The present singularity, if due to time dependence, would resolve the
singularity and possibly create a new form of instability.

4.3 Non-BPS anti-M2-brane solutions and their
singularities

The two systems discussed so far are of two different types. The first
type, concerning the anti-D6-branes, display a singularity when the
smeared sources are localised. While the second type arises when the
anti-brane is placed in oppositely charged background and backreacted,
e.g. anti-D3-branes in [KS00]. The same two types are present as solu-
tions in 11D supergravity.

In Paper VI smeared non-BPS solutions are constructed, similar to
those in Paper I. Also presented in Paper VI is a first attempt to es-
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tablish the singularity on similar terms as in Papers II and III, that is,
when the branes are localised. This approach will be presented first in
the following section.

The other system that displays flux density singularities for anti-
M2-branes are the backreacted branes placed in the [CGLP03] and
[CGLP02] backgrounds. Furthermore, the anti-M2-branes have been
studied more extensively than any other system when it comes to an
M5-brane resolution. These results will also be reviewed.

4.3.1 New non-BPS anti-M2-brane solutions and their
singularities

Since in 11D supergravity there only exists one 4-form, this by it self
must have components that represents the field-strength associated to
the M2-brane as well as the surrounding flux. The Ansatz used in Paper
VI giving this is

G4 = ?11F7 + F4 +H4 . (4.33)

Here the 7-form F7 is the field-strength and the two 4-forms F4 and H4

represents the surrounding flux. These are taken to obey the following
relations

F7 = eX ?8 dα,

H4 = λ ?8 F4.
(4.34)

These are chosen in this way to be easily compared to the type II form
Ansätze, see Table 4.3.

11D field Type II analogue

F7 F8−p
F4 F6−p
H4 H3

Table 4.3. A comparison between 11D and type II flux Ansätze.

Just as there exists a I(A)SD condition in the type II scenarios, this
flux obeys a (anti-)self-duality ((A)SD) condition when λ = +

(−)1

(H4 + F4) = +
(−) ?8 (H4 + F4) . (4.35)

New smeared solutions

Via the same observation made in Paper I, the smeared approximation
reduces the Bianchi identity to the following algebraic equation

0 = λ|F4|2 +QM2 . (4.36)
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To solve this, i.e. to cancel the tadpole, the flux charge density have to
have the opposite sign compared to that of the brane. These smeared
solutions have a negatively curved world-volume, hence can be taken to
be AdS3. The internal space is however more interesting. If assumed to
be split in two four-dimensional parts where the fluxes are proportional
to the world-volume for each part, then the internal curvature of each
of these spaces are given by the internal parts of Einstein’s equation

R
(H)
ij =

1

6
(−1 + |λ|+ 2λ2)|F4|2g(H)

ij ,

R
(F )
ij =

1

6
(2 + |λ| − λ2)|F4|2g(F )

ij .

(4.37)

Where R
(A)
ij is the Ricci tensor for one part of the internal space, with

the superscript referring to the section covered by A4 flux.
One difference to the type II setups is that here λ is a free parameter

(up to flux quantisation conditions), while in type II the dilaton equation
fixes λ to a specific value. The total curvature of the internal space is
positive and it has to be Einsteinian. However for some values of λ
either one of the two parts can be negatively curved.

As an example, in the region where both parts are positive, which is
1/2 < |λ| < 2, then the internal space can be taken to be S4

(H) × S
4
(F ).

This would then be very similar to the AdSp+1×S3
(H)× S

6−p
(F ) solutions

of Paper I.

Singularities from localisation
From experience one would expect that these solutions would develop a
singularity when the source is localised. For simplification, localisation
is here only considered in one direction, along one of the H4 legs. While
this might seem a crude simplification, in no other systems have partial
smearing been linked to the presence of the singularity.

Also in this system it is possible to also construct a topological re-
striction that forces a certain profile for α. It is in fact also the case
that these singularities cannot be hidden behind a horizon, similar to
what was shown in Paper V.

The argument goes through in the same way as before – the field-
strength potential α is constrained by

sgnα′′ = sgnα |α′=0 . (4.38)

Following the same logic as was done for the anti-D6-branes, this condi-
tion implies a singularity unless there are new boundary conditions are
available that avoids this no-go condition. Furthermore, a blackening
factor cannot hide the singularity. In light of [AFRT13], which manage
to resolve the anti-D6-brane singularity with the use of D8-branes, it
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should be possible to resolve these anti-M2-brane singularities with the
use of M5-branes.

4.3.2 Parallel developments regarding anti-M2-branes

As was covered in Section 2.2.2, there are two available backgrounds
that have been studied with the addition of anti-M2-branes placed at
the tip. These two are [CGLP03] and [CGLP02]. As was also cov-
ered in Section 2.2.2, the [CGLP03] solution has likewise been studied
for a probe anti-M2-brane and its possible meta-stable transition into
a M5-brane, analogous to the [KPV02] calculation of type IIB. The
backreaction of the anti-M2-branes in these two backgrounds have been
studied in [BGH11, Mas12b] and [GOP13] respectively.

Singularities on V5,2

The V5,2 manifold used in [CGLP03, BGH11, Mas12b] has a non-vanishing
S4 at the bottom of the conifold. This causes the same technical prob-
lem that one has for placing anti-D3-branes in [KS00], i.e. the source
have to be smeared over the sphere at the bottom of the conifold.8 But
as have been discussed for both the anti-D6-branes as well as the anti-
D3-branes, singularities seems to still be present after full localisation.

Again utilising the [BG03] perturbation technique, implicitly solved
in [BGH11] in terms of nested integrals, and analytically in [Mas12b],
it was found that the bacreaction of the anti-M2-branes exhibit two
singular legs

dτ ∧ σ̃123 , and εijkν ∧ σi ∧ σ̃jk . (4.39)

Remember that the leg of the flux that occupies the bottom S4 is the
ν∧σ123 leg, which is not singular. This is in contrast to the backreaction
of the anti-D3-branes, where the singular leg is the one occupying the
S3. The fact that the singular leg is occupying the S3 was one of the
motivations for the interpretations made in Paper IV, where it was
argued that the meta-stability of NS5-channel vanishes. More comments
on the M5-brane polarisation will be made shortly.

Singularities on A8

The A8 manifold has an advantage over V5,2 – at the bottom of the
conifold the metric is topologically flat R8 [CGLP02]

ds2
8 ∼ dr2 + r2dΩ7 . (4.40)

Hence the anti-brane placed there only has one localisation direction,
as a localised point in flat space. The aim of [GOP13] is to study

8In principle it could also be localised on these S4/3 spheres, supposedly preserving
the isometries of the azimuthal S3/2 sphere, but this is beyond current techniques.
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backreaction of anti-M2-branes in this background. Compared to the
V5,2 background, A8 makes it easier to study the backreaction under
full localisation. Again, this analysis is performed under the linearised
[BG03] approach. [GOP13] verifies the presence of the singularity once
more.

In parallel to [GOP13], [CGH13] performed the same calculation and
also arrives at the conclusion that the singularity is present.

M5 polarisation and other problems

Analogous to [KPV02], [KP11] describes the meta-stability of placing
anti-M2-branes at the bottom of the [CGLP03] background under the
assumption that the background allows for an M5 polarisation channel.
The very recent work of [BGKM14] extends the analysis of the anti-
M2-branes significantly. First of all they show that the singularity is
present beyond the perturbative expansion. Secondly they study two
polarisation channels – a [KP11]-channel that governs the decay of anti-
M2-branes into M2-branes and a “transversal”-channel that is suggested
to cut off the singularity. The M5-brane in the [KP11]-channel wraps a
S3 inside the finite S4, while the transversal-channel wraps the shrinking
S3.

The parameters that enter the [KP11]-channel polarisation potential
are, in [BGKM14], left undetermined and do allow, for a certain range of
said parameters, a minima for the M5-brane to reside at. The new thing
in this approach is that close to the anti-M2-branes a local AdS4 × S7

throat develops. Within the local region where this throat resides, a
polarisation minimum do develop.

While the [KP11]-channel does seem to be allowed, the transversal-
channel is absent. This channel is suggested to provide a cut off for the
radial profile of the flux energy density and resolve the singularity. The
absence of this channel agrees with the results for the anti-D6- and anti-
D3-brane polarisations of [BJKVRWZ12] and [BGKM13b] respectively.

Even though the [KP11]-channel is present, the whole UV to IR
boundary conditions have not been mapped together, and hence the
presence of the singularity is not necessarily resolved. The [BGKM14]
are very recent and it is too early to make a definite conclusion from
these results.

Before leaving the anti-M2-branes, it should be noted that the result
of Paper VI is valid for a more or less general topology. Whether the
assumed structure of the internal space and the positioning of the fluxes
in Paper VI actually is general enough to be applied in the V5,2 or A8

geometry, has to be checked explicitly. If not, the techniques employed
in Paper VI might be possible to generalise to also these cases.
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4.4 Short summary
To summarise the work included in this thesis and the related papers
reviewed above a short chronological map will be presented here.

1. The flux charge density singularity is discovered for anti-D3-branes
in the [KS00] background by [MSS11] via the means of a pertur-
bative expansion [BG03] in terms of p/M .

2. The singularity is verified in [BGH10] via similar means.
3. Paper I presents new smeared anti-D6-brane solutions.
4. [BGH11] shows that a singularity arise for anti-M2-branes in the

[CGLP03] background, as a part of a perturbative expansion.
5. An argument is presented in [Dym11] which says that the singu-

larity would vanish beyond the perturbative expansion.
6. The existence of an anti-D3-brane singularity is strengthened by

analytically solving the nested integrals of [BGH10] in [BGGHM13].
7. A topological argument for a singularity is presented in Paper II

for the localised solutions of Paper I.
8. The work of [BGH11] is strengthened by [Mas12b] through ana-

lytically solving nested integrals.
9. The topological argument of Paper II is shown to be unavoidable

by characterising all boundary conditions in Paper III. This is the
first results that go beyond any perturbative expansion and partial
smearing.

10. An adiabatic time-dependent resolution of the anti-D3-brane sin-
gularity is presented in Paper IV. This is the first interpretation
that leads to a resolution of the singularity. Furthermore it shows
that the singularity can lead to a new instability.

11. [Mas12a] presents an argument against the possibility of resolving
the singularity as suggested in [Dym11].

12. It is shown that the anti-D6-branes does not allow for a D8-polarisation
that could have resolved the singularity by [BJKVRWZ12] in a
non-compact setup.

13. By [BGKM13a] the anti-D3-brane singularity is shown to be present
beyond any perturbative expansion.

14. It is shown in [BGKM13b] that the anti-D3-brane singularities
cannot be resolved via a D5-brane polarisation.

15. Numerical solutions are presented in [BBD13] that show that the
anti-D3-brane singularities does cannot be cloaked by a horizon.

16. A new approach is presented in [GJZ13] that goes beyond any per-
turbative and partial smearing techniques and shows the existence
of the singularity.
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17. Paper V extends the work of [BBD13] and argues analytically that
the singularity does not have a string theory resolution as per the
criterion of [Gub00].

18. The singularity is established for anti-M2-branes one a new back-
ground. This is done trough a perturbative expansion, however
the background allows for full localisation [GOP13].

19. [CGH13] describes the same system as [GOP13] and also encoun-
ters the singularity.

20. Paper VI presents new smeared (anti-)M2-brane solutions and
an accompanying topological argument as to why these solutions
would develop singularities and cannot be cloaked via the means
of adding a horizon.

21. [AFRT13] presents a numerical example in which the anti-D6-
brane singularity is resolved by having a D6-brane on the opposite
side, with D8-branes stacks preserving two BPS regions.

22. In [BG13] curvature to the external space-time is added to see if
the singularity can be avoided. They conclude that the singularity
does not get resolved by this procedure.

23. [BGKM14] calculates the M5-brane polarisation channels and dis-
covers a previously unknown tachyonic instability.

24. By revisiting the [KKLT03] calculation, keeping track of the sin-
gularity and taking care of warping effects, [Jun14] finds that the
unresolved singularity might under a certain choice of boundary
conditions not change the result.

25. The supersymmetric D8-brane polarisation potential is studied in
[JSZ14], who also finds numerical evidence for non-supersymmetric
polarisations.

This record shows, with very little doubt, that the singularity is
present and not due to partial smearing nor some perturbative expan-
sion. For the anti-D6-branes the singularity have been shown to be
possible to resolve through the polarisation to a D8-brane. However, as
noted by [AFRT13] and [JSZ14], the polarisation channel is present in
these cases because of the AdS curvature. For the anti-D3-brane sin-
gularity, the external curvature available would be related to the small,
almost vanishing, positive cosmological constant. Hence it is difficult to
expect that a similar polarisation channel would exist for the anti-D3-
branes for the same reasons.

One question that remains is whether the polarisation channel shown
to be present in [BGKM14] is possible to resolve the singularity or not. If
this polarisation do not resolve the singularity, which the result of Paper
V would suggest (because the singularity fails the [Gub00] criterion), the
interpretation made in Paper IV is still viable. Even if the polarisation
is there and do resolve the singularity, Paper IV could still imply an
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Time (arXiv) D6 D3 M2

23 Oct 2009 [MSS11]
17 Dec 2009 [BGH10]
9 Sep 2010 Paper I
9 Nov 2010 [BGH11]
8 Feb 2011 [Dym11]
11 Feb 2011 [BGGHM13]
24 May 2011 Paper II
11 Oct 2011 [Mas12b]
10 Nov 2011 Paper III
6 Feb 2012 Paper IV
16 Feb 2012 [Mas12a]
8 May 2012 [BJKVRWZ12]
27 Jun 2012 [BGKM13a]
19 Dec 2012 [BGKM13b]
20 Dec 2012 [BBD13]
23 Jan 2013 [GJZ13]
29 Jan 2013 Paper V
7 Mar 2013 [GOP13]
11 Mar 2013 [CGH13]
10 Sep 2013 Paper VI
11 Sep 2013 [AFRT13]
4 Oct 2013 [BG13]
10 Feb 2014 [BGKM14]
19 Feb 2014 [Jun14]
25 Feb 2014 [JSZ14]

Table 4.4. This table summarises the chronological and thematic progression
of the anti-brane program.

instability of the [KKLT03] vacuum, since only a slight elevation of the
flux energy density is needed for the barrier of decay to vanish.

Although no definite conclusion can be drawn at this point, these
investigations have taught us new lessons about the need for caution
when it comes to the study of supersymmetry breaking models.
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Svensk sammanfattning

En viktig fr̊aga som dagens teoretiska fysik st̊ar inför är hur de fyra
fundamentala krafterna skall sammanbindas inom ett teoretiskt ram-
verk. Det aktuella problemet handlar om att tre utav krafterna har ett
gemensamt ramverk för att beskrivas medans den fjärde st̊ar för sig
själv. De tre förenade krafterna kallas för Stark, Elektromagnetisk och
Svag. Dessa tre krafter har en god beskrivning p̊a korta avst̊and och
beskriver väldigt korrekt v̊art mikroskopiska universum. De beskriver
t.ex. hur en proton h̊aller ihop (Stark), hur fotoner (ljuspartiklar) inte-
ragerar (Elektromagnetisk) och hur radioaktivt sönderfall sker (Svag).
Det teoretiska ramverket som beskriver dessa krafter är en s̊a kallad
kvantfältteori med tillhörande lokala (Gauge) symmetrier, ofta kallad
Yang-Mills teori. Ramverket som förenar dessa tre krafter kallas för
Standardmodellen. Den fjärde kraften är Gravitationen som beskriver
allt fr̊an planetbanor till universums kosmologiska utveckling – fr̊an Big
Bang till idag samt möjliga utfall för v̊art universums framtid. Det te-
oretiska ramverket som beskriver gravitationen är den allmänna relati-
vitetsteorin. Till skillnad fr̊an de övriga tre krafterna är den allmänna
relativitetsteorin inte en kvantiserad teori, vilket betyder att den inte
kan användas för att beskriva gravitation p̊a mikroskopiska avst̊and.
Standardmodellen beskriver allts̊a det lilla och den allmänna relativi-
tetsteorin det stora i universum. Som nämndes ovan best̊ar problemet
av hur dessa tv̊a beskrivningar skall sammanbindas.

En möjlig lösning till detta problem skulle kunna vara strängteorin.
Grundidén inom strängteorin är att de minsta best̊andsdelarna i v̊art
mikroskopiska universum inte är punkter utan strängar. Strängar är
endimensionella objekt som kan vara öppna (med ändpunkter) eller
slutna (utan ändpunkter). Även om strängteorin löser ett av proble-
men, den sammanbinder Yang-Mills teorier (öppna strängar) med den
allmänna relativitetsteorin (slutna strängar), s̊a skapar den andra. En-
ligt strängteorin är universum tiodimensionellt, jämfört med de fyra som
vi kan observera (höjd, bredd, djup och tid). Detta innebär att antalet
dimensioner bör reduceras p̊a ett eller annat sätt. Ett annat begrepp
som är viktigt för strängteori är supersymmetri. Supersymmetri är en
symmetri mellan kraftförmedlarpartiklarna (bosoner) och materiapar-
tiklarna (fermioner) i en teori. Även om supersymmetri finns i teorin
s̊a har dess tillämpningar för v̊ara fundamentala partiklar, det vill säga
supersymmetriska utökningar av standardmodellen, inte kunnat obser-
verats än. Ytterligare ett problem för strängteorin är att det vanliga
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grundtillst̊andet hos strängteoretiska modeller har en negativ kosmolo-
gisk konstant. Den kosmologiska konstanten beskriver universums ex-
pansion och observationer överensstämmer med en positiv kosmologisk
konstant, det vill säga en accelererad expansion av v̊art universum. Det
betyder att det krävs en hel del arbete för att konstruera realistiska
modeller.

En del av de problemen som vissa strängteoretiker arbetar med kan
beskrivas som “hur skall antalet dimensioner reduceras?”, “hur bryts su-
persymmetri?” och “kan strängteori beskriva den kosmologiska utveck-
ling av v̊art universum som vi observerar?”. Den mest grundläggande
motivationen för denna avhandling är just dessa fr̊agor.

Ämnet för avhandlingen är att g̊a in mer i detalj och studera just en
konstruktion som reducerar de tio dimensionerna hos strängteorin till fy-
ra, bryter supersymmetri och beskriver en positiv kosmologisk konstant.
Denna konstruktion fungerar p̊a s̊a sätt att de sex extra dimensionerna
väljs att vara mycket sm̊a, och därför inte direkt tillgängliga för v̊ara
experiment, detta kallas kompaktifiering. I dessa extra dimensioner läggs
sedan ett bran (eng. brane). Ett bran är ett objekt som har flera dimen-
sioner. Namnet bran kommer fr̊an det engelska ordet för membran (eng.
membrane), som är ett tv̊adimensionellt objekt. Ett bran kan dock ha
vilken dimension som helst, ända upp till tio. Branet som används i just
denna konstruktion är ett s̊a kallat anti -bran. Detta betyder att det har
motsatta egenskaper jämtemot övriga best̊andsdelar i konstruktionen
som studeras här. Det innebär att anti-branet st̊ar för supersymmetri-
brottet som är nödvändigt och även lyfter den kosmologiska konstanten
till ett positivt värde.

Avhandlingen har därför som m̊al att studera denna typ av anti-bran.
Detta görs dels ifr̊an ett perspektiv av anti-D6-bran (sex rumsdimensio-
ner), som inte har en fenomenologiska tillämpning eftersom den slutgil-
tiga rumtiden är sjudimensionell. De anti-D6-bran som studeras här är
helt nya system som presenteras i denna avhandling. S̊aväl kända anti-
D3- och anti-M2-bran som nya anti-M2-bran system dyker ocks̊a upp.
Alla dessa resultat är fr̊an beräkningar inom en approximation som kal-
las för supergravitation, vilket är en gravitationell teori med tillhörande
supersymmetri. Supergravitation är en l̊agenergiapproximation av str-
ängteorin och ger möjlighet till enklare beräkningar.

De övriga best̊andsdelar som är en del av dessa konstruktioner är
flöden (kan liknas med elektromagnetiska flöden) som branen elektro-
magnetiskt och gravitationellt interagerar med. Dessa konstruktioner
brukar kallas flödeskompaktifieringar. Det som diskuteras i avhandling-
en är en typ av singularitet i flödestätheten. Denna singularitet uppst̊ar
i närheten av ett bran som har motsatta egenskaper jämfört med flödet
som det placeras i. En stor vikt läggs vid att etablera att singulariteten
faktiskt är där och inte bara är en biprodukt av de beräkningsverktyg
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som används, s̊a som störningsteorier och andra approximativa tillväga-
g̊angssätt.

Det visar sig att det r̊ader lite tvivel, åtminstone i publicerad litte-
ratur, om denna singularitets existens. Fr̊agan handlar därefter om det
finns sätt att undvika denna singularitet. Det vill säga: finns det n̊agot
sätt att förklara varför singulariteten uppst̊ar och g̊ar det att tolka den?
Svaret kan bestämmas genom vissa etablerade test som skulle ge indi-
kationer p̊a att det finns sätt att upplösa singulariteten.

Det finns tv̊a s̊adana test. Det första handlar om att bran av en
viss rumsdimension, p, kan svälla upp, eller polariseras, till ett högredi-
mensionellt bran, med rumsdimension p + 2, och omge det ursprungli-
ga p-branet. Detta skulle d̊a kunna begränsa värdet p̊a det omgivande
flödet och upplösa singulariteten. Det har dock visats i tv̊a fall att ing-
en s̊adan polarisering kan ske. Ett andra test är att se om det g̊ar att
gömma singulariteten bakom en händelsehorisont. En händelsehorisont
är ett begrepp som kommer fr̊an svarta h̊al, där händelsehorisonten är
ett omr̊ade som omger det svarta h̊alet och förhindrar ljus att komma
ut. Om en singularitet till̊ats gömmas bakom en horisont menar man
att singulariteten är under kontroll. För andra singulariteter har detta
visat sig vara ett fungerande test. Ett av resultaten som presenteras i
denna avhandling visar dock p̊a att det inte är möjligt att placera just
denna singulariteten bakom en händelsehorisont. B̊ada dessa test miss-
lyckas allts̊a och fr̊agan hurvida singulariteten är under kontroll eller ej
kvarst̊ar.

Utöver detta presenteras i avhandlingen även en tolkning av singu-
lariteten. Ett vanligt bran utsätter flödet för en attraktiv gravitations-
kraft och en fr̊anstötande elektromagnetisk kraft, p̊a ett s̊adant sätt att
sammanlagt är kraften emellan bran och flöde fr̊anvarande. Anti -branet
har motsatt elektromagnetisk laddning och har därför en total attraktiv
kraft p̊a det närliggande flödet. Krafter ger upphov till acceleration och
därmed rörelse i systemet, men i alla fall där denna singularitet har stu-
derats har statiska, det vill säga tidsoberoende, beskrivningar använts.
Detta medför en möjligt tolkning av singulariteten – den uppst̊ar för att
systemet inte har en möjlighet att utvecklas med tiden.

Dock s̊a f̊ar denna tolkning oönskade konsekvenser. Man kan beräkna
sönderfallet av anti-bran och det visar sig vara beroende av storleken
p̊a det omgivande flödet – större flöde leder till snabbare sönderfall.
Allteftersom anti-branet drar till sig flöde fr̊an omgivningen s̊a sönder-
faller det, möjligen till den grad att det s̊a sm̊aningom inte finns n̊agra
anti-bran kvar. Detta skulle betyda att supersymmetrin återupprättas
och den kosmologiska konstanten återigen blir negativ.

Att beskriva en positiv kosmologisk konstant i strängteorin är ett
väldigt intressant och betydelsefullt problem. De arbeten som inkluderas
i denna avhandling ger inte bara nya insikter om sv̊arigheterna för att

74



bygga realistiska modeller utan även mer först̊aelse för hur olika objekt
inom strängteori beter sig tillsammans.
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[BBDVR13] Iosif Bena, Johan Bl̊abäck, Ulf H. Danielsson, and Thomas
Van Riet. Antibranes cannot become black. Phys.Rev.,
D87(10):104023, 2013, [arXiv:1301.7071].
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